

ASP.NET MVC Framework Unleashed
Copyright © 2010 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32998-2

ISBN-10: 0-672-32998-0

Library of Congress Cataloging-in-Publication data

Walther, Stephen.

ASP.NET MVP framework unleashed / Stephen Walther.

p. cm.

ISBN 978-0-672-32998-2

1. Active server pages. 2. Microsoft .NET Framework. 3. Web site development. I. Title.

TK5105.8885.A26W3522 2010

006.7'882--dc22

2009021084

Printed in the United States of America

First Printing July 2009

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Apostrophe Editing
Services

Indexer
Erika Millen

Proofreader
Keith Cline

Technical Editor
Rebecca Riordan

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Jake McFarland

Introduction

ASP.NET MVC is Microsoft’s newest technology for building web applications. Although
ASP.NET MVC is new, there are already several large and successful websites that are built
on the ASP.NET MVC framework including StackOverflow.com and parts of
CodePlex.com.

ASP.NET MVC was created to appeal to several different audiences. If you are the type of
developer who wants total control over every HTML tag and pixel that appears in a web
page, the ASP.NET MVC framework will appeal to you.

ASP.NET MVC also enables you to expose intuitive URLs to the world. Exposing intuitive
URLs is important for getting your website indexed by search engines. If you care about
Search Engine Optimization, you will be happy with ASP.NET MVC.

The ASP.NET MVC framework enables you to build web applications that are easier to
maintain and extend over time. The Model View Controller pattern encourages a clear
separation of concerns. The framework encourages good software design patterns.

Finally, the ASP.NET MVC framework was designed from the ground up to support testa-
bility. In particular, the ASP.NET MVC framework enables you to practice test-driven
development. You are not required to practice test-driven development when building an
ASP.NET MVC application, but the ASP.NET MVC framework makes test-driven develop-
ment possible.

How This Book Is Organized
The book is divided into two parts. The first part of the book describes the ASP.NET MVC
framework feature-by-feature. For example, there are chapters devoted to the subject of
controllers, caching, and validation.

The second part of this book contains a walkthrough of building a full ASP.NET MVC
application: We build a simple blog application. We implement features such as data
access and validation.

Because one of the primary benefits of the ASP.NET MVC framework is that it enables
test-driven development, we build the blog application by using test-driven development.
The blog application illustrates how you can overcome many challenges that you face
when writing real-world applications with the ASP.NET MVC framework.

You can approach this book in two ways. Some readers might want to read through the
first chapters of this book before reading the chapters on building the blog application.
Other readers might want to read the walkthrough of building the blog application before
reading anything else.

2 ASP.NET MVC Framework Unleashed

What You Should Know Before Reading This Book
I make few assumptions about your technical background. I assume that you know either
the C# or the Visual Basic .NET programming language—all the code samples are included
in both languages in the body of the book. I also assume that you know basic HTML.

ASP.NET MVC uses many advanced features of the C# and Visual Basic .NET language.
The first appendix of this book, Appendix A, “C# and VB.NET Language Features,”
contains an overview of these new features. For example, if you are not familiar with
anonymous types or LINQ to SQL, you should take a look at Appendix A.

The other two appendixes, Appendix B, “Using a Unit Testing Framework,” and Appendix C,
“Using a Mock Object Framework,” are devoted to explaining how to use the main tools
of test-driven development. In Appendix B, you learn how to use both the Visual Studio
Unit Test framework and how to use the NUnit Unit Test framework. Appendix C is
devoted to Mock Object Frameworks.

Throughout the book, when a line of code is too long for the printed page, a code-
continuation arrow (➥) has been used to mark the continuation. For example:

ReallyLongClassName.ReallyLongMethodName(“Here is a value”,

➥“Here is another value”)

What Software Do You Need?
You can download all the software that you need to build ASP.NET MVC applications by
visiting the www.ASP.net/mvc website. You need to install three software components:

1. Microsoft .NET Framework 3.5 Service Pack 1—The Microsoft .NET framework
includes the Microsoft ASP.NET framework.

2. Microsoft ASP.NET MVC 1.0—The actual ASP.NET MVC framework that runs on
top of the ASP.NET framework.

3. Microsoft Visual Web Developer 2008 Service Pack 1 or Microsoft Visual Studio
2008 Service Pack 1—The development environment for creating ASP.NET applica-
tions. Also includes the option of installing Microsoft SQL Server Express.

The Microsoft .NET framework, Microsoft ASP.NET MVC, and Microsoft Visual Web
Developer are all free. You can build ASP.NET MVC applications without paying a single
cent.

Instead of downloading and installing each of these software components one-by-one,
you can take advantage of the Microsoft Web Platform Installer to manage the download
and installation of all these components. You can launch the Microsoft Web Platform
Installer from the www.ASP.net/mvc site.

www.ASP.net/mvc
www.ASP.net/mvc

Introduction 3

Where Do You Download the Code Samples?
The code samples for the book are located on the book’s product page, www.informit.
com/title/9780672329982.

If You Like This Book
After you read this book, if you discover that this book helped you to understand and
build ASP.NET MVC applications, please post a review of this book at the www.Amazon.
com website.

To get the latest information on ASP.NET MVC, I encourage you to visit the official
Microsoft ASP.NET MVC website at www.ASP.net/mvc. I also encourage you to subscribe
to my blog at StephenWalther.com that contains ASP.NET MVC tips and tutorials. I also
use my blog to post any errata that is discovered after the book is published.

www.informit.com/title/9780672329982
www.informit.com/title/9780672329982
www.Amazon.com
www.Amazon.com
www.ASP.net/mvc

CHAPTER 1

An Introduction to
ASP.NET MVC

IN THIS CHAPTER

. A Story with a Moral

. What Is Good Software?

. What Is ASP.NET MVC?

. The Architecture of an ASP.NET
MVC Application

. Understanding the Sample
ASP.NET MVC Application“There is nothing permanent except change.”

Heraclitus

This chapter provides you with an overview and introduc-
tion to the Microsoft ASP.NET MVC framework. The goal of
this chapter is to explain why you should build web appli-
cations using ASP.NET MVC.

Because the ASP.NET MVC framework was designed to
enable you to write good software applications, the first
part of this chapter is devoted to a discussion of the nature
of good software. You learn about the software design prin-
ciples and patterns that enable you to build software that is
resilient to change.

Finally, we discuss the architecture of an ASP.NET MVC
application and how this architecture enables you to write
good software applications. We provide you with an
overview of the different parts of an MVC application
including models, views, and controllers and also introduce
you to the sample application that you get when you create
a new ASP.NET MVC project.

A Story with a Moral
I still remember the day that my manager came to my
office and asked me to build the Single Button Application.
He explained that he needed a simple call manager applica-
tion to help interviewers dial phone numbers while
conducting a health survey. The call manager application
would load a list of phone numbers and dial each number
one-by-one when you hit a button. What could be simpler?

8 CHAPTER 1 An Introduction to ASP.NET MVC

I said, with great earnestness and confidence, that I would have the call manager applica-
tion done that same afternoon. I closed my office door, put on my cowboy hat, turned up
the music, and pounded out some code. By the end of the day, I had completed the appli-
cation. My manager was happy, and I went home that night with the happy thought that
I had done a good day of work.

The next morning, my manager appeared again at my office door. Worried, I asked if there
was a problem with the call manager application. He reassured me that the application
worked fine. In fact, he liked it so much that he wanted me to add another feature. He
wanted the call manager application to display a survey form when a number is dialed.
That way, survey answers could be stored in the database.

With heroic determination, I once again spent the day knocking out code. By the end of
the day, I had finished updating the call manager and I proudly presented the finished
application to my manager.

I won’t continue this story, because anyone who builds software for a living knows how
this story ends. The story never ends. When a software project is brought to life, it is
almost impossible to kill it. A software application needs to be continuously fed with new
features, bug fixes, and performance enhancements.

Being asked to change software that you have created is a compliment. Only useless soft-
ware goes stagnant. When people care about software, when software is actively used, it
undergoes constant change.

I no longer work at the company where I created the call manager application. (I am
currently sitting in an office at Microsoft.) But I still have friends at the company and
every once in a while I get a report on how the application has changed. Needless to say,
it has turned into a massively complex application that supports different time zones,
complicated calling rules, and advanced reporting with charts. It can no longer be
described as the Single Button Application.

What Is Good Software?
I dropped out of graduate school at MIT to launch an Internet startup in the earliest days
of the Web. At that time, building a website was difficult. This was before technologies
such as Active Server Pages or ASP.NET existed. (We had only stone knives.) Saving the
contents of an HTML form to a database table was a major accomplishment. Blinking text
was the height of cool.

When I first started writing software, simply getting the software to do what I wanted was
the goal. Adding as many features to a website in the shortest amount of time was the key
to survival in the ferociously competitive startup world of the ’90s. I used to sleep in my
office under my desk.

During my startup phase, I would define good software like this:

Good software is software that works as you intended.

9What Is Good Software?

If I was feeling particularly ambitious, I would worry about performance. And maybe, just
maybe, if I had extra time, I would add a comment or two to my code. But really, at the
end of the day, my criterion for success was simply that the software worked.

For the past 8 years, I’ve provided training and consulting to large companies and organi-
zations such as Boeing, NASA, Lockheed Martin, and the National Science Foundation.
Large organizations are not startups. In a large organization, the focus is not on building
software applications as fast as possible; the focus is on building software applications that
can be easily maintained over time.

Over the years, my definition of good software has shifted substantially. As I have been
faced with the scary prospect of maintaining my own monsters, I’ve changed my defini-
tion of good software to this:

Good software is software that works as you intended and that is easy to change.

There are many reasons that software changes over time. Michael Feathers, in his excellent
book Working Effectively with Legacy Code, offers the following reasons:

1. You might need to add a new feature to existing software.

2. You might need to fix a bug in existing software.

3. You might need to optimize existing software.

4. You might need to improve the design of existing software.

For example, you might need to add a new feature to an application. The call manager
application started as a Single Button Application. However, each day, more and more
features were added to the application.

You also need to change software when you discover a bug in the software. For instance,
in the case of the call manager, we discovered that it did not calculate daylight savings
time correctly. (It was waking some people up in the morning!) We rushed to change the
broken code.

You also might need to modify a software application to make the application run faster.
At one point, the call manager application took as long as 12 seconds to dial a new phone
number. The business rules were getting complex. We had to rewrite the code to get the
phone number retrieval time down to the millisecond range.

Finally, you might need to modify software to improve its design. In other words, you
might need to take badly written code and convert it into good code. You might need to
make your code more resilient to change.

Avoiding Code Smells

Unless you are careful, a software application quickly becomes difficult to change. We all
have had the experience of inheriting an application that someone else has written and
being asked to modify it. Think of the fear that strikes your heart just before you make
your first change.

10 CHAPTER 1 An Introduction to ASP.NET MVC

In the game of Pick-Up Sticks, you must remove stick after stick from a pile of sticks
without disturbing the other sticks. The slightest mistake and the whole pile of sticks
might scatter.

Modifying an existing software application is similar to the game of Pick-Up Sticks. You
bump the wrong piece of code and you introduce a bug.

Bad software is software that is difficult to change. Robert and Micah Martin describe the
markers of bad software as code smells. The following code smells indicate that software is
badly written:

. Rigidity—Rigid software is software that requires a cascade of changes when you
make a change in one place.

. Fragility—Fragile software is software that breaks in multiple places when you
make a change.

. Needless complexity—Needlessly complex software is software that is overdesigned
to handle any possible change.

. Needless repetition—Needlessly repetitious software contains duplicate code.

. Opacity—Opaque software is difficult to understand.

NOTE

These code smells are described by Micah and Robert Martin in their book Agile
Principles, Patterns, and Practices in C# on page 104. This book is strongly recommended!

Notice that these code smells are all related to change. Each of these code smells is a
barrier to change.

Software Design Principles

Software does not need to be badly written. A software application can be designed from
the beginning to survive change.

The best strategy for making software easy to change is to make the components of the
application loosely coupled. In a loosely coupled application, you can make a change to one
component of an application without making changes to other parts.

Over the years, several principles have emerged for writing good software. These princi-
ples enable you to reduce the dependencies between different parts of an application.
These software principles have been collected together in the work of Robert Martin (AKA
Uncle Bob).

Robert Martin did not invent all the principles; however, he was the first one to gather the
principles into a single list. Here is his list of software design principles:

. SRP—Single Responsibility Principle

. OCP—Open Closed Principle

11What Is Good Software?

. LSP—Liskov Substitution Principle

. ISP—Interface Segregation Principle

. DIP—Dependency Inversion Principle

This collection of principles is collectively known by the acronym SOLID. (Yes, SOLID is
an acronym of acronyms.)

For example, according to the Single Responsibility Principle, a class should have one, and
only one, reason to change. Here’s a concrete example of how this principle is applied: If
you know that you might need to modify your application’s validation logic separately
from its data access logic, then you should not mix validation and data access logic in the
same class.

NOTE

There are other lists of software design principles. For example, the Head First Design
Patterns book has a nice list. You should also visit the C2.com website.

Software Design Patterns

Software design patterns represent strategies for applying software design principles. In
other words, a software design principle is a good idea and a software design pattern is the
tool that you use to implement the good idea. (It’s the hammer.)

The idea behind software design patterns was originally promoted by the book Design
Patterns: Elements of Reusable Object-Oriented Software. (This book is known as the Gang of
Four book.) This book has inspired many other books that describe software design patterns.

The Head First Design Pattern book provides a more user-friendly introduction to the design
patterns from the Gang of Four book. The Head First Design book devotes chapters to 14
patterns with names like Observer, Façade, Singleton, and Adaptor.

Another influential book on software design patterns is Martin Fowler’s book Patterns of
Enterprise Application Architecture. This book has a companion website that lists the
patterns from the book: www.martinfowler.com/eaaCatalog.

Software design patterns provide you with patterns for making your code more resilient to
change. For example, in many places in this book, we take advantage of a software design
pattern named the Repository pattern. Eric Evans, in his book Domain-Driven Design,
describes the Repository pattern like this:

“A REPOSITORY represents all objects of a certain type as a conceptual set (usually
emulated). It acts like a collection, except with more elaborate querying capability. Objects
of the appropriate type are added and removed, and the machinery behind the REPOSI-
TORY inserts them or deletes them from the database” (see page 151).

According to Evans, one of the major benefits of the Repository pattern is that it enables
you to “decouple application and domain design from persistence technology, multiple

www.martinfowler.com/eaaCatalog

12 CHAPTER 1 An Introduction to ASP.NET MVC

database strategies, or even multiple data sources.” In other words, the Repository pattern
enables you to shield your application from changes in how you perform database access.

For example, when we write our blog application at the end of this book, we take advan-
tage of the Repository pattern to isolate our blog application from a particular persistence
technology. The blog application will be designed in such a way that we could switch
between different data access technologies such as LINQ to SQL, the Entity Framework, or
even NHibernate.

Writing Unit Tests for Your Code

By taking advantage of software design principles and patterns, you can build software
that is more resilient to change. Software design patterns are architectural patterns. They
focus on the gross architecture of your application.

If you want to make your applications more change proof on a more granular level, then
you can build unit tests for your application. A unit test enables you to verify whether a
particular method in your application works as you intend it to work.

There are many benefits that result from writing unit tests for your code:

1. Building tests for your code provides you with a safety net for change.

2. Building tests for your code forces you to write loosely coupled code.

3. Building tests for your code forces you to take a user perspective on the code.

First, unit tests provide you with a safety net for change. This is a point that Michael
Feathers emphasizes again and again in his book Working Effectively with Legacy Code. In
fact, he defines legacy code as “simply code without tests” (see xvi).

When your application code is covered by unit tests, you can modify the code without the
fear that the modifications will break the functionality of your code. Unit tests make your
code safe to refactor. If you can refactor, then you can modify your code using software
design patterns and thus produce better code that is more resilient to change.

NOTE

Refactoring is the process of modifying code without changing the functionality of the
code.

Second, writing unit tests for your code forces you to write code in a particular way.
Testable code tends to be loosely coupled code. A unit test performs a test on a unit of
code in isolation. To build your application so that it is testable, you need to build the
application in such a way that it has isolatable components.

One class is loosely coupled to a second class when you can change the first class without
changing the second class. Test-driven development often forces you to write loosely
coupled code. Loosely coupled code is resistant to change.

Finally, writing unit tests forces you to take a user’s perspective on the code. When writing
a unit test, you take on the same perspective as a developer who will use your code in the

13What Is Good Software?

future. Because writing tests forces you to think about how a developer (perhaps, your
future self) will use your code, the code tends to be better designed.

Test-Driven Development

In the previous section, we discussed the importance of building unit tests for your code.
Test-driven development is a software design methodology that makes unit tests central to
the process of writing software applications. When you practice test-driven development,
you write tests first and then write code against the tests.

More precisely, when practicing test-driven development, you complete three steps when
creating code (Red/Green/Refactor):

1. Write a unit test that fails (Red).

2. Write code that passes the unit test (Green).

3. Refactor your code (Refactor).

First, you write the unit test. The unit test should express your intention for how you expect
your code to behave. When you first create the unit test, the unit test should fail. The test
should fail because you have not yet written any application code that satisfies the test.

Next, you write just enough code for the unit test to pass. The goal is to write the code in
the laziest, sloppiest, and fastest possible way. You should not waste time thinking about
the architecture of your application. Instead, you should focus on writing the minimal
amount of code necessary to satisfy the intention expressed by the unit test.

Finally, after you write enough code, you can step back and consider the overall architec-
ture of your application. In this step, you rewrite (refactor) your code by taking advantage
of software design patterns—such as the Repository pattern—so that your code is more
maintainable. You can fearlessly rewrite your code in this step because your code is
covered by unit tests.

There are many benefits that result from practicing test-driven development. First, test-
driven development forces you to focus on code that actually needs to be written. Because
you are constantly focused on just writing enough code to pass a particular test, you are
prevented from wandering into the weeds and writing massive amounts of code that you
will never use.

Second, a “test first” design methodology forces you to write code from the perspective of
how your code will be used. In other words, when practicing test-driven development, you
constant write your tests from a user perspective. Therefore, test-driven development can
result in cleaner and more understandable APIs.

Finally, test-driven development forces you to write unit tests as part of the normal
process of writing an application. As a project deadline approaches, testing is typically the
first thing that goes out the window. When practicing test-driven development, on the
other hand, you are more likely to be virtuous about writing unit tests because test-driven
development makes unit tests central to the process of building an application.

14 CHAPTER 1 An Introduction to ASP.NET MVC

Short-Term Pain, Long-Term Gain

Building software designed for change requires more upfront effort. Implementing soft-
ware design principles and patterns takes thought and effort. Writing tests takes time.
However, the idea is that the initial effort required to build software the right way will pay
huge dividends in the future.

There are two ways to be a developer. You can be a cowboy or you can be a craftsman. A
cowboy jumps right in and starts coding. A cowboy can build a software application
quickly. The problem with being a cowboy is that software must be maintained over time.

A craftsman is patient. A craftsman builds software carefully by hand. A craftsman is
careful to build unit tests that cover all the code in an application. It takes longer for a
craftsman to create an application. However, after the application is created, it is easier to
fix bugs in the application and add new features to the application.

Most software developers start their programming careers as cowboys. At some point,
however, you must hang up your saddle and start building software that can stand the
test of time.

What Is ASP.NET MVC?
The Microsoft ASP.NET MVC framework is Microsoft’s newest framework for building web
applications. The ASP.NET MVC framework was designed from the ground up to make it
easier to build good software in the sense of good software discussed in this chapter.

The ASP.NET MVC framework was created to support pattern-based software development.
In other words, the framework was designed to make it easier to implement software
design principles and patterns when building web applications.

Furthermore, the ASP.NET MVC framework was designed to its core to support unit tests.
Web applications written with the ASP.NET MVC framework are highly testable.

Because ASP.NET MVC applications are highly testable, this makes the ASP.NET MVC
framework a great framework to use when practicing test-driven development.

ASP.NET MVC Is Part of the ASP.NET Framework

Microsoft’s framework for building software applications—any type of application includ-
ing desktop, web, and console applications—is called the .NET framework. The .NET frame-
work consists of a vast set of classes, tens of thousands of classes, which you can use when
building any type of software application. For example, the .NET framework includes
classes for working with the file system, accessing a database, using regular expressions,
and generating images.

The ASP.NET framework is one part of the .NET framework. The ASP.NET framework is
Microsoft’s framework for building web applications. It contains a set of classes that were
created specifically to support building web applications. For example, the ASP.NET
framework includes classes for implementing web page caching, authentication, and
authorization.

15What Is ASP.NET MVC?

Microsoft has two frameworks for building web applications built on top of the ASP.NET
framework: ASP.NET Web Forms and ASP.NET MVC (see Figure 1.1).

ASP.NET MVC is an alternative to, but not a replacement for, ASP.NET Web Forms. Some
developers find the style of programming represented by ASP.NET Web Forms more
compelling, and some developers find ASP.NET MVC more compelling. Microsoft contin-
ues to make heavy investments in both technologies.

NOTE

This book is devoted to the topic of ASP.NET MVC. If you want to learn about ASP.NET
Web Forms, buy my book ASP.NET Unleashed.

The Origins of MVC

The ASP.NET MVC framework is new; however, the MVC software design pattern itself has
a long history. The MVC pattern was invented by Trygve Reenskaug while he was a visiting
scientist at the Smalltalk group at the famed Xerox Palo Alto Research Center. He wrote his
first paper on MVC in 1978. He originally called it the Thing Model View Editor pattern,
but he quickly changed the name of the pattern to the Model View Controller pattern.

NOTE

Trygve Reenskaug, the inventor of the MVC pattern, currently works as a professor of
informatics at the University of Oslo in Norway.

The MVC pattern was first implemented as part of the Smalltalk-80 class library. It was
originally used as an architectural pattern for creating graphical user interfaces (GUIs).

The meaning of MVC shifted radically when the pattern was adapted to work with web
applications. In the context of web applications, the MVC pattern is sometimes referred to
as the Model 2 MVC pattern.

ASP.NET MVC ASP.NET Web Forms

ASP.NET Framework

.NET Framework

FIGURE 1.1 The ASP.NET frameworks

16 CHAPTER 1 An Introduction to ASP.NET MVC

The MVC pattern has proven to be very successful. Today, the MVC pattern is used by
several popular web application frameworks including Ruby on Rails, Merb, and Django.
The MVC pattern is also popular in the Java world. In the Java world, MVC is used in the
Struts, Spring, and Tapestry frameworks.

The first major MVC framework for ASP.NET was the open source MonoRail project (see
CastleProject.org). There continues to be an active developer community around this
project.

The Microsoft ASP.NET MVC framework was originally created by Scott Guthrie on an
airplane trip to Austin, Texas, to speak at the first Alt.NET conference in October 2007.
(Scott Guthrie was one of the creators of ASP.NET.) Scott Guthrie’s talk generated so much
excitement that the ASP.NET MVC framework became an official Microsoft product.
ASP.NET MVC 1.0 was released in the first part of 2009.

The Architecture of an ASP.NET MVC Application
An MVC application, a Model View Controller application, is divided into the following
three parts:

. Model—An MVC model contains all of an application’s logic that is not contained
in a view or controller. The model includes all of an application’s validation logic,
business logic, and data access logic. The MVC model contains model classes that
model objects in the application’s domain.

. View—An MVC view contains HTML markup and view logic.

. Controller—An MVC controller contains control-flow logic. An MVC controller
interacts with MVC models and views to control the flow of application execution.

Enforcing this separation of concerns among models, views, and controllers has proven to
be a useful way of structuring a web application.

First, sharply separating views from the remainder of a web application enables you to
redesign the appearance of your application without touching any of the core logic. A web
page designer (the person who wears the black beret) can modify the views independently
of the software engineers who build the business and data access logic. People with differ-
ent skills and roles can modify different parts of the application without stepping on each
other’s toes.

Furthermore, separating the views from the remainder of your application logic enables
you to easily change the view technology in the future. One fine day, you might decide to
re-implement the views in your application using Silverlight instead of HTML. If you
entangle your view logic with the rest of your application logic, migrating to a new view
technology will be difficult.

17Understanding the Sample ASP.NET MVC Application

Separating controller logic from the remainder of your application logic has also proven to
be a useful pattern for building web applications. You often need to modify the way that a
user interacts with your application. You don’t want to touch your view logic or model
logic when modifying the flow of execution of your application.

Understanding the Sample ASP.NET MVC
Application
A good way to get a firmer grasp on the three logical parts of an MVC application is to
take a look at the sample application that is created automatically when you create a new
ASP.NET MVC project with Visual Studio.

NOTE

We discuss installing ASP.NET MVC in the Introduction.

Follow these steps:

1. Launch Visual Studio.

2. Select the menu option File, New Project.

3. In the New Project dialog, select your favorite programming language (C# or
VB.NET) and select the ASP.NET MVC Web Application template. Give your project
the name MyFirstMvcApp and click the OK button (see Figure 1.2).

FIGURE 1.2 Creating a new ASP.NET MVC project

18 CHAPTER 1 An Introduction to ASP.NET MVC

Immediately after you click the OK button to create a new ASP.NET MVC project, you see
the Create Unit Test Project dialog in Figure 1.3. Leave the default option selected—Yes,
Create a Unit Test Project—and click the OK button.

Your computer hard drive will churn for a few seconds while Visual Studio creates the
default files for a new ASP.NET MVC project. After all the files are created, the Solution
Explorer window should contain the files in Figure 1.4.

The Solution Explorer window in Figure 1.4 contains two separate projects: the ASP.NET
MVC project and the Test project. The Test project contains all the unit tests for your
application.

FIGURE 1.3 Creating a unit test project

FIGURE 1.4 Files in a new ASP.NET MVC project

19Understanding the Sample ASP.NET MVC Application

ASP.NET MVC Folder Conventions

The ASP.NET MVC framework emphasizes convention over configuration. There are stan-
dard locations for each type of file in an ASP.NET MVC project. The ASP.NET MVC appli-
cation project contains the following folders:

. App_Data—Contains database files. For example, the App_Data folder might
contain a local instance of a SQL Server Express database.

. Content—Contains static content such as images and Cascading Style Sheet files.

. Controllers—Contains ASP.NET MVC controller classes.

. Models—Contains ASP.NET MVC model classes.

. Scripts—Contains JavaScript files including the ASP.NET AJAX Library and jQuery.

. Views—Contains ASP.NET MVC views.

When building an ASP.NET MVC application, you should place controllers only in the
Controllers folder, JavaScript scripts only in the Scripts folder, ASP.NET MVC views only in
the Views folder, and so on. By following these conventions, your application is more
easily maintained, and it can be more easily understood by others.

Running the Sample ASP.NET MVC Application

When you create a new ASP.NET MVC application, you get a simple sample application.
You can run this sample application by selecting the menu option Debug, Start Debugging
(or press the F5 key).

NOTE

When running an ASP.NET MVC application, make sure that the ASP.NET MVC project
and not the Test project is selected in the Solution Explorer window.

The first time that you run a new ASP.NET MVC application in Visual Studio, you receive
a dialog asking if you want to enable debugging. Simply click the OK button.

When you run the application, your browser opens with the page in Figure 1.5.

You can use the tabs that appear at the top of the page to navigate to either the Home or
the About page. You also can click the Login link to register or log in to the application.
And, that is all you can do with the application.

This sample application is implemented with one ASP.NET MVC controller and two
ASP.NET MVC views. The sample application does not contain any business or data access
logic, so it does not contain any ASP.NET MVC model classes.

The controller is located in the Controllers folder:

(C#)

\Controllers\HomeController.cs

20 CHAPTER 1 An Introduction to ASP.NET MVC

FIGURE 1.5 The sample application

If you open the HomeController in the Code Editor window, you see the file in Listing 1.1.

LISTING 1.1 Controllers\HomeController.cs (C#)

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace MyFirstMvcApp.Controllers

{

[HandleError]

public class HomeController : Controller

{

public ActionResult Index()

{

ViewData[“Message”] = “Welcome to ASP.NET MVC!”;

return View();

}

public ActionResult About()

{

return View();

}

(VB)

\Controllers\HomeController.vb

21Understanding the Sample ASP.NET MVC Application

}

}

LISTING 1.1 Controllers\HomeController.vb (VB)

<HandleError()> _

Public Class HomeController

Inherits System.Web.Mvc.Controller

Function Index() As ActionResult

ViewData(“Message”) = “Welcome to ASP.NET MVC!”

Return View()

End Function

Function About() As ActionResult

Return View()

End Function

End Class

The file in Listing 1.1 contains a class with two methods named Index() and About().
Methods exposed by a controller are called actions. Both the Index() and About() actions
return a view.

When you first run the sample application, the Index() action is invoked and this action
returns the Index view. If you click the About tab, the About() action is invoked and this
action returns the About view.

The two views can be found in the Views folder at the following location:

\Views\Home\About.aspx

\Views\Home\Index.aspx

The content of the Index view is contained in Listing 1.2.

LISTING 1.2 Views\Home\Index.aspx (C#)

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”

➥Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”indexTitle” ContentPlaceHolderID=”TitleContent” runat=”server”>

Home Page

</asp:Content>

<asp:Content ID=”indexContent” ContentPlaceHolderID=”MainContent” runat=”server”>

22 CHAPTER 1 An Introduction to ASP.NET MVC

<h2><%= Html.Encode(ViewData[“Message”]) %></h2>

<p>

To learn more about ASP.NET MVC visit <a href=”http://asp.net/mvc”

➥title=”ASP.NET MVC Website”>http://asp.net/mvc.

</p>

</asp:Content>

LISTING 1.2 Views\Home\Index.aspx (VB)

<%@ Page Language=”VB” MasterPageFile=”~/Views/Shared/Site.Master”

➥Inherits=”System.Web.Mvc.ViewPage” %>

<asp:Content ID=”indexTitle” ContentPlaceHolderID=”TitleContent” runat=”server”>

Home Page

</asp:Content>

<asp:Content ID=”indexContent” ContentPlaceHolderID=”MainContent” runat=”server”>

<h2><%= Html.Encode(ViewData(“Message”)) %></h2>

<p>

To learn more about ASP.NET MVC visit <a href=”http://asp.net/mvc”

➥title=”ASP.NET MVC Website”>http://asp.net/mvc.

</p>

</asp:Content>

Notice that a view consists mostly of standard HTML content. For example, the view
contains standard <h2> and <p> tags. A view generates a page that is sent to the browser.

Summary
The goal of this chapter was to provide you with an overview of the ASP.NET MVC frame-
work. The first part of this chapter was devoted to a discussion of a definition of good
software. You were provided with a brief introduction to software design principles and
patterns and the importance of unit tests. You learned how software design principles and
patterns and unit tests enable you to create software that is resilient to change.

Next, you were provided with an introduction to the Model View Controller software
design pattern. You learned about the history and benefits of this pattern. You learned
how the ASP.NET MVC framework implements the Model View Controller pattern and
how ASP.NET MVC enables you to perform pattern-based software development.

Finally, we explored the sample ASP.NET MVC application that is created when you create
a new ASP.NET MVC project. We took our first look at an ASP.NET MVC controller and an
ASP.NET MVC view.

Index

Symbols
^= operator, 487

=> (goes to) operator, 655

A
About() method, 20-21

AcceptAjax attribute, 473-476

AcceptVerbs attribute (actions), 65-69

access, testing

with fake generic repository, 155-157

with mock repository, 150-155

overview, 149-150

Account controller, users and roles, 367-369

action filters

definition of, 207

FeaturedProductActionFilter, 316-318

log action filter, 237-240

overview, 236

Action() HTML helper, 161-162

ActionLink() HTML helper, 160-161

ActionMethodSelector attribute (actions), 72-75

ActionName attribute (actions), 70-71

ActionResults, returning

ContentResult, 57-59

FileResult, 63-65

JsonResult, 59-62

overview, 51-52

RedirectResult, 55-57

types of ActionResults, 51-52

ViewResult, 52-55

actions

AcceptVerbs attribute, 65-69

action filters

definition of, 207

FeaturedProductActionFilter, 316-318

log action filter, 237-240

overview, 236

ActionMethodSelector attribute, 72-75

ActionName attribute, 70-71

ActionResults, returning

overview, 51-52

types of ActionResults, 51-52

invoking, 51

testing, 78-81

unknown actions, handling, 76-78

Add Controller dialog, 47-48

Add menu commands

Controller, 47

New Item, 26

New Test, 661

Add New Item dialog, 26

Add New Test dialog, 514, 660-661

Add Reference command (Project menu), 274

Add Reference dialog box, 274

Add View dialog, 37-45, 84, 83

AddAttribute() method, 180

AddCssClass() method, 176

AddModelError() method, 244

AddStyleAttribute() method, 180

ADO.NET Entity Designer, 123

Agile Principles, Patterns, and Practices in C#
(Martin and Martin), 10

Ajax

AcceptAjax attribute, 473-476

AjaxOptions class

LoadingElementId property, 436

OnBegin property, 439

OnComplete property, 439

debugging routes, 428-429

helpers, 462

Ajax.ActionLink() helper, 454, 462, 468.
See also asynchronous content
retrieval

Ajax.BeginForm() helper, 430. See also
posting forms asynchronously

Ajax.BlogPager() helper, 618-619

required libraries, 427-428

and jQuery, 491-498

MicrosoftAjax.js library, including in pages,
427-428

MicrosoftMvcAjax.js library, including,
427-428

overview, 426-427

posting forms asynchronously

displaying progress, 435-442

downlevel browser support, 452-455

sample application, 430-435

updating content after posting, 443-447

validation, 447-452

retrieving content asynchronously

creating delete links, 462-467

downlevel browser support, 468-473

highlighting selected link, 459-462

sample application, 454-459

supporting in UnleashedBlog application

Ajax.BlogPager() helper, 618-619

BlogEntries partial, 616-617

Index_Ajax() method, 614-615

Index_AjaxReturnsPartialViewResult()
method, 614

modified Index view, 615-616

overview, 612-613

ajax() method, 491

Ajax.ActionLink() helper, 454, 462, 468. See
also asynchronous content retrieval

Ajax.BeginForm() helper, 430. See also posting
forms asynchronously

actions696

AjaxMethodAttribute class, 72

AjaxOptions class

LoadingElementId property, 436

OnBegin property, 439

OnComplete property, 439

ajaxSetup() method, 496

alternative view engines

Brail, 98

custom view engine

creating, 99-104

testing, 114-117

NHaml, 98

nVelocity, 98

overview, 97-98

Spark, 98

animations

displaying as progress indicators, 439-442

jQuery animations, 489-491

anonymous types, 649-651

antiforgery tokens, 169-173

AntiForgeryToken() HTML helper, 169-173

App_Data folder, 19

Application_Start() method, 271

ApplicationController class, 308-309

ApplicationName setting, 378

applications

architecture, 16-17

bin deployment, 424-425

blog. See UnleashedBlog application

MyFirstMvcApp sample application

code listings, 20-22

creating, 17-18

folder conventions, 19--19

running, 19-20

Toy Store. See Toy Store application

architecture of ASP.NET MVC applications,
16-17

How can we make this index more useful? Email us at indexes@samspublishing.com

ArchiveController class, 549-552

ArchiveControllerTests class, 544-549, 572-573

ArchiveYear test, 559

ArchiveYearMonth test, 559

ArchiveYearMonthDay test, 559

ArchiveYearMonthDayName() method, 559,
641-642

AreEqual() method, 669-670

AreEquivalent() method, 669

ASP.NET MVC 1.0, 1

ASP.NET Unleashed (Walther), 15

ASP.NET Web Forms,

combining with ASP.NET MVC, 424

modifying to support ASP.NET MVC

Global.asax file, 422-424

overview, 414

required assemblies, 415-416

Visual Studio project files, 415

web configuration files, 416-422

assemblies

adding, 415-416

System.Web.Abstractions, 415

System.Web.Mvc, 415

System.Web.Routing assembly, 415

Assert class, 669

assertions, 669-672

asynchronous content retrieval

creating delete links, 462-467

downlevel browser support, 468-473

highlighting selected link, 459-462

sample application, 454-459

Asynchronous JavaScript and XML. See Ajax

asynchronous posting of forms

displaying progress, 435-442

downlevel browser support, 452-455

sample application, 430-435

updating content after posting, 443-447

validation, 447-452

asynchronous posting of forms 697

attacks

CSRF (cross-site request forgery) attacks,
169

JavaScript injection attacks, 95-97

Attributes property (TagBuilder class), 176

AuthenticatedConstraint, 280-283

authentication

authorizing users

with Authorize attribute, 368-370

authorizing particular roles, 371-372

authorizing particular users, 370-371

overview, 368

with User property, 372-374

membership, configuring

with Membership and Role Manager API,
381-385

membership database, 375-379

membership settings, 378-380

overview, 363-365

testing

for Authorize attribute, 390-392

with user model binder, 393-400

users and roles, creating

with Account controller, 367-369

with Web Site Administration Tool,
365-366

Windows authentication

authenticating Windows users and
groups, 386-390

configuring, 385-387

overview, 385

types of authentication, 386

AuthenticationType property (Identify object),
373

Authorize attribute, 368-370

testing for, 390-392

authorizing users

with Authorize attribute, 368-370

authorizing particular roles, 371-372

authorizing particular users, 370-371

overview, 368

with User property, 372-374

avoiding code smells, 9-10

B
Basic authentication, 386

Beck, Kent, 509

BeginForm() HTML helper, 162, 166-167

bin deployment, 424-425

Bind attribute (model binders)

applying to classes, 221-225

applying to method parameters, 218-221

prefixes, 225-228

binding to complex classes, 212-218

blog application. See UnleashedBlog application

blog entries, creating, 520-523

BlogArchive route, 276

BlogController class

BlogArchive route, 277

_blogEntries field, 522-523

BlogRepositoryBase class. See
BlogRepositoryBase class

BlogService. See BlogService class

CreateNameFromTitle() method, 589-590

creating, 517-518

Entity Framework blog repository, 537-539

ignoring Id property, 580-581

Index_Ajax() method, 614-615

paging support, 597-601

validating blog entry title, 570-571

validating length of property, 577-578

attacks698

BlogControllerTests class

CreateBlogEntry() method, 520-521

CreateNameIsValid() method, 587

CreateTitleMaximumLength500() method,
576-577

CreateTitleRequired() method, 568-569

FakeBlogRepository(), 528-530

Index_AjaxReturnsPartialViewResult()
method, 614

IndexReturnsBlogEntriesByYear() test, 575

paging tests, 596-600

ShowNewBlogEntries() method, 515-516

_blogEntries field, 588-589

BlogEntries partial, 607-608, 616-617

BlogEntriesIncludeCommentCount() method,
631-632

BlogEntry class, 517

BlogEntryEntity class, 536-537

BlogEntryFactory class, 573-576

BlogLink() HTML helper, 608-609

BlogLinkHelper class, 608-609

BlogPager() Ajax helper, 618-619

BlogPager() HTML helper, 610-612

BlogPagerHelper class, 610-612

BlogRepositoryBase class

first iteration, 524-525

ListBlogEntries() method, 552-553

paging support, 602-605

BlogService class

blog entry Name property, 588-589

initial code listing, 581-583

ListBlogEntries() method, 601-603

Brail, 98

browsers, downlevel browser support

posting forms asynchronously, 452-455

retrieving content asynchronously, 468-473

BulletedListHelper class, 180-182

business rules in UnleashedBlog application,
586-591

How can we make this index more useful? Email us at indexes@samspublishing.com

C
C# language features

anonymous types,649-651

extension methods, 652-654

generics, 654-655

lambda expressions, 655

LINQ (Language Integrated Query), 656-658

nullable types, 651-652

object initializers, 648

type inference, 647-648

Cache class, 347-353

Cache-Control HTTP header, 345

CacheControlController class, 345-346

CacheWrapper class, 360

caching, 333-335

with Cache class, 347-353

with HttpCachePolicy class, 345-346

with OutputCache attribute, 330-331

cache location, setting, 333-335

cache profiles, 343-344

Location property, 333-335

removing items from output cache,
341-343

sample application, 325-330

security issues, 330-331

VaryByContentEncoding property, 337

VaryByCustom property, 338-341

VaryByHeader property, 337-338

VaryByParam property, 335-337

varying output cache, 335-341

what gets cached, 331-333

overview, 323-325

sliding expiration cache policy, 351-352

testing cache

OutputCache attribute, 353-355

overview, 353

verifying that database data is cached,
355-362

caching 699

call manager application case study, 7-8

Cascading Style Sheets (CSS), error message
styles, 247-248

CatalogController class, 77-78

catch-all parameter (routes), 285-288

Certification authentication, 386

ChangePassword() method, 367

ChangePasswordSuccess() method, 367

changing passwords, 368-369

CheckBox() HTML helper, 162-165

classes, 325-330

AjaxMethodAttribute, 72

AjaxOptions

LoadingElementId property, 436

OnBegin property, 439

OnComplete property, 439

ApplicationController, 308-309

ArchiveController, 549-552

ArchiveControllerTests, 544-549, 572-573

Assert, 669

binding to complex classes, 212-218

BlogController

BlogArchive route, 277

_blogEntries field, 522-523

BlogRepositoryBase class. See
BlogRepositoryBase class

BlogService. See BlogService class

CreateNameFromTitle() method, 589-590

creating, 517-518

Entity Framework blog repository,
537-539

ignoring Id property, 580-581

Index_Ajax() method, 614-615

paging support, 597-601

validating blog entry title, 570-571

validating length of property, 577-578

BlogControllerTests

CreateBlogEntry() method, 520-521

CreateNameIsValid() method, 587

CreateTitleMaximumLength500()
method, 576-577

CreateTitleRequired() method, 568-569

FakeBlogRepository(), 528-530

Index_AjaxReturnsPartialViewResult()
method, 614

IndexReturnsBlogEntriesByYear() test,
575

paging tests, 596-600

ShowNewBlogEntries() method, 515-516

BlogEntry, 517

BlogEntryEntity, 536-537

BlogEntryFactory, 573-576

BlogLinkHelper, 608-609

BlogPagerHelper, 610-612

BlogRepositoryBase, 602-605

first iteration, 524-525

ListBlogEntries() method, 552-553

BlogService

blog entry Name property, 588-589

initial code listing, 581-583

ListBlogEntries() method, 601-603

BulletedListHelper, 180-182

Cache, 347-353

CacheControlController, 345-346

CacheWrapper, 360

CatalogController, 77-78

CollectionAssert, 669

Comment, 624-625

CommentController, 625-626

CommentControllerTests

BlogEntriesIncludeCommentCount()
method, 631-632

CommentsOrderByDatePublished()
method, 629-630

CreateAndThenGetComment() method,
627-629

CreateComment() method, 622-623

call manager application case study700

CompanyController, 369-372

ContentManagerController, 63-64

Controller, 372-374

controller classes, creating, 681-682

creating from interfaces, 681-690

Customer, binding to, 213-218

CustomerController, 53-54

data model classes. See data models

DataGridHelperBasic, 183-187

DataGridHelperTests, 201-205

DeleteController, 463-465

DownlevelController, 453-454

DownLinkController, 468-471

DynamicController, 302-303

EmployeeController, 65-67

EntityFrameworkBlogRepository, 534-537,
634-636

Enumerable, 656

FakeBlogRepository, 526-528, 632-633

FakeClass, 360

FakeIdentity, 398-400

FakeMovieRepository, 267

FakePrincipal, 396-398

generics, 654-655

GuestBookController, 446-447

HelloController, 58

HomeController, 20-21

caching, 325-330

creating, 30-37

HomeController class listing in C#,
31-32, 34-35

HomeController class listing in VB,
32-34, 35-36

testing, 106-108

HomeControllerTest, 106-108

HomeControllerTestFake, 155-157

HomeControllerTestMock, 153-155

How can we make this index more useful? Email us at indexes@samspublishing.com

HTMLTextWriter, 180-183

HttpCachePolicy, 345-346

ImageLinkHelper, 177-180

JackController, 391

JackControllerTests, 391-392

JillController, 393-394

JillControllerTests, 394-396

LogActionFilter, 237-239

LogController, 239-240

LookupController, 382-383

MasterDetailController, 457-458

MathUtility, 666

MathUtilityTests, 666-668

Membership, 381-385

MembershipUser, 381-385

MerchandiseController, 70-71

Movie2Controller, 252-253

Movie2ControllerTests, 264-266

MovieController, 684-686

model state, 242-244

posting forms asynchronously, 430-435

retrieving movies, 496-498

MovieRepository, 257-258, 347-349,
686-687

MovieService, 254-256, 684-686

MovieServiceTests, 688-689

NewsController, 73-74, 493-494

PagedList, 193-195

PageList, 594-596

PagingLinqExtensions, 195-197

PersonController, 78-81

Product, 261-263

ProductController, 48-51, 259-261, 318-319

ProductControllerTests

C# code listing, 661-663

VB code listing, 663-664

ProductHelper, 110-112

classes 701

ProductHelperTest, 112-114

ProductRepository, 133-136

ProfileController, 344

Queryable, 656-657

QuotationController, 59-60

RemoveController, 342-343

Repository, 148-149

Roles, 382

RouteTest, 293-294, 289-290

RouteTests, 554-558, 641-642

SelectorController, 457-476

ServerValidateController, 450-451

SimpleControllerTest, 114-116

SimpleMovieController, 358-359

SimpleMovieRepository, 356

SimpleMovieService, 356-358

SimpleView, 100-103

SimpleViewEngine, 99-104

SlidingController, 351-352

SortController, 288

StringAssert, 669

TagBuilder, 176-180

TheaterController, 319-320

UserController, 373-374

UserModelBinder, 233-236

VaryCustomController, 340

ViewDataDictionary, 91

VirtualPathProviderViewEngine, 99

WidgetController, 55-56

WindowsController, 387-390

classic mode (IIS), 402-403

code samples, downloading, 3

code smells, avoiding, 9-10

CollectionAssert class, 669

commands. See specific commands

Comment class, 624-625

CommentController class, 625-626

CommentControllerTests class

BlogEntriesIncludeCommentCount() method,
631-632

CommentsOrderByDatePublished() method,
629-630

CreateAndThenGetComment() method,
627-629

CreateComment() method, 622-623

comments, adding to blog application

adding comments to database, 633-637

BlogEntriesIncludeCommentCount() method,
631-632

Comment class, 624-625

CommentsOrderByDatePublished() method,
629-630

CreateAndThenGetComment() method,
627-629

CreateComment() method, 622-623,
627-628

displaying comments and comment counts,
637-643

modified FakeBlogRepository class,
632-633

overview, 619-622

Comments database table, adding comments
to, 633-637

CommentsOrderByDatePublished() method,
629-630

CompanyController class, 369-372

complexity in software, 10

configuring

ASP.NET Web Forms to support ASP.NET
MVC

Global.asax file, 422-424

overview, 414

required assemblies, 415-416

Visual Studio project files, 415

web configuration files, 416-422

classes702

default routes, 272-273

IIS (Internet Information Services)

hosted server, 408-410

integrated versus classic mode,
402-403

overview, 401-402

route table, adding extensions to,
403-408

wildcard script maps, 410-414

membership

with Membership and Role Manager API,
381-385

membership database, 375-379

membership settings, 378-380

Windows authentication, 385-387

CONNECT operation (HTTP), 68, 462

constraints

route constraints, creating

AuthenticatedConstraint, 280-283

HttpMethod constraint, 280-281

NotEqual constraint, 283-285

regular expression constraints, 278-279

testing routes with, 292-294

Contains() method, 669

Content folder, 19

Content() method, overloading, 59

ContentManagerController class, 63-64

ContentResult, 52

returning, 57-59

Controller class, 372-374

Controller command (Add menu), 47

controllers, 16

ActionResults, returning

ContentResult, 57-59

FileResult, 63-65

JsonResult, 59-62

overview, 51-52

RedirectResult, 55-57

How can we make this index more useful? Email us at indexes@samspublishing.com

types of ActionResults, 51-52

ViewResult, 52-55

actions

AcceptVerbs attribute, 65-69

ActionMethodSelector attribute, 72-75

ActionName attribute, 70-71

invoking, 51

testing, 78-81

unknown actions, handling, 76-78

ApplicationController class, 308-309

ArchiveController class, 549-552

BlogController class

BlogArchive route, 277

_blogEntries field, 522-523

BlogRepositoryBase class. See
BlogRepositoryBase class

BlogService. See BlogService class

CreateNameFromTitle() method, 589-590

Entity Framework blog repository,
537-539

ignoring Id property, 580-581

Index_Ajax() method, 614-615

paging support, 597-601

validating blog entry title, 570-571

validating length of property, 577-578

CacheControlController class, 345-346

CatalogController class, 77-78

CommentController class, 625-626

CompanyController class, 369-372

ContentManagerController class, 63-64

Controller class, 372-374

creating, 47-51, 681-684

CustomerController class, 53-54

DeleteController class, 463-465

DownlevelController class, 453-454

DownLinkController class, 468-471

DynamicController class, 302-303

EmployeeController class, 65-67

controllers 703

GuestBookController class, 446-447

HelloController class, 58

HomeController class, 20-21

caching, 325-330

creating, 30-37

HomeController class listing in C#,
31-32, 34-35

HomeController class listing in VB,
32-34, 35-36

testing, 106-108

JackController class, 391

JillController class, 393-394

LookupController class, 382-383

MasterDetailController class, 457-458

MerchandiseController class, 70-71

Movie2Controller class, 252-253

MovieController class, 684-686

model state, 242-244

posting forms asynchronously, 430-435

retrieving movies, 496-498

NewsController class, 73-74, 493-494

overview, 46-47

PersonController class, 78-81

ProductController class, 259-261, 318-319

ProfileController class, 344

QuotationController class, 59-60

RemoveController class, 342-343

SelectorController class, 457-476

ServerValidateController class, 450-451

setting view master pages from, 302-304

SimpleMovieController class, 358-359

SlidingController class, 351-352

SortController class, 288

TheaterController class, 319-320

UserController class, 373-374

VaryCustomController class, 340

WidgetController class, 55-56

WindowsController class, 387-390

Controllers folder, 19

controls. See user controls

ConvertCommentToCommentEntity() method,
637

Create() method, 65

creating records, 127-128

HomeController class, 34-37

UnleashedBlog application, 521-522

Create Unit Test Project dialog, 24, 513, 511,
660

Create view

Ajax posts, 432-435

for Toy Store application, 42-45

CreateAndThenGetComment() method, 627-629

createBeing() method, 442

CreateBlogEntry() method, 520-523, 536,
588-591, 627-628

CreateComment() method, 622-623, 627-628

createComplete() method, 442

CreateItems() method, 205

CreateMovie() method, 349

fake values, returning, 690-693

CreateNameFromTitle() method, 589-590

CreateNameIsValid() method, 587

createSuccess() method, 435

CreateTitleMaximumLength500() method,
576-577

CreateTitleRequired() method, 568-569

CreateWithBadMovieReturnsView() method,
693

CreateWithGoodMovieReturnsRedirect()
method, 693

cross-site scripting (XSS) attacks, 96

CSRF (cross-site request forgery) attacks, 169

CSS (Cascading Style Sheets), error message
styles, 247-248

controllers704

custom HTML helpers, creating

HTML.DataGrid() helper, 183-201

C# code listing, 183-185

calling, 187-188

paging support, 192-201

reflection, 188-189

sorting suport, 190-192

testing, 201-205

VB code listing, 186-187

HTML.SubmitButton() example, 173-176

with HTMLTextWriter class, 180-183

with TagBuilder class, 176-180

custom model binders, creating, 233-236

custom routes, creating, 275-277

custom view engine

creating, 99-104

testing, 114-117

Customer class, binding to, 213-218

CustomerController class, 53-54

D
data access, testing

with fake generic repository, 155-157

with mock repository, 150-155

overview, 149-150

data models

creating with Microsoft Entity Framework,
120-124

data access, testing

with fake generic repository, 155-157

with mock repository, 150-155

overview, 149-150

for Entity Framework blog repository,
532-533

How can we make this index more useful? Email us at indexes@samspublishing.com

overview, 117-119

records

creating, 127-128

deleting, 131-132

editing, 128-130

listing, 124-126

retrieving single record, 126

Repository pattern

Dependency Injection pattern, 138-139

generic repositories, 139-149

overview, 132

product repositories, 133-138

for Toy Store application, 27-30

databases

adding comments to, 633-637

database objects for Entity Framework blog
repository, 531-532

membership database, configuring,
375-379

Toy Store database, creating, 23-27

DataGrid() HTML helper, 183-201

C# code listing, 183-185

calling, 187-188

paging support, 192-201

PagedList class, 193-195

PagedSortedProducts() action, 200-201

PagingLinqExtensions class, 195-197

reflection, 188-189

sorting support, 190-192

testing, 201-205

VB code listing, 186-187

DataGridHelperBasic class, 183-187

DataGridHelperTests class, 201-205

dateReleased variable, 651

debugging

Ajax, 428-429

routes, 274-275

debugging 705

default model binder

binding to complex classes, 212-218

overview, 210-212

default routes

configuring, 272-273

Global.asax file, 269-271

DefaultRoute test, 559

DefaultRouteMatchesHome() method, 289-290

delete links, creating, 462-467

Delete() method, 131-132

DELETE operation (HTTP), 68-69, 462

Delete_GET() action, 465

Delete_POST() action, 465

DeleteController class, 463-465

deleting records, 131-132

Dependency Injection pattern, 138-139

deployment, bin, 424-425

Description setting, 378

design (software)

design patterns, 11-12

design principles, 10-11

short-term versus long-term planning, 14

test-driven development, 13

unit tests, 12-13

Design Patterns: Elements of Reusable
Object-Oriented Software, 11

Details() method, 34

retrieving single record, 126

Details view for UnleashedBlog application,
637-641

DetailsWithId() method, 80-81

DetailsWithoutId() method, 80-81

development, test-driven. See test-driven
development

dialogs. See specific dialogs

Digest authentication, 386

disabling request validation, 97

divLoading element, 436

Domain-Driven Design (Evans), 11

doubles, 680

downlevel browser support

asynchronous content retrieval, 468-473

posting forms asynchronously, 452-455

DownlevelController class, 453-454

DownLinkController class, 468-471

downloading

code samples, 3

jQuery plug-ins, 498-499

NUnit, 672

drop-down lists, rendering, 167-168

DropDownList() HTML helper, 162, 167-168

DynamicController class, 302-303

E
Edit() method, 34

editing records, 128-130

EFGenericRepository project, 140

EFMvcApplication project, 142-144

embedding scripts in views, 86-87

EmployeeController class, 65-67

EmptyResult, 52

EnablePasswordReset setting, 379

EnablePasswordRetrieval setting, 379

Encode() HTML helper, 169

encoding HTML content, 169

EndForm() HTML helper, 162, 166-167

Entity Data Model Wizard, 28-30

Entity Framework. See Microsoft Entity
Framework

EntityFrameworkBlogRepository class, 534-537,
634-636

Enumerable class, 656

default model binder706

error messages

Sys Is Undefined error, 428

Type Is Undefined error, 428

validation error messages

prebinding versus postbinding, 248-250

styling, 247-248

in UnleashedBlog application, 578-581

ETag HTTP header, 345

Evans, Eric, 11-12

event handlers in jQuery, 487-488. See also
specific event handlers

evolutionary design, 507-508

Exclude property (Bind attribute), 218

Expires HTTP header, 345

expressions, lambda, 655

extending generic repositories, 147-149

extension methods, 652-654

extensions, adding to route table, 403-408

F
Factoring: Improving the Design of Existing

Code (Fowler), 506

fake repositories

testing data access with, 155-157

for UnleashedBlog application, 526-530,
632-633

fake values, returning, 690-693

FakeBlogRepository class, 526-528, 632-633

FakeCache class, 360

FakeIdentity class, 398-400

FakeMovieRepository class, 267

FakePrincipal class, 396-398

fakes, definition of, 680

Feathers, Michael, 9, 12,

How can we make this index more useful? Email us at indexes@samspublishing.com

FeaturedProductActionFilter, 316-318

Fiddler, 428-429

File menu commands, New Project, 23

File() method, overloading, 64

FileResult, 52, 63-65

files. See specific files

filters. See action filters

Firebug, 429

folders, conventions for, 19

form collection model binder, 228-231

form validation. See validation

forms

form elements, rendering, 162-165

posting asynchronously

displaying progress, 435-442

downlevel browser support, 452-455

sample application, 430-435

updating content after posting, 443-447

validation, 447-452

rendering, 166-167

validating. See validation

Fowler, Martin, 11, 506, 680

fragility in software, 10

G
GenerateId() method, 176

generic repositories

creating, 139-141

extending, 147-149

with LINQ to SQL, 144-147

with Microsoft Entity Framework, 141-144

testing data access with fake generic
repositories, 155-157

GenericRepository project, 140

GenericRepository project 707

GenericRepository.Tests project, 140

generics, 654-655

get() method, 491

GET operation (HTTP), 67, 462

getJSON() method, 491, 494

GetProductCount() method, 148

GetRandomProducts() method, 318

getScript() method, 491

GetWithDatePublished() method, 574, 573

Global.asax file, 269-271

adding routes to, 561-563, 642

configuring ASP.NET Web Forms files to
support ASP.NET MVC, 422-424

hosted server configuration, 408-410

registering custom view engines in, 103

route table, adding extensions to, 403-408

wildcard script maps, 412-413

goes to (=>) operator, 655

guestbook application

updating content after posting, 443-447

validation, 447-452

GuestBookController class, 446-447

Guthrie, Scott, 16

H
HandleUnknownAction() method, 76-78

HasErrorMessage() method, 569

Head First Design Patterns, 11

HEAD operation (HTTP), 67, 462

headers (HTTP), 345

HelloController class, 58

helpers, Ajax

Ajax.ActionLink() helper, 454-457, 462.
See also asynchronous content retrieval

Ajax.BeginForm() helper, 430. See also
posting forms asynchronously

Ajax.BlogPager() helper, 618-619

required libraries, 427-428

helpers, HTML. See HTML helpers

Heraclitus, 7

Hidden() HTML helper, 162-165

highlighting selected links, 459-462

HomeController class, 20-21

caching, 325-330

creating, 30-37

HomeController class listing in C#, 31-32,
34-35

HomeController class listing in VB, 32-34,
35-36

testing, 106-108

HomeControllerTest class, 106-108

HomeControllerTestFake class, 155-157

HomeControllerTestMock class, 153-155

host servers, 408-410

hover() method, 487-488

HTML content, encoding, 169

HTML helpers

custom HTML helpers, creating

HTML.ImageLink() example, 177-180

HTML.SubmitButton() example, 173-176

with HTMLTextWriter class, 180-183

with TagBuilder class, 176-180

HTML.ActionLink() helper, 160-161

HTML.AntiForgeryToken() helper, 169-173

HTML.BeginForm() helper, 162, 166-167

Html.BlogLink() helper, 608-609

Html.BlogPager() helper, 610-612

HTML.CheckBox() helper, 162-165

HTML.DataGrid() helper. See
HTML.DataGrid() helper

HTML.DropDownList() helper, 162, 167-168

HTML.Encode() helper, 169

HTML.EndForm() helper, 162, 166-167

HTML.Hidden() helper, 162-165

HTML.ListBox() helper, 162-165

GenericRepository.Tests project708

HTML.Password() helper, 162-165

HTML.RadioButton() helper, 162-165

HTML.TextArea() helper, 162-165

HTML.TextBox() helper, 162-165

overview, 157-160

testing, 108-114, 201-205

URL.Action() helper, 161-162

HTML links

creating delete links, 462-467

highlighting selected link, 459-462

image links, rendering, 161-162

rendering, 160-161

HTML.ActionLink() helper, 160-161

HTML.AntiForgeryToken() helper, 169-173

HTML.BeginForm() helper, 162, 166-167

Html.BlogLink() helper, 608-609

Html.BlogPager() helper, 610-612

HTML.CheckBox() helper, 162-165

HTML.DataGrid() helper, 183-201

C# code listing, 183-185

calling, 187-188

paging support, 192-201

PagedList class, 193-195

PagedSortedProducts() action, 200-201

PagingLinqExtensions class, 195-197

reflection, 188-189

sorting support, 190-192

testing, 201-205

VB code listing, 186-187

HTML.DropDownList() helper, 162, 167-168

HTML.Encode() helper, 169

HTML.EndForm() helper, 162, 166-167

HTML.Hidden() helper, 162-165

HTML.ImageLink() helper, 177-180

HTML.ListBox() helper, 162-165

HTML.Password() helper, 162-165

HTML.RadioButton() helper, 162-165

How can we make this index more useful? Email us at indexes@samspublishing.com

HTML.SubmitButton() helper, 173-176

HTML.TextArea() helper, 162-165

HTML.TextBox() helper, 162-165

HTMLTextWriter class, 180-183

Html.ValidationMessage() helper, 245-247

Html.ValidationSummary() helper, 245-247

HTTP

headers, 345

HTTP posted file base model binder,
231-233

operations, 67-68, 462

HttpCachePolicy class, 345-346

HttpMethod constraint, 280-281

HttpUnauthorizedResult, 52

I
ICache interface, 359

IDataErrorInfo interface, validating form data
with, 258-263

IdAttributeDotReplacement property (TagBuilder
class), 176

Identity object, 373

IEnumerable interface, 91, 656

IGenericRepository interface, 140

IIS (Internet Information Services) configuration

hosted server, 408-410

integrated versus classic mode, 402-403

overview, 401-402

route table, adding extensions to, 403-408

wildcard script maps, 410-414

image links, rendering, 161-162

ImageLink() HTML helper, 177-180

ImageLinkHelper class, 177-180

importing namespaces

overview, 519

UnitTesting namespace, 665

importing namespaces 709

Include property (Bind attribute), 218

including libraries. See libraries

Index() method, 20-21, 34-37, 49

listing records, 124-126

UnleashedBlog application, 519-520

Index view

MyFirstMvcApp sample application, 21-22

for Toy Store application, 37-42, 37-45,
39-42

for UnleashedBlog application, 605-611,
615-616

Index_Ajax() method, 614-615

Index_AjaxReturnsPartialViewResult() method,
614

IndexAcceptsPage() method, 597-600

IndexAddsMoviesToCache() method, 360-362

IndexedCached() method, 325

IndexRetrievesMoviesFromCache() method,
360-362

IndexReturnsBlogEntriesByYear() test, 571, 575

IndexReturnsBlogEntriesInOrderOfDatePublished
() method, 597-600

IndexReturnsLessThan6BlogEntries() method,
597-600

IndexReturnsPagedListForPage() method,
597-600

initializers (object), 648

injection attacks, preventing, 95-97

InnerHTML property (TagBuilder class), 176

installing

Moq, 680-681

NUnit, 673

integrated mode (IIS), 402-403

Integrated Windows authentication, 386

Intellisense (Visual Studio) and jQuery, 481-482

interfaces

creating classes from, 681-690

generics, 654-655

ICache, 359

IDataErrorInfo, validating form data with,
258-263

IEnumerable, 91, 656

IGenericRepository, 140

IProductRepository, 133

IQueryable, 657

IRepository, 147-148

Internet Information Services. See IIS (Internet
Information Services) configuration

invoking

Archive controller, 564-565

controller actions, 51

IProductRepository interface, 133

IQueryable interface, 657

IRepository interface, 147-148

Is Design Dead? (Fowler), 509

IsAjaxRequest() method, 454

IsAuthenticated property (Identity object), 373

IsInRole() method, 373

IsInstanceOfType() method, 669

J-K
JackCanAccessIndex() method, 391-392

JackCannotAccessIndex() method, 394-396

JackController class, 391

JackControllerTests class, 391-392

JavaScript, injection attacks, preventing, 95-97

JavaScriptResult, 52

JillCanAccessIndex() method, 394-396

JillController class, 393-394

JillControllerTests class, 394-396

jQuery

and Ajax, 491-498

animations, 489-491

event handlers, 487-488

Include property (Bind attribute)710

including in views, 480-481

overview, 480

plug-ins, 498-501

downloading, 498-499

tablesorter, 499-501

selectors, 482-487

and Visual Studio Intellisense, 481-482

Json() method, overloading, 62

JsonResult, 52, 59-62

keyboard combinations for running unit tests,
665-666

KISS Principle (Keep It Simple Stupid), 507

L
lambda expressions, 655

Language Integrated Query (LINQ), 656-658

LINQ to SQL, 144-147

Last-Modified HTTP header, 345

launching Microsoft Web Platform Installer, 2

length of property, validating, 576-578

libraries

jQuery. See jQuery

MicrosoftAjax.js library, including, 427-428

MicrosoftMvcAjax.js library, including in
pages, 427-428

limiting unit test results, 671-672

links (HTML)

creating delete links, 462-467

highlighting selected link, 459-462

image links, rendering, 161-162

rendering, 160-161

LINQ (Language Integrated Query), 656-658

LINQ to SQL, 144-147

ListBlogEntries() method, 536, 552, 553, 601

How can we make this index more useful? Email us at indexes@samspublishing.com

ListBox() HTML helper, 162-165

listing records, 124-126

ListMovies() method, 349

ListMoviesCached() method, 349

lists, drop-down lists, 167-168

load() method, 491

LoadingElementId property (AjaxOptions class),
436

location of cache, setting, 333-335

Location property (OutputCache attribute),
333-335

LogActionFilter class, 237-239

LogController class, 239-240

LogOff() method, 367

LogOn() method, 367

long-term versus short-term planning, 14

LookupController class, 382-383

LSGenericRepository project, 140

LSMvcApplication project, 144-147

M
MapRoute() method, 272

maps, wildcard script maps, 410-414

Martin, Micah, 10

Martin, Robert, 10

master pages. See view master pages

MasterDetailController class, 457-458

Matches() method, 669

MathUtility class

C# code listing, 667

VB code listing, 668

MathUtilityTests class

C# code listing, 675

VB code listing, 676

MathUtilityTests class 711

MaxInvalidPasswordAttempts settings, 379

membership, configuring

with Membership API, 381-385

membership database, 375-379

membership settings, 378-380

Membership API, 381-385

Membership class, 381-385

MembershipUser class, 381-385

memory caching. See caching

MerchandiseController class, 70-71

MerchandiseRepository() method, 70-71

MergeAttribute() method, 176

messages (error). See error messages

Meszaros, Gerard, 680

methods. See specific methods

Microsoft ASP.NET MVC 1.0, 1

Microsoft Entity Framework

data models

creating models, 120-124

creating records, 127-128

deleting records, 131-132

editing records, 128-130

listing records, 124-126

retrieving single record, 126

Entity Framework blog repository, creating

database objects, 531-532

Entity Framework data model, 532-533

EntityFrameworkBlogRepository class,
534-537, 634-636

overview, 530-531

testing, 537-541

generic repositories, 141-144

Microsoft .NET Framework 3.5 Service
Pack 1, 1

Microsoft SQL Server Express, 25

Microsoft Visual Web Developer 2008 Service
Pack 1, 2

Microsoft Web Platform Installer, launching, 2

MicrosoftAjax.js library, including in pages,
427-428

MicrosoftMvcAjax.js library, including in pages,
427-428

MinRequiredNonalphanumericCharacters
setting, 379

MinRequiredPasswordLength setting, 379

Mock Object Frameworks

doubles, 680

fake values, returning, 690-693

fakes, 680

mocks, 680

Moq, 679

classes, creating from interfaces,
681-690

installing, 680-681

unblocking, 681

overview, 679

Rhino Mocks, 679

stubs, 680

Typemock Isolator, 679

mocks

definition of, 680

mock repositories, testing data access with,
150-155

Mocks Aren’t Stubs (Fowler), 510

model binders

Bind attribute

applying to classes, 221-225

applying to method parameters,
218-221

prefixes, 225-228

custom model binders, creating, 233-236

default model binder

binding to complex classes, 212-218

overview, 210-212

form collection model binder, 228-231

MaxInvalidPasswordAttempts settings712

HTTP posted file base model binder,
231-233

overview, 205-210

testing authentication with, 393-400

model state, 241-244

model state dictionary, 241

models. See data models

Models folder, 19

MonoRail, 16

Moq, 679

classes, creating from interfaces, 681-690

installing, 680-681

unblocking, 681

Movie2Controller class, 252-253

Movie2ControllerTests class, 264-266

MovieController class

C# code listing, 682-683

model state, 242-244

posting forms asynchronously, 430-435

retrieving movies, 496-498

VB code listing, 683-684

MovieMaster page, 310-311

MovieRepository class, 686-688

caching, 347-349

MovieRepository class, 257-258

MovieService class, 254-256

C# code listing, 684-685

VB code listing, 685-686

MovieServiceTests class, 688-689

MovieTemplate user control, 322-323

MVC pattern, 16

MVCFakes assembly, 289

MyFirstMvcApp sample application

code listings, 20-22

creating, 17-18

folder conventions, 19

running, 19-20

How can we make this index more useful? Email us at indexes@samspublishing.com

N
Name property (Identity object), 373

Name setting, 379

namespaces

importing, 519

System.Linq namespace, 656

UnitTesting, importing, 665

naming conventions for views, 39

needless complexity in software, 10

needless repetition in software, 10

nested master pages, 306-307

.NET framework, 14

.NET Framework 3.5 Service Pack 1, 1

New Item command (Add menu), 26

New Project command (File menu), 23

New Test command (Add menu), 660-661

Newkirk, James, 510

NewsController class, 73-74, 493-494

NHaml, 98

NotEqual constraint, 283-285

NTLM authentication, 385-386

nullable types, 651-652

NUnit, 508-509, 672-678

creating tests, 660-666

downloading, 672

installing, 673

running tests, 669-671

nVelocity, 98

O
object initializers, 648

objects

database objects for Entity Framework blog
repository, 531-532

objects 713

Mock Object Frameworks. See Mock Object
Frameworks

object initializers, 648

OnBegin property (AjaxOptions class), 439

OnComplete property (AjaxOptions class), 439

OnNameChanging() event handler, 263

OnPriceChanging() event handler, 263

opacity in software, 10

OPTIONS operation (HTTP), 67, 462

origins of ASP.NET MVC framework, 14

OutputCache attribute

cache location, setting, 333-335

cache profiles, 343-344

Location property, 333-335

removing items from output cache, 341-343

sample application, 325-330

security issues, 330-331

testing, 353-355

VaryByContentEncoding property, 337

VaryByCustom property, 338-341

VaryByHeader property, 337-338

VaryByParam property, 335-337

varying output cache, 335-341

what gets cached, 331-333

overloading

Content() method, 59

File() method, 64

Json() method, 62

RedirectToAction() method, 57

View() method, 55

P
PagedList class, 193-195

PagedSortedProducts() action, 200-187

PageList class, 594-596

pageReady() method, 462, 485

paging

supporting in HTML.DataGrid() HTML helper,
192-201

PagedList class, 193-195

PagedSortedProducts() action, 200-201

PagingLinqExtensions class, 195-197

supporting in UnleashedBlog application

BlogController Index() method, 600-601

BlogRepositoryBase class, 602-605

controller tests, 596-600

overview, 591

PageList class, 594-596

PagingLinqExtensions class, 195-197

PartialView() method, 52

PartialViewResult, 51

passing

view data to user controls, 314-319

view data to view master pages, 308-311

Password() HTML helper, 162-165

PasswordAttemptWindow setting, 379

PasswordFormat setting, 379

passwords, changing, 368-369

PasswordStrengthRegularExpression setting,
379

patterns

Dependency Injection pattern, 138-139

Repository pattern. See Repository pattern

Patterns of Enterprise Application Architecture
(Fowler), 11

PersonController class, 78-81

plug-ins (jQuery), 498-501

downloading, 498-499

tablesorter, 499-501

Poole, Charlie, 509

post() method, 491

POST operation (HTTP), 67, 462

objects714

postbinding validation error messages, 248-250

posting forms asynchronously

displaying progress, 435-442

downlevel browser support, 452-455

sample application, 430-435

updating content after posting, 443-447

validation, 447-452

prebinding validation error messages, 248-250

Prefix property (Bind attribute), 218, 225

prefixes when binding, 225-228

preventing JavaScript injection attacks, 95-97

private data, caching, 330-331

Product class, 261-263

product repositories, creating, 133-138

ProductController class, 48-51, 259-261,
318-319

ProductControllerTests class, 660-661

ProductHelper class, 110-112

ProductHelperTest class, 112-114

ProductInsertDoesNotMatchGet() method,
293-294

ProductInsertMatchesPost() method, 293-294

ProductRepository class, 133-136

Products table (ToyStoreDB), 27

ProfileController class, 344

profiles (cache), 343-344

progress indicators, displaying, 435-442

Project menu commands, Add Reference, 274

properties, validating length of, 576-578

PUT operation (HTTP), 67, 462

Q-R
Queryable class, 656-657

QuotationController class, 59-60

RadioButton() HTML helper, 162-165

How can we make this index more useful? Email us at indexes@samspublishing.com

records

creating, 127-128

deleting, 131-132

editing, 128-130

listing, 124-126

retrieving single record, 126

Red/Green/Reactor process, 505-506

RedirectResult, 52

returning, 55-57

RedirectToAction() method, 52

RedirectToRouteResult, 52

Reenskaug, Trygve, 15

Reeves, Jack, 509

refactoring

overview, 12, 506

UnleashedBlog application to use
Repository pattern, 524-526

referencing jQuery, 480-481

reflection in HTML.DataGrid() helper, 188-189

Refresh() method, 494

Register() method, 367

RegisterRoutes() method, 271-272

regular expression constraints, 278-279

RemoveController class, 342-343

removing items from output cache, 341-343

Render() method, 103

RenderBeginTag() method, 180

RenderEndTag() method, 180

RenderHead() method, 190-191

rendering

drop-down lists, 167-168

form elements, 162-165

forms, 166-167

HTML links, 160-161

image links, 161-162

RenderPagerRow() method, 199

RenderPartial() method, 313

RenderPartial() method 715

repetition in software, 10

repositories

data access, testing with mock repository,
150-155

FakeMovieRepository class, 267

generic repositories

creating, 139-141

extending, 147-149

with LINQ to SQL, 144-147

with Microsoft Entity Framework,
141-144

MovieRepository class, 257-258, 347-349

product repositories, creating, 133-138

Repository class, 148-149

repository classes, creating, 686-688

SimpleMovieRepository class, 356

for UnleashedBlog application

BlogRepositoryBase class, 552-553

Entity Framework repository, creating,
530-541

fake blog repository, creating, 526-530,
632-633

Repository class, 148-149

Repository pattern, 11-12

creating product repositories, 133-138

Dependency Injection pattern, 138-139

generic repositories

creating, 139-141

extending, 147-149

with LINQ to SQL, 144-147

with Microsoft Entity Framework,
141-144

overview, 132

refactoring UnleashedBlog application to
use, 524-526

request validation, disabling, 97

RequiresQuestionAndAnswer setting, 379

retrieving content asynchronously.
See asynchronous content retrieval

Rhino Mocks, 679

rigidity in software, 10

roles

authorizing, 371-372

creating

with Account controller, 367-369

with Web Site Administration Tool,
365-366

Roles class, 382

Roles class, 382

route constraints, creating

AuthenticatedConstraint, 280-283

HttpMethod constraint, 280-281

NotEqual constraint, 283-285

regular expression constraints, 278-279

Route Debugger, 274-275

route table, adding extensions to, 403-408

RouteDebugger, 289

routes. See routing

RouteTest class, 293-294, 289-290

RouteTests class, 554-558, 641-642

routing

catch-all parameter, 285-288

custom routes, creating, 275-277

debugging routes, 274-275

default routes, 269-273

configuring, 272-273

Global.asax file, 269-271

overview, 268-269

route constraints, creating

AuthenticatedConstraint, 280-283

HttpMethod constraint, 280-281

NotEqual constraint, 283-285

regular expression constraints, 278-279

testing routes

with constraints, 292-294

MvcFakes and RouteDebugger
assemblies, 289

repetition in software716

overview, 288

testing if URL matches route, 289-292

UnleashedBlog application routes

adding to Global.asax file, 642

archive routes, 561-563

controller tests, 543-553

invoking Archive controller, 564-565

overview, 541-544

route tests, 553-560, 641-642

running

MyFirstMvcApp sample application, 19-20

unit tests

with NUnit, 669-671

with Visual Studio Unit Test, 669-671

S
SalesFigures() method, 389

SaveChanges() method, 128

scripts, embedding in views, 86-87

Scripts folder, 19

Secrets() method, 368-370

SecretStuff() method, 390

security issues

authentication. See authentication

caching private data, 330-331

passwords, 368-369

selectLink() method, 462

SelectorController class, 457-476

selectors (jQuery), 482-487

ServerValidateController class, 450-451

service layers

in UnleashedBlog application, 581-586

validation with, 251-258

How can we make this index more useful? Email us at indexes@samspublishing.com

services

BlogService class

blog entry Name property, 588-589

initial code listing, 581-583

ListBlogEntries() method, 601

MovieService class, 254-256, 684-686

SimpleMovieService class, 356-358

SetCacheability() method, 345-346

SetInnerText() method, 176

SetMaxAge() method, 346

Setup attribute (NUnit tests), 666

short-term versus long-term planning, 14

ShowNewBlogEntries() method, 515-516

SimpleControllerTest class, 114-116

SimpleMovieController class, 358-359

SimpleMovieRepository class, 356

SimpleMovieService class, 356-358

SimpleView class, 100-103

SimpleViewEngine class, 99-104

Single-Responsibility Principle (SRP), 581

slideDown() animation, 489-491

slideUp() animation, 489-491

sliding expiration cache policy, 351-352

SlidingController class, 351-352

software

characteristics of bad software, 10

code smells, avoiding, 9-10

design

design patterns, 11-12

design principles, 10-11

short-term versus long-term planning, 14

test-driven development, 13

unit tests, 12-13

nature of good software

call manager application case study, 7-8

definition of, 8-9

overview, 3-7

software requirements, 2

software 717

SOLID (design principles), 11

SortController class, 288

sorting, supporting in HTML.DataGrid() HTML
helper, 190-192

Spark, 98

SQL

LINQ to SQL, 144-147

SQL Server Express, 25

SRP (Single-Responsibility Principle), 581

state, model state, 241-244

strongly typed views, 94-95

stubs

creating, 688-689

definition of, 680

styles for validation error messages, 247-248

SubmitButton() HTML helper, 173-176

SuperSecrets() method, 370-371

SuperSuperSecrets() method, 392-393

Sys Is Undefined error, 428

System.Linq namespace, 656

System.Web.Abstractions assembly, 415

System.Web.Mvc assembly, 415

System.Web.Routing assembly, 415

T
tables

Products (ToyStoreDB), 27

route table, adding extensions to, 403-408

tablesorter plug-in (jQuery), 499-501

TagBuilder class, 176-180

TagName property (TagBuilder class), 176

TDD. See test-driven development

templates, user controls as, 319-323

Test attribute (NUnit tests), 666

test-driven development

benefits of, 506

bibliography and resources, 509

definition of, 505-506

KISS Principle (Keep It Simple Stupid), 507

overview, 13, 502-505

Red/Green/Reactor process, 505-506

TDD tests versus unit tests, 508

test flow from user stories, 508-509

Unit Testing Frameworks, 508-509

in UnleashedBlog application, 514-520

waterfall versus evolutionary design,
507-508

YAGNI Principle (You Ain’t Gonna Need It),
507

Test-Driven Development by Example (Beck),
509

Test-Driven Development in Microsoft in .NET
(Newkirk and Vorontsov),

TestFixture attribute (NUnit tests), 666

testing

authentication

for Authorize attribute, 390-392

with user model binder, 393-400

cache

OutputCache attribute, 353-355

overview, 353

verifying that database data is cached,
355-362

controller actions, 78-81

data access

with fake generic repository, 155-157

with mock repository, 150-155

overview, 149-150

Entity Framework blog repository, 537-541

HTML helpers, 201-205

SOLID (design principles)718

routes

with constraints, 292-294

MvcFakes and RouteDebugger
assemblies, 289

testing if URL matches route, 289-292

test-driven development, 13, 506

bibliography and resources, 509

definition of, 505-506

KISS Principle (Keep It Simple Stupid),
507

overview, 502-505

Red/Green/Reactor process, 505-506

TDD tests versus unit tests, 508

test flow from user stories, 508-509

Unit Testing Frameworks, 508-509

in UnleashedBlog application, 514-520

waterfall versus evolutionary design,
507-508

YAGNI Principle (You Ain’t Gonna Need
It), 507

unit tests. See unit tests

UnleashedBlog application.
BlogControllerTests class

validation, 264-268

views

custom view engine, 114-117

HTML helpers, 108-114

overview, 105

view results, 105-108

TextArea() HTML helper, 162-165

TextBox() HTML helper, 162-165

TheaterController class, 319-320

Time() method, 353

TimeIsCached() method, 354-355

titles

master page titles, 303-305

titles of blog entries, validating, 567-573

ArchiveControllerTests class, 572-573

BlogController class, 570-571

How can we make this index more useful? Email us at indexes@samspublishing.com

BlogControllerTests class, 568-569

IndexReturnsBlogEntriesByYear() test,
571

ToString() method, 176

Toy Store application

controller

creating, 30-37

HomeController class listing in C#,
31-32, 34-35

HomeController class listing in VB,
32-34, 35-36

creating, 23-25

data model classes, 27-30

database, 23-27

overview, 22-23

views

Create view, 42-45

creating, 37-45

Index view, 37-42

naming conventions, 39

TRACE operation (HTTP), 68, 462

type inference, 647-648

Type Is Undefined error, 428

typed views, 88-95

types

anonymous types,649-651

nullable types, 651-652

typed versus untyped views, 88-95

U
unblocking Moq, 681

unit testing frameworks, 508-509

NUnit, 672-678

creating tests, 660-666

downloading, 672

installing, 673

running tests, 669-671

unit testing frameworks 719

overview, 659-660

Visual Studio Unit Test, 660-672

assertions, 669-672

creating unit tests, 660-664

limiting test results, 671-672

running tests, 669-671

test attributes, 666

Unit Test Wizard, 291

unit tests, 12-13

assertions, 669-672

compared to TDD tests, 508

creating

with NUnit, 660-666

PersonController class example, 78-81

with Visual Studio Unit Test, 60-661

frameworks. See unit testing frameworks

limiting test results, 671-672

RouteTest class, 289-290

running

with NUnit, 669-671

with Visual Studio Unit Test, 669-671

test attributes, 666

Unit Test Wizard, 291

UnitTesting namespace, importing, 665

unknown actions, handling, 76-78

UnleashedBlog application, 205

Ajax support

Ajax.BlogPager() helper, 618-619

BlogEntries partial, 616-617

Index_Ajax() method, 614-615

Index_AjaxReturnsPartialViewResult()
method, 614

modified Index view, 615-616

overview, 612-613

blog entries, creating, 520-523

blog projects, creating, 511-514

BlogArchive route, 276

BlogController class. See BlogController
class

BlogControllerTests class. See
BlogControllerTests class

comments

adding to database, 633-637

BlogEntriesIncludeCommentCount()
method, 631-632

Comment class, 624-625

CommentsOrderByDatePublished()
method, 629-630

CreateAndThenGetComment() method,
627-629

CreateComment() method, 622-623,
627-628

displaying comments and comment
counts, 637-643

modified FakeBlogRepository class,
632-633

overview, 619-622

Details view, 637-641

overview, 510-511

paging support

BlogController Index() method, 597-601

BlogRepositoryBase class, 602-605

controller tests, 596-600

overview, 591

PageList class, 594-596

refactoring to use Repository pattern,
524-526

repositories

BlogRepositoryBase class.
See BlogRepositoryBase class

Entity Framework repository, creating,
530-541

fake blog repository, creating, 526-530,
632-633

routes

adding to Global.asax file, 561-563

archive routes, 561-563

unit testing frameworks720

controller tests, 543-553

invoking Archive controller, 564-565

overview, 541-544

route tests, 553-560

tests, creating, 514-520

Add New Test dialog, 514

BlogController class, 517-518

BlogControllerTests class, 515-516

BlogEntry class, 517

Index() method, 519-520

namespaces, importing, 519

validation

BlogEntryFactory class, 573-576

business rules, 586-591

overview, 565-568

refactoring to use service layer, 581-586

validating blog entry title, 567-573

validating length of property, 576-578

validation error messages, 578-581

views, 605-612

BlogEntries partial, 607-608

Html.BlogLink() helper, 608-609

Html.BlogPager() helper, 610-612

Index view, 605-611

untyped views, 88-95

UpdateModel() method, 228-230

updating form content, 443-447

URL.Action() helper, 161-162

URLs, testing if URL matches route, 289-292

user controls

adding to views, 313-314

creating, 312-313

MovieTemplate user control, 322-323

overview, 311-312

passing view data to, 314-319

as templates, 319-323

How can we make this index more useful? Email us at indexes@samspublishing.com

User property (Controller class), 372-374

user stories, test flow from, 508-509

UserController class, 373-374

UserModelBinder class, 233-234

users. See also user controls

authentication. See authentication

authorizing

with Authorize attribute, 368-370

authorizing particular users, 371-372

overview, 368

with User property, 372-374

creating

with Account controller, 367-369

with Web Site Administration Tool,
365-366

membership, configuring

with Membership and Roles Manager
API, 381-385

membership database, 375-379

membership settings, 378-380

passwords, changing, 368-369

user stories, test flow from, 508-509

V
validation

with Ajax posts, 447-452

error messages

prebinding versus postbinding, 248-250

styling, 247-248

with IDataErrorInfo interface, 258-263

model state, 241-244

overview, 240-241

request validation, disabling, 97

with service layers, 251-258

validation 721

testing, 264-268

in UnleashedBlog application

BlogEntryFactory class, 573-576

business rules, 586-591

overview, 565-568

refactoring to use service layer, 581-586

validating blog entry title, 567-573

validating length of property, 576-578

validation error messages, 578-581

validation helpers, 245-247

A Value Is Required error message, 579-580

values, returning fake values, 690-693

variables, dateReleased, 651

VaryByContentEncoding property (OutputCache
attribute), 337

VaryByCustom property (OutputCache attribute),
338-341

VaryByHeader property (OutputCache attribute),
337-338

VaryByParam property (OutputCache attribute),
335-337

VaryCustomController class, 340

VB language features

anonymous types,649-651

extension methods, 652-654

generics, 654-655

lambda expressions, 655

LINQ (Language Integrated Query), 656-658

nullable types, 651-652

object initializers, 648

type inference, 647-648

verifying caching of database data, 355-362

view content pages, creating, 300-301

view data, 87-88

passing to user controls, 314-319

passing to view master pages, 308-311

view master pages

creating, 295-299

master page titles, 303-305

nested master pages, 306-307

overview, 294-295

passing view data to, 308-311

setting from controller, 302-304

view content pages, 300-301

View() method, 52, 54-55

view results, testing, 105-108

ViewDataDictionary class, 91

ViewResult, 52-55

views, 16. See also view master pages

alternative view engines

Brail, 98

custom view engines, 99-104, 114-117

NHaml, 98

nVelocity, 98

overview, 97-98

Spark, 98

Create, 432-435

creating, 83-87

embedding scripts in, 86-87

Index. See Index view

JavaScript injection attacks, preventing,
95-97

naming conventions, 39

overview, 82-83

testing

custom view engines, 114-117

HTML helpers, 108-114

overview, 105

view results, 105-108

for Toy Store application

Create view, 42-45

creating, 37-45

Index view, 37-42

validation722

typed versus untyped views, 88-95

for UnleashedBlog application, 605-612

BlogEntries partial, 607-608

Html.BlogLink() helper, 608-609

Html.BlogPager() helper, 610-612

Index view, 605-611

user controls. See user controls

view data, 87-88

Views folder, 19

VirtualPathProviderViewEngine class, 99

Visual Studio Intellisense and jQuery, 481-482

Visual Studio project files, modifying to support
ASP.NET MVC, 415

Visual Studio Unit Test, 660-672, 508

assertions, 669-672

creating unit tests, 60-661

limiting test results, 671-672

running tests, 669-671

test attributes, 666

Visual Web Developer 2008 Service Pack 1, 2

Vorontsov, Alexei, 510

W
waterfall design, 507-508

web configuration files, configuring ASP.NET
Web Forms files to support ASP.NET MVC,
416-422

Web Forms. See ASP.NET Web Forms

Web Platform Installer, launching, 2

Web Site Adminstration Tool, 365-366

web.config files, configuring ASP.NET Web
Forms files to support ASP.NET MVC, 416-422

What Is Software Engineering? (Reeves), 509

Where() method, 656

How can we make this index more useful? Email us at indexes@samspublishing.com

WidgetController class, 55-56

wildcard script maps, 410-414

Windows authentication

authenticating Windows users and groups,
386-390

configuring, 385-387

overview, 385

types of authentication, 386

WindowsController class, 387-388

wizards, Entity Data Model Wizard, 28-30

Working Effectively with Legacy Code
(Feathers), 9, 12, 509

Write() method, 180

WriteLine() method, 180

X-Y-Z
XSS (cross-site scripting) attacks, 96

xUnit Design Patterns: Refactoring Test Code
(Meszaros), 680

YAGNI Principle (You Ain’t Gonna Need It), 507

YAGNI Principle (You Ain’t Gonna Need It) 723

	Introduction
	How This Book Is Organized
	What You Should Know Before Reading This Book
	What Software Do You Need?
	Where Do You Download the Code Samples?
	If You Like This Book

	1 An Introduction to ASP.NET MVC
	A Story with a Moral
	What Is Good Software?
	What Is ASP.NET MVC?
	The Architecture of an ASP.NET MVC Application
	Understanding the Sample ASP.NET MVC Application

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

