

Sams Teach Yourself Visual C#®2008 in 24 Hours: Complete Starter Kit
Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

ISBN-13: 978-0-672-32990-6
ISBN-10: 0-672-32990-5

Library of Congress Cataloging-in-Publication data is on file

Printed in the United States of America

First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Visual C# is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and accurate as possible, but no war-
ranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Patrick Kanouse

Senior Project
Editor
Tonya Simpson

Copy Editor
Margo Catts

Indexer
Tim Wright

Proofreader
Kathy Ruiz

Technical Editor
Todd Meister

Publishing
Coordinator
Cindy Teeters

Multimedia
Developer
Dan Scherf

Book Designer
Gary Adair

The Safari® Enabled icon on the cover of your favorite technology book means the book is available through
Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.informit.com/onlineedition.

. Complete the brief registration form.

. Enter the coupon code RMRP-Y6IP-KPI6-NBPM-YPU7.

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email
customer-service@safaribooksonline.com.

http://www.opencontent.org/openpub/
http://www.informit.com/onlineedition

Introduction

With Microsoft’s introduction of the .NET platform, a new, exciting programming language

was born. Visual C# is now the language of choice for developing on the .NET platform,

and Microsoft has even written a majority of the .NET Framework using Visual C#. Visual

C# is a modern object-oriented language designed and developed from the ground up with

a best-of-breed mentality, implementing and expanding on the best features and functions

found in other languages. Visual C# 2008 combines the power and flexibility of C++ with

some of the simplicity of Visual C#.

Audience and Organization
This book is targeted toward those who have little or no programming experience or who

might be picking up Visual C# as a second language. The book has been structured and

written with a purpose: to get you productive as quickly as possible. I’ve used my experi-

ences in writing applications with Visual C# and teaching Visual C# to create a book that I

hope cuts through the fluff and teaches you what you need to know. All too often, authors

fall into the trap of focusing on the technology rather than on the practical application of

the technology. I’ve worked hard to keep this book focused on teaching you practical skills

that you can apply immediately toward a development project. Feel free to post your sug-

gestions or success stories at www.jamesfoxall.com/forums.

This book is divided into five parts, each of which focuses on a different aspect of develop-

ing applications with Visual C# 2008. These parts generally follow the flow of tasks you’ll

perform as you begin creating your own programs with Visual C# 2008. I recommend that

you read them in the order in which they appear.

. Part I, “The Visual C# 2008 Environment,” teaches you about the Visual C# environ-

ment, including how to navigate and access Visual C#’s numerous tools. In addition,

you’ll learn about some key development concepts such as objects, collections, and

events.

. Part II, “Building a User Interface,” shows you how to build attractive and functional

user interfaces. In this part, you’ll learn about forms and controls—the user interface

elements such as text boxes and list boxes.

. Part III, “Making Things Happen: Programming,” teaches you the nuts and bolts of

Visual C# 2008 programming—and there’s a lot to learn. You’ll discover how to create

classes and procedures, as well as how to store data, perform loops, and make

www.jamesfoxall.com/forums

decisions in code. After you’ve learned the core programming skills, you’ll move into

object-oriented programming and debugging applications.

. Part IV, “Working with Data,” introduces you to working with graphics, text files, and

programming databases, and shows you how to automate external applications such

as Word and Excel. In addition, this part teaches you how to manipulate a user’s file

system and the Windows Registry.

. Part V, “Deploying Solutions and Beyond,” shows you how to distribute an applica-

tion that you’ve created to an end user’s computer. In Hour 24, “The 10,000-Foot

View,” you’ll learn about Microsoft’s .NET initiative from a higher, less-technical level.

Many readers of previous editions have taken the time to give me input on how to make

this book better. Overwhelmingly, I was asked to have examples that build on the examples

in the previous chapters. In this book, I have done that as much as possible. Now, instead

of learning concepts in isolated bits, you’ll be building a feature-rich Picture Viewer pro-

gram throughout the course of this book. You’ll begin by building the basic application. As

you progress through the chapters, you’ll add menus and toolbars to the program, build an

Options dialog box, modify the program to use the Windows Registry and a text file, and

even build a setup program to distribute the application to other users. I hope you find this

approach beneficial in that it enables you to learn the material in the context of building a

real program.

Conventions Used in This Book
This book uses several design elements and conventions to help you prioritize and reference

the information it contains:

2

Sams Teach Yourself Visual C# 2008 in 24 Hours

By the Way boxes provide useful sidebar information that you can read immedi-
ately or circle back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your Visual C# pro-
gramming more effective.

Watch Out! boxes focus your attention on problems or side effects that can
occur in specific situations.

By the
Way

Did you
Know?

Watch
Out!

New terms appear italic for emphasis.

In addition, this book uses various typefaces to help you distinguish code from regular

English. Code is presented in a monospace font. Placeholders—words or characters that rep-

resent the real words or characters you would type in code—appear in italic monospace.

When you are asked to type or enter text, that text appears in bold.

Some code statements presented in this book are too long to appear on a single line. In

these cases, a line-continuation character (an underscore) is used to indicate that the fol-

lowing line is a continuation of the current statement.

Onward and Upward!
This is an exciting time to be learning how to program. It’s my sincerest wish that when

you finish this book, you feel capable of creating, debugging, and deploying modest Visual

C# programs, using many of Visual C#’s tools. Although you won’t be an expert, you’ll be

surprised at how much you’ve learned. And I hope this book will help you determine your

future direction as you proceed down the road to Visual C# mastery.

Introduction

3

HOUR 1

Jumping In with Both Feet: A
Visual C# 2008 Programming
Tour

What You’ll Learn in This Hour:
. Building a simple (yet functional) Visual C# application
. Letting a user browse a hard drive
. Displaying a picture from a file on disk
. Getting familiar with some programming lingo
. Learning about the Visual Studio .NET IDE

Learning a new programming language can be intimidating. If you’ve never programmed

before, the act of typing seemingly cryptic text to produce sleek and powerful applications

probably seems like a black art, and you might wonder how you’ll ever learn everything

you need to know. The answer is, of course, one step at a time. The first step to learning a

language is the same as that of any other activity: building confidence. Programming is

part art and part science. Although it might seem like magic, it’s more akin to illusion:

After you know how things work a lot of the mysticism goes away, freeing you to focus on

the mechanics necessary to produce any given desired result.

Producing large, commercial solutions is accomplished by way of a series of small steps.

After you’ve finished creating the project in this hour, you’ll have a feel for the overall

development process and will have taken the first step toward becoming an accomplished

programmer. In fact, you will be building upon this Picture Viewer program in subsequent

chapters. By the time you complete this book, you will have built a distributable applica-

tion, complete with resizable screens, an intuitive interface including menus and toolbars,

and robust code with professional error handling. But I’m getting ahead of myself!

8 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

In this hour, you’ll complete a quick tour that takes you step by step through creat-

ing a complete, albeit small, Visual C# program. Most introductory programming

books start out with the reader creating a simple Hello World program. I’ve yet to

see a Hello World program that’s the least bit helpful (they usually do nothing more

than print hello world to the screen—oh, what fun). So, instead, you’ll create a

picture viewer application that lets you view Windows bitmaps and icons on your

computer. You’ll learn how to let a user browse for a file and how to display a select-

ed picture file on the screen. The techniques you learn in this chapter will come in

handy in many real-world applications that you’ll create, but the goal of this chap-

ter is for you to realize just how much fun it is to program with Visual C#.

Starting Visual C# 2008
Before you begin creating programs in Visual C# 2008, you should be familiar with

the following terms:

. Distributable component—The final, compiled version of a project.

Components can be distributed to other people and other computers, and they

don’t require the Visual C# 2008 development environment (the tools you use

to create a .NET program) to run (although they do require the .NET runtime,

which I discuss in Hour 23, “Deploying Applications”). Distributable compo-

nents are often called programs. In Hour 23, you’ll learn how to distribute the

Picture Viewer program that you’re about to build to other computers.

. Project—A collection of files that can be compiled to create a distributable

component (program). There are many types of projects, and complex appli-

cations might consist of multiple projects, such as a Windows application proj-

ect, and support dynamic link library (DLL) projects.

. Solution—A collection of projects and files that make up an application or

component.

Visual C# is part of a larger entity known as the .NET Framework. The .NET
Framework encompasses all the .NET technology, including Visual Studio .NET (the
suite of development tools) and the Common Language Runtime (CLR), which is
the set of files that make up the core of all .NET applications. You’ll learn about
these items in more detail as you progress through this book. For now, realize that
Visual C# is one of many languages that exist within the .NET family. Many other
languages, such as Visual Basic, are also .NET languages, make use of the CLR,
and are developed within Visual Studio .NET.

By the
Way

Creating a New Project 9

Visual Studio 2008 is a complete development environment, and it’s called the IDE

(short for integrated development environment). The IDE is the design framework in which

you build applications; every tool you’ll need to create your Visual C# projects is

accessed from within the Visual C# IDE. Again, Visual Studio 2008 supports develop-

ment in many different languages—Visual C# being one of the most popular. The envi-

ronment itself is not Visual C#, but the language you use within Visual Studio 2008 is

Visual C#. To work with Visual C# projects, you first start the Visual Studio 2008 IDE.

Start Visual Studio 2008 now by choosing Microsoft Visual C# 2008 Express Edition

on your Start/Programs menu. If you are running the full retail version of .NET, your

shortcut may have a different name. In this case, locate the shortcut on your Start

menu and click it once to start the Visual Studio .NET IDE.

Creating a New Project
When you first start Visual Studio .NET, you’re shown the Start Page tab within the

IDE. You can open projects created previously or create new projects from this Start

page (see Figure 1.1). For this quick tour, you’re going to create a new Windows

application, so open the File menu and click New Project to display the New Project

dialog box shown in Figure 1.2.

If your Start page doesn’t look like the one in Figure 1.1, chances are that you’ve
changed the default settings. In Hour 2, “Navigating Visual C# 2008,” I’ll show
you how to change them back.

By the
Way

FIGURE 1.1
You can open
existing proj-
ects or create
new projects
from the Visual
Studio Start
page.

10 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

The New Project dialog box is used to specify the type of Visual C# project to create.

(You can create many types of projects with Visual C#, as well as with the other sup-

ported languages of the .NET Framework.) The options shown in Figure 1.2 are lim-

ited because I am running the Express edition of Visual C# for all examples in this

books. If you are running the full version of Visual C#, many more options are

available to you.

Create a new Windows application by following these steps:

1. Make sure that the Windows Application icon is selected (if it’s not, click it

once to select it).

2. At the bottom of the New Project dialog box is a Name text box. This is where,

oddly enough, you specify the name of the project you’re creating. Enter

Picture Viewer in the Name text box.

3. Click OK to create the project.

Always set the Name text box to something meaningful before creating a project,
or you’ll have more work to do later if you want to move or rename the project.

When Visual C# creates a new Windows application project, it adds one form (the

empty gray window) for you to begin building the interface—the graphical windows

with which you interact—for your application (see Figure 1.3).

FIGURE 1.2
The New Project
dialog box
enables you to
create many
types of .NET
projects.

Did you
Know?

Creating a New Project 11

Within Visual Studio 2008, form is the term given to the design-time view of win-
dows that can be displayed to a user.

By the
Way

FIGURE 1.3
New Windows
applications
start with a
blank form; the
fun is just
beginning!

Your Visual Studio 2008 environment might look different from that shown in the

figures of this hour because of the edition of Visual Studio 2008 you’re using,

whether you’ve already played with Visual Studio 2008, and other factors such as

the resolution of your monitor. All the elements discussed in this hour exist in all

editions of Visual Studio 2008, however. (If a window shown in a figure isn’t dis-

played in your IDE, use the View menu to display it.)

To create a program that can be run on another computer, you start by creating a
project and then compiling the project into a component such as an executable (a
program a user can run) or a DLL (a component that can be used by other pro-
grams and components). The compilation process is discussed in detail in Hour
23, “Deploying Applications.” The important thing to note at this time is that when
you hear someone refer to creating or writing a program, just as you’re creating
the Picture Viewer program now, they’re referring to the completion of all steps up
to and including compiling the project to a distributable file.

By the
Way

12 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Understanding the Visual Studio .NET
Environment
The first time you run Visual Studio 2008, you’ll notice that the IDE contains a num-

ber of windows, such as the Solutions Explorer window on the right, which is used to

view the files that make up a project. In addition to these windows, the IDE contains

a number of tabs, such as the vertical Toolbox tab on the left edge of the IDE (refer

to Figure 1.3). Try this now: Click the Toolbox tab to display the Toolbox window

(clicking a tab displays an associated window). You can hover the mouse over a tab

for a few seconds to display the window as well. To hide the window, simply move

the mouse off the window (if you hovered over the tab to display it) or click on

another window. To close the window completely, click the Close (X) button in the

window’s title bar.

If you opened the toolbox by clicking its tab rather than hovering over the tab, the
toolbox does not automatically close. Instead, it stays open until you click on
another window.

You can adjust the size and position of any of these windows, and you can even

hide and show them as needed. You’ll learn how to customize your design environ-

ment in Hour 2.

Unless specifically instructed to do so, don’t double-click anything in the Visual
Studio 2008 design environment. Double-clicking most objects produces an entire-
ly different result than single-clicking does. If you mistakenly double-click an object
on a form (discussed shortly), a code window is displayed. At the top of the code
window is a set of tabs: one for the form design and one for the code. Click the
tab for the form design to hide the code window and return to the form.

The Properties window at the right side of the design environment is perhaps the

most important window in the IDE, and it’s the one you’ll use most often. If your

computer display resolution is set to 800×600, you can probably see only a few prop-

erties at this time. This makes it difficult to view and set properties as you create

projects. All the screen shots in this book are taken at 800×600 due to size con-

straints, but you should run at a higher resolution if you can. I highly recommend

that you develop applications with Visual C# at a screen resolution of 1024×768 or

higher because it offers plenty of work space. Keep in mind, however, that end users

might be running at a lower resolution than you are using for development. If you

need to change your display settings, right-click your desktop and select Personalize.

By the
Way

Watch
Out!

Changing the Characteristics of Objects 13

Changing the Characteristics of Objects
Almost everything you work with in Visual C# is an object. Forms, for instance, are

objects, as are all the items you can put on a form to build an interface such as list

boxes and buttons. There are many types of objects, and objects are classified by

type. For example, a form is a Form object, whereas items you can place on a form

are called Control objects, or controls. (Hour 3, “Understanding Objects and

Collections,” discusses objects in detail.) Some objects don’t have a physical appear-

ance but exist only in code, and you’ll learn about these kinds of objects in later

hours.

You’ll find that I often mention material coming up in future chapters. In the pub-
lishing field, we call these forward references. For some reason, these tend to
really unnerve some people. I do this only so that you realize you don’t have to
fully grasp a subject when it’s first presented; the material is covered in more
detail later. I try to keep forward references to a minimum, but teaching program-
ming is, unfortunately, not a perfectly linear process. There will be times I’ll have
to touch on a subject that I feel you’re not ready to dive into fully yet. When this
happens, I give you a forward reference to let you know that the subject is covered
in greater detail later on.

Every object has a distinct set of attributes known as properties (regardless of whether

the object has a physical appearance). You have certain properties about you, such

as your height and hair color. Visual C# objects have properties as well, such as

Height and BackColor. Properties define an object’s characteristics. When you create

a new object, the first thing you need to do is set its properties so that the object

appears and behaves the way you want it to. To display an object’s properties, click

the object in its designer (the main work area in the IDE).

First, make sure your Properties Window is displayed by opening the View menu and

choosing Properties Window. Next, click anywhere in the default form now (its title

bar says Form1) and check to see whether its properties are displayed in the

Properties window. You’ll know because the drop-down list box at the top of the

properties window contains the form’s name: Form1 System.Windows.Forms.Form.

Form1 is the name of the object, and System.Windows.Forms.Form is the type of

object.

Naming Objects
The property you should always set first for any new object is the Name property.

Scroll toward the top of the properties list until you see the (Name) property (see

Figure 1.4). If the Name property isn’t one of the first properties listed, your properties

Watch
Out!

14 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

window is set to show properties categorically instead of alphabetically. You can

show the list alphabetically by clicking the Alphabetical button that appears just

above the properties grid.

I recommend that you keep the Properties window set to show properties in alpha-
betical order; doing so makes it easier to find properties that I refer to in the text.
Note that the Name property always stays toward the top of the list and is referred
to as (Name). If you’re wondering why it has parentheses around it, that’s because
the parentheses force the property to the top of the list because symbols come
before letters in an alphabetical sort.

When saving a project, you choose a name and a location for the project and its

files. When you first create an object, Visual C# gives the object a unique, generic

name based on the object’s type. Although these names are functional, they simply

aren’t descriptive enough for practical use. For instance, Visual C# named your form

Form1, but it’s common to have dozens of forms in a project, and it would be

extremely difficult to manage such a project if all forms were distinguishable only

by a number (Form2, Form3, and so forth).

By the
Way

FIGURE 1.4
The Name prop-
erty is the first
property you
should change
when you add a
new object to
your project.

What you’re actually working with is a form class, or template, that will be used to
create and show forms at runtime. For the purpose of this quick tour, I simply
refer to it as a form. See Hour 5, “Building Forms—The Basics,” for more
information.

By the
Way

Changing the Characteristics of Objects 15

To better manage your forms, give each one a descriptive name. Visual C# gives you

the chance to name new forms as they’re created in a project. Visual C# created this

default form for you, so you didn’t get a chance to name it. It’s important to not

only change the form’s name but also to change its filename. Change the program-

mable name and the filename at the same time by following these steps:

1. Click the Name property and change the text from Form1 to ViewerForm.

Notice that this does not change the form’s filename as it’s displayed in the

Solution Explorer window located above the Properties window.

2. Right-click Form1.cs in the Solution Explorer window (the window above the

properties window).

3. Choose Rename from the context menu that appears.

4. Change the text from Form1.cs to ViewerForm.cs.

I use the Form suffix here to denote that the file is a form class. Suffixes are
optional, but I find they really help you keep things organized.

The Name property of the form is actually changed for you automatically when you

rename the file. I had you explicitly change the Name property because it’s some-

thing you’re going to be doing a lot—for all sorts of objects.

Setting the Text Property of the Form
Notice that the text that appears in the form’s title bar says Form1. Visual C# sets

the form’s title bar to the name of the form when it’s first created but doesn’t change

it when you change the form’s name. The text in the title bar is determined by the

value of the Text property of the form. Change the text now by following these

steps:

1. Click the form once more so that its properties appear in the Properties window.

2. Use the scrollbar in the Properties window to locate the Text property.

3. Change the text to Picture Viewer. Press the Enter key or click on a different

property. You’ll see the text in the title bar of the form change.

Saving a Project
The changes you’ve made so far exist only in memory; if you were to turn off your

computer at this time, you would lose all your work up to this point. Get into the

habit of frequently saving your work, which commits your changes to disk.

By the
Way

16 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Click the Save All button on the toolbar (the picture of a stack of disks) now to save

your work. Visual C# then displays the Save Project dialog box shown in Figure 1.5.

Notice that the Name property is already filled in because you named the project

when you created it. The Location text box is where you specify the location in

which to save the project. Visual C# creates a subfolder in this location, using the

value in the Name text box (in this case, Picture Viewer). You can use the default

location, or change it to suit your purposes. You can have Visual C# create a solu-

tion folder in which the project folder gets placed. On large projects, this is a handy

feature. For now, it’s an unnecessary step, so uncheck the Create Directory for

Solution box and then click Save to save the project.

FIGURE 1.5
When saving a
project, choose
a name and a
location for the
project and its
files.

Giving the Form an Icon
Everyone who has used Windows is familiar with icons—the little pictures that rep-

resent programs. Icons most commonly appear in the Start menu next to the names

of their respective programs. In Visual C#, you not only have control over the icon

of your program file, you can also give every form in your program a unique icon if

you want to.

The following instructions assume that you have access to the source files for the
examples in this book. They are available at www.samspublishing.com. You can
also get these files, as well as discuss this book, at my website at
http://www.jamesfoxall.com/books.aspx. When you unzip the samples, a folder is
created for each hour, and within each hour’s folder are subfolders for the sample
projects. You can find the icon in the folder Hour 1\Picture Viewer.

You don’t have to use the icon I’ve provided for this example; you can use any
icon of your choice. If you don’t have an icon available (or you want to be a rebel),
you can skip this section without affecting the outcome of the example.

To give the form an icon, follow these steps:

1. In the Properties window, click the Icon property to select it.

2. When you click the Icon property, a small button with three dots appears to

the right of the property. Click this button.

By the
Way

http://www.jamesfoxall.com/books.aspx
www.samspublishing.com

Changing the Characteristics of Objects 17

3. Use the Open dialog box that appears to locate the PictureViewer.ico file or

another icon file of your choice. When you’ve found the icon, double-click it,

or click it once to select it and then click Open.

After you’ve selected the icon, it appears in the Icon property along with the word

“Icon.” A small version of the icon appears in the upper-left corner of the form as

well. Whenever this form is minimized, this is the icon displayed on the Windows

taskbar.

Changing the Size of the Form
Next, you’re going to change the Width and Height properties of the form. The

Width and Height values are shown collectively under the Size property; Width

appears to the left of the comma, Height to the right. You can change the Width or

Height property by changing the corresponding number in the Size property. Both

values are represented in pixels (that is, a form that has a Size property of 200,350

is 200 pixels wide and 350 pixels tall). To display and adjust the Width and Height

properties separately, click the small plus sign (+) next to the Size property (see

Figure 1.6).

FIGURE 1.6
Some proper-
ties can be
expanded to
show more spe-
cific properties.

A pixel is a unit of measurement for computer displays; it’s the smallest visible
“dot” on the screen. The resolution of a display is always given in pixels, such as
800×600 or 1024×768. When you increase or decrease a property by one pixel,
you’re making the smallest possible visible change to the property.

By the
Way

18 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Change the Width property to 400 and the Height to 325 by typing in the corre-

sponding box next to a property name. To commit a property change, press Tab or

Enter, or click a different property or window. Your screen should now look like the

one in Figure 1.7.

FIGURE 1.7
Changes made
in the Properties
window are
reflected as
soon as they’re
committed.

You can also size a form by dragging its border, which you’ll learn about in Hour 2.
This property can also be changed by program code, which you’ll learn how to
write in Hour 5.

Save the project now by choosing File, Save All from the menu or by clicking the

Save All button on the toolbar—it has a picture of stacked disks on it.

Adding Controls to a Form
Now that you’ve set your form’s initial properties, it’s time to create a user interface

by adding objects to the form. Objects that can be placed on a form are called con-

trols. Some controls have a visible interface with which a user can interact, whereas

others are always invisible to the user. You’ll use controls of both types in this exam-

ple. On the left side of the screen is a vertical tab titled Toolbox. Click the Toolbox

tab now to display the Toolbox window and click the plus sign next to Common

Controls to see the most commonly used controls (see Figure 1.8). The toolbox con-

tains all the controls available in the project, such as labels and text boxes.

By the
Way

Designing an Interface 19

The toolbox closes as soon as you’ve added a control to a form and when the point-

er is no longer over the toolbox. To make the toolbox stay visible, click the little pic-

ture of a pushpin located in the toolbox’s title bar.

I don’t want you to add them yet, but your Picture Viewer interface will consist of

the following controls:

. Two Button controls—The standard buttons that you’re used to clicking in

pretty much every Windows program you’ve ever run

. A PictureBox control—A control used to display images to a user

. An OpenFileDialog control—A hidden control that exposes the Windows

Open File dialog box functionality

Designing an Interface
It’s generally best to design a form’s user interface and then add the code behind the

interface to make the form functional. You’ll build your interface in the following

sections.

FIGURE 1.8
The toolbox is
used to select
controls to build
a user inter-
face.

20 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Adding a Visible Control to a Form
Start by adding a Button control to the form. Do this by double-clicking the Button

item in the toolbox. Visual C# creates a new button and places it in the upper-left

corner of the form (see Figure 1.9).

FIGURE 1.9
When you
double-click a
control in the
toolbox, the
control is added
to the upper-left
corner of the
form.

Using the Properties window, set the button’s properties as follows. Remember, when

you view the properties alphabetically, the Name property is listed first, so don’t go

looking for it down in the list or you’ll be looking awhile.

Property Value

Name btnSelectPicture

Location 295,10 (Note: 295 is the x coordinate; 10 is the y coordinate.)

Size 85, 23

Text Select Picture

You’re now going to create a button that the user can click to close the Picture

Viewer program. Although you could add another new button to the form by double-

clicking the Button control on the toolbox again, this time you’ll add a button to

the form by creating a copy of the button you’ve already defined. This enables you

to easily create a button that maintains the size and other style attributes of the

original button when the copy was made.

To do this, right-click the Select Picture button and choose Copy from its shortcut

menu. Next, right-click anywhere on the form and choose Paste from the form’s

shortcut menu (you could have also used the keyboard shortcuts Ctrl+C to copy and

Ctrl+V to paste). The new button appears centered on the form, and it’s selected by

Designing an Interface 21

default. Notice that it retained almost all of the properties of the original button, but

the name has been reset. Change the new button’s properties as follows:

Property Value

Name btnQuit

Location 295, 40

Text Quit

The last visible control you need to add to the form is a PictureBox control. A

PictureBox has many capabilities, but its primary purpose is to show pictures,

which is precisely what you’ll use it for in this example. Add a new PictureBox con-

trol to the form by double-clicking the PictureBox item in the toolbox and set its

properties as follows:

Property Value

Name picShowPicture

BorderStyle FixedSingle

Location 8, 8

Size 282, 275

After you’ve made these property changes, your form will look like the one in Figure

1.10. Click the Save All button on the toolbar to save your work.

FIGURE 1.10
An application’s
interface
doesn’t have to
be complex to
be useful.

Adding an Invisible Control to a Form
All the controls that you’ve used so far sit on a form and have a physical appearance

when the application is run by a user. Not all controls have a physical appearance,

22 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

however. Such controls, referred to as nonvisual controls (or invisible-at-runtime con-

trols), aren’t designed for direct user interactivity. Instead, they’re designed to give

you, the programmer, functionality beyond the standard features of Visual C#.

To enable the user to select a picture to display, you need to make it possible to

locate a file on a hard drive. You might have noticed that whenever you choose to

open a file from within any Windows application, the dialog box displayed is

almost always the same. It doesn’t make sense to force every developer to write the

code necessary to perform standard file operations, so Microsoft has exposed the

functionality via a control that you can use in your projects. This control is called

the OpenFileDialog control, and it will save you dozens and dozens of hours that

would otherwise be necessary to duplicate this common functionality.

Other controls in addition to the OpenFileDialog control give you file functionali-
ty. For example, the SaveFileDialog control provides features for enabling the
user to specify a filename and path for saving a file.

Display the toolbox now and scroll down (using the down arrow in the lower part of

the toolbox) until you can see the OpenFileDialog control (it’s in the Dialogs cate-

gory), and then double-click it to add it to your form. Note that the control isn’t

placed on the form, but rather it appears in a special area below the form (see

Figure 1.11). This happens because the OpenFileDialog control has no form inter-

face to display to a user. It does have an interface (a dialog box) that you can dis-

play as necessary, but it has nothing to display directly on a form.

By the
Way

FIGURE 1.11
Controls that
have no inter-
face appear
below the form
designer.

Writing the Code Behind an Interface 23

Select the OpenFileDialog control and change its properties as follows:

Property Value

Name ofdSelectPicture

Filename <make empty>

Filter Windows Bitmaps|*.BMP|JPEG Files|*.JPG

Title Select Picture

Don’t actually enter the text <make empty> for the filename; I really mean delete
the default value and make this property value empty.

The Filter property is used to limit the types of files that will be displayed in the

Open File dialog box. The format for a filter is description|filter. The text that appears

before the first pipe symbol is the descriptive text of the file type, whereas the text after

the pipe symbol is the pattern to use to filter files. You can specify more than one

filter type by separating each description|filter value with another pipe symbol. Text

entered into the Title property appears in the title bar of the Open File dialog box.

The graphical interface for your Picture Viewer program is now finished. If you

pinned the toolbox open, click the pushpin in the title bar of the toolbox now to

close it.

Writing the Code Behind an Interface
You have to write code for the program to be capable of performing tasks and

responding to user interaction. Visual C# is an event-driven language, which means

that code is executed in response to events. These events might come from users,

such as a user clicking a button and triggering its Click event, or from Windows

itself (see Hour 4, “Understanding Events,” for a complete explanation of events).

Currently, your application looks nice but it won’t do a darn thing. Users can click

the Select Picture button until they can file for disability with carpel tunnel syn-

drome, but nothing will happen because you haven’t told the program what to do

when the user clicks the button. You can see this for yourself now by pressing F5 to

run the project. Feel free to click the buttons, but they don’t do anything. When

you’re finished, close the window you created to return to Design mode.

You’re going to write code to accomplish two tasks. First, you’re going to write code

that lets users browse their hard drives to locate and select a picture file and then

display the file in the picture box (this sounds a lot harder than it is). Second, you’re

By the
Way

24 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

going to add code to the Quit button that shuts down the program when the user

clicks the button.

Letting a User Browse for a File
The first bit of code you’re going to write enables users to browse their hard drives,

select a picture file, and then see the selected picture in the PictureBox control. This

code executes when the user clicks the Select Picture button; therefore, it’s added to

the Click event of that button.

When you double-click a control on a form in Design view, the default event for that

control is displayed in a code window. The default event for a Button control is its

Click event, which makes sense because clicking is the most common action a user

performs with a button. Double-click the Select Picture button now to access its

Click event in the code window (see Figure 1.12).

FIGURE 1.12
You’ll write all
code in a win-
dow such as
this.

When you access an event, Visual C# builds an event handler, which is essentially

a template procedure in which you add the code that executes when the event

occurs. The cursor is already placed within the code procedure, so all you have to do

is add code. Although this may seem daunting to you now, by the time you’re fin-

ished with this book you’ll be madly clicking and clacking away as you write your

own code to make your applications do exactly what you want them to do—well,

most of the time. For now, just enter the code as I present it here.

Writing the Code Behind an Interface 25

It’s important that you get in the habit of commenting your code, so the first state-

ment you’re going to enter is a comment. Beginning a statement with two forward

slashes designates the statement as a comment; the compiler doesn’t do anything

with the statement, so you can enter whatever text you want after the two forward

slashes. Type the following statement exactly as it appears and press the Enter key

at the end of the line:

// Show the open file dialog box.

The next statement you enter triggers a method of the OpenFileDialog control that

you added to the form. You’ll learn all about methods in Hour 3. For now, think of a

method as a mechanism to make a control do something. The ShowDialog()

method tells the control to show its Open dialog box and let the user select a file.

The ShowDialog() method returns a value that indicates its success or failure,

which you’ll then compare to a predefined result (DialogResult.OK). Don’t worry

too much about what’s happening here; you’ll be learning the details of all this in

later hours, and the sole purpose of this hour is to get your feet wet. In a nutshell,

the ShowDialog() method is invoked to let a user browse for a file. If the user selects

a file, more code is executed. Of course, there’s a lot more to using the

OpenFileDialog control than I present in this basic example, but this simple state-

ment gets the job done. Enter the following two code statements, pressing Enter at

the end of each line:

Capitalization is important. Visual C# is a case-sensitive language, which means
ShowDialog() is not the same as Showdialog(). If you get the case of even one
letter wrong, Visual C# doesn’t recognize the word and your code doesn’t work, so
always enter code exactly as it appears in this book!

if (ofdSelectPicture.ShowDialog() == DialogResult.OK)
{

The opening brace (the { character) is necessary for this if statement because it

denotes that this if construct will be made up of multiple lines.

Time for another comment. Your cursor is currently on the line below the { that you

entered. Type this statement and remember to press Enter at the end of the code line.

// Load the picture into the picture box.

This next statement is the line of code that actually displays the picture in the pic-

ture box.

Enter the following statement:

picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName);

By the
Way

26 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

In addition to displaying the selected picture, your program is also going to display

the path and filename of the picture in the title bar. When you first created the

form, you changed the form’s Text property in the Properties window. To create

dynamic applications, properties need to be constantly adjusted at runtime, and this

is done with code. Insert the following two statements (press Enter at the end of each

line):

// Show the name of the file in the form’s caption.

this.Text = string.Concat(“Picture Viewer(“ + ofdSelectPicture.FileName + “)”);

The last statement you need to enter is a closing brace (a } character). Whenever

you have an opening brace, you have to have a closing brace. This is how Visual C#

groups multiple statements of code. Enter this statement now:

}

After you’ve entered all the code, your editor should look like that shown in Figure 1.13.

FIGURE 1.13
Make sure that
your code exact-
ly matches the
visible code
shown here.

Terminating a Program Using Code
The last bit of code you’ll write terminates the application when the user clicks the

Quit button. To do this, you’ll need to access the Click event handler of the

btnQuit button. At the top of the code window are two tabs. The current tab has

the text ViewerForm.cs*. This is the tab containing the code window for the form

with the filename ViewerForm.cs. Next to this is a tab that contains the text

Running a Project 27

ViewerForm.cs [Design]*. Click this tab now to switch from Code view to the form

designer. If you receive an error when you click the tab, the code you entered con-

tains an error, and you need to edit it to make it the same as shown in Figure 1.13.

After the form designer appears, double-click the Quit button to access its Click

event.

Enter the following code in the Quit button’s Click event handler and press Enter at

the end of each statement:

// Close the window and exit the application

this.Close();

The this.Close(); statement closes the current form. When the last loaded
form in a program is closed, the application shuts itself down—completely. As you
build more robust applications, you’ll probably want to execute all kinds of clean-
up routines before terminating an application, but for this example, closing the
form is all you need to do.

Running a Project
Your application is now complete. Click the Save All button on the toolbar (it looks

like a stack of disks), and then run your program by pressing F5. You can also run

the program by clicking the button on the toolbar that looks like a right-facing tri-

angle and resembles the Play button on a DVD (this button is called Start, and it

can also be found on the Debug menu). Learning the keyboard shortcuts will make

your development process move along faster, so I recommend you use them when-

ever possible.

When you run the program, the Visual C# interface changes, and the form you’ve

designed appears floating over the design environment (see Figure 1.14).

By the
Way

FIGURE 1.14
When in Run
mode, your pro-
gram executes
the same as it
would for an
end user.

28 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

You are now running your program as though it were a standalone application run-

ning on another user’s machine; what you see is exactly what users would see if

they ran the program (without the Visual Studio 2008 design environment in the

background, of course). Click the Select Picture button to display the Select Picture

dialog box (see Figure 1.15). Use the dialog box to locate a picture file. When you’ve

found a file, double-click it, or click once to select it and then click Open. The select-

ed picture is then displayed in the picture box, as shown in Figure 1.16.

When you click the Select Picture button, the default path shown depends on the
last active path in Windows, so it might be different for you than what is shown in
Figure 1.15.

By the
Way

FIGURE 1.15
The
OpenFileDialog
control handles
all the details of
browsing for
files. Cool, huh?

FIGURE 1.16
What could be
prettier than a
1964 Fender
Super Reverb
amplifier?

Q&A 29

If you want to select and display a picture from your digital camera, chances are
the format is JPEG, so you need to select this from the Files of Type drop-down.
Also, if your image is very large, you’ll see only the upper-left corner of the image
(what fits in the picture box). In later hours, I’ll show you how you can scale the
image to fit the picture box, and even resize the form to show a larger picture in
its entirety.

Summary
When you’re finished playing with the program, click the Quit button to return to

Design view.

That’s it! You’ve just created a bona fide Visual C# program. You’ve used the toolbox

to build an interface with which users can interact with your program, and you’ve

written code in strategic event handlers to empower your program to do things.

These are the basics of application development in Visual C#. This fundamental

approach is used to build even the most complicated programs; you build the inter-

face and add code to make the application do things. Of course, writing code to do

things exactly the way you want things done is where the process can get complicat-

ed, but you’re on your way.

If you take a close look at the organization of the hours in this book, you’ll see that

I start out by teaching you the Visual C# (Visual Studio 2008) environment. I then

move on to building an interface, and later I teach you all about writing code. This

organization is deliberate. You might be a little anxious to jump in and start writing

serious code, but writing code is only part of the equation—don’t forget the word

Visual in Visual C#. As you progress through the hours, you’ll be building a solid

foundation of development skills.

Soon, you’ll pay no attention to the man behind the curtain—you’ll be that man (or

woman)!

Q&A
Q. Can I show pictures of file types other than BMP and JPG?

A. Yes. The PictureBox control supports the display of images with the exten-

sions BMP, JPG, ICO, EMF, WMF, and GIF. The PictureBox control can even

save images to a file using any of the supported file types.

By the
Way

30 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Q. Is it possible to show pictures in other controls?

A. PictureBox is the control to use when you are just displaying images.

However, many other controls enable you to display pictures as part of the

control. For instance, you can display an image on a button control by setting

the button’s Image property to a valid picture.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What type of Visual C# project creates a standard Windows program?

2. What window is used to change the attributes (location, size, and so on) of a

form or control in the IDE?

3. How do you access a control’s default event (code)?

4. What property of a picture box do you set to display an image?

5. What is the default event for a button control?

Answers
1. Windows Forms Application

2. The Properties window

3. Double-click the control in the designer

4. The Image property

5. The Click event

Exercises
1. Change your Picture Viewer program so that the user can also locate and select

GIF files. (Hint: Change the Filter property of the OpenFileDialog control.)

2. Create a new project with a new form. Create two buttons on the form, one

above the other. Next, change their position so that they appear next to each

other.

SYMBOLS

+ (addition) operator, 268

& (ampersands)

accelerator keys, 200

And operator, 274

* (asterisks)

multiplication operator, 269

saving projects, 65

{ } (braces), block statements,

286

^ (Xor) operator, 275

/ (division) operator, 269

= (equal sign), setting properties,

61

! (Not) operator, 274

() (parentheses), methods, 68,

225

. (periods), writing code, 64

| (Or) operator, 274

; (semicolons), statements, 65

\ (slashes) as escape sequences,

250

- (subtraction) operator, 269

A

accelerator keys, 200

Accept buttons, 160

AcceptButton property, 160

ActiveCell object

FormulaR1C1 property, 457

ActiveCell objects, 457

ActiveMdiChild property, 146

Add() method

Application objects, 462

DataTable objects, 448, 450

Items collection, 168, 170

list boxes, 172

List View, 189

Tree View control, 192-193

AddDays method

DateTime class, 280

AddHours method

DateTime class, 280

Index

adding

files

to projects, 52-53

items to lists

via code, 189

via List View, 187-189

nodes

to tree view, 192-193

addition (+) operator, 268

AddMilliseconds method

DateTime class, 280

AddMinutes method

DateTime class, 280

AddMonths method

DateTime class, 280

AddSeconds method

DateTime class, 280

AddTwoNumbers() method, 230

AddYears method

DateTime class, 280

ADO.NET, 438

databases

closing data source con-
nections, 440

connecting to, 438, 440

creating records, 448,
450

DataAdapter objects,
441-442

DataRow objects,
444-445

DataTable objects, 441,
446-448, 450

deleting records, 450

editing records, 448

navigating records,
446-448

running, 451

updating records, 448

Advanced Appearance dialog

system colors

changing, 376-377

aligning

controls, 132

ampersand (&)

accelerator keys, 200

Anchor property, 136-137

anchoring controls, 135, 137-138

And (&) operator, 274

Application objects, 455-456,

462

ActiveCell objects, 457

Add() method, 462

Archive flag (file attributes), 406

arguments

defining, 234

passing, 234

arithmetic operators, 268

addition (+) operator, 268

division (/) operator, 269

expressions

operator precedence,
270-271

modulus arithmetic, 269

multiplication (*) operator,
269

operator precedence,
270-271

subtraction (-) operator, 269

arrays

declaring, 252

defining, 241, 251

dimensions of, 254

jagged arrays, 255

multidimensional arrays,
253-254

two-dimensional arrays, 253

variables

referencing, 252

asterisks (*)

saving projects, 65

AutoCompleteMode property

combo boxes, 174

AutoCompleteSource property

combo boxes, 174

automatically hiding design win-

dows, 35, 38

automation, 453

clients

defining, 453

Excel, 459

adding cell data, 457-458

bold cells, 458

creating library references,
454

selecting cells, 458

server creation, 455-456

testing, 459

viewing, 456

workbook creation, 457

servers

adding Excel cell data,
457-458

bold Excel cells, 458

creating Excel workbooks,
457

creating instances of,
455-456, 461, 463

defining, 453

Excel, 459

488

adding

Excel server creation,
455-456

selecting Excel cells, 458

viewing Excel, 456

Word server creation,
461, 463

type libraries

creating references to,
454, 460

Word

creating library references,
460

server creation, 461, 463

AutoScroll property

scrollable forms, 142

AutoScrollMargin property

scrollable forms, 142

AutoScrollMinSize property

scrollable forms, 142

AutoSize property

Timer control, 179

autosizing controls, 135, 137-138

B

BackColor property, 44, 105, 377

BackgroundImage property,

106-109

backgrounds (forms)

adding images to, 106-108

changing color, 105

removing images from, 108

Backspace key, erasing code, 65

BaseDirectory() method, 431

binding

early binding, 344-345

late binding, 344-345

objects

creating via variable
dimensioning, 346

variable references,
344-345

bitmaps, creating Graphic

objects, 373-374

block scope, 255-256

block statements, braces ({ }),

286

bold cells (Excel), 458

bool data type, 244

Boolean logic, 272-273

And (&) operator, 274

if statements, 285

Not (!) operator, 274

Or (|) operator, 274

Xor (^) operator, 275

borders (forms), customizing,

110-112

BorderStyle property, 43

braces ({ }), block statements,

286

break points

actions in, 316-317

debugging code, 315

break statements, breaking

loops, 302-303

BringToFront method, layering

controls, 141

browsing

files, 24-25

scope, 76

btnAutomateExcel Click events,

456

build errors, 312-314

Button control, 83, 377

buttons

Accept button, 160

Cancel button, 161

Click events, 160

creating, 159

forms, adding to, 109-110

message boxes

determining which button
is clicked, 355-356

displaying in, 353

OK button, 159

PerformClick method, 160

Picture Viewer project

adding to, 63

Draw Border button, 68-72

Enlarge button, 63, 66

Show Control Names
button, 74-75

Shrink button, 63, 66

radio buttons, 164-165

separators, 212

toolbars

adding to, 210, 212

drop-down menus, 214

Buttons property,

MessageBox.Show() function,

352

C

calling

methods, 229-231

procedures, 229-231

Cancel buttons, 161

How can we make this index more useful? Email us at indexes@samspublishing.com

Cancel buttons

489

CancelButton property, 161

Caption property,

MessageBox.Show() function,

352

case statements, 293-294

case-sensitivity (code state-

ments), 25

casting

data types, 245

explicit casting, 245

implicit casting, 245

catch statements, 323-324, 327

Exception objects, Message
property, 325

Exception variables, 326

cells (Excel)

adding data to, 457-458

bold cells, 458

selecting, 458

character limits (text), setting in

text boxes, 157

check boxes, 161-162

checked menu items, creating,

202

Checked property, radio buttons,

165

CheckFileExists property,

OpenFileDialog control, 399

CheckState property, 162

circles, drawing, 381

class modules, project manage-

ment, 51

classes

clients, 336

data/code encapsulation,
334-335

defining, 221, 334

instance members, defining,
221

instantiating objects, 343

binding object references
to variables, 344-345

object creation via vari-
able dimensioning, 346

object lifetimes, 347-348

releasing object refer-
ences, 346-347

methods

declaring procedures that
do not return values,
224-227

declaring procedures that
return values, 227-228

object interfaces

client interaction with,
338

custom events in, 338

elements of, 337

exposing functions as
methods, 343

methods in, 338

properties in, 338-342

servers, 336

static members, defining,
221

ClassesRoot property, Registry

object, 416

Clear() method, 70

Graphics object, 381

Items collection, 170

List View, 190

Tree View control, 194

clearing

items from lists via code,
190

nodes from tree view, 194

click events, 23, 159

buttons, 160

Cancel buttons, 161

Items collection, 168-170

mouse, 364

ClickOnce technology, 469-470

advanced settings, 475

application creation, 471-472

Picture Viewer project installa-
tion, 474

clients, 336

defining, 453

object interfaces

exposing functions as
methods, 343

interaction with, 338

properties, 339-342

Close() method, 119, 440

closed design windows, 35

CLR (Common Language

Runtime), 480-481

COBOL, IL code, 481

code

debugging

adding comments to code,
310-312

break points, 315

build errors, 312-314

catch statements,
323-325

error handlers, 323-325

finally statements,
323-325

Immediate window,
317-320

Output window, 321

runtime errors, 312-314

490

CancelButton property

structured exception han-
dling, 322, 325-329

try blocks, 323

try statements, 323-325

encapsulating via classes,
334-335

erasing, 65

file properties, retrieving,
407-409

IL code, 481-482

IntelliSense, 64

managed code, defining, 480

periods (.), 64

procedures, writing via, 54-55

simple object build example,
69-72

unmanaged code, defining,
480

code statements, writing, 25-26

collections (objects), 73-76

color

BackColor property, 44

form backgrounds, changing
in, 105

object properties, 45-46

system colors

assigning, 378

changing, 376-377

syncing interface colors
with user system colors,
377-378

color drop-down list (Properties

window), 46

columns

DataRow objects, 444

lists, creating in, 187

Columns property, List View con-

trol, 187

combo boxes, 166

AutoCompleteMode property,
174

AutoCompleteSource proper-
ty, 174

drop-down lists, creating,
172-174

DropDownList property, 173

DropDownStyle property, 173

Insert() method, 172

Items collection, 172

Items property, 173

Sorted property, 172

Text property, 173

CommandBuilder objects, 442

comments, adding to code,

310-312

comparison operators, 271-272

compilers

defining, 242

JITers, 482

reserved words, determining,
250

components (distributable), defin-

ing, 8

concatenation strings, 275

ConnectionString property, 439

constants

benefits of, 246

defining, 241, 246-247

Prompt on Exit option (Picture
Viewer project), 248

referencing, 247

reserved words, 250

constructor methods, 337

container objects, forms as, 162

container windows, MDI forms,

143

Context Menu Strip control,

206-207

context menus, 206-207

context sensitive help, 56

ContextMenuStrip property,

Context Menu Strip control, 207

Control Box button, adding to

forms, 109-110

control objects, 60

controls

aligning, 132

anchoring, 135-138

autosizing, 135-138

defining, 18

forms, 18

adding invisible controls
to, 21-23

adding to via toolbox,
40-42, 124

adding visible controls to,
20-21

drawing on, 125-140

Snap to Lines layout fea-
ture, 128

Graphics objects, creating,
372

grid settings, 126-127

groups of

selecting, 129-131

setting property values in,
133-134

layering, 140

OpenFileDialog control, 22,
25, 28

Picture Viewer project, adding
to, 18-23

properties, setting in grouped
controls, 133-134

How can we make this index more useful? Email us at indexes@samspublishing.com

controls

491

SaveFileDialog control, 22, 25

sizing, 133

spacing, 133

tab order

creating, 138-140

removing controls from,
140

Convert class, common conver-

sion methods, 245

Convert.ToBoolean() method

Registry object, 420

System.IO.File objects, 409

Convert.ToString() method,

Registry object, 420-421

Copy() method, System.IO.File

objects, 402-403

copying files, 402-403

Count property, SelectedItems

collection, 190

Create: Project link (Recent

Projects category), 32

CreateDirectory() method,

System.IO.Directory objects,

409

CreateGraphics() method, 69-70

CreatePrompt property,

SaveFileDialog control, 401

CreateSubKey() method, Registry

object, 417

CTR (Common Type System), 484

CurrentConfig property, Registry

object, 416

CurrentUser property, Registry

object, 416

custom dialog boxes, creating,

357-360

custom events, object interfaces,

338

Custom tab (Properties window

color drop-down list), 46

customizing forms

background colors, 105

background images, 106-108

borders, 110-112

button additions, 109-110

icons, 108-109

sizing, 112

D

DashStyle property, Pen objects,

375

data encapsulation via classes,

334-335

Data Source parameter,

ConnectionString property, 439

data storage

text files, 413

Picture Viewer Project,
429-434

reading, 427-429

writing, 425-427

Windows Registry, 413

accessing, 416

HKEY_CLASSES_ROOT
node, 414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER
node, 414, 417

HKEY_LOCAL_MACHINE
node, 414, 417

HKEY_USERS node, 414

Picture Viewer Project,
419-424

Registry key creation,
416-417

Registry key deletion, 418

Registry object, 416

REG_BINARY data type,
415

REG_EXPAND_SZ data
type, 415

REG_MULTI_SZ data type,
415

REG_SZ data type, 415

retrieving Registry key val-
ues, 419

setting Registry key val-
ues, 418

structure of, 414-415

using statements, 416

viewing, 425

data types

casting, 245

defining, 242

determining, 244

prefixes, 258

reference types, 243

signed types, 244

unsigned types, 243

value range of, 243

value types, 243

DataAdapter objects, 438,

441-442

databases

ADO.NET connections,
438-440

data source connections,
closing, 440

DataAdapter objects,
441-442

492

controls

DataRow objects

Add() method, 448-450

columns, 444

Delete() method, 450

field references in,
444-445

ShowCurrentRecord()
method, 446-448

Update() method, 448

DataTable objects, 441

records

creating, 448-450

deleting, 450

editing, 448

navigating, 446-448

updating, 448

running, 451

DataReader object, 438

DataRow objects

Add() method, 448-450

columns, 444

Delete() method, 450

field references in, 444-445

ShowCurrentRecord() method,
446-448

Update() method, 448

DataSet object, 438

DataTable objects, 438, 441

DateTime class

AddDays method, 280

AddHours method, 280

AddMilliseconds method, 280

AddMinutes method, 280

AddMonths method, 280

AddSeconds method, 280

AddYears method, 280

dates/times, formatting, 282

Day property, 281

Hour property, 281

Minute property, 281

Month property, 281

Now property, 180, 282

parts of dates, retrieving, 281

Second property, 281

Today property, 282

Year property, 281

DateTime data type, 244

DateTime variable, 279

DayOfWeek() property, 281

formatting dates/times,
281-282

Hour property, 281

strings, passing to, 279

Day property, DateTime class,

281

DayOfWeek() property, DateTime

variable, 281

debugging

code

adding comments,
310-312

break points, 315

build errors, 312, 314

catch statements,
323-325

finally statements,
323-325

Immediate window,
317-320

Output window, 321

runtime errors, 312-314

structured exception han-
dling, 322, 325-329

try blocks, 323

try statements, 323-325

writing error handlers,
323-325

Picture Viewer Project,
Windows Registry, 422-424

decimal data type, 244

decision statements

else statements, 288-289

false expressions, 288

if statements, 285-286

false expressions, 287

nesting, 289

switch statements, 290-294

declaring variables, 249

Define Color dialog (Custom tab),

46

Delete() method

DataTable objects, 450

System.IO.Directory objects,
410

System.IO.File objects,
404-405

DeleteSubKey() method, Registry

object, 418

DeleteSubKeyTree() method,

Registry object, 418

deleting

database records, 450

event handlers, 89

event procedures, 232

files, 52-53, 404-405

graphics from forms, 383

items from lists via code,
190

menu items from top-level
menus, 202

objects, 374

procedures, 231-232

How can we make this index more useful? Email us at indexes@samspublishing.com

deleting

493

deploying applications

ClickOnce technology,
469-470

advanced settings, 475

application creation,
471-472

Picture Viewer project
installation, 474

uninstalling distributed appli-
cations, 474-475

Description section (Properties

window), 47

design windows

closed windows, 35

displaying, 35

docking, 35-37

floating, 35-36

hiding, 35, 38

destructor methods, 337

dialog boxes

buttons

Accept button, 160

Cancel button, 161

custom dialog boxes, creat-
ing, 357-360

OK button, 159

tabbed dialog boxes, creating,
181-184

DialogResult property,

MessageBox.Show() function,

355-359

Directory flag (file attributes),

406

displaying

design windows, 35

object properties, 13

static text via Label control,
151-153

toolbars, 39

Dispose() method, 72, 347, 374

distributable components, defin-

ing, 8

distributed applications, unin-

stalling, 474-475

division (/) operator, 269

do…while loops, 303-305

docking

design windows, 35-37

toolbars, 40

double data type, 244

double-clicking Visual Studio

2008, 12

drag handles (toolbars), 40

Draw Border button, adding to

Picture Viewer project, 68-72

DrawEllipse() method, Graphics

object, 381

DrawImage() method, 387

drawing

circles, 381

controls on forms, 125

aligning controls, 132

anchoring controls,
135-138

autosizing controls,
135-138

grid settings, 126-127

grouping controls,
129-131

setting grouped control
property values,
133-134

sizing controls, 133

Snap to Lines layout
feature, 128

spacing controls, 133

tab order, 138-140

ellipses, 381

rectangles, 381

DrawLine() method, Graphics

object, 380

DrawRectangle() method, 71, 381

DrawString() method, Graphics

object, 382

DRIVER parameter,

ConnectionString property, 439

drop-down lists, creating in

combo boxes, 172-174

drop-down menus, toolbar but-

tons, 214

DropDownButton property,

ToolStrip control, 214

DropDownList property, combo

boxes, 173

DropDownStyle property, combo

boxes, 173

dynamism (methods), 68

E

early binding, 344-345

editing database records, 448

ellipses, drawing, 381

else statements

false expressions, 288

nesting, 289

Enabled property

multiline text boxes, 155

Timer control, 180

494

deploying applications

encapsulating data/code via

classes, 334-335

ending programs, 26-27

endless loops, 303

Enlarge button, adding to Picture

Viewer project, 63, 66

Environment Tutorial project, 34

design windows

closed windows, 35

displaying, 35

docking, 35-37

floating, 35-36

hiding, 35, 38

object properties, 42

changing, 43-45

color properties, 45-46

viewing, 43

viewing descriptions of,
47

toolbars

displaying, 39

docking, 40

hiding, 39

sizing, 40

toolbox, adding controls to
forms, 40-42

equal sign (=), setting properties,

61

erasing code, 65

error handlers, writing

catch statements, 323-325

finally statements, 323-325

try blocks, 323

try statements, 323-325

Error icon, message boxes, 354

Error List, 90

errors

build errors, 312-314

runtime errors, 312-314

escape sequences, slashes (\) as,

250

event handlers

creating, 92-95

defining, 24

deleting, 89

event-driven programming, 82

events

build example

event handler creation,
92-95

user interface, 91

choosing, 364

Click events, 23

custom events, object inter-
faces, 338

event handlers

creating, 92-95

deleting, 89

event procedures, 82

event-driven programming, 82

invoking, 82

via objects, 83

via OS, 84

via user interaction, 83

objects, accessing events via,
85-86

parameters, 87-88

procedures, deleting, 232

recursive events, avoiding, 84

Events button (Properties

Window), 86

Excel

ActiveCell objects, 457

Application objects, 455-457

automation

adding cell data, 457-458

bold cells, 458

creating library references,
454

selecting cells, 458

server creation, 455-456

testing, 459

viewing via, 456

workbook creation, 457

workbooks, creating, 457

worksheets

adding cell data, 457-458

bold cells, 458

selecting cells, 458

exception handling, structured

exception handling, 322,

325-329

Exception objects, Message prop-

erty, 325

Exception variables, catch state-

ments, 326

execution falling through, 294

Exists() method

System.IO.Directory objects,
410

System.IO.File objects, 402

exiting methods, 235

explicit casting, data types, 245

How can we make this index more useful? Email us at indexes@samspublishing.com

explicit casting

495

expressions

false expressions

else statements, 288

if statements, 287

operator precedence,
270-271

variables, uses in, 251

F

false expressions

else statements, 288

if statements, 287

FileAttributes variable,

GetAttributes() method, 406

FileName property,

OpenFileDialog control, 398

files

browsing, 24-26

copying, 402-403

deleting, 404-405

log files, Picture Viewer
Project, 429-434

moving, 403-404

OpenFileDialog control, 396

CheckFileExists property,
399

FileName property, 398

Filter property, 398

FilterIndex property, 398

InitialDirectory property,
397

Multiselect property, 399

ShowDialog() method, 399

Title property, 398

projects

adding to, 52-53

removing from, 52-53

properties, retrieving, 405

Archive flag, 406

date/time, 406

Directory flag, 406

Hidden flag, 406

Normal flag, 407

ReadOnly flag, 407

System flag, 407

Temporary flag, 407

writing code for, 407-409

renaming, 404

SaveFileDialog control, 399

CreatePrompt property,
401

OverwritePrompt property,
400

source file existence, deter-
mining, 402

System.IO.Directory objects,
401

CreateDirectory() method,
409

Delete() method, 410

Exists() method, 410

Move() method, 410

System.IO.File objects, 401

Convert.ToBoolean()
method, 409

Copy() method, 402-403

Delete() method, 404-405

Exists() method, 402

GetAttributes() method,
406, 409

GetCreationTime()
method, 406, 409

GetLastAccessTime()
method, 406, 409

GetLastWriteTime()
method, 406, 409

Move() method, 403-404

SourceFileExists() method,
402

text files, Picture Viewer
Project, 413

displaying log files,
431-433

log file creation, 429-431

testing logs, 433-434

reading, 427-429

writing, 425-427

Fill method, DataAdapter objects,

441

Filter property, 23, 398

FilterIndex property,

OpenFileDialog control, 398

finally statements, 323-325

float data type, 244

floating design windows, 35-36

Font object, 382

Font property, 44

for loops, 297-302

for statements

components of, 298

for loops, 298-299

form objects, 60

Form_Load events, 442, 445

formatting dates/times, 281-282

FormBorderStyle property, 111

FormClosed events, 365, 388

FormClosing events, 441

496

expressions

forms

BackgroundImage property,
106-109

backgrounds

adding images to,
106-108

changing color, 105

removing images from,
108

borders, customizing,
110-112

buttons

Accept button, 160

adding to, 109-110

Cancel button, 161

OK buttons, 159

check boxes, 161

combo boxes, 166, 172

container objects as, 162

controls, 18

adding invisible controls
to, 21-23

adding to via toolbox,
40-42, 124

adding visible controls to,
20-21

drawing on, 125-140

Snap to Lines layout fea-
ture, 128

defining, 11-13, 101-102

display position, specifying,
115-116

FormBorderStyle property,
111

graphics, removing, 383

Graphics objects, creating,
372

group boxes, 162-163

hiding, 118

Icon property, 109

icons, adding to, 16-17,
108-109

instantiating, syntax of, 113

list boxes, 166-167

Add() method, 172

adding items to lists, 168

clearing lists, 170

manipulating items at
design time, 167

removing items from lists,
169

retrieving item information
from lists, 171

Sorted property, 172

MaximumSize property, 112

MDI forms, 143-147

menus

accelerator keys, 200

adding, 198-200

assigning shortcut keys to
menu items, 208

checked menu items, 202

context menus, 206-207

creating menu items, 201

creating top-level menus,
198-200

deleting menu items, 202

hotkeys, 200

moving menu items, 202

programming, 203-206

Type Here boxes, 200

MinimumSize property, 112

modality, 114-115

naming, 102

nonmodal forms, 114-115

nonmodal windows, creating
topmost nonmodal win-
dows, 141

panels, 162-163

Picture Viewer project

adding controls, 18-23

sizing, 17

project management, 51

properties, viewing via
Properties window, 103

radio buttons, 164-165

scrollable forms, 142

showing, 113

ShowInTaskbar property, 118

Size.Height property, 171

sizing, 17, 112, 116-117

StartPosition property,
115-116

taskbar, preventing from dis-
playing in, 118

text boxes, adding to, 153

Text property, changing, 15

title bars, displaying text on,
104

toolbars

adding, 209

adding buttons to,
210-212

button drop-down menus,
214

programming, 213-214

transparent forms, creating,
141

Visible property, 113, 118

windows versus, 101

WindowState property,
116-117

How can we make this index more useful? Email us at indexes@samspublishing.com

forms

497

FormulaR1C1 property, ActiveCell

object, 457

frames, 163

FromImage() method, Graphics

object, 374

FullRowSelect property, List View

control, 189

functions, exposing methods as,

343

G

garbage collection (.NET

Framework), 484-485

garbage collector, 337

GDI (Graphical Device Interface),

372

get construct

read-only properties, creating
via, 342

readable properties, creating
via, 341

GetAttributes() method,

System.IO.File objects, 406,

409

GetCreationTime() method,

System.IO.File objects, 406,

409

GetLastAccessTime() method,

System.IO.File objects, 406,

409

GetLastWriteTime() method,

System.IO.File objects, 406,

409

GetValue() method, Registry

object, 419

graphics

bitmaps, creating for,
373-374

circles, drawing, 381

controls, creating for, 372

ellipses, drawing, 381

forms

creating for, 372

removing from, 383

GDI, 372

lines, drawing, 380

pens, 375-376

project example, 383-388

rectangles

creating, 379

drawing, 381

sizing, 380

removing, 374

text as, 382

Graphics objects

bitmaps, creating for,
373-374

Clear() method, 381

controls, creating for, 372

Dispose() method, 374

DrawEllipse() method, 381

DrawLine() method, 380

DrawRectangle() method, 381

DrawString() method, 382

forms, creating for, 372

FromImage() method, 374

grids

controls, 126-127

GridSize property, 126-127

LayoutMode property, 127

ShowGrid property, 127-128

SnapToGrid property, 127-128

Group Box controls, 162-163

grouping controls, 129-131

H

Height property, sizing forms, 17

help

context sensitive help, 56

finding, 55-56

Run mode, 56

Hidden flag (file attributes), 406

Hide() method, 119

hiding

design windows, 35, 38

forms, 118

toolbars, 39

HKEY_CLASSES_ROOT node

(Windows Registry), 414

HKEY_CURRENT_CONFIG node

(Windows Registry), 414

HKEY_CURRENT_USER node

(Windows Registry), 414, 417

HKEY_LOCAL_MACHINE node

(Windows Registry), 414, 417

HKEY_USERS node (Windows

Registry), 414

hotkeys, 153, 200

Hour property, 281

498

FormulaR1C1 property

I

Icon property, 16, 109

icons

forms, adding to, 16-17,
108-109

message boxes

displaying in, 353-354

Error icon, 354

Question icon, 355

Picture Viewer project, adding
to, 16

IDE (Integrated Development

Environments)

Properties window, 12

displaying object proper-
ties in, 13

Height property, 17

Icon property, 16

Name property, 13-15

Size property, 17

Text property, 15

Width property, 17

Start page, 9-10

Toolbox window, 12

Visual Studio 2008 as, 9

windows, sizing, 12

if statements, 285-286

false expressions, 287

nesting, 289

IL (Intermediate Language) code,

481-482

Image control, ImageSize proper-

ty, 185

Image List control, 184-185

Image property, ToolStrip control,

211

ImageIndex property, List View

control, 187

images, form backgrounds

adding to, 106-108

removing from, 108

ImageSize property, Image con-

trol, 185

Immediate window, debugging

code, 317-320

implicit casting, data types, 245

IndexOf() method, strings, 277

infinite recursion procedures, 237

Inflate() method, Rectangle

object, 380

InitialDirectory property,

OpenFileDialog control, 397

InitializeComponent() event, 90

Insert() method

combo boxes, 172

Items collection, 169-170

instance members, defining, 221

instance methods versus static

methods, 335

instantiating

forms, syntax of, 113

objects via classes, 343

binding object references
to variables, 344-345

object creation via vari-
able dimensioning, 346

object lifetimes, 347-348

releasing object refer-
ences, 346-347

int data type, 244

int.Parse() method, 287

IntelliSense, 64, 88

interface design

files, browsing, 24-26

terminating programs, 26-27

visible controls, adding to
forms, 20-23

interfaces (objects)

client interaction with, 338

custom events in, 338

defining, 335

elements of, 337

functions, exposing as meth-
ods, 343

methods in, 338

properties in, 338-340

read-only property cre-
ation, 342

readable property creation
via get construct, 341

writable property creation
via set construct, 341

write-only property cre-
ation, 342

Interval property, Timer control,

178

Invalidate() method, 388

invisible controls, adding to

forms, 21-23

IsMdiContainer property, 145

Items collection

Add() method, 168-170, 189

Clear() method, 170, 190

Click events, 168-170

combo boxes, 172

Insert() method, 169-170

list boxes, 166

adding items to lists, 168

clearing lists, 170

How can we make this index more useful? Email us at indexes@samspublishing.com

Items collection

499

manipulating items at
design time, 167

removing items from lists,
169

retrieving item information
from lists, 171

Remove() method, 169-170,
190

RemoveAt() method, 169-170

SelectedIndex method, 171

SelectedItem method, 171

ToolStrip control, 210,
213-214

DropDownButton property,
214

Image property, 211

Items property, 173, 433

J - K - L

jagged arrays, 255

JITers (just-in-time compilers),

482

keyboards

KeyDown events, 361

KeyPress events, 361-363

KeyUp events, 361

KeyChar property, 362

Label control

static text, displaying,
151-153

TextAlign property, 154

LargeImageList property, List

View control, 186-188

lasso tool, adding control groups

to forms, 130-131

late binding, 344-345

layering controls, 140

Layout toolbar

aligning controls, 132

Make Horizontal Spacing
Equal button, 133

Make the Same Size button,
133

Save All button, 133

LayoutMode property, 127

Left property, 131

Length property, strings, 276

libraries, 77

lines, drawing, 380

List Box control, 166, 191

list boxes

Add() method, 172

Items collection, 166-167

adding items to lists, 168

clearing lists, 170

manipulating items at
design time, 167

removing items from lists,
169

retrieving item information
from lists, 171

Location property, 166

MultiExtended property, 172

MultiSimple property, 172

Name property, 166

SelectionMode property, 172

Size property, 166

Sorted property, 172

List View control, 185, 191

Columns property, 187

FullRowSelect property, 189

ImageIndex property, 187

Items collection

Add() method, 189

Clear() method, 190

Remove() method, 190

LargeImageList property,
186-188

SelectedItems collection, 190

SubItems property, 188

Text property, 188

View property, 188

lists

adding items to

via code, 189

via List View, 187-189

clearing, 190

clearing items from via code,
190

columns, creating, 187

creating, 186

removing items from via
code, 190

selected items, determining
in code, 190

literal values, passing variables

to, 250

Load event, 95, 385

local scope, 256-257

LocalMachine property, Registry

object, 416

Location property

buttons, 159

Group Box control, 163

list boxes, 166

radio buttons, 164

Tab control, 183

500

Items collection

log files, Picture Viewer Project

creating for, 429-431

displaying in, 431-433

testing in, 433-434

logical (Boolean) operators, 273

And (&) operator, 274

Not (!) operator, 274

Or (|) operator, 274

Xor (^) operator, 275

long data type, 244

loops

breaking, 302-303

do…while loops, 303-305

endless loops, 303

for loops, 297-302

recursive loops, procedures,
237

M

m_cnADONewConnection objects,

442

magic numbers, 246

MainForm Load event, 385

MainForm_FormClosing events,

445

Make Horizontal Spacing Equal

button (Layout toolbar), 133

Make the Same Size button

(Layout toolbar), 133

managed code, defining, 480

managing projects

adding/removing files, 52-53

class modules, 51

components of, 50-51

forms, 51

setting project properties, 51

solutions, 50

user controls, 51

via Solution Explorer, 48-49

marquee tool, adding control

groups to forms, 130

math operators

addition (+) operator, 268

division (/) operator, 269

expressions, 270-271

modulus arithmetic, 269

multiplication (*) operator,
269

operator precedence,
270-271

subtraction (-) operator, 269

Maximize button, adding to

forms, 109-110

MaximumSize property, 112

MaxLength property, text box

characters, 157

MDI (Multiple Document

Interface) forms, 143-147

MdiParent property, 145-146

Menu Strip control, 198-206

menus

accelerator keys, 200

context menus, 206-207

drop-down menus, toolbar
buttons, 214

forms, adding to, 198-200

hotkeys, 200

top-level menus

assigning shortcut keys to
menu items, 208

checked menu items, 202

creating, 198-200

creating menu items, 201

deleting menu items, 202

moving menu items, 202

programming, 203-206

Type Here boxes, 200

message boxes, 351

buttons

determining which is
clicked, 355-356

displaying, 353

displaying, 352

Error icon, 354

icons, displaying, 353-354

message text guidelines,
356-357

Question icon, 355

Message property, Exception

objects, 325

MessageBox.Show() function,

171, 357, 360

Buttons property, 352

Caption property, 352

DialogResult property,
355-356, 358-359

MessageBoxButtons property,
352-353

MessageBoxIcon property,
353-354

MessageText property, 352

ShowDialog() method, 359

MessageBox.Show() method, 75

MessageBox.Show() statements,

55

MessageBoxButtons property,

MessageBox.Show() function,

352-353

How can we make this index more useful? Email us at indexes@samspublishing.com

MessageBoxButtons property

501

MessageBoxIcon property,

MessageBox.Show() function,

353-354

MessageText property,

MessageBox.Show() function,

352

method-level scope. See local

scope

methods, 223

calling, 229-231

constructor methods, 337

declaring

components of, 224

procedures that do not
return values, 224-227

procedures that return val-
ues, 227-228

destructor methods, 337

dynamism, 68

exiting, 235

exposing functions as, 343

instance methods versus sta-
tic methods, 335

invoking, 67-68

naming, spaces in, 225

object interfaces, 338

parameters, defining,
225-226

parentheses (), 68

procedures

calling, 229-231

creating, 226

declaring procedures that
do not return values,
224-227

declaring procedures that
return values, 227-228

deleting, 231-232

infinite recursion, 237

passing parameters,
233-234

recursive loops, 237

properties versus, 68

static methods, 236, 335

Microsoft.VisualBasic name-

spaces, 483

Minimize button, adding to forms,

109-110

MinimumSize property, 112

Minute property, DateTime class,

281

modality, forms, 114-115

modulus arithmetic, 269

monitors, system colors

assigning, 378

changing, 376-377

syncing interface colors with
user system colors,
377-378

Month property, DateTime class,

281

mouse

click events, 364

MouseClick events, 364

MouseDown events, 86-88,
159, 364

MouseEnter events, 364

MouseHover events, 364

MouseLeave events, 94, 364

MouseMove events, 94, 159,
364-367

MouseUp events, 159, 364

Move() method

System.IO.Directory objects,
410

System.IO.File objects,
403-404

moving

files, 403-404

top-level menu items, 202

multidimensional arrays, 253-254

MultiExtended property, list

boxes, 172

Multiline property, 131, 154

multiline text boxes, creating,

154-155

MultilineChanged event, 83

multiplication (*) operator, 269

MultiSelect property

OpenFileDialog control, 399

SelectedItems collection, 190

MultiSimple property, list boxes,

172

N

Name property, 13-15

buttons, 159

control groups, 134

Group Box control, 163

list boxes, 166

radio buttons, 164

namespaces, commonly used

namespaces table, 483-484

naming

forms, 102

methods, spaces in, 225

objects, 13-15

Picture Viewer project, 15

projects, 10

naming conventions

data type prefixes, 258

variable prefixes, 259

502

MessageBoxIcon property

navigating database records,

446-448

nesting

else statements, 289

if statements, 289

.NET Framework, 480

CLR, 480-481

CTR, 484

garbage collection, 484-485

IL code, 481-482

namespaces, 483-484

New Project dialog, 10, 33

Next() method, Random class, 384

nodes, tree view, 77

adding to, 192-193

clearing from, 194

removing from, 194

Nodes collection, 191

Add() method, 192-193

Clear() method, 194

Remove() method, 194

nonmodal forms, 114-115

nonmodal windows, creating, 141

nonstatic methods. See instance

methods versus static methods

nonvisual controls. See invisible

controls

Normal flag (file attributes), 407

Not (!) operator, 274

Now property, DateTime class,

180, 282

O

Object Browser, 76

Object data type, 244

objects, 59

binding

creating objects via vari-
able dimensioning, 346

references to variables,
344-345

collections, 73-76

control objects, 60

controls

adding to forms, 18-23

defining, 18

OpenFileDialog control,
22, 25, 28

SaveFileDialog control, 22,
25

defining, 13

events

accessing, 85-86

invoking, 83

form objects, 60

forms, instantiating as, 113

garbage collector, 337

instantiating via classes, 343

binding object references
to variables, 344-345

object creation via vari-
able dimensioning, 346

object lifetimes, 347-348

releasing object refer-
ences, 346-347

interfaces

client interaction with,
338

custom events in, 338

elements of, 337

exposing functions as
methods, 343

methods in, 338

properties in, 338-342

libraries. See type libraries

lifetime of, 347-348

methods

dynamism, 68

invoking, 67-68

parentheses (), 68

properties versus, 68

models, 453

naming, 13-15

object-oriented programming,
defining, 60

properties

color properties, 45-46

defining, 13, 61

displaying, 13

Filter property, 23

Height property, 17

Icon property, 16

methods versus, 68

Name property, 13-15

Picture Viewer project
usage example, 63-66

read-only properties, 62

setting, 42-45, 61

Size property, 17

syntax of, 61

Text property, 15

Title property, 23

viewing descriptions of,
47

Width property, 17

Properties window, selecting
in, 43

How can we make this index more useful? Email us at indexes@samspublishing.com

objects

503

references, releasing,
346-347

simple object build example,
68-72

objFileAttributes variable,

GetAttributes() method, 406

objGraphics() object, 69-70

OK buttons, 159

OleDBConnection object, 438

Opacity property, 141

Open File Dialog control, 178

OpenFileDialog control, 22, 25,

28, 395-396

CheckFileExists property, 399

FileName property, 398

Filter property, 398

FilterIndex property, 398

InitialDirectory property, 397

Multiselect property, 399

ShowDialog() method, 399

Title property, 398

OpenPicture() function, 429-430

OpenPicture() method, 225-226,

236

operator precedence, 270-271

Or (|) operator, 274

OS (Operating Systems), invoking

events, 84

Output window, debugging code,

321

OverwritePrompt property,

SaveFileDialog control, 400

P

Paint event, 84, 387-388

Panel controls, 162-163

parameters

defining, 54, 226

methods, defining in, 225

passing between procedures,
233-234

parameters (events), 87-88

parentheses (), methods, 68,

225

Parse method, 287

passing

arguments, 234

parameters in procedures,
233-234

Password parameter,

ConnectionString property, 439

PasswordChar property, 158

passwords, adding to text boxes,

158

Pen objects, 375

pens, 375-376

PerformClick method, 160

periods (.), writing code, 64

peripherals

keyboards

KeyDown events, 361

KeyPress events, 361-363

KeyUp events, 361

monitors

assigning system colors,
378

changing system colors,
376-377

syncing interface colors
with user system colors,
377-378

mouse

click events, 364

MouseClick events, 364

MouseDown events,
86-88, 159, 364

MouseEnter events, 364

MouseHover events, 364

MouseLeave events, 94,
364

MouseMove events, 94,
159, 364-367

MouseUp events, 159,
364

Picture Viewer project

buttons

adding, 63

Draw Border button, 68-72

Enlarge button, 63, 66

Show Control Names but-
ton, 74-75

Shrink button, 63, 66

ClickOnce install program,
474

files, browsing, 24-26

forms

adding controls, 18-23

sizing, 17

icons, adding to, 16

naming, 15

picture format, selecting, 29

Prompt on Exit option, creat-
ing constants for, 248

running, 27-28

saving, 16

terminating programs, 26-27

text files

displaying log files,
431-433

log file creation, 429-431

testing logs, 433-434

504

objects

variables

creating, 259-260

initializing, 261-262

Windows Registry, 419

debugging, 422-424

displaying options of,
420-421

saving options of, 421

stored options of,
421-422

testing, 422-424

pixelformat arguments, 373

pixels, defining, 17

precedence (operators), 270-271

prefixes

data types, 258

variables, 259

private-level scope, 257

procedure level scope. See local

scope

procedures

calling, 229-231

creating, 226

declaring

procedures that do not
return values, 224-227

procedures that return val-
ues, 227-228

deleting, 231-232

infinite recursion, 237

parameters, 54, 233-234

recursive loops, 237

stacks, 237

writing code via, 54-55

processor independent code. See

IL (Intermediate Language)

code, 482

programming

MessageBox.Show() state-
ments, 55

procedues, writing code via,
54-55

variables, storing values in,
54

programs

creating, 11

terminating, 26-27

Project Properties dialog

(Solution Explorer), 51

projects

creating, 10, 32-33

defining, 8

existing projects, opening, 34

graphics project example,
383-388

managing

adding/removing files,
52-53

class modules, 51

components of, 50-51

forms, 51

setting project properties,
51

solutions, 50

user controls, 51

via Solution Explorer,
48-49

naming, 10

opening, 9

properties, setting, 51

running, 27-28

saving, 14-16

Prompt on Exit option (Picture

Viewer project), 248

properties

controls, setting grouped con-
trols 133-134

forms, viewing via Properties
window, 103

object interfaces, 338-340

read-only property cre-
ation, 342

readable property creation
via get construct, 341

writable property creation
via set construct, 341

write-only property cre-
ation, 342

objects

color properties, 45-46

defining, 13, 61

descriptions, viewing, 47

displaying, 13

Filter property, 23

Height property, 17

Icon property, 16

methods versus, 68

Name property, 13-15

Picture Viewer project
usage example, 63-66

Properties window, 42-45

read-only properties, 62

setting, 61

Size property, 17

syntax of, 61

Text property, 15

Title property, 23

Width property, 17

projects, setting in, 51

Properties window, 12

BackColor property, 105

color drop-down list, 46

How can we make this index more useful? Email us at indexes@samspublishing.com

Properties window

505

Description section, 47

Events button, 86

form properties, viewing, 103

object properties, 42

changing, 43-45

color properties, 45-46

displaying, 13

Height property, 17

Icon property, 16

Name property, 13-15

Size property, 17

Text property, 15

viewing, 43

viewing descriptions of,
47

Width property, 17

Properties pane, setting
object properties, 43

Provider parameter,

ConnectionString property, 439

Publish Wizard, ClickOnce

Applications, 471-472, 475

Q - R

Question icon, message boxes,

355

radio buttons

Checked property, 165

Location property, 164

Name property, 164

Text property, 164

Random class, Next() method,

384

Range objects, 457-458

read-only properties, 62, 342

readable properties, creating via

get construct, 341

ReadOnly flag (file attributes),

407

ReadToEnd() method, 428-429,

433

Recent Projects category (Start

page)

Create: Project link, 32

existing projects, opening, 34

RecordSet object, 438

Rectangle object, 379-380

rectangles, drawing, 381

recursive events, avoiding, 84

recursive loops, procedures, 237

reference data types, 243

reference tracing garbage collec-

tion (.NET Framework), 485

Registry (Windows), 413

accessing, 416

HKEY_CLASSES_ROOT node,
414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER node,
414, 417

HKEY_LOCAL_MACHINE node,
414, 417

HKEY_USERS node, 414

Picture Viewer Project, 419

debugging, 422-424

displaying Registry
options, 420-421

saving Registry options,
421

stored Registry options,
421-422

testing, 422-424

Registry keys

creating, 416-417

deleting, 418

retrieving values of, 419

setting values of, 418

Registry object

ClassesRoot property, 416

Convert.ToBoolean()
method, 420

Convert.ToString() method,
420-421

CreateSubKey() method,
417

CurrentConfig property,
416

CurrentUser property, 416

DeleteSubKey() method,
418

DeleteSubKeyTree()
method, 418

GetValue() method, 419

LocalMachine property,
416

SetValue() method, 418

Users property, 416

REG_BINARY data type, 415

REG_EXPAND_SZ data type,
415

REG_SZ data type, 415

structure of, 414-415

using statements, 416

viewing, 425

506

Properties window

REG_BINARY data type (Windows

Registry), 415

REG_EXPAND_SZ data type

(Windows Registry), 415

REG_MULTI_SZ data type

(Windows Registry), 415

REG_SZ data type (Windows

Registry), 415

Remove() method

Items collection, 169-170

List View, 190

Tree View control, 194

RemoveAt() method, Items collec-

tion, 169-170

removing

controls from tab order, 140

database records, 450

files, 52-53, 404-405

graphics from forms, 383

items from lists via code,
190

nodes from tree view, 194

objects, 374

renaming files, 404

Replace() method, strings, 279

reserved words, determining, 250

Resize event, 135

return statements, exiting meth-

ods, 235

Run mode, help in, 56

running projects, 27-28

runtime errors, 312-314

S

Save All button (Layout toolbar),

133

SaveFileDialog control, 22, 25,

399

CreatePrompt property, 401

OverwritePrompt property,
400

saving

Picture Viewer project, 16

projects, 14-16, 65

Windows Registry options,
Picture Viewer Project, 421

sbrMyStatusStrip control, 430

scope

block scope, 255-256

browsing, 76

defining, 255

local scope, 256-257

private-level scope, 257

variable prefixes, denoting
via, 259

scrollable forms, 142

scrollbars, adding to text boxes,

156

ScrollBars property, 156

Second property, DateTime class,

281

Select method, Range objects,

457

SelectedIndex method, Items col-

lection, 171

SelectedIndex property, text

boxes, 171

SelectedIndexChanged events,

Tab control, 184

SelectedItem method, Items col-

lection, 171

SelectedItem property,

SelectedItems collection, 190

SelectedItems collection, List

View control, 190

selecting

multiple controls, 129-131

objects in Properties window,
43

Selection objects, TypeText()

method, 462

SelectionMode property, list

boxes, 172

SelectNextControl() method, 140

semicolons (;), statements, 65

SendToBack() method, layering

controls, 141

separators, 212

SERVER parameter,

ConnectionString property, 439

servers, 336

creating instances of,
455-456, 461-463

defining, 453

Excel automation

adding cell data, 457-458

bold cells, 458

selecting cells, 458

server creation, 455-456

testing, 459

viewing, 456

workbook creation, 457

Word automation, server cre-
ation, 461-463

set construct, creating writable

properties via, 341

How can we make this index more useful? Email us at indexes@samspublishing.com

set construct

507

SetValue() method, Registry

object, 418

shapes

circles, drawing, 381

ellipses, drawing, 381

rectangles

creating, 379

drawing, 381

sizing, 380

short data type, 244

shortcut keys, assigning to menu

items, 208

shortcut menus. See context

menus

ShortcutKeys property, 208

Show Control Names button,

adding to Picture Viewer pro-

ject, 74-75

Show() method, 113-115

ShowCurrentRecord() method,

DataTable objects, 446-448

ShowDialog() method, 115, 359,

399

ShowGrid property, 127-128

showing forms, 113

ShowInTaskbar property, 118

Shrink button, adding to Picture

Viewer project, 63, 66

signed data types, 244

Size property, 45

forms, sizing, 17

Group Box control, 163

list boxes, 166

Size.Height property, 147, 171

Size.Width property, 147

sizing

controls, 133-138

forms, 17, 112, 116-117

rectangles, 380

toolbars, 40

windows (IDE), 12

SizingGrip property, Status Bar

control, 216

slashes (\) as escape sequences,

250

Snap to Lines layout feature,

drawing controls on forms, 128

SnapToGrid property, 127-128

Solution Explorer

managing projects via, 48-49

Project Properties dialog, 51

solutions

defining, 8

project management, 50

Sorted property, 172

SourceFileExists() method,

System.IO.File objects, 402

spaces

methods, naming, 225

strings, trimming from, 278

spacing controls, 133

SqlConnection object, 438

StackOverflow exceptions, 84

stacks, 237

Start page, 9

New Project dialog, 33

New Project page, 10

Recent Projects category

Create: Project link, 32

opening existing projects,
34

starting Visual Studio 2008, 9

StartPosition property, 115-116

statements

block statements, braces
({ }), 286

semicolons (;), 65

static members, defining, 221

static methods, 236, 335

static text, displaying via Label

control, 151-153

Status Bar control, 214

SizingGrip property, 216

StatusStrip property, 215

status bars, creating, 214-215

storing data, 413

text files

Picture Viewer Project,
429-434

reading, 427-429

writing, 425-427

Windows Registry

accessing, 416

HKEY_CLASSES_ROOT
node, 414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER
node, 414, 417

HKEY_LOCAL_MACHINE
node, 414, 417

HKEY_USERS node, 414

Picture Viewer Project,
419-424

Registry key creation,
416-417

Registry key deletion, 418

Registry object, 416

REG_BINARY data type,
415

508

SetValue() method

REG_EXPAND_SZ data
type, 415

REG_MULTI_SZ data type,
415

REG_SZ data type, 415

retrieving Registry key val-
ues, 419

setting Registry key val-
ues, 418

structure of, 414-415

using statements, 416

viewing, 425

StreamReader object

ReadToEnd() method,
428-429

text files, reading, 427-429

while loops, 429

StreamWriter object

text files, writing, 425-427

Write() method, 426

WriteLine() method, 426-427

strFirstName variable, 54

String Collection Editor, adding

items to, 167

string data type, 244

string manipulation

concatenation, 275

DateTime variable, passing
strings to, 279

IndexOf() method, 277

Length property, 276

Replace() method, 279

spaces, trimming, 278

String.Remove() method, 278

String.Trim() method, 278

String.TrimEnd() method, 278

String.TrimStart() method,
278

Substring() method, 276

text, replacing, 278

String.Remove() method, strings,

278

String.Trim() method, strings, 278

String.TrimEnd() method, strings,

278

String.TrimStart() method, strings,

278

StringBuilder variable, 409

structure scope. See block scope

structured exception handling,

322, 325-326

anticipated exceptions,
326-329

SubItems property, List View con-

trol, 188

Substring() method, strings, 276

subtraction (-) operator, 269

switch statements, 290-294

system colors

assigning, 378

changing, 376-377

syncing interface colors with
user system colors,
377-378

System flag (file attributes), 407

System namespaces, 483

System palette tab, 377

System.Data namespaces, 483

System.Diagnostics namespaces,

483

System.Drawing namespaces,

483

System.IO namespaces, 483

System.IO.Directory objects, 401

CreateDirectory() method,
409

Delete() method, 410

Exists() method, 410

Move() method, 410

System.IO.File objects, 401

Convert.ToBoolean() method,
409

Copy() method, 402-403

Delete() method, 404-405

Exists() method, 402

GetAttributes() method, 406,
409

GetCreationTime() method,
406, 409

GetLastAccessTime() method,
406, 409

GetLastWriteTime() method,
406, 409

Move() method, 403-404

SourceFileExists() method,
402

System.Net namespaces, 483

System.Security namespaces,

483

System.Web namespaces, 484

System.Windows.Forms name-

spaces, 484

System.XML namespaces, 484

How can we make this index more useful? Email us at indexes@samspublishing.com

System.XML namespaces

509

T

Tab control, 177, 182

Location property, 183

SelectedIndexChanged
events, 184

TabPages property, 181

tab order (controls)

creating, 138-140

removing controls from, 140

tabbed dialog boxes, creating,

181-184

TabIndex property, 138-140

TabPages property, Tab control,

181

TabStop property, 140

taskbar

forms, preventing from dis-
playing in, 118

ShowInTaskbar property,
forms, 118

tbrMainToolbar control, 213

Temporary flag (file attributes),

407

terminating programs, 26-27

testing

Excel automation, 459

form modality, 115

log files, Picture Viewer
Project, 433-434

objects, simple object build
example, 72

Picture Viewer Project,
Windows Registry, 422-424

text

as graphics, 382

character limits, setting in
text boxes, 157

Font property, 44

form title bars, displaying on,
104

static text, displaying via
Label control, 151, 153

strings

concatenation, 275

replacing within, 278

Text Box control, 153

Click events, 159

MaxLength property, 157

MouseDown events, 159

MouseMove events, 159

MouseUp events, 159

MultiLine property, 154

PasswordChar property, 158

ScrollBars property, 156

TextAlign property, 154

TextChanged events, 158

text boxes

character limits, setting, 157

forms, adding to, 153

multiline text boxes, creating,
154-155

password fields, 158

scrollbars, adding to, 156

SelectedIndex property, 171

text files, 413

Picture Viewer Project

displaying log files,
431-433

log file creation, 429-431

testing logs, 433-434

reading, 427-429

writing, 425-427

Text property, 145

buttons, 159

combo boxes, 173

forms, changing in, 15

Group Box control, 163

labels, 152-153

List View control, 188

multiline text boxes, 154

radio buttons, 164

text boxes, 153

TextAlign property, 154

Textbox control, 83

TextChanged event, 83-84, 88

TextChanged events, 158, 364

this.Close() statements, 27

Tick events, Timer control, 179

time/date. See DateTime vari-

able

Timer control, 83

AutoSize property, 179

Enabled property, 180

Interval property, 178

Tick events, 179

Timer event, 84

title bars (forms), displaying text

on, 104

Title property, 23, 398

Today property, DateTime class,

282

ToLongTimeString method, 180

toolbars

buttons

adding to, 210-212

drop-down menus, 214

separators, 212

displaying, 39

docking, 40

drag handles, 40

forms, adding to, 209

hiding, 39

510

Tab control

Layout toolbar

aligning controls, 132

Make Horizontal Spacing
Equal button, 133

Make the Same Size but-
ton, 133

Save All button, 133

programming, 213-214

sizing, 40

Tooltips, 132

toolbox, adding controls to forms,

40-42, 124

Toolbox window (IDE), 12

ToolStrip control, Items collection,

209-210, 213

DropDownButton property,
214

Image property, 211

Tooltips (toolbars), 132

ToolTipText property, 407

top-level menus

creating, 198-200

menu items

assigning shortcut keys
to, 208

checked menu items, 202

creating, 201

deleting, 202

moving, 202

programming, 203-206

topmost nonmodal windows, cre-

ating, 141

TopMost property, 141

ToString() method, 93

transparent forms, creating, 141

TransparentColor property, Image

List control, 185

tree view, nodes, 77

adding to, 192-193

clearing from, 194

removing from, 194

Tree View control, Nodes collec-

tion, 177, 191

Add() method, 192-193

Clear() method, 194

Remove() method, 194

troubleshooting, help

context sensitive help, 56

finding, 55-56

Run mode, 56

true/false values. See check

boxes

try blocks, 323

try statements, 323-325

two-dimensional arrays, 253

Type Here boxes, menus, 200

type libraries, creating references

to

Excel, 454

Word, 460

TypeText() method, Selection

objects, 462

U - V

unmanaged code, defining, 480

unsigned data types, 243

Update() method

DataAdapter objects, 441

DataTable objects, 448

updates, database records, 448

user controls, project manage-

ment, 51

User ID parameter,

ConnectionString property, 439

User Name Label control, 183

Users property, Registry object,

416

using statements, 374

automation server instances,
creating, 456

structured exception han-
dling, 323

Windows Registry, 416

value data types, 243

variables

arrays

declaring, 252

defining, 251

dimensions of, 254

jagged arrays, 255

multidimensional arrays,
253-254

referencing variables, 252

two-dimensional arrays,
253

binding object references to

early binding, 345

late binding, 344-345

creating, 251

declaring, 249

defining, 62, 241

expressions, uses in, 251

literal values, passing to, 250

object creation via variable
dimensioning, 346

Picture Viewer project

creating for, 259-260

initializing in, 261-262

How can we make this index more useful? Email us at indexes@samspublishing.com

variables

511

prefixes, denoting scope via,
259

reserved words, 250

storing values in, 54

View property, List View control,

188

visible controls, adding to forms,

20-21

Visible property, 113, 118

Visual Studio 2008 as IDE, 9-12

W

Web tab (Properties window color

drop-down list), 46

while loops, StreamReader

objects, 429

Width property, sizing forms, 17

windows

forms versus, 101

nonmodal windows, 141

sizing, 12

Windows Registry, 413

accessing, 416

HKEY_CLASSES_ROOT node,
414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER node,
414, 417

HKEY_LOCAL_MACHINE node,
414, 417

HKEY_USERS node, 414

Picture Viewer Project, 419

debugging, 422-424

displaying Registry
options, 420-421

saving Registry options,
421

stored Registry options,
421-422

testing, 422-424

Registry keys

creating, 416-417

deleting, 418

retrieving values of, 419

setting values of, 418

Registry object, 416

Convert.ToBoolean()
method, 420

Convert.ToString() method,
420-421

CreateSubKey() method,
417

DeleteSubKey() method,
418

DeleteSubKeyTree()
method, 418

GetValue() method, 419

SetValue() method, 418

REG_BINARY data type, 415

REG_EXPAND_SZ data type,
415

REG_MULTI_SZ data type,
415

REG_SZ data type, 415

structure of, 414-415

using statements, 416

viewing, 425

WindowState property, 116-117

Word, automation

library references, 460

server creation, 461-463

workbooks (Excel), 457

worksheets (Excel), cells

adding data, 457-458

bold cells, 458

selecting, 458

writable properties, creating via

set construct, 341

Write() method, StreamWriter

object, 426

write-only properties, creating,

342

WriteLine() method, 321,

426-427

writing text files, 425-427

X - Y - Z

Xor (^) operator, 275

Year property, DateTime class,

281

yes/no values. See check boxes

z-order, layering controls, 140

512

variables

	Introduction
	Audience and Organization
	Conventions Used in This Book
	Onward and Upward!

	HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour
	Starting Visual C# 2008
	Creating a New Project
	Understanding the Visual Studio .NET Environment
	Changing the Characteristics of Objects
	Adding Controls to a Form
	Designing an Interface
	Writing the Code Behind an Interface
	Running a Project
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U - V
	W
	X - Y - Z

