

Sams Teach Yourself Visual Basic 2008 in 24 Hours
Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

ISBN-13: 978-0-672-32984-5
ISBN-10: 0-672-32984-0

Library of Congress Cataloging-in-Publication Data:

Foxall, James D.
Sams teach yourself Visual BASIC 2008 in 24 hours : complete starter kit / James Foxall.

p. cm.
ISBN-10: 0-672-32984-0
ISBN-13: 978-0-672-32984-5

1. Microsoft Visual BASIC. 2. BASIC (Computer program language) I. Title.
QA76.73.B3F69528 2008
005.2’762—dc22

2008010868

Printed in the United States of America

First Printing May 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Technical Editor
Todd Meister

Managing Editor
Gina Kanouse

Project Editor
Anne Goebel

Copy Editor
Gayle Johnson

Indexer
Erika Millen

Proofreader
Kathy Ruiz

Publishing
Coordinator
Cindy Teeters

Multimedia
Developer
DPL

Cover Designer
Gary Adair

Composition
Nonie Ratcliff

This Book Is Safari Enabled
The Safari®Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code
samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.informit.com/onlineedition.

. Complete the brief registration form.

. Enter the coupon code ZEHX-CMHH-HV33-B7H6-BTH4.

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email
customer-service@safaribooksonline.com.

http://www.opencontent.org/openpub/
http://www.informit.com/onlineedition

Introduction

Visual Basic 2008 is Microsoft’s latest incarnation of the enormously popular Visual Basic

language, and it’s fundamentally different from the versions that came before it. Visual

Basic 2008 is now more powerful and more capable than ever before, and its features and

functionality are on par with “higher-level” languages such as C++. One consequence of

this newfound power is added complexity. Gone are the days when you could sit down with

Visual Basic and the online Help and teach yourself what you needed to know to create a

functional program.

Audience and Organization
This book is targeted toward those who have little or no programming experience or who

might be picking up Visual Basic as a second language. The book has been structured and

written with a purpose: to get you productive as quickly as possible. I’ve used my experi-

ences in writing large commercial applications with Visual Basic and teaching Visual Basic

to create a book that I hope cuts through the fluff and teaches you what you need to know.

All too often, authors fall into the trap of focusing on the technology rather than on the

practical application of the technology. I’ve worked hard to keep this book focused on

teaching you practical skills that you can apply immediately toward a development project.

Feel free to post your suggestions or success stories at www.jamesfoxall.com/forums.

This book is divided into five parts, each of which focuses on a different aspect of develop-

ing applications with Visual Basic 2008. These parts generally follow the flow of tasks you’ll

perform as you begin creating your own programs using Visual Basic 2008. I recommend

that you read them in the order in which they appear.

. Part I, “The Visual Basic 2008 Environment,” teaches you about the Visual Basic envi-

ronment, including how to navigate and access Visual Basic’s numerous tools. In

addition, you’ll learn about some key development concepts such as objects, collec-

tions, and events.

. Part II, “Building a User Interface,” shows you how to build attractive and functional

user interfaces. In this part, you’ll learn about forms and controls—the user interface

elements such as text boxes and list boxes.

www.jamesfoxall.com/forums

. Part III, “Making Things Happen: Programming,” teaches you the nuts and bolts of

Visual Basic 2008 programming—and there’s a lot to learn. You’ll discover how to

create modules and procedures, as well as how to store data, perform loops, and

make decisions in code. After you’ve learned the core programming skills, you’ll move

into object-oriented programming and debugging applications.

. Part IV, “Working with Data,” introduces you to working with graphics, text files, and

programming databases and shows you how to automate external applications such

as Word and Excel. In addition, this part teaches you how to manipulate a user’s file

system and the Windows Registry.

. Part V, “Deploying Solutions and Beyond,” shows you how to distribute an applica-

tion that you’ve created to an end user’s computer. In Hour 24, “The 10,000-Foot

View,” you’ll learn about Microsoft’s .NET initiative from a higher, less-technical level.

Many readers of previous editions have taken the time to give me input on how to make

this book better. Overwhelmingly, I was asked to have examples that build on the examples

in the previous chapters. In this book, I have done that as much as possible. Now, instead

of learning concepts in isolated bits, you’ll be building a feature-rich Picture Viewer pro-

gram throughout the course of this book. You’ll begin by building the basic application. As

you progress through the chapters, you’ll add menus and toolbars to the program, build an

Options dialog box, modify the program to use the Windows Registry and a text file, and

even build a setup program to distribute the application to other users. I hope you find this

approach beneficial in that it allows you to learn the material in the context of building a

real program.

Conventions Used in This Book
This book uses several design elements and conventions to help you prioritize and reference

the information it contains:

By the Way boxes provide useful sidebar information that you can read immedi-
ately or circle back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your Visual Basic
programming more effective.

2

Sams Teach Yourself Visual Basic 2008 in 24 Hours

By the
Way

Did you
Know?

Watch Out! boxes focus your attention on problems or side effects that can
occur in specific situations.

New terms appear in a semibold typeface for emphasis.

In addition, this book uses various typefaces to help you distinguish code from regular

English. Code is presented in a monospace font. Placeholders—words or characters that rep-

resent the real words or characters you would type in code—appear in italic monospace.

When you are asked to type or enter text, that text appears in bold.

Menu options are separated by a comma. For example, when you should open the File

menu and choose the New Project menu option, the text says “Select File, New Project.”

Some code statements presented in this book are too long to appear on a single line. In

these cases, a line-continuation character (an underscore) is used to indicate that the fol-

lowing line is a continuation of the current statement.

Onward and Upward!
This is an exciting time to be learning how to program. It’s my sincerest wish that when

you finish this book, you feel capable of creating, debugging, and deploying modest Visual

Basic programs using many of Visual Basic’s tools. Although you won’t be an expert, you’ll

be surprised at how much you’ve learned. And I hope this book will help you determine

your future direction as you proceed down the road to Visual Basic mastery.

I love programming with Visual Basic, and sometimes I find it hard to believe I get paid to

do so. I hope you find Visual Basic as enjoyable as I do!

Introduction

3

Watch
Out!

HOUR 1

Jumping in with Both Feet:
A Visual Basic 2008
Programming Tour

What You’ll Learn in This Hour:
. Building a simple (yet functional) Visual Basic application
. Letting a user browse a hard drive
. Displaying a picture from a file on disk
. Getting familiar with some programming lingo
. Learning about the Visual Studio 2008 IDE

Learning a new programming language can be intimidating. If you’ve never programmed

before, the act of typing seemingly cryptic text to produce sleek and powerful applications

probably seems like a black art, and you might wonder how you’ll ever learn everything

you need to know. The answer, of course, is one step at a time. I believe the first step to

mastering a programming language is building confidence. Programming is part art and

part science. Although it might seem like magic, it’s more akin to illusion. After you know

how things work, a lot of the mysticism goes away, and you are free to focus on the

mechanics necessary to produce the desired result.

Producing large, commercial solutions is accomplished by way of a series of small steps.

After you’ve finished this hour, you’ll have a feel for the overall development process and

will have taken the first step toward becoming an accomplished programmer. In fact, you

will build on the examples in this hour in subsequent chapters. By the time you complete

this book, you will have built a robust application, complete with resizable screens, an

intuitive interface including menus and toolbars, and robust code with professional error

handling. But I’m getting ahead of myself.

8 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

In this hour, you’ll complete a quick tour of Visual Basic that takes you step by step

through creating a complete, albeit small, Visual Basic program. Most introductory

programming books start by having the reader create a simple Hello World pro-

gram. I’ve yet to see a Hello World program that’s the least bit helpful. (They usu-

ally do nothing more than print hello world to the screen—what fun!) So, instead,

you’ll create a Picture Viewer application that lets you view Windows bitmaps and

icons on your computer. You’ll learn how to let a user browse for a file and how to

display a selected picture file on the screen. The techniques you learn in this chapter

will come in handy in many real-world applications that you’ll create, but the goal

of this chapter is for you to realize just how much fun it is to program using Visual

Basic 2008.

Starting Visual Basic 2008
Before you begin creating programs in Visual Basic 2008, you should be familiar

with the following terms:

. Distributable component: The final, compiled version of a project. Compo-

nents can be distributed to other people and other computers, and they don’t

require the Visual Basic 2008 development environment (the tools you use to

create a .NET program) to run (although they do require the .NET runtime,

which I’ll discuss in Hour 23, “Deploying Applications”). Distributable compo-

nents are often called programs. In Hour 23, you’ll learn how to distribute the

Picture Viewer program that you’re about to build to other computers.

. Project: A collection of files that can be compiled to create a distributable

component (program). There are many types of projects, and complex appli-

cations might consist of multiple projects, such as Windows application proj-

ects, and support dynamic link library (DLL) projects.

. Solution: A collection of projects and files that make up an application or

component.

In the past, Visual Basic was an autonomous language. This has changed. Now,
Visual Basic is part of a larger entity known as the .NET Framework. The .NET
Framework encompasses all the .NET technology, including Visual Studio .NET (the
suite of development tools) and the common language runtime (CLR), which is the
set of files that make up the core of all .NET applications. You’ll learn about these
items in more detail as you progress through this book. For now, realize that
Visual Basic is one of many languages that exist within the Visual Studio family.
Many other languages, such as C#, are also .NET languages, make use of the
CLR, and are developed within Visual Studio.

By the
Way

Creating a New Project 9

Visual Studio 2008 is a complete development environment, and it’s called the IDE

(short for integrated development environment). The IDE is the design framework

in which you build applications; every tool you’ll need to create your Visual Basic

projects is accessed from within the Visual Basic IDE. Again, Visual Studio 2008 sup-

ports development using many different languages, Visual Basic being the most

popular. The environment itself is not Visual Basic, but the language you’ll be using

within Visual Studio 2008 is Visual Basic. To work with Visual Basic projects, you

first start the Visual Studio 2008 IDE.

Start Visual Studio 2008 now by choosing Microsoft Visual Basic 2008 Express

Edition from the Start/Programs menu. If you are running the full retail version of

Visual Studio, your shortcut may have a different name. In this case, locate the

shortcut on the Start menu and click it once to start the Visual Studio 2008 IDE.

Creating a New Project
When you first start Visual Studio 2008, you see the Start Page tab within the IDE,

as shown in Figure 1.1. You can open projects created previously or create new proj-

ects from this Start page. For this quick tour, you’ll create a new Windows applica-

tion, so select File, New Project to display the New Project dialog box, shown in

Figure 1.2.

FIGURE 1.1
You can open
existing projects
or create new
projects from
the Visual
Studio Start
page.

10 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

If your Start page doesn’t look like the one shown in Figure 1.1, chances are that
you’ve changed the default settings. In Hour 2, “Navigating Visual Basic 2008,” I’ll
show you how to change them back.

By the
Way

FIGURE 1.2
The New Project
dialog box
enables you to
create many
types of .NET
projects.

The New Project dialog box is used to specify the type of Visual Basic project to cre-

ate. (You can create many types of projects with Visual Basic, as well as with the

other supported languages of the .NET Framework.) The options shown in Figure 1.2

are limited because I am running the Express edition of Visual Basic for all exam-

ples in this book. If you are running the full version of Visual Studio, you will have

many more options available.

Create a new Windows Forms Application now by following these steps:

1. Make sure that the Windows Forms Application icon is selected. (If it’s not,

click it once to select it.)

2. At the bottom of the New Project dialog box is a Name text box. This is where,

oddly enough, you specify the name of the project you’re creating. Enter

Picture Viewer in the Name text box.

3. Click OK to create the project.

Always set the Name text box to something meaningful before creating a project,
or you’ll have more work to do later if you want to move or rename the project.

Did you
Know?

Creating a New Project 11

When Visual Basic creates a new Windows Forms Application project, it adds one

form (the empty gray window) for you to begin building the interface for your

application, as shown in Figure 1.3.

Within Visual Studio 2008, form is the term given to the design-time view of a win-
dow that can be displayed to a user.

By the
Way

FIGURE 1.3
New Windows
Forms
Applications
start with a
blank form; the
fun is just
beginning!

Your Visual Studio 2008 environment might look different from that shown in the

figures in this hour due to the edition of Visual Studio 2008 you’re using, whether

you’ve already played with Visual Studio 2008, and other factors, such as your mon-

itor’s resolution. All the elements discussed in this hour exist in all editions of Visual

Studio 2008, however. (If a window shown in a figure doesn’t appear in your IDE,

use the View menu to display it.)

To create a program that can be run on another computer, you start by creating a
project and then compiling the project into a component such as an executable
(a program a user can run) or a DLL (a component that can be used by other pro-
grams and components). The compilation process is discussed in detail in Hour
23. The important thing to note at this time is that when you hear someone refer
to creating or writing a program, just as you’re creating the Picture Viewer program
now, that person is referring to the completion of all steps up to and including
compiling the project to a distributable file.

By the
Way

12 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Understanding the Visual Studio 2008
Environment
The first time you run Visual Studio 2008, you’ll notice that the IDE contains a num-

ber of windows, such as the Properties window on the right, which is used to view

and set properties of objects. In addition to these windows, the IDE contains a num-

ber of tabs, such as the vertical Toolbox tab on the left edge of the IDE (refer to

Figure 1.3). Try this now: Click the Toolbox tab to display the Toolbox window (click-

ing a tab displays an associated window). You can hover the mouse over a tab for a

few seconds to display the window as well. To hide the window, simply move the

mouse off the window (if you hovered over the tab to display it) or click another

window. To close the window, click the Close (X) button in the window’s title bar.

If you opened the toolbox by clicking its tab rather than hovering over the tab, the
toolbox will not automatically close. Instead, it will stay open until you click
another window.

You can adjust the size and position of any of these windows, and you can even

hide and show them as needed. You’ll learn how to customize your design environ-

ment in Hour 2.

Unless specifically instructed to do so, don’t double-click anything in the Visual
Studio 2008 design environment. Double-clicking most objects produces an
entirely different result than single-clicking does. If you mistakenly double-click an
object on a form (discussed shortly), a code window appears. At the top of the
code window is a set of tabs: one for the form design and one for the code. Click
the tab for the form design to hide the code window, and return to the form.

The Properties window on the right side of the design environment is perhaps the

most important window in the IDE, and it’s the one you’ll use most often. If your

computer display resolution is set to 800×600, you can probably see only a few prop-

erties at this time. This makes it difficult to view and set properties as you create

projects. All the screen shots in this book were captured at 800×600 due to size con-

straints, but you should run at a higher resolution if you can. I highly recommend

that you develop applications with Visual Basic at a screen resolution of 1024×768

or higher to have plenty of work space. To change your display settings, right-click

the desktop and select Personalize. Keep in mind, however, that end users might be

running at a lower resolution than you are using for development.

By the
Way

Watch
Out!

Changing the Characteristics of Objects 13

Changing the Characteristics of Objects
Almost everything you work with in Visual Basic is an object. Forms, for instance,

are objects, as are all the items you can put on a form to build an interface, such as

list boxes and buttons. There are many types of objects, and objects are classified by

type. For example, a form is a Form object, whereas items you can place on a form

are called Control objects, or controls. (Hour 3, “Understanding Objects and

Collections,” discusses objects in detail.) Some objects don’t have a physical appear-

ance but exist only in code. You’ll learn about these kinds of objects in later hours.

You’ll find that I often mention material coming up in future chapters. In the pub-
lishing field, we call these forward references. For some reason, these tend to
unnerve some people. I do this only so that you realize you don’t have to fully
grasp a subject when it’s first presented; the material will be covered in more
detail later. I try to keep forward references to a minimum, but unfortunately,
teaching programming is not a perfectly linear process. There will be times I’ll
have to touch on a subject that I feel you’re not ready to dive into fully yet. When
this happens, I give you a forward reference to let you know that the subject will
be covered in greater detail later.

Every object has a distinct set of attributes known as properties (regardless of

whether the object has a physical appearance). Properties define the characteristics

of an object. Even you have certain properties, such as your height and hair color.

Visual Basic objects have properties as well, such as Height and BackColor. When

you create a new object, the first thing you need to do is set its properties so that the

object appears and behaves the way you want it to. To display an object’s properties,

click the object in its designer (the main work area in the IDE).

Click anywhere in the default form now, and check to see that its properties are dis-

played in the Properties window. You’ll know because the drop-down list box at the

top of the Properties window will contain the form’s name: Form1

System.Windows.Forms.Form. Form1 is the name of the object, and

System.Windows.Forms.Form is the type of object.

Naming Objects
The property you should always set first when creating any new object is the Name

property. Press F4 to display the Properties window (if it’s not already visible), and

scroll toward the top of the properties list until you see the (Name) property, as

shown in Figure 1.4. If the Name property isn’t one of the first properties listed, the

Watch
Out!

14 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Properties window is set to show properties categorically instead of alphabetically.

You can show the list alphabetically by clicking the Alphabetical button that

appears just above the properties grid.

FIGURE 1.4
The Name prop-
erty is the first
property you
should change
when you add a
new object to
your project.

I recommend that you keep the Properties window set to show properties in alpha-
betical order; doing so makes it easier to find properties that I refer to in the text.
Note that the Name property always stays toward the top of the list and is called
(Name). If you’re wondering why it has parentheses around it, it’s because the
parentheses force the property to the top of the list, because symbols come
before letters in an alphabetical sort.

When saving a project, you choose a name and a location for the project and its

files. When you first create an object within the project, Visual Basic gives the object

a unique, generic name based on the object’s type. Although these names are func-

tional, they simply aren’t descriptive enough for practical use. For instance, Visual

Basic named your form Form1, but it’s common to have dozens (or even hundreds)

of forms in a project. It would be extremely difficult to manage such a project if all

forms were distinguishable only by a number (Form2, Form3, and so forth).

By the
Way

Changing the Characteristics of Objects 15

What you’re actually working with is a form class, or template, that will be used to
create and show forms at runtime. For the purposes of this quick tour, I simply
call it a form. See Hour 5, “Building Forms: The Basics,” for more information.

To better manage your forms, give each one a descriptive name. Visual Basic gives

you the chance to name new forms as they’re created in a project. Visual Basic cre-

ated this default form for you, so you didn’t get a chance to name it. It’s important

not only to change the form’s name but also to change its filename. Change the

programmable name and the filename by following these steps:

1. Click the Name property, and change the text from Form1 to ViewerForm.

Notice that this does not change the form’s filename as it’s displayed in the

Solution Explorer window, located above the Properties window.

2. Right-click Form1.vb in the Solution Explorer window (the window above the

Properties window).

3. Choose Rename from the context menu that appears.

4. Change the text from Form1.vb to ViewerForm.vb.

I use the Form suffix here to denote that the file is a form class. Suffixes are
optional, but I find that they really help you keep things organized.

The form’s Name property is actually changed for you automatically when you

rename the file. In future examples, I will have you rename the form file so that the

Name property is changed automatically. I had you set it in the Properties window

here so that you could see how the Properties window works.

Setting the Text Property of the Form
Notice that the text that appears in the form’s title bar says Form1. This is because

Visual Basic sets the form’s title bar to the name of the form when it’s first created but

doesn’t change it when you change the name of the form. The text in the title bar is

determined by the value of the form’s Text property. Change the text now by follow-

ing these steps:

1. Click the form once more so that its properties appear in the Properties

window.

2. Use the scrollbar in the Properties window to locate the Text property.

By the
Way

By the
Way

16 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

3. Change the text to Picture Viewer. Press the Enter key or click a different

property. You’ll see the text in the title bar of the form change.

Saving a Project
The changes you’ve made so far exist only in memory. If you were to turn off your

computer at this time, you would lose all your work up to this point. Get into the

habit of frequently saving your work, which commits your changes to disk.

Click the Save All button on the toolbar (the picture of a stack of floppy disks) now

to save your work. Visual Basic displays the Save Project dialog box, shown in Figure

1.5. Notice that the Name property is already filled in because you named the project

when you created it. The Location text box is where you specify the location in

which to save the project. Visual Basic creates a subfolder in this location using the

value in the Name text box (in this case, Picture Viewer). You can use the default

location or change it to suit your purposes. You can have Visual Basic create a solu-

tion folder in which the project folder gets placed. On large projects, this is a handy

feature. For now, it’s an unnecessary step, so uncheck the Create directory for solu-

tion box, and then click Save to save the project.

FIGURE 1.5
When saving a
project, choose
a name and
location for
the project and
its files.

Giving the Form an Icon
Everyone who’s used Windows is familiar with icons—the little pictures that repre-

sent programs. Icons most commonly appear on the Start menu next to the name of

their respective programs. In Visual Basic, not only do you have control over the

icon of your program file, you also can give every form in your program a unique

icon if you want to.

The following instructions assume that you have access to the source files for the
examples in this book. They are available at http://www.samspublishing.com. You
can also get these files, as well as discuss this book, at my website at http://
www.jamesfoxall.com/books.aspx. When you unzip the samples, a folder will be
created for each hour, and within each hour’s folder will be subfolders for the sam-
ple projects. You’ll find the icon for this example in the folder Hour 01\Picture
Viewer.

By the
Way

http://www.samspublishing.com
http://www.jamesfoxall.com/books.aspx
http://www.jamesfoxall.com/books.aspx

Changing the Characteristics of Objects 17

You don’t have to use the icon I’ve provided for this example; you can use any
icon. If you don’t have an icon available (or you want to be a rebel), you can skip
this section without affecting the outcome of the example.

To give the form an icon, follow these steps:

1. In the Properties window, click the Icon property to select it.

2. When you click the Icon property, a small button with three dots appears to

the right of the property. Click this button.

3. Use the Open dialog box that appears to locate the Picture Viewer.ico file or

another icon file of your choice. When you’ve found the icon, double-click it,

or click it once to select it and then choose Open.

After you’ve selected the icon, it appears in the Icon property along with the word

“Icon.” A small version of the icon appears in the upper-left corner of the form as

well. Whenever this form is minimized, this is the icon displayed on the Windows

taskbar.

This doesn’t change the icon for the project as a whole. In Hour 23, you’ll learn
how to assign an icon to your distributable file.

Changing the Size of the Form
Next, you’ll change the form’s Width and Height properties. The Width and Height

values are shown collectively under the Size property; Width appears to the left of

the comma, and Height to the right. You can change the Width or Height property

by changing the corresponding number in the Size property. Both values are repre-

sented in pixels. (That is, a form that has a Size property of 200,350 is 200 pixels

wide and 350 pixels tall.) To display and adjust the Width and Height properties

separately, click the small plus sign (+) next to the Size property (see Figure 1.6).

(After you click it, it changes to a minus sign (–).)

A pixel is a unit of measurement for computer displays; it’s the smallest visible
“dot” on the screen. The resolution of a display is always given in pixels, such as
800×600 or 1024×768. When you increase or decrease a property by one pixel,
you’re making the smallest possible visible change to the property.

By the
Way

By the
Way

18 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Change the Width property to 400 and the Height to 325 by typing in the corre-

sponding box next to a property name. To commit a property change, press Tab or

Enter, or click a different property or window. Your screen should now look like the

one shown in Figure 1.7.

FIGURE 1.6
Some proper-
ties can be
expanded to
show more spe-
cific properties.

FIGURE 1.7
Changes made
in the
Properties
window are
reflected as
soon as they’re
committed.

You can also size a form by dragging its border, which you’ll learn about in Hour 2,
or by changing its properties using code, which you’ll learn how to write in Hour 5.

By the
Way

Adding Controls to a Form 19

Save the project now by choosing File, Save All from the menu or by clicking the

Save All button on the toolbar—it has a picture of stacked floppy disks.

Adding Controls to a Form
Now that you’ve set the initial properties of your form, it’s time to create a user

interface by adding objects to the form. Objects that can be placed on a form are

called controls. Some controls have a visible interface with which a user can inter-

act, whereas others are always invisible to the user. You’ll use controls of both types

in this example. On the left side of the screen is a vertical tab titled Toolbox. Click

the Toolbox tab to display the Toolbox window, and click the plus sign next to

Common Controls to see the most commonly used controls (see Figure 1.8). The tool-

box contains all the controls available in the project, such as labels and text boxes.

FIGURE 1.8
The toolbox is
used to select
controls to build
a user interface.

The toolbox closes as soon as you’ve added a control to a form and when the

pointer is no longer over the toolbox. To make the toolbox stay visible, you would

click the little picture of a pushpin located in the toolbox’s title bar.

20 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

I don’t want you to add them yet, but your Picture Viewer interface will consist of

the following controls:

. Two Button controls: The standard buttons that you’re used to clicking in

pretty much every Windows program you’ve ever run

. A PictureBox control: A control used to display images to a user

. An OpenFileDialog control: A hidden control that exposes the Windows

Open File dialog box functionality

Designing an Interface
It’s generally best to design a form’s user interface and then add the code behind the

interface to make the form functional. You’ll build your interface in the following

sections.

Adding a Visible Control to a Form
Start by adding a Button control to the form. Do this by double-clicking the Button

item in the toolbox. Visual Basic creates a new button and places it in the upper-left

corner of the form, as shown in Figure 1.9.

FIGURE 1.9
When you
double-click a
control in the
toolbox, the
control is added
to the upper-left
corner of the
form.

Using the Properties window, set the button’s properties as shown in the following

list. Remember, when you view the properties alphabetically, the Name property is

listed first, so don’t go looking for it down in the list, or you’ll be looking a while.

Designing an Interface 21

Property Value

Name btnSelectPicture

Location 295,10 (295 is the x coordinate; 10 is the y coordinate.)

Size 85,23

Text Select Picture

Now you’ll create a button that the user can click to close the Picture Viewer pro-

gram. Although you could add another new button to the form by double-clicking

the Button control on the toolbox again, this time you’ll add a button to the form

by creating a copy of the button you’ve already defined. This allows you to easily

create a button that maintains the size and other style attributes of the original but-

ton when the copy was made.

To do this, right-click the Select Picture button, and choose Copy from its context

menu. Next, right-click anywhere on the form, and choose Paste from the form’s

shortcut menu. (You can also use the keyboard shortcuts Ctrl+C to copy and Ctrl+V

to paste.) The new button appears centered on the form, and it’s selected by default.

Notice that it retains almost all the properties of the original button, but the name

has been reset. Change the properties of the new button as follows:

Property Value

Name btnQuit

Location 295,40

Text Quit

The last visible control you need to add to the form is a PictureBox control. A

PictureBox has many capabilities, but its primary purpose is to show pictures,

which is precisely what you’ll use it for in this example. Add a new PictureBox con-

trol to the form by double-clicking the PictureBox item in the toolbox, and set its

properties as follows:

Property Value

Name picShowPicture

BorderStyle FixedSingle

Location 8,8

Size 282,275

22 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

After you’ve made these property changes, your form will look like the one shown in

Figure 1.10. Click the Save All button on the toolbar to save your work.

FIGURE 1.10
An application’s
interface
doesn’t have
to be complex
to be useful.

Adding an Invisible Control to a Form
All the controls you’ve used so far sit on a form and have a physical appearance

when a user runs the application. Not all controls have a physical appearance,

however. Such controls, called nonvisual controls (or invisible-at-runtime

controls), aren’t designed for direct user interactivity. Instead, they’re designed to

give you, the programmer, functionality beyond the standard features of Visual

Basic.

To enable users to select a picture to display, you need to give them the ability to

locate a file on their hard drives. You might have noticed that whenever you choose

to open a file from within any Windows application, the dialog box displayed is

almost always the same. It doesn’t make sense to force every developer to write the

code necessary to perform standard file operations, so Microsoft has exposed the

functionality via a control that you can use in your projects. This control is called

OpenFileDialog, and it will save you dozens of hours that would otherwise be nec-

essary to duplicate this common functionality.

Other controls in addition to the OpenFileDialog control give you file functional-
ity. For example, the SaveFileDialog control provides features for allowing the
user to specify a filename and path for saving a file.

Display the toolbox and scroll down using the down arrow in the lower part of the

toolbox until you can see the OpenFileDialog control (it’s in the Dialogs category),

By the
Way

Designing an Interface 23

and then double-click it to add it to your form. Note that the control isn’t placed on

the form; rather, it appears in a special area below the form (see Figure 1.11). This

happens because the OpenFileDialog control has no form interface to display to

the user. It does have an interface (a dialog box) that you can display as necessary,

but it has nothing to display directly on a form.

FIGURE 1.11
Controls that
have no inter-
face appear
below the form
designer.

Select the OpenFileDialog control, and change its properties as follows:

Property Value

Name ofdSelectPicture

Filename <make empty>

Filter Windows Bitmaps|*.BMP|JPEG Files|*.JPG

Title Select Picture

Don’t actually enter the text <make empty> for the filename; I really mean delete
the default value and make this property value empty.

The Filter property is used to limit the types of files that will be displayed in the

Open File dialog box. The format for a filter is description|filter. The text that

Watch
Out!

24 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

appears before the first pipe symbol is the descriptive text of the file type, whereas

the text after the pipe symbol is the pattern to use to filter files. You can specify

more than one filter type by separating each description|filter value with another

pipe symbol. Text entered into the Title property appears in the title bar of the

Open File dialog box.

The graphical interface for your Picture Viewer program is now finished. If you

pinned the toolbox open, click the pushpin in the title bar of the toolbox now to

close it.

Writing the Code Behind an Interface
You have to write code for the program to be capable of performing tasks and

responding to user interaction. Visual Basic is an event-driven language, which

means that code is executed in response to events. These events might come from

users, such as a user clicking a button and triggering its Click event, or from

Windows itself (see Hour 4, “Understanding Events,” for a complete explanation of

events). Currently, your application looks nice, but it won’t do a darn thing. Users

can click the Select Picture button until they can file for disability with carpel tunnel

syndrome, but nothing will happen, because you haven’t told the program what to

do when the user clicks the button. You can see this for yourself now by pressing F5

to run the project. Feel free to click the buttons, but they don’t do anything. When

you’re finished, close the window you created to return to Design mode.

You’ll write code to accomplish two tasks. First, you’ll write code that lets users

browse their hard drives to locate and select a picture file and then display it in the

picture box (this sounds a lot harder than it is). Second, you’ll add code to the Quit

button that shuts down the program when the user clicks the button.

Letting a User Browse for a File
The first bit of code you’ll write enables users to browse their hard drives, select a

picture file, and then see the selected picture in the PictureBox control. This code

executes when the user clicks the Select Picture button; therefore, it’s added to the

Click event of that button.

When you double-click a control on a form in Design view, the default event for that

control is displayed in a code window. The default event for a Button control is its

Click event, which makes sense, because clicking is the most common action a user

performs with a button. Double-click the Select Picture button now to access its

Click event in the code window (see Figure 1.12).

Writing the Code Behind an Interface 25

FIGURE 1.12
You’ll write all
your code in a
window such
as this.

When you access an event, Visual Basic builds an event handler, which is essen-

tially a template procedure in which you add the code that executes when the event

occurs. The cursor is already placed within the code procedure, so all you have to do

is add code. Although this may seem daunting, by the time you’re finished with this

book, you’ll be madly clicking and clacking away as you write your own code to

make your applications do exactly what you want them to do—well, most of the

time. For now, just enter the code as I present it here.

It’s important that you get in the habit of commenting your code, so the first state-

ment you’ll enter is a comment. Beginning a statement with an apostrophe (') des-

ignates that statement as a comment. The compiler won’t do anything with the

statement, so you can enter whatever text you want after the apostrophe. Type the

following statement exactly as it appears, and press the Enter key at the end of

the line:

‘ Show the open file dialog box.

The next statement you’ll enter triggers a method of the OpenFileDialog control

that you added to the form. Think of a method as a mechanism to make a control

do something. The ShowDialog() method tells the control to show its Open dialog

box and let the user select a file. The ShowDialog() method returns a value that

indicates its success or failure, which you’ll then compare to a predefined result

(DialogResult.OK). Don’t worry too much about what’s happening here; you’ll be

26 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

learning the details of all this in later hours. The sole purpose of this hour is to get

your feet wet. In a nutshell, the ShowDialog() method is invoked to let a user

browse for a file. If the user selects a file, more code is executed. Of course, there’s a

lot more to using the OpenFileDialog control than I present in this basic example,

but this simple statement gets the job done. Enter the following statement and press

Enter to commit the code (don’t worry about capitalization; Visual Basic will fix the

case for you!):

If ofdSelectpicture.ShowDialog = DialogResult.OK Then

After you insert the statement that begins with If and press Enter, Visual Basic
automatically creates the End If statement for you. If you type in End If, you’ll
wind up with two End If statements, and your code won’t run. If this happens,
delete one of the statements. Hour 13, “Making Decisions in Visual Basic Code,”
has all the details on the If statement.

It’s time for another comment. The cursor is currently between the statement that

starts with If and the End If statement. Leave the cursor there and type the follow-

ing statement, remembering to press Enter at the end of the line:

‘ Load the picture into the picture box.

Don’t worry about indenting the code by pressing the Tab key or using spaces.
Visual Basic automatically indents code for you.

This next statement, which appears within the If construct (between the If and

End If statements), is the line of code that actually displays the picture in the

picture box.

Enter the following statement:

picshowpicture.Image = Image.FromFile(ofdselectpicture.filename)

In addition to displaying the selected picture, your program also displays the path

and filename of the picture in the title bar. When you first created the form, you

changed its Text property using the Properties window. To create dynamic applica-

tions, properties need to be constantly adjusted at runtime, and you do this using

code. Insert the following two statements, pressing Enter at the end of each line:

‘ Show the name of the file in the form’s caption.
Me.Text = “Picture Viewer(“ & ofdselectpicture.FileName & “)”

By the
Way

Did you
Know?

Writing the Code Behind an Interface 27

After you’ve entered all the code, your editor should look like that shown in

Figure 1.13.

FIGURE 1.13
Make sure that
your code
exactly matches
the code shown
here.

Terminating a Program Using Code
The last bit of code you’ll write terminates the application when the user clicks the

Quit button. To do this, you’ll need to access the Click event handler of the

btnQuit button. At the top of the code window are two tabs. The current tab says

ViewerForm.vb*. This tab contains the code window for the form that has the file-

name ViewerForm.vb. Next to this is a tab that says ViewerForm.vb [Design]*. Click

this tab to switch from Code view to the form designer. If you receive an error when

you click the tab, the code you entered contains an error, and you need to edit it to

make it the same as shown in Figure 1.13. After the form designer appears, double-

click the Quit button to access its Click event.

Enter the following code in the Quit button’s Click event handler; press Enter at the

end of each statement:

‘ Close the window and exit the application
Me.Close()

28 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

The Me.Close() statement closes the current form. When the last loaded form in
a program is closed, the application shuts itself down—completely. As you build
more robust applications, you’ll probably want to execute all kinds of cleanup rou-
tines before terminating an application, but for this example, closing the form is
all you need to do.

Running a Project
Your application is now complete. Click the Save All button on the toolbar (the stack

of floppy disks), and then run your program by pressing F5. You can also run the

program by clicking the button on the toolbar that looks like a right-facing triangle

and resembles the Play button on a DVD player. (This button is called Start, and it

can also be found on the Debug menu.) Learning the keyboard shortcuts will make

your development process move along faster, so I recommend that you use them

whenever possible.

When you run the program, the Visual Basic interface changes, and the form you’ve

designed appears, floating over the design environment (see Figure 1.14).

By the
Way

FIGURE 1.14
When in Run
mode, your pro-
gram executes
the same as it
would for an
end user.

You are now running your program as though it were a stand-alone application

running on another user’s machine; what you see is exactly what users would see if

they ran the program (without the Visual Studio 2008 design environment in the

background, of course). Click the Select Picture button to display the Select Picture

dialog box, shown in Figure 1.15. Use this dialog box to locate a picture file. When

you’ve found a file, double-click it, or click once to select it and then click Open. The

selected picture is then displayed in the picture box, as shown in Figure 1.16.

If you want to select and display a picture from your digital camera, chances are
the format is JPEG, so you’ll need to select this from the Files of Type drop-down.
Also, if your image is very large, you’ll see only the upper-left corner of the image
(what fits in the picture box). In later hours, I’ll show you how you can scale the
image to fit the picture box, and even resize the form to show a larger picture in
its entirety.

Running a Project 29

When you click the Select Picture button, the default path shown depends on
the last active path in Windows, so it might be different for you than shown in
Figure 1.15.

By the
Way

FIGURE 1.15
The
OpenFileDialog
control handles
all the details of
browsing for files.
Cool, huh?

FIGURE 1.16
What could be
prettier than a
1964 Fender
Super Reverb
amplifier?

By the
Way

30 HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour

Summary
When you’re finished playing with the program, click the Quit button to return to

Design view.

That’s it! You’ve just created a bona fide Visual Basic program. You’ve used the tool-

box to build an interface with which users can interact with your program, and

you’ve written code in strategic event handlers to empower your program to do

things. These are the basics of application development in Visual Basic. Even the

most complicated programs are built using this fundamental approach; you build

the interface and add code to make the application do things. Of course, writing

code to do things exactly the way you want things done is where the process can get

complicated, but you’re on your way.

If you take a close look at the organization of the hours in this book, you’ll see that

I start out by teaching you the Visual Basic (Visual Studio .NET) environment. I then

move on to building an interface, and later I teach you about writing code. This

organization is deliberate. You might be eager to jump in and start writing serious

code, but writing code is only part of the equation—don’t forget the word Visual in

Visual Basic. As you progress through the hours, you’ll build a solid foundation of

development skills.

Soon, you’ll pay no attention to the man behind the curtain—you’ll be that man (or

woman)!

Q&A
Q. Can I show bitmaps of file types other than BMP and JPG?

A. Yes. PictureBox supports the display of images with the extensions BMP, JPG,

ICO, EMF, WMF, and GIF. PictureBox can even save images to a file using

any of the supported file types.

Q. Is it possible to show pictures in other controls?

A. PictureBox is the control to use when you are just displaying images.

However, many other controls allow you to display pictures as part of the con-

trol. For instance, you can display an image on a button control by setting the

button’s Image property to a valid picture.

Workshop 31

Workshop

Quiz
1. What type of Visual Basic project creates a standard Windows program?

2. What window is used to change the attributes (location, size, and so on) of a

form or control in the IDE?

3. How do you access the default event (code) of a control?

4. What property of a picture box do you set to display an image?

5. What is the default event for a button control?

Answers
1. Windows Forms Application

2. The Properties window

3. Double-click the control in the designer.

4. The Image property

5. The Click event

Exercises
1. Change your Picture Viewer program so that the user can also locate and

select GIF files. (Hint: Change the Filter property of the OpenFileDialog

control.)

2. Create a new project with a new form. Create two buttons on the form, one

above the other. Next, change their position so that they appear next to each

other.

Symbols

* (asterisk), 162, 283

‘ (apostrophe), 339

\ (backslash), 283

, (comma), 311

& (concatentation) operator,

290-291

/ (division) operator, 283

= (equals sign), 66

^ (exponentiation)

operator, 283

- (negation) operator, 283

() (parentheses), 302

. (period), 65, 68

+ (plus sign), 51, 282

(pound sign), 258

- (subtraction) operator, 283

_ (underscore), 77, 90, 233

A

Abort enumerator

(DialogResult), 386

AbortRetryIgnore enumerator

(MessageBoxButtons), 383

accelerator keys, 206

Accept buttons, 164-165

AcceptsReturn property (Text

Box control), 161

AcceptsTabs property (Text

Box control), 161

accessing

events, 89-90

Registry, 445-446

actions, 344-345

ActiveCaption system

color, 410

ActiveCaptionText system

color, 410

ActiveCell object, 490

Index

ActiveMdiChild property

(forms), 150

Add Class command

(Project menu), 364

Add Module command

(Project menu), 230

Add New Item dialog box,

106, 230

Add() method, 480, 489

Items collection,

172-173, 195

Nodes collection, 197-199

addition, 282

addition (+) operator, 282

AddTwoNumbers()

function, 239

ADO.NET

connecting to

databases, 469-471

DataAdapter object

creating, 472-473

definition, 468

Fill() method, 472

Update() method,

472, 479

DataRow object, 475-476

DataSet object, 468

DataTable object

creating records,

480-481

definition, 468

deleting records,

481-482

editing records, 479

navigating records,

477-479

overview, 472-474

populating, 474

disconnecting from

databases, 471

OleDBConnection object

Close() method, 471

connecting to

databases, 469-471

ConnectionString

property, 470

definition, 468

disconnecting from

databases, 471

Open() method, 471

overview, 468-469

SqlConnection object, 468

Advanced Appearance dialog

box, 409-410

alignment

controls, 135-136

text boxes, 157-158

ampersand (&), 290-291

Anchor property, 139-142

anchoring controls, 138-141

And operator, 288

apostrophe (‘), 339

Appearance Settings dialog

box, 409

Application object, 488

applications. See programs

Archive flag (files), 437

arithmetic

addition, 282

division, 283

exponentiation, 283

modulus arithmetic, 284

multiplication, 283

negation, 283

operator precedence,

284-286

overview, 281-282

subtraction, 283

arrays

declaring, 263

definition, 249, 263

elements, 263

multidimensional arrays,

264-266

referencing, 263-264

As keyword, 58

assigning shortcut keys to

menus, 214-215

asterisk (*), 283

auto-hiding design

windows, 40-41

Automate Excel Properties

command (Project

menu), 486

Automate Word Properties

command (Project

menu), 492

518

ActiveMdiChild property

automation

definition, 485

Excel

creating workbooks, 489

instantiating automation

server, 488-489

making Excel

visible, 489

modifying workbooks,

490-491

referencing type

libraries, 486-488

testing, 492

overview, 485-486

Word

instantiating automation

server, 493

referencing type

libraries, 492-493

automation servers, creating

instances of

Excel, 488-489

Word, 493

AutoScroll property

(forms), 146

AutoScrollMargin property

(forms), 146

AutoScrollMinSize property

(forms), 146

B

BackColor property

(forms), 108-110

BackgroundImage property

(forms), 111-113

backgrounds (forms)

color, 108-110

images, 111, 113

backslash (\), 283

BaseDirectory() method, 461

bin prefix, 272

binding object references

to variables

early binding, 374-376

late binding, 372-374

Bitmap() method, 407

bitmaps, 407-408

block scope, 267

Boolean data type, 251

Boolean logic

And operator, 288

definition, 281

Not operator, 288-289

Or operator, 289

overview, 287-288

Xor operator, 289

borders, 115-117

break points

actions, 344-345

creating, 343-344

definition, 343

BringToFront() method, 144

browsing files, 24-27

browsing scope, 81

bugs, 337. See also debugging

build errors, 340-343

building confidence, 7

Button control. See buttons

Button property

(MouseEventArgs), 92

buttons

Accept buttons, 164-165

adding to forms, 20-21

adding to message boxes,

383-385

Cancel buttons, 164-165

close buttons, 114-115

determining which button is

clicked, 385-386

drawing buttons

button properties, 73

Clear() method, 75

CreateGraphics

method, 74

Dispose() method, 77

DrawRectangle()

method, 76-77

overview, 73

testing, 78

variables, 74

maximize buttons, 114-115

minimize buttons, 114-115

overview, 163-164

How can we make this index more useful? Email us at indexes@samspublishing.com

buttons

519

properties, 67-71

radio buttons, 168-170,

315-316

toolbar buttons, 217-219

ByRef keyword, 243

byt prefix, 272

Byte data type, 251

ByVal keyword, 243

C

calling

methods, 72

procedures, 238-241

Cancel buttons, 164-165

Cancel enumerator

(DialogResult), 386

caret (^), 283

casting data types, 253-254

Catch statement, 352, 355

catching exceptions, 354

CBool() function, 253

CByte() function, 253

CChar() function, 253

CDate() function, 253

CDbl() function, 253

CDec() function, 253

CenterParent value

(StartPosition property), 122

CenterScreen value

(StartPosition property), 122

changing

Excel workbooks, 490-491

forms

background

color, 108-110

background images,

111-113

borders, 115-117

close buttons, 114-115

icons, 113-114

maximize buttons,

114-115

minimize buttons,

114-115

minimum/maximum

size, 117

names, 106

title bar text, 108

properties, 45-47, 67-71

records, 479

Char data type, 251

check boxes, 166

CheckBox control, 166

checked menu items,

creating, 208-209

CheckState property

(CheckBox), 166

chr prefix, 272

CInt() function, 253

circles, 414

classes

compared to standard

modules, 363-364

definition, 362

encapsulation, 362-363

form classes, 15

interfaces

creating, 364-366

definition, 363

methods

creating, 371

definition, 365

object instantiation

early-binding object

variables, 374-376

in variable

declarations, 376

late-binding object

variables, 372-374

object lifetimes,

377-378

overview, 371-372

releasing object

references, 377

overview, 362

properties

declaring, 366-368

definition, 365

read-only

properties, 370

readable properties,

368-369

520

buttons

writable properties, 369

write-only

properties, 370

StreamReader, 457-459

StreamWriter, 455-457

cleanup code, 352

Clear() method, 75

Graphics object, 415

Items collection, 175, 196

Nodes collection, 200

clearing

drawing surfaces, 415

lists, 175, 196

Tree View nodes, 200

Click event, 24, 397

menus, 210-211

text boxes, 163

ClickOnce applications

advanced settings, 505

creating with Publish

Wizard, 500-503

overview, 499-500

testing, 504

uninstalling, 504-505

Clicks property

(MouseEventArgs), 92

client code, 364

clients, 364

CLng() function, 253, 346, 349

close buttons, 114-115

Close() method, 123, 457, 471

CObj() function, 253

code labels, 317

code modules. See modules

code windows, hiding, 12

collections

Collections Example

form, 79-81

definition, 78

Items, 171-172, 217-219

iterative processing, 78

Nodes

Add() method, 197-199

Clear() method, 200

Remove() method,

199-200

structure of, 79

TabPages, 187

Collections Example

form, 79-81

color

dithering, 49

forms

background color,

108-110

background images,

111-113

icons, 113-114

properties, 47-49

system colors, 409-412

columns, 192-193, 475

Columns property (List View

control), 192

combo boxes, 177-179

ComboBox control, 177-179

comma (,), 311

CommandBuilder object, 473

commands

File menu, New Project, 36

Project menu

Add Class, 364

Add Module, 230

Automate Excel

Properties, 486

Automate Word

Properties, 492

regedit, 455

View menu, Properties

Window, 38

comments, 25

adding to code, 338-339

definition, 338

common language

runtime, 510-511

common type system, 514

comparison operators, 286-287

compilers, 250

components, 53-54, 486.

See also programs

concatenation, 80, 96, 290-291

concatenation (&) operator,

290-291

confidence, building, 7

connecting to databases,

469-471

ConnectionString property

(OleDBConnection

object), 470

How can we make this index more useful? Email us at indexes@samspublishing.com

ConnectionString property

521

constants

advantages of, 254

defining, 255-256

definition, 249

naming conventions, 255

scope

block scope, 267

global scope, 269-270

module-level

scope, 268

name conflicts, 270

overview, 266

procedure-level

scope, 267-268

containers

definition, 147, 167

frames, 167

Context Menu Strip

control, 212, 214

context menus

assigning shortcut

keys to, 214-215

creating, 212-214

context-sensitive help, 59

continuing For...Next

loops, 326

control objects. See controls

Control system color, 410

ControlDark system

color, 411

ControlLight system

color, 411

controls

adding to forms,

43-44, 128-129

by double-clicking from

toolbox, 128

by dragging from

toolbox, 128

by drawing, 129

arranging on forms

alignment, 135-136

anchoring, 138-141

evenly spacing

controls, 137

making controls

same size, 137

snapping to grid,

129-131

snapping to lines,

132-133

Button. See buttons

CheckBox, 166

ComboBox, 177-179

Context Menu

Strip, 212-214

definition, 19, 64, 155

Graphic objects, 406

Group Box, 167

Image List, 190-191

invisible controls, 22-24

Label, 155-156

layering, 144

List View

adding list

items, 193-195

columns, 192-193

determining selected

items, 196

overview, 191-192

removing all list

items, 196

removing list items, 196

ListBox

adding items to

lists, 172-173

clearing lists, 175

Items collection,

171-172

overview, 170-171

removing items from

lists, 173-174

retrieving item

information, 175-176

sorting lists, 177

Menu Strip, 204-206

naming conventions, 273

OpenFileDialog

adding to forms, 22-24

creating file filters, 428

overview, 425-428

showing Open File dialog

box, 428-429

Panel, 167-168

PictureBox, 21-22, 30

properties, 137-138

522

constants

Radio Button, 168-170

SaveFileDialog, 429-431

selecting groups

of, 133-135

Status Bar, 221-223

Tab, 186-190

tab order, 142-144

Text Box

events, 87, 163

maximum length,

161-162

multiline text boxes,

158-160

overview, 157

password fields,

162-163

scrollbars, 160

text alignment, 157-158

Timer, 87-88, 183-186

ToolStrip, 216-219

Tree View

adding nodes, 197-199

clearing all nodes, 200

overview, 197

removing nodes,

199-200

visible controls, 20-22

ControlText system color, 411

Copy() method, 432-433

copying files, 432-433

CreateDirectory() method, 440

CreateGraphics()

method, 74, 406

CreateSubKey()

method, 446-447

CSByte() function, 253

CShort() function, 253

CSng() function, 253

CStr() function, 253

CUInt() function, 253

CULng() function, 253

current date/time,

returning, 301

CUShort() function, 253

custom dialog boxes, 387-391

Custom value (DashStyle

property), 408

D

Dash value (DashStyle

property), 408

DashDot value (DashStyle

property), 408

DashDotDot value (DashStyle

property), 408

DashStyle property

(pens), 408-409

data types

Boolean, 251

Byte, 251

casting, 253-254

Char, 251

common type system, 514

Date, 251, 296-297

Decimal, 251

definition, 250

determining, 250

Double, 251

guidelines for use, 252

Integer, 251

Long, 251

naming conventions, 272

Object, 251

overview, 250

REG_BINARY, 445

REG_EXPAND_SSZ, 445

REG_MULTI_SSZ, 445

REG_SZ, 445

Sbyte, 251

Short, 251

Single, 251

strict typing

definition, 259-260

enabling, 261-262

String, 251

type conversion

functions, 253

UInteger, 251

ULong, 251

UShort, 251

DataAdapters, 468

creating, 472-473

Fill() method, 472

Update() method, 472, 479

How can we make this index more useful? Email us at indexes@samspublishing.com

DataAdapters

523

databases. See also ADO.NET

connecting to, 469-471

DataAdapters

creating, 472-473

Fill() method, 472

Update() method,

472, 479

DataRows, 475-476

DataSets, 468

DataTables

creating records,

480-481

definition, 468

deleting records,

481-482

editing records, 479

navigating records,

477-479

overview, 472-474

populating, 474

disconnecting from, 471

overview, 467-468

records

creating, 480-481

deleting, 481-482

editing, 479

navigating, 477-479

running database

example, 482

DataRows, 475-476

DataSets, 468

DataTables

creating records, 480-481

definition, 468

deleting records, 481-482

editing records, 479

navigating records,

477-479

overview, 472-474

populating, 474

Date data type, 251, 296-297

Date variable, 296-297

DateAdd() function, 297-298

DateDiff() function, 299

DatePart() function, 299

dates

adding to/subtracting

from, 297-298

Date data type, 251,

296-297

determining intervals

between, 298-299

file date/time information,

returning, 436

formatting, 300-301

querying whether values

are dates, 301

retrieving current, 301

retrieving parts of, 299

DateTime structure, 297, 301

dbl prefix, 272

debugging

build errors, 340-343

comments, 338-339

exceptions

Exception object, 354

handling, 355-358

overview, 337-338

Picture Viewer

program, 452-455

runtime errors, 340-343

structured error

handling, 351

tools

break points, 343-345

Immediate window,

346-351

Try...Catch...Finally

structure, 351-354

unstructured error

handling, 351

dec prefix, 272

Decimal data type, 251

decision-making constructs

Boolean logic

And operator, 288

definition, 281

Not operator,

288-289

Or operator, 289

overview, 287-288

Xor operator, 289

comparison

operators, 286-287

GoTo statement, 317-318

524

databases

If...Then statement

ElseIf statement,

309-310

If...Then...Else, 308-309

nesting, 310

simple example,

306-308

overview, 305

Select Case statement

example, 312-315

multiple comparisons,

311-312

overview, 310-311

radio buttons,

evaluating, 315-316

Try...Catch...Finally

blocks, 319

declaring

arrays, 263

constants, 255-256

functions, 237

procedures, 58

properties, 366-368

subroutines, 232-236

variables, 57

explicit variable

declaration, 259-260

simple example,

257-258

static variables,

270-271

Define Color dialog box, 49

defining. See declaring

Delete() method, 481

Directory object, 440

File object, 434-435

DeleteSubKey()

method, 447-448

DeleteSubKeyTree()

method, 447

deleting

directories, 440

files, 434-435

list items, 173-174, 196

menu items, 208

project files, 55-57

records, 481-482

Registry keys, 447

Tree View nodes, 199-200

Delta property

(MouseEventArgs), 92

deployment

ClickOnce applications

advanced settings, 505

creating with Publish

Wizard, 500-503

overview, 499-500

testing, 504

uninstalling, 504-505

overview, 499

design windows

auto-hiding, 40-41

docking, 39-40

floating, 38

showing/hiding, 38

states, 37-38

Desktop system color, 411

device independence, 406

dialog boxes

Add New Item, 106, 230

Advanced Appearance,

409-410

Appearance Settings, 409

custom dialog boxes,

387-391

Define Color, 49

New Project, 9-10, 34-35

Open File, 428-429

Save Project, 16

tabbed dialog

boxes, 186-190

DialogResult

enumerations, 386

digital signatures, 504

Dim statement, 257-258

dimensioning

arrays, 263

variables

explicit variable

declaration, 259-260

simple example,

257-258

directories, 440

Directory flag (files), 437

Directory object, 440

disconnecting from

databases, 471

display settings, 12

How can we make this index more useful? Email us at indexes@samspublishing.com

display settings

525

displaying

design windows, 38

forms, 118-119

initial display

position, 121-122

maximized

state, 120-121

minimized

state, 120-121

normal state, 120-121

message boxes, 58-59

object properties, 13

Open File dialog

box, 428-429

Picture Viewer log

files, 461-463

properties, 45-47

Registry options, 449-450

text

labels, 155-156

text boxes, 157-163

toolbars, 41

Dispose() method, 77,

408, 457

distributable components.

See programs

dithering, 49

division, 283

division (/) operator, 283

Do...Loop

example, 332-334

exiting, 330-331

overview, 329

syntax, 330

docking

design windows, 39-40

toolbars, 42

DoSomething() subroutine, 318

dot (.), 65, 68

Dot value (DashStyle

property), 408

Double data type, 251

double-clicking mouse, 12

downward casting, 253

DrawBorder() function, 461

DrawEllipse() method, 414

drawing

circles, 414

clearing drawing

surfaces, 415

controls on forms, 129

Drawing project

button properties, 73

Clear() method, 75

CreateGraphics

method, 74

Dispose() method, 77

DrawRectangle()

method, 76-77

overview, 73

testing, 78

variables, 74

ellipses, 414

lines, 414

rectangles, 412-414

text, 415-416

Drawing project

button properties, 73

Clear() method, 75

CreateGraphics method, 74

Dispose() method, 77

DrawRectangle()

method, 76-77

overview, 73

testing, 78

variables, 74

DrawLine() method, 414

DrawRectangle()

method, 76-77, 414

DrawString() method, 415

drop-down lists, 177-179

dte prefix, 272

dynamic nature of methods, 72

E

e parameter (MouseDown

event), 92

early-binding object

variables, 374-376

editing

Excel workbooks, 490-491

forms

background

color, 108-110

background images,

111-113

borders, 115-117

526

displaying

close buttons, 114-115

icons, 113-114

maximize buttons,

114-115

minimize buttons,

114-115

minimum/maximum

size, 117

names, 106

title bar text, 108

properties, 45-47, 67-71

records, 479

elements of arrays, 263

ellipses, 414

Else statement, 308-309

ElseIf statement, 309-310

empty strings, 346

Enabled property (Text Box

control), 160

enabling strict typing, 261-262

encapsulation, 64, 362-363

End Function statement, 237

End If statement, 26

End Sub statement, 232-233

endless loops, 245

enumerations

DialogResult, 386

MessageBoxButtons, 383

MessageBoxIcon, 383-384

Environment Tutorial

design windows

auto-hiding, 40-41

docking, 39-40

floating, 38

showing/hiding, 38

states, 37-38

overview, 36

Properties window

color properties, 47-49

overview, 44

property descriptions,

49-50

selecting objects, 45

viewing and changing

properties, 45-47

Solution Explorer

adding/removing files,

55-57

overview, 50-52

project components,

53-54

project properties, 54

solutions, 52-53

toolbars

docking, 42

overview, 41

resizing, 42

showing/hiding, 41

toolbox, 43-44

equals sign (=), 66

errors. See also debugging;

exceptions

build errors, 340-343

runtime errors, 340-343

structured error

handling, 351

unstructured error

handling, 351

evenly spacing controls, 137

event driven languages, 24

event-driven programming

model, 85-86. See also events

event handling

definition, 25

event procedures, 86

events

accessing, 89-90

Click, 24, 397

menus, 210-211

text boxes, 163

compared to methods, 86

definition, 24

event-driven programming

model, 85-86

event handlers, 25

event procedures, 86

keyboard events, 393-396

KeyDown, 394

KeyPress, 394-396

KeyUp, 394

mouse events, 396-399

MouseDown, 92, 163, 397

MouseEnter, 397

MouseHover, 397

MouseLeave, 397

MouseMove, 93-98,

163, 397

MouseUp, 163, 397

MultilineChanged, 87

names, 98-99

overview, 85

How can we make this index more useful? Email us at indexes@samspublishing.com

events

527

parameters, 90-93

recursive events, 88

sample project

event handlers, 94-98

user interface, 93-94

SelectedIndexChanged, 189

TextChanged, 87, 163

Tick, 87, 186

triggering

by objects, 87-88

by operating

systems, 88

overview, 86

through user

interaction, 87

Excel automation

creating workbooks, 489

instantiating automation

server, 488-489

making Excel visible, 489

modifying workbooks,

490-491

referencing type libraries,

486-488

testing, 492

Exception object, 354

exceptions. See also errors

catching, 354

Exception object, 354

handling anticipated

exceptions, 355-358

StackOverflow, 88-89

Exclamation enumerator

(MessageBoxIcon)_, 383

executables, 11

Exists() method

Directory object, 440

File object, 432

Exit Do statement, 330

Exit For statement, 326

Exit Function statement, 244

Exit Sub statement, 244

Exit Try statement, 354

exiting

Do...Loop, 330-331

For...Next loops, 326

procedures, 244

Try...End Try structure, 354

explicit variable

declaration, 259-260

exponentiation (^)

operator, 283

expressions, 258-259

F

File menu commands, New

Project, 36

File object. See also files

Copy() method, 432-433

Delete() method, 434-435

Exists() method, 432

GetAttributes()

method, 436-437

GetCreationTime()

method, 436

GetLastAccessTime()

method, 436

GetLastWriteTime()

method, 436

Move() method, 433-434

FileLen() function, 439

files

attributes

determining, 436-437

viewing in Picture Viewer

program, 437-439

browsing, 24-27

copying, 432-433

deleting, 434-435

determining whether file

exists, 432

File object

Copy() method, 432-433

Delete() method,

434-435

Exists() method, 432

GetAttributes()

method, 436-437

GetCreationTime()

method, 436

GetLastAccessTime()

method, 436

GetLastWriteTime()

method, 436

Move() method, 433-434

528

events

log files

creating, 459-461

displaying, 461-463

testing, 463-464

moving, 433-434

OpenFileDialog control

creating file filters, 428

overview, 425-428

showing Open File dialog

box, 428-429

project files, 55-57

renaming, 434

returning date/time

information about, 436

SaveFileDialog control,

429-431

text files

Picture Viewer log files,

459-464

reading, 457-459

writing to, 455-457

Fill() method, 472

filters, 428

Finally statement, 352

floating design windows, 38

Font object, 415

For statement, 324

For...Next loops

continuing before Next is

reached, 326

example, 326-329

exiting, 326

For statement, 324

Next statement, 324-325

Step keyword, 325-326

syntax, 323

form modules, 229

Format() function, 300-302

Format16bppGrayScale value

(pixelformat argument), 407

Format16bppRgb555 value

(pixelformat argument), 407

Format24bppRgb value (pix-

elformat argument), 407

formatting dates/times,

300-301

FormBorderStyle property

(forms), 116-117

forms

background color, 108-110

background images,

111-113

borders, 115-117

close buttons, 114-115

Collections Example, 79-81

context menus

assigning shortcut keys

to, 214-215

creating, 212-214

controlling size of, 117

controls

adding, 43-44, 128-129

alignment, 135-136

anchoring, 138-141

Button. See buttons

CheckBox, 166

ComboBox, 177-179

Context Menu Strip,

212-214

definition, 19, 155

evenly spacing, 137

Group Box, 167

Image List, 190-191

invisible controls, 22-24

Label, 155-156

layering, 144

List View, 191-196

ListBox, 170-177

making controls same

size, 137

Menu Strip, 204-206

OpenFileDialog

controls, 22-24

Panel, 167-168

PictureBox controls,

21-22, 30

properties, 137-138

Radio Button, 168-170

selecting groups

of, 133-135

snapping to grid,

129-131

snapping to

lines, 132-133

Status Bar, 221-223

Tab, 186-190

Text Box, 157-163

Timer, 183-186

ToolStrip, 216-219

How can we make this index more useful? Email us at indexes@samspublishing.com

forms

529

Tree View, 197-200

visible controls, 20-22

definition, 11

displaying

initial display

position, 121-122

maximized state,

120-121

minimized state,

120-121

normal state, 120-121

form classes, 15

Graphic objects, 406

hiding, 123

icons, 16-17, 113-114

lists. See lists

maximize buttons, 114-115

MDI (multiple-document

interface) forms, 147-150

minimize buttons, 114-115

modal versus nonmodal,

119-120

names, 13-15, 106

overview, 105-106

properties

ActiveMdiChild, 150

AutoScroll, 146

AutoScrollMargin, 146

AutoScrollMinSize, 146

BackColor, 108-110

BackgroundImage,

111-113

FormBorderStyle,

116-117

Height, 17-18

Icon, 17, 113

IsMdiContainer, 148

MaximumSize, 117

MdiParent, 150

MinimumSize, 117

Name, 13-15, 106

Opacity, 145

ShowInTaskbar, 123

StartPosition, 121-122

Text, 15-16, 108

TopMost, 144

Visible, 123

Width, 17-18

WindowState, 120-121

resizing, 17-19

scrollable forms, 145-146

showing, 118-119

Startup forms, 150-151

status bars, 221-223

tab order, 142-144

templates, 15

title bars, 108

toolbars

buttons, 217-219

creating, 216

drop-down menus for,

221

programming, 220-221

top-level menus

assigning shortcut keys

to, 214-215

checked menu items,

208-209

creating, 204-206

creating menu

items, 207

deleting menu

items, 208

moving menu items, 208

programming, 210-212

topmost nonmodal win-

dows, 144

transparent forms, 145

unloading, 123-124

forward references, 13

frames, 167

Friend keyword, 272, 367

FromImage() method, 408

FullRowSelect property (List

View control), 195

Function keyword, 58, 237

functions. See also

specific functions

calling, 238-241

declaring, 237

definition, 232

exiting, 244

parameters, 242-244

recursive loops, 245

530

forms

G

g_ prefix, 273

garbage collection, 514-515

GDI (Graphical Device

Interface), 406

Get statement, 368-369

GetAttributes() method,

436-437

GetCreationTime() method, 436

GetLastAccessTime()

method, 436

GetLastWriteTime()

method, 436

GetSetting() function, 445

GetValue() method, 448

global scope, 269-270

GoTo statement, 317-318

GotoExample() subroutine, 317

Graphical Device Interface

(GDI), 406

graphics

adding to form back-

grounds, 111-113

circles, 414

ellipses, 414

GDI (Graphical Device

Interface), 406

Graphics object

creating for bitmaps,

407-408

creating for forms/

controls, 406

overview, 405-406

icons

adding to forms, 16-17

adding to message

boxes, 383-385

assigning to

forms, 113-114

lines, 414

overview, 405

pens

creating, 408

DashStyle property,

408-409

definition, 408

Persisting Graphics project

example, 417-422

persisting on forms, 416

rectangles, 412-414

storing in image

lists, 190-191

system colors, 409-412

text, drawing, 415-416

Graphics object. See

also graphics

creating for bitmaps,

407-408

creating for forms/

controls, 406

overview, 405-406

GrayText system color, 411

grid, snapping controls

to, 129-131

GridSize setting (grid), 130-131

Group Box control, 167

group boxes, 167

groups of controls

properties, 137-138

selecting, 133-135

spacing, 137

H

Handles keyword, 99

handling exceptions, 355-358

Height property (forms), 17-18

Help, 59

Hidden flag (files), 437

Hide() method, 124

hiding

code windows, 12

design windows, 38

forms, 123

toolbars, 41

Highlight system color, 411

HighlightText system color, 411

HKEY_CLASSES_ROOT node

(Registry), 444

HKEY_CURRENT_CONFIG node

(Registry), 444

HKEY_CURRENT_USER node

(Registry), 444, 447

HKEY_LOCAL_MACHINE node

(Registry), 444

HKEY_USERS node

(Registry), 444

hyphen (-), 283

How can we make this index more useful? Email us at indexes@samspublishing.com

hyphen

531

I

Icon property (forms), 17, 113

icons

adding to forms, 16-17

adding to message

boxes, 383-385

assigning to forms,

113-114

IDE (integrated development

environment), 9

If...Then statement

ElseIf statement, 309-310

If...Then...Else, 308-309

nesting, 310

simple example, 306-308

If...Then...Else statement,

308-309

Ignore enumerator

(DialogResult), 386

IL (Intermediate Language),

511-512

Image List control, 190-191

ImageIndex property (List View

control), 193

images

adding to form

backgrounds, 111-113

circles, 414

ellipses, 414

GDI (Graphical Device

Interface), 406

Graphics object

creating for bitmaps,

407-408

creating for forms/

controls, 406

overview, 405-406

icons

adding to forms, 16-17

adding to message

boxes, 383-385

assigning to

forms, 113-114

lines, 414

overview, 405

pens

creating, 408

DashStyle property,

408-409

definition, 408

Persisting Graphics project

example, 417—422

persisting on forms, 416

rectangles, 412-414

storing in image

lists, 190-191

system colors, 409-412

text, drawing, 415-416

ImageSize property (Image

control), 191

Immediate window, 346-351

importing namespaces,

468-469

InactiveBorder system

color, 411

InactiveCaption system

color, 411

InactiveCaptionText

system color, 411

Inflate() method, 413

Information enumerator

(MessageBoxIcon), 383

inheritance, 64

initializing variables, 275-278

InputBox() function, 391-393

Insert() method, 173

instantiation, 74

automation servers

Excel, 488-489

Word, 493

objects

early-binding object

variables, 374-376

in variable

declarations, 376

late-binding object

variables, 372-374

object lifetimes,

377-378

overview, 371-372

releasing object

references, 377

Instr() function, 293-294

int prefix, 272

Integer data type, 251

integrated development

environment (IDE), 9

IntelliSense, 68

532

Icon property

interfaces

creating, 11, 364-366

definition, 363

methods

creating, 371

definition, 365

properties

declaring, 366-368

definition, 365

read-only

properties, 370

readable

properties, 368-369

writable properties, 369

write-only

properties, 370

Intermediate Language

(IL), 511-512

invisible at runtime

controls, 22-24

invisible controls, 22-24

invoking methods, 72

IsDate() function, 301

IsMdiContainer property

(forms), 148

IsNumeric() function,

307, 349

items

list items

adding, 172-173,

193-196

clearing, 175

removing, 173-174, 196

retrieving information

about, 175-176

sorting, 177

menu items

checked menu items,

208-209

creating, 207

deleting, 208

moving, 208

Items collection,

171-172, 217-219

iterative processing, 78

J-K

JITter (just-in-time

compiler), 512

keyboard events, handling,

393-396

KeyDown event, 394

KeyPress event, 394-396

keys

Registry keys

creating, 446-447

deleting, 447

getting/setting key

values, 448-449

shortcut keys,

assigning to

menus, 214-215

KeyUp event, 394

keywords. See also statements

As, 58

ByRef, 243

ByVal, 243

definition, 69

Friend, 272, 367

Function, 58, 237

Handles, 99

Let, 66

Me, 69

Mod, 284

New, 372, 376-377

Private, 91, 232, 268, 367

prohibited in names, 258

Public, 232, 269, 367

ReadOnly, 370

Return, 237

Step, 325-326

Sub, 58, 91, 233

To, 312

WriteOnly, 370

L

Label control, 155-156

labels

code labels, 317

creating, 155-156

How can we make this index more useful? Email us at indexes@samspublishing.com

labels

533

languages

common language

runtime, 510-511

IL (Intermediate Language),

511-512

machine language, 512

LargeImageList property (List

View control), 194

late-binding object variables,

372-374

layering controls, 144

LayoutMode setting (grid), 130

Left() function, 291-292

Len() function, 291

Let keyword, 66

libraries

definition, 81

type libraries, 492-493

lifetimes of objects, 377-378

line continuation

character (_), 77

lines, 414

snapping controls

to, 132-133

list boxes

adding items to

lists, 172-173

clearing lists, 175

Items collection, 171-172

overview, 170-171

removing items from

lists, 173-174

retrieving item

information, 175-176

sorting lists, 177

List View control

adding list items, 193-196

columns, 192-193

overview, 191-192

removing all list items, 196

removing list items, 196

ListBox control

adding items to

lists, 172-173

clearing lists, 175

Items collection, 171-172

overview, 170-171

removing items from

lists, 173-174

retrieving item information,

175-176

sorting lists, 177

lists

adding items to, 172-173,

193-196

clearing, 175, 196

columns, 192-193

drop-down lists, 177-179

image lists, 190-191

list boxes

adding items to

lists, 172-173

clearing lists, 175

Items collection,

171-172

overview, 170-171

removing items from

lists, 173-174

retrieving item

information, 175-176

sorting lists, 177

List Views

adding list

items, 193-196

columns, 192-193

overview, 191-192

removing all list

items, 196

removing list items, 196

removing items from,

173-174, 196

retrieving item

information, 175-176

sorting, 177

literal values, 258

lng prefix, 272

loading Registry

options, 451-452

local (procedure-level)

scope, 267-268

Location property

(MouseEventArgs), 92

log files

creating, 459-461

displaying, 461-463

testing, 463-464

534

languages

logic, Boolean

And operator, 288

definition, 281

Not operator, 288-289

Or operator, 289

overview, 287-288

Xor operator, 289

Long data type, 251

loops

definition, 323

Do...Loop

example, 332-334

exiting, 330-331

overview, 329

syntax, 330

For...Next

continuing before Next

is reached, 326

example, 326-329

exiting, 326

For statement, 324

Next statement,

324-325

Step keyword, 325-326

syntax, 323

recursive loops, 245

While...End While, 334

LTrim() function, 295

M

m_ prefix, 273

machine language, 512

macros, 490

magic numbers, 254

managed code, 510

Manual value (StartPosition

property), 122

math

addition, 282

division, 283

exponentiation, 283

modulus arithmetic, 284

multiplication, 283

negation, 283

operator precedence,

284-286

overview, 281-282

subtraction, 283

maximize buttons, 114-115

maximized state

(forms), 120-121

maximum length of text

boxes, 161-162

MaximumSize property

(forms), 117

MaxLength property (Text

Box control), 161-162

MDI (multiple-document

interface) forms, 147-150

MdiParent property

(forms), 150

Me keyword, 69

Me.Close() statement, 28

menu commands

File menu, New Project, 36

Project menu

Add Class, 364

Add Module, 230

Automate Excel

Properties, 486

Automate Word

Properties, 492

View menu, Properties

Window, 38

Menu Strip control, 204-206

Menu system color, 411

menus

context menus

assigning shortcut

keys to, 214-215

creating, 212-214

overview, 204

top-level menus

assigning shortcut

keys to, 214-215

checked menu

items, 208-209

creating, 204-206

creating menu

items, 207

deleting menu

items, 208

moving menu items, 208

programming, 210-212

How can we make this index more useful? Email us at indexes@samspublishing.com

menus

535

MenuText system color, 411

message boxes

buttons/icons, 383-385

determining which button is

clicked, 385-386

displaying, 58-59, 381-382

message-writing

guidelines, 386-387

MessageBox.Show()

method, 58, 80

MessageBoxButtons, 383

MessageBoxIcon, 383-384

metadata, 514

methods. See also

specific methods

definition, 71

dynamic nature of, 72

invoking, 72

Microsoft.VisualBasic

namespace, 513

Mid() function, 292-293

minimize buttons, 114-115

minimized state

(forms), 120-121

MinimumSize property

(forms), 117

Mod keyword, 284

modal forms, 119-120

modifying

Excel workbooks, 490-491

forms

background

color, 108-110

background images,

111-113

borders, 115-117

close buttons, 114-115

icons, 113-114

maximize buttons,

114-115

minimize buttons,

114-115

minimum/maximum

size, 117

names, 106

title bar text, 108

properties, 45-47, 67-71

records, 479

module-level scope, 268

modules

compared to

classes, 363-364

definition, 229

form modules, 229

standard (class)

modules, 229-231

modulus arithmetic, 284

mouse

double-clicking, 12

event handling, 396-399

MouseDown event,

92, 163, 397

MouseEnter event, 397

MouseHover event, 397

MouseLeave event, 397

MouseMove event,

93-98, 163, 397

MouseUp event,

163, 397

MouseDown event, 92,

163, 397

MouseEnter event, 397

MouseHover event, 397

MouseLeave event, 397

MouseMove event,

93-98, 163, 397

MouseUp event, 163, 397

Move() method

Directory object, 440

File object, 433-434

moving

directories, 440

files, 433-434

menu items, 208

multidimensional

arrays, 264-266

Multiline property (Text

Box control), 158

multiline text boxes, 158-160

MultilineChanged event, 87

multiple-document interface

(MDI) forms, 147-150

multiplication (*) operator, 283

N

Name property, 13-15, 106

namespace (global)

scope, 269-270

namespaces, 514

importing, 468-469

overview, 513

536

MenuText system color

System.Data, 468

table of, 513

naming conventions

constants, 255

controls, 273

data types, 272

events, 98-99

forms, 106

name conflicts (scope), 270

objects, 13-15

reserved words, 258

variables, 273

navigating records, 477-479

negation (-) operator, 283

nesting If...Then

statements, 310

.NET Framework

common language runtime,

510-511

common type system, 514

definition, 8, 510

garbage collection, 514-515

IL (Intermediate Language),

511-512

namespaces, 514

importing, 468-469

overview, 513

System.Data, 468

table of, 513

overview, 509

recommended reading, 515

New keyword, 372, 376-377

New Project command

(File menu), 36

New Project dialog box,

9-10, 34-35

NewRow() method, 480

Next statement, 324-325

No enumerator

(DialogResult), 386

nodes (Tree View)

adding, 197-199

clearing, 200

definition, 81

removing, 199-200

Nodes collection

Add() method, 197-199

Clear() method, 200

Remove() method, 199-200

None enumerator

DialogResult, 386

MessageBoxIcon, 383

nonmodal forms, 119-120

nonvisual controls, 22-24

Normal flag (files), 437

normal state (forms), 120-121

Not operator, 288-289

Nothing value (variables), 377

numbers, magic, 254

O

obj prefix, 272

Object Browser, 81

Object data type, 251

object libraries. creating

references to

Excel, 486-488

Word, 492-493

object models, 485

object-oriented

programming (OOP), 230

object-oriented

programmming, 64

objects

ActiveCell, 490

ADO.NET objects.

See ADO.NET

Application, 488

collections

Collections Example

form, 79-81

definition, 78

iterative processing, 78

structure of, 79

CommandBuilder, 473

containers, 167

control objects.

See controls

definition, 64

Directory, 440

Exception, 354

How can we make this index more useful? Email us at indexes@samspublishing.com

objects

537

File. See also files

Copy() method, 432-433

Delete() method,

434-435

Exists() method, 432

GetAttributes()

method, 436-437

GetCreationTime()

method, 436

GetLastAccessTime()

method, 436

GetLastWriteTime()

method, 436

Move() method, 433-434

Font, 415

form objects. See forms

Graphics. See also graphics

creating for bitmaps,

407-408

creating for forms/

controls, 406

overview, 405-406

instantiation, 74

early-binding object

variables, 374-376

in variable

declarations, 376

late-binding object

variables, 372-374

object lifetimes,

377-378

overview, 371-372

releasing object

references, 377

methods

definition, 71

dynamic nature of, 72

invoking, 72

naming, 13-15

Object Browser, 81

object-oriented

programmming, 64

overview, 63-64

properties

color properties, 47-49

definition, 13

displaying, 13

getting, 65-67

modifying, 67-71

overview, 65

property

descriptions, 49-50

referencing, 65-66

setting, 65-67

viewing and

changing, 45-47

Range, 490

Rectangle, 412-413

sample project

interface, 73

object-based

code, 74-77

overview, 73

testing, 78

selecting in Properties

window, 45

Selection, 494

SqlConnection, 468

triggering events, 87-88

OK enumerator

(DialogResult), 386

OK enumerator

(MessageBoxButtons), 383

OKCancel enumerator

(MessageBoxButtons), 383

OleDBConnection object

Close() method, 471

connecting to databases,

469-471

ConnectionString

property, 470

definition, 468

disconnecting from

databases, 471

Open() method, 471

On Error statements, 351

OOP (object-oriented

programming), 230

Opacity property (forms), 145

Open File dialog box, 428-429

Open() method, 471

OpenFileDialog control

adding to forms, 22-24

creating file filters, 428

overview, 425-428

showing Open File dialog

box, 428-429

opening projects, 36

OpenPicture() function,

234-235, 356, 459

538

objects

operators

addition (+), 282

And, 288

comparison operators,

286-287

concatenation (&), 290-291

division (/), 283

exponentiation (^), 283

multiplication (*), 283

negation (-), 283

Not, 288-289

Or, 289

precedence, 284-286

subtraction (-), 283

Xor, 289

Or operator, 289

P

Panel control, 167-168

parameters

defined, 91

definition, 58, 90

overview, 91-93

passing, 242-244

parentheses (), 302

passing

literal values to

variables, 258

parameters, 242-244

PasswordChar, 162

PasswordChar property (Text

Box control), 162

passwords, 162-163

Pen() method, 408

pens

creating, 408

DashStyle property,

408-409

definition, 408

period (.), 65, 68

persistence of graphics, 416

Persisting Graphics

project, 417-422

picShowPicture_MouseMove

procedure, 95

Picture Viewer program

browsing files, 24-27

ClickOnce file

creating, 500-503

testing, 504

uninstalling, 504-505

controls

Button controls, 20-21

definition, 19

invisible controls, 22-24

OpenFileDialog

controls, 22-24

PictureBox

controls, 21-22, 30

visible controls, 20-22

drawing button

Clear() method, 75

CreateGraphics

method, 74

Dispose() method, 77

DrawRectangle()

method, 76-77

overview, 73

properties, 73

variables, 74

file properties, 437-439

log files

creating, 459-461

displaying, 461-463

testing, 463-464

MouseMove event

event handlers, 94-98

user interface, 93-94

project, creating, 9-11

quitting, 27

Registry

displaying options

from, 449-450

loading options

from, 451-452

saving options to, 451

running, 28-29

saving, 16

testing, 78, 452-455

variables

creating, 274

initializing, 275-278

ViewerForm

icon, 16-17

naming, 13-15

resizing, 17-19

Text property, 15-16

How can we make this index more useful? Email us at indexes@samspublishing.com

Picture Viewer program

539

PictureBox controls, 21-22, 30

pictures. See graphics

pixelformat argument

(Bitmap() method), 407

pixels, 17

plus sign (+), 51, 282

polymorphism, 64

populating DataTables, 474

pound sign (#), 258

Practical Standards for

Microsoft Visual Basic .NET,

Second Edition, 273, 319

precedence of operators,

284-286

prefixes

for controls, 273

for data types, 272

for variables, 273

Private keyword, 91,

232, 268, 367

procedural languages, 85

procedure-level scope, 267-268

procedures. See also

specific procedures

calling, 238-241

declaring, 58

definition, 58, 229, 232

event procedures, 86

exiting, 244

parameters, 242-244

picShowPicture_

MouseMove, 95

recursive loops, 245

subroutines, 232-236

processor independent

code, 512

programming

menus, 210-212

toolbars, 220-221

programs

automation

definition, 485

Excel, 486-492

overview, 485-486

Word, 492-493

ClickOnce applications

advanced settings, 505

creating with Publish

Wizard, 500-503

overview, 499-500

testing, 504

uninstalling, 504-505

creating, 11

definition, 8, 52

executables, 11

interfaces, 11

Picture Viewer. See Picture

Viewer program

quitting, 27

self-contained

applications, 500

Project menu commands

Add Class, 364

Add Module, 230

Automate Excel

Properties, 486

Automate Word

Properties, 492

projects. See also

specific projects

components, 53-54

creating, 9-11, 34-36

definition, 52

managing with Solution

Explorer

adding/removing

files, 55-57

overview, 50-52

project components,

53-54

project properties, 54

solutions, 52-53

opening, 36

properties, 54

running, 28-29

saving, 16

properties. See also

specific properties

button properties, 67-71

color properties, 47-49

control properties, 137-138

declaring, 366-368

definition, 13, 365

displaying, 13

getting, 65

modifying, 67-71

object properties, 65-67

project properties, 54

property descriptions, 49-50

read-only properties,

67, 370

540

PictureBox controls

readable properties,

368-369

referencing, 65-66

setting, 65

viewing and

changing, 45-47

writable properties, 369

write-only properties, 370

Properties window, 12

color properties, 47-49

overview, 44

property descriptions, 49-50

selecting objects, 45

viewing and changing

properties, 45-47

Properties Window command

(View menu), 38

Public Function statement, 237

Public keyword, 232, 269, 367

Public Sub statement, 232-233

Publish Wizard, 500-503

Q–R

Question enumerator

(MessageBoxIcon), 383

Radio Button control, 168-170

radio buttons, 168-170,

315-316

Range object, 490

read-only properties, 67, 370

readable properties, 368-369

reading text files, 457-459

ReadLine() method, 458

ReadOnly keyword, 370

ReadToEnd() method, 458

ReadyOnly flag (files), 437

records

creating, 480-481

deleting, 481-482

editing, 479

navigating, 477-479

rectangles, 412-414

recursive events, 88

recursive loops, 245

reference, passing by, 242-244

reference-tracing garbage

collection, 515

referencing

arrays, 263-264

DataRows, 475-476

object properties, 65-66

type libraries

Excel, 486-488

Word, 492-493

REG_BINARY data type, 445

REG_EXPAND_SSZ data

type, 445

REG_MULTI_SSZ data type, 445

REG_SZ data type, 445

regedit command, 455

Registry

accessing, 445-446

displaying options

from, 449-450

keys

creating, 446-447

deleting, 447

getting/setting key

values, 448-449

loading options

from, 451-452

overview, 443

regedit command, 455

saving options to, 451

structure, 444-445

releasing object

references, 377

Remove() method

Items collection,

173-174, 196

Nodes collection, 199-200

RemoveAt() method, 174

removing

directories, 440

files, 434-435

list items, 173-174, 196

menu items, 208

project files, 55-57

records, 481-482

Registry keys, 447

Tree View nodes, 199-200

renaming files, 434

Replace() function, 295

replacing text within

strings, 295

How can we make this index more useful? Email us at indexes@samspublishing.com

replacing text within strings

541

reserved words

As, 58

ByRef, 243

ByVal, 243

definition, 69

Friend, 272, 367

Function, 58, 237

Handles, 99

Let, 66

Me, 69

Mod, 284

New, 372, 376-377

Private, 91, 232, 268, 367

prohibited in names, 258

Public, 232, 269, 367

ReadOnly, 370

Return, 237

Step, 325-326

Sub, 58, 91, 233

To, 312

WriteOnly, 370

resizing

forms, 17-19

toolbars, 42

resolution (screen), 12

Retry enumerator

(DialogResult), 386

RetryCancel enumerator

(MessageBoxButtons), 383

Return keyword, 237

Right() function, 292

routines. See procedures

rows, 475-476

RTrim() function, 295

running

database example, 482

projects, 28-29

runtime errors, 340-343

S

s_ prefix, 273

Sams Teach Yourself Object-

Oriented Programming with

Visual Basic .NET in 21 Days,

Second Edition, 230

Save Project dialog box, 16

SaveFileDialog control,

429-431

SaveSetting() function, 445

saving

projects, 16

Registry options, 451

Sbyte data type, 251

scope

block scope, 267

browsing scope, 81

definition, 250

global scope, 269-270

module-level scope, 268

name conflicts, 270

naming conventions, 273

overview, 266

procedure-level

scope, 267-268

screen resolution, 12

scrollable forms, 145-146

scrollbars, 160

Scrollbars property (Text

Box control), 160

SDI (single-document interface)

forms. See forms, 147

security, digital signatures, 504

Select Case statement

example, 312-315

multiple comparisons,

311-312

overview, 310-311

radio buttons, evaluating,

315-316

Select() method, 490

SelectedIndexChanged event,

189

selecting

controls, 133-135

objects, 45

Selection object, 494

self-contained applications, 500

SendToBack() method, 144

servers

automation servers,

488-489, 493

definition, 363

Set statement, 369

SetValue() method, 448

542

reserved words

shapes

circles, 414

ellipses, 414

lines, 414

rectangles, 412-414

sho prefix, 272

Short data type, 251

shortcut keys, assigning to

menus, 214-215

shortcut menus

assigning shortcut keys

to, 214-215

creating, 212-214

Show() method, 58, 80, 119,

381-382

ShowCurrentRecord()

method, 476-477

ShowDialog() method, 25, 119

ShowGrid setting (grid),

130-132

showing

design windows, 38

forms, 118-119

initial display

position, 121-122

maximized

state, 120-121

minimized

state, 120-121

normal state, 120-121

message boxes, 58-59

object properties, 13

Open File dialog

box, 428-429

Picture Viewer log

files, 461-463

properties, 45-47

Registry options, 449-450

text

labels, 155-156

text boxes, 157-163

toolbars, 41

ShowInTaskbar property

(forms), 123

ShowInVisible Taskbar

property (forms), 123

signatures, digital, 504

Single data type, 251

single-document interface (SDI)

forms. See forms

sizing

controls, 137

forms, 17-19, 117

grips, 222

toolbars, 42

slash (/), 283

Sleep() function, 328

Snap to Lines layout

feature, 132-133

SnapToGrid setting (grid), 130

sng prefix, 272

Solidvalue (DashStyle

property), 408

Solution Explorer

adding/removing project

files, 55-57

overview, 50-52

project components, 53-54

project properties, 54

solutions, 8, 52-53

Sorted property (ListBox

control), 177

sorting lists, 177

spacing controls, 137

spaghetti code, 317

SqlConnection object, 468

StackOverflow exception, 88-89

stacks, 245

standard (class) modules

compared to classes,

363-364

creating, 230-231

definition, 229

Start Page

creating new

projects, 34-36

opening existing

projects, 36

overview, 34

starting Visual Basic 2008, 8-9

StartPosition property (forms),

121-122

Startup forms, 150-151

statements. See also

keywords; loops

Catch, 352-355

definition, 96

Dim, 257-258

Else, 308-309

ElseIf, 309-310

How can we make this index more useful? Email us at indexes@samspublishing.com

statements

543

End Function, 237

End If, 26

End Sub, 232-233

Exit Do, 330

Exit For, 326

Exit Function, 244

Exit Sub, 244

Exit Try, 354

Finally, 352

For, 324

Get, 368-369

GoTo, 317-318

If...Then

ElseIf statement,

309-310

If...Then...Else, 308-309

nesting, 310

simple example,

306-308

Next, 324-325

On Error, 351

Public Function, 237

Public Sub, 232-233

Select Case

example, 312-315

multiple comparisons,

311-312

overview, 310-311

radio buttons,

evaluating, 315-316

Set, 369

Try, 352

Try...Catch...Finally, 319,

351-354

states, 37-38

static text, displaying with Label

control, 155-156

static variables, 270-271

Status Bar control, 221-223

status bars, 221-223

Step keyword, 325-326

stepping into code, 345

stepping out of code, 345

stepping over code, 345

Stop enumerator

(MessageBoxIcon), 384

str prefix, 272

StreamReader class, 457-459

StreamWriter class, 455-457

strict typing

definition, 259-260

enabling, 261-262

String data type, 251

strings

concatenation, 80,

96, 290-291

determining number of

characters in, 291

determining whether

one string contains

another, 293-294

replacing text within, 295

retrieving text from left

side of, 291-292

retrieving text from

right side of, 292

retrieving text

within, 292-293

trimming, 294-295

zero-length strings,

346, 458

structure (block) scope, 267

structured error handling, 351

structures, DateTime, 297, 301

Sub keyword, 58, 91, 233

SubItems property (List View

control), 193

subroutines. See also

specific subroutines

calling, 238-241

declaring, 232-236

definition, 232

exiting, 244

parameters, 242-244

recursive loops, 245

subtraction (-) operator, 283

suffixes (names), 15

system colors, 409-412

System flag (files), 437

System namespace, 513

System.Data namespace,

468, 513

System.Diagnostics

namespace, 513

System.Drawing

namespace, 513

System.IO namespace, 513

544

statements

System.Net namespace, 513

System.Security

namespace, 513

System.Web namespace, 514

System.Windows.Forms

namespace, 514

System.XML namespace, 514

T

Tab control, 186-190

tab order (forms), 142-144

tabbed dialog boxes, 186-190

TabIndex property

(controls), 142-144

tables

creating records, 480-481

definition, 468

deleting records, 481-482

editing records, 479

navigating records, 477-479

overview, 472-474

populating, 474

TabPages collection, 187

taskbar, hiding forms in, 123

templates, 15

Temporary flag (files), 437

terminating programs, 27

testing

ClickOnce applications, 504

drawing project, 78

Excel automation, 492

Picture Viewer program,

452-455, 463-464

text

displaying on form title

bars, 108

drawing, 415-416

Font object, 415

labels, 155-156

strings

concatenation, 80,

96, 290-291

determining number of

characters in, 291

determining whether

one string contains

another, 293-294

replacing text

within, 295

retrieving text from left

side of, 291-292

retrieving text from right

side of, 292

retrieving text within,

292-293

trimming, 294-295

zero-length strings,

346, 458

text boxes

events, 163

maximum length,

161-162

multiline text boxes,

158-160

overview, 157

password fields,

162-163

scrollbars, 160

text alignment, 157-158

text files

Picture Viewer log

files, 459-464

reading, 457-459

writing to, 455-457

Text Box control

events, 87, 163

maximum length, 161-162

multiline text boxes,

158-160

overview, 157

password fields, 162-163

scrollbars, 160

text alignment, 157-158

Text property

forms, 15-16, 108

Label control, 156

TextAlign property (Text Box

control), 157-158

TextChanged event, 87, 163

Tick event, 87, 186

TimeOfDay() function, 185

Timer control, 87-88, 183-186

times

adding to/subtracting

from, 297-298

determining intervals

between, 298-299

How can we make this index more useful? Email us at indexes@samspublishing.com

times

545

file date/time information,

returning, 436

formatting, 300-301

retrieving current, 301

title bars (forms), 108

To keyword, 312

toolbars

adding toolbar buttons,

217-219

creating, 216

docking, 42

drop-down menus for, 221

overview, 41

programming, 220-221

resizing, 42

showing/hiding, 41

Toolbox window, 12, 43-44

ToolStrip control, 216-219.

See also toolbars

top-level menus

assigning shortcut keys

to, 214-215

checked menu

items, 208-209

creating, 204-206

creating menu items, 207

deleting menu items, 208

moving menu items, 208

programming, 210-212

topmost nonmodal

windows, 144

TopMost property (forms), 144

traditional controls.

See controls

transparent forms, 145

TransparentColor property

(Image List control), 191

Tree View control

adding nodes, 197-199

clearing all nodes, 200

overview, 197

removing nodes, 199-200

triggering

events

by objects, 87-88

by operating

systems, 88

overview, 86

through user

interaction, 87

methods, 72

Trim() function, 295

trimming strings, 294-295

Try statement, 352

Try...Catch...Finally

structure, 319, 351-354

turning on strict

typing, 261-262

type libraries, creating

references to

Excel, 486-488

Word, 492-493

types

Boolean, 251

Byte, 251

casting, 253-254

Char, 251

common type system, 514

Date, 251, 296-297

Decimal, 251

definition, 250

determining, 252

Double, 251

guidelines for use, 252

Integer, 251

Long, 251

naming conventions, 272

Object, 251

overview, 250

REG_BINARY, 445

REG_EXPAND_SSZ, 445

REG_MULTI_SSZ, 445

REG_SZ, 445

Sbyte, 251

Short, 251

Single, 251

strict typing

definition, 259-260

enabling, 261-262

String, 251

type conversion

functions, 253

UInteger, 251

ULong, 251

UShort, 251

TypeText() method, 494

546

times

U

UInteger data type, 251

ULong data type, 251

underscore (_), 77, 90, 233

uninstalling ClickOnce

applications, 504-505

unloading forms, 123-124

unmanaged code, 510

unstructured error

handling, 351

Update() method, 472, 479

upward casting, 253

user interaction

custom dialog

boxes, 387-391

InputBox() function,

391-393

keyboard events, 393-396

message boxes

determining which

button is clicked,

385-386

displaying

buttons/icons,

383-385

displaying with

MessageBox.Show()

function, 381-382

message-writing

guidelines, 386-387

mouse events, 396-399

overview, 381

triggering events, 87

UShort data type, 251

V

value, passing by, 242-244

values, storing in variables, 57

variables. See also data types

arrays. See arrays

Date, 296-297

declaring, 57, 257

explicit variable

declaration, 259-260

simple example,

257-258

static variables,

270-271

definition, 57, 249

Drawing project, 74

in expressions, 258-259

naming conventions, 273

passing literal values

to, 258

Picture Viewer

program variables

creating, 274

initializing, 275-278

scope

block scope, 267

global scope, 269-270

module-level scope, 268

name conflicts, 270

overview, 266

procedure-level

scope, 267-268

static variables, 270-271

View menu commands,

Properties Window, 38

ViewerForm

icon, 16-17

naming, 13-15

properties

Height, 17-18

Icon, 17

Name, 13-15

Text, 15-16

Width, 17-18

resizing, 17-19

viewing

design windows, 38

forms, 118-119

initial display

position, 121-122

maximized

state, 120-121

minimized

state, 120-121

normal state, 120-121

message boxes, 58-59

object properties, 13

Open File dialog

box, 428-429

Picture Viewer log

files, 461-463

properties, 45-47

Registry options, 449-450

text

labels, 155-156

text boxes, 157-163

toolbars, 41

How can we make this index more useful? Email us at indexes@samspublishing.com

viewing

547

views

List View control

adding list

items, 193-196

columns, 192-193

overview, 191-192

removing all list

items, 196

removing list items, 196

Tree View control

adding nodes, 197-199

clearing all nodes, 200

overview, 197

removing

nodes, 199-200

visible controls, 20-22

W

Warning enumerator

(MessageBoxIcon), 384

While...End While loops, 334

Width property (forms), 17-18

Window system color, 411

windows

code windows, hiding, 12

design windows

auto-hiding, 40-41

docking, 39-40

floating, 38

showing/hiding, 38

states, 37-38

Immediate, 346-351

Properties, 12

color properties, 47-49

overview, 44

property

descriptions, 49-50

selecting objects, 45

viewing and changing

properties, 45-47

Toolbox, 12

topmost nonmodal

windows, 144

Windows Registry. See Registry

WindowsDefaultBounds value

(StartPosition property), 122

WindowsDefaultLocation value

(StartPosition property), 122

WindowState property

(forms), 120-121

wizards, Publish

Wizard, 500-503

Word automation, 492

instantiating automation

server, 493

referencing type

libraries, 492-493

WordWrap property (Text

Box control), 160

workbooks (Excel)

creating, 489

modifying, 490-491

wrappers, 488

writable properties, 369

Write() method, 456

write-only properties, 370

WriteLine() method, 282,

350-351, 456-457

WriteOnly keyword, 370

writing to text files, 455-457

X-Y-Z

X property

(MouseEventArgs), 92

Xor operator, 289

Y property

(MouseEventArgs), 92

Yes enumerator

(DialogResult), 386

YesNo enumerator

(MessageBoxButtons), 383

YesNoCancel enumerator

(MessageBoxButtons), 383

zero-length strings, 346, 458

548

views

	Introduction
	Audience and Organization
	Conventions Used in This Book
	Onward and Upward!

	HOUR 1: Jumping in with Both Feet: A Visual Basic 2008 Programming Tour
	Starting Visual Basic 2008
	Creating a New Project
	Understanding the Visual Studio 2008 Environment
	Changing the Characteristics of Objects
	Adding Controls to a Form
	Designing an Interface
	Writing the Code Behind an Interface
	Running a Project
	Summary
	Q&A
	Workshop

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

