

LINQ Unleashed for C#
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32983-8
ISBN-10: 0-672-32983-2

Library of Congress Cataloging-in-Publication Data

Kimmel, Paul.

LINQ unleashed for C# / Paul Kimmel. — 1st ed.

p. cm.

ISBN 978-0-672-32983-8

1. C# (Computer program language) 2. Microsoft LINQ. I. Title.

QA76.73.C154K5635 2009

005.13’3—dc22

2008030703

Printed in the United States of America

First Printing August 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Karen Annett

Indexers
Lisa Stumpf
Publishing Works

Proofreader
Linda Seifer

Technical Editor
Joe Kunk

Publishing
Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Compositor
Jake McFarland

Foreword

Data affects just about every aspect of our lives. Everything we do is analyzed, scrutinized,
and delivered back to us in the form of coupons and other marketing materials. When
you write an application, you can be sure that data in one form or another will be part of
the solution. As software developers, the ease with which we can store, retrieve, and
analyze data is crucial to our ability to develop compelling applications. Add to that the
fact that data can come in a number of different shapes and formats, and it quickly comes
to light that there is tremendous value in a consistent framework for accessing many
types of data.

Several different data access approaches have been developed for Windows developers
over the years. ADO and OLEDB and subsequently ADO.NET gave us universal access to
relational databases. MSXML and ADO.NET made it possible to inspect and manipulate
XML documents. Each of these technologies had their benefits and drawbacks, but one
common thread ran through each of them: They failed to deliver data access capabilities
in a way that felt natural to developers.

LINQ now makes data access a first-class programming concept in .NET, making it possi-
ble for developers to express queries in a way that makes sense to developers. What makes
LINQ unique is that it enables programmers to create type-safe data access code complete
with Intellisense support and compile time syntax checking.

Paul Kimmel has done an excellent job of presenting LINQ in a concise and complete
manner. Not only has he made LINQ approachable, but he has also masterfully explained
concepts such as Anonymous Types and Lambda Expressions that help make LINQ a
reality. The sample code throughout the book demonstrates the application of the tech-
nology in a clear and meaningful way. This is a great “Saturday morning with a pot of
coffee” kind of book. I hope you’ll dive in and get as much out of this book as I did.

Darryl Hogan
Architect Evangelist, Microsoft

Introduction

By the time you are holding this book in your hands, I
will have 30 years in since the first time I wrote some code.
That code was ROM-BASIC on a TRS-80 in Washington
grammar school in Owosso, Michigan, and I was in the
fifth grade. Making the “tank” slide back and forth shooting
blips across the screen was neat. Changing the code to
change blip speeds and numbers of targets was exhilarating.
Three decades later and I get more excited each passing
year. There are great technologies on the horizon like
Microsoft Surface, Popfly, and LINQ. This book is about
LINQ, or Language INtegrated Query.

LINQ is a SQL-like language for C#. When I first saw it, I
didn’t like it. My first impression was that someone had
glommed on a bastardization of C# and it was ugly like SQL
can get. I didn’t like it because I didn’t understand it.
However, I gave LINQ a second chance (as I want you to
do) and discovered that LINQ is thoroughly integrated,
tremendously powerful, and almost as much fun as a Tesla
Roadster or doing hammerheads in an Extra 300L.

The query capabilities of LINQ are extended to objects, SQL,
DataSets, XML, XSD, entities, and can be extended to other
providers like Active Directory or SharePoint. This means
that you can write queries—that are similar in syntax—
against objects, data, XML, XSD, entities, or Active Directory
(with a little work) much like you would a SQL query in a
database. And, LINQ is actually engineered artfully and bril-
liantly on top of generics as well as some new features in
.NET 3.5, such as extension methods, anonymous types, and
Lambda Expressions. Another very important characteristic
of LINQ is that it clearly demonstrates Microsoft’s willing-
ness to innovate and take the best of existing technologies

2 Introduction

like Lambda Calculus—invented in the 1930s—and if it’s good or great, incorporate these
elements into the tools and languages we love.

LINQ and its underpinnings are powerful and challenging, and in this book you will get
what you need to know to completely understand all that makes LINQ work and begin
using it immediately. You will learn about anonymous methods, extension methods,
Lambda Expressions, state machines, how generics and the CodeDOM play a big role in
powerful tools like LINQ, and writing LINQ queries and why you will want to do it in the
bigger, grander scheme of things. You will also learn how to save a ton of time and effort
by not hard-coding those elements that you will no longer need or want to hard-code, and
you will have a better grasp of how LINQ fits into n-tier architectures without breaking
guidelines that have helped you succeed to date.

Brought to you by a four-time Microsoft MVP and columnist for over a decade, LINQ
Unleashed for C# will teach you everything you need to know about LINQ and .NET 3.5
features and how to be more productive and have more fun than ever before.

Conventions Used in This Book
The following typographic conventions are used in this book:

Code lines, commands, statements, variables, and text you see onscreen appear in a
monospace typeface.

Occasionally in listings bold is used to draw attention to the snippet of code being discussed.

Placeholders in syntax descriptions appear in an italic monospace typeface. You replace
the placeholder with the actual filename, parameter, or whatever element it represents.

Italics highlight technical terms when they’re being defined.

A code-continuation icon is used before a line of code that is really a continuation of the
preceding line. Sometimes a line of code is too long to fit as a single line on the page. If
you see ➥ before a line of code, remember that it’s part of the line immediately above it.

The book also contains Notes, Tips, and Cautions to help you spot important or useful
information more quickly.

CHAPTER 1

Programming with
Anonymous Types

IN THIS CHAPTER

. Understanding Anonymous
Types

. Programming with Anonymous
Types

. Databinding Anonymous Types

. Testing Anonymous Type Equality

. Using Anonymous Types with
LINQ Queries

. Introducing Generic
Anonymous Methods

“Begin at the beginning and go on till you come to the end:
then stop.”

—Lewis Carroll, from Alice’s Adventures in Wonderland

Finding a beginning is always a little subjective in
computer books. This is because so many things depend on
so many other things. Often, the best we can do is put a
stake in the ground and start from that point. Anonymous
types are our stake.

Anonymous types use the keyword var. Var is an interest-
ing choice because it is still used in Pascal and Delphi
today, but var in Delphi is like ByRef in Visual Basic (VB) or
ref in C#. The var introduced with .NET 3.5 indicates an
anonymous type. Now, our VB friends are going to think,
“Well, we have had variants for years; big deal.” But var is not
a dumbing down and clogging up of C#. Anonymous types
are something new and necessary.

Before looking at anonymous types, let’s put a target on our
end goal. Our end goal is to master LINQ (integrated
queries) in C# for objects, Extensible Markup Language
(XML), and data. We want to do this because it’s cool, it’s
fun, and, more important, it is very powerful and expres-
sive. To get there, we have to start somewhere and anony-
mous types are our starting point.

Anonymous types quite simply mean that you don’t specify
the type. You write var and C# figures out what type is
defined by the right side, and C# emits (writes the code),
indicating the type. From that point on, the type is strongly
defined, checked by the compiler (not at runtime), and
exists as a complete type in your code. Remember, you

6 CHAPTER 1 Programming with Anonymous Types

didn’t write the type definition; C# did. This is important because in a query language,
you are asking for and getting ad hoc types that are defined by the context, the query
result. In short, your query’s result might return a previously undefined type.

An important concept here is that you don’t write code to define the ad hoc types—C#
does—so, you save time by not writing code. You save design time, coding time, and
debug time. Microsoft pays that cost. Anonymous types are the vessel that permit you to
use these ad hoc types. By the time you are done with this chapter, you will have
mastered the left side of the operator and a critical part of LINQ.

In addition, to balance the book, the chapters are laced with useful or related concepts that
are generally helpful. This chapter includes a discussion on generic anonymous methods.

Understanding Anonymous Types
Anonymous types defined with var are not VB variants. The var keyword signals the
compiler to emit a strong type based on the value of the operator on the right side.
Anonymous types can be used to initialize simple types like integers and strings but
detract modestly from clarity and add little value. Where var adds punch is by initializing
composite types on the fly, such as those returned from LINQ queries. When such an
anonymous type is defined, the compiler emits an immutable—read-only properties—class
referred to as a projection.

Anonymous types support IntelliSense, but the class should not be referred to in code, just
the members.

The following list includes some basic rules for using anonymous types:

. Anonymous types must always have an initial assignment and it can’t be null
because the type is inferred and fixed to the initializer.

. Anonymous types can be used with simple or complex types but add little value to
simple type definitions.

. Composite anonymous types require member declarators; for example, var joe =
new {Name=”Joe” [, declaratory=value, ...]}. (In the example, Name is the
member declaratory.)

. Anonymous types support IntelliSense.

. Anonymous types cannot be used for a class field.

. Anonymous types can be used as initializers in for loops.

. The new keyword can be used and has to be used for array initializers.

. Anonymous types can be used with arrays.

. Anonymous types are all derived from the Object type.

. Anonymous types can be returned from methods but must be cast to object, which
defeats the purpose of strong typing.

7Programming with Anonymous Types

1

. Anonymous types can be initialized to include methods, but these might only be of
interest to linguists.

The single greatest value and the necessity of anonymous types is they support creating
single-use elements and composite types returned by LINQ queries without the need for
the programmer to fully define these types in static code. That is, the designers can focus
significantly on primary domain types, and the programmers can still create single-use
anonymous types ad hoc, letting the compiler write the class definition.

Finally, because anonymous types are immutable—think no property setters—two sepa-
rately defined anonymous types with the same field values are considered equal.

Programming with Anonymous Types
This chapter continues by exploring all of the ways you can use anonymous types, paving
the way up to anonymous types returned by LINQ queries, stopping at the full explana-
tion of the LINQ query here. You can simply think of the query as a first look at queries
with the focus being on the anonymous type itself and what you can do with those types.

Defining Simple Anonymous Types

A simple anonymous type begins with the var keyword, the assignment operator (=), and
a non-null initial value. The anonymous type is assigned to the name on the left side of
the assignment operator, and the type emitted by the compiler to Microsoft Intermediate
Language (MSIL) is determined by the right side of the operator. For instance:

var title = “LINQ Unleashed for C#”;

uses the anonymous type syntax and assigns the string value to “LINQ Unleashed for C#”.
This code is identical in the MSIL to the following:

string title = “LINQ Unleashed for C#”;

This emitted code equality can be seen by looking at the Intermediate Language (IL) with
the Intermediate Language Disassembler (ILDASM) utility (see Figure 1.1).

The support for declaring simple anonymous types exists more for completeness and
symmetry than utility. In departmental language wars, purists are likely to rail against
such use as it adds ambiguity to code. The truth is the type of the data is obvious in such
simple use examples and it hardly matters.

Using Array Initializer Syntax

You can use anonymous type syntax for initializing arrays, too. The requirements are that
the new keyword must be used. For example, the code in Listing 1.1 shows a simple
console application that initializes an anonymous array of Fibonacci numbers. (The anony-
mous type and array initialization statement are highlighted in bold font.)

8 CHAPTER 1 Programming with Anonymous Types

FIGURE 1.1 Looking at the .locals init statement and the Console::Write(string) state-
ment in the MSIL, it is clear that title is emitted as a string.

LISTING 1.1 An Anonymous Type Initialized with an Array of Integers

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ArrayInitializer

{

class Program

{

static void Main(string[] args)

{

// array initializer

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21 };

Console.WriteLine(fibonacci[0]);

Console.ReadLine();

}

}

}

The first eight numbers in the Fibonacci system are defined on the line that begins var
fibonacci. Fibonacci numbers start with the number 1 and the sequence is resolved by
adding the prior two numbers. (For more information on Fibonacci numbers, check out
Wikipedia; Wikipedia is wicked cool at providing detailed facts about such esoterica.)

Even in the example shown in Listing 1.1, you are less likely to get involved in language
ambiguity wars if you use the actual type int[] instead of the anonymous type syntax
for arrays.

9Programming with Anonymous Types

1

Creating Composite Anonymous Types

Anonymous types really start to shine when they are used to define composite types, that
is, classes without the “typed” class definition. Think of this use of anonymous types as
defining an inline class without all of the typing. Listing 1.2 shows an anonymous type
representing a lightweight person class.

LISTING 1.2 An Anonymous Type Containing Two Fields and Two Properties Without All of the
Class Plumbing Typed By the Programmer

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ImmutableAnonymousTypes

{

class Program

{

static void Main(string[] args)

{

var dena = new {First=”Dena”, Last=”Swanson”};

//dena.First = “Christine”; // error - immutable

Console.WriteLine(dena);

Console.ReadLine();

}

}

}

The anonymous type defined on the line starting with var dena emits a class, referred to
as a projection, in the MSIL (see Figure 1.2). Although the projection’s name—the class
name—cannot be referred to in code, the member elements—defined by the member
declarators First and Last—can be used in code and IntelliSense works for all the elements
of the projection (see Figure 1.3).

Another nice feature added to anonymous types is the overloaded ToString method. If
you look at the MSIL or the output from Listing 1.2, you will see that the field names and
field values, neatly formatted, are returned from the emitted ToString method. This is
useful for debugging.

Adding Behaviors to Anonymous Composite Types
If you try to add a behavior to an anonymous type at initialization—for instance, by
using an anonymous delegate—the compiler reports an error. However, it is possible with
a little bending and twisting to add behaviors to anonymous types. The next section
shows you how.

10 CHAPTER 1 Programming with Anonymous Types

FIGURE 1.2 Anonymous types save a lot of programming time when it comes to composite
types, as shown by the elements emitted to MSIL.

FIGURE 1.3 IntelliSense works quite well with anonymous types.

Adding Methods to Anonymous Types
To really understand language possibilities, it’s helpful to bend and twist a language to
make it do things it might not have been intended to do directly. One of these things is
adding behaviors (aka methods). Although it might be harder to find a practical use for
anonymous type–behaviors, Listing 1.4 shows you how to add a behavior to and use that
behavior with an anonymous type. (The generic delegate Func in bold in the listing is
used to initial the anonymous type’s method.)

11Programming with Anonymous Types

1

LISTING 1.4 Adding a Behavior to an Anonymous Type

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Reflection;

namespace AnonysmousTypeWithMethod

{

class Program

{

static void Main(string[] args)

{

// adding method possibility

Func<string, string, string> Concat1 =

delegate(string first, string last)

{

return last + “, “ + first;

};

// whacky method but works

Func<Type, Object, string> Concat2 =

delegate(Type t, Object o)

{

PropertyInfo[] info = t.GetProperties();

return (string)info[1].GetValue(o, null) +

“, “ + (string)info[0].GetValue(o, null);

};

var dena = new {First=”Dena”, Last=”Swanson”, Concat=Concat1};

//var dena = new {First=”Dena”, Last=”Swanson”, Concat=Concat2};

Console.WriteLine(dena.Concat(dena.First, dena.Last));

//Console.WriteLine(dena.Concat(dena.GetType(), dena));

Console.ReadLine();

}

}

}

The technique consists of defining an anonymous delegate and assigning that anonymous
delegate to the generic Func class. In the example, Concat was defined as an anonymous
delegate that accepts two strings, concatenates them, and returns a string. You can assign
that delegate to a variable defined as an instance of Func that has the three string parame-
ter types. Finally, you assign the variable Concat to a member declarator in the anony-
mous type definition (referring to var dena = new {First=”Dena”, Last=”Swanson”,
Concat=Concat}; now).

12 CHAPTER 1 Programming with Anonymous Types

After the plumbing is in place, you can use IntelliSense to see that the behavior—Concat—
is, in fact, part of the anonymous type dena, and you can invoke it in the usual manner.

Using Anonymous Type Indexes in For Statements

The var keyword can be used to initialize the index of a for loop or the recipient object of
a foreach loop. The former is a simple anonymous type and the latter becomes a useful
construct when the container to iterate over is something more than a sample collection.
Listing 1.5 shows a for statement, and Listing 1.6 shows the foreach statement, both
using the var construct.

LISTING 1.5 Demonstrating How to Iterate Over an Array of Integers—Using the Fibonacci
Numbers from Listing 1.1—and the var Keyword to Initialize the Index

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousForLoop

{

class Program

{

static void Main(string[] args)

{

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21 };

for(var i=0; i<fibonacci.Length; i++)

Console.WriteLine(fibonacci[i]);

Console.ReadLine();

}

}

}

LISTING 1.6 Demonstrating Basically the Same Code but Using the More Convenient foreach
Construct

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousForEachLoop

{

class Program

{

static void Main(string[] args)

13Programming with Anonymous Types

1

LISTING 1.6 Continued

{

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21 };

foreach(var fibo in fibonacci)

Console.WriteLine(fibo);

Console.ReadLine();

}

}

}

The only requirement that must be met for an object to be the iterand in a foreach state-
ment is that it must functionally represent an object that implements IEnumerable or
IEnumerable<T>—the generic equivalent. Incidentally, this is also the same requirement
for bindability, as in binding to a GridView.

TIP

At any time, you can branch in for or foreach statements with the break or continue
keywords or the goto, return, or throw statements.

An all-too-common use of the for construct is to copy a subset of elements from one
collection of objects to a new collection, for example, copying all the customers in the
48843 ZIP code to a customersToCallOn collection. In C# 2.0, the yield return and yield

break key phrases actually played this role. For example, yield return signaled the
compiler to emit a state machine in MSIL—in essence, it emitted the copy collection for you.

In .NET 3.5, the ability to query collections, datasets, and XML to essentially ask questions
about data or copy some elements is one of those things that LINQ does very well. Listing
1.7 shows code that uses a LINQ statement to return just the numbers in the Fibonacci
short sequence that are divisible by 3. (For now, don’t worry about understanding all of
the elements of the query.)

LISTING 1.7 A foreach Statement Whose Iterand Is Derived from a LINQ Query

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousForEachLoopFromExpression

{

class Program

{

14 CHAPTER 1 Programming with Anonymous Types

LISTING 1.7 Continued

static void Main(string[] args)

{

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87 };

// uses LINQ query

foreach(var fibo in from f in fibonacci where f%3==0 select f)

Console.WriteLine(fibo);

Console.ReadLine();

}

}

}

The LINQ query—used as the iterand in the foreach statement—makes up this part of the
Listing 1.7:

from f in fibonacci where f % 3 == 0 select f

For now, it is enough to know that this query meets the requirement that it returns an
enumerable result, in fact, IEnumerable<T> where T is an int type.

If this is your first experience with LINQ, the query might look strange. The capability and
power and this book will quickly make them familiar and desirable friends. For now, it is
enough to know that queries meet the requirement of an enumerable resultset and can be
used in a foreach statement.

Anonymous Types and Using Statements

The using statement is shorthand notation for try...finally. With try...finally and
using, the purpose is to ensure resources are cleaned up before the using block exits or
the finally block is run. This is accomplished by calling Dispose, which implies that
items created in using statements implement IDisposable. Employ using when the
created types implement IDisposable—like SqlConnections—and use try...finally

when you need to do some kind of cleanup work, but do not necessarily need to invoke
Dispose (see Listing 1.8).

LISTING 1.8 Using Statement and var Work Because SqlConnection Implements IDisposable

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using System.Data.SqlClient;

namespace AnonymousUsingStatement

15Programming with Anonymous Types

1

LISTING 1.8 Continued

{

class Program

{

static void Main(string[] args)

{

string connectionString =

“Data Source=BUTLER;Initial Catalog=AdventureWorks2000;” +

“Integrated Security=True”;

using(var connection = new SqlConnection(connectionString))

{

connection.Open();

Console.WriteLine(connection.State);

Console.ReadLine();

}

}

}

}

The help documentation will verify that SqlConnection is derived from DBConnection,
which, in turn, implements IDisposable. You can use a tool like Anakrino or Reflector—
free decompilers and disassemblers—to see that Dispose in DBConnection invokes the
Close method on a connection.

To really understand how things are implemented, you can use ILDASM—or one of the
previously mentioned decompilers—and look at the MSIL that is emitted. If you look at
the code in Listing 1.8’s IL, you can clearly see the substitution of using for a properly
configured try...finally block. (The try element—after SqlConnection creation—and
the finally block invoking Dispose are shown in bold font in Listing 1.9.)

LISTING 1.9 The MSIL for the var and using Statement in Listing 1.8

.method private hidebysig static void Main(string[] args) cil managed

{

.entrypoint

// Code size 66 (0x42)

.maxstack 2

.locals init ([0] string connectionString,

[1] class [System.Data]System.Data.SqlClient.SqlConnection connection,

[2] bool CS$4$0000)

IL_0000: nop

IL_0001: ldstr “Data Source=BUTLER;Initial Catalog=AdventureWorks2”

+ “000;Integrated Security=True”

IL_0006: stloc.0

16 CHAPTER 1 Programming with Anonymous Types

LISTING 1.9 Continued

IL_0007: ldloc.0

IL_0008: newobj instance void

➥[System.Data]System.Data.SqlClient.SqlConnection::.ctor(string)

IL_000d: stloc.1

.try

{

IL_000e: nop

IL_000f: ldloc.1

IL_0010: callvirtinstance void

[System.Data]System.Data.Common.DbConnection::Open()

IL_0015: nop

IL_0016: ldloc.1

IL_0017: callvirt instance valuetype[System.Data]System.Data.ConnectionState

[System.Data]System.Data.Common.DbConnection::get_State()

IL_001c: box [System.Data]System.Data.ConnectionState

IL_0021: call void [mscorlib]System.Console::WriteLine(object)

IL_0026: nop

IL_0027: call string [mscorlib]System.Console::ReadLine()

IL_002c: pop

IL_002d: nop

IL_002e: leave.s IL_0040

} // end .try

finally

{

IL_0030: ldloc.1

IL_0031: ldnull

IL_0032: ceq

IL_0034: stloc.2

IL_0035: ldloc.2

IL_0036: brtrue.s IL_003f

IL_0038: ldloc.1

IL_0039: callvirt instance void [mscorlib]System.IDisposable::Dispose()

IL_003e: nop

IL_003f: endfinally

} // end handler

IL_0040: nop

IL_0041: ret

} // end of method Program::Main

You don’t have to master IL to use .NET effectively, but you can learn from it and writing
.NET emitters—code that emits IL directly—is supported in the .NET Framework. As
shown in the MSIL, you can infer, for example, that the proper way to use try...finally
is to create the protected object, try to use it, and, finally, clean it up. If you read a little
further—in the finally block starting with IL 0030—you can see that the compiler also

17Programming with Anonymous Types

1

put a check in to ensure that the protected object, the SqlConnection, is compared with
null before Dispose is called. This code is demonstrated in IL 0030, IL 0031, IL 0032, and
the branch statement on IL 0036.

Returning Anonymous Types from Functions

Anonymous types can be returned from functions because the garbage collector (GC)
cleans up any objects, but outside of the defining scope, the anonymous type is an
instance of an object. Unfortunately, returning an object defeats the value of the
IntelliSense system and the strongly typed nature of anonymous types. Although you
could use reflection to rediscover the capabilities of the anonymous type, again you are
taking a feature intended to make life more convenient and making it somewhat inconve-
nient again. Listing 1.10 puts these elements together, but as a practical matter, it is best
to design solutions to use anonymous types within the defining scope. (Ironically, using
objects within the defining scope was a style issue used in C++ to reduce the probability of
memory leaks. Those familiar with C++ won’t find this slight quirk of anonymous types
any more inconvenient.)

LISTING 1.10 Returning an Anonymous Type from a Method Defeats the Strongly Typed Utility
of Anonymous Types

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Reflection;

namespace ReturnAnonymousTypeFromMethod

{

class Program

{

static void Main(string[] args)

{

var anon = GetAnonymous();

Type t = anon.GetType();

Console.WriteLine(t.GetProperty(“Stock”).GetValue(anon, null));

Console.ReadLine();

}

public static object GetAnonymous()

{

var stock = new {Stock=”MSFT”, Price=”32.45”};

return stock;

}

}

}

18 CHAPTER 1 Programming with Anonymous Types

Although it is intellectually satisfying to play with the reflection subsystem, writing code
like that in Listing 1.10 is a slow and painful means to an end. (In addition, the code in
Listing 1.10, as written, is fraught with the potentiality for bugs due to null values being
returned from GetType, GetProperty, and GetValue.)

Databinding Anonymous Types
Some interesting startups got blown up when the stock market bubble burst, such as
PointCast. PointCast searched the web—based on criteria the user provided—and
displayed stock prices on a ticker and news in a browsable environment. One of the possi-
ble kinds of data was streaming stock prices. (Thankfully, the 1990s day-trading craze is
over, but the ability to get such data is still interesting.)

This section looks at how you can combine cool technologies, such as anonymous types,
AJAX, HttpWebRequests, HttpWebResponses, and queries to Yahoo!’s stock-quoting capabil-
ity, and assemble a web stock ticker. Aside from the code, a demonstration of data-binding
anonymous types, and a brief description of what role the various technology elements
are playing, this book doesn’t elaborate in detail on features like AJAX (because of space
and topic constraints). (For more information on web programming, see Stephen
Walther’s ASP.NET 3.5 Unleashed.)

The sample (in Listing 1.11) is actually very easy to complete, but uses some very cool
technology and plumbing underneath. In the solution, a website project was created. The
application contains a single .aspx web page. On that page, a ScriptManager,
UpdatePanel (both AJAX controls), a DataList, Label, and AJAX Timer are added. The
design-time view of the page is shown in Figure 1.4 and the runtime view is shown in
Figure 1.5. (Listing 1.12 shows the settings for the Web controls.)

FIGURE 1.4 Just five controls and you have an asynchronous AJAX page.

FIGURE 1.5 A very simple design but the code is actually updating the stock prices every 10
seconds with that postback page flicker.

19Databinding Anonymous Types

1

Because of anonymous types, the code to actually query the stock process from Yahoo! is
very short (see Listing 1.11).

LISTING 1.11 This Code Uses HttpWebRequest and HttpWebResponse to Request Stock
Quotes from Yahoo!

using System;

using System.Data;

using System.Diagnostics;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Web.Services ;

using System.Net;

using System.IO;

using System.Text;

namespace DataBindingAnonymousTypes

{

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

Update();

}

private void Update()

{

var quote1 = new {Stock=”DELL”, Quote=GetQuote(“DELL”)};

var quote2 = new {Stock=”MSFT”, Quote=GetQuote(“MSFT”)};

var quote3 = new {Stock=”GOOG”, Quote=GetQuote(“GOOG”)};

var quotes = new object[]{ quote1, quote2, quote3 };

DataList1.DataSource = quotes;

DataList1.DataBind();

Label3.Text = DateTime.Now.ToLongTimeString();

}

protected void Timer1_Tick(object sender, EventArgs e)

{

20 CHAPTER 1 Programming with Anonymous Types

LISTING 1.11 Continued

//Update();
}

public string GetQuote(string stock)
{
try
{
return InnerGetQuote(stock);

}
catch(Exception ex)
{
Debug.WriteLine(ex.Message);
return “N/A”;

}
}

private string InnerGetQuote(string stock)
{
string url = @”http://quote.yahoo.com/d/quotes.csv?s={0}&f=pc”;
var request = HttpWebRequest.Create(string.Format(url, stock));

using(var response = request.GetResponse())
{
using(var reader = new StreamReader(response.GetResponseStream(),
Encoding.ASCII))

{
return reader.ReadToEnd();

}
}

}
}

}

The method InnerGetQuote has a properly formatted uniform resource locator (URL)
query for the Yahoo! stock-quoting feature. Next, an HttpWebRequest sends the URL query
to Yahoo! Then, the HttpWebResponse—returned by request.GetResponse—is requested
and a StreamReader reads the response. Easy, right?

All of this code is run by the Update method. Update creates anonymous types containing
a Stock and Quote field (which are populated by the GetQuote and InnerGetQuote

methods). An anonymous array of these quote objects is created and all of this is bound to
the DataList. The DataList itself has template controls that are data bound to the Stock
and Quote fields of the anonymous type. Figure 1.6 shows the template design of the
DataList. The very easy binding statement is shown in Figure 1.7.

21Databinding Anonymous Types

1

All of the special features, such as template editing and managing bindings, are accessible
through the DataList Tasks button, which is shown to the right of the DataList in Figure
1.4. You can also edit elements such as binding statements directly in the ASP designer.
Listing 1.12 shows the ASP/HTML for the web page.

LISTING 1.12 The ASP That Creates the Page Shown in Figure 1.4 (Design Time) and Figure
1.5 (Runtime)

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”

➥Inherits=”DataBindingAnonymousTypes._Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

➥ “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>

<title>Untitled Page</title>

</head>

FIGURE 1.6 The template view of the DataList is two Label controls and the | character.

FIGURE 1.7 The binding statements for bound template controls have been very short (as
shown) since Visual Studio 2005.

22 CHAPTER 1 Programming with Anonymous Types

LISTING 1.12 Continued

<body>

<form id=”form1” runat=”server”>

<asp:ScriptManager ID=”ScriptManager1” runat=”server”>

</asp:ScriptManager>

<div>

</div>

<asp:UpdatePanel ID=”UpdatePanel1” runat=”server” EnableViewState=”False”>

<ContentTemplate>

<asp:DataList ID=”DataList1” runat=”server” RepeatDirection=”Horizontal”>

<itemtemplate>

<asp:Label ID=”Label1” runat=”server” Text=’<%# Bind(“Stock”) %>’>

➥</asp:Label>

 <asp:Label ID=”Label2” runat=”server” Text=’<%# Bind(“Quote”) %>’>

➥</asp:Label>

 |

</itemtemplate>

</asp:DataList>

<asp:Label ID=”Label3” runat=”server” Text=”Label”></asp:Label>

</ContentTemplate>

<triggers>

<asp:asyncpostbacktrigger ControlID=”Timer1” EventName=”Tick” />

</triggers>

</asp:UpdatePanel>

<asp:Timer ID=”Timer1” runat=”server” Interval=”10000” ontick=”Timer1_Tick”>

</asp:Timer>

</form>

</body>

</html>

The really neat thing about this application (besides getting stock quotes) is that the post-
backs happen transparently with AJAX. The way AJAX works is that an asynchronous
postback happens and all of the code runs except the part that renders the new page data.
Instead, text is sent back and JavaScript updates small areas of the page.

The underlying technology for AJAX is an XHTMLRequest, and this technology in its raw
form has been around for a while. But, the raw form required wiring up callbacks and
spinning your own JavaScript. You can still handcraft AJAX code of course, but now there
are web controls, such as the UpdatePanel and Timer, that take care of the AJAX plumb-
ing for you.

The elements that initiate the AJAX behavior are called triggers. Triggers can really be any
postback event. Listing 1.12 uses the AJAX Timer’s Tick event. (And, if you want this to
actually look like a ticker, play with some styles and add some color.)

23Testing Anonymous Type Equality

1

Testing Anonymous Type Equality
Anonymous type equality is defined very deliberately. If any two or more anonymous
types have the same order, number, and member declaratory type and name, the same
anonymous type class is defined. In this instance, it is permissible to use the referential
equality operator on these types. If any of the order, number, and member declarator type
and name is different, a different anonymous type definition is defined for each. And, of
course, testing referential integrity produces a compiler error.

NOTE

It is possible to use reflection to get type information about anonymous types, and you
might want to do this, occasionally, for anonymous types returned from methods.
However, the actual name of the anonymous type can vary between compilations, so
devising a way to use the class name probably has no reliable uses.

If you want to test member equality, use the Equals method (defined by all objects).
Anonymous types with the same order, type, and name, type, and value of member
declarators also produce the same hash; the hash is the basis for the equality test. Listing
1.13 provides some samples of anonymous types followed by equality tests and comments
indicating those that produce the same anonymous types and those that have member-
wise equality.

LISTING 1.13 Various Anonymous Types with Annotations

var audioBook = new {Artist=”Bob Dylan”,

Song=”I Shall Be Released”}; // anonymous type 1

var songBook1 = new {Artist=”Bob Dylan”,

Song=”I Shall Be Released”}; // also anonymous type 1

var songBook2 = new {Singer=”Bob Dylan”,

Song=”I Shall Be Released”}; // anonymous type 2

var audioBook1 = new {Song=”I Shall Be Released”,

Artist=”Bob Dylan”}; // anonymous type 3

audioBook.Equals(songBook1); // true everything the same

audioBook.Equals(songBook2); // first member declarators different

songBook1.Equals(songBook2); // member declarator-names differ

audioBook1.Equals(audioBook); // member declarators in different orders

The anonymous types audioBook and songBook1 produce the same anonymous type.
These are the only two that produce the same hash and, as a result, the Equals method
returns true. The other anonymous types are similar, but either the member declarators
are different—songBook1 uses the member declarator Artist and songBook2 uses Singer—
or the order of the declarators are different—referring to audioBook and audioBook1.

24 CHAPTER 1 Programming with Anonymous Types

Using Anonymous Types with LINQ Queries
The most significant attribute of anonymous types in conjunction with LINQ is that they
support hierarchical data shaping without writing all of the plumbing code or resorting to
SQL. Data shaping is roughly transforming data from one composition to another. LINQ
lets you do this with natural queries, and anonymous types give you a place to store the
results of these queries.

This whole book is about LINQ, so Listing 1.14 shows a couple of LINQ examples without
getting too far ahead in upcoming chapter material. Again, each example also has a brief
description.

LISTING 1.14 A Couple of Simple LINQ Queries to Play With Demonstrating Future Topics
Such as Sorting and Projections

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousTypeWithQuery

{

class Program

{

static void Main(string[] args)

{

var numbers = new int[] {1, 2, 3, 4, 5, 6, 7};

var all = from n in numbers orderby n descending select n;

foreach(var n in all)

Console.WriteLine(n);

var songs = new string[]{“Let it be”, “I shall be released”};

var newType = from song in songs select new {Title=song};

foreach(var s in newType)

Console.WriteLine(s.Title);

Console.ReadLine();

}

}

}

The first query—from n in numbers orderby n descending select n—sorts the integers
1 to 7 in reverse order and stuffs the results in the anonymous type all. The second
query—from song in songs select new {Title=song}—shapes the array of strings in

25Introducing Generic Anonymous Methods

1

songs to an enumerable collection of anonymous objects with a property Title. (The
second example takes an array of strings and shapes it into an array of objects with a well-
named property.)

Introducing Generic Anonymous Methods
For newer programmers, word reuse can be confusing. For example, anonymous methods
are unrelated to anonymous types except to the extent that it means the type of the
method is unnamed. Anonymous methods are covered in this section because they are
valuable and worth covering, but, for the most part, this section switches topics.

Anonymous methods behave like regular methods except that they are unnamed. They
were introduced as an alternative to defining delegates that did very simple tasks, where
full-blown methods amounted to more than just extra typing. Anonymous methods also
evolved further into Lambda Expressions, which are even shorter (terse) methods. Chapter 5,
“Understanding Lambda Expressions and Closures,” delves deeper into the evolution of
methods. For now, this section takes an introductory look at anonymous generic methods.

An anonymous method is like a regular method but uses the delegate keyword, and
doesn’t require a name, parameters, or return type. Listing 1.15 shows a regular method
(used as a delegate for the CancelKeyPress event, Ctrl+C in a console application) and an
anonymous delegate that performs the same role.

LISTING 1.15 A Regular Method and Anonymous Method Handling the CancelKeyPress Event
in a Console Application

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousMethod

{

class Program

{

static void Main(string[] args)

{

// ctrl+c

Console.CancelKeyPress += new ConsoleCancelEventHandler

(Console_CancelKeyPress);

// anonymous cancel delegate

Console.CancelKeyPress +=

delegate

{

Console.WriteLine(“Anonymous Cancel pressed”);

};

26 CHAPTER 1 Programming with Anonymous Types

LISTING 1.15 Continued

Console.ReadLine();

}

static void Console_CancelKeyPress(object sender, ConsoleCancelEventArgs e)

{

Console.WriteLine(“Cancel pressed”);

}

}

}

TIP

To quickly stub out an event-handling method, type the object.eventname,
the += operator, and press the Tab key twice.

The regular method (used as a delegate) is named ConsoleCancelEventHandler. Although
the double-Tab trick generates these stubbed delegates for you, they are overkill for one-line
event handlers. The second statement that begins with the Console.CancelKeyPress +=
delegate demonstrates an anonymous method (delegate) that is equivalent to the longer
form of the method. Notice that because the parameters in the delegate aren’t used, they
are omitted from the anonymous delegate. You have the option of using the parameter
types and names if they are needed in the delegate.

Using Anonymous Generic Methods

Delegates are really just methods that are used (mostly) as event handlers. Generic
methods are those that have parameterized types. (Think replaceable data types.)
Therefore, anonymous generic delegates are anonymous methods that are associated with
replaceable parameterized types. A very useful type is Func<T> (and Func<T, T1, ... Tn>,
demonstrated in Listing 1.16). This generic delegate (defined in the System namespace)
can be assigned to delegates and anonymous delegates with varying return types and
parameters, which makes it a very flexible delegate holder.

LISTING 1.16 Demonstrating How to Use System.Func to Define an Essentially Nested
Implementation of the Factorial Function

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

27Introducing Generic Anonymous Methods

1

LISTING 1.16 Continued

namespace AnonymousGenericDelegate

{

class Program

{

static void Main(string[] args)

{

System.Func<long, long> Factorial =

delegate(long n)

{

if(n==1) return 1;

long result=1;

for(int i=2; i<=n; i++)

result *= i;

return result;

};

Console.WriteLine(Factorial(6));

Console.ReadLine();

}

}

}

For all intents and purposes, Factorial is a nested function. Listing 1.16 used Func<long,

long>, where the first long parameter represents the return type and the second is the para-
meter. Notice that the listing also used a named parameter for the anonymous delegate.

Implementing Nested Recursion

Now, you can have a little fun bending and twisting the Factorial function to use recur-
sion. The challenge is that the named delegate is not named until after the delegate defini-
tion—the name being Factorial. Hence, you can’t use the name in the anonymous
delegate itself, but you can make it work.

There is a class called StackFrame. StackFrame permits getting methods (and information
from the call stack) and you can use this class and reflection to invoke the anonymous
delegate recursively. (This code is obviously esoteric—referred to this as programmer
esoterrorism—but it is fun and demonstrates a lot of features of the framework in a little bit
of space, as shown in Listing 1.17.)

LISTING 1.17 Nested, Recursive Anonymous Generic Methods—as a Routine Practice

using System;

using System.Diagnostics;

using System.Collections.Generic;

using System.Linq;

28 CHAPTER 1 Programming with Anonymous Types

LISTING 1.17 Continued

using System.Text;

using System.Reflection;

namespace AnonymousGenericRecursiveDelegate

{

class Program

{

static void Main(string[] args)

{

Func<long, long> Factorial =

delegate(long n)

{

return n > 1 ?

n * (long)(new StackTrace()

.GetFrame(0).GetMethod().Invoke(null, new object[]{n-1}))

: n;

};

Console.WriteLine(Factorial(6));

Console.ReadLine();

}

}

}

Again, writing code like the Factorial delegate in Listing 1.17 is only fun for the writer,
but elements of it do have utility. For example, anonymous delegates like the Factorial
can be useful for one-time, simple event handling. Assigning behaviors to the Func<T>
delegate type effectively makes nested functions and reusable delegates that can be passed
as arguments, a very dynamic way to program. Getting the StackFrame can be a great way
to create a utility that tracks function calls during debugging—like writing the StackTrace
to the Debug window in a way that is useful to you—and reflection has many uses.

Reflection can be useful for dynamically loaded assemblies, as demonstrated by NUnit and
Visual Studio’s unit testing.

Summary
This chapter examined anonymous types in detail. Anonymous types are strong types
where the compiler does the work of figuring out the actual type and writing the class
implementation, if the anonymous type is a composite type.

As you see anonymous types used throughout the book for query results, remember
anonymous types are immutable, the same type is code generated if the member declara-
tory—field name—type, number, and order are identical.

Index

NUMBERS
101 LINQ Samples by Microsoft website, 203

A
Action delegate, Lambda Expressions,

104-106

Active Directory, 243

defining as data source, 248-252

helper attributes, 257-259

IQueryable provider

creating, 245-246

Smet, Bart De implementation, 245

IQueryProvider interface, implementing,
246-248

LINQ query conversions, 252-254

property assignments, 257

querying, 243-244, 260-262

RFCs, 244

schema entities, defining, 259-260

search filters, creating from Where
Lambda Expressions, 254-256

Active Directory Services Interfaces, 259

Add New Item template dialog, 488

ADO.NET

Entity Framework, 383

conceptual data models, 385

downloading, 387

Entity Data Models (EDMs), 386

Go Live estimation date, 388

relational database solutions, 385

StockHistory database, 401-411

web resources, 387-388

objects, filling, 377

ADO.NET 2.0

obtaining stock quotes, updating the
database, 397-401

StockHistory database

complete script, 394-397

defining, 389-390

foreign keys, adding, 393-394

quotes, adding, 390-392

ADSI (Active Directory Services
Interfaces), 259

Aggregate method, 151-153

aggregate operations

aggregation, 151-153

averages, 154-157

finding minimum and maximum elements,
157-159

median values, 163-165

overview, 151

summing query results, 162-163

aggregation, 151-153

AJAX, 22

All, 124-125

Allow access dialog (Outlook), 242

annotating nodes, 433-434

anonymous methods

CancelKeyPress events, 25

delegate keyword, 25

generic, 26-27

nested recursion, 27-28

regular method comparisons, 25

anonymous types

arrays, initializing, 7-8

composite

behaviors, adding, 9

creating, 9

methods, adding, 10-12

databinding, 18, 22

binding statement, 20

elements, editing, 21

requesting stock quotes from Yahoo!,
19-20

defining, 7

equality, testing, 23

hierarchical data shaping support, 24

indexes in for statements, 12-14

IntelliSense support, 6

LINQ query examples, 24-25

object initialization, 34-36

overview, 6-7

returning from functions, 17-18

using statements, 14-16

var keyword, 5

Any, 124-125

API methods for raw device contexts, 201

ADO.NET500

arrays

anonymous types, initializing, 7-8

Blackjack game, shuffling a deck of
cards, 196-199

initial capping words, 202-203

select indexes, shuffling/unsorting,
194-195

ToArray conversion operator, 51-53

ascending order, sorting information in,
138-139

AsEnumerable conversion operator, 55-56

AsEnumerable method, 278-280

assigning Lambda Expressions, predefined
generic delegates, 101

AssociationAttribute, 301

associations, adding to databases, 402

attributes

Active Directory helper, 257-259

AssociationAttribute, 301

InheritanceMappingAttribute, 295

XElement class

adding to, 422

deleting from, 423

XML documents, querying, 420-421

auto-implemented properties, 34

automatic properties

creating custom objects with, 169

Lambda Expressions, 102-103

AutoSync property (ColumnAttribute
class), 272

Average method, 154-157

averages, computing, 157

average file size, 154

average length of words, 156

simple averages, 154

How can we make this index more useful? Email us at indexes@samspublishing.com

B
behaviors, adding to anonymous composite

types, 9

Bill Blogs in C# website, 203

BinaryTree class, yield return, 89-93

binding control events to Lambda
Expressions, 109-110

Blackjack game, 195-199

Bonaparte, Napoleon, 137

broadcast-listeners, 51-53

business objects, returning, 190-193

C
C#, Active Directory queries, 243-244

calculated values, projecting new types, 200

calling user-defined functions, 363-366

CanBeNull property (ColumnAttribute
class), 272

Cartesian joins, 228

CAS (code access security), 205

Cast conversion operator, 54-55

ChangeConflicts collection, 372

child elements, LINQ to XML and XPath
comparison, 441

classes

closures, 117-119

ColoredPoint, 32-33

ColoredPointList, 37

ColumnAttribute, properties, 269-273

Customer, 460

classes 501

DataAccess, 191

DataContext, 305, 356-357

DirectoryAttributeAttribute, 258-259

DirectoryQuery, 252-254

DirectorySchemaAttribute, 257-258

EntitySet, adding as properties, 300-305

EventLog, 206

Hypergraph, 39-46

implementing, compound type initializa-
tion, 32-34

IOrderedQueryable, 248-252

LINQ to SQL Class designer, 285-286

LINQ to SQL Object Relational Designer
generated, customizing, 299-300

MAPIFolder, 242

mapping to tables, 269-272

Person, 36

StackFrame, 27

StockHistoryEntities, 405

Supplier, 190

TransactionScope, 366

WebClient, 400

XDocument, loading XML documents,
416-419

XElement

adding/deleting attributes, 422-423

node annotations, 433-434

XML documents, loading, 420

XmlWriter

overview, 464-465

XML files, creating, 465-467

clauses

from, joins, 211-212

group by, 145-149

let, XML intermediate values, 432-433

Where, XML documents, 429

closures, 117-119

code, compiling Lambda Expressions as

assigned to Expression<TDelegate>
instance emits IL example, 114, 116

expression tree exploration, 116-117

code access security (CAS), 205

CodeDOM, 485

collections

ChangeConflicts, 372

initializing, 36, 39

ColoredPoint class, 32-33

ColoredPointList class, 37

ColumnAttribute class, 269-273

columns, ignoring for conflict checks, 371

COM (Component Object Model), 239

comma-delimited text files, 453

CompareTo method, 159

compiling Lambda Expressions as code/data

assigned to Expression<TDelegate>
instance emits IL example, 114, 116

expression tree exploration example,
116-117

Component Object Model (COM), 239

composite anonymous types

behaviors, adding, 9

creating, 9

methods, adding, 10-12

classes502

composite keys, defining joins, 237

composite resultsets, creating, 182-183

compound initialization

anonymous types, 34-36

collections, 36, 39

named types, 31

auto-implemented properties, 34

classes, implementing, 32-34

default constructor and property
assignment, 30

purpose-defined constructor, 30

Concat, extension methods, 132-133

concurrency conflicts, 368

catching

comparing member conflict states,
373-374

entities/tables associated with
conflict, 372-373

ignoring columns for conflict
checks, 371

retrieving conflict information, 372

handling, SubmitChanges method,
369-371

resolving, 375-376

concurrency control, 368

Configure Behavior dialog, 362

conflicts

catching

conflict information, retrieving, 372

entities/tables associated with
conflict, 372-373

ignoring columns for conflict
checks, 371

member conflict states, comparing,
373-374

How can we make this index more useful? Email us at indexes@samspublishing.com

concurrency conflicts, 368

concurrency control, 368

handling, SubmitChanges method,
369-371

optimistic concurrency, 368

pessimistic concurrency, 368

resolving, 375-376

console applications, creating LINQ to XSD
Preview, 487

contacts (Outlook), adding email addresses,
240-241

control events, binding to Lambda
Expressions, 109-110

conversion operators

AsEnumerable, 55-56

Cast, 54-55

OfType, 54

ToArray, 51-53

ToDictionary, 57-58

ToList, 56-57

ToLookup, 58-59

converting CSV files to XML, 454-456

Count method, 157

counting elements, 157

“Creating Project Templates in .NET”
website, 487

cross joins, implementing, 228, 236

Northwind database customers and
products example, 229-231

SQL as LINQ query example, 231-236

CSV files (comma-delimited text files), XML

converting to, 454-456

creating from, 457-458

currying, 119-120

currying 503

Customer class, 460

customizing

joins, 214

defining, 215-218

multiple predicates, 219-220

temporary range variables, 220-223

LINQ to SQL Object Relational Designer
generated classes, 299-300

objects, instantiating, 170-171

select statement predicates, 190

D
data

compiling Lambda Expressions as

assigned to Expression<TDelegate>
instance emits IL example, 114-116

expression tree exploration, 116-117

LINQ to SQL

adding to, 349-352

deleting from, 352-354

updating in, 354-355

data access layers, writing, 384

DataAccess class, 191

databases

creating with LINQ to SQL, 305-307

relational model

C# programming problems, 384-385

data access layers, 384

Entity Framework solution, 385

StockHistory (ADO.NET 2.0)

complete script, 394-397

defining, 389-390

foreign keys, adding, 393-394

obtaining stock quotes, updating the
database, 397-401

quotes, adding, 390-392

StockHistory (ADO.NET Entity Framework)

associations, adding, 402

creating EDMs, 401-402

LINQ to XML and LINQ to Entities,
407-411

querying EDMs with Entity SQL,
402-405

querying EDMs with LINQ to Entities,
405-406

databinding

anonymous types, 18

binding statement, 20

elements, editing, 21

requesting stock quotes from Yahoo!,
19-20

bindability, 345

IEnumerable interface, 345

listing example, 345-347

DataContext class, 305, 356-357

DataContext object, 275-277

DataContextMapping property, 372

DataSets

DataTables

querying with Where clause, 280-281

selecting data from, 278-280

sorting against, 282

Customer class504

joins, defining with, 282-284

LINQ to DataSets

equijoins, 310-312

left outer joins, 313-315

nonequijoins, 312-313

right joins, 315-317

overview, 277-278

partitioning methods, 282

DbType property (ColumnAttribute
class), 272

de Gaulle, Charles, 151

debugging

stored procdures, 392

XSLT documents, 450

Decorator Structural pattern, 61

DefaultIfEmpty method, 127, 331

defining

Active Directory schema entities,
259-260

anonymous types, 7

exclusive sets, 177-181

generic extension methods, 69-70, 73

joins

based on composite keys, 237

cross joins, 228-236

group joins, 224-226

left outer joins, 226-228

with DataSets, 282-284

nonequijoins, 215-218

multiple predicates, 219-220

temporary range variables, 220-223

How can we make this index more useful? Email us at indexes@samspublishing.com

partial methods, 79-84

stored procedures, 358-360

tables, 266-269

XML as strings, 424-425

delegate keyword, anonymous methods, 25

delegates, Lambda Expressions

Action, 104-106

Predicate<T>, 108-109

deleting

attributes, XElement class, 423

data, LINQ to SQL, 352-354

descending keyword, 138-140

descending order, sorting information in,
139-141

design goals, LINQ to XSD, 486

dictionaries, list conversions, 57-58

DirectoryAttributeAttribute class, 258-259

DirectoryQuery class, 252-254

DirectorySchemaAttribute class, 257-258

distinct elements

customer objects

defining Order object, 169

instantiating, 170-171

distinct lists of cities, sorting/returning,
173-177

finding, 167

IEqualityComparer interface, implement-
ing, 171-172

median grade, determining from list of
numbers, 167-168

object dumper, implementing, 172-173

Distinct method, 167

Distinct method 505

DLLs (Dynamic Link Libraries),
importing, 200

documents

XML documents

creating from Yahoo! stock quotes,
426-427

defining as strings, 424-425

element navigation based on context,
430-431

filtering, 429

functional construction, 450-451

intermediate values, 432-433

loading, 415-416

missing data, 425-426

namespaces, 427-428

nested queries, 428-429

node annotations, 433-434

querying, 416-421

sorting, 431

XSLT documents, debugging, 450

downloading

Entity Framework, 387-388

LINQ to XSD, 487

duct typing, 64

Dump, overloading extension methods,
62-63, 67-68

dynamic programming, Lambda Expressions

code/data, compiling as, 114-117

OrderBy<T> method, 113

Select<T> method, 110-112

Where<T> method, 112-113

E
EDMs (Entity Data Models), 386

creating, 401-402

querying

Entity SQL, 402-405

LINQ to Entities, 405-406

element operations, 131-132

elements

child elements, LINQ to XML and XPath
comparison, 441

counting, aggregate operations, 157

distinct elements

defining Order object in customer
objects, 169

determining median grade from list of
numbers, 167-168

finding, 167

implementing IEqualityComparer inter-
face, 171-172

implementing object Dumper, 172-173

instantiating customer objects,
170-171

sorting/returning distinct lists of
cities, 173-177

editing, databinding, 21

filtering, LINQ to XML and XPath compari-
son, 442-443

maximum elements, finding, 157-159

minimum elements, finding, 157-159

navigation based on context, XML
documents, 430-431

DLLs506

obtaining specific elements from
sequences, 131-132

sibling elements, LINQ to XML and XPath
comparison, 442

ElementsAfterSelf method, 430-431

email addresses, adding to Outlook contacts,
240-241

embedded LINQ queries, XML with, 458

console application, 460-461

Customer class example, 459-460

literal XML with embedded expressions
and LINQ, 461-462

Empty, 127

entities

Active Directory schema, defining,
259-260

associated with conflict, 372-373

LINQ to Entities

EDMs, querying, 405-406

StockHistory database,
UpdatePriceHistory method, 407-411

nullable, 290-293

Entity Data Models, 386

Entity Framework (ADO.NET), 383

conceptual data models, 385

downloading, 387

EDMs, 386

Go Live estimation date, 388

relational database solutions, 385

StockHistory database

adding associations, 402

creating EDMs, 401-402

LINQ to XML and LINQ to Entities,
407-411

How can we make this index more useful? Email us at indexes@samspublishing.com

querying EDMs with Entity SQL,
402-405

querying EDMs with LINQ to Entities,
405-406

web resources

Entity SQL blog, 387

samples, 388

Wikipedia, 387

Entity SQL

blog, 387

EDMs, querying, 402-405

website, 405

EntitySet classes, adding as properties,
300-305

equality testing, 23, 129-130

Equals method, anonymous types, 23

equijoins, 214

LINQ to Datasets, 310-312

LINQ to SQL, 317-321

esoterrorism, 27

Euclidean algorithm example, 186-189

EventLog class, 206

Except method, 177-181

exclusive sets, defining, 177-181

Expression property (ColumnAttribute
class), 272

expression trees, 116

expressions

Lambda

assigning to predefined generic dele-
gates, 101

automatic properties, 102-103

capturing as generic actions, 104-106

expressions 507

capturing as generic predicates,
108-109

control events, binding, 109-110

currying, 119-120

delegate role listing, 100

reading, 103-104

string searches, 106-107

Where, 254-256

regular, adding to XML Schema files,
491-494

Extensible Stylesheet Language
Transformations, 437

extension methods, 61-63, 151

Concat, 132-133

defining generic extension methods,
69-70, 73

defining with return type, 64-65

implementing, 64-67

LINQ, 73-77

overloading, 67-68

SequenceEqual, 130

“talking” string extension methods, 78-79

uses for, 63-64

Where, 73, 76

F
Feynman, Richard, 179

Fibonacci numbers, 8, 177

Field method, 280-281

filtering

elements, LINQ to XML and XPath
comparison, 442-443

information, 122-124

OfType filters, 122-124

XML documents, 429

finding

distinct elements, 167

defining customer Order object, 169

determining median grade from list of
numbers, 167-168

implementing IEqualityComparer
interface, 171-172

implementing object Dumper, 172-173

instantiating custom objects, 170-171

sorting and returning distinct list of
cities, 173-177

minimum and maximum elements,
157-159

for statements, anonymous type indexes,
12-14

foreign keys, adding to databases, 393-394

from clauses, joins, 211-212

function pointers, listings

anonymous delegate, 99

delegates in C#, 99

FunctionPointer definition, 98

Lambda Expression playing the delegate
role, 100

functional construction, 443, 450-451

functions

anonymous types, returning, 17-18

ProductsUnderThisUnitPrice, 363-366

user-defined, calling, 363-366

expressions508

G
GDI+, API methods for raw device

contexts, 201

generation operations

DefaultIfEmpty, 127

Empty, 127

Range, 127

Repeat, 128-129

generic anonymous methods, 26-27

generic extension methods, defining,
69-70, 73

GetData method, 476

GetPoints method, 38

group by clause, 145-149

group joins

defining, 224-226

LINQ to SQL, 321-331

grouping information, 145-150

GroupJoin method, 321-331

H
helper attributes, Active Directory, 257-259

Hypergraph class, 39-46

broadcast-listener, 53

ColoredPoint class, 32-33

compound type initialization of objects

default constructor and property
assignment, 30

Paint Event handler, 31

Pen object, 30

How can we make this index more useful? Email us at indexes@samspublishing.com

HypergraphController user control, 47-50

IHypergraph interface, 46-47

images, saving to files, 51-52

subject and observer interfaces, 50

I
IBindingList interface, databinding, 345

IComparable interface, 159

IDataReader interface methods, 215-218

IEnumberable{T}, 94

IEnumerable interface

AsEnumberable conversion operator, 55

databinding, 345

IEqualityComparer interface, implementing,
171-172

IHypergraph interface, 46-47

IL (Intermediate Language), 7

ILDASM (Intermediate Language
Disassembler), 7

importing DLLs, 200

Inbox (Outlook), reading, 240-241

indexes

anonymous type, for statements, 12-14

select, shuffling/unsorting arrays,
194-195

SelectMany method, 207

SelectMany methods, 208

information filtering, 122-124

inheritance hierarchies, LINQ to SQL

Object Relational Designer, creating
with, 298

single-table mapping, 294-298

inheritance hierarchies 509

InheritanceMappingAttribute, 295

initial capping words (arrays), 202-203

initializing

anonymous type arrays, 7-8

collections, 36, 39

objects with

anonymous types, 34-36

named types, 30-34

inner joins, 213-214

InnerGetQuote method, 20

InsertCustomer methods, 362-363

InsertQuote stored procedure, 390-392

IntelliSense, anonymous types support, 6

interfaces

IBindingList, databinding, 345

IComparable, 159

IDataReader, methods, 215-218

IEnumerable

AsEnumerable conversion operator, 55

databinding, 345

IEqualityComparer, implementing,
171-172

IHypergraph, 46-47

IQueryProvider, implementing, 246-248

projecting interfaces, support for,
159-161

Intermediate Language, 7

Intermediate Language Disassembler, 7

intermediate values, XML documents,
432-433

Intersect method, 177-181

IOrderedQueryable class, 248-252

IQueryable, 73

IQueryable provider

creating, 245-246

Smet, Bart De implementation, 245

IQueryProvider interface, implementing,
246-248

IsDbGenerated property (ColumnAttribute
class), 273

IsDiscriminator property (ColumnAttribute
class), 273

IsPrimaryKey property (ColumnAttribute
class), 273

IsVersion property (ColumnAttribute
class), 273

J
joins

based on composite keys, 237

cross

implementing, 228, 236

Northwind database customers and
products example, 229-231

SQL as LINQ query example, 231-236

DataSets, defining with, 282-284

equijoins, 214

LINQ to DataSets, 310-312

LINQ to SQL, 317-321

group

defining, 224-226

LINQ to SQL, 321-331

inner, 213-214

InheritanceMappingAttribute510

left, LINQ to SQL, 331-340

left outer, 224

implementing, 226-228

LINQ to DataSets, 313-315

multiple from clauses, 211-212

nonequijoins, 214

defining, 215-218

LINQ to DataSets, 312-313

multiple predicates, 219-220

temporary range variables, 220-223

right joins, LINQ to DataSets, 315-317

K–L
Kernighan, Brian, 98

keys

composite, 237

foreign, adding to databases, 393-394

keywords

delegate, anonymous, 25

descending, 138-140

orderby, 137

var, anonymous types, 5

Lambda Expressions

automatic properties, 102-103

capturing as

generic actions, 104-106

generic predicates, 108-109

closures, 117-119

control events, binding, 109-110

currying, 119-120

How can we make this index more useful? Email us at indexes@samspublishing.com

delegate role listing, 100

dynamic programming

compiling as code/data, 114-117

OrderBy<T> method, 113

Select<T> method, 110-112

Where<T> method, 112-113

predefined generic delegates, assigning
to, 101

reading, 103-104

string searches, 106-107

Where, converting to Active Directory
search filters, 254-256

LDAP (Lightweight Directory Access
Protocol), 244

left joins, LINQ to SQL, 331-340

left outer joins, 224

implementing, 226-228

LINQ to Datasets, 313-315

Leonardo of Pisa, 177

let clause, XML intermediate values, 432-433

LINQ (Language INtegrated Query), 121

constructing queries, 122

equality testing, 129-130

extension methods, 73-77

LINQ to DataSets, joins

equijoins, 310-312

left outer joins, 313-315

nonequijoins, 312-313

right joins, 315-317

LINQ to Entities

EDMs, querying, 405-406

StockHistory database
UpdatePriceHistory method, 407-411

LINQ to Entities 511

LINQ to SQL

data

adding, 349-352

deleting, 352-354

updating, 354-355

databases, creating, 305-307

databinding

bindability, 345

IEnumerable interface, 345

listing example, 345-347

inheritance hierarchies

creating with Object Relational
Designer, 298

single-table mapping, 294-298

joins

equijoins, 317-321

group, 321-331

left, 331-340

n-tier applications, 376

client with reference to the service,
380-381

service contract for serializing
Customer objects, 377-379

service contract, implementing, 379

WCF middle tier, 377

Object Relational Designer generated
classes, customizing, 299-300

views, querying, 342-344

Visual Designer, mapping stored
procedures, 360-363

LINQ to SQL Class designer, 285-286

LINQ to XML

node annotations, 433-434

StockHistory database
UpdatePriceHistory method, 407-411

XML documents

creating from Yahoo! stock quotes,
426-427

element navigation based on context,
430-431

filtering, 429

intermediate values, 432-433

namespaces, 427-428

nested queries, 428-429

sorting, 431

XPath, compared, 438

child elements, 441

filtering elements, 442-443

namespaces, 439-441

sibling elements, 442

XSLT, compared, 443

debugging XSLT documents, 450

HTML documents, 444-449

LINQ to XSD

design goals, 486

downloading/installing, 487

object queries, 496-498

overview, 485

Preview console applications,
creating, 487

regular expressions added to XML
Schema files, 491-494

XML files, defining, 488-490

XML Schema files, defining, 490-491

listings

Active Directory

DirectorySchemaAttribute class, 257

LINQ query conversions to Active
Directory queries, 253-254

property assignments, 257

LINQ to SQL512

querying, 260-262

schema entities, 259-260

search filters created with Where
Lambda Expressions query, 254-256

Active Directory queries with straight
C# code, 243-244

anonymous methods handling
CancelKeyPress event, 25

anonymous types

adding behaviors to, 10

equality testing, 23

indexes in for statements, 12-13

initializing, 7, 35-36

returning from functions, 17

using statements, 14-15

AsEnumerable conversion operator, 55

ASP for AJAX page, 21

behaviors, adding to anonymous type, 10

Blackjack game

jack namespace, 439

shuffling a deck of cards, 196-199

statistics saved to XML file, 438

Cast conversion operator, 54

composite anonymous types, 9

concurrency conflicts

comparing member conflict
states, 373

conflict information, retrieving, 372

entities/tables associated with
conflict, 372

handling, 369

ignoring columns for conflict
checks, 371

resolving, 375

How can we make this index more useful? Email us at indexes@samspublishing.com

data

adding, 350-352

deleting, 352-354

updating, 354

databinding with LINQ to SQL, 345-347

DataContext class, 356-357

DirectoryAttributeAttribute class, 258-259

EntitySet classes as properties, adding,
301-305

function pointers

anonymous delegate, 99

delegates in C#, 99

FunctionPointer definition, 98

Lambda Expression playing the
delegate role, 100

functional construction, 451

GDI API methods for raw device
contexts, 201

generic anonymous methods, 26

Hypergraph

broadcast-listener, 53

ColoredPoint class, 32-33

ColoredPointList class, 37

default constructor and property
assignment, 30

Hypergraph class, 39-46

HypergraphController user control,
47-50

IHypergraph interface, 46-47

named types, 31

purpose-defined constructor, 30

saving images to files, 51-52

subject and observer interfaces, 50

IOrderedQueryable class, 249-252

listings 513

IQueryProvider interface, 246

joins

based on composite keys, 237

cross join for Northwind database
customers and products, 229-231

cross join SQL as LINQ query,
231-236

group joins, 224-226

inner, 213-214

left outer joins, 227

multiple from clauses, 211

nonequijoins with multiple
predicates, 219

nonequijoins with temporary range
variables, 220-223

nonequijoins, defining, 215-218

Lambda Expressions

assigned to Expression<TDelegate>
instance emits IL example, 114-116

assigning to predefined generic
delegates, 101

automatic properties, 102

capturing as generic actions, 104-105

capturing as generic predicates, 108

closures, 118

control events, binding, 109

currying, 119

demonstrating explicit argument
types, 103

expression tree exploration, 116-117

OrderBy<T> method, 113

Select<T> method, 110-111

string searches, 106-107

Where<T> method, 112

LINQ to DataSets

equijoins, 310-311

left outer joins, 314-315

nonequijoins, 312-313

right outer joins, 316

LINQ to SQL

creating databases, 305

customizing Object Relational
Designer generated classes,
299-300

equijoins, 317-321

group joins, 321-331

inheritance hierarchies, 294-298

left joins, 331-340

regular expressions added to XML
Schema files, 492-494

LINQ to XML and XPath comparison

child elements, 441

filtering elements, 442

namespaces, 440

sibling elements, 442

LINQ to XML and XSLT comparison, HTML
documents, 444-449

LINQ to XSD

queries, 496-497

XML files, creating, 488-490

XML Schema files, creating, 490

n-tier applications with LINQ to SQL

client with reference to the service,
380-381

service contract for serializing
Customer objects, 377-379

service contract, implementing, 379

nested recursive anonymous generic
methods, 27

listings514

nullable type entities, 290-293

OfType conversion operator, 54

Outlook

updating contacts, 240-241

Inbox, 240-241

PetCemetary.XML file, 417-419

query examples with anonymous
types, 24

requesting stock quotes from Yahoo!,
19-20

select statements

customizing predicates, 190

function call effects, 186-189

indexes for shuffling/unsorting arrays,
194-195

initial capping words in arrays,
202-203

projecting types, 203

returning custom business objects,
191-193

SelectMany methods

comparing Windows Registry sections,
206-207

indexes, 207

projecting types, 203

SQL to XML conversions, 473-475

Northwind DataContext example, 472

Northwind object-relational map
example, 471-472

TreeView output of XML
document, 476

SQL updates from XML

examining inserted data, 481

inserting data, 480-481

osql.exe scripting output, 482-483

sample XML file, 478-479

How can we make this index more useful? Email us at indexes@samspublishing.com

StockHistory database

adding quotes, 390-392

Company table, 390

complete script, 394-395, 397

foreign keys, adding, 394

LINQ to XML and LINQ to Entities,
407-411

obtaining stock quotes to update the
database, 397-401

PriceHistory table, 390

querying EDMs with Entity SQL,
404-405

querying EDMs with LINQ to
Entities, 405

stored procedures

defining, 358-360

mapping with LINQ to SQL Visual
Designer, 362-363

UpdateCustomer example, 357-358

ToDictionary conversion operator, 57

ToList conversion operator, 56

ToLookup conversion operator, 58

transactions, deleting parent/child rows,
366-368

user-defined functions, calling, 363-365

views

building with SQL Server, 342

querying with LINQ to SQL, 342-344

XElement class, adding/deleting
attributes, 422-423

XML

creating from CSV files, 454-456

defining as strings, 424

missing data, 425-426

text files, creating, 457-458

listings 515

XML documents

creating from Yahoo! stock quotes,
426-427

element navigation based on context,
430-431

filtering, 429

intermediate values, 432-433

namespaces, 427-428

nested queries, 428-429

node annotations, 433-434

querying, 416-417, 420-421

sorting, 431

XML with embedded LINQ queries in VB

console application, 460-461

Customer class example, 459-460

literal XML with embedded
expressions and LINQ, 461-462

XmlWriter class for creating XML files,
465-467

lists, converting

dictionaries, to, 57-58

query results to, 56-57

literal XML in VB with embedded expressions
and LINQ, 461-462

LongCount method, 157

lookups, IEnumerable object conversions,
58-59

luncheon menu example

luncheon days collection and regular
expression incorporation, 497

possible weekdays XML document,
492-494

XML file, 488

XML Schema file, 490

M
MAPIFolder class, 242

mapping

classes to tables, 269-272

LINQ to SQL inheritance hierarchies

creating with Object Relational
Designer, 298

single-table mappings, 294-298

stored procedures, LINQ to SQL Visual
Designer, 360-363

Max method, 157-159

maximum elements, finding, 157-159

McCarthy, Dan, 177

Median method, 163-165

median grade, determining from list of
numbers, 167-168

median values, 163-165

member conflict states, comparing, 373-374

methods

Aggregate, 151-153

anonymous composite types, adding to,
10-12

anonymous methods

CancelKeyPress events, 25

delegate keyword, 25

generic, 26-27

nested recursion, 27-28

regular method comparisons, 25

API for raw device contexts, 201

AsEnumerable, 278-280

Average, 154-157

CompareTo, 159

listings516

Count, 157

DefaultIfEmpty, 331

Distinct, 167

ElementsAfterSelf, 430-431

Equals, anonymous types, 23

Except, 177-181

extension methods, 61-63, 151

Concat, 132-133

defining generic extension methods,
69-70, 73

defining with return type, 64-65

implementing, 64-67

LINQ, 73-77

overloading, 67-68

SequenceEqual, 130

“talking” string extension methods,
78-79

uses for, 63-64

Where, 73, 76

Field, 280-281

GetData, 476

GetPoints, 38

GroupJoin, 321-331

IDataReader interface, 215-218

InnerGetQuote, 20

InsertCustomer, 362-363

Intersect, 177-181

LongCount, 157

Max, 157-159

Median, 163-165

Min, 157-159

ObjectChangeConflict.Resolve, 375

How can we make this index more useful? Email us at indexes@samspublishing.com

OrderBy<T>, Lambda Expressions, 113

OrderByDescending, 140

partial methods, 79-84

partitioning methods, 282

ReadSuppliers, 191

Reverse, 144-145

Select<T>, Lambda Expressions,
110-112

SelectMany

indexes, 207-208

types, projecting, 203-205

Windows Registry sections,
comparing, 206-207

SubmitChanges, 369-371

Sum, 162-163

ThenBy, 138

ThenByDescending, 141

ToLookup, 150

Union, 182-183

Update, databinding anonymous
types, 20

UpdatePriceHistory, 400

Where<T>, Lambda Expressions,
112-113

Microsoft Intermediate Language, 7

Microsoft XML Team WebLog website, 487

Min method, 157-159

minimum elements, finding, 157-159

missing data (XML), 425-426

MSIL (Microsoft Intermediate Language), 7

MyPoint property, 34

MyPoint property 517

N
n-tier applications, 376

client with reference to the service,
380-381

service contracts

implementing, 379

serializing Customer objects, 377-379

WCF middle tier, 377

Name property (ColumnAttribute class), 273

named types, object initialization, 31

auto-implemented properties, 34

classes, implementing, 32-34

default constructor and property
assignment, 30

purpose-defined constructor, 30

namespaces

LINQ to XML and XPath comparison,
439-441

XML documents, 427-428

nanotechnology, 179

Napoleon, 137

nested queries, XML documents, 428-429

nested recursive anonymous generic
methods, 27-28

New Association dialog, 402

nodes

annotations, 433-434

XComment, SQL to XML conversions, 475

nonequijoins, 214

defining, 215-218

LINQ to Datasets, 312-313

multiple predicates, 219-220

temporary range variables, 220-223

Northwind Customers table object-relational
map, 472

Northwind database

cross join of customers and products,
229-231

customers

adding, 350-352

deleting, 352-354, 366-368

table object-relational map, 471

Customers table object-relational
map, 471

data, updating, 354

DataContext example, 472

examining inserted data, 481

InsertCustomer methods, 362-363

inserting data, 480-481

new customers XML file, 478-479

orders, deleting, 366-368

osql.exe scripting output, 482-483

ProductsUnderThisUnitPrice function,
363-366

stored procedure for CustomerIDs,
358-360

UpdateCustomer stored procedures,
357-358

views

Orders/Order Details tables, 342

querying, 342-344

nullable types, 289-293

n-tier applications518

O
Object Relational Designer, LINQ to SQL

generated classes, customizing, 299-300

inheritance hierarchies, 298

object-relational maps, XML conversions,
470-472

ObjectChangeConflict.Resolve method, 375

objects

ADO.NET, filling with, 377

compound initialization with anonymous
types, 34-36

compound initialization with named
types, 31

auto-implemented properties, 34

classes, implementing, 32-34

default constructor and property
type, 30

purpose-defined constructor, 30

custom business, returning, 190-193

custom objects, instantiating, 170-171

DataContext, 275-277

LINQ to XML queries, 496-498

object dumper, implementing, 172-173

Order, defining, 169

tables

defining, 266-269

mapping classes to, 269-272

XNamespace, 427-428

OfType conversion operator, 54

OfType filter, 122-124

How can we make this index more useful? Email us at indexes@samspublishing.com

operations

element operations, 131-132

generation operations

DefaultIfEmpty, 127

Empty, 127

Range, 127

Repeat, 128-129

optimistic concurrency, 368

Order object, defining, 169

orderby keyword, 137

OrderBy<T> method, Lambda
Expression, 113

OrderByDescending method, 140

osql.exe command line, examining inserted
data, 482-483

Outlook

Allow access dialog, 242

contacts, adding email addresses,
240-241

Inbox/contacts, reading, 240-241

instances, creating, 242

overloading extension methods, 67-68

P
partial methods, defining, 79-84

partitioning, 282

Skip, 126-127

Take, 126-127

Person class, 36

pessimistic concurrency, 368

pessimistic concurrency 519

PetCemetary.XML file example, 417-419

phishing, 205

Predicate<T> delegate, Lambda Expressions,
108-109

predicates

nonequijoins, defining, 219-220

select statements, customizing, 190

prime number algorithm examples, 186-189

PRINT statements, debugging stored
procedures, 392

ProductsUnderThisUnitPrice function,
363-366

profiling code, yield return, 93-94

programming

anonymous types

arrays, initializing, 7-8

composite, 9-12

composite, creating, 9

defining, 7

indexes in for statements, 12-14

returning from functions, 17-18

using statements, 14-16

dynamic programming, Lambda
Expressions, 110

LINQ to XSD

downloading/installing, 487

object queries, 496-498

Preview console applications,
creating, 487

regular expressions added to XML
Schema files, 491-494

XML files, defining, 488-490

XML Schema files, defining, 490-491

“Programming for Fun and Profit—Using the
Card.dll” website, 439

projecting interfaces, support for, 159-161

projecting new types, 200, 203-205

projections, 35, 203

properties

Active Directory, assigning, 257

auto-implemented, 34

automatic properties

creating custom objects with, 169

Lambda Expressions, 102-103

ColumnAttribute class, 269-273

DataContextMapping, 372

EntitySet classes as, 300-305

MyPoint, 34

providers, IQueryable

creating, 245-246

Smet, Bart De implementation, 245

Q
quantifiers, 126

All, 124-125

Any, 124-125

querying

Active Directory, 243-244, 252-254,
260-262

converting

results to lists, 56-57

to Active Directory queries, 252-254

EDMs

Entity SQL, 402-405

LINQ to Entities, 405-406

PetCemetary.XML file example520

embedded with XML in VB, 458

console application, 460-461

Customer class example, 459-460

literal XML with embedded
expressions and LINQ, 461-462

joins

based on composite keys, 237

cross, 228-236

equijoins, 214

group, 224-226

inner, 213-214

left outer, 224-228

multiple from clauses, 211-212

nonequijoins, 214-223

LINQ queries, constructing, 122

LINQ to XSD, 496, 498

LINQ with anonymous types, 24-25

nested, LINQ to XML, 428-429

results, summing, 162-163

text, viewing, 273-275

views, LINQ to SQL, 342, 344

XML documents

attributes, 420-421

XDocument class, 416-419

XElement class, 420

R
Range, 127

range variables, defining nonequijoins,
220-223

ReaderHelper, 73

How can we make this index more useful? Email us at indexes@samspublishing.com

ReadSuppliers method, 191

Registry

overview, 205

two section comparison, 206-207

regular expressions, adding to XML Schema
files, 491-494

relational data, connecting to, 275-277

relational database models

C# programming problems, 384-385

data access layers, 384

Entity Framework solution, 385

Repeat, 128-129

requesting stock quotes from Yahoo!, 19-20

Requests for Comments, 244

resolving conflicts, 375-376

resources (web), ADO.NET Entity Framework

downloads, 387

Entity SQL blog, 387

samples, 388

Wikipedia, 387

results of queries, summing, 162-163

resultsets, creating composite resultsets,
182-183

return type, defining extension methods,
64-65

Reverse method, 144-145

reversing item order, 144-145

RFCs (Requests for Comments), 244

right joins, LINQ to Datasets, 315-317

Ritchie, Dennis, 98

rules for yield return, 88

rules for yield return 521

S
Santana, Carlos, 119

ScottGu’s Blog website, 203

secondary sorts, 141-144

security, CAS (code access security), 205

select indexes, shuffing/unsorting arrays,
194-195

select statements

custom business objects, returning,
190-193

function call effects, 186-189

initial capping words in arrays, 202-203

predicates, customizing, 190

types, projecting, 203-205

Select<T> method, Lambda Expression,
110-112

SelectMany method

indexes, 207-208

types, projecting, 203-205

Windows Registry sections comparisons,
206-207

SequenceEqual, 130

sequences, appending with Concat, 132-133

services oriented architecture, 462

set operations

composite resultsets, creating, 182-183

distinct elements, finding, 167

defining custom Order object, 169

determining median grade from list of
numbers, 167-168

implementing IEqualityComparer
interface, 171-172

implementing object dumper, 172-173

instantiating custom objects, 170-171

sorting and returning distinct list of
cities, 173-177

exclusive sets, defining, 177-181

overview, 167

shaping, 35

shared source code, 86

shuffling a deck of cards (Blackjack game),
196-199

sibling elements, LINQ to XML and XPath
comparison, 442

sieve of Atkin algorithm, 189

sieve of Eratosthenes algorithm example,
186-189

single-table mapping, LINQ to SQL
inheritance hierarchies, 294-298

Skip, partitioning, 126-127

SOA (services oriented architectures), 462

sorting

against DataTables, 282

distinct list of cities, 173-177

information

in ascending order, 138-139

in descending order, 139-141

overview, 137

reversing order of items, 144-145

secondary sorts, 141-144

XML queries, 431

source code (shared), 86

Space Invaders website, 463

sprocs (stored procedures), 223

Santana, Carlos522

SQL (Structured Query Language)

LINQ to SQL

adding data, 349-352

customizing Object Relational
Designer generated classes,
299-300

databases, creating, 305-307

databinding, 345-347

deleting data, 352-354

equijoins, 317-321

group joins, 321-331

inheritance hierarchies, 294-298

left joins, 331-340

n-tier applications, 376-381

querying views, 342-344

updating data, 354-355

LINQ to SQL Class designer, 285-286

LINQ to SQL Visual Designer, mapping
stored procedures, 360-363

statements, executing in
Visual Studio, 481

XML, creating, 469, 473-474

object-relational maps, defining,
470-472

TreeView output of XML document,
475-478

XComment node, 475

XML, updating from

examining inserted data, 481

inserting data, 480-481

osql.exe scripting output, 482-483

sample XML file, 478-479

How can we make this index more useful? Email us at indexes@samspublishing.com

SQL Server, building views, 340-342

SqlMetal, 285

StackFrame class, 27

statements

anonymous types, 14-16

binding statements in, 20

using, 14-16

binding statements, anonymous
types, 20

for statements, anonymous type indexes,
12-14

PRINT, debugging stored procedures, 392

select

custom business objects, returning,
190-193

customizing predicates, 190

function call effects, 186-189

initial capping words in arrays,
202-203

projecting types, 203-205

SQL, executing in Visual Studio, 481

StockHistory database

ADO.NET 2.0

adding foreign keys, 393-394

adding quotes, 390-392

complete script, 394-397

defining, 389-390

Entity Framework (ADO.NET)

adding associations, 402

creating EDMs, 401-402

LINQ to XML and LINQ to Entities,
407-411

StockHistory database 523

querying EDMs with Entity SQL,
402-405

querying EDMs with LINQ to Entities,
405-406

obtaining stock quotes, updating the
database, 397, 399-401

StockHistoryEntities class, 405

Storage property (ColumnAttribute
class), 273

stored procedures, 223

debugging, 392

defining, 358-360

InsertQuote, 390-392

mapping, LINQ to SQL Visual Designer,
360-363

overview, 355

UpdateCustomer example, 357-358

strings

searching, Lambda Expressions, 106-107

XML defined as, 424-425

SubmitChanges method, 369-371

Sum method, 162-163

summing query results, 162-163

Supplier class, 190

System.Ling namespace, 73

T
tables

associated with conflict, 372-373

DataTables

querying with Where clause, 280-281

selecting data from, 278-280

sorting against, 282

defining, 266-269

mapping classes to, 269-272

Take, partitioning, 126-127

“talking” string extension methods,
implementing, 78-79

testing

anonymous types equality, 23

equality testing, 129-130

text (queries), viewing, 273-275

text files, creating from XML, 457-458

ThenBy method, 138

ThenByDescending method, 141

ToArray conversion operator, 51-53

ToDictionary conversion operator, 57-58

ToList conversion operator, 56-57

ToLookup conversion operator, 58-59

ToLookup method, 150

transactions

parent/child rows, deleting, 366-368

TransactionScope class, 366

TreeView output of XML document, 475-478

triggers, 22

types

anonymous, 203-205

named, 30

nullable, 289-293

projecting, 200, 203-205

U
Union method, 182-183

Update method, databinding anonymous
types, 20

StockHistory database524

UpdateCheck property (ColumnAttribute
class), 273

UpdateCustomer stored procedure, 357-358

UpdatePriceHistory methods, 400

updating

data, LINQ to SQL, 354-355

SQL from XML

examining inserted data, 481

inserting data, 480-481

osql.exe scripting output, 482-483

sample XML file, 478-479

user controls, HypergraphController, 47-50

user-defined functions, calling, 363-366

using statements, anonymous types, 14-16

V
var keyword, anonymous types, 5

variables (range), defining nonequijoins,
220-223

VB (Visual Basic)

VB Today website, 203

XML with embedded LINQ queries, 458

console application, 460-461

Customer class example, 459-460

literal XML with embedded
expressions and LINQ, 461-462

views, 340

querying with LINQ to SQL, 342-344

SQL Server, building with, 340-342

How can we make this index more useful? Email us at indexes@samspublishing.com

Visual Designer (LINQ to SQL), mapping
stored procedures, 360-363

Visual Studio

SQL statements, executing, 481

stored procedures, defining, 360

W
Wagner, Bill, 80

WCF (Windows Communication
Foundation), 377

WebClient class, 400

websites, 438

101 LINQ Samples by Microsoft, 203

Bill Blogs in C#, 203

Creating Project Templates in .NET
(quotes), 487

Entity Framework download, 387

Entity Framework Go Live estimation
date, 388

Entity SQL blog, 387

Entity SQL reference, 405

Microsoft XML Team WebLog, 487

Programming for Fun and Profit—Using
the Card.dll, 439

ScottGu’s Blog, 203

Smet, Bart De IQueryable provider
implementation, 245

Space Invaders, 463

VB Today, 203

Wikipedia, 387

Yahoo! stock quotes, 426

websites 525

West, David, 78

Where, extension methods, 73, 76

Where clauses, XML documents, 429

Where Lambda Expressions, converting to
Active Directory search filters, 254-256

Where<T> method, Lambda Expression,
112-113

Wikipedia, 387

Wilde, Oscar, 167

Windows Communication Foundation, 377

Windows Registry

overview, 205

two section comparison, 206-207

X–Z
XComment node, SQL to XML

conversions, 475

XDocument class, loading XML documents,
416-419

XElement class

attributes

adding, 422

deleting, 423

node annotations, 433-434

XML documents, loading, 420

XML

.csv files, creating from, 454-456

documents

creating from Yahoo! stock quotes,
426-427

defining as strings, 424-425

element navigation based on context,
430-431

filtering, 429

functional construction, 450-451

intermediate values, 432-433

loading, 415-416

missing data, 425-426

namespaces, 427-428

nested queries, 428-429

node annotations, 433-434

querying, 416-421

sorting, 431

embedded LINQ queries in VB, 458

console application, 460-461

Customer class example, 459-460

literal XML with embedded
expressions and LINQ, 461-462

files, creating with

LINQ to XSD, 488-490

XmlWriter class, 465-467

LINQ to XML

StockHistory database
UpdatePriceHistory method, 407-411

XPath, compared, 438-443

XSLT, compared, 443-450

Path Language, 437

Schema files

creating with LINQ to XSD, 490-491

regular expressions, adding, 491-494

SQL, creating from, 469, 473-474

object-relational maps, defining,
470-472

TreeView output of XML document,
475-478

XComment node, 475

West, David526

SQL, updating

examining inserted data, 481

inserting data, 480-481

osql.exe scripting output, 482-483

sample XML file, 478-479

text files, creating, 457-458

XmlWriter class

overview, 464-465

XML files, creating, 465-467

XNamespace object, 427-428

XPath (XML Path Language), LINQ to XML,
437-438

child elements, 441

filtering elements, 442-443

namespaces, 439-441

sibling elements, 442

XPath (XML Path Language), 437

XQuery, filtering elements, 442

XSLT (Extensible Stylesheet Language
Transformations), LINQ to XML, 437, 443

debugging documents, 450

HTML documents, 444-449

Yahoo! stock quotes website, 426

yield return, 85-86

BinaryTree, 89-93

demonstration of, 87-88

profiling code, 93-94

rules for, 88

yield break, 95

How can we make this index more useful? Email us at indexes@samspublishing.com

yield return 527

	Introduction
	Conventions Used in This Book
	1 Programming with Anonymous Types
	Understanding Anonymous Types
	Programming with Anonymous Types
	Databinding Anonymous Types
	Testing Anonymous Type Equality
	Using Anonymous Types with LINQ Queries
	Introducing Generic Anonymous Methods
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

