

Sams Teach Yourself PHP, MySQL and Apache All in One, Fourth Edition
Copyright © 2008 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32976-0

ISBN-10: 0-672-32976-x

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Seth Kerney

Copy Editor
Mike Henry

Indexer
Ken Johnson

Proofreader
Debbie Williams

Technical Editor
Derek Mueller

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

The Safari®Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,

find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.samspublishing.com/safarienabled

. Complete the brief registration form

. Enter the coupon code 68LV-Y3NM-EMY8-L7NK-AC54

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email
customer-service@safaribooksonline.com.

http://www.samspublishing.com/safarienabled

Introduction

Welcome to Sams Teach Yourself PHP, MySQL and Apache All in One, Fourth Edition! In the pre-

vious edition, the majority of the modifications were around the ability to use both PHP 5

and MySQL 5 as core technologies. In the two years since the previous edition was released,

little has changed: PHP 5 and MySQL 5 are solid, stable, and power a great number of the

Web-based applications we use every day. Many hosting providers now offer PHP 5 by

default, without support for PHP 4 (which has entered the “end of life” phase), thus ensur-

ing that anyone who wants to use PHP 5 and MySQL 5 can do so without installing these

applications on their own (although the first four chapters of this book explain how to do

just that). All the code in this edition is based on PHP 5 and, where appropriate, the MySQL

Improved Extension (mysqli) in PHP, using MySQL 5 as the back-end database.

Some of you might have heard of PHP 6 or have seen books touting PHP 6 as the core lan-

guage used. As of this writing in May of 2008, PHP 6 is still in the development stages and

has not even entered the release candidate stage of development. Although PHP 6 is likely

to reach the release candidate stage before the end of 2008, hosting providers will be loath

to provide new technologies for general use until the language and the engine driving it

have been thoroughly tested and improved to the point at which the release is deemed sta-

ble and mature—perhaps sometime in 2009. Given this information, it seemed entirely pre-

mature for this edition to cover the aspects of the language based on a developmental

release, especially when the goal of this book is to provide the concepts necessary to master

the basics of programming in the PHP language—the version that is stable and widely

distributed.

Over the course of this book, you’ll learn the concepts necessary for configuring and man-

aging the Apache web server, the basics of programming in PHP, and the methods for using

and administering the MySQL relational database system. The overall goal of the book is to

provide you with the foundation you need to understand how seamlessly these technologies

integrate with one another and to give you practical knowledge of how to integrate them.

Who Should Read This Book?
This book is geared toward individuals who possess a general understanding of the concepts

of working in a web-based development environment, be it Linux/UNIX, Windows, or even

Mac OS X. Installation and configuration instructions assume that you have familiarity

with your operating system and the basic methods of building (on Linux/UNIX systems) or

installing (on Windows and Mac OS X systems) software.

The lessons that delve into programming with PHP assume no previous knowledge of the

language. However, if you have experience with other programming languages, such as

ASP (Active Server Pages), JSP (Java Server Pages), or Perl, you will find the going much eas-

ier. Similarly, if you have worked with other databases, such as Oracle or Microsoft SQL

Server, you will already possess a solid foundation for working through the MySQL-related

lessons.

The only real requirement is that you already understand static web content creation with

HTML. If you are just starting out in the world of web development, you will still be able to

use this book, but you should consider working through an HTML tutorial. If you are com-

fortable creating basic pages, you will be fine.

How This Book Is Organized
This book is divided into six parts, corresponding to particular topic groups. You should

read the chapters within each part one right after another, with each chapter building on

the information found in those before it:

. Part I, “Getting Up and Running,” provides a quick start guide to installation and

walks you through the installation and configuration of MySQL, Apache, and PHP in

depth. You’ll need to complete at least one version of these instructions—either the

quick start installation or the longer instructions—before moving on unless you

already have access to a working installation of these technologies through a hosting

provider. Even if you don’t need to install and configure MySQL, Apache, and PHP in

your development environment, you should still skim these lessons so that you under-

stand the basics of their interaction.

. Part II, “PHP Language Structure,” is devoted to teaching you the basics of the PHP

language, including structural elements such as arrays and objects. The examples will

get you in the habit of writing code, uploading it to your server, and testing the

results.

. Part III, “Getting Involved with the Code,” consists of chapters that cover intermedi-

ate-level application development topics, including working with forms and files,

restricting access, and completing other small projects designed to introduce a specific

concept.

. Part IV, “PHP and MySQL Integration,” contains chapters devoted to working with

databases in general, such as database normalization, as well as using PHP to con-

nect to and work with MySQL. Included is a basic SQL primer, which also includes

MySQL-specific functions and other information.

2

Sams Teach Yourself PHP, MySQL and Apache All in One

. Part V, “Basic Projects,” consists of chapters devoted to performing a particular task

using PHP and MySQL, integrating all the knowledge gained so far. Projects include

an address book, a discussion forum, and a basic online storefront, among others.

These examples are built in a black-and-white environment, meaning the aesthetic

display is minimal. This allows you to focus on the programming and logic involved

in building the structures rather than making these items aesthetically pleasing.

. Part VI, “Administration and Fine-Tuning,” is devoted to administering and tuning

Apache and MySQL. It also includes information on virtual hosting and setting up a

secure web server.

If you find that you are already familiar with a topic, you can skip ahead to the next chap-

ter. However, in some instances, chapters refer to specific concepts learned in previous chap-

ters, so be aware that you might have to skim a skipped chapter so that your development

environment remains consistent with the book.

At the end of many chapters, a few quiz questions test how well you’ve learned the materi-

al. Additional activities provide another way to apply the information learned in the chap-

ter and guide you toward using this newfound knowledge in the next chapter.

About the Book’s Source Code
All of the code that appears in listings throughout the chapters is also available on the

accompanying CD-ROM. You may also download the source code bundle from the author’s

website at http://www.thickbook.com/.

Typing the code on your own provides useful experience in making typos, causing errors,

and performing the sometimes mind-numbing task of tracking down errant semicolons.

However, if you want to skip that lesson and just upload the working code to your website,

feel free!

Conventions Used in This Book
This book uses different typefaces to differentiate between code and plain English, and to

help you identify important concepts. Throughout the chapters, code, commands, and text

you type or see onscreen appear in a computer typeface. New terms appear in italics at

the point in the text where they are defined. Additionally, icons accompany special blocks

of information:

Introduction

3

http://www.thickbook.com/

A “By the Way” note presents an interesting piece of information
related to the current topic.

A “Did You Know” tip offers advice or teaches an easier method for
performing a task.

A “Watch Out!” warns you about potential pitfalls and explains how to
avoid them.

4

Sams Teach Yourself PHP, MySQL and Apache All in One

By the
Way

Did you
Know?

Watch
Out!

5

The Building Blocks of PHP

In this chapter, you will get your hands dirty with some of the nuts and bolts of the PHP

scripting language. Those of you new to programming might feel overwhelmed at times,

but don’t worry—you can always refer to this chapter later on. Concentrate on under-

standing the concepts, rather than memorizing the features covered, because these ele-

ments will be repeated throughout the scripts in this book. Eventually you’ll get it, if not

the first time!

If you’re already an experienced programmer, you should at least skim this chapter

because it covers a few PHP-specific features with regards to global variables, data types,

and changing types.

In this chapter, you will learn

. About variables—what they are, why you need to use them, and how to use them

. How to define and access variables

. About data types

. About some of the more commonly used operators

. How to use operators to create expressions

. How to define and use constants

Variables
A variable is a special container that you can define, which will then “hold” a value, such

as a number, string, object, array, or a Boolean. Variables are fundamental to program-

ming. Without variables, you would be forced to hard-code each specific value used in

your scripts. The following hard-coded statement adds two numbers together and prints

the result, which solves a simple mathematics problem:

echo (2 + 4);

88 5: The Building Blocks of PHP

However, this snippet of code is useful only for people who specifically want to know

the sum of 2 and 4. To get past this limitation, you could write a script for finding

the sum of another set of numbers, say 3 and 5. However, this approach to pro-

gramming is clearly absurd, and this is where variables come into play.

Variables allow you to create templates for operations, such as adding two numbers,

without worrying about the specific values the variables represent. Values will be

given to the variables when the script is run, possibly through user input, through a

database query, or from the result of another action earlier in the script. In other

words, variables should be used whenever the data in your script is liable to

change—either during the lifetime of the script, or when it is passed to another

script for later use.

A variable consists of a name of your choosing, preceded by a dollar sign ($).

Variable names can include letters, numbers, and the underscore character (_), but

they cannot include spaces. Names must begin with a letter or an underscore. The

following list shows some legal variables:

$a;

$a_longish_variable_name;

$2453;

$sleepyZZZZ;

Your variable names should be meaningful as well as consistent in style. For
example, if your script deals with name and password values, don’t create a vari-
able called $n for the name and $p for the password—those are not meaningful
names for anyone other than you, at that particular moment. If you pick up that
script weeks later, you might think that $n is the variable for “number” rather than
“name” and that $p stands for “page” rather than “password.” And what if a co-
worker has to modify your script? How will that person know what $n and $p stood
for? You can use whatever naming convention you want for variables in your
scripts, as long as the names are descriptive and follow some sort of pattern that
others can understand.

A semicolon (;)—also known as the instruction terminator—is used to end a PHP

statement. The semicolons in the previous fragment of code are not part of the vari-

able names, but are used to end the statement that declares the variable as “alive

and kicking,” if you will. To declare a variable, you need only include it in your

By the
Way

Variables 89

script. When you declare a variable, you usually assign a value to it in the same

statement, as shown here:

$num1 = 8;

$num2 = 23;

The preceding lines declare two variables and use the assignment operator (=) to

assign values to them. You will learn about assignment in more detail in the

“Operators and Expressions” section later in this chapter. After you assign values to

your variables, you can treat them exactly as if they were the values themselves. In

other words

echo $num1;

is equivalent to

echo 8;

as long as $num1 is assigned a value of 8.

Globals and Superglobals
In addition to the rules for naming variables, there are rules regarding the availabil-

ity of variables. In general, the assigned value of a variable is present only within

the function or script where it resides. For example, if you have scriptA.php that

holds a variable called $name with a value of joe, and you want to create

scriptB.php that also uses a $name variable, you can assign to that second $name

variable a value of jane without affecting the variable in scriptA.php. The value

of the $name variable is local to each script, and the assigned values are independent

of each other.

However, you can also define the $name variable as global within a script or func-

tion. If the $name variable is defined as a global variable in both scriptA.php and

scriptB.php, and these scripts are connected to each other (that is, one script calls

the other or includes the other), there will only be one value for the now-shared

$name variable. Examples of global variable scope will be explained in more detail

in Chapter 7, “Working with Functions.”

In addition to global variables of your own creation, PHP has several predefined

variables called superglobals. These variables are always present, and their values

are available to all your scripts. Each of the following superglobals is actually an

array of other variables:

. $_GET contains any variables provided to a script through the GET method.

. $_POST contains any variables provided to a script through the POST method.

90 5: The Building Blocks of PHP

. $_COOKIE contains any variables provided to a script through a cookie.

. $_FILES contains any variables provided to a script through file uploads.

. $_SERVER contains information such as headers, file paths, and script locations.

. $_ENV contains any variables provided to a script as part of the server

environment.

. $_REQUEST contains any variables provided to a script via GET, POST, or

COOKIE input mechanisms.

. $_SESSION contains any variables that are currently registered in a session.

The examples in this book will use superglobals wherever possible. Using superglob-

als within your scripts is important in creating secure applications because super-

globals reduce the likelihood of user-injected input to your scripts. By coding your

scripts to accept only what you want, in the manner defined by you (from a form

using the POST method, or from a session, for example), you can eliminate some of

the problems created by loosely written scripts.

Data Types
Different types of data take up different amounts of memory and may be treated

differently when they are manipulated in a script. Some programming languages

therefore demand that the programmer declare in advance which type of data a

variable will contain. By contrast, PHP is loosely typed, meaning that it will deter-

mine the data type at the time data is assigned to each variable.

This automatic typing is a mixed blessing. On the one hand, it means that variables

can be used flexibly—in one instance, a variable can hold a string and then later in

the script it can hold an integer or some other data type. On the other hand, this

flexibility can lead to problems in larger scripts if you are specifically expecting a

variable to hold one data type when in fact it holds something completely different.

For example, suppose that you have created code to manipulate an array variable.

If the variable in question instead contains a number value and no array structure

is in place, errors will occur when the code attempts to perform array-specific opera-

tions on the variable.

Table 5.1 shows the eight standard data types available in PHP.

Data Types 91

TABLE 5.1 Standard Data Types

Type Example Description

Boolean true One of the special values true or false

Integer 5 A whole number

Float or double 3.234 A floating-point number

String “hello” A collection of characters

Object An instance of a class

Array An ordered set of keys and values

Resource Reference to a third-party resource (a data-
base, for example)

NULL An uninitialized variable

Resource types are often returned by functions that deal with external applications

or files. For example, you will see references to “the MySQL resource ID” in Chapter

18, “Interacting with MySQL Using PHP.” The NULL type is reserved for variables

that have been declared, but no value has been assigned to them.

PHP has several functions available to test the validity of a particular type of vari-

able—one for each type, in fact. The is_* family of functions, such as is_bool(),

tests whether a given value is a Boolean. Listing 5.1 assigns different data types to a

single variable and then tests the variable with the appropriate is_* function. The

comments in the code show you where the script is in the process.

You can read more about calling functions in Chapter 7.

LISTING 5.1 Testing the Type of a Variable
1: <?php
2: $testing; // declare without assigning
3: echo “is null? “.is_null($testing); // checks if null
4: echo “
”;
5: $testing = 5;
6: echo “is an integer? “.is_int($testing); // checks if integer
7: echo “
”;
8: $testing = “five”;
9: echo “is a string? “.is_string($testing); // checks if string
10: echo “
”;
11: $testing = 5.024;
12: echo “is a double? “.is_double($testing); // checks if double
13: echo “
”;
14: $testing = true;
15: echo “is boolean? “.is_bool($testing); // checks if boolean
16: echo “
”;
17: $testing = array(‘apple’, ‘orange’, ‘pear’);

By the
Way

92 5: The Building Blocks of PHP

18: echo “is an array? “.is_array($testing); // checks if array
19: echo “
”;
20: echo “is numeric? “.is_numeric($testing); // checks if is numeric
21: echo “
”;
22: echo “is a resource? “.is_resource($testing); // checks if is a resource
23: echo “
”;
24: echo “is an array? “.is_array($testing); // checks if is an array
25: echo “
”;
26: ?>

Put these lines into a text file called testtype.php, and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

is null? 1
is an integer? 1
is a string? 1
is a double? 1
is boolean? 1
is an array? 1
is numeric?
is a resource?
is an array? 1

When the $testing variable is declared in line 2, no value is assigned to it, so when

the variable is tested in line 3 to see whether it is null (using is_null()), the result

is 1 (true). After this, values are assigned to $testing by using the = sign before test-

ing it with the appropriate is_* function. An integer, assigned to the $testing vari-

able in line 5, is a whole or real number. In simple terms, you can think of a whole

number as a number without a decimal point. A string, assigned to the $testing

variable in line 8, is a collection of characters. When you work with strings in your

scripts, they should always be surrounded by double or single quotation marks (“ or

‘). A double, assigned to the $testing variable in line 11, is a floating-point num-

ber (that is, a number that includes a decimal point). A Boolean, assigned to the

$testing variable in line 14, can have one of two special values: true or false. In

line 17, an array is created using the array() function, which you’ll learn more

about in Chapter 8, “Working with Arrays.” This particular array contains three

items, and the script dutifully reports $testing to have a type of “array.”

From line 20 through the end of the script, no value is reassigned to $testing—only

the type is tested. Lines 20 and 22 test whether $testing is a numeric or resource

type, respectively, and because it is not, no value is displayed to the user. In line 24,

the script tests again to see whether $testing is an array, and because it is, the

value of 1 is displayed.

LISTING 5.1 Continued

Data Types 93

Changing Type with settype()
PHP also provides the function settype(), which is used to change the type of a

variable. To use settype(), you place the variable to change and the type to

change it to between the parentheses and separate the elements with a comma, like

this:

settype($variabletochange, ‘new type’);

Listing 5.2 converts the value 3.14 (a float) to each of the four standard types

examined in this chapter.

LISTING 5.2 Changing the Type of a Variable with settype()
1: <?php
2: $undecided = 3.14;
3: echo “is “.$undecided.” a double? “.is_double($undecided).”
”; // double
4: settype($undecided, ‘string’);
5: echo “is “.$undecided.” a string? “.is_string($undecided).”
”; // string
6: settype($undecided, ‘integer’);
7: echo “is “.$undecided.” an integer? “.is_integer($undecided).”
”; //
➥int
8: settype($undecided, ‘double’);
9: echo “is “.$undecided.” a double? “.is_double($undecided).”
”; // double
10: settype($undecided, ‘bool’);
11: echo “is “.$undecided.” a boolean? “.is_bool($undecided).”
”; // boolean
12: ?>

Per the PHP Manual, “double” is returned in case of a float, and not simply
“float”. Your eyes are not deceiving you.

In each case, we use the appropriate is_* function to confirm the new data type

and to print the value of the variable $undecided to the browser using echo. When

we convert the string “3.14” to an integer in line 6, any information beyond the

decimal point is lost forever. That’s why $undecided contains 3 after we change it

back to a double in line 8. Finally, in line 10, we convert $undecided to a Boolean.

Any number other than 0 becomes true when converted to a Boolean. When print-

ing a Boolean in PHP, true is represented as 1 and false is represented as an empty

string, so in line 11, $undecided is printed as 1.

Put these lines into a text file called settype.php and place this file in your web

server document root. When you access this script through your web browser, it pro-

duces the following output:

is 3.14 a double? 1
is 3.14 a string? 1
is 3 an integer? 1
is 3 a double? 1
is 1 a boolean? 1

By the
Way

94 5: The Building Blocks of PHP

Changing Type by Casting
The principal difference between using settype() to change the type of an existing

variable and changing type by casting is the fact that casting produces a copy, leav-

ing the original variable untouched. To change type through casting, you indicate

the name of a data type, in parentheses, in front of the variable you are copying.

For example, the following line creates a copy of the $originalvar variable, with a

specific type (integer) and a new name $newvar. The $originalvar variable will

still be available, and will be its original type; $newvar is a completely new variable.

$newvar = (integer) $originalvar

Listing 5.3 illustrates changing data types through casting.

LISTING 5.3 Casting a Variable
1: <?php
2: $undecided = 3.14;
3: $holder = (double) $undecided;
4: echo “is “.$holder.” a double? “.is_double($holder).”
”; // double
5: $holder = (string) $undecided;
6: echo “is “.$holder.” a string? “.is_string($holder).”
”; // string
7: $holder = (integer) $undecided;
8: echo “is “.$holder.” an integer? “.is_integer($holder).”
”; // integer
9: $holder = (double) $undecided;
10: echo “is “.$holder.” a double? “.is_double($holder).”
”; // double
11: $holder = (boolean) $undecided;
12: echo “is “.$holder.” a boolean? “.is_bool($holder).”
”; // boolean
13: echo “<hr/>”;
14: echo “original variable type of $undecided: “;
15: echo gettype($undecided); // double
16: ?>

Listing 5.3 never actually changes the type of the $undecided variable, which

remains a double throughout this script, as illustrated on line 15, where the

gettype() function is used to determine the type of $undecided.

Despite its usage here, don’t use gettype() to test for a certain type because it
can be slow and is likely to be deprecated in future versions. Use the is_* family
of functions to test type in production. This usage is simply for illustrative purposes.

In fact, casting $undecided creates a copy that is then converted to the type speci-

fied at the time of the cast, and stored in the variable $holder. This casting occurs

first in line 3, and again in lines 5, 7, 9, and 11. Because the code is working with

only a copy of $undecided and not the original variable, it never lost its original

value, as the $undecided variable did in line 6 of Listing 5.2 when its type changed

from a string to an integer.

By the
Way

Data Types 95

Put the contents of Listing 5.3 into a text file called casttype.php and place this file

in your web server document root. When you access this script through your web

browser, it produces the following output:

is 3.14 a double? 1
is 3.14 a string? 1
is 3 an integer? 1
is 3.14 a double? 1
is 1 a boolean? 1
original variable type of 3.14: double

Now that you’ve seen how to change the contents of a variable from one type to

another either by using settype() or by casting, consider why this might be useful.

It is not a procedure that you will have to use often because PHP automatically casts

your variables for you when the context of the script requires a change. However,

such an automatic cast is temporary, and you might want to make a variable per-

sistently hold a particular data type—thus, the ability to specifically change types.

For example, the numbers that a user types into an HTML form will be made avail-

able to your script as the string type. If you try to add two strings together because

they contain numbers, PHP will helpfully convert these strings into numbers while

the addition is taking place. So

“30cm” + “40cm”

results in an answer of 70.

The generic term number is used here to mean integers and floats. If the user
input is in float form, and the strings added together were “3.14cm” and
“4.12cm”, the answer provided would be 7.26.

During the casting of a string into an integer or float, PHP will ignore any non-

numeric characters. The string will be truncated, and any characters from the loca-

tion of the first non-numeric character onward are ignored. So, whereas “30cm” is

transformed into “30”, the string “6ft2in” becomes just 6 because the rest of the

string evaluates to zero.

You might want to clean up the user input yourself and use it in a particular way in

your script. Imagine that the user has been asked to submit a number. We can sim-

ulate this by declaring a variable and assigning the user’s input to it:

$test = “30cm”;

By the
Way

96 5: The Building Blocks of PHP

As you can see, the user has added units to his number—instead of entering “30”,

the user has entered “30cm”. You can make sure that the user input is clean by cast-

ing it as an integer:

$newtest = (integer) $test;
echo “Your imaginary box has a width of $newtest centimeters.”;

The resulting output would be

Your imaginary box has a width of 30 centimeters.

Had the the user input not been cast, and the value of the original variable, $test,

been used in place of $newtest when printing the statement regarding the width of

a box, the result would have been

Your imaginary box has a width of 30cm centimeters.

This output looks strange; in fact, it looks like parroted user input that hadn’t been

cleaned up (which is exactly what it is).

Why Test Type?
Why might it be useful to know the type of a variable? There are often circum-

stances in programming in which data is passed to you from another source. In

Chapter 7, you will learn how to create functions in your scripts, and data is often

passed between one or more functions because they can accept information from

calling code in the form of arguments. For the function to work with the data it is

given, it is a good idea to first verify that the function has been given values of the

correct data type. For example, a function expecting data that has a type of

“resource” will not work well when passed a string.

Operators and Expressions
With what you have learned so far, you can assign data to variables, and you can

even investigate and change the data type of a variable. A programming language

isn’t very useful, though, unless you can manipulate the data you have stored.

Operators are symbols used to manipulate data stored in variables, to make it possi-

ble to use one or more values to produce a new value, or to check the validity of

data to determine the next step in a condition, and so forth. A value operated on by

an operator is referred to as an operand.

Operators and Expressions 97

An operator is a symbol or series of symbols that, when used in conjunction with
values, performs an action and usually produces a new value.

An operand is a value used in conjunction with an operator. There are usually two
or more operands to one operator.

In this simple example, two operands are combined with an operator to produce a

new value:

(4 + 5)

The integers 4 and 5 are operands. The addition operator (+) operates on these

operands to produce the integer 9. Operators almost always sit between two

operands, although you will see a few exceptions later in this chapter.

The combination of operands with an operator to produce a result is called an

expression. Although operators and their operands form the basis of expressions, an

expression need not contain an operator. In fact, an expression in PHP is defined as

anything that can be used as a value. This includes integer constants such as 654,

variables such as $user, and function calls such as gettype(). The expression (4 +

5), for example, consists of two expressions (4 and 5) and an operator (+). When an

expression produces a value, it is often said to resolve to that value. That is, when all

subexpressions are taken into account, the expression can be treated as if it were a

code for the value itself. In this case, the expression (4 + 5) resolves to 9.

An expression is any combination of functions, values, and operators that resolves
to a value. As a rule of thumb, if you can use it as if it were a value, it is an
expression.

Now that you have the principles out of the way, it’s time to take a tour of the oper-

ators commonly used in PHP programming.

The Assignment Operator
You have seen the assignment operator in use each time a variable was declared in

an example; the assignment operator consists of the single character: =. The assign-

ment operator takes the value of the right-side operand and assigns it to the left-side

operand:

$name = “jimbo”;

The variable $name now contains the string “jimbo”. This construct is also an

expression. Although it might seem at first glance that the assignment operator

By the
Way

By the
Way

98 5: The Building Blocks of PHP

simply changes the variable $name without producing a value, in fact, a statement

that uses the assignment operator always resolves to a copy of the value of the right

operand. Thus

echo $name = “jimbo”;

prints the string “jimbo” to the browser while it also assigns the value “jimbo” to

the $name variable.

Arithmetic Operators
The arithmetic operators do exactly what you would expect—they perform arith-

metic operations. Table 5.2 lists these operators along with examples of their usage

and results.

TABLE 5.2 Arithmetic Operators

Operator Name Example Sample Result

+ Addition 10+3 13

- Subtraction 10-3 7

/ Division 10/3 3.3333333333333

* Multiplication 10*3 30

% Modulus 10%3 1

The addition operator adds the right-side operand to the left-side operand. The sub-

traction operator subtracts the right-side operand from the left-side operand. The

division operator divides the left-side operand by the right-side operand. The multi-

plication operator multiplies the left-side operand by the right-side operand. The

modulus operator returns the remainder of the left-side operand divided by the

right-side operand.

The Concatenation Operator
The concatenation operator is represented by a single period (.). Treating both

operands as strings, this operator appends the right-side operand to the left-side

operand. So

“hello”.” world”

returns

“hello world”

Operators and Expressions 99

Note that the resulting space between the words occurs because there is a leading

space in the second operand (“ world” instead of “world”). The concatenation

operator literally smashes together two strings without adding any padding. So, if

you tried to concatenate two strings without leading or trailing spaces, such as

“hello”.”world”

you would get this as your result:

“helloworld”

Regardless of the data types of the operands used with the concatenation operator,

they are treated as strings, and the result will always be of the string type. You will

encounter concatenation frequently throughout this book when the results of an

expression of some kind must be combined with a string, as in

$cm = 212;
echo “the width is “.($cm/100).” meters”;

Combined Assignment Operators
Although there is only one true assignment operator, PHP provides a number of

combination operators that transform the left-side operand and return a result,

while also modifying the original value of the variable. As a rule, operators use

operands but do not change their original values, but combined assignment opera-

tors break this rule. A combined assignment operator consists of a standard operator

symbol followed by an equal sign. Combination assignment operators save you the

trouble of using two operators in two different steps within your script. For example,

if you have a variable with a value of 4, and you want to increase this value to 4

more, you might see:

$x = 4;
$x = $x + 4; // $x now equals 8

However, you can also use a combination assignment operator (+=) to add and

return the new value, as shown here:

$x = 4;
$x += 4; // $x now equals 8

Each arithmetic operator, as well as the concatenation operator, also has a corre-

sponding combination assignment operator. Table 5.3 lists these new operators and

shows an example of their usage.

100 5: The Building Blocks of PHP

TABLE 5.3 Some Combined Assignment Operators

Operator Example Equivalent To

+= $x += 5 $x = $x + 5

-= $x -= 5 $x = $x - 5

/= $x /= 5 $x = $x / 5

*= $x *= 5 $x = $x * 5

%= $x %= 5 $x = $x % 5

.= $x .= “ test” $x = $x.” test”

Each of the examples in Table 5.3 transforms the value of $x using the value of the

right-side operand. Subsequent uses of $x will refer to the new value. For example

$x = 4;
$x += 4; // $x now equals 8
$x += 4; // $x now equals 12
$x -= 3; // $x now equals 9

These operators will be used throughout the scripts in the book. You will frequently

see the combined concatenation assignment operator when you begin to create

dynamic text; looping through a script and adding content to a string, such as

dynamically building the HTML code to represent a table, is a prime example of the

use of a combined assignment operator.

Automatically Incrementing and Decrementing an
Integer Variable
When coding in PHP, you will often find it necessary to increment or decrement a

variable that is an integer type. You will usually need to do this when you are

counting the iterations of a loop. You have already learned two ways of doing this—

either by incrementing the value of $x using the addition operator

$x = $x + 1; // $x is incremented by 1

or by using a combined assignment operator

$x += 1; // $x is incremented by 1

In both cases, the new value is assigned to $x. Because expressions of this kind are

common, PHP provides some special operators that allow you to add or subtract the

integer constant 1 from an integer variable, assigning the result to the variable

itself. These are known as the post-increment and post-decrement operators. The post-

increment operator consists of two plus symbols appended to a variable name:

$x++; // $x is incremented by 1

Operators and Expressions 101

This expression increments the value represented by the variable $x by one. Using

two minus symbols in the same way will decrement the variable:

$x--; // $x is decremented by 1

If you use the post-increment or post-decrement operators in conjunction with a

conditional operator, the operand will be modified only after the first operation has

finished:

$x = 3;
$y = $x++ + 3;

In this instance, $y first becomes 6 (the result of 3 + 3) and then $x is incremented.

In some circumstances, you might want to increment or decrement a variable in a

test expression before the test is carried out. PHP provides the pre-increment and pre-

decrement operators for this purpose. These operators behave in the same way as

the post-increment and post-decrement operators, but they are written with the plus

or minus symbols preceding the variable:

++$x; // $x is incremented by 1
--$x; // $x is decremented by 1

If these operators are used as part of a test expression, incrementing occurs before

the test is carried out. For example, in the next fragment, $x is incremented before it

is tested against 4.

$x = 3;
++$x < 4; // false

The test expression returns false because 4 is not smaller than 4.

Comparison Operators
Comparison operators perform comparative tests using their operands and return

the Boolean value true if the test is successful or false if the test fails. This type of

expression is useful when using control structures in your scripts, such as if and

while statements. This book covers if and while statements in Chapter 6, “Flow

Control Functions in PHP.”

For example, to test whether the value contained in $x is smaller than 5, you can

use the less-than operator as part of your expression:

$x < 5

102 5: The Building Blocks of PHP

If $x contains the value 3, this expression will have the value true. If $x contains 7,

the expression resolves to false.

Table 5.4 lists the comparison operators.

TABLE 5.4 Comparison Operators

Returns Example
Operator Name True If… ($x Is 4) Result

== Equivalence Left is equivalent $x == 5 false

to right

!= Non-equivalence Left is not equivalent $x != 5 true

to right

=== Identical Left is equivalent to $x === 4 true

right and they are
the same type

Non-equivalence Left is equivalent to $x === “4” false

right but they are
not the same type

> Greater than Left is greater than $x > 4 false

right

>= Greater than or Left is greater than $x >= 4 true

equal to or equal to right

< Less than Left is less than right $x < 4 false

<= Less than or Left is less than or $x <= 4 true

equal to equal to right

These operators are most commonly used with integers or doubles, although the

equivalence operator is also used to compare strings. Be very sure to understand the

difference between the == and = operators. The == operator tests equivalence, where-

as the = operator assigns value. Also, remember that === tests equivalence with

regards to both value and type.

Creating Complex Test Expressions with the
Logical Operators
Logical operators test combinations of Boolean values. For example, the or operator,

which is indicated by two pipe characters (||) or simply the word or, returns the

Boolean value true if either the left or the right operand is true:

true || false

This expression returns true.

Operators and Expressions 103

The and operator, which is indicated by two ampersand characters (&&) or simply

the word and, returns the Boolean value true only if both the left and right

operands are true:

true && false

This expression returns the Boolean value false. It’s unlikely that you will use a

logical operator to test Boolean constants because it makes more sense to test two or

more expressions that resolve to a Boolean. For example

($x > 2) && ($x < 15)

returns the Boolean value true if $x contains a value that is greater than 2 and

smaller than 15. Parentheses are used when comparing expressions to make the

code easier to read and to indicate the precedence of expression evaluation. Table

5.5 lists the logical operators.

TABLE 5.5 Logical Operators

Operator Name Returns True If… Example Result

|| Or Left or right is true true || false true

or Or Left or right is true true or false true

xor Xor Left or right is true but true xor true false

not both

&& And Left and right are true true && false false

and And Left and right are true true and false false

! Not The single operand is ! true false

not true

You might wonder why are there two versions of both the or and the and operators,

and that’s a good question. The answer lies in operator precedence, which you will

examine next.

Operator Precedence
When you use an operator within an expression, the PHP engine usually reads your

expression from left to right. For complex expressions that use more than one opera-

tor, though, the PHP engine could be led astray without some guidance. First, con-

sider a simple case:

4 + 5

104 5: The Building Blocks of PHP

There’s no room for confusion here—PHP simply adds 4 to 5. But what about the fol-

lowing fragment, with two operators:

4 + 5 * 2

This presents a problem. Should PHP find the sum of 4 and 5, and then multiply it

by 2, providing the result 18? Or does it mean 4 plus the result of 5 multiplied by 2,

resolving to 14? If you were simply to read from left to right, the former would be

true. However, PHP attaches different precedence to different operators, and because

the multiplication operator has higher precedence than the addition operator, the

second solution to the problem is the correct one: 4 plus the result of 5 multiplied

by 2.

However, you can override operator precedence by putting parentheses around your

expressions. In the following fragment, the addition expression will be evaluated

before the multiplication expression:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, it is a good idea

to use parentheses to make your code clearer and to save you from bugs such as

applying sales tax to the wrong subtotal in a shopping cart situation. The following

is a list of the operators covered in this chapter in precedence order (those with high-

est precedence are listed first):

++, --, (cast)

/, *, %

+, -

<, <=, =>, >

==, ===, !=

&&

||

=, +=, -=, /=, *=, %=, .=

and

xor

or

As you can see, or has a lower precedence than ||, and and has a lower precedence

than &&, so you can use the lower-precedence logical operators to change the way a

complex test expression is read. In the following fragment, the two expressions are

equivalent, but the second is much easier to read:

Constants 105

$x and $y || $z

$x && ($y || $z)

Taking it one step further, the following fragment is easier still:

$x and ($y or $z)

However, all three examples are equivalent.

The order of precedence is the only reason that both && and and are available in

PHP. The same is true of || and or. In most circumstances, the use of parentheses

makes for clearer code and fewer bugs than code that takes advantage of the differ-

ence in precedence of these operators. This book will tend to use the more common

|| and && operators, and rely on parenthetical statements to set specific operator

precedence.

Constants
Variables offer a flexible way of storing data because you can change their values

and the type of data they store at any time during the execution of your scripts.

However, if you want to work with a value that must remain unchanged throughout

your script’s execution, you can define and use a constant. You must use PHP’s built-

in define() function to create a constant, which subsequently cannot be changed

unless you specifically define() it again. To use the define() function, place the

name of the constant and the value you want to give it, within parentheses and sep-

arated by a comma:

define(“YOUR_CONSTANT_NAME”, 42);

The value you want to set can be a number, a string, or a Boolean. By convention,

the name of the constant should be in capital letters. Constants are accessed with

the constant name only; no dollar symbol is required. Listing 5.4 shows you how to

define and access a constant.

LISTING 5.4 Defining and Accessing a Constant
1: <?php
2: define(“THE_YEAR”, “2008”);
3: echo “It is the year “.THE_YEAR;
4: ?>

106 5: The Building Blocks of PHP

Constants can be used anywhere in your scripts, including in functions stored in
external files.

Notice that in line 3 the concatenation operator is used to append the value held by

the constant to the string “It is the year “ because PHP does not distinguish

between a constant and a string within quotation marks.

Put these few lines into a text file called constant.php and place this file in your

web server document root. When you access this script through your web browser, it

produces the following output:

It is the year 2008

The define() function can also accept a third Boolean argument that determines

whether the constant name should be case sensitive. By default, constant names are

case sensitive. However, by passing true to the define() function, you can change

this behavior, so if you were to set up our THE_YEAR constant as

define(“THE_YEAR”, “2008”, true);

you could access its value without worrying about case:

echo the_year;
echo ThE_YeAr;
echo THE_YEAR;

The preceding three expressions are equivalent, and all would result in an output of

2008. This feature can make scripts a little friendlier for other programmers who

work with our code because they will not need to consider case when accessing a

constant we have already defined. On the other hand, given the fact that other con-

stants are case sensitive, this might make for more, rather than less, confusion as

programmers forget which constants to treat in which way. Unless you have a com-

pelling reason to do otherwise, the safest course is to keep your constants case sensi-

tive and define them using uppercase characters, which is an easy-to-remember (not

to mention standard) convention.

Predefined Constants
PHP automatically provides some built-in constants for you. For example, the con-

stant __FILE__ returns the name of the file that the PHP engine is currently reading.

The constant __LINE__ returns the current line number of the file. These constants

are useful for generating error messages. You can also find out which version of PHP

is interpreting the script with the PHP_VERSION constant. This constant can be useful

Did you
Know?

Q&A 107

if you need version information included in script output when sending a bug

report.

Summary
This chapter covered some of the basic features of the PHP language. You learned

about variables and how to assign values to them using the assignment operator, as

well as received an introduction to the scope of variables and built-in superglobals.

You got an introduction to operators and learned how to combine some of the most

common of these into expressions. Finally, you learned how to define and access

constants.

Now that you have mastered some of the fundamentals of PHP, the next chapter

will really put you in the driver’s seat. You will learn how to make scripts that can

make decisions and repeat tasks, with help from variables, expressions, and opera-

tors.

Q&A
Q. Why is it useful to know the type of data that a variable holds?

A. Often the data type of a variable constrains what you can do with it. For

example, you can’t perform array-related functions on simple strings.

Similarly, you might want to make sure that a variable contains an integer or

a float before using it in a mathematical calculation, even though PHP will

often help you by changing data types for you in this situation.

Q. Should I obey any conventions when naming variables?

A. Your goal should always be to make your code easy to read and understand. A

variable such as $ab123245 tells you nothing about its role in your script and

invites typos. Keep your variable names short and descriptive.

A variable named $f is unlikely to mean much to you when you return to

your code after a month or so. A variable named $filename, on the other

hand, should make more sense.

Q. Should I learn the operator precedence table?

A. There is no reason you shouldn’t, but I would save the effort for more useful

tasks. By using parentheses in your expressions, you can make your code easy

to read while defining your own order of precedence.

108 5: The Building Blocks of PHP

Workshop
The workshop is designed to help you anticipate possible questions, review what

you’ve learned, and begin putting your knowledge into practice.

Quiz
1. Which of the following variable names are not valid?

$a_value_submitted_by_a_user
$666666xyz
$xyz666666
$_____counter_____
$the first
$file-name

2. What will the following code fragment output?

$num = 33;
(boolean) $num;
echo $num;

3. What will the following statement output?

echo gettype(“4”);

4. What will be the output from the following code fragment?

$test_val = 5.5466;
settype($test_val, “integer”);
echo $test_val;

5. Which of the following statements does not contain an expression?

4;
gettype(44);
5/12;

6. Which of the statements in question 5 contains an operator?

7. What value will the following expression return?

5 < 2

What data type will the returned value be?

Workshop 109

Answers
1. The variable name $666666xyz is not valid because it does not begin with a

letter or an underscore character. The variable name $the first is not valid

because it contains a space. $file-name is also invalid because it contains a

nonalphanumeric character (-).

2. The fragment will print the integer 33. The cast to Boolean produces a con-

verted copy of the value stored in $num. It does not alter the value actually

stored there.

3. The statement will output the string “string”.

4. The code will output the value 5. When a float is converted to an integer, any

information beyond the decimal point is lost.

5. They are all expressions because they all resolve to values.

6. The statement 5/12; contains a division operator.

7. The expression will resolve to false, which is a Boolean value.

Activities
1. Create a script that contains at least five different variables. Populate them

with values of different data types and use the gettype() function to print

each type to the browser.

2. Assign values to two variables. Use comparison operators to test whether the

first value is

. The same as the second

. Less than the second

. Greater than the second

. Less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

SYMBOLS

&& (and) operators, 103

* (asterisks)

multiplication operators, 98

table creation, 313

wildcards, 38

\ (backslashes)

converting time stamps to dates,

195

directives, 51

\n (newline) character, 124, 214, 250

$ COOKIE superglobal, 90, 225

$ FILES superglobal, 90, 217

$ GET superglobal, 89

$ POST superglobal, 89

$ POST value, 379

$ REQUEST superglobal, 90

$ SERVER superglobal, 90

$ SESSION superglobal, 90

$cat id value, 439

$check result value, 381

$check result values, 380

$count variable, 464

$dayArray variable, 464

$display block strings

online address books, 399, 402

topic posts (discussion forums),

427

$display block value, 442-443

$display value, 439

$ENV superglobal, 90

$file array variable, 220

$file dir variable, 219

$file name variable, 220

$firstDayArray variable, 465

$name variable, 474

$newnum variable, 133

$SESSION superglobal, 229-232, 235

$start variable, 464

$txt variable, 135

= (equal sign)

assignment operators, 89, 97

concatenation operators, 214

== (equivalence) operators, 102, 316,

322

=== (identical) operators, 102

! (not operators), 103

!= (nonequivalence) operators, 102,

316

> (greater than) operators, 102, 316

Index

>= (greater than or equal to) opera-

tors, 102, 316

<DirectoryMatch> directive container,

52

<Directory> directive container, 52

<FilesMatch> directive container, 52

<Files> directive container, 52

<IfDefine> conditional container, 53

<IfModule> conditional container, 53

<LocationMatch> directive container,

52

<Location> directive container, 52

<pre> tags, viewing multiple spaces in

HTML, 175

<VirtualHost> directive container, 52

< (less than) operators, 102, 316

<= (less than or equal to) operators,

316

- (minus signs)

field width specifiers, 176

subtraction operators, 98

-c command-line option, 486

-D httpd option, server binary, 57

-DMyModule switch, 53

-f httpd option, server binary, 57

-l httpd option, server binary, 57

-v httpd option, server binary, 57

% (percent signs)

conversion specification, 172-173

log formats, 502

modulus operators, 98

wildcards, 38

%a format string option (DATE FOR-

MAT() function), 342

%a formatting directive, 502

%b format string option (DATE FOR-

MAT() function), 342

%b formatting directive, 503

%c format string option (DATE FOR-

MAT() function), 342

%C formatting directive, 503

%D format string option (DATE FOR-

MAT() function), 342

%D formatting directive, 502

%e format string option (DATE FOR-

MAT() function), 342

%e formatting directive, 502

%f formatting directive, 503

%H format string option (DATE FOR-

MAT() function), 342

%h formatting directive, 502-503

%i format string option (DATE FOR-

MAT() function), 343

%i formatting directive, 503

%j format string option (DATE FOR-

MAT() function), 342

%k format string option (DATE FOR-

MAT() function), 342

%l format string option (DATE FOR-

MAT() function), 343

%l formatting directive, 502

%M format string option (DATE FOR-

MAT() function), 342

%m formatting directive, 503

%o formatting directive, 503

%p format string option (DATE FOR-

MAT() function), 343

%q formatting directive, 503

%r format string option (DATE FOR-

MAT() function), 343

%r formatting directive, 503

%s format string option (DATE FOR-

MAT() function), 343

%T format string option (DATE FOR-

MAT() function), 343

%T formatting directive, 502-503

%U format string option (DATE FOR-

MAT() function), 342

%u formatting directive, 502-503

%v format string option (DATE FOR-

MAT() function), 342

%v formatting directive, 502-503

%W format string option (DATE FOR-

MAT() function), 342

%X format string option (DATE FOR-

MAT() function), 342

%X formatting directive, 503

%y format string option (DATE FOR-

MAT() function), 342

%y formatting directive, 503

|| (or) operators, 102-103

+ (addition) operators, 97-98

(pound signs), 51, 69

? (ternary) operators, 116

“ (quotation marks), escaping in

strings, 124

; (semicolons)

instruction terminators, 88

Listen directive, 59

/ (slashes)

division operators, 98

escaping quotation marks in

strings, 124

/* operators, 81

// (forward slashes), 81

/tmp directory, 230

/usr/local/apache2 directory, 47

/usr/local/php/lib directory, 73

/usr/local/src/ directory, 66

/usr/src/ directory, 66

NUMBERS

3D pie charts, 277-278

598

>=

A

a (append) mode, 249

ab (ApacheBench) performance tool,

548-549

aborted connects status variable, 587

abs() function, 133

Accept mechanism, network setting

(scalability), 547

access control

file-based control of, 486

granting, 484

limiting, HTTP methods, 491

methods, combining, 490

restricting, 488-490

authentication, 481-482

authentication modules,

484-487

based on cookie values,

493-496

client authentication, 483

rules, 488-489

all clients, 489

domain names, 488

environment variables, 489

evaluating, 489-490

security, 491

Access denied messages, trou-

bleshooting

Apache startup, 61

MySQL installations, 32

access logs (Apache), 56

access reports, creating, 513-514

AccessFileName directive, per-directo-

ry configuration files, 55

ACTION argument, input forms, 202

AddCharset directive, 519

addentry.pho script, 409-412

addentry.php record addition script,

394

addition operators (+), 97-98

AddLanguage directive, 519

addNums() function, 136

address books (online)

database tables, planning/creat-

ing, 389

email tables, 391

fax tables, 391

field names, 390

master name tables, 390

personal notes tables, 392

telephone tables, 391

include files, creating, 392

menus, creating, 393

records

adding subentries to,

407-412

addition mechanism, 394-397

deletion mechanism, 405-406

viewing, 398-405

addresses

IP addresses

control access rules, 488

reverse DNS lookups, 504

listening addresses (Listen direc-

tive), 59

addtocard.php script, 450-451

alerts, LogLevel directive option, 508

algorithms

digest algorithms, 482, 564

symmetric cryptography, 562

all clients, access control rules, 489

ALL command, 37

Allow directives, access control rules,

488

Allow, Deny arguments, Order direc-

tive, 490

AllowOverride directives, per-directory

configuration files, 55

ALTER command, 37

and operators (&&), 103

Apache

commands

control script, 58

server binary, 57-58

configuration changes, internation-

alization efforts, 519

configuring

conditional evaluations, 53

containers, 52-53

directives, 51-52

file structure, 50

per-directory files, 54-55

ServerRoot directive, 54

DoS attacks, 551

installing

binary installations, 44-45

current and future versions,

43-44

from source code, 44

Linux/UNIX installation, 8-9,

45-47

methods for, selecting, 44

Mac OS X installation, 47-48

PHP installation, 66-68

Windows installation, 13-14,

48-50

licenses, 48

load testing, ApacheBench (ab)

performance tool, 548-549

log files, 56

logs, managing, 509-511

MPM scalability, 544

performance

caching, 550

LimitRequestBody directives,

551

LimitRequestFields directives,

551

LimitRequestFieldSize direc-

tives, 551

How can we make this index more useful? Email us at indexes@samspublishing.com

Apache

599

LimitRequestLine directives,

551

LimitXMLRequestBody direc-

tives, 551

load distribution, 550

mapping files to memory, 549

network settings, 551

reduction of transmitted data,

550

TimeOut directives, 551

PHP

Linux/UNIX installation, 66-68

Windows integration, 72-73

php.ini file, 73

robots, 551

scalability, 543

file system access, 545-546

network/status settings, 547

operating system limits,

544-545

starting, 59-60

troubleshooting, 61

upgrading, 593-594

virtual hosting, 552

IP-based, 553

mass hosting, 555-556

name-based, 553-555

web spiders/crawlers, 551

website, 45

Apache News and Announcements

list, 591

Apache Software Foundation website,

44

apache.exe, 57-58

ApacheBench (ab) performance tool,

548-549

apachectl script, 53

apachectl tool, control script com-

mand (UNIX), 58

appending files, 249, 255

application localization

character sets, 518

environment modifications, config-

uration changes to

Apache, 519

MySQL, 521

PHP, 520

internationalization, 517

web page structure, 521-524

apxs utility, 10

arcs

ImageArc() function, 272

ImageFilledArc() function, 274

arguments, 132

ACTION, input forms, 202

AllowOverride directive, 55

CustomLog directive, 506

default values, setting, 142-143

directives, 51

ENCRYPT, 218

flock() function, 256

HostNameLookups directive, 504

LogFormat directive, 504

logs, rotating, 510

optional, setting as, 143

ServerRoot directive, 54

swapping, 179-180

syslog daemon errors, logging

(UNIX), 508

TYPE, 218

variables, passing references to,

143-144

arithmetic functions, dates/times,

344-345

arithmetic operators, 98

array data types, 91

array() function, 92, 150-151

arrays

array keys() function, 155

array merge() function, 155

array operator, creating via,

150-151

array pop() function, 155

array push() function, 155

array shift() function, 155

array unshift() function, 155

array values() function, 155

associative arrays

creating, 151-152

getdate() function, 192

breaking strings into, 190-191

count() function, 154

defining, 149

each() function, 154

foreach() function, 154

HTML form input, accessing via,

203-204

index positions, creating, 150-151

list() function, 154

multidimensional arrays, creating,

152-153

mysqli fetch array() function, 370

reset() function, 154

session variables, adding to, 231

shuffle() function, 155

sizeof() function, 154

variables, 90

ASP tags, 77

asp tags setting, 77

assignment operators (=), 89, 97-99

asterisks (*)

multiplication operators, 98

table creation, 313

wildcards, 38

asymmetric cryptography. See public

key cryptography

auth cookies, 496-497

auth users table, 493

AuthConfig, directive value, 55

600

Apache

AuthDBMGroupFile directive, database

file-based access control authentica-

tion, 487

AuthDBMUserFile directive, database

file-based access control authentica-

tion, 487

authentication, 561

access, restricting, 481-482

basic, 482

browsers, AuthType directive, 483

client authentication, restricting

access, 483

database file-based access con-

trol, 486-487

defined, 481

digest, 482-483

digital certificates, 565-566

file-based authentication,

484-486

modules

access (restricting), 484-487

directives, 483

functions, 484

MySQL errors in, 36

process of, 35-36

realm authentication, AuthName

directive, 483

SSL protocols, 564-567

AuthGroupFile directive, user file back-

end storage, 485

AuthName directive, authentication

modules, 483

Authoritative directives, file-based

authentication, 486

authorization, 481

AuthType directive, authentication

modules, 483

AuthUserFile directive, user file back-

end storage, 485

awstats log analysis, 511

B

backend storage

database file-based access con-

trol authentication, 487

file-based authentication, 485

functions, authentication mod-

ules, 484

backslashes (\)

converting time stamps to dates,

195

directives, 51

escaping quotation marks in

strings, 124

basic authentication, 482

benchmark() function, 576-577

BIGINT data type, 306

binary distribution, installing MySQL

from, 23

binary installation, Apache, 44

BINARY keyword, 317

binary server commands, 57-58

bind to port, troubleshooting, 61

BLOB data type, 308

boolean data types, 91

breadcrumb trails, 443

break statements

case statements, 115

code readability, 124

loops, 121-122

browser authentication, AuthType

directive, 483

browsers

access, environment variables,

489

Apache, accessing, 60

cookies, viewing, 226

digest authentication, 483

built-in functions, 132

C

CA (Certification Authorities)

certificate signing requests, 572

digital certificates, 565

CacheFile directive, mapping files, 549

caching Apache performance, 550

calendar example

events, adding, 465-472

HTML form, 460-462

library, creating, 473-479

table, creating, 462-465

user input, 459-460

calling functions, 132-134, 140-142

Can’t connect to server messages,

troubleshooting MySQL installations,

32

CAPTCHAs, 286-288

case (string text), converting, 187-188

case statements, 115

case-sensitivity, constant names,

105-106

casting variables, 94-95

cat id field, storefront database table

example, 434

certificates

digital certificates

authentication, SSL protocols,

565

CA (Certification Authorities),

565

chaining, 565

information, 566

SSL, 565-566

managing (secure servers),

570-572

self-signed (managing certifi-

cates), 572

signing requests, 571-572

CGI errors, logging, 507

How can we make this index more useful? Email us at indexes@samspublishing.com

CGI errors

601

changelog, software upgrades, 592

CHAR(M) data type, 308

Character Set Options screen (MySQL

Configuration Wizard), 30

character sets, 518

CHARSET variable, 522

charts (pie), creating, 275-278

checkdate() function, 196, 459

ciphertext message encryption, 562

classes

defined, 159

properties, 163

clauses

else, 465

ON, 320

ORDER BY, 313, 328, 338

WHERE, 315-317

CLF (Common Log Format), 503

clients

all clients, access control rules,

489

authentication

basic authentication, 482

digest, 482-483

restricting access, 483

user management, 483

tracking

access logs, 56

troubleshooting, 505

code

blocks

echo() statements, 126

HTML code, returning to, 127

iteration (loops), 118

PHP, adding comments to, 80-81

status code, conditional looping,

505

when to comment, 82

collision resistant message digest

algorithms, 564

color

fills, 274

ImageColorAllocate() function,

272

RGB color value, image creation

process, 270

column command (UNIX), passing

data to, 261

columns priv tables, 35

combining

access methods, 490

assignment operators, 99

command-line arguments, 66

comments

defined, 80

multiline, 81

PHP code, adding to, 80-81

single-line, 81

when to comment, 82

COMMIT command, database transac-

tions, 354-356

Common Name field, certificate sign-

ing requests, 571

communications, security, 561

Compact installation option (MySQL

Setup Wizard), 26

comparison operators, 101-102

case sensitivity in, 317

equal to (=), 322

WHERE clauses, 316-317

compatibility schemas, 51

compiling Apache

installations, 47

modules, 46

compress command, 45-46

compression

reduced transmitted data (Apache

performance), 550

uncompressing source code

(Apache installations), 45-46

CONCAT WS() function, 330, 341

CONCAT() function, 329-330

concatenation functions, 329-330

concatenation operators, 98, 214

conditional DELETE statements,

327-328

conditional evaluation, Apache config-

uration, 53

conditional logging

CustomLog directives, 506

HostNameLookups directive, 504

HTTP requests, 505-506

IdentityCheck directive, 505

conditional looping

environment variables, 506

status code, 505

conditional statements, include()

statements within, 242

conditional UPDATE statements, 324

confidentiality, SSL protocols, 561-563

config script, installing OpenSSL

libraries, 568

config.log files, 47

config.status files, 47

configuration files, 55

Apache, starting, 59

conditional containers, 53

Listen directive, 59

modifying, 57

MPM, processing, 53

my-huge.cnf, 578

my-large.cnf, 578

my-medium.cnf, 578

my-small.cnf, 578

parameters, 59

per-directory configuration files,

file system access (scalability),

546

ServerName directive, 59

configure command, 8, 47

602

changelog

configure scripts, 67-68

Apache installation, 46-47

makefiles, 46

PHP installation, 66

targets, 46

configuring

Apache

conditional evaluation, 53

containers, 52-53

directives, 51-52

file structure, 50

per-directory files, 54-55

ServerRoot directive, 54

PHP, 67-68

software (Apache installations),

46-47

SSL (secure servers), 572

systems for mail() function,

211-212

connection timeout variables, 588

connection status variables, 587

constants

accessing, 105

defining, 105

naming, 105-106

predefined, 106

constructors

defined, 474

objects, 164

containers

Apache configuration, 52-53

conditional containers, configura-

tion files, 53

defined, 50

syntax, 53

VirtualHost container, IP-based vir-

tual hosting, 553

content negotiation, file system

access (scalability), 546

content structure, XML, 530

context schema directives, 51

continue statements, 123-124

Control Apache command (Start

menu), 60

control information (certificates), 565

control script commands (Apache-

related), 58

conversion functions, date/time func-

tions, 346-347

conversion specifiers

field width specifiers, 177-178

printf() function, 172-173

converting

string text case, 187-188

time stamps to dates

date() function, 193-195

getdate() function, 192-193

gmdate() function, 195

cookies

accessing, 224

auth cookies, 496-497

components of, 224

defining, 223

deleting, 227

domain field, 224

expiration dates, 224, 226

HTTP COOKIE variable, 225

path field, 224

printing, 225

Set-Cookie header, 224

setcookie() function, 225

size limits, 223

uses for, 223

values, restricting access based

on, 493-496

viewing, 226

count() function, arrays, 154

CREATE command, 37

CREATE TABLE command, 309-310

cryptography

public key cryptography, 563

symmetric cryptography, 562-563

CURDATE() function, 346

CURRENT DATE() function, 346

CURRENT TIME() function, 346

CURRENT TIMESTAMP() function, 346

CURTIME() function, 346

Custom installation option (MySQL

Setup Wizard), 26

custom installations, Apache

(Windows), 50

custom logs, database tables, 511

code snippet, 512-513

sample reports, 513-515

CustomLog directives, 506

D

data types, 90

array, 91

boolean, 91

changing

by casting, 94-95

settype() function, 93

date/time, 308

defining, 306

double, 91-92

float, 91

integer, 91-92

NULL, 91

numeric, 306-307

object, 91

resource, 91

signed, 306

string, 91-92, 308-309

testing, 91-96

unsigned, 306

How can we make this index more useful? Email us at indexes@samspublishing.com

data types

603

database tables

discussion forums, creating,

415-416

online address books,

planning/creating for, 389

email tables, 391

fax tables, 391

field names, 390

master name tables, 390

personal notes tables, 392

telephone tables, 391

databases

design process, overview of,

301-302

file-based access control authenti-

cation, 486-487

good design characteristics,

293-294

normalization, 293

first normal form, 299

flat tables, 298-299

normal forms, 298

second normal form, 300

third normal form, 301

SHOW DATABASE command, 583

transactions, 353

COMMIT command, 354-356

examples of, 355-357

ROLLBACK command,

354-356

syntax of, 354

DATE ADD() function, 344-345

date added fields, shopping cart data-

base tables, 446

DATE data type, 308

DATE FORMAT() function, 342-343,

347, 422

date pulldown libraries, 473

date pulldown.class php script, 478

date select() function, 477

DATE SUB() function, 344-345

date() function, 193-195, 246

date/time

calendar example, 459

event additions, 465-466,

468-472

HTML form, 460-462

library, creating, 473-479

table, creating, 462-465

user input, 460

current dates/times, retrieving,

191

data types, 308

file validation, 246

functions, 342-343

arithmetic, 344-345

conversion, 346-347

days, 336-338

hours, 340-341

minutes, 340-341

months, 338-339

seconds, 340-341

special, 346-347

weeks, 339-340

years, 339

HH:MM:SS time format, 346

testing dates, 196

time stamps

converting to dates, 192-195

creating, 195

defining, 191

UNIX epoch, 191

web resources, 197

YYYY-MM-DD date format, 346

DATETIME data type, 308

day functions, 336-338

DAYNAME() function, 338

DAYOFMONTH() function, 336-338

DAYOFWEEK() function, 336

DAYOFYEAR() function, 336-337

db tables, 35

dbmmanage, database file-based

access control authentication, 487

debug, LogLevel directive option, 509

DECIMAL (M,D) data type, 307

declaring

functions, 134

objects, 160

variables, 89

outside of functions, 138

within functions, 137

decrementing, integer variables,

100-101

decryption, 562

default schema directives, 51

define() function, 105-106

defineStrings() function, 523-524

delentry.php script, 405-406

DELETE command, 36-40, 326, 365

conditional DELETE statements,

327-328

ORDER BY clause, 328

subqueries, 322

deleting

cookies, 227

directories, 257

files, 248

HTML tags from strings, 185

newlines from strings, 185

tabs from strings, 185

users, database file-based access

control authentication, 487

whitespace from strings, 185

Deny directives, access control rules,

488

Deny, Allow arguments, Order direc-

tive, 489

DES symmetric cryptography, 562

destroying sessions, 234

die() function, 249

digest algorithm, 482, 564

604

database tables

digest authentication, 482-483

digital certificates

authentication, SSL protocols,

565

CA, 565

chaining, 565

checking, 565

information, 566

SSL, 565-566

directives

AccessFileName directive, per-

directory configuration files, 55

AllowOverride directive, per-direc-

tory configuration files, 55

Apache configuration, 51-52

arguments, 51

AuthConfig value, 55

authentication modules, 483

AuthName directive, authentica-

tion modules, 483

Authoritative directive, file-based

authentication, 486

AuthType directive, authentication

modules, 483

CacheFile directive, mapping files

(memory), 549

containers, syntax, 53

defined, 50

directories, applying in, 52

FileInfo value, 55

files, applying in, 52

flag directives, 73

formatting directives, logging

(HTTP requests), 502-503

identifiers, status codes, 505

Indexes value, 55

KeepAliveTimeout directive, net-

work settings (Apache perfor-

mance), 551

Limit value, 55

LimitRequestBody directive,

Apache performance, 551

LimitRequestFields directive,

Apache performance, 551

LimitRequestFieldSize directive,

Apache performance, 551

LimitRequestLine directive,

Apache performance, 551

LimitXMLRequestBody directive,

Apache performance, 551

Listen directive, 59, 553

LoadModule directive, SSL config-

urations, 572

MMapFile directive, mapping files

(memory), 549

mod vhost alias directive (mass

virtual hosting), 556

NameVirtualHost directive, 554

Options directive, 546, 556

Options value, 55

Order directive, control access

rules (evaluating), 489

processing, 53

Require directive, authentication

modules, 483

schemas, 51

ScoreBoardFile directive, 547

ScriptAlias directive (mass virtual

hosting), 556

ServerAlias directive (syntax), 555

ServerName directive, configura-

tion files, 59

ServerRoot directive, Apache con-

figuration, 54

SSLCertificateFile directive, SSL

configurations (certificates and

keys), 573

TimeOut directive, Apache perfor-

mance, 551

URL, applying in, 52

values, 55, 73

VirtualDocumentRoot directive

(mass virtual hosting), 556

VirtualDocumentRootIP directive

(mass virtual hosting), 556

VirtualScriptAlias directive (mass

virtual hosting), 556

VirtualScriptAliasIP directive

(mass virtual hosting), 556

directories

/tmp, 230

/usr/local/apach2, 47

/usr/local/php/lib, 73

/usr/local/src, 66

/usr/src/, 66

contents, reading, 258-259

creating, mkdir() function, 257

deleting, 257

directives, applying, 52

htdocs subdirectory, 74

lib subdirectory, 73

listing, creating (UNIX), 262

opening, 257-258

per-directory files (Apache configu-

ration), 54-55

validating, file/directory confirma-

tion, 244

discussion forums

database tables, creating,

415-416

include files, creating, 416-417

input forms, creating, 417

input scripts, creating, 418-419

posts, adding to topics, 428-431

topic lists, displaying, 421-423

topic posts, displaying, 424-426

DISTINCT variable, 339

division operators (/), 98

DN (distinguished names), 566

DNS (domain name servers), 552

do…while statements, 119

How can we make this index more useful? Email us at indexes@samspublishing.com

do…while statements

605

DocumentRoot, virtual hosting, 553

documents

included files, 239-240

conditional statements, 242

include once() function, 243

include path directive, 243

loops, 242

return values, 241

text, formatting as, 175

doDB() function, 377, 380-381

DOM functions, accessing XML from

PHP, 532-533

domain field (cookies), 224

domain names, access control rules,

488

DoS (Denial of Service) attacks,

Apache, 551

DOUBLE (M,D) data type, 307

double data types, 91-92

downloading

PHP distribution files, 71

source code (Apache installa-

tions), 45

drawing images

color fills, 274

from existing images, 279-280

ImageColorAllocate() function,

272

ImageCreate() function, 271

lines, 272-273

pie charts, 275-278

shapes, 272-273

transparent, 281

x-axis coordinates, 272

y-axis coordinates, 272

DROP command, 37

drop-down list boxes, 283

DSO (Dynamic Shared Objects), 8

E

each() function

arrays, 154

multidimensional arrays, 153

echo statements, 78, 126, 153

echo() function, 132

editors

avoiding for PHP code, 82

HTML, 76

ellipses

ImageEllipse() function, 272

ImageFilledEllipse() function, 274

else clauses, 112-113, 465

else statements, 467

elseif clauses, 113-115

email

php.ini files, 383

sending

feedback forms, 212-214,

216

system configuration for,

211-212

email fields, subscriber tables (mailing

lists), 376

email tables, online address books,

391

emailChecker() function, 377,

380-381

emerg, LogLevel directive option, 508

ENCRYPT argument, 218

encryption

decryption, 562

passwords, user management

(file-based authentication), 485

SSL protocols, 562

encryption keys, 562

end tags, 77-78, 82

ENUM data type, 309

environment modifications (interna-

tionalization), configuration

changes to

Apache, 519

MySQL, 521

PHP, 520

environment variables

access control rules, 489

conditional logging, 506

equal sign (=)

assignment operators, 89, 97

concatenation operators, 214

equal to operators, 316, 322

equivalence operators (==), 102

identical operators (===), 102

error messages

Access denied, 32

Can’t connect to server, 32

mysql error() function, 365

errors

logging, 507-509

Apache log files, 56

ErrorLog directive, 507

files, 507

LogLevel directive, 508-509

monitoring, 511

programs, 507

syslog daemon (Unix), 508

MySQL authentication process,

36

escapeshellarg() function, 265

escapeshellcmd() function, 265

events

adding to calendars, 465-472

recording, error logs, 56

exclamation marks (!)

nonequivalence (!=) operators,

102, 316

not operators (!), 103

exec() function, 262-263

606

DocumentRoot

exit statements, 211

expiration dates, cookies, 224-226

EXPLAIN command, 580

explode() function, 190-191

expressions, 97

F

Facebook, XML uses in, 531-532

FAQ (Frequently Asked Questions), 75

fax tables, online address books, 391

fclose() function, 249

feedback forms

creating, 212

email, sending via, 213-214

HTML, formatting via, 216

feof() function, 250

fgetc() function, 253

fgets() function, 250

field names versus strings, 341

field width specifiers, 175

conversion specifiers, 177-178

precision specifiers, 176

FILE command, 38

fileatime() function, 246

filectime() function, 246

FileInfo, directive value, 55

filemtime() function, 246

files

Apache file systems, 545-547

appending, 249, 255

authentication

Authoritative directive, 486

backend storage, 485

mod auth module, 484-486

user management, 485

closing, 249

config.log, 47

config.status, 47

configuration files, 55

Apache, starting in, 59

conditional containers, 53

Listen directive, 59

modifying, 57

parameters, 59

processing (MPM), 53

ServerName directive, 59

ServerRoot directive, 54

creating, 248

deleting, 248

descriptors, operating system

scalability limits, 544

directives, applying, 52

errors, logging, 507

executability, 245

group files, backend storage (file-

based authentication), 485

HTTP requests, logging, 505

httpd, 72

httpd.conf file, 59, 68

included files, 239-240

conditional statements, 242

include once() function, 243

include path directive, 243

loops, 242

return values, 241

INSTALL, 23

locking, 256

log files

access logs, 56

error logs, 56, 507

paths (logname), 511

scoreboard file, 56

mapping to memory (Apache per-

formance), 549

names, defining (logging), 505

navigating, fseek() function,

252-253

opening, 249

password files, storing (file-based

authentication), 486

per-directory configuration files,

54-56, 546

php.ini files, 68, 73

phpinfo.php files, 74

reading, 245, 260

feof() function, 250

fgets() function, 250

fread() function, 251-253

fseek() function, 252-253

README, 23

robots.txt files, Apache security,

552

scoreboard files, 547

status, checking, 245

structure of, Apache configuration,

50

testing, 246-248

upload forms, 217-220

user files, backend storage (file-

based authentication), 485

validating

checking existence of, 244

date/time information, 246

determining file size, 245

file status, 245

file/directory confirmation,

244

testing functions, 246-248

writing to, 245, 255

filesize() function, 245

file_exists() function, 244

fills (color), 274

finding

string lengths, 181

substrings, 181-182

How can we make this index more useful? Email us at indexes@samspublishing.com

finding

607

first normal forms, 298-299

flag directives, 73

flat tables, 298-299

float data types, 91, 307

flock() function, 256

flow control

code blocks

echo() statements, 126

HTML code, returning to, 127

iteration (loops), 118

loops

break statements, 121-124

continue statements,

123-124

do…while statements, 119

for statements, 120-121

infinite loops, 120

nesting loops, 124-125

while statements, 117-118

switching flow

if else statements, 112-113

if elseif statements, 113-115

if statements, 112

switch statements, 115-116

ternary (?) operators, 116

FLUSH command, 38, 581-582

FLUSH HOSTS command, 582

FLUSH LOGS command, 582

FLUSH PRIVILEGES command, 39

FLUSH TABLES command, 582-584

FollowSymLinks parameter, Options

directive, 546

fonts (text)

custom fonts, image creation,

287-288

imageloadfont() function, 283

imagettftext() function, 283

specification, 283

fontWrap() function, 143

fopen() function, 249, 255

for statements, 120-123

foreach loops, multidimensional

arrays, 153

foreach statements, 220

foreach() function, 154

foreign languages. See application

localization

format control strings, printf() function,

172

formatting

dates/times, 342-343

documents as text, 175

feedback forms via HTML, 216

logs, 502-504

strings

argument swapping, 179-180

field width specifiers,

175-178

printf() function, 172-175

storing, 180

times/dates, 342-343

forms (HTML)

feedback forms

creating, 212

formatting, 216

sending via email, 213-214

file upload forms, 217-220

input forms

accessing input via arrays,

203-204

creating, 201-202

PHP/HTML combination forms

hidden fields, 208-209

HTML form, calling itself, 206

PHP number-guessing scripts,

206-208

redirecting users, 209-211

server headers, 210

forums (discussion tables), 416

fputs() function, 255

FQDN (fully qualified domain name),

553, 570

fread() function, 251-253

FreeBSD, 45

From headers, 212-214

FROM UNIXTIME() function, 347

fseek() function, 252-253

FTP client, 76

function exists() function, 145

function statements, 133

functions, 131. See also methods

abs(), 133

addNums(), 136

arguments, 132

optional arguments, 143

passing variable references

to, 143-144

setting default values,

142-143

array keys(), 155

array merge(), 155

array pop(), 155

array push(), 155

array shift(), 155

array unshift(), 155

array values(), 155

array(), 92, 150-151

built-in, 132

calling, 132-134, 140-142

checkdate(), 196, 459

CONCAT WS(), 330, 341

CONCAT(), 329-330

constructors and, 474

count(), 154

CURDATE(), 346

CURRENT DATE(), 346

CURRENT TIME(), 346

CURRENT TIMESTAMP(), 346

CURTIME(), 346

608

first normal forms

DATE ADD(), 344-345

DATE FORMAT(), 342-343, 347

date select(), 477

DATE SUB(), 344-345

date(), 193-195, 246

date/time, 342-343

arithmetic, 344-345

conversion, 346-347

days, 336-338

hours, 340-341

minutes, 340-341

months, 338-339

seconds, 340-341

special, 346-347

weeks, 339-340

years, 339

DAYNAME(), 338

DAYOFMONTH(), 336-338

DAYOFWEEK(), 336

DAYOFYEAR(), 336-337

declaring, 134

define(), 105-106

defined, 78, 132-133

die(), 249

doDB(), 380-381

DOM, accessing XML from PHP,

532-533

each(), 153-154

echo(), 132

emailChecker(), 380-381

escapeshellarg(), 265

escapeshellcmd(), 265

exec(), 262-263

explode(), 190-191

fclose(), 249

feof(), 250

fgetc(), 253

fgets(), 250

fileatime(), 246

filectime(), 246

filemtime(), 246

filesize(), 245

file_exists(), 244

flock(), 256

fontWrap, 143

fopen(), 249, 255

foreach(), 154

fputs(), 255

fread(), 251-253

FROM UNIXTIME(), 347

fseek(), 252-253

function exists(), 145

fwrite(), 255

getdate(), 192-193, 460, 464,

475

gettype(), 94, 97

getYearEnd(), 476

getYearStart(), 476

gmdate(), 195

header(), 175, 210-211

HOUR(), 340

include files, creating,

mailing list subscription

mechanisms, 376-377

online address books, 392

include once(), 243

is dir(), 244

is file(), 244

is uploaded file(), 220

isset(), 459

is_executable(), 245

is_file(), 248

is_readable(), 245

is_writable(), 245

LCASE(), 334

LEADING, 332

LEFT(), 334

list(), 154

LOCATE(), 332

LPAD(), 332

LTRIM(), 331

ltrim(), 185

mail()

parameters of, 214

system configuration for,

211-212

MINUTE(), 340

mkdir(), 257

mktime(), 195, 460, 475

month select(), 477

MONTH(), 338

MONTHNAME(), 338

move uploaded file(), 220

MySQL, accessing list of, 371

mysqli *, 361

naming, 134-135

nl2br(), 189

NOW(), 346

numberedHeading(), 141-142

opendir(), 257-258

output(), 477

passthru(), 264

phpinfo(), 74

popen(), 260-261

print(), 78-79, 132

printBR(), 135

printf()

conversion specification,

172-173

format control strings, 172

padding specifiers, 174-175

type specifiers, 173

readdir(), 258-259

REPEAT(), 335

REPLACE(), 335

reset(), 154

RIGHT(), 334

How can we make this index more useful? Email us at indexes@samspublishing.com

functions

609

rmdir(), 257

RPAD(), 332

rtrim(), 185

RTROM(), 331

SEC TO TIME(), 347

SECOND(), 340

serialize(), 231

session id(), 228

session save path(), 230

session set save handler(), 228

session start(), 228, 232, 447

session_destroy(), 234

setcookie(), 225-227

setDate array(), 475

setDate global(), 475-477

settype(), 93-95

setYearEnd(), 476

setYearStart(), 476

shuffle(), 155

SimpleXML, accessing XML from

PHP, 535-537

sizeof(), 154

sprintf(), 180, 477

start session(), 229

str replace(), 187

string

concatenation, 329-330

length, 329-330

location, 332

modification, 334-335

padding, 331-332

position, 332

substring, 333-334

trimming, 331-332

strip tags(), 185

strlen(), 181

strpos(), 182

strstr(), 181-182

strtok(), 183

strtolower(), 188

strtoupper(), 132, 188

substr(), 182-183

SUBSTRING(), 333

substr_replace(), 186

SYSDATE(), 346

system(), 263

tagWrap(), 145-146

test(), 138

testing, 145-146

TIME FORMAT(), 343

TIME TO SEC(), 347

time(), 191, 226

touch(), 248

TRAILING, 332

trim(), 185

UCASE(), 334

ucfirst(), 188

ucwords(), 188

underline(), 145-146

UNIX TIMESTAMP(), 347

unlink(), 248

user-defined, 133

values, returning, 136

variables

accessing globals via global

statements, 139

changing globals within func-

tions, 140

declaring outside of, 138

declaring within, 137

passing references to,

143-144

remembering values between

calls, 140-142

scope of, 137

WEEKDAY(), 336

wordwrap(), 189-190

year select(), 477-478

YEAR(), 339

G

GD Library, 270

GET method, input forms, 203

getdate() function, 192-193, 460, 464,

475

gettype() function, 94, 97

getYearEnd() function, 476

getYearStart() function, 476

GIF images, logging, 506

giftopnm shell utility, 264

global statements

globals, accessing via, 139

variables, remembering values

between function calls, 140

globals, 89

functions, changing within, 140

global statements, accessing via,

139

gmdate() function, 195

GRANT command, 37-39

granting

access, 484

privileges, 37-39

greater than operators (>), 102, 316

greater than or equal to operators

(>=), 102, 316

group settings, troubleshooting

Apache startup, 61

groups file, backend storage, 485

gunzip command, 23, 45

gzip command, 45

H

hard drives, MySQL optimization, 576

hardware load balancer (Apache per-

formance), 550

610

functions

hash, defined, 493

header() function, 175, 210-211

headers

From, 214

Host header, name-based virtual

hosting, 553-555

HTTP headers, caching (Apache

performance), 550

messages, character sets, 518

Reply-to, 214

request headers, name-based vir-

tual hosting, 554

Set-Cookie, 224

help, PHP installation, 74-75

HH:MM:SS time format, 346

hidden fields (forms), 208-209

HMAC (Hash Message Authentication

Code), 564

host tables, 35

HostnameLookups, network setting

(scalability), 547

HostNameLookups directive, 489, 504

hostnames, resolving (managing logs),

509

hour functions, 340-341

HOUR() function, 340

.htaccess, per-directory configuration

files, 546

htdocs subdirectory, 74

HTML (Hypertext Markup Language)

calendar example, 460-462

code blocks, 127

editors, 76

forms

feedback forms, 212-216

file upload forms, 217-220

input forms, 201-204

PHP/HTML combination

forms, 206-211

multiple spaces, viewing, 175

PHP combination, 79

tags, deleting from strings, 185

htpasswd utility, managing user pass-

word files, 485

HTTP (Hypertext Transfer Protocol)

COOKIE variable, 225

headers, caching (Apache perfor-

mance), 550

methods, access (limiting), 491

requests, logging, 503-504

conditional logging, 505-506

files, 505

programs, 506-507

secure HTTP, 562

httpd server binary command (Unix),

57

httpd.conf configuration file, 50, 59,

68, 72

httpd.pid file, 56

HUP signals, sending, 57

I

id field, 366

identical operators (===), 102

IdentityCheck directive, conditional

logging, 505

if statements, 249, 465

comparison operators, 101

else clauses, 112-113

elseif clauses, 113-115

if…else statements, 207

ImageArc() function, 272

ImageColorAllocate() function, 272

ImageCreate() function, 271, 287

ImageCreateFromGif() function, 279

ImageCreateFromJpg() function, 279

ImageCreateFromPng() function, 279

ImageDestroy() function, 273, 287

ImageEllipse() function, 272

ImageFilledArc() function, 274, 276

ImageFilledEllipse() function, 274

ImageFilledPolygon() function, 274

ImageFilledRectangle() function, 274

ImageGif() function, 273

ImageJpeg() function, 273

ImageLine() function, 272

imageloadfont() function, 283, 287

ImagePng() function, 273, 287

ImagePolygon() function, 272

ImageRectangle() function, 272

images

creating

custom fonts, 287-288

custom text, 287-288

from user input, 282-285

JPEG libraries, 271

PHP distribution, 270-271

PNG libraries, 271

RGB color values, 270

via scripts, 286-287

zlib libraries, 271

drawing

color fills, 274

from existing images,

279-280

ImageColorAllocate() function,

272

ImageCreate() function, 271

lines, 272-273

pie charts, 275-278

shapes, 272-273

transparent images, 281

x-axis coordinates, 272

y-axis coordinates, 272

logging, 506

reduced transmitted data (Apache

performance), 550

stacking, 281

How can we make this index more useful? Email us at indexes@samspublishing.com

images

611

imagestring() function, 282, 285-287

imagettftext() function, 283, 287

include files

creating (mailing list subscription

mechanisms), 376-377

discussion forums, creating for,

416-417

online address books, creating

for, 392

include once() function, 243

include path directive, 243

include() statements, 239-241

include once() function, 243

include path directive, 243

within conditional statements,

242

within loops, 242

included files, 239-241

conditional statements, 242

include once() function, 243

include path directive, 243

loops, 242

return values, 241

incrementing integer variables,

100-101

INDEX command, 38

index strings, 180-181

Indexes, directive value, 55

infinite loops, 120

inheritance, objects, 164-165

INNER JOIN command, 320

input forms

accessing input via arrays,

203-204

creating, 201-202

discussion forums, creating for,

417

input scripts, creating for discussion

forums, 418-419

INSERT command, 36-39, 310-312,

493

Insert Record button, 367

INSERT statement, 365

INSTALL file, 23

installing

Apache

binary installation, 44

current and future versions,

43-44

custom installation, 50

from source code, 44

Linux/UNIX installation, 8-9,

45-47

Mac OS X installation, 47-48

methods for, selecting, 44

typical installation, 50

Windows installation, 13-14,

48-50

MySQL

current and future version

information, 21-22

Linux/UNIX installation, 7,

22-23

Mac OS X installation, 17, 24

troubleshooting, 32

Windows installation, 11, 17,

26-27, 30-31

OpenSSL libraries

SSL installations, 567

UNIX, 568-569

Windows, 567

PHP

current and future versions,

65-66

help for, 74-75

Linux/UNIX installation, 9-10,

16, 66-68

Mac OS X installation, 18-20,

69-70

testing, 74

Windows installation, 15-20,

71-72

SSL

mod ssl module, 568-569

OpenSSL library, 567

instruction terminators, 88

INT data type, 306

integer data types, 91-92

integer variables, incrementing/decre-

menting, 100-101

integrity

communications security, 561

digest algorithms, 564

message digests, 564

internationalization, 517

environment modifications, config-

uration changes to

Apache, 519

MySQL, 521

PHP, 520

key aspects, 517

IP addresses

control access rules, 488

reverse DNS lookups, 504

IP-based virtual hosting, 552-553

is dir() function, 244

is file() function, 244

is uploaded file() function, 220

isset() function, 459

issuer information (certificates), 565

is_executable() function, 245

is_file() function, 248

is_readable() function, 245

is_writable() function, 245

iterations (loops), 118, 123

612

imagestring() function

J - K

JOIN command

INNER JOIN command, 320

LEFT JOIN command, 320-321

RIGHT JOIN command, 321

JPEG images

libraries, 271

logging, 506

KeepAliveTimeout directive, network

settings (Apache performance), 551

key buffer size parameter, 578-579

key pairs, creating (managing certifi-

cates), 570-571

key read requests parameter, 578-579

key reads parameter, 578-579

key writes parameter, 578-579

keys

CA (certification authority), 565

digital certificates, authentication

(SSL protocols), 564

encryption, 562

keywords

BINARY, 317

var, object properties, 161

kill command, sending signals, 57

L

LANGCODE variable, 522

languages (foreign). See application

localization

LCASE() function, 334

LDAP (Lightweight Directory Access

Protocol), client authentication, 483

LEADING function, 332

leading spaces, padding specifiers,

175

LEFT JOIN command, 320-321

LEFT() function, 334

length functions, 329-330

less than operators (<), 102, 316

less than or equal to operators (<=),

102, 316

lib subdirectory, 73

libraries

calendar example, 473

GD, 270

JPEG, image creation, 271

OpenSSL, 567-569

PNG, image creation, 271

SSLeay, 567

zlib, image creation, 271

licenses (Apache), 48

LIKE operator, 317

LIMIT command, 314-315

Limit containers, HTTP methods, 491

LimitExcept containers, HTTP meth-

ods, 491

LimitRequestBody directive, Apache

performance, 551

LimitRequestFields directive, Apache

performance, 551

LimitRequestFieldSize directive,

Apache performance, 551

LimitRequestLine directive, Apache

performance, 551

LimitXMLRequestBody directive,

Apache performance, 551

lines

drawing, 272-273

ImageLine() function, 272

Linux

Apache installation, 8-9, 60

configure script, 46-47

make command, 47

source code, downloading, 45

source code, uncompressing,

45-46

distribution CDs, 22

mod_ssl Apache modules, 569

MySQL installations, 7, 22-23

OpenSSL library, installing, 568

PHP installations, 9-10, 16, 66-70

server processes, operating sys-

tem scalability limits, 544

list() function, arrays, 154

Listen directive, 59, 553

listening addresses (Listen directive),

59

listings

abs() function, 133

access reports, creating, 513-514

calendar

date pulldown.class php

script, 478

display script, 462-464

event additions, 468-472

HTML form, 460-461

library, creating, 474-479

user input, checking, 460

viewing events, 470-472

objects

inheritance, 164-165

methods, 163-164

PHP script with HTML, 79

storefront database table exam-

ple, 437, 441

transparent images, 281

user login script, 495

lists (user), Require directive, 483

ln command, symlinks, 546

load distribution (Apache perfor-

mance), 550

load testing, ApacheBench (ab)

performance tool, 548-549

How can we make this index more useful? Email us at indexes@samspublishing.com

load testing

613

LoadModule directive, SSL

configurations, 572

local variables, 89

local7 syslog daemon, logging errors,

508

locales, defining, 517

localization, 517

character sets, 518

environment modifications

Apache, configuration changes

to, 519

MySQL, configuration changes

to, 521

PHP, configuration changes to,

520

internationalization, 517

Web page structure, 521-524

LOCATE() function, 332

location functions, 332

lock screen mechanism, 34

locking files, 256

LogFormat directive, 504

logical operators, 102-103, 316

login forms, 494-496

LogLevel directive, 508-509

logname paths, log files, 511

logresolve utility, resolving hostnames,

509

logs

analyzing, 510-511

CLF (Common Log Format), 503

conditional logs

CustomLog directive, 506

HostNameLookups directive,

504

HTTP requests, 505-506

IdentityCheck directive, 505

custom logs, 511

database tables

code snippet, 512-513

sample reports, 513-515

database tables, creating,

511

directives, status codes, 505

errors, 507-509

files, 507

LogLevel directive, 508-509

monitoring, 511

programs, 507

syslog daemon (UNIX), 508

files

Apache, 56

paths, lognames, 511

formatting directives (HTTP

requests), 502-504

HTTP requests, 501-504

files, 505

programs, 506-507

images, 506

managing

analysis, 510-511

Apache, 509-511

error logs (monitoring), 511

hostname resolution, 509

log rotation, 509-510

merging, 510

request logs, creating, 501

rotating, 509-510

splitting, 510

Logscan, monitoring error logs, 511

Logtools, log manipulation tools, 510

LONGBLOB data type, 309

LONGTEXT data type, 309

loops, 117

break statements, 121-122

conditional loops, 505-506

continue statements, 123

do…while statements, 119

for statements, 120-121

foreach loops, multidimensional

arrays, 153

include() statements within, 242

infinite loops, 120

iteration, 118

iterations, skipping, 123

nesting loops, 124-125

while loops, 261, 426

while statements, 117-118

LPAD() function, 332

LTRIM() function, 331

ltrim() function, cleaning up strings,

185

M

MAC (message authentication codes),

SSL protocols, 564

Mac OS X

Apache installation, 47-48

MySQL installation, 17, 24

PHP installation, 18-20, 69-70

mail() function, 385

parameters of, 214

system configuration for, 211-212

mailing lists

mailing mechanisms, 383-385

MySQL, 33

PHP, 75

subscription mechanism, 375

include files, creating,

376-377

subscriber tables, creating,

376

subscription forms, creating,

377-380, 383

maintenance releases (software

upgrades), 592

make command, 10, 67

614

LoadModule directive

make install command, 67

Apache installing, 47

PHP installation, 10

make utility, 47

makefiles, script configuration, 46

managing

certificates (secure server)

certificate signing requests

creating, 571-572

key pairs (creating), 570-571

self-signed certificates, 572

logs

analysis, 510-511

Apache, 509-511

error logs (monitoring), 511

hostnames (resolving), 509

log rotation, 509-510

merging, 510

users

database file-based access

control authentication, 487

file-based authentication, 485

many to one mappings, DNS virtual

hosting, 552

many to many table relationships,

296-297

mapping files to memory (Apache per-

formance), 549

mass virtual hosting, 555-556

master name tables, online address

books, 390, 400-401

max connections variable, 588

MAX FILE SIZE field, file upload forms,

218

max used connections status variable,

587

mbstring related functions, 520

MD5 digest algorithms, 564

MEDIUMBLOB data type, 309

MEDIUMINT data type, 306

MEDIUMTEXT data type, 309

memory

files, mapping to (Apache perfor-

mance), 549

MySQL optimization tips, 576

menus (online address books), creat-

ing, 393

merging logs, 510

message digest algorithms, 564

META tags, header messages, 519

methods. See also functions

access methods, combining, 490

defined, 159

GET method, input forms, 203

objects, 162-164

POST method, input forms,

202-203

minimal installations, MySQL on

Linux/UNIX, 23

minus signs (-)

-c command-line option, 486

-D httpd option, server binary, 57

-DMyModule switch, 53

-f httpd option, server binary, 57

-l httpd option, server binary, 57

-v httpd option, server binary, 57

field width specifiers, 176

subtraction operators, 98

minute functions, 340-341

MINUTE() function, 340

mkdir() function, 257

mktime() function, 195, 460, 475

MMapFile directive, memory mapping

files, 549

mod access module, access control,

488-489

mod auth dbm module, database file-

based access control authentication,

486-487

mod auth module

file-based authentication,

484-486

sample configuration, 486

mod cache module, caching (Apache

performance), 550

mod deflate module, reduced

transmitted data (Apache

performance), 551

mod file cache module, mapping files,

549

mod so command, 46

mod ssl module, SSL

configurations, 572

installations, 567-569

mod status module, network setting

(scalability), 547

mod vhost alias directive (mass virtual

hosting), 556

modification functions, 334-335

modifying

configuration files, 57

httpd.conf file, 59

modules

Apache compiles, 46

authentication

access (restricting), 484-487

directives, 483

functions, 484

mod access module, access

control, 488-489

mod auth, file-based authentica-

tion, 484-486

mod auth dbm, database

file-based access control

authentication, 486-487

mod auth module, sample

configuration, 486

mod cache, caching (Apache

performance), 550

How can we make this index more useful? Email us at indexes@samspublishing.com

modules

615

mod deflate, reduced transmitted

data (Apache performance), 551

mod file cache, files (mapping),

549

mod ssl, SSL

configurations, 572

installations, 567-569

mod status, network setting

(scalability), 547

schema directives, 51

modulus operators (%), 98

monitoring error logs, 511

month functions, 338-339

month select() function, 477

MONTH() function, 338

MONTHNAME() function, 338

move uploaded file() function, 220

MPM (Multi-Processing Module)

configuration files, processing, 53

operating system scalability

limits, 544

multibyte character sets, 518

multidimensional arrays, creating,

152-153

multiline comments, 81

multiplication operators (*), 98

Mutual-Failure arguments, Order

directive, 490

my-huge.cnf configuration file, 578

my-large.cnf configuration file, 578

my-medium.cnf configuration file, 578

my-small.cnf configuration file, 578

MySQL, 22

Announcements list, 591

configuration changes, internation-

alization efforts, 521

connections, securing, 34

data

inserting with PHP, 365-367

retrieving with PHP, 369-370

data types

date/time, 308

defining, 306

numeric, 306-307

signed, 306

string, 308-309

unsigned, 306

functions

accessing list of, 371

date/time, 336-347

string, 329-335

GUI administration tool, 34

installing

current and future version

information, 21-22

Linux/UNIX installation, 7,

22-23

Mac OS X, 24

troubleshooting, 32

Windows installation, 11, 17,

26-27, 30-31

mailing lists, 33

optimization, improving

benchmark() function,

576-577

FLUSH command, 581-582

FLUSH HOSTS PRIVILEGES

command, 582

FLUSH LOGS PRIVILEGES

command, 582

FLUSH PRIVILEGES command,

581

FLUSH TABLES command,

584

FLUSH TABLES PRIVILEGES

command, 582

OPTIMIZE TABLE command,

579

queries, 580

SHOW COLUMNS command,

585

SHOW command, 582

SHOW CREATE TABLE com-

mand, 584-585

SHOW DATABASES command,

583

SHOW GRANTS command,

583

SHOW INDEX command, 585

SHOW OPEN TABLES com-

mand, 584

SHOW STATUS command, 587

SHOW TABLE STATUS com-

mand, 586

SHOW TABLES command, 584

SHOW VARIABLES command,

588

tips for, 575-576

PHP connections, 361

error messages, retrieving,

365

errors, 363

queries, executing, 363-364

syntax of, 362

privilege systems

authentication process, 35-36

columns priv tables, 35

db tables, 35

granting, 37-39

host tables, 35

overview, 35

revoking, 39

tables priv tables, 35

user tables, 35

root users, running as, 33, 40

starting, 33-34

startup options, 577-579

support contracts, 33

upgrading, 593

website, 22

MySQL Configuration Wizard, 27,

30-31

616

modules

mysql insert id() function, 397

MySQL Installation wizard, 26

mysql result() function, 495

MySQL Setup Wizard, 26

mysqladmin status command, MySQL

installation, 8

mysqli * functions, 361

mysqli close() function, 363

mysqli connect error() function, 362

mysqli error() function, 364-365

mysqli fetch array() function, 370

mysqli get host info() function, 362

mysqli num rows() function, 369

mysqli query() function, 363-366

mysql_insert_id() function, 419

N

name-based virtual hosting, 552-555

NameVirtualHost directive, 554

naming

constants, 105-106

domains, access control rules,

488

error log files, 507

functions, 134-135

logging files, 505

uploaded files, 220

variables, 88

navigating files via fseek() function,

252-253

negative terms, 73

nesting loops, 124-125

network settings

Apache performance, 551

scalability, 547

network/mask pairs, control access

rules, 488

Networking Options screen (MySQL

Configuration Wizard), 30

newline character (\n), 124, 214, 250

newlines, removing from strings, 185

NIS (Network Information Services),

client authentication, 483

nl2br() function, 189

nonequivalence operators (!=), 102,

316

normal forms, 298

first normal form rules, 299

second normal form rules, 300

third normal form rules, 301

normalization, 293

defining, 298

flat tables, 298-299

normal forms, 298-301

redundancy, 299

not operators (!), 103

NOW() function, 346, 419

NULL data types, 91

numberedHeading() function, 141-142

numeric data types, 306-307

O

objects

constructors, 164

creating, 159

instances of, 160-161

methods, 163-164

data types, 91

declaring, 160

inheritance, 164-165

methods, 162-163

properties

changing, 162

viewing, 161

ON clause, 320

one to many mappings, DNS virtual

hosting, 552

one to one mappings, DNS virtual

hosting, 552

one to many table relationships, 296

one to one table relationships, 295

online address books

database tables, planning/creat-

ing, 389

email tables, 391

fax tables, 391

field names, 390

master name tables, 390

personal notes tables, 392

telephone tables, 391

include files, creating, 392

menus, creating, 393

records

adding subentries to,

407-412

record addition mechanism,

394-397

record deletion mechanism,

405-406

viewing, 398-405

online storefront database table

example

cat id field, 434

category of items, displaying,

437-440

planning process, 433-434

store categories field, 434-435

store item color field, 434-437

store item size table, 436

store items field, 434-436

opendir() function, 257-258

openssl command-line tool (certifi-

cates), 570

OpenSSL libraries, 567-569

operands, 97

How can we make this index more useful? Email us at indexes@samspublishing.com

operands

617

operators

&& (and) operators, 103

* (multiplication) operators, 98

*/ operators, 81

= (equal sign)

assignment operators, 89, 97

comparison operators, 322

concatenation operators, 214

== (equivalence) operators, 102

=== (identical) operators, 102

! (not operators), 103

!= (nonequivalence) operators,

102

!= (not equal to) operators, 316

> (greater than) operators, 102,

316

>= (greater than or equal to) oper-

ators, 102, 316

<= (less than or equal to) opera-

tors, 316

- subtraction operators, 98

% modulus operators, 98

. concatenation operators, 98

? (ternary) operators, 116

arithmetic operators, 98

assignment operators, 97-99

comparison operators, 101-102

case sensitivity in, 317

equal to (=), 322

WHERE clauses, 316-317

concatenation operators, 98, 214

defining, 97

logical operators, 102-103, 316

operands, 97

post-decrement operators, 100

post-increment operators, 100

precedence of, 103-105

optimization, MySQL, 575

benchmark() function, 576-577

CPU, 576

database and table information

retrieval, 583-584

FLUSH command, 581-582

hard drives, 576

memory, 576

operating systems, 576

queries, 580

SHOW command, 582-583

startup options, 577-579

system status retrieval, 587-588

table structure, 579, 584-586

OPTIMIZE TABLE command, 579

optional arguments in functions, 143

Options directive 546, 556

or die() constructs, 250

or operators (||), 102-103

ORDER BY clauses, 313, 328, 338

Order directives

Allow, Deny argument, 490

control access rules, evaluating,

489

Deny, Allow argument, 489

Mutual-Failure argument, 490

OS (Operating Systems)

MySQL optimization tips, 576

scalability

external process control, 545

file descriptors, 544

server processes, 544

output() function, 477

override schema directives, 51

ownership, verifying, 33

P

padding functions, 331-332

padding specifiers

leading spaces, 175

printf() function, 174-175

special characters in, 175

padlock icon, 565

pass phrases, creating key pairs, 570

passthru() function, 264

password files, storing (file-based

authentication), 486

password() function, 493

passwords

basic authentication, 482

digest authentication, 482

encrypting, user management

(file-based authentication), 485

path fields, cookies, 224

paths, log files, 511

PEAR (PHP Extension and Application

Repository), PHP extensions, 595

PECL (PHP Extension Community

Library), 595

per-directory files

Apache configuration, 54-55

configuration files, file system

access (scalability), 546

percent signs (%)

%a format string option (DATE

FORMAT() function), 342

%a formatting directive, 502

%b format string option (DATE

FORMAT() function), 342

%b formatting directive, 503

%c format string option (DATE

FORMAT() function), 342

%C formatting directive, 503

%D format string option (DATE

FORMAT() function), 342

618

operators

%D formatting directive, 502

%e format string option (DATE

FORMAT() function), 342

%e formatting directive, 502

%f formatting directive, 503

%H format string option (DATE

FORMAT() function), 342

%h formatting directive, 502-503

%i format string option (DATE FOR-

MAT() function), 343

%i formatting directive, 503

%j format string option (DATE FOR-

MAT() function), 342

%k format string option (DATE

FORMAT() function), 342

%l format string option (DATE FOR-

MAT() function), 343

%l formatting directive, 502

%M format string option (DATE

FORMAT() function), 342

%m formatting directive, 503

%o formatting directive, 503

%p format string option (DATE

FORMAT() function), 343

%q formatting directive, 503

%r format string option (DATE

FORMAT() function), 343

%r formatting directive, 503

%s format string option (DATE

FORMAT() function), 343

%T format string option (DATE

FORMAT() function), 343

%T formatting directive, 502-503

%U format string option (DATE

FORMAT() function), 342

%u formatting directive, 502-503

%v format string option (DATE

FORMAT() function), 342

%v formatting directive, 502-503

%W format string option (DATE

FORMAT() function), 342

%X format string option (DATE

FORMAT() function), 342

%X formatting directive, 503

%y format string option (DATE

FORMAT() function), 342

%y formatting directive, 503

conversion specification, 172-173

log formats, 502

modulus operators, 98

wildcards, 38

performance, Apache

caching, 550

LimitRequestBody directives, 551

LimitRequestFields directives,

551

LimitRequestFieldSize directives,

551

LimitRequestLine directives, 551

LimitXMLRequestBody directives,

551

load distribution, 550

mapping files to memory, 549

network settings, 551

reduction of transmitted data,

550

scalability

file system access, 546

network and status settings,

547

TimeOut directives, 551

period (.) concatenation operators, 98

permissions, 32. See also privileges,

35

personal notes tables (online address

books), 392, 402

PHP

Announcements list, 591

Apache, integrating with

Linux/UNIX, 68-70

Windows, 72-73

ASP tags, 77

code, adding comments to, 80-81

configuring, 67-68, 520

cookies, deleting, 227

delimiter tags, 77

distribution, image creation,

270-271

end tags, 77

file upload forms, 218

HTML, combining with, 79

included files, 239-241

installing

current and future versions,

65-66

help for, 74-75

Linux/UNIX installation, 9-10,

16

on Linux/UNIX with Apache,

66-68

on Mac OS X, 69-70

on Windows, 71-72

testing, 74

Windows installation, 15-20

instruction terminators, 88

mailing lists, 75

MySQL connections, 361

error messages, retrieving,

365

errors, 363

queries, executing, 363-364

syntax of, 362

MySQL data, inserting with,

365-367

php.ini file, 73

retrieving MySQL data with,

369-370

Script tags, 77

scripts, 76

short tags, 77

standard tags, 77

How can we make this index more useful? Email us at indexes@samspublishing.com

PHP

619

start tags, 77

upgrading, 595

website, 66, 71, 75

XML

DOM functions, 532-533

SimpleXML functions,

535-537

uses of, 531-532

PHP Manual website, 371

php.ini files, 68, 73, 383

PHP/HTML combination forms

hidden fields, 208-209

HTML form, calling itself, 206

PHP number-guessing scripts,

206-208

redirecting users, 209-211

server headers, 210

phpinfo() function, 74

phpinfo.php file, 74

phyMyAdmin interface, 34

pie charts, creating, 275, 277-278

pipes, opening, 260

plaintext messages, encryption, 562

PNG libraries, image creation, 271

pnmscale shell utility, 264

polygons

ImageFilledPolygon() function, 274

ImagePolygon() function, 272

popen() function, 260-261

port connections variable, 588

port values (Listen directive), 59

ports, troubleshooting bind to port, 61

position functions, 332

positive terms, 73

POST method, input forms, 202-203

post-decrement operators, 100

post-increment operators, 100

posts, adding to discussion forum top-

ics, 428-431

pound sign (#), 51, 69

ppmtogif shell utility, 264

precision specifiers (field width speci-

fiers), 176

predefined constants, 106

print() function, 78-79, 132

printBR() function, 135

printf() function

conversion specification, 172-173

format control strings, 172

padding specifiers, 174-175

type specifiers, 173

printing cookies, 225

privileges

authentication process, 35-36

columns priv tables, 35

db tables, 35

granting, 37-39

host tables, 35

MySQL, overview of, 35

revoking, 39

tables priv tables, 35

user tables, 35

problems, MySQL installation, 33

procedures (stored)

benefits of, 357

syntax of, 358-359

PROCESS command, 38

programs

error logging, 507

HTTP requests, logging, 506-507

rotatelogs, 510

prologs, XML, 529

properties

classes, 163

objects

changing in, 162

viewing, 161

ps command, 33

public key cryptography, SSL protocols,

563

public key information (certificates),

565

Q - R

queries

executing, 363-364

optimizing, 580

subqueries, 322

query strings, passing in session ID,

233

question marks (?), ternary operators,

116

quotation marks (“), escaping in

strings, 124

r (read) mode, 249

RAM disks, scoreboard files, 547

RC2 symmetric cryptography, 562

RC4 symmetric cryptography, 562

read (r) mode, 249

readdir() function, 258-259

reading

directory contents, 258-259

files, 260

feof() function, 250

fgetc() function, 253

fgets() function, 250

fread() function, 251-253

fseek() function, 252-253

who command output (UNIX), 260

README files, 23

recording events, error log, 56

620

PHP

records

online address books

adding subentries to in,

407-412

record addition mechanism,

394-397

record deletion mechanism,

405-406

viewing in, 398-405

tables, modifying in

DELETE command, 326-328

REPLACE command, 325-326

UPDATE command, 323-325

rectangles

ImageFilledRectangle() function,

274

ImageRectangle() function, 272

redirecting users in HTML/PHP combi-

nation forms, 209-211

redundancy, normalization, 299

registered user sessions, 235

RELOAD command, 38

removefromcart.php script, 454

removing

directories, 257

files, 248

privileges, 39

session variables, 234

REPEAT() function, 335

REPLACE command, 325-326

REPLACE() function, 335

replacing

portions of strings, 186

string portions, 186

substrings, 187

Reply-to header, 214

replytopost.pho script, 428-431

request headers, name-based virtual

hosting (syntax), 554

requests. See also HTTP requests

client requests, tracking (access

log), 56

logs, creating, 501

Require directive, authentication

modules, 483

require once() statements, 244

require() statements, 244

reset() function, arrays, 154

resolving hostnames (managing logs),

509

resource data types, 91

restricting access, 488-490

authentication, 481-487

based on cookie values, 493-496

client authentication, 483

resuming sessions, 228-229

return statements, 136, 179

reverse DNS lookups, IP addresses,

504

REVOKE command, 39-40

RGB color values, image creation, 270

RIGHT JOIN command, 321

RIGHT() function, 334

RLimitCPU directive, 545

RLimitMem directive, 545

RLimitNProc directive, 545

rmdir() function, 257

robots.txt files, Apache security, 552

ROLLBACK command, database trans-

actions, 354-356

root elements, XML, 530

root users, 33, 40

rotatelogs utility, 507, 510

round robin DNS, 552

rows, mysql num rows() function, 369

RPAD() function, 332

RTRIM() function, 331

rtrim() function, cleaning up strings,

185

S

Satisfy all directive, combining access

methods, 490

Satisfy any directive, combining

access methods, 490

Satisfy directive, combining access

methods, 490

saving state via hidden fields,

208-209

sayHello() function, 164

scalability, 543

Apache network settings, 547

Apache performance-related

settings

file system access, 545-546

network/status settings, 547

Apache status settings, 547

operating system limits

external process control, 545

file descriptors, 544

server processes, 544

performance-related settings

file system access, 546

network and status settings,

547

ScanErrLog programs, monitoring

error logs, 511

schemas, directives, 51

scoreboard files, 56, 547

screensavers, 34

Script tags, 77

ScriptAlias directive (mass virtual

hosting), 556

scripts

addentry.php, 409-412

addtocart.php, 450-451

apachectl, 53

How can we make this index more useful? Email us at indexes@samspublishing.com

scripts

621

configure scripts, 67-68

makefiles, 46

OpenSSL library installation,

568

PHP installation, 66

targets, 46

date pulldown.class.php, 478

delentry.php, 405-406

file upload forms, 219-220

images, creating from, 286-287

input scripts, creating for discus-

sion forums, 418-419

PHP, 76

removefromcart.php, 454

replytopost.php (discussion

forums), 428-431

selentry.php, 398-405

showcart.php, 452-453

showitem.php, 448-449

split-file Perl, splitting logs, 510

topic list script (discussion

forums), 421-422

topic post script (discussion

forums), 424, 426

user login, 494-495

SEC TO TIME() function, 347

second functions, 340-341

second normal forms, rules for, 300

SECOND() function, 340

secure HTTP, 562

secure servers

certificates, managing, 570-572

SSL

configuring, 572

protocols, 562-567

security

access control, 491

Apache, 551

authentication

digital certificates, 565-566

discussed, 561

need for, 564

basic authentication, 482

certificates

key pairs, 570-571

self-signed, 572

signing requests, 571-572

communications, integrity, 561

confidentiality, 561

public key cryptography, 563

SSL protocols, 562

symmetric cryptography,

562-563

digest authentication, 482

encryption, 562

integrity

communications, 561

digest algorithms, 564

message digests, 564

lock screen mechanism, 34

MySQL

connections, securing, 34

server startup procedures,

33-34

need for, 561

reverse DNS lookups, 504

software upgrades, 592

SSH, 34

SSL

configuration, 572-573

mod ssl Apache Module,

568-569

OpenSSL, 567-568

protocols (secure servers),

562

symlinks, 546

TLS (Transport Layer Security),

562

Security Options screen (MySQL

Configuration Wizard), 30

sel * fields, shopping cart database

tables, 446-447

sel item price fields, shopping cart

database tables, 447

SELECT command, 36-38, 203-204,

312-314, 317-319, 322, 365

SELECT element, 462

selentry.php script, 398-405

self-signed certificates (managing cer-

tificates), 572

semicolons (;), 79

instruction terminators, 88

Listen directive, 59

sending

email

feedback forms, 212-216

system configuration for,

211-212

signals, kill command, 57

serialize() function, 231

ServerAlias directive (syntax), 555

ServerName directive, configuration

files, 59

ServerRoot directive, Apache configu-

ration, 54

servers

binary commands, 57-58

headers (HTML/PHP combination

forms), 210

loads, distributing (Apache perfor-

mance), 550

starting, troubleshooting, 573

virtual servers, specifying

(<VirtualHost> directive contain-

er), 52

Web servers, Apache installations

(Windows), 48

Service icon, 58

session id fields, shopping cart

database tables, 446

622

scripts

session id() function, 228

session save path() function, 230

session set save handler() function,

228

session start() function, 228, 232,

447, 522

sessions

destroying, 234

functions, 227

session id(), 228

session save path(), 230

session set save handler(),

228

session start(), 228, 232

start session(), 229

ID, passing in query strings, 233

registered users, 235

resuming, 228-229

starting, 228-229

state, storing, 228

user preferences, 235

variables

accessing, 232

accessing stored variables,

229-231

adding arrays to, 231

removing, 234

storing, 229

session_destroy() function, 234

SET data type, 309

set time limit() function, 385

Set-Cookie header, 224

setcookie() function, 225-227

setDate array() function, 475

setDate global() function, 475-477

setName() function, 164

settype() function, 93, 95

setYearEnd() function, 476

setYearStart() function, 476

SHA, digest algorithms, 564

shading effects, pie charts, 277-278

shapes, drawing, 272-273

shopping cart database table example

carts

adding items to, 450-451

removing items from, 454-455

viewing, 452-454

checkout actions, performing,

456-457

checkout form, creating, 456

field lengths, 446

field names, 445-446

integrating with storefront,

447-449

short open tag switches, 77

short tags, 77

SHOW COLUMNS command, 585

SHOW command, 582

SHOW CREATE TABLE command,

584-585

SHOW DATABASES command, 583

SHOW GRANTS command, 583

SHOW INDEX command, 585

SHOW OPEN TABLES command, 584

SHOW STATUS command, 578-579,

587

SHOW TABLE STATUS command, 586

SHOW TABLES command, 584

SHOW VARIABLES command, 588

showcart.php script, 452-453

showitem.php script, 448-449

shuffle() function, arrays, 155

SHUTDOWN command, 38

signals, sending, 57

signatures, certificates, 565

signed data types, 306

signing requests, certificates, 571-572

SimpleXML functions, 535-537

single-byte character sets, 518

single-line comments, 81

sizeof() function, arrays, 154

slow queries status variable, 587

SMALLINT data type, 306

software

configuring (Apache installations),

46-47

load balancer (Apache perfor-

mance), 550

upgrades, 591-592

Solaris

file descriptors, operating system

scalability limits, 545

server processes, operating

systems (scalability), 544

source code

Apache installation, 44

downloading (Apache

installations), 45

uncompressing (Apache

installations), 45-46

spaces (text)

leading spaces, padding

specifiers, 175

multiple spaces, viewing in HTML,

175

whitespace, deleting from strings,

185

special characters, padding specifiers,

175

specifying, virtual servers

(<VirtualHost> directive container),

52

split-file Perl script, 510

splitting logs, 510

sprintf() function, 180, 477

SSH (Secure Shell), 34

SSL (Secure Sockets Layer)

configuring (secure servers), 572

digital certificates, 565-566

How can we make this index more useful? Email us at indexes@samspublishing.com

SSL

623

installing

mod ssl module, 568-569

OpenSSL library, 567

OpenSSL installations

Linux/UNIX, 568

Windows, 567

protocols

authentication, 564-567

confidentiality, 562-563

encryption, 562

SSLCertificateFile directive, 573

SSLeay libraries, 567

stacking images, 281

standard tags, 77

Start Apache link, 60

Start menu commands, 60

start session() function, 229

start tags, 77-78, 82

starting

Apache, 58

configuration file checks, 59

manually, 49

on Linux/UNIX, 60

on Windows, 60

block of statements, 78

MySQL, 33-34

servers (SSL configurations), trou-

bleshooting, 573

sessions, 228-229

state, saving, 208-209

static statements, remembering vari-

able values between function calls,

141-142

status code, conditional logging, 505

storage (backend)

database file-based access con-

trol authentication, 487

file-based authentication, 485

functions (authentication

modules), 484

store categories field, storefront

database table example, 434-435

store item color field, storefront

database table example, 434-437

store item size field, storefront

database table example, 434-436

store items field, storefront database

table example, 434-436

stored procedures

benefits of, 357

syntax of, 358-359

storefront database table example

add to cart button, 441-443

cat id field, 434

categories of items, displaying,

437-440

planning process, 433

store categories field, 434-435

store item color field, 434-437

store item size field, 434-436

store items field, 434-436

storing

certificate signing requests, 572

formatted strings, 180

password files (file-based authen-

tication), 486

session state, 228

session variables, 229-231

str replace() function, 187

string data types, 91-92

string functions

concatenation, 329-330

length, 329-330

location, 332

modification, 334-335

padding, 331-332

position, 332

substring, 333-334

trimming, 331-332

string types

BLOB, 308

CHAR(M), 308

ENUM, 309

LONGBLOB, 309

LONGTEXT, 309

MEDIUMBLOB, 309

MEDIUMTEXT, 309

SET, 309

TEXT, 308

TINYBLOB, 309

TINYTEXT, 309

VARCHAR(M), 308

strings

arrays, breaking into, 190-191

cleaning up, 185

defined, 79

field names versus, 341

formatting

argument swapping, 179-180

field width specifiers,

175-178

printf() function, 172-175

storing, 180

HTML tags, removing from, 185

indexing, 180-181

length of, finding, 181

log formats, 502

new lines, removing from, 185

portions of, extracting, 182-183

query strings, passing session ID

in, 233

replacing portions of, 186

substrings

finding, 181-182

position of, finding, 182

replacing, 187

tabs, removing from, 185

624

SSL

text

converting case of, 187-188

wrapping, 189-190

tokenizing, 183

web resources, 197

whitespace, removing from, 185

strip tags() function, 185

stripslashes() function, 423, 426, 430

strlen() function, 181

strpos() function, 182

strstr() function, 181-182

strtok() function, 183

strtolower() function, 188

strtoupper() function, 132, 188

subdirectories, support-files, 578. See

also directories

subentries, adding to address book

records, 407-412

subexpressions, 97

subject information (certificates), 565

subqueries, 322

subscribers tables, creating (mailing

list subscription mechanisms), 376

subscription forms, creating (mailing

list subscription mechanisms),

377-380, 383

subscription mechanism (mailing

lists), 375

include files, creating, 376-377

subscriber tables, creating, 376

subscription forms, creating,

377-380, 383

subscription project, subscribe and

unsubscribe requests, 379-380

substr() function, 182-183

substring functions, 333-334

SUBSTRING() function, 333

substrings

finding, 181-182

position of, finding, 182

replacing, 187

substr_replace() function, 186

subtraction operators (-), 98

superglobals, 89

$ COOKIE, 225

$ FILES, 217

$SESSION, 229-232, 235

support contracts, MySQL, 33

support-files subdirectories, 578

swapping arguments

formatting strings, 179-180

return statements, 179

switch statements, 115-116

symlink (system links), file system

access (scalability), 546

SymLinksIfOwnerMatch parameter,

Options directive, 546

symmetric cryptography

confidentiality (SSL protocols),

562

limitations, 563

syntax

<IfDefine> conditional container,

54

<IfModule> conditional container,

54

access log, 56

container directives, 53

error log, 56

per-directory configuration files,

disabling, 55

request headers, name-based vir-

tual hosting, 554

schema directives, 51

ServerAlias directive, 555

SYSDATE() function, 346

syslog daemon, logging errors (UNIX),

507-508

system() function, 263

T

table cache parameter, 578-579

table type variable, 588

tables

auth users, 493

cache parameter, 578-579

calendar example, 462-472

creating

asterisks (*), 313

CREATE TABLE command,

309-310

INSERT command, 310-312

JOIN command, 320-321

LIMIT command, 314-315

primary/unique keys, 433

SELECT command, 312-314,

317-319

syntax of, 309

WHERE clauses, 315-317

custom logs, 511

code snippet, 512-513

sample reports, 513-515

flat, 298-299

FLUSH TABLES command, 582

modifying records

DELETE command, 326-328

REPLACE command, 325-326

UPDATE command, 323-325

multiple tables, selecting via

SELECT command, 317-319

OPTIMIZE TABLE command, 579

priv tables, 35

relationships, 294

many to many, 296-297

one to many, 296

one to one, 295

How can we make this index more useful? Email us at indexes@samspublishing.com

tables

625

shopping cart database table

example

adding items to cart, 450-451

checkout actions, 456-457

checkout forms, 456

field lengths, 446

field names, 445-446

integrating with storefront,

447-449

removing items from cart,

454-455

viewing cart, 452-454

SHOW COLUMNS command, 585

SHOW CREATE TABLE command,

584-585

SHOW INDEX command, 585

SHOW OPEN TABLES command,

584

SHOW STATUS command, 587

SHOW TABLE STATUS command,

586

SHOW VARIABLES command, 588

storefront database table exam-

ple

add to cart button, 441-443

cat id field, 434

displaying categories of items,

437-440

planning process, 433

store categories field,

434-435

store item color field,

434-437

store item size field, 434-436

store items field, 434-436

subqueries, 322

telephone tables, online address

books, 391

type variable, 588

tabs, removing from strings, 185

tags

ASP, 77

end tags, 82

Script, 77

short, 77

short open tag switch, 77

standard, 77

start tags, 82

start/end, 78

strip tags() function, 185

XML, 531

tagWrap() function, 145-146

tail command-line utility, monitoring

error logs (UNIX), 511

tar command, 23, 45

tarballs, 45-46

telephone tables, online address

books, 391

ternary (?) operators, 116

test() function, 138

testing

data types, 91-96

dates, 196

files, 246-248

functions, checking for availability,

145-146

PHP installation, 74

text

custom text, image creation,

287-288

editors, modifying httpd.conf files,

59

formatting documents as, 175

string text

converting case, 187-188

wrapping, 189-190

TEXT data type, 308

Thawte, CA (Certification Authorities),

572

third normal forms, 298, 301

TIME data type, 308

TIME FORMAT() function, 343

time stamps

converting to dates, 192-195

creating, 195

defining, 191

TIME TO SEC() function, 347

time() function, 191, 226

times/dates

calendar, 459

event additions, 465-472

HTML form, 460-462

library, creating, 473-479

table, creating, 462-465

user input, 460

current times, retrieving, 191

data types, 308

functions, 342-343

arithmetic, 344-345

conversion, 346-347

days, 336-338

file validation, 246

hours, 340-341

minutes, 340-341

months, 338-339

seconds, 340-341

special, 346-347

weeks, 339-340

years, 339

HH:MM:SS time format, 346

testing dates, 196

time stamps

converting to dates, 192-195

creating, 195

defining, 191

UNIX epoch, 191

web resources, 197

YYYY-MM-DD date format, 346

TimeOut directive, Apache

performance, 551

626

tables

TIMESTAMP data type, 308

TINYBLOB data type, 309

TINYINT data type, 306

TINYTEXT data type, 309

TITLE element, 461

TLS (Transport Layer Security), 562

tokenizing strings, 183

topic lists, displaying in discussion

forums, 421-423

topic posts, displaying in discussion

forums, 424-426

touch() function, 248

tracking clients

requests, access logs, 56

troubleshooting, 505

TRAILING function, 332

transactions, 353

COMMIT command, 354-356

examples of, 355-357

ROLLBACK command, 354-356

syntax of, 354

TransferLog directive, 505-506

transmitted data, reducing (Apache

performance), 550

transparent images, 281

trim() function, cleaning up strings,

185

trimming functions, 331-332

Triple-Des, symmetric cryptography,

562

troubleshooting

Apache startups, 61

clients, tracking, 505

installations, 20

MySQL

installation, 32

upgrades, 593

servers, starting (SSL configura-

tions), 573

TYPE argument, 218

type specifiers, printf() function, 173

Typical installation option (MySQL

Setup Wizard), 26

U

UCASE() function, 334

ucfirst() function, 188

ucwords() function, 188

ulimit command, operating system

scalability, 544

uncompressing source code (Apache

installations), 45-46

underline() function, 145-146

UNIX

Apache

installation, 8-9, 45-47

startups, 60

apachectl tool, 58

column command, passing data

to, 261

directories, creating listings for,

262

epochs, 191

FROM UNIXTIME() function, 347

logresolve utility, resolving host-

names, 509

mod_ssl Apache modules, 569

MySQL, installing on, 7, 22-23

OpenSSL libraries, installing,

568-569

PHP

Apache integration, 68-70

installing, 9-10, 16, 66-68

rotatelogs programs, 510

syslog daemon, logging errors,

507-508

tail command-line utility,

monitoring error logs, 511

UNIX TIMESTAMP() function, 347

who command, reading output of,

260

unlink() function, 248

unsigned data types, 306

unsubscribe requests, 379-380

unsubscribe/subscribe forms, creating

(mailing list subscription mecha-

nisms), 379-380, 383

unzipping software, 72

UPDATE command, 38, 323-325, 365

conditional UPDATE statements,

324

subqueries, 322

upgrades

Apache, 593

Apache News and

Announcements list, 591

modifying without upgrading,

594

changelogs, 592

determining when to upgrade,

592

maintenance releases, 592

MySQL, 593

MySQL Announcements list, 591

PHP, 595

PHP Announcements list, 591

security issues, 592

staying current, 591

when to upgrade, 592

uploaded files, naming, 220

uptime status variable, 587

URL (Uniform Resource Locators),

applying directives, 52

User-Agent headers, 489

user-defined functions, 133

usernames, basic authentication, 482

How can we make this index more useful? Email us at indexes@samspublishing.com

usernames

627

users

adding, 37-39, 487

deleting, database file-based

access control authentication,

487

input

calendar example, 459-460

creating images from,

282-285

input forms (HTML), 201-204

lists, Require directive, 483

login forms, 494-496

management

client authentication, 483

database file-based access

control authentication, 487

file-based authentication, 485

functions, authentication mod-

ules, 484

ownership, verifying, 33

redirecting in HTML/PHP combina-

tion forms, 209-211

root users, running MySQL as, 40

sessions, 227

accessing variables, 229-232

adding arrays to, 231

destroying, 234

ID, passing in query strings,

233

registered users, 235

removing, 234

resuming, 228-229

session id() function, 228

session save path() function,

230

session set save handler()

function, 228

session start() function, 228,

232

start session() function, 229

starting, 228-229

storing, 229

storing state, 228

user preferences, 235

tables, 35

user files, backend storage, 485

USR1, signals, sending, 57

V

validating

directories, file/directory

confirmation, 244

files

checking existence of, 244

date/time information, 246

determining file size, 245

file status, 245

file/directory confirmation,

244

testing functions, 246-248

values

directives, 55, 73

port values (Listen directive), 59

var keyword, object properties, 161

VARCHAR(M) data type, 308

variables

$count variable, 464

$dayArray variable, 464

$file array variable, 220

$file dir variable, 219

$file name variable, 220

$firstDayArray variable, 465

$name variable, 474

$newnum variable, 133

$start variable, 464

$txt variable, 135

array-specific operations, 90

assignment operators (=), 89

availability of, 89

casting, 94-95

data types, 90

array, 91

boolean, 91

changing, 93-95

double, 91-92

float, 91

integer, 91-92

NULL, 91

object, 91

resource, 91

string, 91-92

testing, 91-96

declaring, 89

outside of functions, 138

within functions, 137

defining, 87

DISTINCT, 339

environment variables

access control rules, 489

conditional looping, 506

globals, 89

accessing via global state-

ments, 139

changing within functions,

140

HTTP COOKIE, 225

integers, incrementing/decrement-

ing, 100-101

local variables, 89

naming, 88

passing references to functions,

143-144

remembering values between

function calls

global statements, 140

static statements, 141-142

628

users

scope of, 137

session variables

accessing stored variables,

229-231

removing, 234

storing in, 229

superglobals, 89

$ COOKIE, 225

$ FILES, 217

$SESSION, 229-232, 235

values given to, overview, 88

when to use, 88

VeriSign, CA (Certification Authorities),

572

version upgrades, 592

version type variable, 588

virtual hosting, 552

virtual servers, specifying

(<VirtualHost> directive container),

52

VirtualDocumentRoot directive (mass

virtual hosting), 556

VirtualDocumentRootIP directive

(mass virtual hosting), 556

VirtualScriptAlias directive (mass virtu-

al hosting), 556

VirtualScriptAliasIP directive (mass vir-

tual hosting), 556

virtual hosting

DocumentRoot, 553

IP-based, 553

mass hosting, 555-556

name-based, 553-555

VirtualHost containers, IP-based virtu-

al hosting, 553

W

w (write) mode, 249

web pages, application localization,

521-524

web servers

Apache, installing (Windows), 48

logging and monitoring activity

code snippet, 512

CustomLog directive, 506

database table creation, 511

error logs, 507

file accesses, 505-506

HostNameLookups directive,

504

hostnames, resolving, 509

IdentityCheck directive, 505

log analysis, 510-511

log rotation, 509-510

LogLevel directive, 508

merging and splitting logs,

510

program access, 506-507

request logs, 501

sample reports, 513-515

status code, 505

syslog daemon argument, 508

what to log, 502-504

web spiders/crawlers, 551

Webalizer log analysis, 511

websites

Apache, 45

Apache Software Foundation, 44

awstats, 511

Logscan, 511

MySQL, 22

PHP, 66, 71, 75

PHP Manual, 371

ScanErrLog, 511

Thawte, 572

VeriSign, 572

Webalizer, 511

week functions, 339-340

WEEKDAY() function, 336

WHERE clauses, 315, 376

comparison operators, 316

logical operators, 316

string comparisons, 317

while loops, 261, 426

while statements, 101, 117-118, 251

whitespace, 73, 185

who command (UNIX), reading output

of, 260

wildcards, 38

WINCH signals, sending, 57

Windows

Apache

controlling (commands), 58

installation, 13-14, 48-50

PHP integration, 72-73

startups, 60

logresolve.exe utility, resolving

hostnames, 509

mod_ssl Apache modules, 569

MySQL installations, 11, 26-27,

30-31

OpenSSL libraries, installing, 567

PHP

Apache integration, 72-73

installation, 15-16, 71-72

rotatelogs.exe programs, rotating

logs, 510

wizards

MySQL Configuration Wizard, 27,

30-31

MySQL Installation Wizard, 26

MySQL Setup Wizard, 26

How can we make this index more useful? Email us at indexes@samspublishing.com

wizards

629

wordwrap() function, 189-190

wrapping string text, 189-190

write (w) mode, 249

writing files, 255

X

x-axis coordinates, drawing images,

272

X.509 digital certificates, 565

XML (Extensible Markup Language)

case-sensitivity, 531

children, 530

content structure, 530

document structure, 529-531

Facebook, 531-532

PHP, accessing from

DOM functions, 532-533

SimpleXML functions,

535-537

prologs, 529

root elements, 530

tags, 531

uses of, 531-532

xor operators, 103

Y - Z

y-axis coordinates, drawing images,

272

year functions, 339

year select() function, 477-478

YEAR() function, 339

YEAR(M) data type, 308

YYYY-MM-DD date format, 346

zlib libraries, image creation, 271

630

wordwrap() function

	Introduction
	Who Should Read This Book?
	How This Book Is Organized
	About the Book's Source Code
	Conventions Used in This Book

	5: The Building Blocks of PHP
	Variables
	Data Types
	Operators and Expressions
	Constants
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K
	L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W
	X
	Y - Z

