
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672329463
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672329463
https://plusone.google.com/share?url=http://www.informit.com/title/9780672329463
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672329463
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672329463/Free-Sample-Chapter

Linux Kernel
Development

Third Edition

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-6

Programming in Objective-C 2.0
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

Linux Kernel
Development

Third Edition

Robert Love

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Linux Kernel Development
Third Edition

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise.

ISBN-13: 978-0-672-32946-3
ISBN-10: 0-672-32946-8

Library of Congress Cataloging-in-Publication Data:

Love, Robert.

Linux kernel development / Robert Love. — 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-672-32946-3 (pbk. : alk. paper) 1. Linux. 2. Operating systems (Computers)
I. Title.

QA76.76.O63L674 2010

005.4’32—dc22

2010018961

Text printed in the United States on recycled paper at RR Donnelley, Crawfordsville, Indiana.
Third Printing: June 2011

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Acquisitions Editor
Mark Taber

Development
Editor
Michael Thurston

Technical Editor
Robert P. J. Day

Managing Editor
Sandra Schroeder

Senior Project
Editor
Tonya Simpson

Copy Editor
Apostrophe Editing
Services

Indexer
Brad Herriman

Proofreader
Debbie Williams

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Compositor
Mark Shirar

❖

For Doris and Helen.

❖

Contents at a Glance
1 Introduction to the Linux Kernel 1

2 Getting Started with the Kernel 11

3 Process Management 23

4 Process Scheduling 41

5 System Calls 69

6 Kernel Data Structures 85

7 Interrupts and Interrupt Handlers 113

8 Bottom Halves and Deferring Work 133

9 An Introduction to Kernel Synchronization 161

10 Kernel Synchronization Methods 175

11 Timers and Time Management 207

12 Memory Management 231

13 The Virtual Filesystem 261

14 The Block I/O Layer 289

15 The Process Address Space 305

16 The Page Cache and Page Writeback 323

17 Devices and Modules 337

18 Debugging 363

19 Portability 379

20 Patches, Hacking, and the Community 395

Bibliography 407

Index 411

Table of Contents

1 Introduction to the Linux Kernel 1
History of Unix 1

Along Came Linus: Introduction to Linux 3

Overview of Operating Systems and Kernels 4

Linux Versus Classic Unix Kernels 6

Linux Kernel Versions 8

The Linux Kernel Development Community 10

Before We Begin 10

2 Getting Started with the Kernel 11
Obtaining the Kernel Source 11

Using Git 11

Installing the Kernel Source 12

Using Patches 12

The Kernel Source Tree 12

Building the Kernel 13

Configuring the Kernel 14

Minimizing Build Noise 15

Spawning Multiple Build Jobs 16

Installing the New Kernel 16

A Beast of a Different Nature 16

No libc or Standard Headers 17

GNU C 18

Inline Functions 18

Inline Assembly 19

Branch Annotation 19

No Memory Protection 20

No (Easy) Use of Floating Point 20

Small, Fixed-Size Stack 20

Synchronization and Concurrency 21

Importance of Portability 21

Conclusion 21

viii Contents

3 Process Management 23
The Process 23

Process Descriptor and the Task Structure 24

Allocating the Process Descriptor 25

Storing the Process Descriptor 26

Process State 27

Manipulating the Current Process State 29

Process Context 29

The Process Family Tree 29

Process Creation 31

Copy-on-Write 31

Forking 32

vfork() 33

The Linux Implementation of Threads 33

Creating Threads 34

Kernel Threads 35

Process Termination 36

Removing the Process Descriptor 37

The Dilemma of the Parentless Task 38

Conclusion 40

4 Process Scheduling 41
Multitasking 41

Linux’s Process Scheduler 42

Policy 43

I/O-Bound Versus Processor-Bound Processes 43

Process Priority 44

Timeslice 45

The Scheduling Policy in Action 45

The Linux Scheduling Algorithm 46

Scheduler Classes 46

Process Scheduling in Unix Systems 47

Fair Scheduling 48

The Linux Scheduling Implementation 50

Time Accounting 50

The Scheduler Entity Structure 50

The Virtual Runtime 51

ixContents

Process Selection 52

Picking the Next Task 53

Adding Processes to the Tree 54

Removing Processes from the Tree 56

The Scheduler Entry Point 57

Sleeping and Waking Up 58

Wait Queues 58

Waking Up 61

Preemption and Context Switching 62

User Preemption 62

Kernel Preemption 63

Real-Time Scheduling Policies 64

Scheduler-Related System Calls 65

Scheduling Policy and Priority-Related
System Calls 66

Processor Affinity System Calls 66

Yielding Processor Time 66

Conclusion 67

5 System Calls 69
Communicating with the Kernel 69

APIs, POSIX, and the C Library 70

Syscalls 71

System Call Numbers 72

System Call Performance 72

System Call Handler 73

Denoting the Correct System Call 73

Parameter Passing 74

System Call Implementation 74

Implementing System Calls 74

Verifying the Parameters 75

System Call Context 78

Final Steps in Binding a System Call 79

Accessing the System Call from User-Space 81

Why Not to Implement a System Call 82

Conclusion 83

x Contents

6 Kernel Data Structures 85
Linked Lists 85

Singly and Doubly Linked Lists 85

Circular Linked Lists 86

Moving Through a Linked List 87

The Linux Kernel’s Implementation 88

The Linked List Structure 88

Defining a Linked List 89

List Heads 90

Manipulating Linked Lists 90

Adding a Node to a Linked List 90

Deleting a Node from a Linked List 91

Moving and Splicing Linked List Nodes 92

Traversing Linked Lists 93

The Basic Approach 93

The Usable Approach 93

Iterating Through a List Backward 94

Iterating While Removing 95

Other Linked List Methods 96

Queues 96

kfifo 97

Creating a Queue 97

Enqueuing Data 98

Dequeuing Data 98

Obtaining the Size of a Queue 98

Resetting and Destroying the Queue 99

Example Queue Usage 99

Maps 100

Initializing an idr 101

Allocating a New UID 101

Looking Up a UID 102

Removing a UID 103

Destroying an idr 103

Binary Trees 103

Binary Search Trees 104

Self-Balancing Binary Search Trees 105

Red-Black Trees 105

rbtrees 106

xiContents

What Data Structure to Use, When 108

Algorithmic Complexity 109

Algorithms 109

Big-O Notation 109

Big Theta Notation 109

Time Complexity 110

Conclusion 111

7 Interrupts and Interrupt Handlers 113
Interrupts 113

Interrupt Handlers 114

Top Halves Versus Bottom Halves 115

Registering an Interrupt Handler 116

Interrupt Handler Flags 116

An Interrupt Example 117

Freeing an Interrupt Handler 118

Writing an Interrupt Handler 118

Shared Handlers 119

A Real-Life Interrupt Handler 120

Interrupt Context 122

Implementing Interrupt Handlers 123

/proc/interrupts 126

Interrupt Control 127

Disabling and Enabling Interrupts 127

Disabling a Specific Interrupt Line 129

Status of the Interrupt System 130

Conclusion 131

8 Bottom Halves and Deferring Work 133
Bottom Halves 134

Why Bottom Halves? 134

A World of Bottom Halves 135

The Original “Bottom Half” 135

Task Queues 135

Softirqs and Tasklets 136

Dispelling the Confusion 137

xii Contents

Softirqs 137

Implementing Softirqs 137

The Softirq Handler 138

Executing Softirqs 138

Using Softirqs 140

Assigning an Index 140

Registering Your Handler 141

Raising Your Softirq 141

Tasklets 142

Implementing Tasklets 142

The Tasklet Structure 142

Scheduling Tasklets 143

Using Tasklets 144

Declaring Your Tasklet 144

Writing Your Tasklet Handler 145

Scheduling Your Tasklet 145

ksoftirqd 146

The Old BH Mechanism 148

Work Queues 149

Implementing Work Queues 149

Data Structures Representing the Threads 149

Data Structures Representing the Work 150

Work Queue Implementation Summary 152

Using Work Queues 153

Creating Work 153

Your Work Queue Handler 153

Scheduling Work 153

Flushing Work 154

Creating New Work Queues 154

The Old Task Queue Mechanism 155

Which Bottom Half Should I Use? 156

Locking Between the Bottom Halves 157

Disabling Bottom Halves 157

Conclusion 159

9 An Introduction to Kernel Synchronization 161
Critical Regions and Race Conditions 162

Why Do We Need Protection? 162

The Single Variable 163

xiiiContents

Locking 165

Causes of Concurrency 167

Knowing What to Protect 168

Deadlocks 169

Contention and Scalability 171

Conclusion 172

10 Kernel Synchronization Methods 175
Atomic Operations 175

Atomic Integer Operations 176

64-Bit Atomic Operations 180

Atomic Bitwise Operations 181

Spin Locks 183

Spin Lock Methods 184

Other Spin Lock Methods 186

Spin Locks and Bottom Halves 187

Reader-Writer Spin Locks 188

Semaphores 190

Counting and Binary Semaphores 191

Creating and Initializing Semaphores 192

Using Semaphores 193

Reader-Writer Semaphores 194

Mutexes 195

Semaphores Versus Mutexes 197

Spin Locks Versus Mutexes 197

Completion Variables 197

BKL: The Big Kernel Lock 198

Sequential Locks 200

Preemption Disabling 201

Ordering and Barriers 203

Conclusion 206

11 Timers and Time Management 207
Kernel Notion of Time 208

The Tick Rate: HZ 208

The Ideal HZ Value 210

Advantages with a Larger HZ 210

Disadvantages with a Larger HZ 211

xiv Contents

Jiffies 212

Internal Representation of Jiffies 213

Jiffies Wraparound 214

User-Space and HZ 216

Hardware Clocks and Timers 216

Real-Time Clock 217

System Timer 217

The Timer Interrupt Handler 217

The Time of Day 220

Timers 222

Using Timers 222

Timer Race Conditions 224

Timer Implementation 224

Delaying Execution 225

Busy Looping 225

Small Delays 226

schedule_timeout() 227

schedule_timeout() Implementation 228

Sleeping on a Wait Queue, with a Timeout 229

Conclusion 230

12 Memory Management 231
Pages 231

Zones 233

Getting Pages 235

Getting Zeroed Pages 236

Freeing Pages 237

kmalloc() 238

gfp_mask Flags 238

Action Modifiers 239

Zone Modifiers 240

Type Flags 241

kfree() 243

vmalloc() 244

Slab Layer 245

Design of the Slab Layer 246

xvContents

Slab Allocator Interface 249

Allocating from the Cache 250

Example of Using the Slab Allocator 251

Statically Allocating on the Stack 252

Single-Page Kernel Stacks 252

Playing Fair on the Stack 253

High Memory Mappings 253

Permanent Mappings 254

Temporary Mappings 254

Per-CPU Allocations 255

The New percpu Interface 256

Per-CPU Data at Compile-Time 256

Per-CPU Data at Runtime 257

Reasons for Using Per-CPU Data 258

Picking an Allocation Method 259

Conclusion 260

13 The Virtual Filesystem 261
Common Filesystem Interface 261

Filesystem Abstraction Layer 262

Unix Filesystems 263

VFS Objects and Their Data Structures 265

The Superblock Object 266

Superblock Operations 267

The Inode Object 270

Inode Operations 271

The Dentry Object 275

Dentry State 276

The Dentry Cache 276

Dentry Operations 278

The File Object 279

File Operations 280

Data Structures Associated with Filesystems 285

Data Structures Associated with a Process 286

Conclusion 288

xvi Contents

14 The Block I/O Layer 289
Anatomy of a Block Device 290

Buffers and Buffer Heads 291

The bio Structure 294

I/O vectors 295

The Old Versus the New 296

Request Queues 297

I/O Schedulers 297

The Job of an I/O Scheduler 298

The Linus Elevator 299

The Deadline I/O Scheduler 300

The Anticipatory I/O Scheduler 302

The Complete Fair Queuing I/O Scheduler 303

The Noop I/O Scheduler 303

I/O Scheduler Selection 304

Conclusion 304

15 The Process Address Space 305
Address Spaces 305

The Memory Descriptor 306

Allocating a Memory Descriptor 308

Destroying a Memory Descriptor 309

The mm_struct and Kernel Threads 309

Virtual Memory Areas 309

VMA Flags 311

VMA Operations 312

Lists and Trees of Memory Areas 313

Memory Areas in Real Life 314

Manipulating Memory Areas 315

find_vma() 316

find_vma_prev() 317

find_vma_intersection() 317

mmap() and do_mmap(): Creating an
Address Interval 318

munmap() and do_munmap(): Removing an
Address Interval 320

Page Tables 320

Conclusion 322

xviiContents

16 The Page Cache and Page Writeback 323
Approaches to Caching 323

Write Caching 324

Cache Eviction 324

Least Recently Used 325

The Two-List Strategy 325

The Linux Page Cache 326

The address_space Object 326

address_space Operations 328

Radix Tree 330

The Old Page Hash Table 330

The Buffer Cache 330

The Flusher Threads 331

Laptop Mode 333

History: bdflush, kupdated, and pdflush 333

Avoiding Congestion with Multiple Threads 334

Conclusion 335

17 Devices and Modules 337
Device Types 337

Modules 338

Hello, World! 338

Building Modules 340

Living in the Source Tree 340

Living Externally 342

Installing Modules 342

Generating Module Dependencies 342

Loading Modules 343

Managing Configuration Options 344

Module Parameters 346

Exported Symbols 348

The Device Model 348

Kobjects 349

Ktypes 350

Ksets 351

Interrelation of Kobjects, Ktypes, and Ksets 351

Managing and Manipulating Kobjects 352

xviii Contents

Reference Counts 353

Incrementing and Decrementing
Reference Counts 354

Krefs 354

sysfs 355

Adding and Removing kobjects from sysfs 357

Adding Files to sysfs 358

Default Attributes 358

Creating New Attributes 359

Destroying Attributes 360

sysfs Conventions 360

The Kernel Events Layer 361

Conclusion 362

18 Debugging 363
Getting Started 363

Bugs in the Kernel 364

Debugging by Printing 364

Robustness 365

Loglevels 365

The Log Buffer 366

syslogd and klogd 367

Transposing printf() and printk() 367

Oops 367

ksymoops 369

kallsyms 369

Kernel Debugging Options 370

Asserting Bugs and Dumping Information 370

Magic SysRq Key 371

The Saga of a Kernel Debugger 372

gdb 372

kgdb 373

Poking and Probing the System 373

Using UID as a Conditional 373

Using Condition Variables 374

Using Statistics 374

Rate and Occurrence Limiting Your Debugging 375

xixContents

Binary Searching to Find the Culprit Change 376

Binary Searching with Git 376

When All Else Fails: The Community 377

Conclusion 378

19 Portability 379
Portable Operating Systems 379

History of Portability in Linux 380

Word Size and Data Types 381

Opaque Types 384

Special Types 384

Explicitly Sized Types 385

Signedness of Chars 386

Data Alignment 386

Avoiding Alignment Issues 387

Alignment of Nonstandard Types 387

Structure Padding 387

Byte Order 389

Time 391

Page Size 391

Processor Ordering 392

SMP, Kernel Preemption, and High Memory 393

Conclusion 393

20 Patches, Hacking, and the Community 395
The Community 395

Linux Coding Style 396

Indention 396

Switch Statements 396

Spacing 397

Braces 398

Line Length 399

Naming 400

Functions 400

Comments 400

Typedefs 401

Use Existing Routines 402

xx Contents

Minimize ifdefs in the Source 402

Structure Initializers 402

Fixing Up Code Ex Post Facto 403

Chain of Command 403

Submitting Bug Reports 403

Patches 404

Generating Patches 404

Generating Patches with Git 405

Submitting Patches 406

Conclusion 406

Bibliography 407

Index 411

Foreword

As the Linux kernel and the applications that use it become more widely used, we are
seeing an increasing number of system software developers who wish to become involved
in the development and maintenance of Linux. Some of these engineers are motivated
purely by personal interest, some work for Linux companies, some work for hardware
manufacturers, and some are involved with in-house development projects.

But all face a common problem:The learning curve for the kernel is getting longer
and steeper.The system is becoming increasingly complex, and it is very large.And as the
years pass, the current members of the kernel development team gain deeper and broader
knowledge of the kernel’s internals, which widens the gap between them and newcomers.

I believe that this declining accessibility of the Linux source base is already a problem
for the quality of the kernel, and it will become more serious over time.Those who care
for Linux clearly have an interest in increasing the number of developers who can con-
tribute to the kernel.

One approach to this problem is to keep the code clean: sensible interfaces, consistent
layout,“do one thing, do it well,” and so on.This is Linus Torvalds’ solution.

The approach that I counsel is to liberally apply commentary to the code: words that
the reader can use to understand what the coder intended to achieve at the time. (The
process of identifying divergences between the intent and the implementation is known
as debugging. It is hard to do this if the intent is not known.)

But even code commentary does not provide the broad-sweep view of what a major
subsystem is intended to do, and of how its developers set about doing it.This, the start-
ing point of understanding, is what the written word serves best.

Robert Love’s contribution provides a means by which experienced developers can
gain that essential view of what services the kernel subsystems are supposed to provide,
and of how they set about providing them.This will be sufficient knowledge for many
people: the curious, the application developers, those who wish to evaluate the kernel’s
design, and others.

But the book is also a stepping stone to take aspiring kernel developers to the next
stage, which is making alterations to the kernel to achieve some defined objective. I
would encourage aspiring developers to get their hands dirty:The best way to under-
stand a part of the kernel is to make changes to it. Making a change forces the developer
to a level of understanding which merely reading the code does not provide.The serious
kernel developer will join the development mailing lists and will interact with other
developers.This interaction is the primary means by which kernel contributors learn

and stay abreast. Robert covers the mechanics and culture of this important part of
kernel life well.

Please enjoy and learn from Robert’s book.And should you decide to take the next
step and become a member of the kernel development community, consider yourself
welcomed in advance.We value and measure people by the usefulness of their contribu-
tions, and when you contribute to Linux, you do so in the knowledge that your work is
of small but immediate benefit to tens or even hundreds of millions of human beings.
This is a most enjoyable privilege and responsibility.

Andrew Morton

Preface

When I was first approached about converting my experiences with the Linux kernel
into a book, I proceeded with trepidation.What would place my book at the top of its
subject? I was not interested unless I could do something special, a best-in-class work.

I realized that I could offer a unique approach to the topic. My job is hacking the kernel.
My hobby is hacking the kernel. My love is hacking the kernel. Over the years, I have accu-
mulated interesting anecdotes and insider tips.With my experiences, I could write a book on
how to hack the kernel and—just as important—how not to hack the kernel. First and fore-
most, this is a book about the design and implementation of the Linux kernel.This book’s
approach differs from would-be competitors, however, in that the information is given with
a slant to learning enough to actually get work done—and getting it done right. I am a
pragmatic engineer and this is a practical book. It should be fun, easy to read, and useful.

I hope that readers can walk away from this work with a better understanding of the
rules (written and unwritten) of the Linux kernel. I intend that you, fresh from reading
this book and the kernel source code, can jump in and start writing useful, correct, clean
kernel code. Of course, you can read this book just for fun, too.

That was the first edition.Time has passed, and now we return once more to the fray.
This third edition offers quite a bit over the first and second: intense polish and revision,
updates, and many fresh sections and all new chapters.This edition incorporates changes in
the kernel since the second edition. More important, however, is the decision made by the
Linux kernel community to not proceed with a 2.7 development kernel in the near to mid-
term.1 Instead, kernel developers plan to continue developing and stabilizing the 2.6 series.
This decision has many implications, but the item of relevance to this book is that there is
quite a bit of staying power in a contemporary book on the 2.6 Linux kernel.As the Linux
kernel matures, there is a greater chance of a snapshot of the kernel remaining representative
long into the future.This book functions as the canonical documentation for the kernel,
documenting it with both an understanding of its history and an eye to the future.

Using This Book
Developing code in the kernel does not require genius, magic, or a bushy Unix-hacker
beard.The kernel, although having some interesting rules of its own, is not much differ-
ent from any other large software endeavor.You need to master many details—as with
any big project—but the differences are quantitative, not qualitative.

1 This decision was made in the summer of 2004 at the annual Linux Kernel Developers Summit in

Ottawa, Canada. Your author was an invited attendee.

It is imperative that you utilize the source.The open availability of the source code
for the Linux system is a rare gift that you must not take for granted. It is not sufficient
only to read the source, however.You need to dig in and change some code. Find a bug
and fix it. Improve the drivers for your hardware.Add some new functionality, even if it
is trivial. Find an itch and scratch it! Only when you write code will it all come together.

Kernel Version
This book is based on the 2.6 Linux kernel series. It does not cover older kernels, except
for historical relevance.We discuss, for example, how certain subsystems are implemented
in the 2.4 Linux kernel series, as their simpler implementations are helpful teaching aids.
Specifically, this book is up to date as of Linux kernel version 2.6.34.Although the ker-
nel is a moving target and no effort can hope to capture such a dynamic beast in a time-
less manner, my intention is that this book is relevant for developers and users of both
older and newer kernels.

Although this book discusses the 2.6.34 kernel, I have made an effort to ensure the
material is factually correct with respect to the 2.6.32 kernel as well.That latter version
is sanctioned as the “enterprise” kernel by the various Linux distributions, ensuring we
will continue to see it in production systems and under active development for many
years. (2.6.9, 2.6.18, and 2.6.27 were similar “long-term” releases.)

Audience
This book targets Linux developers and users who are interested in understanding the
Linux kernel. It is not a line-by-line commentary of the kernel source. Nor is it a guide
to developing drivers or a reference on the kernel API. Instead, the goal of this book is
to provide enough information on the design and implementation of the Linux kernel
that a sufficiently accomplished programmer can begin developing code in the kernel.
Kernel development can be fun and rewarding, and I want to introduce the reader to
that world as readily as possible.This book, however, in discussing both theory and appli-
cation, should appeal to readers of both academic and practical persuasions. I have always
been of the mind that one needs to understand the theory to understand the application,
but I try to balance the two in this work. I hope that whatever your motivations for
understanding the Linux kernel, this book explains the design and implementation suffi-
ciently for your needs.

Thus, this book covers both the usage of core kernel systems and their design and
implementation. I think this is important and deserves a moment’s discussion.A good
example is Chapter 8,“Bottom Halves and Deferring Work,” which covers a component
of device drivers called bottom halves. In that chapter, I discuss both the design and
implementation of the kernel’s bottom-half mechanisms (which a core kernel developer
or academic might find interesting) and how to actually use the exported interfaces to
implement your own bottom half (which a device driver developer or casual hacker can
find pertinent). I believe all groups can find both discussions relevant.The core kernel

developer, who certainly needs to understand the inner workings of the kernel, should
have a good understanding of how the interfaces are actually used.At the same time, a
device driver writer can benefit from a good understanding of the implementation
behind the interface.

This is akin to learning some library’s API versus studying the actual implementation
of the library.At first glance, an application programmer needs to understand only the
API—it is often taught to treat interfaces as a black box. Likewise, a library developer is
concerned only with the library’s design and implementation. I believe, however, both
parties should invest time in learning the other half.An application programmer who
better understands the underlying operating system can make much greater use of it.
Similarly, the library developer should not grow out of touch with the reality and practi-
cality of the applications that use the library. Consequently, I discuss both the design and
usage of kernel subsystems, not only in hopes that this book will be useful to either
party, but also in hopes that the whole book is useful to both parties.

I assume that the reader knows the C programming language and is familiar with
Linux systems. Some experience with operating system design and related computer sci-
ence topics is beneficial, but I try to explain concepts as much as possible—if not, the
Bibliography includes some excellent books on operating system design.

This book is appropriate for an undergraduate course introducing operating system
design as the applied text if accompanied by an introductory book on theory.This book
should fare well either in an advanced undergraduate course or in a graduate-level
course without ancillary material.

Third Edition Acknowledgments
Like most authors, I did not write this book in a cave, which is a good thing, because
there are bears in caves. Consequently many hearts and minds contributed to the com-
pletion of this manuscript.Although no list could be complete, it is my sincere pleasure
to acknowledge the assistance of many friends and colleagues who provided encourage-
ment, knowledge, and constructive criticism.

First, I would like to thank my team at Addison–Wesley and Pearson who worked
long and hard to make this a better book, particularly Mark Taber for spearheading this
third edition from conception to final product; Michael Thurston, development editor;
and Tonya Simpson, project editor.

A special thanks to my technical editor on this edition, Robert P. J. Day. His insight,
experience, and corrections improved this book immeasurably. Despite his sterling effort,
however, any remaining mistakes remain my own. I have the same gratitude to Adam
Belay, Zack Brown, Martin Pool, and Chris Rivera, whose excellent technical editing
efforts on the first and second editions still shine through.

Many fellow kernel developers answered questions, provided support, or simply wrote
code interesting enough on which to write a book.They include Andrea Arcangeli,Alan
Cox, Greg Kroah-Hartman, Dave Miller, Patrick Mochel,Andrew Morton, Nick Piggin,
and Linus Torvalds.

A big thank you to my colleagues at Google, the most creative and intelligent group
with which I have ever had the pleasure to work.Too many names would fill these pages
if I listed them all, but I will single out Alan Blount, Jay Crim, Chris Danis, Chris
DiBona, Eric Flatt, Mike Lockwood, San Mehat, Brian Rogan, Brian Swetland, Jon
Trowbridge, and Steve Vinter for their friendship, knowledge, and support.

Respect and love to Paul Amici, Mikey Babbitt, Keith Barbag, Jacob Berkman, Nat
Friedman, Dustin Hall, Joyce Hawkins, Miguel de Icaza, Jimmy Krehl, Doris Love, Linda
Love, Brette Luck, Randy O’Dowd, Sal Ribaudo and mother, Chris Rivera, Carolyn
Rodon, Joey Shaw, Sarah Stewart, Jeremy VanDoren and family, Luis Villa, Steve Weisberg
and family, and Helen Whisnant.

Finally, thank you to my parents for so much, particularly my well-proportioned ears.
Happy Hacking!

Robert Love
Boston

About the Author
Robert Love is an open source programmer, speaker, and author who has been using
and contributing to Linux for more than 15 years. Robert is currently senior software
engineer at Google, where he was a member of the team that developed the Android
mobile platform’s kernel. Prior to Google, he was Chief Architect, Linux Desktop, at
Novell. Before Novell, he was a kernel engineer at MontaVista Software and Ximian.

Robert’s kernel projects include the preemptive kernel, the process scheduler, the
kernel events layer, inotify,VM enhancements, and several device drivers.

Robert has given numerous talks on and has written multiple articles about the Linux
kernel. He is a contributing editor for Linux Journal. His other books include Linux
System Programming and Linux in a Nutshell.

Robert received a B.A. degree in mathematics and a B.S. degree in computer science
from the University of Florida. He lives in Boston.

2
Getting Started with the Kernel

In this chapter, we introduce some of the basics of the Linux kernel: where to get its
source, how to compile it, and how to install the new kernel.We then go over the differ-
ences between the kernel and user-space programs and common programming constructs
used in the kernel.Although the kernel certainly is unique in many ways, at the end of
the day it is little different from any other large software project.

Obtaining the Kernel Source
The current Linux source code is always available in both a complete tarball (an archive
created with the tar command) and an incremental patch from the official home of the
Linux kernel, http://www.kernel.org.

Unless you have a specific reason to work with an older version of the Linux source,
you always want the latest code.The repository at kernel.org is the place to get it, along
with additional patches from a number of leading kernel developers.

Using Git
Over the last couple of years, the kernel hackers, led by Linus himself, have begun using a
new version control system to manage the Linux kernel source. Linus created this system,
called Git, with speed in mind. Unlike traditional systems such as CVS, Git is distributed,
and its usage and workflow is consequently unfamiliar to many developers. I strongly rec-
ommend using Git to download and manage the Linux kernel source.

You can use Git to obtain a copy of the latest “pushed” version of Linus’s tree:

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

When checked out, you can update your tree to Linus’s latest:

$ git pull

With these two commands, you can obtain and subsequently keep up to date with the
official kernel tree.To commit and manage your own changes, see Chapter 20,“Patches,

http://www.kernel.org

12 Chapter 2 Getting Started with the Kernel

Hacking, and the Community.”A complete discussion of Git is outside the scope of this
book; many online resources provide excellent guides.

Installing the Kernel Source
The kernel tarball is distributed in both GNU zip (gzip) and bzip2 format. Bzip2 is the
default and preferred format because it generally compresses quite a bit better than gzip.
The Linux kernel tarball in bzip2 format is named linux-x.y.z.tar.bz2, where x.y.z
is the version of that particular release of the kernel source.After downloading the source,
uncompressing and untarring it is simple. If your tarball is compressed with bzip2, run

$ tar xvjf linux-x.y.z.tar.bz2

If it is compressed with GNU zip, run

$ tar xvzf linux-x.y.z.tar.gz

This uncompresses and untars the source to the directory linux-x.y.z. If you use git
to obtain and manage the kernel source, you do not need to download the tarball. Just
run the git clone command as described and git downloads and unpacks the latest source.

Where to Install and Hack on the Source
The kernel source is typically installed in /usr/src/linux. You should not use this source
tree for development because the kernel version against which your C library is compiled is
often linked to this tree. Moreover, you should not require root in order to make changes to
the kernel—instead, work out of your home directory and use root only to install new ker-
nels. Even when installing a new kernel, /usr/src/linux should remain untouched.

Using Patches
Throughout the Linux kernel community, patches are the lingua franca of communication.
You will distribute your code changes in patches and receive code from others as patches.
Incremental patches provide an easy way to move from one kernel tree to the next. Instead
of downloading each large tarball of the kernel source, you can simply apply an incremen-
tal patch to go from one version to the next.This saves everyone bandwidth and you time.
To apply an incremental patch, from inside your kernel source tree, simply run

$ patch –p1 < ../patch-x.y.z

Generally, a patch to a given version of the kernel is applied against the previous version.
Generating and applying patches is discussed in much more depth in later chapters.

The Kernel Source Tree
The kernel source tree is divided into a number of directories, most of which contain
many more subdirectories.The directories in the root of the source tree, along with their
descriptions, are listed in Table 2.1.

13Building the Kernel

A number of files in the root of the source tree deserve mention.The file COPYING is
the kernel license (the GNU GPL v2). CREDITS is a listing of developers with more than a
trivial amount of code in the kernel. MAINTAINERS lists the names of the individuals who
maintain subsystems and drivers in the kernel. Makefile is the base kernel Makefile.

Building the Kernel
Building the kernel is easy. It is surprisingly easier than compiling and installing other sys-
tem-level components, such as glibc.The 2.6 kernel series introduced a new configuration
and build system, which made the job even easier and is a welcome improvement over
earlier releases.

Table 2.1 Directories in the Root of the Kernel Source Tree

Directory Description

arch Architecture-specific source

block Block I/O layer

crypto Crypto API

Documentation Kernel source documentation

drivers Device drivers

firmware Device firmware needed to use certain drivers

fs The VFS and the individual filesystems

include Kernel headers

init Kernel boot and initialization

ipc Interprocess communication code

kernel Core subsystems, such as the scheduler

lib Helper routines

mm Memory management subsystem and the VM

net Networking subsystem

samples Sample, demonstrative code

scripts Scripts used to build the kernel

security Linux Security Module

sound Sound subsystem

usr Early user-space code (called initramfs)

tools Tools helpful for developing Linux

virt Virtualization infrastructure

14 Chapter 2 Getting Started with the Kernel

Configuring the Kernel
Because the Linux source code is available, it follows that you can configure and custom
tailor it before compiling. Indeed, it is possible to compile support into your kernel for
only the specific features and drivers you want. Configuring the kernel is a required step
before building it. Because the kernel offers myriad features and supports a varied basket
of hardware, there is a lot to configure. Kernel configuration is controlled by configuration
options, which are prefixed by CONFIG in the form CONFIG_FEATURE. For example, sym-
metrical multiprocessing (SMP) is controlled by the configuration option CONFIG_SMP. If
this option is set, SMP is enabled; if unset, SMP is disabled.The configure options are used
both to decide which files to build and to manipulate code via preprocessor directives.

Configuration options that control the build process are either Booleans or tristates.A
Boolean option is either yes or no. Kernel features, such as CONFIG_PREEMPT, are usually
Booleans.A tristate option is one of yes, no, or module.The module setting represents a con-
figuration option that is set but is to be compiled as a module (that is, a separate dynami-
cally loadable object). In the case of tristates, a yes option explicitly means to compile the
code into the main kernel image and not as a module. Drivers are usually represented by
tristates.

Configuration options can also be strings or integers.These options do not control the
build process but instead specify values that kernel source can access as a preprocessor
macro. For example, a configuration option can specify the size of a statically allocated
array.

Vendor kernels, such as those provided by Canonical for Ubuntu or Red Hat for
Fedora, are precompiled as part of the distribution. Such kernels typically enable a good
cross section of the needed kernel features and compile nearly all the drivers as modules.
This provides for a great base kernel with support for a wide range of hardware as separate
modules. For better or worse, as a kernel hacker, you need to compile your own kernels
and learn what modules to include on your own.

Thankfully, the kernel provides multiple tools to facilitate configuration.The simplest
tool is a text-based command-line utility:

$ make config

This utility goes through each option, one by one, and asks the user to interactively
select yes, no, or (for tristates) module. Because this takes a long time, unless you are paid by
the hour, you should use an ncurses-based graphical utility:

$ make menuconfig

Or a gtk+-based graphical utility:

$ make gconfig

These three utilities divide the various configuration options into categories, such as
“Processor Type and Features.” You can move through the categories, view the kernel
options, and of course change their values.

15Building the Kernel

This command creates a configuration based on the defaults for your architecture:

$ make defconfig

Although these defaults are somewhat arbitrary (on i386, they are rumored to be
Linus’s configuration!), they provide a good start if you have never configured the kernel.
To get off and running quickly, run this command and then go back and ensure that con-
figuration options for your hardware are enabled.

The configuration options are stored in the root of the kernel source tree in a file
named .config.You may find it easier (as most of the kernel developers do) to just edit
this file directly. It is quite easy to search for and change the value of the configuration
options.After making changes to your configuration file, or when using an existing con-
figuration file on a new kernel tree, you can validate and update the configuration:

$ make oldconfig

You should always run this before building a kernel.
The configuration option CONFIG_IKCONFIG_PROC places the complete kernel configu-

ration file, compressed, at /proc/config.gz.This makes it easy to clone your current
configuration when building a new kernel. If your current kernel has this option enabled,
you can copy the configuration out of /proc and use it to build a new kernel:

$ zcat /proc/config.gz > .config

$ make oldconfig

After the kernel configuration is set—however you do it—you can build it with a sin-
gle command:

$ make

Unlike kernels before 2.6, you no longer need to run make dep before building the
kernel—the dependency tree is maintained automatically.You also do not need to specify
a specific build type, such as bzImage, or build modules separately, as you did in old ver-
sions.The default Makefile rule will handle everything.

Minimizing Build Noise
A trick to minimize build noise, but still see warnings and errors, is to redirect the output
from make:

$ make > ../detritus

If you need to see the build output, you can read the file. Because the warnings and
errors are output to standard error, however, you normally do not need to. In fact, I just do

$ make > /dev/null

This redirects all the worthless output to that big, ominous sink of no return,
/dev/null.

16 Chapter 2 Getting Started with the Kernel

Spawning Multiple Build Jobs
The make program provides a feature to split the build process into a number of parallel
jobs. Each of these jobs then runs separately and concurrently, significantly speeding up the
build process on multiprocessing systems. It also improves processor utilization because the
time to build a large source tree includes significant time in I/O wait (time in which the
process is idle waiting for an I/O request to complete).

By default, make spawns only a single job because Makefiles all too often have incorrect
dependency information.With incorrect dependencies, multiple jobs can step on each
other’s toes, resulting in errors in the build process.The kernel’s Makefiles have correct
dependency information, so spawning multiple jobs does not result in failures.To build the
kernel with multiple make jobs, use

$ make -jn

Here, n is the number of jobs to spawn. Usual practice is to spawn one or two jobs per
processor. For example, on a 16-core machine, you might do

$ make -j32 > /dev/null

Using utilities such as the excellent distcc or ccache can also dramatically improve
kernel build time.

Installing the New Kernel
After the kernel is built, you need to install it. How it is installed is architecture- and boot
loader-dependent—consult the directions for your boot loader on where to copy the ker-
nel image and how to set it up to boot.Always keep a known-safe kernel or two around in
case your new kernel has problems!

As an example, on an x86 system using grub, you would copy arch/i386/boot/bzImage
to /boot, name it something like vmlinuz-version, and edit /boot/grub/grub.conf,
adding a new entry for the new kernel. Systems using LILO to boot would instead edit
/etc/lilo.conf and then rerun lilo.

Installing modules, thankfully, is automated and architecture-independent.As root,
simply run

% make modules_install

This installs all the compiled modules to their correct home under /lib/modules.
The build process also creates the file System.map in the root of the kernel source tree.

It contains a symbol lookup table, mapping kernel symbols to their start addresses.This is
used during debugging to translate memory addresses to function and variable names.

A Beast of a Different Nature
The Linux kernel has several unique attributes as compared to a normal user-space appli-
cation.Although these differences do not necessarily make developing kernel code harder
than developing user-space code, they certainly make doing so different.

17A Beast of a Different Nature

These characteristics make the kernel a beast of a different nature. Some of the usual
rules are bent; other rules are entirely new.Although some of the differences are obvious
(we all know the kernel can do anything it wants), others are not so obvious.The most
important of these differences are

n The kernel has access to neither the C library nor the standard C headers.
n The kernel is coded in GNU C.
n The kernel lacks the memory protection afforded to user-space.
n The kernel cannot easily execute floating-point operations.
n The kernel has a small per-process fixed-size stack.
n Because the kernel has asynchronous interrupts, is preemptive, and supports SMP,

synchronization and concurrency are major concerns within the kernel.
n Portability is important.

Let’s briefly look at each of these issues because all kernel developers must keep them
in mind.

No libc or Standard Headers
Unlike a user-space application, the kernel is not linked against the standard C library—or
any other library, for that matter.There are multiple reasons for this, including a chicken-
and-the-egg situation, but the primary reason is speed and size.The full C library—or even
a decent subset of it—is too large and too inefficient for the kernel.

Do not fret: Many of the usual libc functions are implemented inside the kernel. For
example, the common string manipulation functions are in lib/string.c. Just include
the header file <linux/string.h> and have at them.

Header Files
When I talk about header files in this book, I am referring to the kernel header files that are
part of the kernel source tree. Kernel source files cannot include outside headers, just as
they cannot use outside libraries.

The base files are located in the include/ directory in the root of the kernel source tree. For
example, the header file <linux/inotify.h> is located at include/linux/inotify.h in
the kernel source tree.

A set of architecture-specific header files are located in arch/<architecture>/include/asm
in the kernel source tree. For example, if compiling for the x86 architecture, your architec-
ture-specific headers are in arch/x86/include/asm. Source code includes these headers
via just the asm/ prefix, for example <asm/ioctl.h>.

Of the missing functions, the most familiar is printf().The kernel does not have
access to printf(), but it does provide printk(), which works pretty much the same as
its more familiar cousin.The printk()function copies the formatted string into the ker-
nel log buffer, which is normally read by the syslog program. Usage is similar to
printf():

18 Chapter 2 Getting Started with the Kernel

printk("Hello world! A string '%s' and an integer '%d'\n", str, i);

One notable difference between printf() and printk() is that printk() enables you
to specify a priority flag.This flag is used by syslogd to decide where to display kernel
messages. Here is an example of these priorities:

printk(KERN_ERR "this is an error!\n");

Note there is no comma between KERN_ERR and the printed message.This is inten-
tional; the priority flag is a preprocessor-define representing a string literal, which is con-
catenated onto the printed message during compilation.We use printk() throughout
this book.

GNU C
Like any self-respecting Unix kernel, the Linux kernel is programmed in C. Perhaps sur-
prisingly, the kernel is not programmed in strict ANSI C. Instead, where applicable, the
kernel developers make use of various language extensions available in gcc (the GNU
Compiler Collection, which contains the C compiler used to compile the kernel and
most everything else written in C on a Linux system).

The kernel developers use both ISO C991 and GNU C extensions to the C language.
These changes wed the Linux kernel to gcc, although recently one other compiler, the
Intel C compiler, has sufficiently supported enough gcc features that it, too, can compile
the Linux kernel.The earliest supported gcc version is 3.2; gcc version 4.4 or later is rec-
ommended.The ISO C99 extensions that the kernel uses are nothing special and, because
C99 is an official revision of the C language, are slowly cropping up in a lot of other
code.The more unfamiliar deviations from standard ANSI C are those provided by GNU
C. Let’s look at some of the more interesting extensions that you will see in the kernel;
these changes differentiate kernel code from other projects with which you might be
familiar.

Inline Functions
Both C99 and GNU C support inline functions.An inline function is, as its name suggests,
inserted inline into each function call site.This eliminates the overhead of function invo-
cation and return (register saving and restore) and allows for potentially greater optimiza-
tion as the compiler can optimize both the caller and the called function as one.As a
downside (nothing in life is free), code size increases because the contents of the function
are copied into all the callers, which increases memory consumption and instruction
cache footprint. Kernel developers use inline functions for small time-critical functions.

1 ISO C99 is the latest major revision to the ISO C standard. C99 adds numerous enhancements to the

previous major revision, ISO C90, including designated initializers, variable length arrays, C++-style

comments, and the long long and complex types. The Linux kernel, however, employs only a sub-

set of C99 features.

19A Beast of a Different Nature

Making large functions inline, especially those used more than once or that are not
exceedingly time critical, is frowned upon.

An inline function is declared when the keywords static and inline are used as part
of the function definition. For example

static inline void wolf(unsigned long tail_size)

The function declaration must precede any usage, or else the compiler cannot make
the function inline. Common practice is to place inline functions in header files. Because
they are marked static, an exported function is not created. If an inline function is used
by only one file, it can instead be placed toward the top of just that file.

In the kernel, using inline functions is preferred over complicated macros for reasons
of type safety and readability.

Inline Assembly
The gcc C compiler enables the embedding of assembly instructions in otherwise normal
C functions.This feature, of course, is used in only those parts of the kernel that are
unique to a given system architecture.

The asm() compiler directive is used to inline assembly code. For example, this inline
assembly directive executes the x86 processor’s rdtsc instruction, which returns the value
of the timestamp (tsc) register:

unsigned int low, high;

asm volatile("rdtsc" : "=a" (low), "=d" (high));

/* low and high now contain the lower and upper 32-bits of the 64-bit tsc */

The Linux kernel is written in a mixture of C and assembly, with assembly relegated
to low-level architecture and fast path code.The vast majority of kernel code is pro-
grammed in straight C.

Branch Annotation
The gcc C compiler has a built-in directive that optimizes conditional branches as either
very likely taken or very unlikely taken.The compiler uses the directive to appropriately
optimize the branch.The kernel wraps the directive in easy-to-use macros, likely() and
unlikely().

For example, consider an if statement such as the following:

if (error) {

/* ... */

}

To mark this branch as very unlikely taken (that is, likely not taken):

/* we predict 'error' is nearly always zero ... */

if (unlikely(error)) {

/* ... */

}

20 Chapter 2 Getting Started with the Kernel

Conversely, to mark a branch as very likely taken:

/* we predict 'success' is nearly always nonzero ... */

if (likely(success)) {

/* ... */

}

You should only use these directives when the branch direction is overwhelmingly
known a priori or when you want to optimize a specific case at the cost of the other case.
This is an important point:These directives result in a performance boost when the
branch is correctly marked, but a performance loss when the branch is mismarked.A
common usage, as shown in these examples, for unlikely() and likely() is error con-
ditions.As you might expect, unlikely() finds much more use in the kernel because if
statements tend to indicate a special case.

No Memory Protection
When a user-space application attempts an illegal memory access, the kernel can trap the
error, send the SIGSEGV signal, and kill the process. If the kernel attempts an illegal mem-
ory access, however, the results are less controlled. (After all, who is going to look after the
kernel?) Memory violations in the kernel result in an oops, which is a major kernel error.
It should go without saying that you must not illegally access memory, such as dereferenc-
ing a NULL pointer—but within the kernel, the stakes are much higher!

Additionally, kernel memory is not pageable.Therefore, every byte of memory you
consume is one less byte of available physical memory. Keep that in mind the next time
you need to add one more feature to the kernel!

No (Easy) Use of Floating Point
When a user-space process uses floating-point instructions, the kernel manages the transi-
tion from integer to floating point mode.What the kernel has to do when using floating-
point instructions varies by architecture, but the kernel normally catches a trap and then
initiates the transition from integer to floating point mode.

Unlike user-space, the kernel does not have the luxury of seamless support for floating
point because it cannot easily trap itself. Using a floating point inside the kernel requires
manually saving and restoring the floating point registers, among other possible chores.
The short answer is: Don’t do it! Except in the rare cases, no floating-point operations are
in the kernel.

Small, Fixed-Size Stack
User-space can get away with statically allocating many variables on the stack, including
huge structures and thousand-element arrays.This behavior is legal because user-space has
a large stack that can dynamically grow. (Developers on older, less advanced operating
systems—say, DOS—might recall a time when even user-space had a fixed-sized stack.)

21Conclusion

The kernel stack is neither large nor dynamic; it is small and fixed in size.The exact
size of the kernel’s stack varies by architecture. On x86, the stack size is configurable at
compile-time and can be either 4KB or 8KB. Historically, the kernel stack is two pages,
which generally implies that it is 8KB on 32-bit architectures and 16KB on 64-bit archi-
tectures—this size is fixed and absolute. Each process receives its own stack.

The kernel stack is discussed in much greater detail in later chapters.

Synchronization and Concurrency
The kernel is susceptible to race conditions. Unlike a single-threaded user-space applica-
tion, a number of properties of the kernel allow for concurrent access of shared resources
and thus require synchronization to prevent races. Specifically

n Linux is a preemptive multitasking operating system. Processes are scheduled and
rescheduled at the whim of the kernel’s process scheduler.The kernel must syn-
chronize between these tasks.

n Linux supports symmetrical multiprocessing (SMP).Therefore, without proper pro-
tection, kernel code executing simultaneously on two or more processors can con-
currently access the same resource.

n Interrupts occur asynchronously with respect to the currently executing code.
Therefore, without proper protection, an interrupt can occur in the midst of access-
ing a resource, and the interrupt handler can then access the same resource.

n The Linux kernel is preemptive.Therefore, without protection, kernel code can be
preempted in favor of different code that then accesses the same resource.

Typical solutions to race conditions include spinlocks and semaphores. Later chapters
provide a thorough discussion of synchronization and concurrency.

Importance of Portability
Although user-space applications do not have to aim for portability, Linux is a portable
operating system and should remain one.This means that architecture-independent C
code must correctly compile and run on a wide range of systems, and that architecture-
dependent code must be properly segregated in system-specific directories in the kernel
source tree.

A handful of rules—such as remain endian neutral, be 64-bit clean, do not assume the
word or page size, and so on—go a long way. Portability is discussed in depth in a later
chapter.

Conclusion
To be sure, the kernel has unique qualities. It enforces its own rules and the stakes, manag-
ing the entire system as the kernel does, are certainly higher.That said, the Linux kernel’s
complexity and barrier-to-entry is not qualitatively different from any other large soft-

22 Chapter 2 Getting Started with the Kernel

ware project.The most important step on the road to Linux development is the realiza-
tion that the kernel is not something to fear. Unfamiliar, sure. Insurmountable? Not at all.

This and the previous chapter lay the foundation for the topics we cover through this
book’s remaining chapters. In each subsequent chapter, we cover a specific kernel concept
or subsystem.Along the way, it is imperative that you read and modify the kernel source.
Only through actually reading and experimenting with the code can you ever understand
it.The source is freely available—use it!

This page intentionally left blank

Index

64-bit atomic operations, 180-181

A
absolute time, 207

abstraction layer, VFS (Virtual Filesystem),
262-263

account_process_tick() function, 219

action modifiers, gfp_mask flags, 239-240

action string, Kernel Event Layer, 361

activate task() function, 61

address intervals

creating, 318-320
removing, 320

address_space object, page caches,
326-328

address_space operations, page caches,
328-330

Advanced Programming in the UNIX
Environment, 409

advisory locks, 166

AIX (IBM), 2

algorithms, 109-111

asymptotic behavior, 109
big-o notation, 109
big-theta notation, 109-110
clairvoyant, 325
complexity, 109-110

time complexity, 110-111
listing of, 110-111
process scheduler, 46-50
scalability, 109

scheduling algorithms, priority-based
scheduling, 44

alignment of data, 386-387

issues, 387
nonstandard types, 387
structure padding, 387-389

alloc pages() function, 236, 259

alloc_page() function, 236

alloc_percpu() function, 258

allocating

memory, 237-244
memory descriptor, 308
process descriptors, 25-26
UIDs (unique identification numbers),

101-102
which method to use, 259

allocating memory, 231, 237, 260

choosing method, 259
high memory mappings, 253

permanent mappings, 254
temporary mappings, 254-255

kfree() function, 243-244
kmalloc() function, 238-244

gfp_mask flags, 238-243
pages, 231-232

obtaining, 235-237
per-CPU allocations, 255-256
slab layers, 245-246

design, 246-249
interface, 249-252

statically allocating on
stack, 252-253

vmalloc() function, 244-245
zones, 233-235

allow interrupts flag, 127

anonymous mapping, 318

Anticipatory I/O scheduler, 302-303

APIC timer, 217

APIs

system calls, 70
UNIX Network Programming, 409

applications

hardware, relationship, 6
interrupt handlers, writing,

118-119
kernel, relationship, 6

arch directory, kernel source tree, 13

arguments, system calls, 71

arrays, per-CPU data, 255

Art of Computer Programming, The,
Volume 1, 409

assembly, inline assembly, 19

asserting bugs, 370-371

associative arrays. See maps

asymptotic behavior, algorithms, 109

asynchronous interrupts, 114

atomic context, 115

atomic high memory mappings,
254-255

atomic operations, synchronization
methods, 175

64-bit operations, 180-181
bitwise operations, 181-183
converting, 177
counter implementation, 177
defining, 177
increments, 175-176
integer operations, 176-179
interfaces, 176
nonatomic bit operations, 183
overhead advantages, 179
testing, 177

atomic_t data type, 384

atomicity, ordering, compared, 179

412 algorithms

B
Bach, Maurice, 407

backing stores, 323

balanced binary search trees, self-balanced
binary search trees

rbtrees, 106-108
red-black trees, 105-106

barrier operations, ordering, 179

barrier() function, 206

barriers

functions, 204-205
memory reads/writes, 203-206

bdflush kernel thread, 333-334

behaviors, system calls, 71-72

Bell Laboratories, Unix developmental
history, 1

Benvenuti, Christian, 408

Berkeley Software Distributions (BSD), 2

BH interface, tasklets, 148

bh_state flags (buffers), 292

big-endian byte ordering, 389-391

big-o notation, 109

big-theta notation, 109-110

binary searching, git source management
tool, 376-377

binary semaphores, 191-192

binary trees, 103-104

BSTs (binary search trees), 104
self-balanced binary search trees, 105

rbtrees, 106-108
red-black trees, 105-106

binding system calls, 79-81

bio structure, block I/O layer,
294-295

bitwise atomic operations, 181-183

BKL (Big Kernel Lock), 198-199

block device nodes, 337

block devices, 289-290, 337

buffer heads, 291
buffers, 291-294
sectors, 290-291

block directory, kernel source code, 13

block I/O layer, 290

bi_cnt field, 296
bi_idx field, 296
bi_io_vecs field, 295
bi_private field, 296
bi_vcnt field, 295
bio structure, 294-295
I/O vectors, 295-296
segments, 294
versus buffer heads, 296-297

blocks, 289-290, 337

BLOCK_SOFTIRQ tasklet, 140

BogoMIPS value, 227

Booleans, 14

Bostic, K., 408

bottom halves

disabling, 157-159
interrupt handlers, 115,

133-135
benefits, 134-135
BH interface, 135-136
task queues, 135

locking between, 157
mechanism selection criteria,

156-157
softirqs, 136-141
spin locks, 187-188
tasklets, 136, 142-148
version terminology, 137
work queues, 149-156

braces, coding style, 398-399

branch annotation, GNU C, 19-20

413branch annotation, GNU C

BSTs (binary search trees), 104

buffer caches, 330-331

buffers, blocks, 291-294

bug reports, submitting,
403-404

BUG() routine, 370

BUG_ON() routine, 370

bugs

asserting, 370-371
range of, 364
reproducing, 363-364

building

Booleans, 14-15
kernel, 13-16
modules, 340-342
noise minimization, 15
spawning multiple jobs, 16

busy looping, timers, 225-226

byte ordering, 389-391

C
C library, 5

system calls, 70-71
C Programming Language, The,

399, 409

C++-style comments, 400

cache eviction, 324-325

cache hits, 323

cache misses, 323

caches, 246

cache miss, 323
caching

backing stores, 323
buffer caches, 330-331
cache eviction, 324-325
cache hits, 323
page cache, 324

page caches, 323-326
address_space object, 326-328
address_space operations, 328-330
global hash, 330
radix tree, 330

page caching, filesystem files, 326
write caching, 324
write-through caches, 324

cdevs. See character devices

CFQ (Complete Fair Queuing) I/O
scheduler, 303

CFS Schedulers, 172

character device nodes, 337

character devices, 289, 337

characters, word size, 381

child tasks, reparenting, 38

Choffnes, David R., 407

circular linked lists, 86-87

clairvoyant algorithm, 325

classes, process scheduler, 46-47

cli() function, 128

clocks, real-time clock (RTC), 217

clone() function, flags, 34-35

clone() system call, 32-34

clusters, 290

coarse locking, 172

code, interrupt-safe code, 168

codes, locks, compared, 186

coding style

braces, 398-399
comments, 400-401
consistency, 396
existing routines, 402
fixing ex post facto, 403
functions, 400
ifdef preprocessor directives, 402
importance of, 396

414 BSTs

indention, 396
line length, 399-400
naming conventions, 400
productivity, 396
spacing, 397-398
structure initializers, 402-403
switch statements, 396-397
typedefs, 401

commands

modprobe, 343
SysRq, 371

Comments, coding style, 400-401

community help resources, debugging, 377

complete() function, 198

Completely Fair Scheduler, 43

completion variables, 197-198

concurrency

causes, 167
interrupts, 167
kernel, 21
kernel preemption, 167
pseudo-concurrency, 167
sleeping, 167
softirqs, 167
symmetrical multiprocessing, 167
tasklets, 167
true concurrency, 167

concurrent programming, threads, 33

cond_resched() function, 226

condition variables, debugging, 374

conditionals, UIDs, 373-374

CONFIG options, 168

configuration, kernel, 14-15

configuration options, modules, managing,
344-346

congestion, avoiding with multiple threads,
334-335

contended threads, 184

contention, locks, 171

context

interrupts, 115
processes, 29
system calls, 78-81

context switch() function, 62

context_switch() method, 380

context switching, process scheduler, 62

controlling interrupts, 127-130

converting atomic operations, 177

Cooper, Chris, 408

cooperative multitasking, process scheduler,
41-42

copy-on-write (COW) pages, 31

copy_process() function, 32

Corbet, Jonathan, 408

counters, implementing, atomic operations, 177

counting semaphores, 191-192

COW (copy-on-write) pages, 31

CREDITS file, 403

critical regions, multiple threads of execu-
tion, 162

crypto directory, kernel source tree, 13

ctime() library call, 221

current date and time, 207, 220-221

CVS, 11

cylinders, 290

D
D-BUS, Kernel Event Layer, 361

data section (processes), 23

data structures

binary trees, 103-104
BSTs (binary search trees), 104
self-balanced binary search trees,

105-108

415data structures

choosing, 108
filesystems, 285-288
freeing, slab layers, 245-252
linked lists, 85

adding a node to, 90-91
circular linked lists, 86-87
defining, 89-90
deleting a node from, 91-92
doubly linked lists, 85-86
iterating through backward, 94
iterating while removing, 95
kernel implementation, 88-90
manipulating, 90-92
moving nodes, 92
navigating through, 87-88
singly linked lists, 85-86
splicing nodes, 92
traversing, 93-96

maps, 100-101
UIDs (unique identification

numbers), 100-103
queues, 96-97

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
kfifo, 97-100
obtaining size of, 98
resetting, 99

VFS (Virtual Filesystem), 265-266
data types

atomic_t, 384
char, 386
dev_t, 384
explicitly sized data types, 385-386
gid_t, 384
opaque data types, 384

pid_t, 384
portability, 384
special data types, 384-385
uid_t, 384
usage rules, 384

deactivating timers, 223

Deadline I/O scheduler, 300-302

deadlocks

ABBA, 170
threads, 169-171

debuggers in-kernel debugger,
372-373

debugging, 363-364, 378

atomicity, 370
binary searching, 376-377
BUG() routine, 370
bugs

asserting, 370-371
reproducing, 363-364

community help resources, 377
condition variables, 374
difficulty of, 363
dump information, 370-371
dump stack() routine, 371
kernel options, 370
Magic SysRq key commands,

371-372
occurrence limiting, 375-376
oops, 367-369

kallsyms, 369-370
kysmoops, 369

panic() routine, 371
printing, 364-367
rate limiting, 375-376
spin locks, 186
statistics, 374
UID as a conditional, 373-374

416 data structures

declaring

kobjects, 352-353
linked lists, 88
tasklets, 144-145

decoded version, oops, 369

deferences, 92

defining

atomic operations, 177
linked lists, 89-90

Deitel, Harvey, 407-408

Deitel, Paul, 407

del_timer_sync() function, 223

delays, timers, 226-227

denoting system calls, 73-74

dentries, sysfs, 355

dentry object, VFS (Virtual Filesystem), 265,
275-276

caches, 276-277
operations, 278-279
states, 276

dequeuing data, 98

design, slab layers, 246-252

Design and Implementation of the 4.4BSD
Operating System, The, 408

Design of OS/2, The, 408

Design of the Unix Operating System,
The, 407

dev_t data type, 384

development kernel, 8-10

maintenance, 403
device model

benefits, 348-349
kobjects, 349-350

declaring, 352-353
embedding, 350
managing, 352-353
sysfs filesystem, 355-362

ksets, 351
ktypes, 350-351
name pointer, 349
parent pointer, 350
reference counts, 353-355

incrementing and
decrementing, 354

kref structure, 354-355
sd pointer, 350
structures, 351-352

devices, 337

block devices, 289-290
buffer heads, 291
buffers, 291-294
sectors, 290-291

character devices, 289, 337
drivers, 114
glock devices, 337
miscellaneous devices, 338
network devices, 338

Dijkstra, Edsger Wybe, 192

directories, 264

directory object, VFS (Virtual
Filesystem), 265

dirty lists, 324

dirty page writeback, 331

disable irq nosync() function, 129

disable irq() function, 129-130

disable_irq() function, 130

disable_irq_nosync() function, 130

disabling

bottom halves, 157-159
interrupts, 127-129
kernel preemption, 201-202

do mmap() function, 318-319

do softirq() function, 138-141

do timer() function, 218

417do timer() function,

documentation

coding style, 396
self-generating documentation, 401

Documentation directory, kernel source
tree, 13

doublewords, 382

doubly linked lists, 85-86

down interruptible() function, 193-194

down trylock() function, 193-194

down() function, 194

downgrade write() function, 195

do_exit() function, 36

do_IRQ() function, 123-125

do_munmap() function, 320

do_timer() function, 218

drivers, 114

RTC (real-time clock) driver, 120-122
drivers directory, kernel source tree, 13

dump information, debugging, 370-371

dump_stack() function, 371

dynamic timers, 207, 222

E
early printk() function, 365

elements, 85

elevators, I/O schedulers, 299-300

embedding kobjects, 350

enable_irq() function, 130

enabling interrupts, 127-128

enqueuing data, 98

entity structure, process scheduler, 50

entry points, scheduler, 57-58

epoch, 220

Ethernet devices. See network devices

events, relationship with time, 207

eviction (cache), 324-325

exceptions, 114

exec() function, 31

executable files, 29

execution, softirqs, 138-140

exokernel, 7

Expert C Programming, 409

explicitly sized data types, 385-386

exported symbols, modules, 348

F
fair scheduling, 48-50

family tree, processes, 29-30

fields, memory descriptor, 307-308

file attributes, kobjects, 358-359

conventions, 360-361
creating, 359-360
destroying, 360

file metadata, 264

file object, VFS (Virtual Filesystem), 265,
279-280

operations, 280-284
file-backed mapping, 318

files, 263

header files, 17
kobjects, adding to, 358-361
metadata, 264

filesystem

abstraction layer, 262-263
interface, 261-262
UNIX filesystems, 264

filesystem blocks, 290

filesystem files, page caching, 326

filesystem interface, 261

filesystems, 263, 264. See also VFS (Virtual
Filesystem)

data structures, 285-288
Linux, support, 288
metadata, 264

418 documentation

UNIX filesystems, 263
VFS (Virtual Filesystem)

data structures, 265-266
objects, 265-266

files_struct data structure, 287

find_get_page() method, 329

find_vma() function, 316-317

find_vma prev() function, 317

find_vma_intersection() function, 317

firmware directory, kernel source
code, 13

fixed-size stacks, 20

flags

clone() function, 34-35
interrupt handlers, 116-117
map type flags, 319
page protection flags, 319
VMAs (virtual memory areas),

311-312
flat address spaces, 305

floating point instructions, 20

flush scheduled work() function, 154

flusher threads, 331-335

flushing work queues, 154

fork() function, 24, 31-34

forking, 32

free lists, 245

free percpu() function, 258

free_irq() function, 118

freeing

data structures, slab layers, 245-252
interrupt handlers, 118

freeing pages, 237

frequencies, timer interrupts, 209

front/back merging, I/O scheduler,
299-300

fs directory, kernel source tree, 13

fs_struct data structure, 287

ftime() library call, 221

functions

account_process_tick(), 219
cli(), 128
clone(), 34-35
coding style, 400
context_switch(), 62
copy_process(), 32
disable_irq(), 129-130
disable_irq_nosync(), 130
do_exit(), 36
do_IRQ(), 123-125
do_mmap(), 318-320
do_munmap(), 320
do_softirq(), 138
enable_irq(), 130
exec(), 31
find_vma prev(), 317
find_vma(), 316-317
find_vma_intersection(), 317
fork(), 31-32, 34
free_irq(), 118
hello_init(), 339
idr_destroy(), 103
inline functions, 18-19, 400
in_interrupt(), 130
in_irq(), 130
irqs_disabled(), 130
kfree() function, 243-244
kmalloc(), 238-244

gfp_mask flags, 238-243
kthread_create(), 36
likely(), 20
list_add(), 91
list_del(), 91
list_for_each(), 93

419functions

list_for_each_entry(), 96
list_move(), 92
list_splice(), 92
local_bh_disable(), 157
local_irq_disable(), 130
local_irq_enable(), 130
local_irq_restore(), 130
local_irq_save(), 130
malloc(), 238
mmap(), 319-320
munmap(), 320
nice(), 66
open(), 5
panic(), 371
printf(), 5, 17, 364-367
printk(), 17, 364-367, 375
raise_softirq(), 141
read(), 326
relationship with time, 207
request_irq(), 118
schedule_timeout(),

227-230
strcpy(), 5
tasklet_disable(), 145
tasklet_disable_nosync(), 145
tasklet_enable(), 146
tasklet_kill(), 146
tick_periodic(), 219
unlikely(), 20
update_curr(), 51-52
vfork(), 33-34
vmalloc(), 244-245
void local_bh_disable(), 158
void local_bh_enable(), 158
wait(), 24
wake_up_process(), 36
write(), 5

G
Gagne, Greg, 407

Galvin, Peter Baer, 407

gcc (GNU Compiler Collection), 18

gdb, 373

generating patches, 404-405

get bh() function, 293

get cpu() function, 202

get sb() function, 285

get_cpu_var() function, 258

get_free_page() function, 236

get_zeroed_page() function, 237

gettimeofday() function, 221

gettimeofday() system call, 221

gfp_mask flags, kmalloc() function, 238-243

gid_t data type, 384

git source management tool, 11-12

binary searching, 376-377
generating patches, 405

global hash, page caches, 330

global variables, jiffies, 212-216

GNU C, 18

branch annotation, 19-20
inline assembly, 19
inline functions, 18-19

GNU debugger, 372-373

GNU General Public License (GPL), 4

Goüdel, Escher, Bach, 409

granularity, locking, 171

H
hackers, 403

HAL (hardware abstraction layer), 357

halves

division of work, 134
interrupt handlers, 115-116

420 functions

handlers, system calls, 73-74

hard real-time scheduling policies, 64

hard sectors. See sectors

hardware, applications, relationship, 6

header files, 17

heads, 290

Hello, World! module, 338-340

hello_init() function, 339

HI_SOFTIRQ tasklet, 140

high memory, 393

high memory mappings, 253-255

hitting, timers, 208

Hofstadter, Douglas, 409

HP-UX (Hewlett Packard), 2

HP-UX 11i Internals, 408

HRTIMER_SOFTIRQ tasklet, 140

Hungarian notation, 400

Hz values, 208-212

jiffies global variable, 216

I
I/O block layer, request queues, 297

I/O blocks, 290

I/O schedulers, 297-298

Anticipatory I/O scheduler, 302-303
CFQ (Complete Fair Queuing) I/O

scheduler, 303
Deadline I/O scheduler, 300-302
front/back merging, 299-300
Linus Elevator, 299-300
merging/sorting functions, 298-299
minimized read latency, 302-303
Noop I/O scheduler, 303-304
request starvation prevention, 300-302
selection options, 304

I/O-bound processes, versus processor-
bound processes, 43-44

idle process, operating systems, 6

idr_destroy() function, 103

IEEE (Institute of Electrical and Electronics
Engineers), 70

ifdef preprocessor directives, coding
style, 402

implementation

interrupt handlers, 123-126
softirqs, 137-140
system calls, 74-78
tasklets, 142-144
timers, 224
work queues, 149-153

implementing system calls, 82-83

in interrupt() function, 130

in-kernel debugger, 372-373

in_interrupt() function, 130

in_irq() function, 130

include directory, kernel source tree, 13

incremental patches, 12

increments, atomic operations, 175-176

indent utility, 403

indention, coding style, 396

indexes, softirqs, 140-141

init completion() function, 198

init directory, kernel source tree, 13

initialization, semaphores, 192

inline functions, 400

GNU C, 18-19
inode, 264

inode object, VFS (Virtual Filesystem), 265,
270-274

inodes, page caches, 331

installation

kernel, 16
modules, 342
source code, 12

421installation

integer atomic operations, 176-179

64-bit atomic operations, 180-181
interfaces

atomic operations, 176
filesystem, 261-262
slab layers, 249-252
wrapping, 402

internal representation, jiffies global
variable, 213-214

internal values, timers, 222

interprocess communication (IPC)
mechanism, 7

interrupt context, 5

kernels, 122
stack space, 122-123

interrupt handlers, 5, 113

bottom halves, 115-116, 133-135
benefits, 134-135
BH interface, 135-136
softirqs, 136-141
task queues, 135
tasklets, 136

controlling interrupts, 127-130
do_IRQ() function, 123-125
flags, 116-117
freeing, 118
free_irq() function, 118
function of, 114-115
implementing, 123-126
interrupt-safe code, 168
limitations, 133
locks, 185-186
reentrancy, 119
registering, 116
request_irq() function, 118
RTC (real-time clock) driver, 120-122
shared, 119-120

speed of, 122
timer, 217-220
top half, 115
top halves, 133
when to use, 135
writing, 118-119

interrupt request (IRQ), 114

interrupt service routine (ISR). See interrupt
handlers

interrupt stacks, 122

interrupt-safe code, 168

interrupts, 5, 113-114, 117, 131

asynchronous, 114
concurrency, 167
context, 115
controlling, 127-130
disable irq nosync() function, 130
disabling, 127-129
enable irq() function, 130
enabling, 127-128
in interrupt() function, 130
in irq() function, 130
irqs disabled() function, 130
local irq disable() function, 130
local irq enable() function, 130
local irq save() function, 130
synchronous, 114
timers, frequencies, 209

ioctl() method, 284

IPC (interprocess communication)
mechanism, 7

ipc directory, kernel source tree, 13

IRIX (SGI), 2

IRQ (interrupt request), 114

irqs_disabled() function, 130

ISR (interrupt service routine), 114

iterating linked lists, 94-95

422 integer atomic operations

J
jiffies, 391

origins of term, 212-213
sequential locks, 200

jiffies global variable, 212-213

HZ values, 216
internal representation, 213-214
wraparounds, 214-216

K
kallsyms, 369-370

Karels, Michael J., 408

kbuild build system, building modules,
340-342

KERN ALERT loglevel, printk() function, 366

KERN CRIT loglevel, printk() function, 366

KERN DEBUG loglevel, printk() function, 366

KERN EMERG loglevel, printk() function, 366

KERN ERR loglevel, printk() function, 366

KERN INFO loglevel, printk() function, 366

KERN NOTICE loglevel, printk() function, 366

KERN WARNING loglevel, printk() function,
366

kernel

applications, relationship, 6
building, 13-16
C library, 17
concurrency, 21
configuring, 14-15
debugging help resources, 377
defined, 4
development kernel, 8-10
downloading, 11
fixed-size stack, 20
floating point instructions, 20
hardware, 5

relationship, 6

implementing, linked lists, 88-90
installing, 16
interrupt context, 5
interrupt handlers, 5
lack of memory protection, 20
modules, 7
monolithic, 7
naming conventions, 9
portability, 21
preemption, concurrency, 167
producer and consumer

pattern, 96
root directories, 12-13
rules, 16-21
small, fixed-size, 21
source tree, 12-13
stable kernel, 8-9, 11
structure, 88
synchronization, 21
system calls, 71
vendor kernels, 14

kernel directory, kernel source
tree, 13

Kernel Event Layer

D-BUS, 361
kobjects, 361-362
netlink, 361
parameters, 362
payloads, 361
verb strings, 361

kernel locked() function, 199

kernel maintainer, 403

kernel messages

klogd daemon, 367
log buffer, 366-367
oops, 367-370
syslogd daemon, 367

423kernel messages

Kernel Newbies website, 395

kernel objects, 337

kernel preemption, 7, 393

per-CPU data, 256
process scheduler, 63-64

kernel random number
generator, 338

kernel threads, 35-36

memory descriptor, 309
pdflush task, 35

kernel timers. See timers

Kernel Traffic website, 395

kernel-space, 29

Kernel.org, 409

Kernighan, Brian, 399, 409

kfifo queues, 97-100

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
obtaining size of, 98
resetting, 99

kfree() function, 243-244

kgdb, 373

klogd daemon, kernel
messages, 367

kmalloc() function, 238-244, 259

gfp_mask flags, 238-243
Knuth, Donald, 409

kobjects

device model, 349-350
managing, 352-353

file attributes, 358-359
conventions, 360-361
creating, 359-360
destroying, 360

sysfs filesystem, 355
adding and removing from,

357-358
adding files, 358-361
dentries, 355
Kernel Event Layer, 361-362
root directories, 357

kobject_create() function, 353

Kogan, Michael, 408

kqdb debugger, 373

kref structure, device model reference
counts, 354-355

kref_put() function, 354

Kroah-Hartman, Greg, 408

ksets, device model, 351

ksoftirqd task, 35

ksoftirqd threads, tasklets, 146-147

kthreadd kernel process, 36

kthread_create() function, 36

ktypes, device model, 350-351

kupdated kernel thread, 333-334

kysmoops, 369

L
laptop mode, page writeback, 333

last-in/first-out (LIFO) ordering, 94

least recently used (LRU), cache eviction,
325

lib directory, kernel source tree, 13

libc functions, 17

lifecycle, processes, 24

lightweight processes, threads, 34

likely() function, 20

limitations, interrupt handlers, 133

line length, coding style, 399-400

linked lists, 85

circular linked lists, 86-87

424 Kernel Newbies website

declaring, 88
defining, 89-90
doubly linked lists, 85-86
iterating through backward, 94
iterating while removing, 95
kernel implementation, 88-90
manipulating, 90-92
memory, 313
navigating through, 87-88
nodes

adding to, 90-91
deleting from, 91-92
moving, 92
splicing, 92

singly linked lists, 85-86
traversing, 93-96

Linus Elevator, I/O schedulers, 299-300

Linux, 1

development history, 3
dynamic loading, 8
filesystems, support, 288
kernel development community, 10
object-oriented device model, 8
open source status, 4
portability, 380-381
preemptive nature, 8
scalability, 171
symmetrical multiprocessor (SMP), 8
thread implementation, 33-36
thread support, 8
Unix, 3
versus Unix kernel, 6, 8

Linux Device Drivers, 408

Linux kernel community, 395

Linux Kernel Mailing List (lkml), 10, 395

Linux System Programming, 409

Linux Weekly News, 395, 409

list for each() function, 93

list move() function, 92

list splice() function, 92

lists, VMAs (virtual memory areas), 313-314

list_add() function, 91

list_del() function, 91

list_for_each_entry() function, 96

little-endian byte ordering, 389-391

lkml (Linux Kernel Mailing List), 10, 395

loading

modules, 343-344
managing configuration options,

344-346
local bh disable() function, 157

local bh enable() function, 157-158

local_irq_disable() function, 130

local_irq_enable() function, 130

local_irq_restore() function, 130

local_irq_save() function, 130

lock contention, 171

lock kernel() function, 199

locking

coarse locking, 172
granularity, 171
need of protection, 168-169
race conditions, 165-166

locking between bottom halves, 157

locks, 165

acquiring, 193
advisory, 166
BKL (Big Kernel Lock), 198-199
busying wait, 166
contention, 171
deadlocks, threads, 169-171
debugging, 186
functions, 193
mutexes, 195-197

425locks

non-recursive nature, 185
releasing, 193
semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

sequential locks, 200-201
spin locks, 183-187

bottom halves, 187-188
debugging, 186
methods, 184-187
reader-writer spin locks, 188-190

use in interrupt handlers, 185-186
versus code, 186
voluntary, 166

log buffers, kernel messages, 366-367

loglevels, printk() function, 365-366

looking up UIDs (unique identification
numbers), 102-103

Love, Robert, 409

LRU (least recently used), cache eviction,
325

M
Mac OS X Internals: A Systems

Approach, 408

Magic SysRq key commands,
371-372

maintainers, 403

malloc() function, 238, 306

map type flags, 319

mapping, 100

anonymous mapping, 318
file-backed mapping, 318

VMAs (virtual memory areas), 312
mappings (high memory), 253

permanent mappings, 254
temporary mappings, 254-255

maps, UIDs (unique identification
numbers), 100

allocating, 101-102
looking up, 102
removing, 103

Mauro, Jim, 408

mb() function, 204-205

McCreight, Edward M., 327

McDougall, Richard, 408

McKusick, Marshall Kirk, 408

mdelay() function, 227

memory

allocation, 231, 260
choosing method, 259
high memory mappings,

253-255
kfree() function, 243-244
kmalloc() function, 238-244
pages, 231-232, 235-237
per-CPU allocations, 255-258
slab layers, 245-252
statically allocating on stack,

252-253
vmalloc() function, 244-245
zones, 233-235

high memory, 393
linked list, 313
memory areas, 305-306
memory descriptor, 306
mmap field, 313
MMUs (memory management

units), 231
objects, pinned, 353

426 locks

pages, 231-233
freeing, 237
obtaining, 235-244
zeroed pages, 236-237
zones, 233-235

process address space, 305
red-black tree, 313
VMAs (virtual memory areas),

309-310, 314-315
flags, 311-312
lists, 313-314
locating, 316-317
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

memory areas, 314-315. See also VMAs
(virtual memory areas)

lists, 313-314
manipulating, 315-318
trees, 313-314

memory descriptor, 306

allocating, 308
destroying, 309
fields, 307-308
kernel threads, 309
mm struct, 309

memory maps, 306

memory-management unit (MMU), 6

memory protection, kernel, lack of, 20

memory reads/writes, 203-206

memset() function, 353

merging functions, I/O scheduler, 298-299

message passing, 7

metadata files, 264

methods

context_switch(), 380

ioctl(), 284
readpage(), 328
spin locks, 184-187
switch_mm(), 380
switch_to(), 380
synchronization methods, 175

64-bit atomic operations, 180-181
atomic operations, 175-179
barriers, 203-206
bitwise atomic operations, 181-183
BKL (Big Kernel Lock), 198-199
completion variables, 197-198
mutexes, 195-197
nonatomic bit operations, 183
ordering, 203-206
preemption disabling, 201-202
semaphores, 190-195
sequential locks, 200-201
spin locks, 183-190

writepage(), 328
microkernel designs, monolithic designs,

compared, 7

microkernels, message passing, 7

migration threads, 66

miscellaneous devices, 338

mm directory, kernel source tree, 13

mm struct, memory descriptor, 309

mmap() function, 306, 319

MMUs (memory management units), 6, 231

mod timer() function, 223

Modern Operating Systems, 407

modprobe command, 343

modules, 14, 337-338

building, 340-342
configuration options, managing,

344-346
dependencies, generating, 342

427modules

exported symbols, 348
Hello,World!, 338-340
installing, 342
kernel, 7
living externally of kernel source

tree, 342
loading, 343-344
parameters, 346-347
removing, 343
source trees, 340-342

MODULE_AUTHOR() macro, 340

MODULE_DESCRIPTION() macro, 340

module_exit() function, 339

module_init() macro, 339

MODULE_LICENSE() macro, 340

monolithic kernel, microkernel designs,
compared, 7

Moore, Chris, 408

Morton, Andrew, 9

mount flags, 286

mount points, 263

multiplexing system calls, 74

multiprocessing, symmetrical
multiprocessing, 161

concurrency, 167
multitasking, 41-42

munmap() function, 320

mutexes, 191, 195-197

N
name pointer, device model, 349

namespace data structure, 287-288

namespaces, 263

naming conventions

coding style, 400
kernel, 9

net directory, kernel source tree, 13

NET_RX_SOFTIRQ tasklet, 140

NET_TX_SOFTIRQ tasklet, 140

netlink, Kernel Event Layer, 361

network devices, 338

Neville-Neil, George V., 408

nice values, processes, 44

nice() function, 66

nodes, 85

linked lists
adding to, 90-91
deleting from, 91-92
moving, 92
splicing, 92

nonatomic bit operations, 183

Noop I/O scheduler, 303-304

notation, Hungarian notation, 400

numbers, system calls, 72

O
O(1) scheduler, 42-43

object-oriented device model, Linux, 8

objects

pinned, 353
VFS (Virtual Filesystem), 265-266

dentry, 265, 275-279
directory, 265
file, 265, 279-284
inode, 265, 270-274
operations, 265
superblock, 265-269

occurrence limiting, debugging, 375-376

oops, kernel messages, 367-370

opaque data types, 384

operations, VMAs (virtual memory areas),
312-313

open softirq() function, 141

open() function, 5

428 modules

open() system call, 261

Operating System Concepts, 407

operating systems, 4

general activities, 5
idle process, 6
kernel-space, 5
multitasking, 41
portability, 379-380
scalability, 171
supervisor, 4
system calls, 5
tickless operations, 212

Operating Systems, 407

Operating Systems: Design and
Implementation, 407

operations object, VFS (Virtual
Filesystem), 265

order preservation, 100

ordering

atomicity, compared, 179
barrier operations, 179
memory reads/writes, 203-206

OS News. com, 409

P
PAE (Physical Address Extension), 253

page caches, 323-326

address_space object, 326-328
address_space operations, 328-330
buffer caches, 330-331
filesystem files, 326
flusher threads, 331-335
global hash, 330
radix tree, 330
readpage() method, 328
writepage() method, 328

page_count() function, 232

page global directory (PGD), 321

page middle directory (PMD), 321

page protection flags, 319

page size, architectures, 391-392

page tables, 320-322

future management possibilities, 322
levels, 320-321

page writeback, 323

bdflush kernel thread, 333-334
dirty page writeback, 331
kupdated kernel thread, 333-334
laptop mode, 333
pdflush kernel thread, 333-334
settings, 332

pageable kernel memory, 8

pages (memory), 231-233

freeing, 237
obtaining, 235-236

kfree() function, 243-244
kmalloc() function, 238-244
vmalloc() function, 244-245
zeroed pages, 236-237

word size, 381
zones, 233-235

panic() function, 371

parallelism, threads, 33

parameter passing, system calls, 74

parameters

Kernel Event Layer, 362
modules, 346-347
system calls, verifying, 75-78

parent pointer, device model, 350

parentless tasks, 38-40

patches

generating, 404-405
incremental, 12
submitting, 406

429patches

payloads, Kernel Event Layer, 361

pdflush kernel thread, 333-334

pdflush task, 35

per-CPU allocations, 255-256

percpu interface, 256-258
per-CPU data

benefits, 258-259
thrashing the cache, 258

percpu interface, 256-258

at compile-time, 256-257
at runtime, 257-258

performance, system calls, 72

permanent high memory mappings, 254

PGD (page global directory), 321

PID (process identification), 26

pid_t data type, 384

pinned objects, 353

PIT (programmable interrupt timer), 217

PMD (page middle directory), 321

Pointers, dereferences, 92

policy (scheduler), 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

poll() system call, 211

polling, 113

popping, timers, 208

portability, 21, 379

byte ordering, 389-391
data alignment, 386-389
data types, 384
high memory, 393
implications of, 393
kernel preemption, 393
Linux, 380-381
operating systems, 379-380

page size architecture, 391
processor ordering, 392
scheduler, 380
SMP (symmetrical multiprocessing), 393
time, 391
word size, 381-384

POSIX, system calls, 70

preempt count() function, 202

preempt disable() function, 202

preempt enable no resched() function, 202

preempt enable() function, 202

preemption

kernel, concurrency, 167
process scheduler, 62

kernel preemption, 63-64
user preemption, 62-63

preemption disabling, 201-202

preemptive multitasking, process
scheduler, 41

printf() function, 5, 17, 364

loglevels, 365-366
transposing, 367

printing, debugging, 364-367

printk() function, 17, 375

debugging, 364-366
loglevels, 365-366
nonrobustness of, 365
robustness of, 365
transposing, 367

priority-based scheduling, 44

private mapping, VMAs (virtual memory
areas), 312

/proc/interrupts file, 126-127

process address space

address intervals
creating, 318-319
removing, 320

430 payloads, Kernel Event Layer

flat versus segmented, 305
memory areas, manipulating, 315-318
memory descriptors, 306-308

allocating, 308
destroying, 309
kernel threads, 309
mm struct, 309

overview, 305
page tables, 320-322
VMAs (virtual memory areas),

309-310, 314-315
flags, 311-312
lists, 313-314
operations, 312-313
trees, 313-314

process descriptors

allocating, 25-26
states, 27-29
storing, 26-27
task list, 24
TASK_INTERRUPTIBLE

process, 27
TASK_RUNNING process, 27
TASK_STOPPED process, 28
TASK_UNINTERRUPTIBLE

process, 28
process descriptors (task list), 24-25

process scheduler, 41

algorithm, 46-50
classes, 46-47
Completely Fair Scheduler

scheduler, 43
context switching, 62
cooperative multitasking, 41-42
entity structure, 50
entry point, 57-58
evolution, 42-43
fair scheduling, 48-50

implementing, 50-59, 61
O(1) scheduler, 42-43
policy, 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

preemption, 62-64
preemptive multitasking, 41
process selection, 52-57
real-time scheduling policies, 64-65
Rotating Staircase Deadline

scheduler, 43
system calls, 65-67
time accounting, 50-52
timeslices, 42
Unix systems, 47-48
virtual runtime, 51-52
yielding, 42

process states, 27-29

processes

adding to trees, 54-55
address space, 23
context, 29
creating, 31
data structures, 286-288
defined, 23
I/O-bound processes, 43-44
lifecycle of, 24
nice values, 44
real-time, 44
real-time processes, 44
removing from trees, 56-57
resources, 23-24
runnable processes, 41
scalability, 171
task list, 24

431processes

tasks, 24
terminating, 24, 36-40
threads, 305
timeslice count, 211
virtual memory, 23
virtual processor, 23

processor affinity system calls, 66

processor ordering, 392

processor time, yielding, 66

processor-bound processors versus
I/O-bound processes, 43-44

procfs virtual filesystem, 126-127

producer and consumer programming
pattern, kernel, 96

programs, processes, 24

pseudo-concurrency processes, 167

put bh() function, 293

put_cpu_var() function, 258

Q
quantum slice. See timeslices

Quarterman, John S., 408

queues, 96-97

creating, 97-98
dequeuing data, 98
destroying, 99
enqueuing data, 98
kfifo, 97-100
obtaining size of, 98
resetting, 99

R
race conditions

ATM processing example, 163
locking, 165-166
multiple threads of execution, 162
timers, 224

radix trees, page caches, 330

Rago, Stephen, 409

raise softirq irqoff() function, 141

raise softirq() function, 141

rate limiting, debugging, 375-376

rbtrees, 106-108

RCU_SOFTIRQ tasklet, 140

read barrier depends() function, 204-205

read lock irq() function, 189

read lock irqsave() function, 189

read lock() function, 189

read seqbegin() function, 220

read seqretry() function, 220

read unlock irq() function, 189

read unlock irqrestore() function, 189

read unlock() function, 189

read() function, 326

read() system call, 261

reader-writer semaphores, 194-195

reader-writer spin locks, 188-190

readpage() method, 328

read_barrier_depends() function, 205

real-time clock (RTC) driver, 120-122, 217

real-time priority, 44

real-time scheduling policies, 64-65

red-black binary trees, 105-106

red-black trees, memory, 313

reentrancy, interrupt handlers, 119

reference counts, device model, 353-355

registration, interrupt handlers, 116

relative time, 207

reparenting child tasks, 38

REPORTING-BUGS file, 404

request queues, I/O block layer, 297

request_irq() function, 118

Ritchie, Dennis, 1-3, 399, 409

rmb() function, 204-205

432 processes

root directories, sysfs file system, 357

Rotating Staircase Deadline scheduler, 43

routines, coding style, 402

RTC (real-time clock) driver, 120-122, 217

Rubini, Alessandro, 408

rules, kernel, 16-21

run local timers() function, 219

run_local_timers() function, 224

run_timer_softirq() function, 224

runnable processes, 41

Russinovich, Mark, 408

rw lock init() function, 190

S
samples directory, kernel source code, 13

scalability, 171

algorithms, 109
sched_getaffinity() system call, 66

sched_getparam() system call, 66

sched_getscheduler() system call, 66

sched_get_priority_max() system call, 66

sched_get_priority_min() system call, 66

sched_setaffinity() system call, 66

sched_setparam() system call, 66

sched_setscheduler() system call, 66

SCHED_SOFTIRQ tasklet, 140

sched_yield() system call, 66-67

schedule delayed work() function, 154-155

scheduler, 41

algorithm, 46-50
classes, 46-47
Completely Fair Scheduler

scheduler, 43
context switching, 62
cooperative multitasking, 41-42
entity structure, 50
entry point, 57-58

evolution, 42-43
fair scheduling, 48-50
implementing, 50-61
O(1) scheduler, 42-43
policy, 43-46

I/O-bound processes, 43-44
priority-based scheduling, 44
processor-bound processes, 43-44
timeslices, 45

preemption, 62
kernel preemption, 63-64
user preemption, 62-63

preemptive multitasking, 41
process selection, 52-57
real-time scheduling policies, 64-65
Rotating Staircase Deadline

scheduler, 43
system calls, 65-67
time accounting, 50-52
timeslices, 42
Unix systems, 47-48
virtual runtime, 51-52
yielding, 42

schedule_timeout() function, 227-230

scheduler_tick() function, 218-219

scheduling

tasklets, 143-146
work queues, 153-154

Schimmel, Curt, 408

scripts directory, kernel source tree, 13

sd pointer, device model, 350

sectors, block devices, 290-291

security directory, kernel source
tree, 13

segmented address spaces, 305

segments, block I/O layer, 294-295

select() system call, 211

433select() system call

self-balanced binary search trees, 105

rbtrees, 106-108
red-black trees, 105-106

self-generating documentation, 401

sema init() function, 193

semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
mutexes, compared, 197
reader-writer semaphores, 194-195
upping, 192

seqlocks, 220

Sequent DYNIX/ptx, 2

sequential locks, 200-201

settimeofday() system call, 221

settings, page writeback, 332

shared interrupt handlers, 119-120

shared mapping, VMAs (virtual memory
areas), 312

SIAM Journal of Computing, 327

side effects, system calls, 71

Silberschatz, Abraham, 407

Singh, Amit, 408

single-page kernel stacks, statically
allocating memory, 252-253

singly linked lists, 85-86

slab allocator, 25

“Slab Allocator: An Object-Caching Kernel
Memory Allocator,” 246

slab layers

design of, 246
inode data structure example, 247-249
interface, 249-252
memory allocation, 245-252
tenets of, 246

sleep, wait queues, 229

sleeping concurrency, 167

sleeping locks, 192

behaviors, 191
mutexes, 195-197

versus semaphores, 197
versus spin locks, 197

semaphores, 190-191
binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

versus spin locks, 191
SMP (symmetrical multiprocessing), 8

portability, 393
smp mb() function, 205-206

smp read barrier depends() function, 205

smp rmb() function, 205-206

smp wmb() function, 205-206

smp_read_barrier_depends() function, 206

soft real-time scheduling policies, 64

softirqs

assigning indexes, 140-141
bottom half mechanism, 137-138
bottom half mechanism, executing, 140
bottom half mechanism, index

assignments, 140
bottom halves, 136-141, 188
concurrency, 167
executing, 138-140
handler, 138
handlers, registering, 141
implementing, 137-140
ksoftirqd threads, 146-147
raising, 141
types, 140

Solaris (Sun), 2

434 self-balanced binary search trees

Solaris Internals: Solaris and OpenSolaris
Kernel Architecture, 408

Solomon, David, 408

sorting functions, I/O scheduler, 298-299

sound directory, kernel source tree, 13

source code, 11-12

source trees, 12-13

modules, 340-342
spacing coding style, 397-398

special data types, 384-385

spin is locked() method, 187

spin lock init() method, 186

spin lock irq() function, 186

spin lock irqsave() method, 187

spin locks, 183-186

bottom halves, 187-188
debugging, 186
methods, 184-187
mutexes, compared, 197
reader-writer spin locks, 188-190

spin try lock() method, 186

spin unlock() method, 187

spin_is_locked() method, 187

spin_lock() method, 187

spin_lock_init() method, 187

spin_lock_irq() method, 186

spin_lock_irqsave() method, 185

spin_trylock() method, 187

spin_unlock_irq() method, 187

spin_unlock_irqrestore() method, 185-187

spins, 184

stable kernel, 8-10

maintenance, 403
stacks

interrupt context, 122-123
interrupt stacks, 122
statically allocating memory on,

252-253

statements, switch statements, coding style,
396-397

statically allocating memory on stack,
252-253

statistics, debugging, 374

Stevens, W. Richard, 409

storing process descriptors, 26-27

structure padding, data alignment, 387-389

strcpy() function, 5

STREAMS, 8

structure initializers, coding style, 402-403

submitting

bug reports, 403-404
patches, 406

subscribing to Linux Kernel Mailing List
(LKML), 395

superblock data structure, 264

superblock object, VFS (Virtual Filesystem),
265-269

Swift, Jonathan, 390

switch statements, coding style, 396-397

switch_mm() method, 380

switch_to() method, 380

symmetrical multiprocessing

concurrency, 167
introduction of, 161-162

symmetrical multiprocessor (SMP), 8

synchronization, 162-168, 172

kernel, 21
reasons, 162-163

synchronization methods, 175

atomic operations, 175
64-bit operations, 180-181
bitwise operations, 181-183
converting, 177
counter implementation, 177
defining, 177
increments, 175-176

435synchronization methods

integer operations, 176-179
interfaces, 176
nonatomic bit operations, 183
overhead advantages, 179
testing, 177

barriers, 203-206
BKL (Big Kernel Lock), 198-199
completion variables, 197-198
mutexes, 195-197
ordering, 203-206
preemption disabling, 201-202
semaphores, 190-191

binary semaphores, 191-192
counting semaphores, 191-192
creating, 192-193
implementing, 193-194
initializing, 192
reader-writer semaphores, 194-195

sequential locks, 200-201
spin locks, 183-186

bottom halves, 187-188
reader-writer spin locks, 188-190

synchronous interrupts, 114

syscalls. See system calls

sysfs, 337

sysfs filesystem, 355

adding and removing kobjects,
357-358

adding files, 358-361
dentries, 355
Kernel Event Layer, 361-362
root directories, 357

syslogd daemon, kernel messages, 367

SysRq commands, 371

system call() function, 73

system calls, 5, 69

accessing, 71

accessing from user-space, 81-82
alternatives, 82-83
API (Application Programming

Interface), 70
arguments, 71
behaviors, 71-72
binding, 79-81
C library, 70-71
clone(), 32
context, 78-81
denoting correct calls, 73
handlers, 73-74
implementation, 74-78
kernel, 71
multiplexing, 74
numbers, 72
parameter passing, 74
performance, 72
POSIX, 70
process scheduler, 65-67
processor affinity, 66
processor time, yielding, 66
pros and cons, 82
purpose of, 69
return values, 71
scheduler, 65-66
sched_getaffinity(), 66
sched_getscheduler(), 66
sched_get_priority_max(), 66
sched_setaffinity(), 66
sched_setparam(), 66
sched_setscheduler(), 66
sched_yield(), 67
side effects, 71
verifying, 75-78

system timers, 207-208, 217

system uptime, 207-208

436 synchronization methods

T
Tanenbaum, Andrew, 407

tarball

installing, 12
source code, 11

task lists, 24-25

task queues, bottom halves, 135

TASK_INTERRUPTIBLE process, 27

TASK_RUNNING process, 27

TASK_STOPPED process, 28

task_struct, 24

TASK_TRACED process, 28

TASK_UNINTERRUPTIBLE process, 28

tasklet action() function, 143

tasklet disable() function, 145

tasklet disable nosync() function, 145

tasklet enable() function, 146

tasklet handlers, writing, 145

tasklet hi action() function, 143

tasklet hi schedule() function, 143

tasklet kill() function, 146

tasklet schedule() function, 143

tasklets, 137

BH interface, 148
bottom half mechanism, 142-143
bottom halves, 136
concurrency, 167
declaring, 144-145
implementing, 142-144
ksoftirqd threads, 146-147
scheduling, 143-146
softirq types, 140
structure, 142

TASKLET_SOFTIRQ tasklet, 140

tasks, 24

ksoftirqd, 35
parentless tasks, 38-40

pdflush, 35
sleeping, 58-61
waking up, 61

temporal locality, 323

temporary high memory mappings,
254-255

terminating processes, 36-40

testing atomic operations, 177

text section (processes), 23

Thompson, Ken, 1, 3

thrashing the cache per-CPU data, 258

thread support, Linux, 8

thread_info structure, 26

threads, 23, 34, 305

avoiding congestion, 334-335
bdflush, 333-334
concurrent programming, 33
contended, 184
creating, 34
deadlocks, 169-171
flusher threads, 331-335
kernel, 35-36
ksoftirqd, 146-147
kupdated, 333-334
lightweight processes, 34
Linux implementation, 33-36
migration threads, 66
parellelism, 33
pdflush, 333-334
worker threads, 149

threads of execution, 23

critical regions, 162
defined, 161
race conditions, 162

tick rate, Hz (hertz), 208-212

tick_periodic() function, 217, 219-220

tickless operating system, 212

437tickless operating system

time

absolute time, 207
current date and time, 220-221
HZ, 391
importance of, 207
kernel’s concept of, 208
releative time, 207

time accounting, process scheduler, 50-52

time complexity, algorithms, 110-111

time stamp counter (TSC), 217

time() system call, 221

timeouts, wait queues, sleeping on, 229

timer interrupt, 207-208

timer interrupt handler, 217-220

TIMER_SOFTIRQ tasklet, 140

timers

busy looping, 225-226
delaying execution, 225-230
deleting, 223
dynamic timers, 207, 222
hitting, 208
implementation, 224-230
internal values, 222
interrupt handler, 217-220
interrupts, frequencies, 209
kernel, 136
modifying, 223
popping, 208
popularity of, 222
purpose of, 222
race conditions, 224
small delays, 226-227
system timer, 217
using, 222-223

timeslice count, processes, 211

timeslices

process scheduler, 42
process scheduler policy, 45

timespec data structure, 220

tools directory, kernel source code, 13

top halves, interrupt handlers, 115, 133

Torvalds, Linus, 3

transposition, printk() function, 367

traversing linked lists, 93-96

trees

adding processes to, 54-55
removing processes from, 56-57
VMAs (virtual memory areas), 313-314

tristates, 14

Tru64 (Digital), 2

true concurrency, 167

try to wake up() function, 61

two-list strategy, cache eviction, 325-326

type flags, 241-242

typedefs, coding style, 401

U
udelay() function, 227

UIDs (unique identification numbers), 100

allocating, 101-102
looking up, 102
removing, 103

uid_t data type, 384

Understanding Linux Network Internals, 408

University of California at Berkeley, BSD
(Berkeley Software Distributions), 2

Unix, 1

characteristics, 2-3
creators, 1
development history, 1-2
evolution, 3
filesystems, 263-264
Linux, compared, 6-8
popularity of, 1

Unix Internals: The New Frontiers, 408

Unix systems, scheduling, 47-48

438 time

UNIX Systems for Modern Architectures:
Symmetric Multiprocessing and Caching, 408

unlikely() function, 20

unlock kernel() function, 199

up() function, 193-194

update_curr() functions, 51-52

update_process_times() function, 218, 224

update_wall_time() function, 218

upping semaphores, 192

user preemption, process scheduler, 62-63

user spaces, jiffies global variable, 216

user-space, 5

accessing system calls, 81-82
usr directory, kernel source tree, 13

utilities, diffstat, 405

V
Vahalia, Uresh, 408

van der Linden, Peter, 409

variables

completion variables, 197-198
condition variables, debugging, 374
global variables, jiffies, 212-216
xtime, 220

vendor kernels, 14

verb string, Kernel Event Layer, 361

vfork() function, 33-34

VFS (Virtual Filesystem), 261

data structures, 265-266, 285-286
processes, 286-288

file system type structure, 266
interface, 261-262
Linux filesystems, 288
objects, 265-266

dentry, 265, 275-279
directory, 265
file, 265, 279-284

inode, 265, 270-274
operations, 265
superblock, 265-269

vfsmount structure, 285-286

virt directory, kernel source code, 13

virtual device drivers, 338

Virtual Filesystem (VFS)

dentry object, 275, 278
file object, 282
inode object, 270-272
superblock object, 267
vfsmount structure, 266

Virtual Filesystem (VFS). See VFS (Virtual
Filesystem)

virtual memory, VMAs (virtual memory
areas), 309-310, 314-315

flags, 311-312
lists, 313-314
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

virtual runtime, processes, 51-52

virtual-to-physical address lookup, 321

vmalloc() function, 244-245, 259

VMAs (virtual memory areas), 309-310,
314-315

flags, 311-312
lists, 313-314
locating, 316-317
operations, 312-313
private mapping, 312
shared mapping, 312
trees, 313-314

void local bh disable() function, 158

void local bh enable() function, 158

voluntary locks, 166

439voluntary locks

VSF

abstraction layer, 262-263
UNIX filesystems, 263-264

W-X-Y
wait for completion() function, 198

wait queues, 58-59

sleeping on, 229
wait() function, 24

wake up() function, 61

wake_up_process() function, 36

websites, Linux Kernel Mailing List
(LKML), 395

Windows Internals: Covering Windows Server
2008 and Windows Vista, 408

wmb() function, 204-205

word size, 381-384

characters, 381
doublewords, 382
pages, 381
usage rules, 383

work queue handler, 153

work queues, 137, 151

bottom half mechanism, 149, 153
old task queues, 155-156
queue creation, 154-155
relationships among data structures,

152-153
run_workqueue() function,

151-152
thread data structure, 149
thread data structures, 150-151
work creation, 153
work flushing, 154
work scheduling, 153

creating, 154-155
implementing, 149-153
scheduling, 153-154

worker thread() function, 151

worker threads, 149

wraparounds, jiffies global variables,
214-216

wrapping interfaces, 402

write caching, 324

write lock irq() function, 189

write lock irqsave() function, 189

write lock() function, 189

write trylock() function, 190

write unlock irq() function, 189

write unlock irqrestore() function, 190

write unlock() function, 189

write() function, 5

write() system call, 261

write-through caches, 324

writepage() method, 328

writes starving reads, 300

writing

interrupt handler, 118-119
tasklet handlers, 145

xtime variable, 220-221

yield() system call, 67

yielding

process scheduler, 42
processor time, 66

Z
zeroed pages, obtaining, 236-237

zone modifiers, gfp_mask flags, 240

zones, 234

pages, 233-235
ZONE_DMA, 233-235
ZONE_DMA32, 233
ZONE_HIGHMEM, 233
ZONE_NORMAL, 233

440 VSF

	Table of Contents
	2 Getting Started with the Kernel
	Obtaining the Kernel Source
	Using Git
	Installing the Kernel Source
	Using Patches

	The Kernel Source Tree
	Building the Kernel
	Configuring the Kernel
	Minimizing Build Noise
	Spawning Multiple Build Jobs
	Installing the New Kernel

	A Beast of a Different Nature
	No libc or Standard Headers
	GNU C
	No Memory Protection
	No (Easy) Use of Floating Point
	Small, Fixed-Size Stack
	Synchronization and Concurrency
	Importance of Portability

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y
	Z

