

Microsoft®Expression Blend™ Unleashed
Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32931-9

ISBN-10: 0-672-32931-X

Library of Congress Cataloging-in-Publication Data available upon request.

Printed in the United States of America

First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

The Safari®Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45
days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.informit.com/onlineedition

. Complete the brief registration form

. Enter the coupon code JUCL-YZBE-QCHU-Z9EE-IEM2

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please email
customer-service@safaribooksonline.com.

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Technical Editors
Amir Khella
Chad Carter

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editors
Harrison Ridge
Services
Mike Henry

Indexer
Publishing Works Inc.

Proofreader
Linda Seifert

Publishing
Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Composition
Jake McFarland

http://www.informit.com/onlineedition

Foreword

You’re a user of things—we all are. You have an experience with every thing you interact
with. And, it better be a good experience, too; otherwise, you’ll change the thing, avoid
interacting with it, or suffer.

It could be that basking in the color of your bedroom walls is a therapeutic experience.
Conversely, you might have a frustrating experience with a hammer whose head keeps
falling off (or which, to keep you and those around you safe, asks you to confirm every
blow). On the other hand, an object may be perfectly well-designed, but not necessarily
designed for you. Even if you could fit in it, a child’s chair would be too short for you. As
anyone who has seen the movie The Forbidden Planet will know, Krell-sized doorways
would be a needlessly extravagant use of space in a human home! In each of the previous
examples, the experience depends, to some degree, on the person doing the experiencing.

Let’s talk about software—the kind of software you create. That’s why you have this book
in your hands, right? Good software is concerned with the emotions of the person using
it. It can excite the user from time to time, but it should never frustrate the consumer.
When it’s working effectively, good software’s unobtrusive usability brings only a faint
smile of satisfaction to its user’s lips, not grumbles. The value of software is the value of
the experience that flows from it.

This book is for anyone interested in designing usable and beautiful software. It’s about a
framework for helping you do just that. It’s about a platform and toolset that do the
heavy lifting so you can focus on the art, the usability, the experience. You’ll learn how
it’s possible to separate the tasks done by the designer and developer roles so that you can
work in an independent, yet complementary way. You’ll see how you can avoid a poten-
tially lousy translation step from comp to user interface. You’ll see how to customize
controls, bind to data, create artwork with vectors and brushes, and represent user inter-
face and data in declarative markup that is kept separate from the application logic.

WPF, Silverlight, and Expression are instruments: Artists create with them. The tools have
a user experience of their own—and that experience will improve as they mature.
Expression Blend, for instance, is suited to designers with esthetic talent, to be sure—but
those with a taste for a little technology will find a lot of additional possibilities. Soon,
Blend will adapt to an even greater diversity among designers. Making that happen is the
daily preoccupation of the development, test, program management, technical writing,
product design, product development, support, and evangelism members of the Blend
product group.

Jimi Hendrix asked: “Are you experienced? “A Hendrix album or concert was an experi-
ence that went beyond the everyday to provide astonishing sounds, virtuosity, charisma,
psychedelia and theatrics. What makes your consumers enthusiastic about—and return
to—your software and design is the quality and nature of their experience. For the most
part the experience you provide is dependent on your talent and imagination. However,
some of your success is due to the tools you use and how well you know them.

I hope you enjoy using WPF and Expression. I hope they give you what you need
and make you successful. You can communicate with the Blend product group at
http://expression.microsoft.com.

In the meantime, there’s a lot for you to learn. I’ll let Brennon tell you the rest!

Steve White
Program Manager, Microsoft Expression Blend

Microsoft Expression Blend Unleashedxvi

http://expression.microsoft.com

CHAPTER 1

Introduction to
Expression Blend

IN THIS CHAPTER

. The Next Generation User
Experience

. Windows Presentation
Foundation (WPF)

. Expression Blend Versus
Visual Studio

. An Introduction to Expression
Blend and XAML

. The Benefits of Expression
Blend

Taking aside the technical aspects of learning how to use
Microsoft Expression Blend, there are many areas that are
often disregarded within discussions about how Blend is—
and should be—used in a real-world project sense. You may
be a single person business or employee that needs to fill all
the roles that Blend is best used for; or, you may be part of
an enterprise size team.

Knowing, why a tool should be used in a certain way some-
times makes it easier to apply the options provided. This
chapter talks about areas within project teams, their roles,
and their perspective.

The Next Generation User
Experience
One of my favorite pastimes is watching movies. I don’t
care how old they are or if I have already watched them 10
times. I find that watching movies relaxes me; it allows me
to escape my own thoughts for an hour or two, and most of
the time they inspire and motivate me in some way.

I especially enjoy watching movies in which computers are
used in the plot in some way. I guess that is the geek
coming out in me, but there is something special about the
user interfaces, and in some spectacular cases the visual and
interactive design, that are also explored in such movies.

Minority Report, with Tom Cruise, is a great example of what
we want to be moving toward in providing an outstanding
user experience and interface. That interface (and indeed
the entire process that encompasses Tom’s user experience)

4 CHAPTER 1 Introduction to Expression Blend

is custom made for its application in assisting the user to scrub video feeds and visualize
complex data. Without having actually used such an interface, we can only assume that it
is ideal because of the efficiency it gave Tom’s character in performing his job’s functional
requirements.

The applications functional playback of simultaneous multimedia streams gave Tom’s
character the ability to visualize and analyze complex data, but it is the user interface and
“light glove” device that provided the cohesive, relevant, and intuitive movements; allow-
ing the application to work with him, flow with him, and ultimately deliver for him. The
input hardware is not quite ready yet, but by the time we collectively perfect our inter-
faces, we should start to see additional hardware flow into the market place.

Next Generation Hardware Is Coming!

Already hardware changes are being made to accommodate Vista-specific features like
Windows Sideshow. This technology allows next generation laptops (code named
Newport) to show a second, smaller screen on the laptop lid. This system runs even
while the main laptop power has ceased, providing email, calendar and a whole host of
other features. However, it appears that the implementation has been slow to gather
momentum in this particular case.

Will Vista deliver this? Or more accurately, will Vista allow us, as software designers and
developers, to deliver perfect user interfaces? Gartner Inc. analyst Michael Silver believes
that the year 2009 should see a noted shift in worldwide Vista installations, already
predicting it to eclipse Windows XP. According to Microsoft (Securities and Exchange
Commission Microsoft Corporation Quarterly report #0-14278), an estimated 80% of all
new PC-based computers sold will be pre-installed with Vista and a steady upgrading
through business will occur as the security models improve and business requirements for
security of personal data increases.

Microsoft predicted (or just told anyone who would listen): Vista will be the quickest
adopted operating system in history. I’m not so sure that this adoption wave is the reality
at the moment; however, designing and developing better applications through improved
user experience is the one thing that could push users into upgrading.

All the predictions are based on the maturity of the Internet as an information delivery
mechanism. If you observed the Internet and the changes that occurred when dynamic
rich content first began showing itself, you would have seen how companies were able to
expand their business offerings to online customers in areas that were previously thought
to be too complicated for the average nontechnical user to follow. Suddenly, holiday
booking engines and online flight ordering businesses were able to provide live pricing
data that enabled potential customers to shop for the best deal and a myriad of other busi-
ness sectors could engage their current and potential customers by explaining their
processes more clearly (visually as opposed to verbally by a sales person on a telephone)
and in a nontechnical way.

From a user experience point of view, given the choice between two websites, even the
most nontechnical users will opt for the more professional looking website, because

5The Next Generation User Experience

1

subconsciously they believe that if a company has put great efforts into making things
easier to view, the company must be more professional in their approach and will almost
certainly treat personal information and security details with the same high quality of
care. Of course, this is not always the case, and is a reason phishing attacks are so success-
ful—but that’s another story.

This does, indeed, prove the case that the best product with the most features does not
always guarantee success for a business. You need a door opener, a way of first attracting
the customer. Then you can educate them on the features and benefits of a given product
or service. The main thing is that you got them interested in your offerings first, before
that of your competition.

So, why would people continue to use desktop applications over web-based applications?
The features and abilities of any given web or desktop application are directly linked to
the code accessibility permissions of the client. The web will continue to be a delivery
mechanism for partially trusted applications, whereas the desktop will continue to provide
unrestricted high speed features, unbound by prohibitively expensive bandwidth limita-
tions that still exist in countries like Australia and Ireland, to name two.

Where Is Your Stuff?

The level of trust the proponents of online applications place in the companies provid-
ing such services is interesting. Take any online application, such as a word editor, that
also saves your work online. Do you really know where your material is? What happens
if the company goes broke? Even the biggest companies go broke—anyone remember
Enron? Don’t be fooled into thinking it can’t happen again!

How This Book Will Help You

The use of Blend in real-world environments has been a topic that not many people have
wanted to discuss. Maybe that’s not true, but it is difficult to find others that think about
it in depth. On the surface, the discussions have been all about the nice flashy demon-
strations, the eye candy side of the promise that Blend brings—the Kool-Aid—as one of
my U.S. associates refers to it. The promise I am talking about is designer/developer
collaboration.

It’s one thing for people, even Microsoft, to talk about designer/developer collaboration,
but actually making it work in the real world can be quite difficult. I thought that, aside
from helping people (both designers and developers) to use Blend, I might also be able to
provide some instruction in using the tool(s) so that others don’t get the headaches I did
when implementing Expression Blend in projects for the first time. You will still get some
headaches—that’s just a given!

The Tools

When I talk about the tools, I am talking about the classification of tools that I see as
being necessary to implement the collaboration promise for creating User Interfaces.

6 CHAPTER 1 Introduction to Expression Blend

. Expression Design or other graphic design packages that are capable of export-
ing Extensible Application Markup Language (XAML, pronounced “zamel”)

. Visual Studio for solution architecture and .NET code requirements

. Expression Blend for the interactive designers and XAML architects

These three tools (along with the right workflow), not just one tool by itself, allow this
promise to be delivered. Of course, people have their own preferences in their choice
of tools, so feel free to insert your favorites. This tool package, however, is the focus
of this book.

The best advice is to embrace as many designer/developer tools as you can, and then
decide which ones are good and which ones are not. As a result of trying each tool, you
will know which are best suited for a particular purpose when it comes time to deliver.

Expression Blend is a designer’s tool because it has no true development language within
it (it has a script but not a language). This does not mean that only designers should use
it. Yes, you use .NET code in the form of C# and VB.NET to create the backend functional-
ity for your controls and objects, but inside Blend it’s all about XAML. The Blend UI serves
as a visual aid in creating XAML scripts.

Before going any further, it is important to clarify the term designer. It is just too broad to
be used often when discussing Expression Blend. There are many types of designers: inter-
active, graphic, and industrial to name a few. These individuals may see the term in rela-
tion to what they know of the product and think that Blend really isn’t aimed at them at
all. Blend can be used by most, if not all, classes of designers. However, it is most suited to
the interactive designer—the designer who creates the workflow and user processes that
are intended to create an experience.

Blend certainly provides several excellent services in real-world projects:

. Prototyping—By creating a functional prototype using Expression Blend, properly
constructed UI solutions are available to the production cycle immediately, provid-
ing a massive productivity gain and reducing development lifecycles. Prototyping
also removes an additional layer of interpretation that is traditionally performed by
developers that can radically change the end user’s experience if incorrectly imple-
mented.

. UI process development—User interface processes can mean the difference
between high and low application productivity. Involving potential end users in the
design and development process is always advisable. Being able to modify the inter-
face to suit the users’ requirements with Blend is certainly a benefit to the end solu-
tion. Previously a designer may have needed to report end user feedback and
changes that were needed to a developer. At that point, the whole “interpretation”
issue was raised again.

. Animation production—Blend provides a simple, easy-to-use storyboarding mech-
anism for animating object properties that allows designers to control motion and
workflow while, at the same time, giving developers a simple reference to execute
when the specific animation is required.

7The Next Generation User Experience

1

. Visual asset creation—While not a primary role for Expression Blend, the applica-
tion is stocked with enough tools to allow graphic designers to create exceptional
visual assets. Using the built-in resource management system also allows those assets
to be shared and reused with minimal work, increasing productivity and ensuring
visual continuity within the solution.

. Resource file management—Expression Blend allows you to create, modify, and
utilize templates and resources stored in the working files, the application, and/or a
XAML file called a resource dictionary. This means that one designer could create a
certain style or a specific functionality of a certain object, a button for example, and
then provide that same group of styles and functionality to everyone else working
on the solution. This is perhaps one of the most powerful features of Expression
Blend.

. XAML architecting—This is how Blend is used in a real-world project—a role to
which Blend is particularly well-suited. XAML architecting is about taking all the
assets from both designers and developers and putting them together. Visual Studio
plays a big part in this process as well; but, without Blend combining assets would
be a very difficult job indeed.

Why the Architect Title?

By definition, an architect is someone who creates a solution. That is a pretty broad
description. In software terms, object structure and communication are not the only
parts of a solution that need to be architected; interaction and workflow should also be
designed. Because there was no term describing the role that constructs those parts
of the solution, I created one—XAML architect.

Of all the roles previously mentioned, the XAML architect (XA) is the role which embod-
ies the prescribed collaborative process—the best in a real-world scenario.

The day-to-day process surrounding the XA is asset designers mocking up and creating
beautiful pieces of art and coders implementing required functionality that brings said art
to life. If these designers don’t understand .NET development and the coders have no idea
about animation, then without the XAML architect to bring their contributions together
in a meaningful way, no collaboration can exist. Neither the designer nor the developer
can understand or appreciate the requirements of the solution as a whole.

It is the job of the XAML architect (XA) to own and control the design and development
of all XAML-based assets. The XA understands the creative vision of the graphic designer,
the user experience and workflow concepts of the interactive designers, and how to imple-
ment functionality in .NET code to ensure animations, binding, and other pieces of the
functionality work with the user interface (UI) specification and the user experience (UE)
expectation.

This is where the power of Blend can be exploited to its capacity. The name says it all,
really. As an XA, you blend the code and visual assets to produce the UI and UE.

8 CHAPTER 1 Introduction to Expression Blend

This blending of design and development is the most important concept you should take
away from this book.

The great scientist Louis Pasteur once said, “Chance favors the prepared mind.” That
means: If you expand your knowledge and gain experience that covers all the angles, then
there is no such thing as luck—just opportunities. While a Zen Monk may disagree with
this interpretation, no one could argue that keeping an open mind in today’s world isn’t a
good approach.

Now is the time to gather experience, understand the potential, and prepare for the
opportunities. This book is not going to give you all the answers, but it should make sure
your head is screwed on the right way before you start your journey. I have tried to
change the dialog you see in most technical books, because I want you to think of the two
of us sitting in a pub somewhere having a chat over something cold, may be a beer, what-
ever suits your fancy!

The chapters are in the order in which a non-developer (but still technically astute)
designer should be learning the skills necessary to use both Expression Blend and Visual
Studio. There is no escape from Visual Studio if you want to use Expression Blend for
anything more complex than creating XAML-based visual assets. Another reason for the
chapter sequence is that there were moments during my initial experiences with
Expression Blend and XAML that I wish I knew some things earlier. This chapter sequence
addresses the concerns I had.

Unlike the rest of the book, this first chapter is one big rant. If you continue to read it,
you will understand why it is important for you to grasp the new technology and how
you might begin to change your working vision to become one of the new breed of XAML
architects that is required to make the technology work successfully in enterprise level
development. Of course, you may just want to continue to be a designer of a certain disci-
pline or a developer—that’s fine. I have tried to cater to diverse needs.

If you are just itching to get into the code, please be patient. Shortly you will be up to
your neck in code and markup, but you will understand why you are doing certain things,
and more importantly, what you are doing. You will understand the mindset of others in
your working arena and should then be ready to climb this very steep learning curve.

Above all, remember: We are dealing with interfaces, user experiences, coding
concepts, architecture, and how to bring this all together to capture, amaze, and
empower your end users.

The Business Mindset of the End User

Think back to Minority Report for a moment. Visually speaking, those UI’s are amazing.
When you think about it, however, we are not too far away from that right now.

In my experience over the last 15 years working in several countries on projects of all sizes
and budgets, the single biggest issue facing the development of these UIs in mainstream
applications is a time/cost ratio that rarely has enough time or money assigned to the
commercial development lifecycle. The one exception to this rule is the game/entertain-
ment industry. They understand the importance of visual perception.

9The Next Generation User Experience

1

Visual perception is the awesome use of a designer’s imagination, where he or she envi-
sions user interfaces that are tailor-made to provide an immersive, state of the art naviga-
tion system that engages users so that they are excited about what they are doing.
Although these navigation menus often don’t provide any more functionality than could
be achieved with the good old File menu ribbon system that is available in simple applica-
tions like Notepad.exe, the users’ visual perceptions are that the interface is more engag-
ing. These UI’s actually draw upon the users emotional pool.

Most of the bigger companies are now starting to pick up on the fact that if you engage
your user, make him or her feel good about what they are doing, the user’s productivity
goes through the roof. Regardless of whether another product has more features, higher
productivity outweighs the lost feature benefits. High productivity is like a virus. If you
walk into a room and everyone is smiling, you will naturally feel better. Similarly, in an
office environment, if some staff are productive and excited, more people tend to get
onboard and feel productive and excited. This is a huge benefit to business.

Companies like Microsoft have always tended to place particular importance on the stan-
dardization of interfaces. Using certain user interface items such as the Ribbon in Office
products even have strict guidelines that must be followed to comply with the end user
licensing. For most there is a Vista User Experience Guideline document that provides for
requirements on such things as menus, control layouts, accessibility, and more. The logic
here was that people would be more inclined to want to learn and continue to use an
application if it had a familiar feel. That logic is still partly true today.

Familiarity is a strange sense. Just the other day I was helping a relative discover the joys
of modern day computing. He happened to mention to me that the staff in his office use
Classic settings in Windows XP. He had no idea what this meant. It was just something he
heard them say once—it is their preference, or simply what they are comfortable using
and feel most familiar with.

As an experiment, I showed him the standard Windows XP interface and explained where
things were. Then I switched the view to Classic view. His response was that it looked dull,
didn’t really give him much in the way of the Start Menu, and that he would find it much
easier to remember the pictures (he meant icons) as opposed to just the names of items in
the control panel application, for example.

In the 21st century, the general population in most developed and technically advanced
countries is becoming more tech savvy than ever before. People do not need to be coddled
and can understand that moving a mouse and clicking on a button has repercussions. They
don’t need a paper clip (see Figure 1.1) telling them they have just clicked the button!

FIGURE 1.1 Just in case therapy helped you to forget!

10 CHAPTER 1 Introduction to Expression Blend

People are going to ask the question “Why should I upgrade to Vista if it doesn’t give me
anything new?” I respond: It is not about getting anything new. Vista and the software
designed for it help users work smarter, faster, and more efficiently by providing a frame-
work of smart common controls and a more visually intuitive user interface. Together
these elements ensure that all applications provide a familiarity while at the same time
making the responses to choices that the end user makes much clearer.

It is certainly fair to say that while technology has continued to improve and advance, the
opportunity to improve user experiences in software has not kept pace until now.
Compared to the Internet, which has seen a huge rise in back-end technology as well as
user interface design tools and standards in the last decade alone, application user experi-
ences are far behind. Think of all the new languages that have come along to facilitate
web applications: the more frequent use of Ajax to improve user experience and perhaps
the biggest advance—the introduction of Adobe Flash and the shockwave format (.swf).

This improvement in technology is now affecting desktop applications, through user
interface design. The power of the desktop application will always surpass that of the web
application, primarily due to security; but, until now all of the desktop applications have
been a tad boring and deployment has been nothing short of a nightmare. In the coming
years ever more importance will be placed on the user experience, which is directly linked
to the quality of the user interfaces that we will be building for our end users.

Vista and .NET Framework 3.0/3.5 (Formerly WinFX)

“Where is my Minority Report?” I hear you say. Well like Tom, you do not have a Minority
Report. You can be 100% sure of what your future holds (hopefully not murder!) but it will
contain Vista, high definition (HD) and high fidelity content, glass and gel interface
objects, Expression tools and .NET programming languages. Microsoft is betting the house
on it, so to speak, and they usually get what they want—eventually.

There are other companies out there producing products for designers and developers that
are XAML based, like Aurora by Mobiform Software Inc. Regardless of what advanced
features they have implemented, I can tell you that Microsoft are working a few years
ahead so Expression Blend and their other products should ultimately work more effi-
ciently with other integrating technologies that will become fulfilled with Vista, and even
further ahead with Windows 7 and beyond.

If you have used Microsoft Vista, you will have noticed how Microsoft appears to have
finally gotten an outstanding balance with their product with respect to familiarity, visual
appearance, and general feel. As you go deeper into Vista, you will see that some of the
dialogs have much the same content and layout as they did in Windows 2000 and XP.
Figure 1.2 illustrates the similarity. There are slight differences in the user workflow in
some cases, but the visual continuity is always the same throughout the operating system.

Vista also brings an outstanding addition to the operating system control base, the use of
Bread Crumb controls. These controls have several features that make the task of navigat-
ing more flexible and more intuitive. Let’s take a look at the file explorer application
window (see Figure 1.3).

11The Next Generation User Experience

1

FIGURE 1.2 The Windows XP and Vista Computer Properties applications.

You can now navigate from within any hierarchical level along your path instead of
getting repetitive strain injury (RSI) hitting the back button way back on the first level.
You can enter a path directly as you have always been able to do, complete with history.
You will also get visual feedback as to the status of your navigation from the control being
used as a progress bar in the background. That is most handy when navigating large file
sets or across really slow networks.

Navigate back up
to the parent item

Explorer’s
Breadcrumb

control
Navigate within
this folder level Current Navigate point

FIGURE 1.3 The Vista File Explorer with Bread Crumb control.

12 CHAPTER 1 Introduction to Expression Blend

Go Back

Go Forward

Review history of navigation

FIGURE 1.4 Vista application Navigation buttons.

There are lots of controls like Bread Crumbs and Navigation Services that have been added
to Vista. The important thing to realize is that better use of both graphics and functional-
ity has improved the application and user experience tenfold. The Vista navigation
elements are shown in Figure 1.4.

The Windows Presentation Foundation (WPF), part of the .NET Framework 3.0/3.5,
provides us with hardware-accelerated graphics power for standard applications that have
previously been available only to DirectX and OpenGL applications. Integrating DirectX
into a standard desktop application certainly has some great benefits, if not interesting
results, but the development time is enormous—not to mention the performance issues
designers and developers face when dealing with such a huge variation of end user
machine specifications.

Increased visual performance through hardware-accelerated graphic pipelines includes
more than just getting glass window borders in your applications. It includes the ability to
apply transforms and animations to objects and use automated layout and true scaling
with vector images that don’t decay with size. By shifting all this graphic processing to the
GPU, a huge load is removed from the CPU which, in itself, gives rise to massive perfor-
mance increases.

A Developer’s Note: Vector Graphic Versus Bitmaps

The difference between vector and bitmap graphics is the formats they comprise. A
bitmap graphic contains thousands, sometimes millions of pixels, which represent the
actual image. When scaling, the number of pixels is either decreased for reducing or
increased for enlarging the image. The problems come into play when enlarging an
image beyond its original size. The computer essentially has to guess what pixels
should contain what color because when an image is increased in size, the pixels do
not enlarge; more are merely added to the image to fill the required space.

Vector graphics, on the other hand, are instructions on how lines, points, and curves
should be drawn to form complex shapes, rather than what these shapes should look
like. The advantages are that the image can be increased in size or scaled without loss
of quality. The disadvantage, however, is that while vector shapes can be complex, they
are no match when it comes to producing an image with high-quality photo realism,
which is best suited to the bitmap.

13The Next Generation User Experience

1

The key to all this interactive magic is XAML (the Markup script-language supported in
Expression Blend) and its integration with the development language base of the .NET
Framework 3.0 and 3.5. Visual Studio 2005 with extensions from the product code named
Cider was a preview of Visual Studio 2008, which is now available. This tool is home to
developers, allowing them to modify XAML as well as UI elements within a design surface.

XAML is the only reason designers and developers—and you as an XA—will be able to
work together as a team . The XAML markup is the common component that binds all
parties together, the glue, if you will.

So, why use Expression Blend if Visual Studio contains a design environment? The design
environment in Visual Studio is simple at best at this stage. It contains no methods for
applying animations through a timeline interface, nor does it have a control template
editor. In other words, it is a limited design interface made for developers and not for
animators or designers—and certainly not for an XA who needs a clear understanding of
the end user workflow. Conversely, Blend is a designer’s environment that switches
between both XAML markup and .NET code in Visual Studio to allow you to apply CLR
coding requirements. Both Visual Studio (or the .NET Framework to be more accurate)
and Expression Blend share common UIElements. That is why we want to look at
Expression Blend as an XA’s tool. Understanding UIElements visually is far easier than
looking at a heap of XAML markup and trying to picture it in your head, although in
time you will be able to do this as well.

What I am trying to say is that with these new tools and pseudo languages you will be
able to quickly create a “Minority Report” type of interface for Vista or XP. You, most
likely, already have the majority of the core skills required. I am going to show you how
to use those skills to give you a head start for getting into the new technology.

Getting your hands dirty is the only real way of understanding and perfecting your use of
XAML and integrating it with the .NET languages. We will use only C# in this book
because it is the language used most commonly for this purpose at the time of writing.

Does It Really Matter What You Use?

There is always a lot of conjecture about which language is best: C#, VB.NET, C++, or
any of the other .NET-compliant languages. The fact is that all these languages still
compile to almost identical MSIL code. Performance differences between them are neg-
ligible. Learn, at the very least, both C# and VB.NET to a professional level. This will
increase your value as well as increase the number of jobs you could be qualified for
when time comes to move on.

You do not have to be a coding guru to get great results from WPF—but it always helps. I
am going to assume that you are a beginner programmer or designer. It would be helpful
if you understand some of the core functionality provided by the .NET Framework within
client application development terms. Don’t worry if you haven’t opened Visual Studio
before, though. Chapter 10, “Visual Studio: C# Primer,” provides a designer’s view of
coding to help you on your way.

14 CHAPTER 1 Introduction to Expression Blend

If you are a developer, note that I am not going to try to convert you into a designer
(which is more of a natural skill). Conversely, I am not trying to magically turn designers
into developers. Instead, this chapter is intended to show you a little of how the other
half lives, so to speak, so you understand and can liaise with teammates with other skill
sets. The first half of the book is more oriented toward designers, focusing on Blend and
XAML. The second half is more focused on developers, bringing in the concepts of the
.NET coding requirements that will greatly extend the functionality of your applications.

Windows Presentation Foundation (WPF)
Windows Presentation Foundation (formerly code named Avalon) is a collection of display
technologies—or a display level subsystem—that allows developers to take advantage of
the latest graphic card hardware acceleration features. WPF is the father of XAML; it is
what allows the XAML language to be used in a declarative way. The term declarative
means “to describe” so XAML allows you to describe your applications UI functionality
and components.

Through learning Expression Blend and a little .NET code, you will have the ability to
compile your solutions into either a Silverlight or desktop deliverable. Technically, there
are slight differences to some of the methods you use, but for the most part you will
understand how both Silverlight and executable-based WPF applications are created.

Silverlight enables your applications to be viewed in a browser-hosted environment like
Internet Explorer on any operating system that has the Silverlight plug-in installed. This
gives the user the same experience they would get if they were using your application
from a compiled .exe file running on a Windows desktop—or so the theory goes.
There is some reduced functionality in Silverlight, such as the ability to create hardware-
accelerated 3D visuals for example, so care must be taken to understand the construct you
are ultimately deploying to and the users you are working for.

Microsoft describes WPF as “a unified API, allowing developers to present high definition media
content from within their application constructs, as well as providing extensibility to the .NET
Framework for Vista specific technologies.” This, in reality, means that the best of both
WINForms applications and web applications are available to you in WPF applications
running on either Windows Vista or Windows XP (with Service Pack 2 and the .NET
Framework 3.0/3.5 installed).

It has long been a nightmare for the UI Developer to ensure that content and visual assets
were being managed in terms of layout. Before a generic entry level set of graphic cards
(8Mb) came along, changing screen resolutions and color settings all pointed to early
retirement for a vast number of us. Things have been getting better, certainly since .NET
came along. Now WPF has once and for all sorted out such issues; never before has it been
so easy to create an application that can adapt its content layout entirely based on the
runtime environment.

I am writing this book on a laptop with a 17" widescreen display running a resolution of
1920 × 1200. Even though it is one of the most powerful laptops on the market, some of
the biggest companies in the world have managed to produce software that does not

15Windows Presentation Foundation (WPF)

1

layout correctly on it. One of the biggest joys I have found in creating applications with
Blend is that the layouts work—perfectly every time.

It may take a little while to get your head around using Blend because most of the time
you no longer need to specify a control’s width and height. You are now working with
dynamic flow and elements layout and positioning that is based on relevance to its parent
and the construct it (the parent) provides. You can still specify width and height, but in
most cases this will be a minimum width and a minimum height value. See Chapter 5,
“UIElement: Control Embedding” for detailed information.

Silverlight

Microsoft unveiled the plans for Silverlight in the second quarter of 2007. Along with
Silverlight comes the promise of a cut down, cross platform CLR plug-in that would make
creating and distributing XAML-based applications across differing operating systems and
devices simple. At the time of writing, Microsoft has just released a preview version of
Expression Blend 2.5, which also showed the intended functionality that Blend will be
providing in future for this new technology.

Silverlight delivers a subset of the WPF core and will allow loose XAML-based applications
to run as pseudo web-based application or WBA. You can write the functionality for your
application in your choice of .NET-compliant languages and/or JavaScript. So, Silverlight
applications differ completely from another type of Internet-delivered XAML application
called an XBAP.

XBAP applications run as a compiled application in a browser that supports additional
features such as 3D, where Silverlight applications don’t. There are many more differences
that will change before the final incarnation of both these technologies are ratified.

In either scenario, though, you must consider that when your application (Silverlight or
XBAP) runs in a browser type environment, it is running in what is known as a partial
trust sandbox. In geek speak, that means the application is not installed on the end user’s
machine (although the plugins and other delivery mechanisms are).

Partial trust has some rules that you must follow. It is essential that you be aware of your
application requirements before deciding to try and deploy your application in this
manner, in either format. The rules are simple rules that govern whether an application is
able to run based on the user authentication level and assigned roles or code privilege that
is required by certain tasks, controls, and objects.

The essence of the partial trust sandbox is that it has been developed using the same secu-
rity model that is available to all .NET developers using Code Access Security (CAS). This
means that varying levels of an “application code” can demand and must obtain the
correct security privileges before that code can execute.

In the XBAP deployment scenario, you will find tight controls on File read and write
permissions and registry actions, as well as the inability to call and execute most areas of
unmanaged code. From an application-specific point of view, you can’t launch new
windows from your application. You can’t have application-defined dialogs present; you
can’t even apply BitmapEffects within your application. However, at the time of writing,

16 CHAPTER 1 Introduction to Expression Blend

the biggest concern is that you can’t access all the features of Windows Communication
Foundation Web Services. In other words, you are still restricted to only using data from
within the same executing domain. Undoubtedly, Microsoft is working very hard to
change these restrictions, and you should always seek the latest information from
Microsoft with regards to such restrictions.

Exceptions to the Rules

There are exceptions for some forms of data, like video, for example. Your application
will be able to display a video file hosted in another domain, but your application will
not be able to access the raw data from the file that is playing.

Silverlight allows you to deliver streaming video content very efficiently through the
browser. Expression Media Encoder assists you in packaging your video for streaming
and creating Silverlight templates that are ready to go.

What Are BitmapEffects?

BitmapEffects allow you to apply effects to resources used in WPF applications such as
Shadows or Ripples, similar to the types of effects you get with graphic applications
like Adobe Photoshop. There are several effects that come as standard; and you can
even write your own, although this is very convoluted at present. Companies such as
Atalasoft are already producing libraries that you will be able to import and use.
Technically though, at present BitmapEffects use software rendering in Windows; so
they don’t use the power of the graphics card, which will inhibit the performance of
your application. The greatest concern, though, is the performance hit they place on
Expression Blend in the design environment. It’s your choice to use BitmapEffects
or not.

Microsoft has indicated that hardware accelerated BitmapEffects will be available for
the release of .NET Framework 4.0 possibly in late 2008 or early 2009.

I have described what has been slated at the time of this writing. Be sure to check with
Microsoft to see if any of the restrictions have been lifted, or if more have been added. It’s
all about security, so it is important to understand it.

There are still many areas within an application that can run without issue, so don’t be
put off by the restrictions. Instead, look at it as a greater challenge to your initiative. After
all, you can still incorporate 2D, 3D, and full animations in XBAPs, 2D in Silverlight, and
image and audio features, flow documents and much more in XAML-based offerings—not
to mention that your controls are no longer the clunky old CLR based controls.

Silverlight is exciting and it’s fast. By learning Expression Blend and a little .NET develop-
ment you will be able to create rich Internet applications (RIAs) that will become a stan-
dard in future development scenarios.

17An Introduction to Expression Blend and XAML

1

Expression Blend Versus Visual Studio
Expression Blend and Visual Studio are not really in competition with each other; instead,
they are being developed to work with each other. Think of Blend being the intermediary
between a designer-specific application like Expression Design or Adobe Illustrator and
Visual Studio.

There is much rhetoric as to the potential for Blend being slowly merged into the Visual
Studio environment. I would see this integration as a blow to the workflow that will exist
between designers and developers if you start forcing designers to try and navigate the
Visual Studio IDE. If you implement the role of a XAML architect, there is no need for a
designer to ever worry about Visual Studio, and a developer needs only to concentrate on
data structures and logic.

In the end, I believe Microsoft will see the value of the two products as they stand alone
but in support of each other—and as the only tools fit for the purpose of the XA’s role.
Only time will tell, but for now, using both products simultaneously is workable, although
a little clunky.

Is the XA a New Role?

At the time of this writing, the XA role was an area very few people understood, even
those at Microsoft. I did find a few people that understood and had come to this
conclusion themselves. Two such people are Darren McCormick and Jon Harris of
Microsoft, both User Experience Evangelists. Both could see a clear need for the role
to be defined and promoted.

It’s not really a new concept. Most large design agencies have, for quite some time
now, implemented such a role with projects involving Flash, in which designers were not
always competent in Action Scripting.

There are indeed pros and cons to both environments. As it stands, I, personally, could
not spend any great length of time trying to design an application experience in Visual
Studio. At the end of this book you will make your own decision on how you like it.

Visual Studio does not provide for some of the functionality that Blend provides, such as
an easy to use storyboarding tool to create animations and define triggers. Blend also
handles data binding elegantly, which is a very important area of most applications. One
of the biggest pros for Blend is that it will always give you an accurate depiction of the
XAML (and code to some degree) live in the design-time environment, something that
Visual Studio (in WPF solutions) continues to struggle with.

An Introduction to Expression Blend and XAML
If you believe that Expression Blend is an application best suited for a role like an XA,
then you also understand and appreciate that its goals are to allow the rapid creation of
user interfaces (UI’s). Perhaps the area that you may have heard about is XAML.

18 CHAPTER 1 Introduction to Expression Blend

Terminology

Throughout the book, XAML code is referred to as markup. This is common with most
XML-derived languages.

The term code is used when referring to .NET developer language code like C# or
VB.NET.

Expression Blend is itself written with XAML and WPF application development technolo-
gies such as Cider extensions for Visual Studio. Although there are marked improvements
on the performance of the Blend application compared to the very first preview versions,
the overall concept is starting to be accepted by the wider development/designer commu-
nities as a whole. They understand that performance will improve as the technology
matures, which has been proven now with the release of Visual Studio 2008 and the .NET
Framework 3.5, both improving the ability to develop for the platform.

You will find out pretty soon, if you like working with XAML. The Blend design interface
may take a little longer to get into, simply because it is a different tool with a similar
ideology as other timeframe-based design environments (or so it may appear).

When I began using the Expression Interactive Designer Community Technology
Previews, I was excited at first. This was finally justifying everything I had been saying to
development managers and others who couldn’t grasp the importance of a great user
interface—and more importantly, a great user experience—for years.

When I had been using it for a few days, I got angry with certain elements of it. It just
wasn’t working like Adobe Flash does. I couldn’t understand why designers would want to
use it, considering the complexities it would bring to their lives and how their confusion
with .NET code and the application features would eventually turn into hostility toward
the lowly developer who just wanted to provide the data for a list box and not have to
worry about how it looked. It all came together for me a few days later (well at about
three in the morning actually) during one of those rare moments of absolute clarity.

The combination of (Designer, Blend, and Visual Studio) is not about how a control looks,
it’s about how collections of visual and logical assets look, function, and ultimately
perform as a singular unit to provide the overall user experience. Blend is not just for
designers (or dare I say developers), but it is the head of a toolset aimed at bringing both
parties together with a technology that can facilitate stunning designs with awesome .NET
application performance.

I can’t reiterate enough how important the glue—XAML—is! Graphic designers indirectly
use it to make visual assets; interactive designers mold it with Blend; and together they
create UIElements that integrate and use specific functionality that adds to an overall
visual perception. Developers can use it to implement the designed functionality with
additional feature sets.

An example of how XAML allows applications to be created better is when a designer
produces a storyboard that shows a gorgeous list box that has glass highlights and
rounded borders. The next storyboard shows that when a user clicks on an item in the list

19An Introduction to Expression Blend and XAML

1

box, the selected item flies across the screen. There are very few instances where a conven-
tional WINForms developer would take the time to try and produce this result as per the
storyboards in a WINForms environment. But, by working together as a team, the XA
makes this entirely possible with Blend and Visual Studio, using the XAML visual assets
created by graphic designers. It is also extremely quick to build applications compared to
the development time on other existing platforms. The following equation says it all:

(developer + designer) / time = speed = pub2

The remainder of this chapter is an overview of XAML, complete with explanations of
some primary levels of the XAML structures, how they relate to each other, and how it
relates to code classes produced in .NET. In Chapter 4, “XAML for Beginners,” you will
study XAML in a far greater depth.

Before you look at some XAML, there is another issue that struck me when using Blend
in the early stages. There is no Source Safe integration. Enterprise developers instantly
shy away from products that don’t have such integration. But then again, it could make
you think a little more about the architecture. In a strict sense, your development envi-
ronment should always contain some sort of source protection system. That is when the
use of multiple client-side application layers came to me. By using this architecture, you
can still implement a source protection system that will not affect the UI development.

Layered Understanding

From now on, when you think about the front end of your application, you need to think
about layered development, similar to multi-tier or N-Tier development in which you have
specific application layers that perform specific tasks for the entire application to function
and perform in the manner in which it was designed. Think about your front end having,
at the very least, two layers which I describe in detail for clarity.

The Graphical UI Layer
As the name suggests, this layer is where your user interface objects function within their
own scope. You, as the XA, now take XAML markup provided by a designer or the design
team and make it into a button or other required object in Blend. Previously, if you
wanted this button control to have a rollover effect when the mouse moved over it, you
would need to provide all the programming that not only created the button in the first
place, but also the code to animate it or make it interact with other objects.

The designer creates the visual asset in a design tool like Expression Design that exports
XAML. You, as the XA, put all the pieces together; in fact, as you will see, XAML is merely
a representation of a .NET code class. As such, it has the power to set properties and apply
resources and data binding to-from objects, UIElements, plus much, much more. Putting
the design XAML together with the functional XAML is simple.

Let’s say, for example, you have made a simple calculator application. When the user
clicks the = button on your form, the buttons click handler method goes about taking the
inputted values from other controls and or members in the form and then displays the
output directly on a textbox control. There is nothing wrong with this; but to get my

20 CHAPTER 1 Introduction to Expression Blend

Control layer containing
UIElements (buttons textbox
etc) declared with XAML

XAML MARKUP - GRAPHICAL LAYER

<Button Content=“CE”/><Button Content=“CE”/><Button Content=“CE”/>

.NET CODE-LOGICAL LAYER

This layer takes the input values and uses that
information to return values to the GUI

private int AddTwoNumbers(int Number1, int Number2)
{
return Number1 + Number2;
}

Input data Output data

FIGURE 1.5 Data flow between the layers.

point across, now we are not going to provide this method of application logic to your
simple calculator application.

In your new Blend applications, you or your developer team would go off and write a
logic layer that receives inputs and provides outputs back to your graphical layer (see
Figure 1.5).

The Logic Layer (Class Library)
This layer is where developers author the code to interact and sometimes control the
UIElements that will appear in the scenes, by way of events and property change notifica-
tion. So, to continue with the previous example of a simple calculator, the logic layer (I
prefer engine or wrapper) provides public methods with which each click of a button
simply adds numbers and symbols for the underlying engine to deal with. The UI layer is
free to carry on with any animations or UI-derived actions without the sequential hassles
of also trying to deal with the application logic.

Now when the user clicks the = button, the engine is called by the UI graphics layer and
goes to work with all the various inputs it has received. It then fires a result out through
an event or property change notification where the graphics layer (which has subscribed to
this event and or notification) then does what it needs to do in order to display the result.

You may choose to have the graphical assets flash red or go semi-transparent, who knows?
The point is that the two layers remain completely separated, which allows developers to
easily add unit testing with NUint or a similar tool, as well as gives you a complete set of
functionality that will be the same regardless of the front end UI or OS on which you are
running the code. The biggest advantage to this method, it has to be said, is from the
developer’s point of view. When they need to fix bugs or make maintenance changes, they

21An Introduction to Expression Blend and XAML

1

only need to make them to a single code library before testing and redistributing the
application. The advantage from the designer’s point of view is that they may change the
XAML style template applied to the buttons to give them a different look, but the user
experience is maintained by you, the XA, controlling the collaboration between the devel-
oper and designer in Blend.

XAML Representations

So what exactly is XAML? People may be confused to learn that XAML does not contain
objects, shapes, UIElements, animations, or transforms for that matter. XAML is simply an
instruction set, and definitely not a programming language.

What Is the Difference Between a Scripting and Programming Language?

It’s hard to answer this question without the thought of being skewered by certain
people who definitely have very strong views on the subject. My defining characteristic
is that a script provides a means to drive an application, while a programming language
provides for a script to drive it.

I searched high and low, and still could not find a definitive answer. I did find out that
the debate is very much alive on compiler newsgroups!—Freaks.

When these instructions are parsed to the WPF presentation engine, they are then
converted to an object tree in memory. So you can think of XAML as being a type of seri-
alization format for WPF, taking all the settings that you specify and then producing your
application as the result.

Assuming that you understand the concept of XML formatting and you also grasp the
concept that XAML is an XML representation of .NET code objects, take a minute to let
the following settle into your mind.

.NET classes are represented in XAML as tags. For example:

<MyClass></MyClass>

Object children and or complex properties are represented by nested elements. For
example:

<MyClass>

<MyClass.Child> Additional Children </MyClass.Child>

</MyClass>

Attributes are properties or event handlers, for example:

<MyClass Property=”100” Click=”Click_Event”>

<Child> Value </Child>

</MyClass>

To put this into better perspective, let us look at a simple application example.

22 CHAPTER 1 Introduction to Expression Blend

FIGURE 1.6 The simple button application.

XAML/CLR Example
We are going to examine the same application (shown in Figure 1.6) twice, once in C#
and then in XAML.

As you can see, we have a simple window with a single button shown. The button
contains text, but you should bear in mind that we could have used an image or another
control (UIElement) as the content of the button if a designer required it. Listing 1.1
provides the C# code for this application.

LISTING 1.1 C# Example Application

public partial class Window1 : Window

{

public Window1()

{

InitializeComponent();

//button1 declared within the partial class initializer

button1.Width = 100;

button1.Height = 100;

button1.Content = “Window Licker”;

button1.Click += new RoutedEventHandler(button1_Click);

}

void button1_Click(object sender, RoutedEventArgs e)

{

MessageBox.Show(“Simple as that”);

}

}

In the code example shown in Listing 1.1, we are setting the properties of the button
shown in Figure 1.5, just as a developer would do in a WINForms application. The text is
applied by setting the Content property of the button.

23An Introduction to Expression Blend and XAML

1

Don’t worry too much about following the specifics of the code if you are not familiar
with C#. Just compare it with the XAML code shown in Listing 1.2, particularly with refer-
ence to property names like Width and Height that XAML sets at design time.

LISTING 1.2 XAML Example Application

<Window x:Class=”Chapter_01_XAMLReps.Window1”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”Chapter_01_XAMLReps” Height=”300” Width=”300”

>

<Button

Name=”button1”

Height=”100”

Width=”100”

HorizontalAlignment=”Left”

VerticalAlignment=”Top”

Content=”Window Licker”

Click=”button1_Click”/>

</Window>

You will note the property names are exactly the same. You may also note there are some
layout directives in the form of VerticalAlignment and HorizontalAlignment that we will
look at in future chapters.

This is a very simple example, but one I hope gives you a little insight into the core usage
of XAML. You can certainly do a lot more than just declare and set up a button with
XAML. As we go through the examples in the book, you will also be looking at both C#
and XAML markup to cement your understanding of the XAML/C# relationship.

Code/Markup Integration

When we talk about integration, we are referring to how objects and resources are
controlled within an application using either C# or XAML—or both. The key here is to
remember that XAML is declarative and can only be applied to those objects and
UIElements that are created in the design-time environment.

Although you can apply property setters to objects as well as data binding and dynamic
layout instructions, you have to remember that once the application enters runtime
mode, you need to apply any new dynamic integration through code alone. This is not to
say that you can’t add dynamic instructions in XAML; after all, the majority of all anima-
tions, trigger events like IsMouseOver for buttons, or even the “Click” event that we used
in the Listing 1.2 example, will be declared and set in XAML.

A simple but powerful benefit of the XA role is that because the XA puts all the pieces
together, designers and developers are not constrained by timeframes to deliver assets to

24 CHAPTER 1 Introduction to Expression Blend

each other. The XA can add buttons to the scene and apply the style template when the
designer is finished. The developers can just get on with writing functionality based on
inputs and outputs. Overall the deliverable time of an application is dramatically shortened.

I would like to think that after seeing the brief examples provided in this chapter you are
now starting to recognize the purpose of XAML as a declarative script, how simple it will
be to use, and how easy it will be for designer/developer collaboration under this work-
flow. Although some XAML scripts do get quite complicated to follow, once you have a
grasp of the core concepts you will be able to follow any of them.

Another point of interest is that Microsoft has tried very hard to ensure that the XAML
produced by the Blend designer does not become a mash of utter garbage that you need a
deciphering wheel to understand it. You should be able to add a UIElement to your appli-
cation, change some properties in the property palette within the Blend designer environ-
ment, switch to XAML view, and still understand exactly what you have just done. Of
course, you can test this by running in Split View mode and seeing the XAML being added
as you “draw” controls onto the design surface and vice versa.

The Benefits of Expression Blend
Besides working with a really cool product, you will probably inadvertently start using
more and more cutting edge applications to keep in line with the requirements of not
only Visual Studio, but also the changing landscape of the .NET Framework and the
various operating systems.

You will also pick up new, fresh ideas for designs and methods of working because you
will see how working with Blend and WPF has inspired others to reach for new ground in
ease-of-use control designs. Expect to see user experience discussions increasing. Those
discussions should also generate greater understanding of what is important, as opposed
to what was never perceived to be so.

Blend will have different levels of engagement for the different types of roles played by
those who use it. Interactive designers will use it for one purpose, while a developer will use
it in an entirely different manner. In the following sections, try to see how Blend may or
may not work for you in some areas and how it might be well-suited to helping in others.

The XAML Architect’s View

The XA will get most of the praise from the commissioners of a project. After all, they (the
commissioners) don’t care if an application can split a call into 16 threads to speed up a
data return by 0.0005 milliseconds. Most of the time, the big boys and girls (e.g.,
managers and directors) have no fundamental understanding of what it is you are doing
or how it will help with their business. The most important issues to them are higher
productivity within their workforce, a strong presence of professionalism, and brand
projection. Higher productivity brings enormous cost benefits, which can, by themselves,
justify the cost of development.

Perhaps the biggest benefit to a XAML architect is greater responsibility in projects which
usually (not always) end with the XA earning more money then a standard developer or

25The Benefits of Expression Blend

1

designer. XAs need to be able to speak different languages (designer and developer) effec-
tively and act as a mediator between the designer and developer camps. Translating
requirements and understanding the designers’ vision will enable an XA to make sound
architectural judgments about the requirements of the user interface layer.

In any environment in which the power base changes from designer to developer and
back, the XA will have the benefit of being in both camps. Even if the XA can’t perform as
a developer, just understanding their language and concerns is enough. As long as the XA
can appreciate and ultimately implement the visual goals of an interactive designer, the
XA will see his or her Christmas card list expand!

Blend, along with Visual Studio, will absolutely be the tool of choice for the XA because
the workflow between the two products will enable him or her to make quick decisions,
test updates, and merge new resources into a solution. Blend becomes more of a XAML
management tool for the XA than a visual design interface.

An Example of Power

To test how much of a benefit it is to have a producer/director-like figure (the XAML
architect) calling the shots on a project, crack open a game of Call of Duty 4 and take
careful note of the way in which the application has been produced. The game illus-
trates an immersive, state of the art design at its best. You have no confusion as to
what you are—or are about to be—doing.

These games are developed by teams of designers (interactive and graphic) and devel-
opers, but are ultimately produced by one or two people that act in the same capacity
that an XA would for a WPF solution. Immersive, emotionally driven applications should
be the end result that we strive for in standard application development.

The Interactive Designer’s View

Some day designers and developers will recognize the fact that unless the user sees it
happen on the screen, they will never be 100% sure it actually has happened. What I am
talking about is simple user psychology. As an example, I ask you: How many times have
you clicked on the Add to Basket button on a website and then had to go check the basket
because you were not entirely sure your goodies went in there? With Blend, you can show
the user, the item actually flying across the screen and into the basket to dispel any
concerns, negative thoughts, and bad experiences that the user may ordinarily have.

I know that is a very simple example—and one that could be overcome using some special
DHTML or something else wonderful. But this problem has been part of the user night-
mare that interactive designers have been trying to stem, with only moderate success, for
years, mainly due to project budgets (time/cost ratio).

An interactive designer might want to get down and dirty with some coding, not so much
that the vein in her head will pop, but just enough to make sure the control(s) and/or
UIElements perform as they are designed to.

That same designer might want to show some empathy and allow users to apply different
control schemes and colors to allow them to feel where they are and how they are doing

26 CHAPTER 1 Introduction to Expression Blend

with the application. With Expression Blend, the interactive designer has the freedom to
design a control that can show, for example, an ordered list of movies in thumbnails,
ensuring that the listing is displayed in the application so that it fits with the overall
continuity and visual perception of the project and the vision for the application.

The interactive designer also wants to be able to use his or her favorite graphic design
package to create masterpieces of style and then export them into Blend. In this way he or
she can ensure that design elements actually look like they are supposed to instead of
having to ask a developer to try to make the elements look like the image the interactive
designer just printed out.

Designers want to be involved much more in the lifecycle than they are at present. With
the power to create fully functioning prototypes with Blend, which therefore expedites
production lifecycles, the importance of the interactive designer’s role is moved much
higher up the food chain.

Going back to the games industry, interactive designers and graphic artists are the super
stars, not so much the coders. Interactive designers take a leading role to ensure that the
entire application is smooth in its appearance and that every animation, the music, and
the fonts in the menus all come together as a perfect match of design integrity.

The Coder’s View

I am sure that some of you reading this book as developers have, at one time or another,
been told by a project manager or IT director that the application you have slaved over
just does not look like the application they envisioned or were sold on. Another common
concern is that test users complain about the time it takes to perform a certain task after
taking numerous steps in order to navigate a complex screen. It’s possible that your appli-
cation has used controls from various third parties and that they just don’t fit the overall
visual perception because you can’t modify the appearance or style of those controls. Even
Microsoft still distributes controls like the CLR TreeView control that doesn’t support
transparent background colors. These are all very common issues relating to large applica-
tion development solutions where designs are always changing to address functional,
presentational, or usability issues.

Such issues most often occur in Agile environments, because development cycles are
short, fluid, and incremental. Developers are often hamstrung by strict adherence to time-
lines in which they must provide functionality and maintainable levels of bug fixing. As a
result, the user interface often gets the least attention, which leads to the poor user experi-
ence I keep talking about.

Blend means that developers can finally just focus on making sure that code functions as
it is required to in a specification. Their objects get a value in, and then they make sure
the correct value goes out. It’s as simple as that. The developers can even test the object
code to make sure someone else doesn’t change the designed functionality. You can be
guaranteed a format or a value type every time. The interface can either be designed
around that format, or, preferably, the coder’s objects can be designed by what they are
required to input/output.

27The Benefits of Expression Blend

1

A lot of middle tier and backend developers will be extremely pleased that they no longer
have to think about the user interface—nothing scares them more. They can just get on
with coding and even help with the logical client layer, all without ever seeing the UI that
they are developing for. They also have the added bonus of being able to apply unit
testing to the logical layer, which fits in well with the psyche of the nonUI developer.

The Workflow

Traditional workflow in the development lifecycle has always depended on the develop-
ment company’s work practices and is based on whether they use standards to ensure
quality products. Not all businesses do, and some even think they are not big enough to
go to the trouble. As a single developer, I always use standards in my everyday work to
ensure that I can provide not only quality results, but also auditable paths of my work to
my clients.

You may, at present, be involved with designer and developer teams. Perhaps a move to a
new job at a new company in the future will put you in this position. Either way, it is
important to understand how this designer/developer workflow is supposed to work.

I have previously stated how Blend will significantly reduce the production time on solu-
tions; but until you understand the time periods that will be removed, it is hard to see
that becoming reality. Many interactive designers have their own methods of producing
mock-up applications or prototype designs. Some choose to use animated environments
such as Flash, some use PowerPoint, some use Visio, and others like to create traditional
storyboards to indicate how they see the interface working. End users are then brought in
to give initial feedback. Refinements are then made based on this research.

This design process allows the interactive designer to spot user workflow issues and other
process improvement opportunities that are vital to an application being accepted by the
end user. The process, called the blueprint, may also require a variety of diagrams: a struc-
tural diagram (or application map), a process diagram to provide architects an essential
view, and sometimes a wireframe diagram to illustrate how different screens will appear.

The only problem with the blueprint now is that almost all the work done during its
creation process is wasted when it comes time to actually develop the solution. Developers
may (and it’s not always the case) be able to use some of the visual assets created, the
static images and the color palettes; but they certainly won’t be able to use any animation
sequences or event-driven reactions that are so crucial to informing the user of what has
occurred. Remember the Add to Basket scenario?

Applications like Flash, Visio, and PowerPoint, when used in the interactive design
context, are purely conceptual, whereas Expression Design, Expression Blend, and Visual
Studio are production tools. Using the production tools, you can reach the end goal a lot
quicker and the integrity of the design can be controlled and maintained by the designers
instead of the developers.

Using Blend to deliver the blueprint now means that the interactive designer is creating
the actual user interface that will be present in the end product. Blend provides all the
tools necessary to deliver the animation of objects, providing the rich user experience end

28 CHAPTER 1 Introduction to Expression Blend

users crave; and perhaps more importantly, Blend provides a separate layer of develop-
ment that the code developers never really need to modify or be involved with.

The workflow between Blend and Visual Studio allows the interactive designer to quickly
test object implementations in the data binding scenarios and customized controls that
are present in many applications.

The interactive designer along with the XAML architect, then, have the ability to accu-
rately describe the required object model to the development team, which will, in most
cases, provide a base object model with testable methods. That allows the interface to
provide data, as well as test data being returned, all before the majority of the backend
code is written.

The Importance of an Accurate Test Object

We will look at creating CLR data bound objects in Chapter 13, “Data Binding,” where
we will look at a method for creating test data. It is important to do this so the tem-
plates we design in Blend show real-world data and so we can make adjustments to
either the data object—or the presentation of that data—without having to involve a
developer, a data source such as a database, or a valid connection to a data source to
do it. Methods such as these also speed up the development process by removing the
reliance of one team on the other.

The End User or Client

End users always want simplicity. The Chinese discovered thousands of years ago that it
was simpler to remember topics or points of interest when those topics were displayed as a
picture or icon. The old adage, “A picture is worth a thousand words,” rings true with
today’s marketing gurus who believe they can sell you anything if they can show it to
you. People need to see vivid imagery to give themselves perspective.

According to George A. Miller (founder of the Center for Cognitive Studies at Harvard), we
mere mortals tend to have a memory capacity of 7 + –2 items (Nelson Cowan revised this
to 4 + –1 in 2000); yet, we can recall large collections of images, especially those that form
part of our habits, which our brains are particularly fond of.

Why would you give the end user a static image button when you could show them an
animated response to their choice? Why would the end client be happy having to rely
on old data when they could be viewing the information live and in a graphical repre-
sentation? The quick answer is they won’t be happy. If your company’s competition
provides a better user experience in their products, you shouldn’t expect to keep your job
for much longer.

When designed correctly and composed with perfect harmony, a WPF application will
give users an extremely positive experience. In some cases, people will forget they are

29Summary

1

using a computer and feel at one with the application. I have witnessed people who are
single finger typists who suddenly discover extra fingers. The positive experience has
added to their productivity.

You would have at one time or another experienced these really high levels of positive
flow and productivity because the most common side effect is losing track of time. Time
flies when you are having fun and enjoying yourself.

Again, when applications are built with the cooperation of the designer and the applica-
tion developer, the end user will have no doubts as to what they are doing, what has just
occurred, and how they should proceed next. With WPF there is simply no excuse for not
delivering fantastic user experience. If you become a XAML architect, you could ensure
the application delivers the appropriate user experience.

Having a well-designed product in terms of usability and visual appeal will ensure that
your company earns development costs back in the long term because of the loyalty that a
professional, easy to use, and fun application brings. Positive feelings are also transferred
to a brand so, in the case of a publicly released piece of software, happy users are much
more inclined to use new, different, and simple applications. Most importantly, they are
likely to tell their friends and colleagues about it.

The end user demands perfection. We (the collective industry) can’t expect them to keep
shelling out for new hardware every 18–24 months if we are not going to make them feel
good about their purchases by giving them a positive experience.

Would you buy a sports car if the seats where uncomfortable, the suspension was rubbish,
and the driving experience was not up to the level that you expected—even if the motor
was an absolute beast? Maybe...maybe not.

Maybe next time, instead of buying a PC, the user will go with a fruitier choice of
computer, to see what it has to offer. If this happens too often, you and or I may lose our
jobs.

Summary
Throughout the Interactive Designer CTP’s and subsequent Blend 1 and Blend 2 preview
releases, people from differing sides of the designer/developer roles have argued about
what Blend is and who it is actually for. Maybe they only looked at it from their angle,
without taking or trying to experience the other side’s arguments and requirements. Either
way, it is difficult to create a truly collaborative environment and, perhaps even more
difficult, to implement the tools used to facilitate it. Expression Design, Expression Blend,
and Visual Studio represent a real step ahead in the right direction to achieving this by
speeding up the design/development process and allowing the original designers of a solu-
tion to maintain ownership of it.

30 CHAPTER 1 Introduction to Expression Blend

Blend, used by a XAML architect, allows the collaboration to work in a real-world
scenario, be it a small or large solution team. Only experience in working on WPF solu-
tions will bring this requirement forward into discussions in future.

Blend offers you, the graphic or interactive designer, a way to decrease your delivery times
while maintaining all your hard work throughout the solution development lifecycle and
on to the end user. In other words, what you originally design is what you can now
deliver instead of letting developers interpret and implement your visual requirements.

It doesn’t mean you will never again need to use any of the tools you have used previ-
ously; it just means you will have the option to create, control, maintain, modify, and
own your designs—instead of just hoping that someone else will.

Index

Symbols
{ } (curly braces), XAML markup extensions, 98

[] (square brackets), collections, 313

_ (underscores), resource names, 202

3D modeling tool, 169

3D objects

camera properties, 518
creating, 226-227
importing, 515-516
light properties, 518, 521
materials properties, 516-517
Viewport3D element, 511

3D mesh, creating, 511-513
axis transformation, 513
Camera Orbit tool, 514
Selection tool, 513

A
actions, triggers, 68

activating elements, 49

active triggers, 67

Add() method, 113, 332

Add New Item dialog box, 201

AddChild() method, 95

AddHandler() method, 308-309

adding

Button controls, 123
Child controls

comboboxes, 221
embedded UIElements, 113-115

Click Event handlers
Button control, 123
ProgressBar control, 124

columns, 135-136
images, 226
items/actions, triggers, 68
KeyFrames, 70
Label controls, 122
NET code to XAML, 43-46
points, gel button, 179
ProgressBar controls, 122
RichTextBox controls, 242
rows, 135-136

adorners, 50

Alignment property (Grid), 112, 134

AllowsTransparency property (windows), 476

ambient light properties (3D objects), 521

animations

elements, 190-191
gel button glow, 191

animation requirements, 194
GlowBase element animation, 196-198
mouse over trigger, 194-196
timeline, adding, 194

handoff animation, 432
KeyFrames

adding, 418-419
erasing, 420-425
repeat animation, 420

overview, 415
production, 6
timelines

controlling in code, 434-436
duplicating, 433
overview, 415-418
reversing, 433
states, 428

triggers
definition, 425
event triggers, 425-428

property triggers, 428-432
recording, 429
timeline states, 428

appearance category (Properties panel), 79-80

applications

building, 41
data binding sample application, 391-396
graphics sample application, 323-325
Hello World, 31-36

align property search, 35
C# code in XAML, 44-46
name/location, setting, 32
properties, 34
TextBox, 33
XAML label control, 38
XAML/Visual Studio interactivity, 39-42

saving in Visual Studio, 41-42
XAMLNotepad

creating, 443-445
menu items, 446-452
overview, 442
XAML packages, 452-457

applying

control templates, 364-365
styles across projects, 374-376

architectural benefits of Blend, 24-25

AreaToApplyEffect property, 348-349

AreaToApplyEffectUnits property, 348-350

arrays, 310

artboard live view, 33

Asset Library, 88-89

overview, 210
tabs

Controls, 210-211
Custom Controls, 211
Local Styles, 211
Media, 211
Recent, 212

axis transformation (3D objects), 513

adding556

B
backing field

CLR properties, 278
dependency properties, 279

Balance property (MediaElement control), 526

Barker, Stephen, 350

Begin() method, 434

BeginTime property (animations), 417

benefits of Expression Blend, 24

architects, 24-25
coders, 26-27
designers, 25-26
end users, 28-29
workflow, 27-28

BevelBitmapEffect, 346

binding, 54, 391

Binding extension, 99-101

BitmapEffectGroup, 346-347

BitmapEffectInput property, 348

BitmapImage object, 230

bitmaps, 225

effects, 16
AreaToApplyEffect property, 348-349
AreaToApplyEffectUnits property,

348-350
BevelBitmapEffect, 346
BitmapEffectGroup, 346-347
BitmapEffectInput property, 348
BlurBitmapEffect, 346
DropShadowBitmapEffect, 346
EmbossBitmapEffect, 346
hidden bitmap effects, 345
Input property, 350
OuterGlowBitmapEffect, 346
overview, 345

vector graphics, compared, 12
BlurBitmapEffect, 346

How can we make this index more useful? Email us at indexes@samspublishing.com

bool data type, 271

Border element, 141-142

Bread Crumb controls (Vista), 10

Brush class, Stroke property, 325

Brush Transform tool, 167-168, 181-182

brushes

gel button creation
Fill Property brush/Linear Gradient

brush, 177
Fill Property transform, 184
suggestion table sample one, 176
suggestion table sample two, 178
suggestion table sample three, 180
suggestion table sample four, 181
suggestion table sample five, 182
suggestion table sample six, 182
suggestion table sample seven, 184
suggestion table sample eight, 184
suggestion table sample nine, 193
transforms, 183

gradient stops, 178
RadialGradientBrush, 330-334
SolidColorBrush, 178, 328-330
strokes, 178, 325-328

brushes category (Properties panel), 77-79

building

applications, 41
menu items, 446-452

business mindset of users, 8-10

Button control, 213-215

adding to TreeView control, 123
application example, 22

C#, 22
XAML code, 23

Click Event handler, 123
Gel button listing, 214-215
inheritance hierarchy, 490
names, 121

Button control 557

C
C#

adding to XAML example, 44-46
button application example, 22
classes, 275

creating, 275
namespaces, 280
scope, 276-277

collections, 310-311
[] (square brackets), 313
boxing/un-boxing, 311
car stock list example, 316-318
dictionary, 313-315
foreach statements, 315-318
generic, 311
int values, adding, 312-313
strongly typed generic, 311
zero-based, 310

conditional coding, 281-284
data types, 270-273
enumerations, 284

creating, 285
declaration example, 284
dependency property, 285
switch statement, 286-289

events, 298
child controls, 309-310
CLR, 298-303
overview, 298
raising, 300
RoutedEvents, 303, 306-309

methods, 289
amount of, 293
calling, 290-293
comments, 293
mathematical symbols, 298
overloading, 290
refactoring, 290
Show(), 289
try-catch statement, 295-297
two blocks of code with same

functionality example, 289

user input examples, 294-297
Width property value, 297

properties, 277
CLR, 278
dependency, 279-281

Tree control example listing, 115-119
variables, declaring, 270

calling methods, 290-293

example listing, 292-293
names, 291
public, 291
this keyword, 291

Camera Orbit tool, 168-173

listing, 169-171
objects, creating, 171-172
Viewport3D element, 514

camera properties (3D objects), 518

Camera Type property, 518

CanExecute() method, 438

CanExecuteChanged() method, 438

Canvas element, 137-138

positioning properties, 137
switching between Canvas and Grid

modes, 134
Category Collapse option (Interaction Panel), 65

center points, 337-338

char data type, 271

CheckBox control, 216-220

events, 220
menu created from checkboxes example

listing, 216-219
child collections, 94

child controls

adding
comboboxes, 221
embedded UIElements, 113-115

events, 309-310
nesting in comboboxes, 221
Stack panel alignment example, 139-140
templates, 250
XAML, 94-96

embedded listbox example, 95-96
interfaces, 95

C#558

child interfaces, 95

Children property (Add() method), 113

classes, 275

Brush
RadialGradientBrush, 330-334
SolidColorBrush, 328-330
Stroke property, 325-328
StrokeDashArray, 326
StrokeDashCap property, 327
StrokeDashOffset property, 327
StrokeThickness property, 327

creating, 275
MediaPlayerController, 538-540
namespaces, 280
.NET, XAML representations, 21
Object, 490
OpenFileDialog, 532
Panel, 132
Patient, 408-409
Patient_BINDER, 409-412
scope, 276-277
ValidationRule, 400
Window, 37

Click Event handlers

Button control, 123
ProgressBar control, 124

ClipToBounds property, 137

Clock property (MediaElement control), 526

closed event, 483

closing event, 482

CLR (Common Language Runtime), 278

data binding, 406-412
events, 298-303

constructors, 301-303
DoorOpen implementation, 300
flow, 299
RoutedEvents, compared, 303

properties, 278
code, 18

coding benefits of Blend, 26-27

How can we make this index more useful? Email us at indexes@samspublishing.com

collections, 310-311

[] (square brackets), 313
boxing/un-boxing, 311
car stock list example, 316-318
child, 94
CommandBindingCollection, 438
DashCollection, 330
dictionary, 313-315
foreach statement, 315-318
generic, 311
List, 312-313
MergedDictionaries

elements, customizing, 465
entries, deleting, 466
skins, 462-465

strongly typed generic, 311
zero-based, 310

color property (3D objects lighting), 519-520

colors, validating, 398-399

ColumnDefinitionCollection Editor, 122

columns (Grid), 135-136

ComboBox control, 221-222

adding child elements, 221
nested child elements, 221
properties, 222
unnamed items, creating, 223-225

CommandBindingCollection, 438

commands

CommandBindingCollection, 438
defining, 440-442
ICommand interface, 438
invoking, 442
overview, 437-438
relative, 154
WPF (Windows Presentation Foundation)

document, 439-440
input, 438-439

comments, 293

common controls UIElements tools, 150

Common Language Runtime. See CLR

common properties category (Properties
panel), 81

common properties category (Properties panel) 559

CompositionTarget, 541

conditional coding, 281-284

configuring window transparency, 477-480

ConstantAttenuation property (3D objects
lighting), 519-520

constructors

CLR events, 301-303
default, 301

content controls, 129

ContentControl control, 246-248

ContentPresenter element, 249-250, 254
ContentControl child element, 250
ListBox, adding, 253
styled rectangle element, 250
styled templates, applying, 252-253

ListBox styling, 250
ContentPresenter control, 249-250, 254

ContentControl child element, 250
ListBox

adding, 253
styling, 250

styled rectangle element, 250
styled templates, applying, 252-253

Control level (custom controls), 491

control templates

applying, 364-365
creating, 201
definition, 360
editing, 361-363
gel button, creating, 201-202
overview, 360
testing, 204-206

controls, 241

Border, 141-142
Button, 213-215

adding to TreeView control, 123
application example, 22-23
Click Event handler, 123
Gel button listing, 214-215
inheritance hierarchy, 490

names, 121
Canvas, 137-138

positioning properties, 137
switching between Canvas and Grid

modes, 134
CheckBox, 216-220

events, 220
menu created from checkboxes example

listing, 216-219
Child

adding to comboboxes, 221
adding to embedded UIElements,

113-115
events, 309-310
nesting in comboboxes, 221
Stack panel alignment example,

139-140
templates, 250
XAML, 94-96

ComboBox, 221-222
adding child elements, 221
nested child elements, 221
properties, 222
unnamed items, creating, 223-225

ContentPresenter, 249-250, 254
ContentControl child element, 250
ListBox, 250, 253
styled rectangle element, 250
styled templates, applying, 252-253

control templates
applying, 364-365
creating, 360-361
definition, 360
editing, 361-363
overview, 360

custom text box, 492
complete control listing, 504-508
creating, 492
dictionary functionality, 495
dynamic history dictionary, 498
filtering the dictionary, 499-500
ListBox control, 496-497

CompositionTarget560

new class, creating, 494
OnKeyUp event handler, 500-501
Popup control, 497-498
testing, 501-503
TextBox class inheritance, 494

customizing, 489
Control level, 491
FrameworkElement level, 491
inheritance hierarchy for button

controls, 490
Inherited Control level, 491
UserControl level, 491

data binding
data validation, 397-400
sample application, 391-396
two-way binding, 396-397

Dock panel, 140-141
FlowDocument, 243-245
GlowBase, 196-198
Grid, 132-137

Alignment property, 134
creating, 133
layout constraints, 135
Margin property, 134
rows/columns, adding, 135-136
switching between Canvas and Grid

modes, 134
Width and Height properties, 134

ItemsCollection, 222-225
Label, 231

adding to TreeView control, 122
mnemonics, 231
names, 121

limitations, 129
Listbox, 232-233

custom text box control, 496-497
embedded, creating, 95-96
ListBoxItems, 232-233

ListBoxItem, 232-233
ListView, 233-238

data templates, 237-238
four column example, 236

How can we make this index more useful? Email us at indexes@samspublishing.com

hidden default view, 235
ListViewItems, 234-238
view columns, 235
view example, 234

ListViewItems, 234-238
data templates, 237-238
four column example, 236
hidden default view, 235
view columns, 235
view example, 234

media player, 528-532
completed design, 531
menu item, creating, 532
names, 529
required, 530
row/column definitions, 529
viewing, 531

MediaElement control
event handlers, 533-535
properties, 525-527

OpenFileDialog with user input, 532-533
PasswordBox, 238-239
Popup, 264-266

custom text box control, 497-498
defining, 264
force closing, 265
properties, 266

ProgressBar, 240
adding to TreeView control, 122
Click Event handler for, 124
prefix naming convention, 121

RadioButton, 241
RichTextBox, 241-245

adding, 242
alignment, 242
element types, 243
FlowDocument element, 243-245

ScrollViewer, 141, 266-268
creating, 267
properties, 268

Slider, 245-246
properties, 246
values, customizing, 245

controls 561

Stack panel, 138-140
child element alignment example,

139-140
Orientation property, 138

styles, 461
TabControl

HeaderedContentControl control,
254-256

properties, 255
TabItems, adding, 255

TabIndex property, 232
TabItems, 255
TreeView, 115, 257

Button control, adding, 123
C#, XAML listing, 115-119
child object management, 126-128
Click Event handler for Button

control, 123
Click Event handler for ProgressBar

control, 124
code behind file, 119
ColumnDefinitionCollection Editor, 122
Label Content property, 125
Label control, 120-122
ProgressBar control, adding, 122
TreeViewItem Items content value, set-

ting, 121-122
XAML for entire control listing, 125
XAML representation listing, 119

TreeViewItem, 258-259
creation listing, 258
properties, 259

Uniform Grid, 142
ViewBox, 143-144
Viewport3D, 511

3D mesh, creating, 511-513
axis transformation, 513
Camera Orbit tool, 514
Selection tool, 513

WPF
ContentControl, 246-250, 254
Expander, 259-261

GridSplitter, 262-263
HeaderedContentControl, 254-256
HeaderedItemsControl, 256-259
Popup, 264-266
ScrollViewer, 266-268

Wrap panel, 140
XAML, 92-93

Controls tab (Asset Library), 210-211

Create Data Binding dialog box, 54

Create Data Template dialog box, 55

Create Style Resource dialog box, 201, 428

curly braces { }, XAML markup extensions, 98

Custom Controls tab (Asset Library), 211

customizing

controls, 489
Control level, 491
FrameworkElement level, 491
inheritance hierarchy for button

controls, 490
Inherited Control level, 491
UserControl level, 491

resources, 73
skins, 460-462
slider values, 245
text box control, 492

complete control listing, 504-508
creating, 492
dictionary functionality, 495
dynamic history dictionary, 498
filtering the dictionary, 499-500
ListBox control, 496-497
new class, creating, 494
OnKeyUp event handler, 500-501
Popup control, 497-498
testing, 501-503
TextBox class inheritance, 494

Window properties, 110-113
Z-order, 132

cycling, workspace, 36

controls562

D
DashCollection, 330

data binding

CLR (Common Language Runtime) data
binding, 406-412

Data Context, 401-404
data sources, 391
definition, 54
elements

data validation, 397-400
sample application, 391-396
two-way binding, 396-397

overview, 391
Data category (Project panel), 76

Data Context, 401-404

data sources

creating, 378-388
overview, 391
setting, 376-378

data templates

creating, 378-388
data sources, 376-378
overview, 376

data types

Blend, finding, 274-275
C#, 270

int, 270
primitive, 270-273

data validation, 397-400

default constructors, 301

defining commands, 440-442

delegates, 299

deleting

gradient stops, 178
items/actions, triggers, 68
KeyFrames, 420-425
MergedDictionary entries, 466
segment points, 158
triggers, 66

Dependency Properties, 279

How can we make this index more useful? Email us at indexes@samspublishing.com

design/split view (panels), 63

designers, 6

designer benefits of Blend, 25-26

dialog boxes

Add New Item, 201
Create Data Binding, 54
Create Data Template, 55
Create Style Resource, 201, 428
Edit Repeat, 420
New Project, 32
Storyboard Picker, 69

dictionaries, 313-315

diffuse material property, 516

Direct Selection tool, 179, 154-158

Direction (x,y,z) property, 518-520

directional light properties (3D objects), 521

directives, 224

Dock panel, 140-141

docking Interaction Panel, 65

document commands (WPF), 439-440

DoorOpen CLR event implementation, 300

dot notation, 290

double data type, 271

DPs (Dependency Properties), 279-281

backing field, 279
enumerations, 285
public property wrapper, 279
values, assigning, 281

DragIncrement property (GridSplitter
control), 263

DrawingBrush resource, 229

DropShadowBitmapEffect, 346

duplicating timelines, 433

E
Edit Repeat dialog box, 420

editing

control templates, 361-363
styles, 367-369

editing 563

elements. See also controls

activating, 49
animating, 190-191
locking/unlocking, 70
names, 121
triggers, selecting, 68
viewing/hiding, 70
windows, 475

multiple, creating, 480
names, 480
properties, 476-477
switching between in code, 480-485
transparency, configuring, 477-480
child, 94-96
nesting, 94
viewing, 36-37

Ellipse tool, 164-166

ellipses, creating, 339

embedding

fonts, 84
listboxes, 95-96
UIElements, 106-107

child controls, adding, 113-115
example listing, 106
positioning, 107-110
TreeView control example, 115
Window properties, customizing,

110-113
EmbossBitmapEffect, 346

emissive material property, 516

end user benefits, 28-29

enumerations, 284

creating, 285
declaration example, 284
dependency property, 285
switch statement, 286-289

events, 298

CheckBox, 220
child controls, 309-310
closed, 483
closing, 482
CLR, 298-303

constructors, 301-303
DoorOpen implementation, 300
flow, 299
RoutedEvents, compared, 303

handlers
Button control, 123
MediaElement, 533-535
MediaPlayerController class, 538-540
OnKeyUp, 500-501
ProgressBar control, 124
RoutedEvent example, 308-309
TextChanged, 397-398
XAML, 21

MouseMove, 206-207
overview, 298
raising, 300
RoutedEvents, 198

CLR events, compared, 303
declaring, 306-307
event handler method, 308-309
gel button creation, 199-201
overview, 303
raising, 307
website, 310
window state, 483-484

timeline, 190-191
triggers, 66, 425-428
tunneling, 203
XAML, 97-98

Execute() method, 438

executing commands, 442

ExpandDirection property (Expander
control), 261

Expander control, 259-261

controlling, 261
creating, 260
properties, 261

Expression Blend, 6

benefits, 24
architects, 24-25
coders, 26-27
designers, 25-26

elements564

end users, 28-29
workflow, 27-28

design environment, 13
Visual Studio, compared, 17

Expression Design, 6

definition, 350
vector objects, building, 350-356

external skin files, loading, 468, 471-473

code listing, 470
ComboBox selection event, 471-473

Eyedropper tool, 166-167

F
Far Clipping Plane property, 518

File Explorer (Vista), 10

files

external skin, loading, 468, 471-473
code listing, 470
ComboBox selection event, 471-473

media formats, 524
MediaPlayerController.xaml.cs, 548-553
referencing, 502
resources, linking, 204
Window1.xaml.cs, 543-548

Files category (Project panel), 74-75

Fill Property brush, 177

filtering resources, 72

finding Blend data types, 274-275

FindResource() method, 434

flipping objects, 339

FlowDocument control (RichTextBox controls),
243-245

FocusVisualStyle, 370-374

fonts, embedding, 84

foreach statement (collections), 315-318

FrameworkElement level, 491

Freeze() method, 332

FromRgb() method, 332

How can we make this index more useful? Email us at indexes@samspublishing.com

G
gel button, creating, 176-178

adding to Resource Dictionary, 201-202
animated glow, 191

animation requirements, 194
GlowBase element animation, 196-198
mouse over trigger, 194-196
timeline, adding, 194

animation, 190-191
arrow shape, 179
base, 178
base brush suggestions, 180
brush stroke property settings, 181
brush suggestion tables

one, 176
five, 182
six, 182
seven, 184
eight, 184
nine, 193

brush transforms, 183
Button control listing, 214-215
fill color, 178
Fill Property brush/Linear Gradient

brush, 177
Fill Property transform, 184
gradient stops, 178
highlights, 181-182
Make Button tool, 188-190
points, adding, 179
RoutedEvents, 199-201
shading, 178
shapes completed, 179
smoothing, 179
stroke thickness, 178
testing, 203

MouseMove event, 206-207
Resource Dictionary/control template,

204-206
XAML code listing, 185-188

generic collections, 311

generic collections 565

GlowBase element, 196-198

gradient brushes, creating, 330-334

gradient stops, 178

graphical UI layer, 19-20

graphics, 225

adding, 226
animations

handoff animation, 432
KeyFrames, 418-425
overview, 415
timelines, 415-418, 433-436
triggers, 425-432

BitmapImage, 230
bitmaps, 225

effects, 345-350
vector graphics, compared, 12

brushes
RadialGradientBrush, 330-334
SolidColorBrush, 328-330
strokes, 325-328

converting to 3D, 226-227
creating dynamically, 227-229
ellipses, creating, 339
ImageBrush example, 230
motion paths, 339-344
overview, 323
properties, 230
sample application, 323-325
transformations

center points, 337-338
definition, 334
flip, 339
LayoutTransform property, 334
RenderTransform property, 334
rotation, 336-337
scale, 337
skew, 337
translation, 335-336

vector objects
bitmaps, compared, 12
creating, 350-356

XAML vector, 225
Grid, 132-137

Alignment property, 134
creating, 99, 133
layout

constraints, 135
properties, 112-113

Margin property, 134
prefix naming conventions, 121
rows/columns, adding, 135-136
switching between Canvas and Grid

modes, 134
Width and Height properties, 134

GridSplitter control, 262-263

creating, 262
properties, 263

H
handoff animation, 432

hardware, next generation, 4

HeaderedContentControl control, 254

HeaderedItemsControl control,
compared, 256

TabControl, 254-256
HeaderedItemsControl control, 256-257

HeaderedContentControls, compared, 256
TreeView controls, 257
TreeViewItem controls, 258-259

Height property (Grid), 112, 134

Hello World application, 31-36

align property search, 35
C# code in XAML, 44-46
name/location, setting, 32
properties, 34
TextBox, 33
XAML

label control, 38
Visual Studio interactivity, 39-42

hidden bitmap effects, 345

HorizontalOffset property (Popup control), 266

HorizontalScrollBarVisibility property
(ScrollViewer control), 268

GlowBase element566

I
IAddChild interface, 95

ICollection interface, 95

ICommand interface, 438

Icon property (windows), 476

if-else condition, 281-284

ImageBrush example, 230

images. See graphics

implementing DoorOpen CLR event, 300

importing 3D objects, 515-516

camera properties, 518
light properties, 518, 521
materials, 516-517

inheritance hierarchy for button elements, 490

Inherited Control level (custom controls), 491

InnerConeAngle property (3D objects
lighting), 520

input commands (WPF), 438-439

Input property, 350

int data type, 270-271

IntelliSense functionality in Visual Studio, 120

Interaction Panel, 65

interfaces

child, 95
IAddChild, 95
ICollection, 95
ICommand, 438

interpolation values (KeyFrames), 421

invoking commands, 442

IsDirectionReversed property (Slider
control), 246

IsDropDownOpen property (comboboxes), 222

IsEditable property (comboboxes), 222

IsExpanded property

Expander control, 261
TreeViewItem control, 259

IsIndeterminate property (ProgressBar
control), 240

IsMuted property (MediaElement), 526

IsOpen property (Popup control), 266

How can we make this index more useful? Email us at indexes@samspublishing.com

IsSelected property (TreeViewItem control), 259

IsSnapToTickEnabled property, 246, 397

Items property (TabControl element), 255

ItemsCollection control, 222-225

J–K
KeyFrames (animations)

adding, 70, 418-419
erasing, 420-425
repeat animation, 420

KeySpline editor, 423-425

keywords

this, 291
try, 295

L
Label Content property (TreeView control), 125

Label control, 231

adding to TreeView control, 122
mnemonics, 231
names, 121

languages

programming versus scripting, 21
selecting, 13, 32

LargeChange property (Slider control), 246

layers

gel button creation, 176-178
arrow shape, 179
base, 178
base brush suggestions, 180
brush stroke property settings, 181
brush suggestions sample one, 176
brush suggestions sample five, 182
brush suggestions sample six, 182
brush suggestions sample seven, 184
brush suggestions sample eight, 184

layers 567

brush transforms, 183
fill color, 178
Fill Property brush/Linear Gradient

brush, 177
Fill Property transform, 184
gradient stops, 178
highlights, 181-182
points, adding, 179
shading, 178
shapes completed, 179
smoothing, 179
stroke thickness, 178

graphical UI, 19-20
logic, 20-21

layout category (Properties panel), 80

layout modes (panels), 63

layout properties (Grid), 112-113

LayoutTransform property
(transformations), 334

Left property (windows), 476

levels of custom controls, 491

light properties (3D objects), 518, 521

limitations of content controls, 129

Line tool, 152-154

mini-language syntax, 153-154
strokes, 152

Linear Gradient brush, 177

LinearAttenuation property (3D objects
lighting), 520

linking file resources, 204

List collections, 312-313

ListBox control, 232-233

custom text box control, 496-497
embedded, creating, 95-96
ListBoxItems, 232-233

listings, 59

adding
brushes to Window’s resource

collection, 98
int values to List collections, 312-313

Binding extension, 99-101

C#
button application example, 22
code in XAML, 44-45
primitive data type, creating, 272-273

Camera Orbit tool, 169-171
car stock list collection example, 316-318
checkboxes

events, 220
menu created from, 216-219

classes
declaring, 276
instantiating, 277

CL
events, 300-303
properties, 278

comboboxes
adding child elements, 221
nesting child elements, 221
unnamed combobox items, creating,

223-225
control styles, 461
creating new grids during runtime, 99
custom text box control

complete listing, 504-508
dictionary functionality, 495
dynamic history dictionary, 498
filtering the dictionary, 499-500
ListBox control, 496-497
OnKeyUp event handler, 500-501
Popup control, 497-498
testing, 503
TextBox class inheritance, 494

dependency properties
backing field, 279
public wrappers, 279
values, 281

dictionaries, creating, 313-315
Direct Selection tool, 154
embedded listbox, 95-96
enumerations

creating, 285
declaration, 284

layers568

dependency property, 285
Expander control, 260-261
external skin files, loading

ComboBox selection event, 471-473
loading resources from files, 470

gel button creation
brush suggestion table sample one, 176
brush suggestion table sample two, 178
brush suggestion table sample three,

181
brush suggestion table sample four, 181
brush suggestion table sample five, 182
brush suggestion table sample six, 182
brush suggestion table sample

seven, 184
brush suggestion table sample

eight, 184
brush suggestion table sample

nine, 193
LayoutRoot element, 203
XAML code, 185-188

Grid rows/columns, adding, 135
GridSplitter control, 262
ImageBrush example, 230
Line tool, 153
ListBoxItems, 232
ListViewItems

data templates, 237-238
four column example, 236
view example, 234

media player project
button state, 535
controls, column/row definitions, 529
event handlers, 533-535
media duration, checking, 541
media failure errors, 540
MediaPlayerController event handlers,

538-540
MediaPlayerController.xaml.cs, 548-553
Open File Dialog, 533
safe media control, 542-543
user playback position changes,

537-538

How can we make this index more useful? Email us at indexes@samspublishing.com

Window1.xaml.cs, 543-548
MergedDictionaries property from sample

App.xaml file, 462
MergedDictionaries, resources, swapping,

463-465
methods

calling example, 292-293
overloading, 290
two blocks of code with same

functionality, 289
user input validation example, 294-295

MouseMove event, testing, 206-207
nested elements, 94, 97
.NET equivalent for XAML button

declaration, 93
PasswordBox example, 239
Popup control

defining, 264
force closing, 265

ProgressBar values, 240
RadioButtons, 241
RichTextBox control

adding, 242
FlowDocument element, 243-245

RoutedEvents
declaring, 306-307
event handler method, 308-309
raising, 307
window state, 483-484

ScrollViewer control, creating, 267
skin customizations, 467
slider values, 245
Stack panel child element alignment,

139-140
Static extension, 98
switch statement

code readability, 288
object instance global in scope, 287

TabControl control, 254-255
TabItem element, 255
Tree control example

C# and XAML, 115-119
Label content value, setting, 121

listings 569

XAML, 119
TreeView control, 257

Button control event handler, 124
child object management, 126-128
Label Content property, 125
ProgressBar control event handler, 124
XAML for entire control, 125

TreeViewItem control, 258
UIElement embedding, 106
ViewBox control, 143
windows

state changes, handling, 484-485
viewing, 485

Wrap panel example, 140
XAML

button application example, 23
button declaration, 92
views, 36

ListView control, 233

data templates, 237-238
four column example, 236
hidden default view, 235
ListViewItems, 234-238

live artboard view, 33

LoadComponent() method, 469

LoadedBehavior property (MediaElement), 526

loading external skin files, 468, 471-473

code listing, 470
ComboBox selection event, 471, 473

Local Styles tab (Asset Library), 211

locking elements, 70

logic layer, 20-21

M
Make Button tool, 188-190

managing UIElement embedding, 106-107

child controls, adding, 113-115
example listing, 106
positioning, 107-110

TreeView control example, 115
Window properties, customizing, 110-113

Margin property (Grid), 113, 134

margins, 134

markup, 18

markup extensions (XAML), 98-101

adding brushes to Windows resource
collection, 98

Binding, 99-101
creating new grids during runtime, 99
Static, 98

material properties (3D objects), 516-517

MaxDropDownHeight property
(comboboxes), 222

media duration, checking, 541

media failure errors, 540

media formats, 524

media player project, 523

button state, 535
event handlers, 533-535
media duration, checking, 541
media failure errors, 540
MediaPlayerController event handlers,

538-540
MediaPlayerController.xaml.cs, 548-553
OpenFileDialog control with user input,

532-533
playback position slider, 537
player controls, 528-532

completed design, 531
menu item, creating, 532
names, 529
required, 530
row/column definitions, 529
viewing, 531

safe media control, 542-543
user playback position changes, 537-538
volume, 536
Window1.xaml.cs, 543-548
XAML requirements, 524

creating, 524
MediaElement properties, 525-527

listings570

Media tab (Asset Library), 211

MediaElement control

event handlers, 533-535
properties, 525-527

MediaPlayerController class, 538-540

MediaPlayerController.xaml.cs file, 548-553

menu items, building, 446-452

MergedDictionaries collection, skins, 462

elements, customizing, 465
entries, deleting, 466
MergedDictionaries property from sample

App.xaml file, 462
resources, swapping, 463-465

methods, 289

Add(), 113, 332
AddChild(), 95
AddHandler(), 308-309
amount of, 293
Begin(), 434
calling, 290-293

example listing, 292-293
names, 291
public, 291
this keyword, 291

CanExecute(), 438
CanExecuteChanged(), 438
comments, 293
Execute(), 438
FindResource(), 434
Freeze(), 332
FromRgb(), 332
LoadComponent(), 469
mathematical symbols, 298
overloading, 290
refactoring, 290
returning, 292
SetPlayerControlState(), 535
SetPlayerPosition(), 537
Show(), 289
ShowDialog(), 485
try-catch statement, 295-297
TryFindResource(), 435

How can we make this index more useful? Email us at indexes@samspublishing.com

TryPlayMedia(), 542-543
two blocks of code with same functionality

example, 289
user input examples, 294-297
ValidateColorValue(), 398-399
ValidateWidth(), 297
Width property value, 297

mini-language syntax, 153-154

miscellaneous property category (Properties
panel), 84-87

motion paths, 339-344

MouseMove event, testing, 206-207

multiple gradient stops, 178

multiple windows, creating, 480

N
names

buttons, 121
elements, 121
Grid, 121
labels, 121
media player controls, 529
methods, 291
progressbar, 121
resources, 73, 202
tunneling events, 203
windows, 480

namespaces (classes), 280

navigation elements (Vista), 12

Near Clipping Plane property, 518

nesting elements

child elements, 221
XAML, 21, 94

.NET

classes, XAML representations, 21
code, adding to XAML, 43-46
equivalent to XAML button declaration

listing, 93
Framework, 13
trees, 114

.NET 571

New Project dialog box, 32

next generation hardware, 4

next generation user interfaces, 4-5

O
Object class, 490

object data type, 271

objects, 350. See also graphics

3D
camera properties, 518
importing, 515-517
light properties, 518, 521
materials properties, 516
Viewport3D element, 511

BitmapImage, 230
delegates, 299
properties (XAML), 97-98
transformations, 337
vector objects, creating, 350-356

Objects and Timelines panel, 68-69

elements
activating, 71
selecting, 71
locking/unlocking, 70
parent elements, 71
viewing/hiding, 70

playhead position, 70
Scope Up button, 71
storyboards

actions, 70
closing, 70
current, 69
KeyFrames, adding, 70
new, 70
opening, 69

timeline, 69-70
XAML/Z-order arrangement, 70

OneTime data binding, 396

OneWay data binding, 396

OneWayToSource data binding, 397

OnKeyUp event handler (custom text box
control), 500-501

opacity (gradient stops), 178

Opacity property (animations), 417

OpenFileDialog class, 532

OpenFileDialog control with user input, 532-533

opening

storyboards, 69
XAML packages, 452-457

Orientation property (Stack panel), 138

OuterConeAngle property (3D objects
lighting), 520

OuterGlowBitmapEffect, 346

overloading methods, 290

P
Paint Bucket tool, 167

Pan tool, 151

panel-based containers/controls/constructs.
See PBCs

panel-based UIElements tools, 149

Panel class, 132

panels, 63

Asset Library, 88-89
design/split view, 63
Interaction, 65
layout modes, 63
Objects and Timelines, 68-69

activating elements, 71
element selection, 71
KeyFrames, adding, 70
locking/unlocking elements, 70
parent elements, 71
playhead position, 70
Scope Up button, 71
storyboards, 69-70
timeline, 69-70

New Project dialog box572

viewing/hiding elements, 70
XAML/Z-order arrangement, 70

Project, 74
Data category, 76
Files category, 74-75

Properties, 34, 76
appearance category, 79-80
assembly types, 76
brushes category, 77-79
case insensitive searches, 76
clearing search phrase, 77
common properties category, 81
event view mode, 77
layout category, 80
miscellaneous category, 84-87
property categories, 77
property view mode, 76
text category, 82, 84

Resources, 72-74
customizing, 73
filtering, 72
names, 73
previews, 73
scope levels, 73

Results, 87
Storyboard Actions, 72
Storyboard Picker, 71
triggers, 66

actions applied, 68
active, 67
adding/deleting items/actions, 68
defined, 68
deleting, 66
element selection, 68
event, 66
properties, 66-68
recording, 66
timelines, 68
types, 66

partial trust sandboxes, 15

PasswordBox control, 238-239

How can we make this index more useful? Email us at indexes@samspublishing.com

paths

motion paths, 339-344
smoothing, 162
tools, 149

Pen, 158-163
Pencil, 163-164

Patient_BINDER class, 409-412

Patient class, 408-409

PBCs (panel-based containers/controls/
constructs), 131

Border element, 141-142
Canvas element, 137-138

positioning properties, 137
switching between Canvas and Grid

modes, 134
Dock, 140-141
Grid element, 132-137

Alignment property, 134
creating, 133
layout constraints, 135
Margin property, 134
rows/columns, adding, 135-136
switching between Canvas and Grid

modes, 134
Width and Height properties, 134

ScrollViewer control, 141
Stack, 138, 140

child element alignment example,
139-140

Orientation property, 138
switching between panels, 144
Uniform Grid, 142
ViewBox, 143-144
Wrap, 140

Pen tool, 158-163

closed complex shapes, 161
gel button, 179
smoothing paths, 162

Pencil tool, 163-164

Perspective Field of View (POV), 518

Placement property (Popup control), 266

playback position slider (media player), 537

playback position slider (media player) 573

playhead position, 70

point light properties (3D objects), 521

points (gel button, adding), 179

Popup control, 264-266

custom text box control, 497-498
defining, 264
force closing, 265
properties, 266

PopupAnimation property (Popup control), 266

Position property (MediaElement control), 526

Position (x,y,z) property, 518-520

positioning embedded UIElements, 107-110

POV (Perspective Field of View), 518

previewing resources, 73

primitive data types (C#), 270-273

common, 271
creating, 271-273

programming languages, 21

ProgressBar control, 240

adding to TreeView control, 122
Click Event handler, 124
prefix naming convention, 121

Project panel, 74

Data category, 76
Files category, 74-75

properties, 277, 348

3D objects
camera, 518
light, 518, 521
materials, 516-517

animations, 417
AreaToApplyEffect, 348-349
AreaToApplyEffectUnits, 348-350
BitmapEffectInput, 348
Brush class, 325-327
Camera Type, 518
Canvas positioning, 137
Children (Add() method), 113
ClipToBounds, 137
CLR, 278
comboboxes, 222

dependency, 279-281
backing field, 279
enumerations, 285
public property wrapper, 279
values, assigning, 281

Direction (x,y,z) property, 518-520
Expander control, 261
Far Clipping Plane, 518
Grid, 112-113, 134
GridSplitter control, 263
images, 230
Input, 350
IsExpanded

Expander control, 261
TreeViewItem control, 259

IsIndeterminate (ProgressBar control), 240
IsSnapToTickEnabled, 246, 397
Items (TabControl element), 255
Label Content (TreeView control), 125
MediaElement control, 525-527
Near Clipping Plane, 518
Orientation (Stack panel), 138
Popup control, 266
Position (x,y,z), 518-520
Property Search box, 35
public property wrappers, 279
recording state, 67-68
ScrollViewer control, 268
SelectedIndex

comboboxes, 222
TabControl element, 255

Slider control, 246
Stretch

images, 230
MediaElement, 527

StretchDirection
images, 230
MediaElement, 527

TabControl element, 255
TabIndex (controls), 232
Tag, 386
transformations, 334

playhead position574

TranslateX, 335
TranslateY, 335
TreeViewItem control, 259
triggers, 66-68, 428-432
Up Vector (x,y,z), 518
Width

Grid, 134
method example, 297

Window, 110-113
windows, 476-477
XAML, 21

Properties panel, 34, 76

appearance category, 79-80
assembly types, 76
brushes category, 77-79
case insensitive searches, 76
clearing the search phrase, 77
common properties category, 81
event view mode, 77
layout category, 80
miscellaneous category, 84-87
property categories, 77
property view mode, 76
text category, 82-84

Property Search box, 35

prototyping, 6

public methods, 291

public property wrappers, 279

Q–R
QuadraticAttenuation property (3D objects

lighting), 520-521

RadialGradientBrush, 330-334

RadioButton control, 241

raising

events, 300
RoutedEvents, 307

Range property (3D objects lighting), 520-521

How can we make this index more useful? Email us at indexes@samspublishing.com

RDs (Resource Dictionaries), 7, 201

folders, 204
gel button control template, adding,

201-202
testing, 204-206

recent controls elements, 151

Recent tab (Asset Library), 212

recording

timelines, 69
triggers, 66

refactoring, 290

referencing files, 502

relative commands, 154

RenderTransform property
(transformations), 334

repeat animation, 420

ResizeDirection property (GridSplitter
control), 263

ResizeMode property (windows), 476

resizing Interaction Panel, 65

resolution (timelines), 70

Resource Dictionaries. See RDs

resources

customizing, 73
DrawingBrush, 229
files

linking, 204
managing, 7

filtering, 72
MergedDictionaries, 463-465
names, 73, 202
previewing, 73
scope levels, 73
skins

control style attributes, deleting,
466-468

customizations at runtime, 460-462
external skin files, loading, 468-473
MergedDictionaries collection, 462-466

Resources panel, 72-74

customizing, 73
filtering, 72

Resources panel 575

names, 73
previews, 73
scope levels, 73

Results panel, 87

returning methods, 292

reversing timelines, 433

RichTextBox control, 241-245

adding, 242
alignment, 242
element types, 243
FlowDocument element, 243-245

roles (XA), 17

rotation, 336-337

RoutedEvents, 198

CLR events, compared, 303
declaring, 306-307
event handler method, 308-309
gel button creation, 199-201
overview, 303
raising, 307
website, 310
window state, 483-484

rows (Grid), 135-136

RSS reader for twitter project, 49

adorners, 50
artboard, viewing, 52
data

binding, 53
structure, viewing, 53
templates, 55

elements, activating, 49
Grid element, 49

pink border padding, 51
position, 50

Label elements, 57
LayoutRoot element, 49
Properties panel, 58
refresh capability, adding, 59-60
required fields, 56
RowDefinition row, creating, 51
RSS URL, 52-53
twitter post content, 55

S
saving

Visual Studio applications, 41-42
XAML packages, 452-457

scaling objects, 337

scope

classes, 276-277
resources, 73

Scope Up button (Objects and Timelines
panel), 71

scripting languages, 21

ScrollViewer control, 141, 266-268

creating, 267
properties, 268

ScrubbingEnabled property (MediaElement
control), 526

segment points, deleting, 158

SelectedIndex property

comboboxes, 222
TabControl element, 255

selecting

element triggers, 68
languages, 13, 32
panels, 144
targets, 32

Selection tool (Viewport3D element), 513

SetPlayerControlState() method, 535

SetPlayerPosition() method, 537

shape tools, 149

Ellipse, 164-166
Line, 152-154

Show() method, 289

ShowDialog() method, 485

ShowInTaskbar property (windows), 476

ShowsPreview property (GridSplitter
control), 263

Silverlight, 15-16

Simple Styles collection, 361

SizeToContent property (windows), 477

skewing objects, 337

Resources panel576

skins

control style attributes, deleting, 466-468
customizing, 460-462
external skin files, loading, 468, 471-473

code listing, 470
ComboBox selection event, 471-473

MergedDictionaries collection, 462
elements, customizing, 465
entries, deleting, 466
MergedDictionaries, 463-466
MergedDictionaries property from

sample App.xaml file, 462
resources, swapping, 463-465

Slider control, 245-246

properties, 246
values, customizing, 245

SmallChange property (Slider control), 246

smoothing

gel button, 179
paths, 162

Solid Color brush, 178, 328-330

Source property (MediaElement control), 526

Source Safe integration, 19

specular material property, 516

SpeedRation property (MediaElement
control), 526

spot light properties (3D objects), 521

square brackets [] in collections, 313

Stack panel, 138-140

child element alignment example, 139-140
Orientation property, 138

Static extension, 98

StaysOpen property (Popup control), 266

Storyboard Actions panel, 72

storyboard animations

handoff animation, 432
KeyFrames

adding, 418-419
erasing, 420-425
repeat animation, 420

overview, 415
timelines, 415-418

How can we make this index more useful? Email us at indexes@samspublishing.com

triggers
definition, 425
event, 425-428
property, 428-432
recording, 429
timeline states, 428

Storyboard Picker, 71

Storyboard Picker dialog box, 69

storyboards

actions, 70
animations. See storyboard animations
closing, 70
current, 69
new, 70
opening, 69

Stretch property

images, 230
MediaElement, 527

StretchDirection property

images, 230
MediaElement, 527

string data type, 271

Stroke property (Brush class), 325-328

StrokeDashArray (Brush class), 326

StrokeDashCap property (Brush class), 327

StrokeDashOffset property (Brush class), 327

strokes

brushes, 178, 325-328
lines, 152

StrokeThickness property (Brush class), 327

strongly typed generic collections, 311

styles

controls, 461
creating, 369-371
editing, 367-369
Simple Styles collection, 361
style templates

applying styles across projects, 374-376
creating new styles, 369-371
definition, 366
editing existing styles, 367-369

styles 577

example, 366-367
FocusVisualStyle, 370-374

switch statement, 286-289

switching between windows in code, 480

event handler error dialog box, 482
Label element, adding, 481
new child elements, 481
reloading the application in

Visual Studio, 482
RoutedEvent for window state, 483-484
state change, handling, 484-485
viewing windows, 485

syntax (XAML)

child elements, 94-96
elements, 92-93
events, 97-98
markup extensions, 98-101
nested elements, 94
object properties, 97-98

T
Tab key, 64

TabControl control

HeaderedContentControl control, 254-256
properties, 255
TabItems, adding, 255

TabIndex property (controls), 232

TabItems control, 255

tabs (Asset Library)

Controls, 210-211
Custom Controls, 211
Local Styles, 211
Media, 211
Recent, 212

TabStripPlacement property (TabControl
element), 255

Tag property, 386

tags (XAML), 21

TargetName property (animations), 417

targets, selecting, 32

templates

child elements, 250
control

applying, 364-365
creating, 201, 360-361
definition, 360
editing, 361-363
gel button, creating, 201-202
overview, 360
testing, 204-206

data
creating, 378-388
data sources, 376-378
overview, 376

overview, 359
style templates

applying styles across projects, 374-376
creating new styles, 369-371
definition, 366
editing existing styles, 367-369
example, 366-367
FocusVisualStyle, 370-374

TestButtonClicked RoutedEvent, 306-307

testing

custom text box control, 501-503
gel button example, 203

MouseMove event, 206-207
Resource Dictionary/control template,

204-206
text-based UIElements tools, 149

text box control (custom), 492

complete control listing, 504-508
creating, 492
dictionary

functionality, 495
dynamic history, 498
filtering, 499-500

ListBox control, 496-497
new class, creating, 494
OnKeyUp event handler, 500-501
Popup control, 497-498
testing, 501-503
TextBox class inheritance, 494

styles578

text category (Properties panel), 82-84

TextChanged event handlers, 397-398

this keyword, 291

TickFrequency property (Slider control), 246

TickPlacement property (Slider control), 246

timelines, 70

actions, 68
animating elements, 190-191
controlling in code, 434-436
duplicating, 433
overview, 415-418
playhead position, 70
recording status, 69
resolution, 70
reversing, 433
snapping, 70
states, 428
triggers, 68
zooming, 70

Toolbox, 147

common controls UIElements, 150
panel-based UIElements, 149
path, 149
recent controls elements, 151
shape, 149
text-based UIElements, 149
usability, 148

tools

Brush Transform, 181-182
Camera Orbit, 514
common controls UIElements, 150
Direct Selection, 179
Expression Blend, 6
Expression Design, 6
Make Button, 188-190
panel-based UIElements, 149
path, 149
Pen tool, 158-163

closed complex shapes, 161
gel button, 179
smoothing paths, 162

How can we make this index more useful? Email us at indexes@samspublishing.com

Pencil tool, 163-164
recent control elements, 151
Selection, 513
shape, 149

Ellipse, 164-166
Line, 152-154

text-based UIElements, 149
usability, 148

Brush Transform, 167-168
Camera Orbit, 168-173
Direct Selection, 154-158
Eyedropper, 166-167
Paint Bucket, 167
Pan, 151
Zoom, 152

Visual Studio, 6
ZAM3D, 169

Top property (windows), 476

TopMost property (windows), 477

transformations

center points, 337-338
definition, 334
flip, 339
LayoutTransform property, 334
RenderTransform property, 334
rotation, 336-337
scale, 337
skew, 337
translation, 335-336

TranslateX property, 335

TranslateY property, 335

translation, 335-336

transparency (windows), 477-480

trees (.NET versus WPF), 114

TreeView control example, 115

Button control, adding, 123
C#, XAML listing, 115-119
child object management, 126-128
Click Event handler

Button control, 123
ProgressBar control, 124

TreeView control example 579

code behind file, 119
ColumnDefinitionCollection Editor, 122
Label Content property, 125
Label control

adding, 122
content value, setting, 120

ProgressBar control, adding, 122
TreeViewItem Items content value, setting,

121-122
XAML

entire control listing, 125
representation listing, 119

TreeView controls, 257

TreeViewItem control, 258-259

creation listing, 258
properties, 259

triggers, 66

actions applied, 68
active, 67
adding/deleting items/actions, 68
defined, 68, 425
deleting, 66
element selection, 68
event, 66
event triggers, 425-428
gel button animated glow, 194-196
properties, 68

recording state, 67-68
triggers, 66-68, 428-432

recording, 66, 429
timelines

actions, 68
selector, 68
states, 428

types, 66
try-catch statements, 295-297

try keyword, 295

TryFindResource() method, 435

TryPlayMedia() method, 542-543

tunneling events, 203

twitter RSS reader project, 49

adorners, 50
artboard, viewing, 52

data
binding, 53
structure, viewing, 53
templates, 55

elements, activating, 49
Grid

element, 49
pink border padding, 51
position, 50

Label elements, 57
LayoutRoot element, 49
Properties panel, 58
refresh capability, adding, 59-60
required fields, 56
RowDefinition row, creating, 51
RSS URL, 52-53
twitter post content, 55
twitter website, 48

two-way binding, 396-397

types

projects, 46-47
triggers, 66

U
UI process development, 6

UIElements, embedding, 106-107

child controls, adding, 113-115
example listing, 106
positioning, 107-110
TreeView control example, 115
Window properties, customizing, 110-113

underscores (_), resource names, 202

undocking Interaction Panel, 65

Uniform Grid control, 142

UnloadedBehavior property (MediaElement
control), 527

unlocking elements, 70

unnamed combobox items, creating, 223-225

Up Vector (x,y,z) property, 518

TreeView control example580

usability tools, 148

Brush Transform, 167-168
Camera Orbit, 168-173

creating objects, 171-172
listing, 169-171

Direct Selection, 154-158
Eyedropper, 166-167
Paint Bucket, 167
Pan, 151
Zoom, 152

UserControl level (custom controls), 491

users

business mindset, 8-10
interfaces

next generation, 4-5
visual perception, 9

media player input, 532-533

V
ValidateColorValue() method, 398-399

ValidateWidth() method, 297

validating data, 397-400

ValidationRule class, 400

variables, declaring in C#, 270

vector graphics

bitmaps, compared, 12
creating, 350-356

VerticalOffset property (Popup control), 266

VerticalScrollBarVisibility property (ScrollViewer
control), 268

ViewBox control, 143-144

viewing XAML elements, 36-37

Viewport3D element, 511

3D mesh, creating, 511-513
Camera Orbit tool, 514
Selection tool, 513

How can we make this index more useful? Email us at indexes@samspublishing.com

views

live artboard, 33
panels, 63

Vista, 10

Bread Crumb controls, 10
File Explorer, 10
navigation elements, 12
Windows XP similarities, 10

visual asset creation, 7

visual perception, 9

Visual Studio, 6

applications, saving, 41-42
C# primitive data types, creating, 271-273
classes, creating, 275
design environment, 13
Expression Blend, compared, 17
IntelliSense functionality, 120
project types, 46-47
versions, 41
XAML

compatibility, 39
interactivity example, 39-42

volume (media player), 536

Volume property (MediaElement control), 526

W
websites

media formats, 524
RoutedEvents, 310
twitter, 48
XAML Express, 173

Width property

Grid, 112, 134
method example, 297

Window class, declaring, 37

Window properties, customizing, 110-113

Window1.xaml.cs file, 543-548

Window1.xaml.cs file 581

windows, 475

multiple, 480
names, 480
properties, 476-477
switching between in code, 480

event handler error dialog box, 482
Label element, adding, 481
new child elements, 481
reloading the application in Visual

Studio, 482
RoutedEvent for window state, 483-484
state change, handling, 484-485
viewing windows, 485

transparency, configuring, 477-480
Windows Presentation Foundation. See WPF

Windows XP and Vista similarities, 10

WindowStartupLocation property
(windows), 477

WindowState property (windows), 477

WindowStyle property (windows), 476

workflow benefits, 27-28

workspace, cycling, 36

WPF (Windows Presentation Foundation), 12-15

controls
ContentControl, 246-250, 254
Expander, 259-261
GridSplitter, 262-263
HeaderedContentControl, 254-256
HeaderedItemsControl, 256-259
Popup, 264-266
ScrollViewer, 266-268

document commands, 439-440
input commands, 438-439
Silverlight, 15-16
trees, 114

Wrap panel, 140

X
XA (XAML architect), 7, 17

XAML, 13

architect, 7
button application example, 22

C#, 22
XAML code, 23

elements, 92-93
child, 94-96
nesting, 94
viewing, 36-37

event handlers, 21
events, 97-98
Express website, 173
Hello World application with label

control, 38
history, 91-92
integration, 23-24
layers

graphical UI, 19-20
logic, 20-21

listings
adding brush to Window’s resource

collection, 98
Binding extension, 99-101
brush suggestion table sample one, 176
brush suggestion table sample two, 178
brush suggestion table sample

three, 181
brush suggestion table sample four, 181
brush suggestion table sample five, 182
brush suggestion table sample six, 182
brush suggestion table sample

seven, 184
brush suggestion table sample

eight, 184
brush suggestion table sample

nine, 193
button declaration, 92
C# code in XAML, 44-45

windows582

complex button shapes, 185-188
creating new grids during runtime, 99
embedded listbox, 95-96
gel button LayoutRoot element, 203
nested elements, 94, 97
RichTextBox controls, adding, 242
Static extension, 98
Tree control example, 115-119
TreeView control entire control, 125
views, 36

markup extensions, 98-101
adding brush to Windows resource

collection, 98
Binding, 99-101
creating new grids during runtime, 99
Static, 98

media player requirements, 524
creating, 524
MediaElement properties, 525-527

nested elements, 21
.NET code, adding, 43-46
Notepad application

creating, 443-445
menu items, building, 446-452
overview, 442
XAML packages, saving and opening,

452-457
object properties, 97-98
overview, 18-19
packages, 452-457
properties, 21
representations, 21
Source Safe integration, 19
tags, 21
vector images, 225
Visual Studio

compatibility, 39
interactivity example, 39-42

How can we make this index more useful? Email us at indexes@samspublishing.com

Y–Z
ZAM3D tool, 169

zero-based collections, 310

Zoom tool, 152

zooming in/out, 33, 70

Z-Order, 108, 132

Z-Order 583

	Foreword
	1 Introduction to Expression Blend
	The Next Generation User Experience
	Windows Presentation Foundation (WPF)
	Expression Blend Versus Visual Studio
	An Introduction to Expression Blend and XAML
	The Benefits of Expression Blend
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X
	Y–Z

