
35CHAPTER

In this chapter

COM Reporting Components

Understanding the Report Designer Component PDF 880

Building Reports with the Visual Basic Report Designer PDF 880

Programming with the Report Engine Object Model PDF 884

Delivering Reports Using the Report Viewer PDF 892

Using the Object Model to Build Batch Reporting Applications PDF 893

Troubleshooting PDF 894

PDF 880 Chapter 35 COM Reporting Components

Understanding the Report Designer Component
Business Objects has long viewed the Component Object Model (COM) development plat-
form as one of the key areas it needed to embrace to become successful. Although there
were other popular developer platforms in the market, the trend for development projects
concerning information delivery was to use Visual Basic. This was because of its good mix of
power and simplicity. Now part of the Business Objects product line, Crystal Reports XI
mirrors these attributes and delivers a powerful yet productive reporting solution. This
chapter covers Business Objects reporting solutions for the COM platform, specifically, the
Crystal Report Designer Component.

Although the chapters covering the Java and .NET components focused primarily on Web-
based applications, this chapter concentrates on desktop applications because that is the
focus of the Business Objects COM Components. Desktop applications, although still popu-
lar today, were what started it all. These are standalone applications that run on a single tier
and are installed locally on a user’s machine. These applications are most commonly built
using Visual Basic, but are also sometimes built using Visual C++ or Delphi.

35

N O T E
All sample code in this chapter uses Visual Basic 6 syntax, but can easily be adapted to
other languages that support COM. For sample code in other languages, visit the
Business Objects support site at http://support.businessobjects.com.

Many development environments support Microsoft’s COM technology. COM (Component
Object Model) is a standard technology used for exposing Software Development Kits
(SDKs) in the Windows world. It implies a set of objects with properties and methods.
Much of Microsoft’s own SDKs are based on COM. It follows that the recommended
Crystal Reports SDK for desktop applications would also be based on COM. Its name is
the Report Designer Component, and it consists of the following pieces:

■ A report designer integrated into the Visual Basic environment

■ An object model built around the report engine used for manipulation of the report

■ A report viewer control used for displaying reports inside an application

The following sections describe each of these components in more detail.

Building Reports with the Visual
Basic Report Designer

The Visual Basic report designer enables developers to create and edit reports from within
the comfort of the Visual Basic environment. Figure 35.1 shows the report designer active
inside Visual Basic.

PDF 881Building Reports with the Visual Basic Report Designer

To add a new report to a project, select Add Crystal Reports XI from the Project menu
inside Visual Basic.

35

Figure 35.1
Here a report is
shown being editing
in the Visual Basic
report designer.

N O T E
If Add Crystal Reports XI is not showing on the Project menu, go to the Project,
Components menu, and on the Dialog tab, make sure Crystal Reports XI has a check
beside it. If you turn this on, it permanently appears on the Project menu.

From the dialog that opens, select Using the Report Wizard or As a Blank Report to create
a new report from scratch. The From an Existing Report option provides you with the
capability to import any existing Crystal Report file (.rpt) and use the Visual Basic report
designer to make further modifications, a great way to leverage any existing work an organi-
zation has put into Crystal Reports. A report that is added to a Visual Basic project is saved
as a .dsr file, which is a container for the actual .rpt file along with some other informa-
tion. At any point, you can click the Save to Crystal Report File button on the designer’s
toolbar and save the report out to a standard RPT file, so in effect reports can easily go
both ways: in and out of Visual Basic. Because the Visual Basic report designer is based pri-
marily on the same code-base as the standalone Crystal Reports designer, the RPT file for-
mat is the same. You can also import existing reports from past versions into the Visual
Basic report designer.

The Visual Basic report designer supports almost all the features of the Crystal Reports
designer and can be used to create everything from simple tabular reports to highly format-
ted, professional reports. However, even though the capabilities of these two editions are

PDF 882 Chapter 35 COM Reporting Components

similar, there are some differences in the way the designer works. This is not meant to be
inconsistent, but rather to adapt some of the Crystal Reports tasks to tasks with which
Visual Basic developers are familiar. Ideally, the experience of designing a report with the
Visual Basic report designer should be like designing a Visual Basic form. The following
sections cover these differences.

Understanding the User Interface Conventions
Several user interface components work differently in the Visual Basic report designer. One
of the first things you might notice is that the section names are shown above each section
on a section band as opposed to being on the left side of the window. However, the same
options are available when right-clicking on the section band. This tends to be more conve-
nient anyway.

The Field Explorer resides to the left of the report page. Although it cannot be docked, it
can be shown or hidden by clicking the Toggle Field View button on the designer toolbar.
Other Explorer windows found in the standalone designer such as the Report Explorer and
Repository Explorer are not available in the Visual Basic report designer.

35

N O T E
Reports that contain objects linked to the Crystal Repository are fully supported; how-
ever, no new repository objects can be added to the report without using the standalone
designer.

The menus that you would normally find in the standalone Crystal Reports designer can be
found by right-clicking on an empty spot on the designer surface. The pop-up menu pro-
vides the same functionality.

Modifying the Report Using the Property Browser
To change the formatting and settings for report objects in the standalone designer, users
are familiar with right-clicking on a report object and selecting Format Field from the pop-
up menu. This opens the Format Editor, which gives access to changing the font, color,
style, and other formatting options. In the Visual Basic report designer this scenario is still
available; however, there is an additional way to apply most of these formatting options: the
Property Browser.

The Property Browser is a window that lives inside of the Visual Basic development envi-
ronment. It should be very familiar to Visual Basic developers as a way to change the
appearance and behavior of a selected object on a form or design surface. In the context of
the report designer, the Property Browser is another way to change the settings (properties)
for report objects. In general, any setting that is available in the Format Editor dialog is
available from the property browser when that object is selected. To see which properties
are available for a given object, click on it, and check out the Property Browser window
shown in Figure 35.2.

PDF 883Building Reports with the Visual Basic Report Designer

The property names are listed on the left and the current values are listed on the right. To
choose a value, simply click on the current value and either type or select from the drop-
down list.

One property to pay attention to is the Name property. This becomes relevant in the next
section when you learn how to use the Report Engine Object Model to manipulate the
report on the fly at runtime. This is the way to reference that object in code. Also of note is
that the properties shown in the Property Browser map to the same properties that are
available programmatically via the object model. If you see a property there, this means it is
also available to be changed dynamically at runtime.

Unbound Fields
The Field Explorer in the Visual Basic report designer has an extra type field not found in
the standalone report designer. These are called unbound fields. There is one type of
unbound field for each data type. These fields are used to build dynamic reports. Because
they do not have a predefined database field mapped to them, they provide a way to change
the locations of fields on the report by using some application logic. The reason they each
have their own data type is so that type-specific formatting can be applied such as the year
format for a date object, or the thousands separator for a numeric object. Unbound fields
are revisited later in this chapter. 35

Figure 35.2
Changing a report
object’s settings via
the Property Browser
is shown here.

N O T E
When you create an unbound field, it also shows up as a formula in the Formula Fields
list. This is because a formula is used behind the scenes of an unbound field. The best
practice is not to edit this as a formula field.

PDF 884 Chapter 35 COM Reporting Components

Programming with the Report Engine Object
Model

The object model is the main entry point to the Crystal Reports engine for desktop applica-
tions. As mentioned earlier, it is based on COM and can be used from any COM-compliant
development environment. Although the main library’s filename is craxdrt.dll, the more
important thing to know is that it shows up in the Project References dialog as Crystal
Reports ActiveX Designer Runtime Library 10.0, as shown in Figure 35.3. After a reference
is added to this library, a new set of objects will be available to you. These objects are con-
tained in a library called CRAXDRT. To avoid name collisions, it’s probably a good idea to fully
qualify all object declarations with the CRAXDRT name, for example, Dim Param As
CRAXDRT.ParameterField.

35

Figure 35.3
Reference the Report
Designer
Component’s Object
Model in the
References dialog.

In addition to many other features, the object model provides the capability to open, create,
modify, save, print, and export reports. This section covers some of the more common sce-
narios a developer might encounter.

The main entry point to the object model is the Report object. This object is the program-
matic representation of the report template and provides access to all the functions of the
SDK. There are three ways to obtain a Report object:

■ Load an existing RPT file from disk

■ Create a new report from scratch

■ Load an existing strongly typed report that is part of the Visual Basic project

The first two methods involve the Application object. Its two key methods are NewReport
and OpenReport. As the name implies, the NewReport method is used to create a blank report

N O T E
When adding a Crystal Report to your project, a reference is automatically added to this
library for you. You can use the CRAXDRT library right away.

PDF 885Programming with the Report Engine Object Model

and the OpenReport method is used to open an existing report. Creating a new report is use-
ful if the application needs to make a lot of dynamic changes to the report’s layout on the
fly. This way all report objects can be added dynamically.

35

N O T E
Although many purist developers are tempted to not use any predefined report tem-
plates (RPT files) and create all reports on the fly, this tends to be overkill for most pro-
jects. There is a lot of work in having to programmatically make every single addition to
a report. It’s usually a better plan to have some RPT files as part of the application and
then make some small modifications at runtime.

The other option is to use the OpenReport method, which takes a filename to an RPT file as
a parameter. This opens an existing report. When using this method, the RPT files must be
distributed along with the application. The advantage of having these externals files is that
you can update the reports without updating the application.

The last method is to use a strongly typed report. A strongly typed report is one that is added
to the Visual Basic project and turned into a DSR file. Whichever name you give that
report, a corresponding programmatic object exists with the same name. For example, if
you save a report as BudgetReport.DSR, you can create that report programmatically with
the following code:

Dim Report As New BudgetReport

There are several advantages to using strongly typed reports. First, all report files are bound
into the project’s resulting executable so no external files are available for users to modify
and mess up. Second, not only is the name of the report strongly typed (BudgetReport in
the previous example), but also the section and report objects. For example, if you have a
text object acting as a column header and you want to modify this at runtime, it’s very easy
to access the object by name like this:

Report.ColumnHeader1.SetText “Some text”

The long-handed way of doing this would look something like this:

Dim field as CRAXDRT.FieldObject
Set field = Report.Sections(“PH”).ReportObjects(3)
Field.SetText “Some text”

Not only is this last method longer, you’d also have to refer to the report object by index
instead of name, which can become problematic. The following sections discuss some of the
common tasks that are performed after a Report object is obtained.

Exporting Reports to Other File Formats
A very common requirement for application developers is to be able to export a report
through their application. Not only do developers want a variety of formats, they want the
export to happen in a variety of ways, for example, having the user select where to save the
report, saving to a temp file and then opening it, e-mailing it to somebody else, and so on.

PDF 886 Chapter 35 COM Reporting Components

By being creative with exporting, you can create some very powerful applications. The
Report Designer Component object model provides a very flexible API to meet these broad
needs. This section covers the basics of exporting.

There are two components to exports: the format and the destination. The developer speci-
fies both of these through the ExportOptions property of the Report object.

Setting the format options involves two steps. The first step is to choose which format you
want to export to. Sometimes an application provides the user a list of export formats and
lets him choose, other times the export type will be hardcoded. In any case, simply setting
the FormatType property of the ExportOptions object specifies this. This property accepts a
number. For example, to export to PDF, pass in 31. Remembering which number represents
which format is tough so there are some enumerations with descriptive names that make this
easier.

35

N O T E
For a full list of enumerations, consult the Crystal Reports Developers Help file and look
at the CRExportFormatType enumeration in the Visual Basic object browser.

To help you get started, here are some of the more popular export format enumeration
values:

■ PDF—crEFTPortableDocFormat

■ Word—crEFTWordForWindows

■ Excel—crEFTExcel97

■ HTML—crEFTHTML40

■ XML—crEFTXML

Generally, all you need to do to set the format options is set the FormatType property.
However, many of the format types have some additional options. For example, when
exporting to Excel there is an option to indicate whether you want the grid lines shown. To
handle these extra settings, there are some other properties off the ExportOptions object
whose names begin with the format type. In the Excel grid lines example, the property is
called ExcelShowGridLines. For PDF, there are PDFFirstPageNumber and PDFLastPageNumber
properties that indicate which pages of the report you want exported to PDF. You can
determine what options are available by checking out the Crystal Reports Developer Help
file and looking at the ExportOptions object.

After the format is set up, you need to tell Crystal Reports where you want this report to be
exported. This is called the export destination. The most common destination is simply a file
on disk but there are destinations such as e-mail or Microsoft Exchange folders where
reports can be automatically sent. The export destination is set via the DestinationType
property of the ExportOptions object. Some example values are listed here:

PDF 887Programming with the Report Engine Object Model

■ File—crEDTDiskFile

■ E-mail—crEDTMailMAPI

■ Exchange—crEDTMicrosoftExchange

Check out the CRExportDestinationType enumeration to see the other available options.
Like the format, the destination has a set of additional options. The most obvious one is
when setting the destination to a file (crEDTDiskFile), you would need to specify where you
want this file and what its name should be. This is accomplished by setting the DiskFileName
property. Other properties on the ExportOptions object are available such as the MailToList
property, which is used to indicate who the report should be mailed to if the e-mail option is
selected as the destination.

The final step in exporting is to call the Report object’s Export method. It takes a single
parameter: promptUser. If this is set to true, any options previously set on the ExportOptions
object are ignored and a dialog appears asking the user to select the format and destination.
This can be useful if you want the user to have the capability to use any export format and
any destination. If you would like a more controlled environment, you can set promptUser to
false. When this is done the previously selected values from the ExportOptions object are
respected and the export is done without any user interaction besides a progress dialog pop-
ping up while the export is happening. This progress dialog can also be suppressed by set-
ting the Report object’s DisplayProgressDialog property to false. Listing 35.1 provides an
example of a report being exported to a PDF file without any user interaction.

Listing 35.1 Exporting to PDF

Dim Report As New CrystalReport1

‘ Set export format
Report.ExportOptions.FormatType = crEFTPortableDocFormat

‘ Set any applicable options for that format
‘ In this case, set to only export pages 1-2
Report.ExportOptions.PDFFirstPageNumber = 1
Report.ExportOptions.PDFLastPageNumber = 2

‘ Set export destination
Report.ExportOptions.DestinationType = crEDTDiskFile

‘ Set any applicable options for the destination
‘ In this case, the filename to be exported to
Report.ExportOptions.DiskFileName = “C:\MyReport.pdf”

‘ Turn all user interface dialogs off and perform the export
Report.DisplayProgressDialog = False
Report.Export False

35

PDF 888 Chapter 35 COM Reporting Components

Printing Reports to a Printer Device
Although it’s helpful to view reports onscreen and save some paper, many times reports still
need to be printed. To accomplish this, there is a collection of methods for printing reports
available from the Report object. The simplest way to print a report is to call the PrintOut
method passing in true for the promptUser parameter as shown here:

Report.PrintOut True

This opens the standard Print dialog that enables the user to select the page range and then
click OK to confirm the print. The limitation to this is that the pop-up dialog does not
enable the user to change the destination printer. Because this is a common scenario, this
method isn’t used very often. Instead, the PrinterSetup method is called. This method pops
up a standard printer selection dialog that enables the user to change the paper orientation
or printer.

Keep in mind that calling the PrinterSetup method does not actually initiate the print; it
only collects the settings to be used for the print later on. Luckily it does indicate via a
return value whether the user clicked the OK or Cancel button. Listing 35.2 shows an
example of how to use the PrinterSetup method to set printer options.

Listing 35.2 Printing a Report Interactively

‘ Call PrinterSetup to set printer, paper orientation, and so on
If Report.PrinterSetupEx(Me.hWnd) = 0 Then

‘ If the return value is 0, the user did not click Cancel
‘ so go ahead with the print
Report.PrintOut False

End If

To print a report without any user interaction, call the PrintOut method passing in false for
the promptUser parameter. Options such as pages and collation can be set with the additional
argument to the PrintOut method. To change the printer, call the SelectPrinter method.
This accepts the printer driver, name, and port as parameters and performs the printer
change without any user interaction. Listing 35.3 illustrates a silent print.

Listing 35.3 Printing a Report Silently

‘ Call PrinterSetup to set printer, paper orientation, and so on

‘ Set paper orientation
Report.PaperOrientation = crLandscape

‘ Set printer to print to
‘ pDriver -- for example: winspool
‘ pName -- for example: \\PRINTSERVER\PRINTER4
‘ pPort -- for example: Ne00:
Report.SelectPrinter pDriver, pName, pPort

‘ Initiate the print
Report.PrintOut False

35

PDF 889Programming with the Report Engine Object Model

Setting Report Parameters
Often reports delivered through an application need to be dynamically generated based on a
parameter value. If a report with parameters is viewed, exported, or printed, a Crystal para-
meter prompting dialog pops up and asks the user to enter the parameter values before the
report is processed. This parameter prompting dialog requires no code. The use of the
object model comes into play when a developer wants to set parameters without user inter-
action. This is done via the ParameterFieldDefinitions collection accessed via the Report
object’s ParameterFields property. If all parameter values are provided before the report is
processed, the parameter dialog is suppressed.

Parameters can be referenced by name or by number. To reference by name, call the
ParameterFields object’s GetItemByName method passing in the name of the parameter
you want to access. This returns a ParameterField object. Alternatively, use the indexer
on the ParameterFields object; for example, ParameterFields(1). When referencing by
index, the parameters will be stored in the same order they appear in the Field Explorer
window in the report designer. After a ParameterField object is obtained, simply call the
AddCurrentValue method to set the parameter’s value as shown in Listing 35.4.

Listing 35.4 Setting Parameters

Dim Application As New CRAXDRT.Application
Dim Report As CRAXDRT.Report

‘ Open the report from a file
Set Report = Application.OpenReport(“C:\MyReport.rpt”)

Dim p1 as ParameterField
Set p1 = Report.ParameterFields.GetItemByName(“Geography”)
p1.AddCurrentValue(“Europe”)

Dim p2 as ParameterField
Set p2 = Report.ParameterFields(2)
p2.AddCurrentValue(1234)

If the parameter accepts multiple values, simply call the AddCurrentValue method multiple
times. For range parameters where there is a start and an end value, use the AddRangeValue
method.

Sometimes a developer wants to prompt the user to enter some or all of the parameters but
they want to control the user interface. Much information about the parameter can be
obtained by reading its properties:

■ ParameterFieldName—Name of the parameter

■ ValueType—The data type of the parameter (string, number, and so on)

■ Prompt—The text to use to prompt for this parameter

35

PDF 890 Chapter 35 COM Reporting Components

Also, by using the NumberOfDefaultValues property and GetNthDefaultValue method, a
developer can construct her own pick-list of default parameter values that is stored in the
report.

35

N O T E
For more information on the other properties and methods available on the
ParameterField object, consult the Crystal Reports Developer Help file and look for
the ParameterFieldDefinition object.

Setting Data Source Credentials
Although the sample reports that come with Crystal Reports XI use an unsecured Microsoft
Access database as their data source, most real-world reports are based on a data source that
require credentials (username, password) to be passed. Also, it’s very common to want to
change data source information such as the server name or database instance name via code.
This section covers these scenarios.

Unlike parameters, there is no default-prompting dialog for data source credentials. They
must be passed via code. The server name, location, database name, and username are all
stored in the report. However, the password is never saved. A report will fail to run if a
password is not provided.

Most reports only have a single data source but because it is possible for reports to have
multiple data sources that in turn would require multiple sets of credentials, setting creden-
tials isn’t something that’s done on a global level. Credentials are set for each table in the
report. Tables are represented by an object called a DatabaseTable inside the object model.
The following code snippet illustrates the hierarchy required to get at the DatabaseTable
object.

Report
Database

DatabaseTables
DatabaseTable

Tables are accessed by their index, not their name. The indexes in the object model are all
1-based and are in the order you see them in the Field Explorer in the report designer. To
access the first table in the report, you could do this:

Dim tbl as DatabaseTable
Set tbl = Report.Database.Tables(1)

After the correct DatabaseTable object is obtained, use the ConnectionInfo property bag to
fill in valid credentials. If you do only have one data source in the report, but multiple
tables from that data source, you need not set credentials for each one. The information is
propagated across all tables. Listing 35.5 illustrates setting the server name, database name,
username, and password for a report based off an OLEDB data source.

PDF 891Programming with the Report Engine Object Model

Listing 35.5 Setting Data Source Credentials

‘ Provide database logon credentials (in this case
‘ for an OLEDB connection to a SQL Server database)
Dim tbl as CRAXDRT.DatabaseTable
Set tbl = Report.Database.Tables(1)
tbl.ConnectionInfo(“Data Source”) = “MyServer”
tbl.ConnectionInfo(“Initial Catalog”) = “MyDB”
tbl.ConnectionInfo(“User ID”) = “User1”
tbl.ConnectionInfo(“Password”) = “abc”

Each type of data source has its own set of properties. OLEDB has a Data Source, which is
the server name whereas the Microsoft Access driver has a Database Name, which is a file-
name to the MDB file. The ConnectionInfo property bag is introspective so you can loop
through and determine what properties are available.

Mapping Unbound Fields at Runtime
Earlier in this chapter you saw that a new type of field called an unbound field can be added
to the report with the Visual Basic report designer. Using the object model, these unbound
fields can be mapped to database fields in the report at runtime. This is done two different
ways: manually or automatically.

The manual method is to use the SetUnboundFieldSource method of the FieldObject. This
method takes a single parameter, which is the name of the database field to be mapped in
the Crystal field syntax, such as {Table.Field}. If a strongly typed report is being used, that
is, a report added to the Visual Basic project, the UnboundField objects can be referenced as
properties of the Report object. For example, an unbound field object given the default
name of UnboundString1 can be referenced like this:

Report.UnboundString1.SetUnboundFieldSource “{Customer.Customer Name}”

If a report is loaded at runtime, there are no strongly typed properties so the FieldObject
needs to be found under the Section and ReportObjects hierarchy. The following example
gets a reference to the first unbound field in the details section:

Dim fld As FieldObject
Set fld = Report.Sections(“D”).ReportObjects(1)
fld.SetUnboundFieldSource “{Customer.Customer ID}”

The automatic method is to simply call the Report object’s AutoSetUnboundFieldSource
method. This assumes that any unbound fields to be mapped are named to match a database
field. Initially this might seem strange because the whole point of an unbound field is that
the developer doesn’t know which database field it will be mapped to at design time.
However, this automatic method is valuable when the database table doesn’t exist at design
time, and instead is added at runtime based on some dynamic data.

Using the Code-Behind Events
One of the reasons that the report is saved as a DSR file instead of just an RPT file is that
the DSR file contains some code that is attached to the report file. This code, often called

35

PDF 892 Chapter 35 COM Reporting Components

code-behind, is event-handing code for several events that the report engine fires. The follow-
ing list describes events that are fired and their corresponding uses:

■ Initialize (Report)—Fired when the report object is first created. This event can be
useful for performing initialization-related tasks.

■ BeforeFormatPage/AfterFormatPage (Report)—Fired before and after a page is
processed; can be useful for indicating progress.

■ NoData (Report)—Fired when a report is processed but no records were returned from
the data source. Sometimes a report with no records is meaningless and thus should be
skipped or the user should be warned; this event is a great way to handle that.

■ FieldMapping (Report)—Fired when the database is verified and there has been a
schema change; this event enables you to remap fields without user interaction.

■ Format (Section)—Fired for the rendering of each section. This is useful for handling
the detail section’s event and performing conditional logic.

Delivering Reports Using the Report Viewer
In the previous section, only printing and exporting were mentioned as options for deliver-
ing reports. You might have been wondering how to view reports onscreen. This section will
cover using the report viewer to view reports. This report viewer control is usually referred
to as the ActiveX viewer, or the Crystal Reports Viewer Control. It is an ActiveX control,
which means that in addition to being able to be dropped on to any Visual Basic form—like
the other components of the Report Designer Component—it can be used in any COM-
compliant development environment. Its filename is CRViewer.dll. Figure 35.4 depicts the
ActiveX viewer displaying a report from a Visual Basic application.

35

Figure 35.4
A Crystal Report is
shown here being dis-
played in the ActiveX
viewer.

PDF 893Using the Object Model to Build Batch Reporting Applications

The ActiveX viewer works in conjunction with the object model and report engine to render
the report to the screen. The object model talks to the report engine to process the report,
and then the ActiveX viewer asks the object model for the data for an individual page. After
this data is received by the viewer, it displays the report page onscreen. The following code
snippet illustrates how to view a report with the report viewer control:

Dim Application As New CRAXDRT.Application
Dim Report As CRAXDRT.Report

Set Report = Application.OpenReport(“C:\MyReport.rpt”)
CRViewer.ReportSource = Report
CRViewer.ViewReport

The ActiveX control has many properties and methods that enable you to customize its look
and feel. To turn off the toolbar at the top of the viewer control, simply set the
DisplayToolbar property to false. To turn off the group tree, set the DisplayGroupTree
property to false. This can result in a very minimalist viewer. In addition, the control has a
full event model that notifies you when certain actions are performed, such as a drill-down
or page navigation. For more information on the ActiveX viewer control, consult the
Crystal Reports XI developer help file.

Using the Object Model to Build Batch
Reporting Applications

So far this chapter has focused on on-demand reporting, meaning that reports are processed
as they are requested and they generally go away when the viewing or printing is completed.
One of the biggest uses of the Report Designer Component today is for batch reporting;
that is, running a large number of reports at once. This section covers some features and
best practices relevant to batch reporting.

Working with Reports with Saved Data
When using the standalone report designer, you might have noticed an option on the File
menu called Save Data with Report. This enables a report to be saved with the last returned
dataset so that it can be viewed again without connecting to the database. Reports with
saved data are in effect an offline report.

Applications using the Report Designer Component can both create and view reports with
saved data. This enables you to run a batch of reports and then be able to view them at any
point later. This can be useful for reports based on queries that take a long time to run, or
also for achieving an archiving process for reports.

Creating a report with saved data is very simple. You just export to the Crystal Reports for-
mat by using the crEFTCrystalReport identifier. All exported reports have saved data. You
can control where this report is saved and archive it for later.

Viewing a report with saved data doesn’t actually require any code at all. The logic of the
report engine is: If the report has saved data, use it and only hit the database again if the

35

PDF 894 Chapter 35 COM Reporting Components

user clicks the Refresh button or the developer forces a refresh by calling the
DiscardSavedData method off the Report object. You can always tell which copy of the data
is being used from examining the DataDate property of the Report object.

Hopefully you can imagine how applying this principle to batch reporting would be power-
ful. A set of reports could be run overnight, producing another set of reports with saved data
that can be viewed offline.

Looping Through Reports
Another scenario that is relevant to batch reporting is looping through a set of reports. A
common example is running either one report many times with different parameters (such
as a bank statement) or running a large collection of reports all at once (such as financial
statements).

These scenarios can be accomplished by using external report files and writing a loop that
opens a report, prints or exports it, and then closes it. The best way to close a report is to
set the Report object to Nothing:

Set Report = Nothing

This releases the COM object and releases the report job from memory.

Also, the CRAXDRT library is thread safe, which means that multiple threads can be calling
into it at the same time. If a large number of reports need to be processing in a very small
amount of time, you can spawn as many as five simultaneous threads that are all running
reports at the same time.

Troubleshooting
Add Crystal Reports XI

“Add Crystal Reports XI” is not showing on my Project menu.

If you don’t see “Add Crystal Reports XI” on the Project menu, go to the Project,
Components menu, and on the Dialog tab make sure Crystal Reports XI has a check beside
it. If you turn this on, it permanently appears on the Project menu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0052005200200044006f006e006e0065006c006c00650079>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

