
10
Accordion

Adding massive amounts of data to one web page is not a recommended design
approach because it can be completely disorienting to the user, and might cause him to
go to another site.There are always exceptions, though, which is the case when using an
accordion component to display data. Using an accordion component enables a single
web page to display much more content without disorienting the user in the process.An
accordion has multiple panels that can expand and collapse to reveal only the data that a
user is interested in viewing without overwhelming him with everything at one time.

In this chapter, we will learn how to create a custom Ajax-enabled accordion compo-
nent.An Ajax-enabled accordion can lend itself to many unique situations. For example,
you can connect the component to live XML data from a database via a server-side
language, which can send and receive XML or any other format that you prefer.The
accordion component can be the graphical user interface for a custom web mail
application that displays threads in different panels.The server can push new data to the
component when mail has been updated, deleted, or added to the database, and the
accordion can parse it to update, delete, or add new panels to the thread.This is a perfect
example of providing access to massive amounts of content without scaring away the
users of the application. It is also a great way to organize the content so that the applica-
tion is ultimately more usable and purposeful.

Getting Started
In order to get started we must do a few things first.We must define an XML structure
for the object to accept, which will be scalable and grow with a large application. Once
we have defined this data structure we must then create a process for requesting it.This
section will focus on both of these assignments in order to get us started toward creating
the object.

The XML Architecture
Before we begin, we need to architect an XML structure that will be used to represent
an accordion with all its properties.Aside from the XML declaration, which needs to be

added to the top of the file, the first element that we will create will be named
accordion to represent the actual object or component. If we were to visualize an
accordion, we would know that it consists of multiple panels, so we will use panel as
the first child node name.To identify which panel is expanded by default when the
accordion is rendered, we will add an expanded attribute to the panel element and
populate it with a Boolean of true for expanded. Each panel should also include a
title and have content that displays when the panel is expanded; therefore, we will
create these elements as child nodes of the panel. If multiple panels are necessary to pres-
ent content, we can easily duplicate the panel and its enclosed children elements so that
there are numerous panels, one after the other.There is no limit to the amount of panels
that can be added, but the accordion component will render slower as more data is
added. Ultimately, however, a difference is not noticeable until your XML file gets very
large.Take a look at the sample code in Listing 10.1 to get an idea of how to construct
an accordion XML file that will be parsed by our custom component.

Listing 10.1 The XML Sample for the Accordion (accordion.xml)

<?xml version="1.0" encoding="iso-8859-1"?>

<accordion>

<panel expanded="true">

<title></title>

<content></content>

</panel>

<panel>

<title></title>

<content></content>

</panel>

</accordion>

After the structure has been created, we can add data between the XML node elements.
This data will be used to display in the corresponding parts of the accordion compo-
nent.Accepting HTML in any node element will make this component much more
flexible and can be very easily achieved by simply adding CDATA tags between the
content elements. Here is an example of how easy this is to accomplish:

<content><![CDATA[html text goes here]]></content>

Adding CDATA tags allows us to use any HTML that we would like to display in any
given panel.We could display everything from complex tables, images, and even other
components.After you have completed creating all of the components in this book, you
can combine them to make additional ways of interacting with data.After we have pop-
ulated the XML file, we are ready to request it and use its content to render the compo-
nent.

102 Chapter 10 Accordion

Requesting the XML
It is now time to set up the request for the XML.We will request the XML that we cre-
ated in the last section and push it to the parsing method in the component.To make
the request, we will first create an HTML file to hold all the code that will create and
facilitate communication between the component and Ajax. Keep in mind that aside
from building this sample, you will probably not use this component solely as you might
have an existing file that you want to incorporate the component into.With the correct
files and a few tweaks to the placement of the component, you can easily add one to any
page. In the header of the new sample HTML file, add references to the accordion CSS
and all the necessary JavaScript files, as in Listing 10.2. Keep in mind that you will have
to run the files on a server in order for the XHR to work.

Listing 10.2 The HTML Container for the Project (accordion.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

➥Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/

➥xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Accordion</title>

<link href="css/accordion.css" rel="stylesheet" type="text/css" />

<script type="text/javascript" src="../javascript/Utilities.js"></script>

<script type="text/javascript" src="../javascript/utils/AjaxUpdater.js"></script>

<script type="text/javascript" src="../javascript/utils/HTTP.js"></script>

<script type="text/javascript" src="../javascript/utils/Ajax.js"></script>

<script type="text/javascript" src="../javascript/components/Panel.js"></script>

<script type="text/javascript"
➥src="../javascript/components/Accordion.js"></script>

We are including a number of JavaScript files—one of which is the Utilities object
that we created in Chapter 14,“Singleton Pattern”—because it will be used to create the
accordion’s HTML elements that get rendered on the screen.The other JavaScript files,
Panel and Accordion, are the objects that we will be focusing on creating throughout
the rest of this chapter. In order to get started, you can create these files in the corre-
sponding JavaScript directory.

After we have the files included, we need to create an initialize method (see
Listing 10.3) in the header and add an Update call with the AjaxUpdater to request
the accordion XML file.This object will make the request to the Ajax object based on
the HTTP method and the query parameters that you pass.The Ajax object will then
make an XHR to the XML file that we are passing and will finally respond to the call-
back method that you specify. In this case, it is the display method for the accordion,
which will parse the XML and render the accordion and its panels.The first parameter is
the HTTP method for the request.The second is the requested file, plus any query
string that you need to append for posting data, which we will be doing more of in Part
V,“Server-Side Interaction,” when we begin to interact with server-side languages and

103Getting Started

databases.The last parameter is the method that you would like to be used as a callback
method for the request.

Listing 10.3 The XHR Request Code (accordion.html)

<script type="text/javascript">

function initialize()

{

AjaxUpdater.Update("GET", "services/accordion.xml", Accordion.display);

}

</script>

</head>

As you can see in Listing 10.3, we need to make sure that all the code is available or
fully instantiated.We must simply wait until the page loads before we call the
initialize method that makes the request.The following shows an example of the
body onload method:

<body onload="javascript:initialize();">

I have also added a loading div element (see Listing 10.4) to handle the ready state
status of the request.This is a good way to present the user with a message regarding the
state.

Listing 10.4 A div Element to Display Loading Status (accordion.html)

<div id="loading"></div>

</body>

</html>

When we have the HTML file ready to go, we can start creating the objects that make
up the accordion component. Let’s start with the Accordion object itself.

Creating the Accordion Object
The first object that needs to be created for the accordion component is the Accordion
object.The Accordion object will handle parsing the XML as well as creating and con-
trolling a variable number of panel objects.Accordions consist of multiple panels that
stack on top of each other and expand and collapse to reveal hidden content.We will
create a panel object that uses the prototype structure we discussed in Chapter 5,
“Object-Oriented JavaScript.”This will allow us to create multiple panel objects. Before
we move onto the details of creating the panels, however, we will finish creating the
Accordion object. Creating the Accordion object and initializing the properties is triv-
ial, but there is an important sequence of events that needs to happen—otherwise, the
object will not initialize properly. First, we must instantiate the object so that we can use

104 Chapter 10 Accordion

its other methods. In order to trigger the initialize method, we must declare the
method before we call it.The code snippet in Listing 10.5 shows an example of how we
can accomplish this.

Listing 10.5 Accordion Instantiation and Initialization (Accordion.js)

Accordion = {};

Accordion.initialize = function()

{

panels = new Array();

expandedPanel = 0;

}

Accordion.initialize();

Calling the initialize method before declaring it will cause an error because the
method does not exist in memory at this point and is not accessible. Notice that we have
two properties in the initialize method:A new panels array is created and the
expandedPanel number is set to 0.The panels array is simply an array of panel
objects that the Accordion object will contain after the panels have been created.These
panels will be added to the array in the display method and then be accessible to the
other methods in the Accordion object.The expandedPanel number is used to deter-
mine which panel is expanded by default when the accordion is rendered.This is the
property that will be set when we get the results of the XML file’s expanded attribute.

To render the accordion, we will create a display method.This is the method we
are using as the callback function for the Ajax request in the HTML file we created at
the beginning of the chapter.The first thing we need to do in the display method is to
check the ready state of the Ajax object. If the ready state returns "OK", we will continue
with the method; if we do not receive "OK" as the value, we can add a number of
branches to handle the different scenarios. For the example, I simply created a try-
catch to display a generic message for failed requests.

When we receive a successful message, we need to create an accordion div element
to act as the parent container for all the panels.When we have our accordion div ele-
ment created, we need to iterate through the panels from the response by targeting the
panel node element by name in the response XML.After we have an array of panel
data from the response, we can use the length property of the panel array to iterate
through the array.While iterating through the panel array, we need to get the title
and content data for each panel.We will find the panel element with an expanded
attribute that is set to true and use its iteration number to set the expandedPanel vari-
able.The expandedPanel number will be useful for matching purposes because it will
represent the unique ID of each panel object.When we have all the data from the XML
targeted to local variables, we can push a new panel object into the panels array we
instantiated in the accordion’s initialize method.When creating the new panel we
will pass it the iteration number as a unique ID, along with the title and content strings.

105Creating the Accordion Object

Now that we have the panel objects created, we can append the panel HTML ele-
ments to the accordion.We will accomplish this by using the appendChild method in
the Utilities object and passing the accordion div element and each panel display
method.The panel display method will pass all the HTML elements that are created
inside the panel object and append them to the accordion.When we have completed
iterating through the panels array and have appended them to the accordion, we will be
able to append the accordion to the document body.Appending the accordion to the
document body will render the accordion in the web page.Take a look at Listing 10.6 to
see the display method in its entirety.

Listing 10.6 The Accordion’s display Method (Accordion.js)

Accordion.display = function()

{

try

{

if(Ajax.checkReadyState('loading') == "OK")

{

var accordion = Utilities.createElement("div", {id:'accordion'});

var p = Ajax.getResponse().getElementsByTagName('panel');

for(var i=0; i<p.length; i++)

{

var title = Ajax.getResponse().getElementsByTagName('title')[i].

➥firstChild.data;

var content =
➥Ajax.getResponse().getElementsByTagName('content')[i].

➥firstChild.data;

if(p[i].getAttribute('expanded')) { expandedPanel = i; }

panels.push(new Panel(i, title, content));

Utilities.appendChild(accordion, panels[i].display());

}

Utilities.appendChild(document.body, accordion);

Accordion.toggle(expandedPanel);

}

}

catch(err)

{

document.write(err);

}

}

As you can see, there is a toggle method that I did not mention, which is called at the
end of the display method.This is the reason we created the panel array and the
expandPanel number variables.When the toggle method is called, it iterates through

106 Chapter 10 Accordion

the panel array and checks to see whether there is a panel ID that matches the ID
parameter.When it finds a match, it expands that panel by ID; when it does not match, it
collapses that panel.The expand/collapse panel methods are in the panel object, which
we will create in the next section. Listing 10.7 shows the entire code for the accordion’s
toggle method.

Listing 10.7 The Accordion’s toggle Method (Accordion.js)

Accordion.toggle = function(id)

{

for(var i=0; i<panels.length; i++)

{

if(panels[i].id == id)

{

panels[i].expand();

}

else

{

panels[i].collapse();

}

}

}

As mentioned, the toggle method takes an element ID as a parameter and iterates
through the panels array.When it discovers a matching ID, it expands that particular
panel; otherwise, it collapses it.

Now that we have the Accordion object created, we can now focus on creating the
panels.Another way to handle the accordion panels’ toggle method is to allow multiple
panels to be open at one time.To do this, you need to create a method that does not
collapse other panels that are open.You also need to check whether the current panel
that is being clicked is already expanded (if so, it should be closed).This keeps the
expand/collapse nature of the panel intact.

Panel Functionality and Data Display
The panel object uses the prototype structure to keep it reusable, which essentially
allows us to create multiple panel objects.An accordion panel needs a unique ID for ref-
erence purposes and can include a title, which is displayed in a panel header, and content
that is exposed when a user expands the panel.The id, title, and content values will
become properties of the panel object and will be visually represented in the accordion.
These properties will be accessible during runtime and contained within the panels that
created them. In order to create these properties, we will use the values we passed to the
new panel objects while iterating through them in the accordion display method.
Listing 10.8 shows how these values were passed to the panel object’s constructor func-
tion and are scoped to the panel.

107Panel Functionality and Data Display

Listing 10.8 The Panel Object Properties and Constructor (Panel.js)

function Panel(id, title, content)

{

this.id = id;

this.title = title;

this.content = content;

}

The constructor function is used to instantiate the panel and set the property values of
the object.After the panel is instantiated, it can be used to call other methods within
itself. In the Accordion object, the first method we called was the display method.
This method creates the div elements that are used to display the data that is passed to
the object.To create the elements that are necessary to render a panel, we will need to
use some of the utility methods that we created in the Utilities object in Chapter 10.
In order to create the display, we will need to create the following elements: panel,
header, title, and content.The panel element is simply a container for the other
elements, whereas the header element contains the title element and has an onclick
event that will expand and collapse individual panels.The final two elements are title
and content.They both have an innerHTML property that is set to the relative proper-
ties that were set in the constructor.After we have created all the necessary elements, we
need to append them to the panel element.When we complete the display method,
we return the panel element and append it to the document body in the Accordion
object. Listing 10.9 shows the entire code for creating the elements, appending them,
and returning the panel.

Listing 10.9 The Panel’s Display Method (Panel.js)

Panel.prototype.display = function()

{

var panel = Utilities.createElement("div");

var header = Utilities.createElement("div", {

className: 'header',

onclick: this.toggle(this.id)

});

var title = Utilities.createElement("div", {

className: 'title',

innerHTML: this.title

});

var content = Utilities.createElement("div", {

id: 'content_'+ this.id,

className: 'content',

108 Chapter 10 Accordion

innerHTML: this.content

});

Utilities.appendChild(panel, Utilities.appendChild(header, title), content);

return panel;

}

As you probably remember when we created the Accordion object, the panels display
method is called from the accordion’s display method as a parameter of the
appendChild call, along with the parent accordion element.This is how the panels are
added to the accordion and then the accordion was added to the document body.

The toggle method in Listing 10.10 is used in the header div as an onclick
event.This method is interesting because it returns another method.The method that is
returned is triggered during an onclick event and ultimately calls the accordion’s
toggle method.The header is also passing the panel ID when the code is executed to
be used as a parameter in the accordion’s toggle method.This is the ID that is used to
decipher which panel should be expanded and which panels should be collapsed.

Listing 10.10 Toggling the Panel State (Panel.js)

Panel.prototype.toggle = function(id)

{

return function()

{

Accordion.toggle(id);

}

}

The collapse and expand methods in Listing 10.11 simply hide and reveal the
content divs in the panels.They both use the Utilities getElement method,
which gets the content element by name in the document.The collapse method
sets the display style to none to hide it, whereas the expand method sets the display
style to an empty string to reveal the content’s data.

Listing 10.11 The Panel’s Collapse and Expand Methods (Panel.js)

Panel.prototype.collapse = function()

{

Utilities.getElement('content_'+ this.id).style.display = 'none';

}

Panel.prototype.expand = function()

{

Utilities.getElement('content_'+ this.id).style.display = '';

}

109Panel Functionality and Data Display

Listing 10.9 Continued

Creating the CSS
The CSS file for the accordion contains the styles for each of the elements within the
accordion.As Listing 10.12 shows, the accordion element sets the font-family,
font-size, width, and border attributes.These styles are inherited by each of the pan-
els because they are encapsulated within the accordion element.

Listing 10.12 The Accordion’s Styles (accordion.css)

#accordion

{

font-family: Arial, Helvetica, sans-serif;

font-size: 12px;

width: 600px;

border: #ccc 1px solid;

}

The header holds the title for each panel, and has a style shown in Listing 10.13 that
contains a border-bottom attribute, which matches the border that surrounds the pan-
els to make it look more incorporated into the accordion. It also has a background-
color, a width to set the size of the clickable area, and a pointer cursor to show
users that they can click the headers to toggle their state.

Listing 10.13 The Accordion Header Style (accordion.css)

.header

{

border-bottom: #ccc 1px solid;

background-color: #eaeaea;

width: 600px;

cursor: pointer;

}

The title class in Listing 10.14 simply bolds the font with the font-weight, changes
the color of the font, and adds a little padding to keep the title away from the edges of
the header that contains it.

Listing 10.14 The Accordion Title Style (accordion.css)

.title

{

font-weight: bold;

color: #333;

padding: 5px;

}

The class for the panel content simply sets the padding to keep the content away from
the edges of the panels, as seen in Lisitng 10.15.

110 Chapter 10 Accordion

Listing 10.15 The Accordion Content Style (accordion.css)

.content

{

padding: 10px;

}

All these styles are easily editable and can be modified to completely change the look of
the accordion. It is now up to you to make it your own, or brand it for any project you
would like to incorporate it with.

The completed accordion component will look very similar to Figure 10.1, aside
from any content differences or additional panels you may add to the XML.This chap-
ter’s sample includes an example of how you can display an email thread in the accor-
dion, which we will incorporate into an internal web mail application for the sample
that we create in Part V, when we learn how to combine a database with Ajax.

111Panel Functionality and Data Display

Figure 10.1 The completed accordion component is just one example of
the many purposes they can serve in a web application.

