
IN THIS CHAPTER

. Overview of Features and
Solutions

. Programming with Features

. Programming with Solutions

CHAPTER 3

Programming with
Features and Solutions

Features and Solutions are two new aspects of Windows
SharePoint Services (WSS) and Microsoft Office SharePoint
Server (MOSS) that make it dramatically easier to customize
sites and site templates. This chapter focuses on illustrating
how to work with site Features, Feature definitions, and
Solutions using the SharePoint object model.

For an introduction to the concepts behind Features and
Solutions as well as information on how to build your own
Features and Solutions, refer to the Microsoft SharePoint
2007 Unleashed book (ISBN: 0672329476) that contains the
best administrator’s reference available for SharePoint.

Overview of Features and
Solutions
Features provide the ability for sites to reuse functionality
that exists in other sites without requiring the tedious task
of copying and pasting complex Extensible Markup
Language (XML) code from one template to another.

By installing Feature definitions at the farm level, Features
can then be activated at any site within the farm. This
allows reusable pieces of functionality to be created and
deployed without modifying site templates, and it allows
site templates to be far less complex than they used to be
by referring to Features instead of directly embedding
mountains of complex XML.

Using Features, you can do everything from adding a link
to the Site Settings page to creating a complete, fully func-
tioning Project Management suite that can be added to any
SharePoint site.

Solutions allow you to package Features in a cabinet (.cab) file and define important
metadata about those Features. After a Solution is installed on a server in the farm, you
can then use SharePoint’s Solution management features to automate the deployment of
that Solution to other sites within the farm. This kind of hands-off deployment of
reusable pieces of SharePoint functionality has never been possible in SharePoint before
and developers are sure to love how easy it is to deploy new functionality in this version
of SharePoint.

Programming with Features
SharePoint includes a robust object model for working with Features that allows develop-
ers to enumerate installed and activated Features, to turn Features on and off, and to
control the installation or removal of Features.

The object model for Features includes the following key classes:

. SPFeatureCollection/SPFeature—Refers to a Feature state at a given site hierarchy
level. The presence of an SPFeature instance within a property of type
SPFeatureCollection indicates that the Feature is active at that level.

. SPFeaturePropertyCollection/SPFeatureProperty—Represents a single property on
a Feature or a collection of those properties.

. SPFeatureScope—Represents an enumeration of the possible scopes in which
Features can be activated. Possible values are: Farm, WebApplication, Site, and Web.

. SPFeatureDefinition—Represents the basic definition of a Feature, including its
name, scope, ID, and version. You can also store and retrieve properties of a Feature.
Note that Feature properties apply globally to a single Feature definition, not to
instances of Features activated throughout the farm.

. SPFeatureDependency—Represents a Feature upon which another Feature depends.

. SPElementDefinition—Represents a single element that will be provisioned when
the Feature is activated.

Feature collections can be accessed from the following properties on their respective
classes:

. Features on Microsoft.SharePoint.Administration.SPWebApplication

. Features on Microsoft.SharePoint.Administration.SPWebService

. FeatureDefinitions on Microsoft.SharePoint.Administration.SPFarm

. Features on Microsoft.SharePoint.SPSite

. Features on Microsoft.SharePoint.SPWeb

. ActivationDependencies on Microsoft.SharePoint.Administration.

SPFeatureDefinition

CHAPTER 3 Programming with Features and Solutions26

The next few sections of this chapter provide many examples of programming with the
Features portion of the SharePoint application programming interface (API).

Enumerating Features and Feature Definitions
It is important to recognize the difference between a Feature and a Feature definition. A
Feature definition, as far as the object model is concerned, is an abstraction around the
Feature manifest contained in a Feature directory in the Features directory. Feature defini-
tions are installed at the farm (or server, if there is no farm) level.

A Feature is an instance of a Feature definition. Features can be activated or deactivated,
and they exist at the various levels of scope such as the site or web level.

To enumerate the list of Feature definitions that are currently installed within a farm
(which includes single-server farms and standalone servers, which are another form of
single-server farms), you need to use an instance of the SPFarm class and access the
FeatureDefinitions property. To enumerate the list of active Features on a given site, you
need to enumerate the Features property on the appropriate SPWeb or SPSite class
instance. You might be tempted to iterate through the collection contained in the
Features property and look for something like an Active property. However, the only
SPFeature instances that appear in the Features property are those features that are active in
the current scope.

Creating an instance of the SPFarm class might seem a little tricky at first. Rather than
obtaining it through a context provided by the Web Part manager or from a site uniform
resource locator (URL), you need to pass a connection string that points to the farm’s
configuration database to the constructor. The connection string should look familiar to
anyone with ADO.NET experience connecting to SQL server, because it is just a SQL
server connection string.

The code in Listing 3.1 shows how to create an instance of the SPFarm class, create an
instance of the SPSite class, and use the two of those to enumerate the list of installed
Feature definitions and determine which of those definitions are active on the given site.
This code is for a Windows Forms application that adds the name and enabled status of
each Feature definition to a ListView control. If you plan to copy this code and test it, be
sure to add a reference to the Microsoft.SharePoint.dll Assembly.

LISTING 3.1 Enumerating Feature Definitions and Features

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Administration;

using System.Windows.Forms;

Programming with Features 27

3

namespace FeatureEnumerator

{

public partial class Form1 : Form

{

private SPSite _rootCollection;

public Form1()

{

InitializeComponent();

}

private string GetFeatureEnabled(SPFeatureDefinition featureDefinition)

{

foreach (SPFeature feature in _rootCollection.Features)

{

if (feature.Definition.Id == featureDefinition.Id)

return “Yes”;

}

return “No”;

}

private void button1_Click(object sender, EventArgs e)

{

featureList.Enabled = true;

featureList.Items.Clear();

string dbConn = @”server=localhost\OfficeServers;initial

➥catalog=SharePoint_Config_66140120-a9bf-4191-86b6-

➥ec21810ca019;IntegratedSecurity=SSPI;”;

_rootCollection = new SPSite(siteUrl.Text);

SPFarm farm = SPFarm.Open(dbConn);

statusLabel.Text = “Site Feature Status (“ +

farm.FeatureDefinitions.Count.ToString() +

“ Feature Definitions Installed)”;

foreach (SPFeatureDefinition featureDefinition in farm.FeatureDefinitions)

{

ListViewItem lvi = new ListViewItem(featureDefinition.DisplayName);

if (featureDefinition.Hidden)

lvi.ForeColor = Color.Gray;

lvi.Tag = featureDefinition.Id;

lvi.SubItems.Add(GetFeatureEnabled(featureDefinition));

featureList.Items.Add(lvi);

CHAPTER 3 Programming with Features and Solutions28

LISTING 3.1 Continued

}

}

}

}

This Windows Forms application is shown in Figure 3.1.

Programming with Features 29

3

LISTING 3.1 Continued

FIGURE 3.1 Feature Enumerator Windows Forms application.

The true power of Features should become immediately obvious as soon as you start using
this tool to examine the list of active and inactive features on various sites. Most of the
key functionality provided by SharePoint 2007 is implemented using Features. Previous
versions of SharePoint did not provide anywhere near the amount of flexibility,
customization, and enhancement capability that Features provide.

Activating and Deactivating Features
It follows that if the SPFeatureCollection instance represented by the Features property
of a site or web object contains the list of active Features, then adding and removing to
and from that collection should activate and deactivate Features. In fact, that is exactly
how it works with one small exception: You cannot add or remove SPFeature or
SPFeatureDefinition instances; you can only add or remove globally unique identifiers
(GUIDs).

Before you start writing code that activates and deactivates Features, you should definitely
create a test site that you don’t mind destroying. Deactivating hidden features can have
drastic consequences on the ability of your site to function properly. However, knowing
what those consequences are can certainly provide deeper understanding of the Features
system and time spent tinkering with Features is definitely time well spent.

To deactivate a Feature, simply remove it from the Features collection of the current site
or web object:

currentSite.Features.Remove(new Guid(“… guid of feature to remove …”));

Conversely, activating an installed Feature on a site or web object is accomplished simply
by adding the Feature’s GUID to the Features collection:

currentSite.Features.Add(new Guid(“.. guid ..”));

Keep in mind that an exception will be thrown if you attempt to activate a Feature that
cannot be activated at the current scope.

Using Feature Properties
Every Feature installed in SharePoint maintains its own property bag.

NOTE

For those of you who don’t know, a property bag is a special kind of name-value
collection that first reared its head back in the days of Site Server and Commerce
Server. For most developers, it remains a point of contention as to whether the head
of a property bag is ugly or not.

Features and Feature definitions both have properties exposed through the Properties
property, which is of type SPFeaturePropertyCollection—a collection of
SPFeatureProperty objects. Regardless of whether you access the Properties property of
a site Feature instance or of a Feature definition, the result will be the same. That is, you
can think of Feature properties as static, global data that belongs to the definition itself
but can also be accessed from an activated Feature SPFeature object.

The following code snippet illustrates how to enumerate through the properties associated
with a given Feature (or Feature definition):

foreach (SPFeatureProperty property in myFeature.Properties)

{

Console.WriteLine(“{0} : {1}”, property.Name, property.Value);

}

You don’t have to worry about typecasting or conversion because the only value type
acceptable to a property bag is System.String. Adding a new property to an existing
Feature or Feature definition is quite simple:

CHAPTER 3 Programming with Features and Solutions30

SPFeatureProperty prop = new SPFeatureProperty(“myProp”, “myValue”);

myFeature.Properties.Add(prop);

That’s all there is to it—you don’t need to explicitly call any methods to commit that
change to SharePoint. It is just as easy to remove a property from a Feature:

SPFeatureProperty prop = myFeature.Properties[0];

myFeature.Properties.Remove(prop);

A few of the Features that are installed with SharePoint make use of properties such as the
workflow features. You can use properties to do tremendously powerful things. You can
think of the property bag assigned to each Feature as either a place for global configura-
tion settings or for global state management for the Feature, or both.

Installing and Removing Feature Definitions
To install a Feature definition, you need to make use of one of the overloads of the Add
method on the SPFeatureDefinitionCollection class:

. Add(SPFeatureDefinition)—Adds a new Feature definition based on the properties
of the SPFeatureDefinition instance passed to the method.

. Add(relative path to manifest, GUID of solution)—Adds a new Feature defini-
tion that resides in the location indicated by the first parameter with the given solu-
tion ID.

. Add(relative path to manifest, GUID of solution, force)—Adds a new
Feature definition that resides in the location indicated by the first parameter with
the given solution ID and forces a reinstallation of the Feature.

The following code is a simple example of installing a new Feature in a farm (remember
that to get an instance of the SPFarm class, you need the connection string of the farm’s
configuration database):

SPFeatureDefinitionCollection installedFeatures = theFarm.FeatureDefinitions;

installedFeatures.Add(“newfeature”, new Guid(“- feature GUID –“));

Conversely, to uninstall a Feature, simply remove it from the collection. You can remove
the Feature based on the relative path to the Feature manifest or the Feature’s GUID:

installedFeatures.Remove(new Guid(“- feature GUID –“));

Programming with Solutions
Solutions are the means by which collections of Features are installed on SharePoint farms
and deployed to servers within those farms. After being installed on a farm, Solutions can
be deployed to any server within that farm automatically using the web-based Solution
management interface.

Programming with Solutions 31

3

Installing and Removing Solutions
If you don’t want to use the stsadm.exe command-line tool, or you simply can’t for some
reason, you can still programmatically manipulate the list of Solutions available for
deployment within a farm.

As shown earlier in the chapter, any time you need to work with the SPFarm class, you
need to pass a configuration database connection string to the constructor:

string dbConn = @”server=localhost\OfficeServers;initial

➥catalog=SharePoint_Config_66140120-a9bf-4191-86b6-

➥ec21810ca019;IntegratedSecurity=SSPI;”;

_rootCollection = new SPSite(siteUrl.Text);

SPFarm farm = SPFarm.Open(dbConn);

After you have a reference to the farm, you can then access the list of installed Solutions
in the farm with the Solutions property. To install a Solution, just add it to the
Solutions collection. To uninstall a Solution, simply remove it from the collection.

The SPSolution class cannot be instantiated directly with a constructor. Instead, you have
two options when adding to the Solutions collection. You can pass the Solution filename
as a parameter, or you can pass the Solution filename and a locale identifier (a UInt32,
such as 1033):

farm.Solutions.Add(“myapplication.cab”);

farm.Solutions.Add(“myapplication.cab”, 1033);

When removing a Solution, you can either pass the name of the Solution as a parameter,
or you can pass the GUID of the Solution:

farm.Solutions.Remove(new Guid(“...”));

The Add and Remove methods of the Solutions collection correspond directly to the
functionality provided by the stsadm.exe commands “-o addsolution” and “-o

deletesolution”.

Enumerating Solutions
When working with Solutions, you might want to take a look at the list of Solutions
currently installed in the farm. From this list, you can then control the deployment status
(shown in the next section) of the Solution or inspect the various properties of the
Solutions. The following code is a simple illustration of how to examine the list of
installed Solutions in a farm:

Console.WriteLine(“Solution:\tCAS Policy\tGAC Assembly\tWeb Resource\n”);

foreach (SPSolution solution in farm.Solutions)

{

Console.WriteLine(“{0}:\t{1}\t{2}\t{3}”,

CHAPTER 3 Programming with Features and Solutions32

solution.DisplayName,

solution.ContainsCasPolicy,

solution.ContainsGlobalAssembly,

solution.ContainsWebApplicationResource);

foreach (SPServer deployedServer in solution.DeployedServers)

{

Console.WriteLine(“\t\tDeployed to {0}”, deployedServer.DisplayName);

}

}

Table 3.1 describes many of the properties of the SPSolution class.

TABLE 3.1 SPSolution Properties

Property Description

Added Indicates whether a language-neutral Solution
package has been added to the Solution

ContainsCasPolicy Indicates whether the Solution contains a Code
Access Security policy

ContainsGlobalAssembly Indicates whether the Solution installs Assemblies
into the GAC

ContainsWebApplicationResource Indicates whether the Solution contains any
application-specific resources

Deployed Indicates whether the Solution has been deployed to
one or more locations within the farm

DeployedServers Indicates the list of servers to which the Solution has
been deployed

DeployedWebApplications Indicates the list of web applications to which the
Solution has been deployed

DeploymentState Indicates the current state of deployment for the
Solution

Id Indicates the GUID of the Solution
IsWebPartPackage Indicates whether the Solution is a Web Part package
LastOperationDetails Represents the details of the last operation

performed while deploying the Solution
LastOperationEndTime Indicates the time the last operation completed
LastOperationResult Indicates the results of the last operation during

deployment
Name Indicates the name of the Solution
Properties Indicates the property bag containing custom proper-

ties for the Solution
SolutionFile Indicates the file associated with the Solution
SolutionId Indicates the ID of the Solution as indicated by the

Solution’s manifest file

Programming with Solutions 33

3

Controlling Solution Deployment
Controlling Solution deployment really boils down to two different methods on the
SPSolution class: Deploy and Retract. The Deploy method deploys a Solution to the
given location, whereas the Retract method removes the Solution from the given loca-
tion while still remaining installed within the farm.

The deploy methods take the following arguments:

. dt—The date and time when the deployment should take place

. globalInstallWPPackDlls—A Boolean indicating whether to install the dynamic
link libraries (DLLs) in the GAC (for Web Part packages only)

. force—A Boolean indicating whether the Solution can be redeployed

You can also optionally supply a collection of SPWebApplication instances to further
refine the deployment. The Retract() method schedules a job for when the Solution
should be retracted and can optionally take a list of web applications from which to
retract the solution.

Summary
Features and Solutions are two of the most powerful new additions to SharePoint 2007. As
a developer, you will probably be spending a considerable amount of time creating and
manipulating Features and Solutions. This chapter included details on how to manipulate
Features and Solutions programmatically using the SharePoint object model. At this point,
you should not only be able to create your own Features and Solutions, but you should
also be able to install, manipulate, and deploy them programmatically. For more informa-
tion on the administration and maintenance of features unrelated to writing code,
consult the SharePoint documentation or the Sams Publishing book, Microsoft SharePoint
2007 Unleashed (ISBN: 0672329476).

CHAPTER 3 Programming with Features and Solutions34

