

Ruby Phrasebook
Copyright © 2009 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information
contained herein.
ISBN-13: 978-0-672-32897-8
ISBN-10: 0-672-32897-6
Library of Congress Cataloging-in-Publication Data:

2005938020
Printed in the United States of America
First Printing August 2008

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Pearson Education, Inc. cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

Bulk Sales
Pearson Education, Inc. offers excellent discounts on this book
when ordered in quantity for bulk purchases or special sales.
For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearson.com

Editor-in-Chief
Mark Taub

Development
Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Jennifer Gallant

Copy Editor
Geneil Breeze/
Krista Hansing

Indexer
Tim Wright

Proofreader
Carla Lewis/
Leslie Joseph

Technical Editor
Robert Evans

Publishing
Coordinator
Vanessa Evans

Multimedia
Developer
Dan Scherf

Book Designer
Gary Adair

Introduction

Audience

You can find some great Ruby books on the market.
If you are new to Ruby, a friend or someone on the
Internet has probably already listed some favorite
Ruby books—and you should buy those books. But
every book has its niche: Each attempts to appeal to a
certain need of a programmer.

It is my belief that the best thing this book can do for
you is show you the code. I promise to keep the chat to a
minimum, to focus instead on the quality and quantity
of actual Ruby code. I’ll also keep as much useful
information in as tight a space as is possible.

Unlike any other book on the market at the time of
this writing, this book is intended to be a (laptop-bag)
“pocket-size” resource that enables you to quickly
look up a topic and find examples of practical Ruby
code—a topical quick reference, if you will. In each of
the topics covered, I try to provide as thorough an
approach to each task as the size allows for; there’s not
as much room for coverage of topical solutions as there
is in much larger books with similar goals, such as The
Ruby Way, 2nd Edition (Sams, 2006), by Hal Fulton.
Because of this, other issues that are often given equal
priority are relegated to second. For instance, this is

not a tutorial; the code samples have some explanation,
but I assume that you have a passing familiarity with
the language.Also, when possible, I try to point out
issues related to security and performance, but I make
no claim that these are my highest priority.

I hope that you find this book a useful tool that you
keep next to your keyboard whenever you are phrase-
mongering in Ruby.

How to Use This Book
I have not intended for this book to be read cover to
cover. Instead, you should place your bookmark at the
Table of Contents so you can open the book, find the
topic you are programming on at the moment, and go
immediately to a description of all the issues you
might run into.

The content in the book is arranged by topic instead
of Ruby class.The benefit is that you can go to one
place in this book instead of four or five areas in
Ruby’s own documentation. (Not that there’s anything
wrong with Ruby’s documentation. It’s just that some-
times you are working with several classes at a time
and, because Ruby’s docs are arranged by class, you
have to jump around a lot.)

Conventions
Phrases throughout the book are put in dark gray
boxes at the beginning of every topic.

2 Ruby Phrasebook

Phrases look like this.

Code snippets that appear in normal text are in italics.
All other code blocks, samples, and output appear as
follows:

3Introduction

code sample boxes.

Parentheses are optional in Ruby in some cases—the
rule is: you must have parentheses in your method call if
you are calling another function in your list of parame-
ters, or passing a literal code block to the method. In all
other cases, parentheses are optional. Personally, I’m a
sucker for consistency but one of the indisputable
strengths of Ruby is the flexibility of the syntax.

In an attempt to have consistency between this book
and others, I will (reluctantly) use .class_method() to
refer to class methods, ::class_variable to refer to class
variables, #method() to refer to instance methods, and
finally #var to refer to instance variables.When refer-
ring to variables and methods which are members of
the same class, I’ll use the appropriate @variable and
@@class_varriable.

I know that some people might find these two rules
annoying—especially those coming from languages
that use the ‘::’ and ‘.’ notation everywhere. In all prac-
ticality, you will never be so consistent—and rightfully
so. One of Ruby’s strengths is that there is a ton of
flexibility. In fact, this flexibility has helped make Ruby
on Rails so popular.This allowed the creators of Rails
to make what appears to be a domain-specific language (a
language well-suited for a specific kind of work) for
web development. But really, all that is going on is a
variation on Ruby syntax.And this is one of the many
reasons that Ruby is more suitable for a given problem
than, say, Python. Python’s rigidity (“there should be

one—and preferably only one—obvious way to do it”)
doesn’t lend itself to DSL, so the programmers in that
language are forced to use other means (which might
or might not turn out to be unpleasant).

I always use single quotes (') in Ruby code unless I
actually want to make use of the double-quote (")
features (interpolation and substitution).

I always put the result of the evaluation of the state-
ment (or block) on the next line with a proceeding
#=>, similar to what you would find if you were using
irb or browsing Ruby’s documentation.

Comments on executable lines of code start with # and
are in italics to the end of the comment. Comments on
#=> lines are in parentheses and are in italics.

Acknowledgments
Without the Pragmatic Programmers’ freely available
1st Edition of Programming Ruby, I would have never
discovered the wonderful world of Ruby.The Pickaxe
books and the great Ruby community are what make
projects like this one possible.

Thanks to my loving partner, Brandon S.Ward, for his
infinite patience while working on this book.

Reporting Errata
Readers will almost certainly find topics that they wish
were covered which we were overlooked when plan-
ning this book. I encourage you to please contact us
and let us know what you would like to see included
in later editions. Criticisms are also welcome. Contact
information can be found in the front-matter of this
book.

4 Ruby Phrasebook

3
Working with
Collections

In Ruby and other dynamic languages,“Collection” is
an umbrella term for general-use lists and hashes.The
ease of working with these data structures is an attrac-
tive feature and one that often contributes to making
prototyping in Ruby a pleasurable experience.The
implementation details of lists and hashes and their
underlying mechanisms are mostly hidden from the
programmer leaving him to focus on his work.

As you browse this section, keep in mind that under-
pinning everything you see here are traditional
C-based implementations of lists and hashes; Ruby
is attempting to save you the trouble of working
with C—but be sure, that trouble saving can come at
performance cost.

Slicing an Array
This section has a lot of analogs to the earlier section
“String to Array and Back Again,” in Chapter 1,
“Converting Between Types.”You can slice an Array a
number of ways:

[1, 2, 3, 4, 5, 6, 7, 8, 9][4]

#=> 5 (a Fixnum object)

[1, 2, 3, 4, 5, 6, 7, 8, 9][4,1]

#=> [5] (single element Array)

[1, 2, 3, 4, 5, 6, 7, 8, 9][4,2]

#=> [5, 6]

[1, 2, 3, 4, 5, 6, 7, 8, 9][-4,4]

#=> [6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9][2..5]

#=> [3, 4, 5, 6]

[1, 2, 3, 4, 5, 6, 7, 8, 9][-4..-1]

#=> [6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9][2...5]

#=> [3, 4, 5]

[1, 2, 3, 4, 5, 6, 7, 8, 9][-4...-1]

#=> [6, 7, 8]

[1, 2, 3, 4, 5, 6, 7, 8, 9][4..200]

#=> [5, 6, 7, 8, 9] (no out of range error!)

Array Ranges Positions (Counting Starts at
0, Negative Numbers Count
Position from the End)

A[{start}..{end}] {start} includes the element;
{end} includes the element

A[{start}...{end}] {start} includes the element;
{end} excludes the element

A[{start}, {count}] {start} includes the element;
{count} positions from start
to include

36 CHAPTER 3 Working with Collections

You might also like to select elements from the Array
if certain criteria are met:

[1, 2, 3, 4, 5, 6, 7, 8, 9].select { |element| ele-

ment % 2 == 0 }

#=> [2, 4, 6, 8] (all the even elements)

Iterating over an Array

37Iterating over an Array

[1, 2, 3, 4, 5].each do |element|

do something to element
end

This is one of the joys of Ruby. It’s so easy!

You can also do the trusty old for loop:

for element in [1, 2, 3, 4, 5]

do something to element

end

The difference between a for loop and an #each is
that in for, a new lexical scoping is not created.That
is, any variables that are created by for or that are in
the loop remain after the loop ends.

To traverse the Array in reverse, you can simply use
#Arrayreverse#each. Note that in this case, a copy of
the Array is being made by #reverse, and then #each is
called on that copy. If your Array is very large, this
could be a problem.

In order for you get any more specialized than that,
however, you need to work with the Enumerator
module. For example, you might want to traverse an
Array processing five elements at a time as opposed to
the one element yielded by #each:

require ‘enumerator’

ary = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ary.each_slice(5) { |element| p element }

Outputs:

[0, 1, 2, 3, 4]

[5, 6, 7, 8, 9]

Creating Enumerable Classes
You may find that you need to make information in a
given, custom data structure available to the rest of the
world. In such a case, if the data structure that you
have created to store arbitrary objects implements an
#each method, the Enumerable mix-in will allow any-
one who uses your class to access several traversal and
searching methods, for free.

require 'enumerator'

class NumberStore

include Enumerable

attr_reader :neg_nums, :pos_nums

def add foo_object

if foo_object.respond_to? :to_i

foo_i = foo_object.to_i

if foo_i < 0

@neg_nums.push foo_i

else

@pos_nums.push foo_i

end

else

38 CHAPTER 3 Working with Collections

raise “Not a number.”

end

end

def each

@neg_nums.each { |i| yield i }

@pos_nums.each { |i| yield i }

end

def initialize

@neg_nums = []

@pos_nums = []

end

end

mystore = NumberStore.new

mystore.add 5

mystore.add 87

mystore.add(-92)

mystore.add(-1)

p mystore.neg_nums

p mystore.pos_nums

p mystore.grep -50..60

Produces:

[-92, -1]

[5, 87]

[-1, 5]

In the above contrived example, I have created a data
structure called NumberStore which stores negative
numbers in one list and positive numbers in another
list. Because the #each method is implemented, meth-
ods like #find, #select, #map, and #grep become

39Creating Enumerable Classes

available. In the last line of the code sample I use the
mixed-in method #grep to find numbers stored in
mystore that are between 50 and 60.

Sorting an Array

40 CHAPTER 3 Working with Collections

[5, 2, 1, 4, 3].sort

#=> [1, 2, 3, 4, 5]

As long as all the objects stored in the Array respond
to the <=> method, the Array will be sorted successful-
ly. If you want to sort by some special criteria, you can
supply a block or even map a value to each element
that can be compared using “<=>”. Here is a somewhat
contrived example (there are many ways to accomplish
this):

[‘Platinum’, ‘Gold’, ‘Silver’, ‘Copper’].sort_by do

|award|

case award

when ‘Platinum’: 4

when ‘Gold’: 3

when ‘Silver’: 2

when ‘Copper’: 1

else 0

end

end

#=> [“Copper”, “Silver”, “Gold”, “Platinum”]

Above, a numerical value is assigned to each String
and then the Array is sorted by #sort_by using those
values.

Word of warning: When sorting numerical values,
beware of Floats, they can have the value NaN (imagi-
nary) which is, of course, not comparable to real num-
bers. Array#sort will fail if your array has such a NaN:

[1/0.0, 1, 0, -1, -1/0.0, (-1)**(0.5)]

#=> [Infinity, 1, 0, -1, -Infinity, NaN]

[1/0.0, 1, 0, -1, -1/0.0, (-1)**(0.5)].sort

Produces:

ArgumentError: comparison of Fixnum with Float

failed

Iterating over Nested Arrays

41Iterating over Nested Arrays

Array.flatten.each { |elem| #do something }

You can #flatten the Array as I have done above. For
most cases, this works just fine—it’s very fast. But it’s
perhaps not quite as flexible as a recursive implementation:

class Array

def each_recur(&block)

each do |elem|

if elem.is_a? Array

elem.each_recur &block

else

block.call elem

end

end

end

end

my_ary = [[1, 2, 3, 4],[5, 6, 7, 8]]

#=> [[1, 2, 3, 4], [5, 6, 7, 8]]

my_ary.each_recur { |elem| print(elem, “ “) }

Produces:

1 2 3 4 5 6 7 8

Modifying All the Values in an
Array

Array#collect, also known as Array#map, is used to
modify the values of an Array and return a new array.

[‘This’, ‘is’, ‘a’, ‘test!’].collect do |word|

word.downcase.delete ‘^A-Za-z’

end

#=> [“this”, “is”, “a”, “test”]

If you want to do this on a nested Array, you need
something a little stronger:

class Array

def collect_recur(&block)

collect do |e|

if e.is_a? Array

e.collect_recur(&block)

else

block.call(e)

end

end

end

end

[[1,2,3],[4,5,6]].collect_recur { |elem| elem**2 }

#=> [[1, 4, 9], [16, 25, 36]]

Sorting Nested Arrays

42 CHAPTER 3 Working with Collections

[[36, 25, 16], [9, 4, 1]].flatten.sort

#=> [1, 4, 9, 16, 25, 36]

We have to #flatten the Array because the #sort uses
<=> to compare two Arrays, which in turn, compares

their elements for either all elements being less than all
elements in the other Array or vice-versa (if neither
condition is met they are considered equal). It doesn’t
descend in to the Arrays to sort them. Here is what
would happen if we didn’t flatten:

[[36, 25, 16], [9, 4, 1]].sort

#=> [[9, 4, 1], [36, 25, 16]]

Once again, the first code will work in most cases but a
recursive implementation is able to accommodate
working with the Array in place without destroying the
heirarchy (note that this sorts in place, for simplicity):

class Array

def sort_recur!

sort! do |a,b|

a.sort_recur! if a.is_a? Array

b.sort_recur! if b.is_a? Array

a <=> b

end

end

end

p [[36, 25, 16], [9, 4, 1]].sort_recur!

Produces:

[[1, 4, 9], [16, 25, 36]]

43Sorting Nested Arrays

Building a Hash from a
Config File

44 CHAPTER 3 Working with Collections

my_hash = Hash::new

tmp_ary = Array::new

“a = 1\nb = 2\nc = 3\n”.each_line do |line|

if line.include? ‘=’

tmp_ary = line.split(‘=’).collect { |s|

s.strip }

my_hash.store(*tmp_ary)

end

end

p tmp_ary

p my_hash

Produces:

[“c”, “3”] (from the last loop)
{“a”=>”1”, “c”=>”3”, “b”=>”2”}

This is very similar to an earlier example in the section
“Searching Strings,” in Chapter 2,“Working With
Strings.” Here we are processing a simple format con-
fig file.This is a sample of what such a file looks like:

variable1 = foo

variable2 = bar

variable3 = baz

For the sake of simplicity, instead of a File for simulat-
ed input, this example uses a simple String with some
\n (newline) separators.

In plain English, those inner lines mean,“Take the cur-
rent line and call the #split on it, splitting on the ‘=’
character; pass each element of the resulting two-ele-
ment Array in to the block; call the #strip method on
the Strings to remove any whitespace, and return the
modified Array to tmp_ary. Hash#store expects two

parameters, not an Array, so we use the splat (*) opera-
tor to expand the tmp_ary Array down so that it
appears to be a list of parameters.”

Sorting a Hash by Key or Value

45Sorting a Hash by Key or Value

my_hash = {‘a’=>’1’, ‘c’=>’3’, ‘b’=>’2’}

my_hash.keys.sort.each { |key| puts my_hash[key] }

Produces:

1

2

3

Hashes are unsorted objects because of the way in
which they are stored internally. If you want to access
a Hash in a sorted manner by key, you need to use an
Array as an indexing mechanism as is shown above.

You can also use the Hash#sort method to get a new
sorted Array of pairs:

my_hash.sort

#=> [[“a”, “1”], [“b”, “2”], [“c”, “3”]]

You can do the same by value, but it’s a little more
complicated:

my_hash.keys.sort_by { |key| my_hash[key] }.each do

|key|

puts my_hash[key]

end

Or, you can use the Hash#sort method for values:

my_hash.sort { |l, r| l[1]<=>r[1] }

#=> [[“a”, “1”], [“b”, “2”], [“c”, “3”]]

This works by using the Emmuerator#sort_by method
that is mixed into the Array of keys. #sort_by looks at
the value my_hash[key] returns to determine the sort-
ing order.

Eliminating Duplicate Data
from Arrays (Sets)

46 CHAPTER 3 Working with Collections

[1, 1, 2, 3, 4, 4].uniq

#=> [1, 2, 3, 4]

You can approach this problem in two different ways.
If you are adding all your data to your Array up front,
you can use the expensive way, #uniq, above, because
you have to do it only once.

But if you will constantly be adding and removing data
to your collection and you need to know that all the
data is unique at any time, you need something more
to guarantee that all your data is unique, but without a
lot of cost.A set does just that.

Sets are a wonderful tool:They ensure that the values
you have stored are unique.This is accomplished by
using a Hash for its storage mechanism, which, in turn,
generates a unique signifier for any keys it’s storing.
This guarantees that you won’t have the same data in
the set while also keeping things accessible and fast!
Beware, however, sets are not ordered.

require ‘set’

myset = Set::new [1, 1, 2, 3, 4, 4]

#=> #<Set: {1, 2, 3, 4}>

Adding duplicate data causes no change:

myset.add 4

#=> #<Set: {1, 2, 3, 4}>

Working with Nested Sets
You should be aware that Set does not guarantee that
nested sets stored in it are unique.This is because
foo_set.eql? bar_set will never return true – even if
the sets have exactly the same values in them. Other
kinds of objects in Ruby exhibit this behavior, so keep
your eyes open.

If you would like to iterate over the contents of sets
without having to worry about the nested data possi-
bly colliding with the upper data, you cannot use
Set#flatten. Here is a simple method to recursively
walk through such a set:

class Set

def each_recur(&block)

each do |elem|

if elem.is_a? Set

elem.each_recur(&block)

else

block.call(elem)

end

end

end

end

my_set = Set.new.add([1, 2, 3, 4].to_set).add([1, 2,

3, 4].to_set)

#=> #<Set: {#<Set: {1, 2, 3, 4}>, #<Set: {1, 2,

47Working with Nested Sets

3, 4}>}>

my_set.each_recur { |elem| print(elem, “ “) }

Produces:

1 2 3 4 1 2 3 4

48 CHAPTER 3 Working with Collections

Symbols

#count, searching strings,
20

#each, 37

#index, searching strings,
20

#puts, 71

#split, 72

$SAFE variable, setting
security level, 136-137

A

accessing XML elements,
93-95

adding

users from text files,
88

XML elements, 96

attributes, 99

application development

Glade, 113-114

Qt Designer, 118-120,
123

application developments

toolkits

GTK+, 108-110

Qt 4, 107, 117

Array#collect, 42

Array#map, 42

arrays

eliminating duplicate
data from, 46-47

iterating over, 37-38

modifying all values
in, 42

nested arrays

iterating over, 41

sorting, 42-43

slicing, 35-37

sorting, 40-41

to hashes, 13-14

to sets, 15

to strings, 10-11

attr reader(), 60

attributes of XML ele-
ments

adding, 99

listing, 95

modifying, 99

B-C

binary mode (Win32),
when to use, 73

Index

callbacks, 109

capturing output of child
processes, 64

CGI, processing web
forms, 128-130

checksumming strings,
31-32

child processes, capturing
output of, 64

classes

enumerable classes,
creating, 38-40

inspecting, 50

closing

files, 69-70

database connec-
tions, MySQL, 144

threads, 165

collections, 35

comments, RDoc, 177

comparing

objects, 52-53

strings, 31

config files

creating hashes, 44

parsing, 78-79

connecting

to databases,
143-144

to TCP sockets, 153

copying files, 74-75

counting lines in files, 84

creating

MySQL tables, 145

standalone Rakefile,
192-193

threads, 164

D

data

eliminating duplicate
data from arrays,
46-47

graphic representa-
tion, 138-141

databases

connecting to, 143

MySQL

connecting to, 144

tables, adding
rows, 146

tables, creating,
145

tables, deleting,
148-149

tables, deleting
rows, 147

tables, iterating
over queried
rows, 147

tables, listing, 146

callbacks196

deleting

all files just extracted,
89

empty directories, 88

files, 74-75

tables, 148-149

XML elements, 98

directories, deleting
empty directories, 88

distributed Ruby, network-
ing objects, 158

distributing modules on
RubyForge, 191

documentation

program usage help,
180-181

RDoc, 175-177

typographic conven-
tions, 178

domain-specific
language, 3

duck typing, 6, 51-52

duplicating objects, 54-55

E

elements (XML)

adding, 96

attributes, 99

deleting, 98

enclosed text,
modifying, 97

eliminating duplicate
data from arrays, 46-47

encrypting strings, 32-33

entity references, 100,
135

enumerable classes, cre-
ating, 38-40

escaping

HTML, 87

input, 134-136

examining modules, 189

exception-based timers,
167

exceptions, multithread-
ed, gathering, 172

expired threads, timers,
166-167

expressions

replacing substrings
with regular expres-
sions, 26

searching strings with
regular expressions,
21-22

F

false, 17

feeds, RSS, 104-105

files

binary mode (Win32),
when to use, 73

closing, 69-70

files 197

copying, 74-75

counting lines in, 84

deleting, 74-75, 89

exclusive locks,
obtaining, 74

heads, 84-85

moving, 74-75

opening, 69-70

passwd files, process-
ing, 81

searching large file
contents, 70-72

sorting contents of,
80

tails, 84-85

floating-points, 15-17

for loops, 37

formatted strings, num-
ber to, 7-10

functions, attr reader(),
60

G

garbage collecting, 56-57

gathering multithreaded
exceptions, 172

gems, removing, 188

Glade, 113-114

graphically representing
data, 138-141

groups of bites, 72

GTK+, 109

GUI toolkits

GTK+, 109

Qt 4, 107, 117

H

Hash, 86

hashes

creating from config
files, 44

sorting by key or
value, 45-46

to arrays, 13-14

head of files, 84-85

Hello World application,
GTK+, 108-109

Hoe modules, packaging,
189

HTML, escaping, 87

HTTP fetch, 86

I

implementing progress
bars, 65

input

escaping, 134-136

sanitizing, 27-28

inspecting objects and
classes, 50

installing modules, 187

integers, 15-17

interactive standard
pipes, 62-63

files198

interpolating one text file
into another, 79-80

IO#gets, 71

iterating over arrays,
37-38, 41

J-K

keys, sorting hashes,
45-46

killing threads, 169

L

LDIF, parsing, 77-78

line endings, 28-30

lines, counting in files, 84

listing

MySQL tables, 146

XML element attrib-
utes, 95

locks, obtaining exclusive
locks, 74

loops, for loops, 37

M

manipulating text

contents of files, sort-
ing, 80

LDIF, parsing, 77-78

passwd files, process-
ing, 81

simple config files,
parsing, 78-79

text files, interpolating
one into another,
79-80

MD5 (message digest 5),
85-86

modifying

enclosed text of XML
elements, 97

values in arrays, 42

XML elements, attrib-
utes, 99

modules

distributing on
RubyForge, 191

examining, 189

packaging with Hoe,
189

removing, 188

searching, 188

updating, 188

mounting, 160

moving files, 74-75

multithreaded exceptions,
gathering, 172

MySQL

opening/closing
connections, 144

tables

creating, 145

deleting, 148-149

MySQL 199

iterating over
queried rows,
147

listing, 146

rows, adding, 146

rows, deleting, 147

N

nested arrays

iterating over, 41

sorting, 42-43

nested sets, 47-48

Net::HTTP, 159

networking objects with
Distributed Ruby, 158

numbers

from strings, 6

to formatted strings,
7-10

numeric SprintF codes,
8-9

O

objects

comparing, 52-53

duplicating, 54-55

inspecting, 50

networking with dis-
tributed Ruby, 158

protecting instances,
55-56

serializing, 53,
156-157

string presentations
of, 50-51

ObjectSpace, 56

obtaining exclusive locks,
74

opening

files, 69-70

XML files with REXML,
92

opening database con-
nections, MySQL, 144

operators, string slicing
operators, 11

OS line endings, 28-30

P

packaging modules with
Hoe, 189

packaging systems, 185

parsing

LDIF, 77-78

simple config files,
78-79

passwd files, processing,
81

passwords, creating
secured password
prompts, 66-67

pipes, 61-63

MySQL200

processing

large strings, 30-31

psswd files, 81

web forms, 128-130

progress bars, imple-
menting, 65

protecting object
instances, 55-56

Q-R

Qt 4, 107, 117

Qt Designer, 118-120,
123

Rakefile, making stand-
alone, 192-193

rational numbers, 15-17

RDoc, 175-177

program usage help,
180-181

typographic conven-
tions, 178

receiving uploaded files,
137-138

regular expressions, con-
verting strings to regu-
lar expressions and
back again, 12-13

removing modules, 188

replacing substrings,
23-24

with regular expres-
sions, 26

with SprintF, 24-25

representing data graphi-
cally, 138-141

returning tabled results,
131-133

REXML, 91

elements

accessing, 93-95

adding, 96

attributes, 95, 99

deleting, 98

enclosed text,
changing, 97

RSS parser example,
104-105

XML files, opening, 92

XML validation, per-
forming, 102

rows

adding to MySQL
tables, 146

deleting from MySQL
tables, 147

rrdtool, 140

RSS (Really Simple
Subscriptions), 104-105

Ruby threads, 163

Ruby threads 201

ruby-xslt module,
100-102

RubyForge modules, dis-
tributing, 191

RubyGems, 185-187

S

sanitizing input, 27-28

searches, simple search-
es, 84

searching

large file contents,
70-72

modules, 188

strings, 20-21

secured password
prompts, creating,
66-67

security level of $SAFE
variable, setting,
136-137

serializing objects, 53,
156-157

sets

nested sets, 47-48

to arrays, 15

setup.rb, 185

SHA1, 86

signal handlers, attaching
to Qt 4 widget slots,
117

slicing arrays, 35-37

sockets, 151-152

connecting to, 153

running TCP servers
on, 155

sort.reverse, 88

sorting

arrays, 40-41

contents of files, 80

hashes by key or
value, 45-46

nested arrays, 42-43

SprintF

numeric arguments, 9

numeric codes, 8

replacing substrings,
24-25

standalone Rakefile, cre-
ating, 192-193

STDERR, 61-64

STDIN, 61

STDOUT, 61-64

string slicing operators,
11

strings

checksumming, 31-32

comparing, 31

converting

to arrays, 10-11

to regular expres-
sions and back
again, 12-13

encrypting, 32-33

ruby-xslt module202

formatted strings,
7-10

number from, 6

object presentations,
50-51

processing large
strings, 30-31

searching, 20-22

substrings, replacing,
23

with regular expres-
sions, 26

with SprintF, 24-25

Unicode, 26-27

stty, 66

substrings, replacing, 23

with regular expres-
sions, 26

with SprintF, 24-25

symbols, 57-60

synchronizing

STDERR, 63-64

STDOUT, 63-64

synchronizing thread
communication,
170-171

T

tabled results, returning,
131-133

tables, MySQL

adding rows to, 146

creating, 145

deleting, 148-149

deleting rows from,
147

iterating over queried
rows, 147

listing, 146

tails, 84-85

tainted variables,
136-137

TCP connect, 87

TCP sockets, 153-155

terminating threads, 169

text, manipulating

contents of files, sort-
ing, 80

LDIF, parsing, 77-78

passwd files, process-
ing, 81

simple config files,
parsing, 78-79

text files, interpolating
one into another,
79-80

text files

adding users from, 88

interpolating into
another text file,
79-80

threads

closing, 165

creating, 164

exceptions, gathering,
172

threads 203

killing, 169

Ruby threads, 163

synchronization,
170-171

timers, 166-167

YARV, 164

timers, 166-167

toolkits

GTK+, 109

Qt 4, 107, 117

typographic conventions
(RDoc), 178

U-V-W

Unicode strings, 26-27

updating modules, 188

uploaded files, receiving,
137-138

users, adding from text
files, 88

validating XML, 102

values

modifying in arrays,
42

sorting hashes, 45-46

variables, tainted,
136-137

web forms, processing,
128-130

Webrick, 160

X-Y-Z

XML (Extensible Markup
Language), 91

elements

accessing, 93-95

adding, 96

attributes, 95, 99

deleting, 98

enclosed text,
changing, 97

entity references, 100

files, opening, 92

validating, 102

XPath, accessing XML
elements, 94-95

XSLT, ruby-xslt module,
100-102

YAML, serializing objects,
156-157

YARV, 164

threads204

	Introduction
	Audience
	How to Use This Book
	Conventions
	Acknowledgments

	3 Working with Collections
	Slicing an Array
	Iterating over an Array
	Creating Enumerable Classes
	Sorting an Array
	Iterating over Nested Arrays
	Modifying All the Values in an Array
	Sorting Nested Arrays
	Building a Hash from a Config File
	Sorting a Hash by Key or Value
	Eliminating Duplicate Data from Arrays (Sets)
	Working with Nested Sets

	Index
	A
	B-C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V-W
	X-Y-Z

