
CHAPTER 2
Working with Strings

Atoms were once thought to be fundamental, elementary building blocks of
nature; protons were then thought to be fundamental, then quarks. Now we
say the string is fundamental.

—David Gross, professor of theoretical physics, Princeton University

A computer science professor in the early 1980s started out his data structures class
with a single question. He didn’t introduce himself or state the name of the course; he
didn’t hand out a syllabus or give the name of the textbook. He walked to the front of
the class and asked, “What is the most important data type?”

There were one or two guesses. Someone guessed “pointers,” and he brightened
but said no, that wasn’t it. Then he offered his opinion: The most important data type
was character data.

He had a valid point. Computers are supposed to be our servants, not our mas-
ters, and character data has the distinction of being human readable. (Some humans
can read binary data easily, but we will ignore them.) The existence of characters (and
thus strings) enables communication between humans and computers. Every kind of
information we can imagine, including natural language text, can be encoded in char-
acter strings.

63

A string, as in other languages, is simply a sequence of characters. Like most enti-
ties in Ruby, strings are first-class objects. In everyday programming, we need to
manipulate strings in many ways. We want to concatenate strings, tokenize them, ana-
lyze them, perform searches and substitutions, and more. Ruby makes most of these
tasks easy.

Most of this chapter assumes that a byte is a character. When we get into an inter-
mationalized environment, this is not really true. For issues involved with interna-
tionalization, refer to Chapter 4, “Internationalization in Ruby.”

2.1 Representing Ordinary Strings
A string in Ruby is simply a sequence of 8-bit bytes. It is not null-terminated as in C,
so it can contain null characters. It may contain bytes above 0xFF, but such strings are
meaningful only if some certain character set (encoding) is assumed. (For more infor-
mation on encodings, refer to Chapter 4.

The simplest string in Ruby is single-quoted. Such a string is taken absolutely lit-
erally; the only escape sequences recognized are the single quote (\') and the escaped
backslash itself (\\):

s1 = 'This is a string' # This is a string

s2 = 'Mrs. O\'Leary' # Mrs. O'Leary

s3 = 'Look in C:\\TEMP' # Look in C:\TEMP

A double-quoted string is more versatile. It allows many more escape sequences,
such as backspace, tab, carriage return, and linefeed. It also allows control characters
to be embedded as octal numbers:

s1 = "This is a tab: (\t)"

s2 = "Some backspaces: xyz\b\b\b"

s3 = "This is also a tab: \011"

s4 = "And these are both bells: \a \007"

Double-quoted strings also allow expressions to be embedded inside them. See
section 2.21, “Embedding Expressions Within Strings.”

64 2. Working with Strings

2.2 Representing Strings with Alternate Notations
Sometimes we want to represent strings that are rich in metacharacters such as single
quotes, double quotes, and more. For these situations, we have the %q and %Q
notations. Following either of these is a string within a pair of delimiters; I personal-
ly favor square brackets ([]).

The difference between the %q and %Q variants is that the former acts like a single-
quoted string, and the latter like a double-quoted string.

S1 = %q[As Magritte said, "Ceci n'est pas une pipe."]

s2 = %q[This is not a tab: (\t)] # same as: 'This is not a tab: \t'

s3 = %Q[This IS a tab: (\t)] # same as: "This IS a tab: \t"

Both kinds of notation can be used with different delimiters. Besides brackets,
there are other paired delimiters (parentheses, braces, angle brackets):

s1 = %q(Bill said, "Bob said, 'This is a string.'")

s2 = %q{Another string.}

s3 = %q<Special characters '"[](){} in this string.>

There are also “nonpaired” delimiters. Basically any character may be used that is
not alphanumeric, not whitespace, printable, and not a paired character.

s1 = %q:"I think Mrs. O'Leary's cow did it," he said.:

s2 = %q*\r is a control-M and \n is a control-J.*

2.3 Using Here-Documents
If you want to represent a long string spanning multiple lines, you can certainly use a
regular quoted string:

str = "Once upon a midnight dreary,

While I pondered, weak and weary..."

However, the indentation will be part of the string.
Another way is the here-document, a string that is inherently multiline. (This

concept and term are borrowed from older languages and contexts.) The syntax is the

2.3 Using Here-Documents 65

<< symbol, followed by an end marker, then zero or more lines of text, and finally the
same end marker on a line by itself:

str = <<EOF

Once upon a midnight dreary,

While I pondered weak and weary,...

EOF

Be careful about things such as trailing spaces on the final end marker line.
Current versions of Ruby will fail to recognize the end marker in those situations.

Note that here-documents may be “stacked”; for example, here is a method call
with three such strings passed to it:

some_method(<<str1, <<str2, <<str3)

first piece

of text...

str1

second piece...

str2

third piece

of text.

str3

By default, a here-document is like a double-quoted string—that is, its contents
are subject to interpretation of escape sequences and interpolation of embedded
expressions. But if the end marker is single-quoted, the here-document behaves like a
single-quoted string:

str = <<'EOF'

This isn't a tab: \t

and this isn't a newline: \n

EOF

If a here-document’s end marker is preceded by a hyphen, the end marker may be
indented. Only the spaces before the end marker are deleted from the string, not those
on previous lines.

str = <<-EOF

Each of these lines

starts with a pair

of blank spaces.

66 2. Working with Strings

EOF

Here is a style I personally like. Let’s assume the existence of the margin method
defined here:

class String

def margin

arr = self.split("\n") # Split into lines

arr.map! {|x| x.sub!(/\s*\|/,"")} # Remove leading characters

str = arr.join("\n") # Rejoin into a single line

self.replace(str) # Replace contents of string

end

end

I’ve commented this fairly heavily for clarity. Parts of it involve features explained
elsewhere in this chapter or later chapters.

It’s used in this way:

str = <<end.margin

|This here-document has a "left margin"

|at the vertical bar on each line.

|

| We can do inset quotations,

| hanging indentions, and so on.

end

The word end is used naturally enough as an end marker. (This, of course, is a
matter of taste. It “looks” like the reserved word end but is really just an arbitrary
marker.) Each line starts with a vertical bar, which is then stripped off each line (along
with the leading whitespace).

2.4 Finding the Length of a String
The method length can be used to find a string’s length. A synonym is size.

str1 = "Carl"

x = str1.length # 4

str2 = "Doyle"

x = str2.size # 5

2.4 Finding the Length of a String 67

2.5 Processing a Line at a Time
A Ruby string can contain newlines. For example, a file can be read into memory and
stored in a single string. The default iterator each processes such a string one line at
a time:

str = "Once upon\na time...\nThe End\n"

num = 0

str.each do |line|

num += 1

print "Line #{num}: #{line}"

end

The preceding code produces three lines of output:

Line 1: Once upon

Line 2: a time...

Line 3: The End

The method each_with_index could also be used in this case.

2.6 Processing a Byte at a Time
Because Ruby is not fully internationalized at the time of this writing, a character
is essentially the same as a byte. To process these in sequence, use the each_byte
iterator:

str = "ABC"

str.each_byte {|char| print char, " " }

Produces output: 65 66 67

In current versions of Ruby, you can break a string into an array of one-character
strings by using scan with a simple wildcard regular expression matching a single
character:

str = "ABC"

chars = str.scan(/./)

chars.each {|char| print char, " " }

Produces output: A B C

68 2. Working with Strings

2.7 Performing Specialized String Comparisons
Ruby has built-in ideas about comparing strings; comparisons are done lexicographi-
cally as we have come to expect (that is, based on character set order). But if we want,
we can introduce rules of our own for string comparisons, and these can be of arbi-
trary complexity.

For example, suppose that we want to ignore the English articles a, an, and the at
the front of a string, and we also want to ignore most common punctuation marks.
We can do this by overriding the built-in method <=> (which is called for <, <=, >,
and >=). Listing 2.1 shows how we do this.

Listing 2.1 Specialized String Comparisons

class String

alias old_compare <=>

def <=>(other)
a = self.dup
b = other.dup
Remove punctuation
a.gsub!(/[\,\.\?\!\:\;]/, "")
b.gsub!(/[\,\.\?\!\:\;]/, "")
Remove initial articles
a.gsub!(/^(a |an |the)/i, "")
b.gsub!(/^(a |an |the)/i, "")
Remove leading/trailing whitespace
a.strip!
b.strip!
Use the old <=>
a.old_compare(b)

end

end

title1 = "Calling All Cars"
title2 = "The Call of the Wild"

Ordinarily this would print "yes"

if title1 < title2
puts "yes"

else
puts "no" # But now it prints "no"

end

2.7 Performing Specialized String Comparisons 69

Note that we “save” the old <=> with an alias and then call it at the end. This
is because if we tried to use the < method, it would call the new <=> rather than the
old one, resulting in infinite recursion and a program crash.

Note also that the == operator does not call the <=> method (mixed in from
Comparable). This means that if we need to check equality in some specialized way,
we will have to override the == method separately. But in this case, == works as we
want it to anyhow.

Suppose that we wanted to do case-insensitive string comparisons. The built-in
method casecmp will do this; we just have to make sure that it is used instead of the
usual comparison.

Here is one way:

class String

def <=>(other)

casecmp(other)

end

end

But there is a slightly easier way:
class String

alias <=> casecmp

end

However, we haven’t finished. We need to redefine == so that it will behave in the
same way:

class String

def ==(other)

casecmp(other) == 0

end

end

Now all string comparisons will be strictly case-insensitive. Any sorting operation
that depends on <=> will likewise be case-insensitive.

2.8 Tokenizing a String
The split method parses a string and returns an array of tokens. It accepts two
parameters, a delimiter and a field limit (which is an integer).

70 2. Working with Strings

The delimiter defaults to whitespace. Actually, it uses $; or the English equiva-
lent $FIELD_SEPARATOR. If the delimiter is a string, the explicit value of that string
is used as a token separator.

s1 = "It was a dark and stormy night."

words = s1.split # ["It", "was", "a", "dark", "and",

"stormy", "night"]

s2 = "apples, pears, and peaches"

list = s2.split(", ") # ["apples", "pears", "and peaches"]

s3 = "lions and tigers and bears"

zoo = s3.split(/ and /) # ["lions", "tigers", "bears"]

The limit parameter places an upper limit on the number of fields returned,
according to these rules:

1. If it is omitted, trailing null entries are suppressed.

2. If it is a positive number, the number of entries will be limited to that number
(stuffing the rest of the string into the last field as needed). Trailing null entries are
retained.

3. If it is a negative number, there is no limit to the number of fields, and trailing null
entries are retained.

These three rules are illustrated here:

str = "alpha,beta,gamma,,"

list1 = str.split(",") # ["alpha","beta","gamma"]

list2 = str.split(",",2) # ["alpha", "beta,gamma,,"]

list3 = str.split(",",4) # ["alpha", "beta", "gamma", ","]

list4 = str.split(",",8) # ["alpha", "beta", "gamma", "", ""]

list5 = str.split(",",-1) # ["alpha", "beta", "gamma", "", ""]

The scan method can be used to match regular expressions or strings against a
target string:

str = "I am a leaf on the wind..."

A string is interpreted literally, not as a regex

arr = str.scan("a") # ["a","a","a"]

2.8 Tokenizing a String 71

A regex will return all matches

arr = str.scan(/\w+/) # ["I", "am", "a", "leaf", "on", "the",

"wind"]

A block can be specified

str.scan(/\w+/) {|x| puts x }

The StringScanner class, from the standard library, is different in that it main-
tains state for the scan rather than doing it all at once:

require 'strscan'

str = "Watch how I soar!"

ss = StringScanner.new(str)

loop do

word = ss.scan(/\w+/) # Grab a word at a time

break if word.nil?

puts word

sep = ss.scan(/\W+/) # Grab next non-word piece

break if sep.nil?

end

2.9 Formatting a String
This is done in Ruby as it is in C, with the sprintf method. It takes a string and a
list of expressions as parameters and returns a string. The format string contains essen-
tially the same set of specifiers available with C’s sprintf (or printf).

name = "Bob"

age = 28

str = sprintf("Hi, %s... I see you're %d years old.", name, age)

You might ask why we would use this instead of simply interpolating values into
a string using the #{expr} notation. The answer is that sprintf makes it possible to
do extra formatting such as specifying a maximum width, specifying a maximum
number of decimal places, adding or suppressing leading zeroes, left-justifying, right-
justifying, and more.

str = sprintf("%-20s %3d", name, age)

72 2. Working with Strings

The String class has a method % that does much the same thing. It takes a sin-
gle value or an array of values of any type:

str = "%-20s %3d" % [name, age] # Same as previous example

We also have the methods ljust, rjust, and center; these take a length for the
destination string and pad with spaces as needed:

str = "Moby-Dick"

s1 = str.ljust(13) # "Moby-Dick"

s2 = str.center(13) # " Moby-Dick "

s3 = str.rjust(13) # " Moby-Dick"

If a second parameter is specified, it is used as the pad string (which may possibly
be truncated as needed):

str = "Captain Ahab"

s1 = str.ljust(20,"+") # "Captain Ahab++++++++"

s2 = str.center(20,"-") # "——Captain Ahab——"

s3 = str.rjust(20,"123") # "12312312Captain Ahab"

2.10 Using Strings As IO Objects
Besides sprintf and scanf, there is another way to fake input/output to a string—
the StringIO class.

Because this is a very IO-like object, we cover it in a later chapter. See section
10.1.24, “Treating a String As a File.”

2.11 Controlling Uppercase and Lowercase
Ruby’s String class offers a rich set of methods for controlling case. This section
offers an overview of these.

The downcase method converts a string to all lowercase. Likewise upcase con-
verts it to all uppercase:

s1 = "Boston Tea Party"

s2 = s1.downcase # "boston tea party"

s3 = s2.upcase # "BOSTON TEA PARTY"

2.11 Controlling Uppercase and Lowercase 73

The capitalize method capitalizes the first character of a string while forcing
all the remaining characters to lowercase:

s4 = s1.capitalize # "Boston tea party"

s5 = s2.capitalize # "Boston tea party"

s6 = s3.capitalize # "Boston tea party"

The swapcase method exchanges the case of each letter in a string:

s7 = "THIS IS AN ex-parrot."

s8 = s7.swapcase # "this is an EX-PARROT."

As of Ruby 1.8, there is a casecmp method which acts like the default <=>
method but ignores case:

n1 = "abc".casecmp("xyz") # -1

n2 = "abc".casecmp("XYZ") # -1

n3 = "ABC".casecmp("xyz") # -1

n4 = "ABC".casecmp("abc") # 0

n5 = "xyz".casecmp("abc") # 1

Each of these has its in-place equivalent (upcase!, downcase!, capitalize!,
swapcase!).

There are no built-in methods for detecting case, but this is easy to do with reg-
ular expressions, as shown in the following example:

if string =~ /[a-z]/

puts "string contains lowercase characters"

end

if string =~ /[A-Z]/

puts "string contains uppercase characters"

end

if string =~ /[A-Z]/ and string =~ /a-z/

puts "string contains mixed case"

end

74 2. Working with Strings

if string[0..0] =~ /[A-Z]/

puts "string starts with a capital letter"

end

Note that all these methods ignore locale.

2.12 Accessing and Assigning Substrings
In Ruby, substrings may be accessed in several different ways. Normally the bracket
notation is used, as for an array, but the brackets may contain a pair of Fixnums, a
range, a regex, or a string. Each case is discussed in turn.

If a pair of Fixnum values is specified, they are treated as an offset and a length,
and the corresponding substring is returned:

str = "Humpty Dumpty"

sub1 = str[7,4] # "Dump"

sub2 = str[7,99] # "Dumpty" (overrunning is OK)

sub3 = str[10,-4] # nil (length is negative)

It is important to remember that these are an offset and a length (number of char-
acters), not beginning and ending offsets.

A negative index counts backward from the end of the string. In this case, the
index is one-based, not zero-based. The length is still added in the forward direction:

str1 = "Alice"

sub1 = str1[-3,3] # "ice"

str2 = "Through the Looking-Glass"

sub3 = str2[-13,4] # "Look"

A range may be specified. In this case, the range is taken as a range of indices into
the string. Ranges may have negative numbers, but the numerically lower number
must still be first in the range. If the range is “backward” or if the initial value is out-
side the string, nil is returned:

str = "Winston Churchill"

sub1 = str[8..13] # "Church"

sub2 = str[-4..-1] # "hill"

sub3 = str[-1..-4] # nil

sub4 = str[25..30] # nil

2.12 Accessing and Assigning Substrings 75

If a regular expression is specified, the string matching that pattern will be
returned. If there is no match, nil will be returned:

str = "Alistair Cooke"

sub1 = str[/l..t/] # "list"

sub2 = str[/s.*r/] # "stair"

sub3 = str[/foo/] # nil

If a string is specified, that string will be returned if it appears as a substring (or
nil if it does not):

str = "theater"

sub1 = str["heat"] # "heat"

sub2 = str["eat"] # "eat"

sub3 = str["ate"] # "ate"

sub4 = str["beat"] # nil

sub5 = str["cheat"] # nil

Finally, in the trivial case, a single Fixnum as index will yield an ASCII code (or
nil if out of range):

str = "Aaron Burr"

ch1 = str[0] # 65

ch1 = str[1] # 97

ch3 = str[99] # nil

It is important to realize that the notations described here will serve for assigning
values as well as for accessing them:

str1 = "Humpty Dumpty"

str1[7,4] = "Moriar" # "Humpty Moriarty"

str2 = "Alice"

str2[-3,3] = "exandra" # "Alexandra"

str3 = "Through the Looking-Glass"

str3[-13,13] = "Mirror" # "Through the Mirror"

76 2. Working with Strings

str4 = "Winston Churchill"

str4[8..13] = "H" # "Winston Hill"

str5 = "Alistair Cooke"

str5[/e$/] ="ie Monster" # "Alistair Cookie Monster"

str6 = "theater"

str6["er"] = "re" # "theatre"

str7 = "Aaron Burr"

str7[0] = 66 # "Baron Burr"

Assigning to an expression evaluating to nil will have no effect.

2.13 Substituting in Strings
We’ve already seen how to perform simple substitutions in strings. The sub and gsub
methods provide more advanced pattern-based capabilities. There are also sub! and
gsub!, their in-place counterparts.

The sub method substitutes the first occurrence of a pattern with the given
substitute-string or the given block:

s1 = "spam, spam, and eggs"

s2 = s1.sub(/spam/,"bacon") # "bacon, spam, and eggs"

s3 = s2.sub(/(\w+), (\w+),/,'\2, \1,') # "spam, bacon, and eggs"

s4 = "Don't forget the spam."

s5 = s4.sub(/spam/) { |m| m.reverse } # "Don't forget the maps."

s4.sub!(/spam/) { |m| m.reverse }

s4 is now "Don't forget the maps."

As this example shows, the special symbols \1, \2, and so on may be used in a
substitute string. However, special variables such as $& (or the English version
$MATCH) may not.

If the block form is used, the special variables may be used. However, if all you
need is the matched string, it will be passed into the block as a parameter. If it is not
needed at all, the parameter can of course be omitted.

2.13 Substituting in Strings 77

The gsub method (global substitution) is essentially the same except that all
matches are substituted rather than just the first:

s5 = "alfalfa abracadabra"

s6 = s5.gsub(/a[bl]/,"xx") # "xxfxxfa xxracadxxra"

s5.gsub!(/[lfdbr]/) { |m| m.upcase + "-" }

s5 is now "aL-F-aL-F-a aB-R-acaD-aB-R-a"

The method Regexp.last_match is essentially identical to $& or $MATCH.

2.14 Searching a String
Besides the techniques for accessing substrings, there are other ways of searching with-
in strings. The index method returns the starting location of the specified substring,
character, or regex. If the item is not found, the result is nil:

str = "Albert Einstein"

pos1 = str.index(?E) # 7

pos2 = str.index("bert") # 2

pos3 = str.index(/in/) # 8

pos4 = str.index(?W) # nil

pos5 = str.index("bart") # nil

pos6 = str.index(/wein/) # nil

The method rindex (right index) starts from the righthand side of the string
(that is, from the end). The numbering, however, proceeds from the beginning as
usual:

str = "Albert Einstein"

pos1 = str.rindex(?E) # 7

pos2 = str.rindex("bert") # 2

pos3 = str.rindex(/in/) # 13 (finds rightmost match)

pos4 = str.rindex(?W) # nil

pos5 = str.rindex("bart") # nil

pos6 = str.rindex(/wein/) # nil

The include? method simply tells whether the specified substring or character
occurs within the string:

str1 = "mathematics"

78 2. Working with Strings

flag1 = str1.include? ?e # true

flag2 = str1.include? "math" # true

str2 = "Daylight Saving Time"

flag3 = str2.include? ?s # false

flag4 = str2.include? "Savings" # false

The scan method repeatedly scans for occurrences of a pattern. If called without
a block, it returns an array. If the pattern has more than one (parenthesized) group,
the array will be nested:

str1 = "abracadabra"

sub1 = str1.scan(/a./)

sub1 now is ["ab","ac","ad","ab"]

str2 = "Acapulco, Mexico"

sub2 = str2.scan(/(.)(c.)/)

sub2 now is [["A","ca"], ["l","co"], ["i","co"]]

If a block is specified, the method passes the successive values to the block:

str3 = "Kobayashi"

str3.scan(/[^aeiou]+[aeiou]/) do |x|

print "Syllable: #{x}\n"

end

This code produces the following output:

Syllable: Ko

Syllable: ba

Syllable: ya

Syllable: shi

2.15 Converting Between Characters and
ASCII Codes

In Ruby, a character is already an integer. This behavior is slated to change in 2.0 or per-
haps sooner. In future versions of Ruby, the current plan is to store a character as a one-
character string.

2.15 Converting Between Characters and ASCII Codes 79

str = "Martin"

print str[0] # 77

If a Fixnum is appended directly onto a string, it is converted to a character:

str2 = str << 111 # "Martino"

2.16 Implicit and Explicit Conversion
At first glance, the to_s and to_str methods seem confusing. They both convert an
object into a string representation, don’t they?

There are several differences. First, any object can in principle be converted to
some kind of string representation; that is why nearly every core class has a to_s
method. But the to_str method is never implemented in the core.

As a rule, to_str is for objects that are really very much like strings—that can
“masquerade” as strings. Better yet, think of the short name to_s as being explicit con-
version and the longer name to_str as being implicit conversion.

You see, the core does not define any to_str methods (that I am aware of). But
core methods do call to_str sometimes (if it exists for a given class).

The first case we might think of is a subclass of String; but in reality, any object
of a subclass of String already “is-a” String, so to_str is unnecessary there.

Here is a real-life example. The Pathname class is defined for convenience in
manipulating filesystem pathnames (for example, concatenating them). However, a
pathname maps naturally to a string (even though it does not inherit from String).

require 'pathname'

path = Pathname.new("/tmp/myfile")

name = path.to_s # "/tmp/myfile"

name = path.to_str # "/tmp/myfile" (So what?)

Here's why it matters...

heading = "File name is " + path

puts heading # "File name is /tmp/myfile"

Notice that in the preceding code fragment, we take a string "File name is"
and directly append a path onto it. Normally this would give us a runtime error, since

80 2. Working with Strings

the + operator expects the second operand to be another string. But because
Pathname has a to_str method, that method is called. A Pathname can “masquer-
ade” as a String; it is implicitly converted to a String in this case.

In real life, to_s and to_str usually return the same value; but they don’t have
to do so. The implicit conversion should result in the “real string value” of the object;
the explicit conversion can be thought of as a “forced” conversion.

The puts method calls an object’s to_s method in order to find a string repre-
sentation. This behavior might be thought of as an implicit call of an explicit conver-
sion. The same is true for string interpolation. Here’s a crude example:

class Helium

def to_s

"He"

end

def to_str

"helium"

end

end

e = Helium.new

print "Element is "

puts e # Element is He

puts "Element is " + e # Element is helium

puts "Element is #{e}" # Element is He

So you can see how defining these appropriately in your own classes can give you
a little extra flexibility. But what about honoring the definitions of the objects passed
into your methods?

For example, suppose that you have a method that is “supposed” to take a String
as a parameter. Despite our “duck typing” philosophy, this is frequently done and is
often completely appropriate. For example, the first parameter of File.new is
“expected” to be a string.

The way to handle this is simple. When you expect a string, check for the exis-
tence of to_str and call it as needed.

def set_title(title)

if title.respond_to? :to_str

title = title.to_str

end

...

2.16 Implicit and Explicit Conversion 81

end

Now, what if an object doesn’t respond to to_str? We could do several things. We
could force a call to to_s; we could check the class to see whether it is a String or a
subclass thereof; or we could simply keep going, knowing that if we apply some mean-
ingless operation to this object, we will eventually get an ArgumentError anyway.

A shorter way to do this is

title = title.to_str rescue title

which depends on an unimplemented to_str raising an exception. The rescue mod-
ifiers can of course be nested:

title = title.to_str rescue title.to_s rescue title

Handle the unlikely case that even to_s isn't there

Implicit conversion would allow you to make strings and numbers essentially
equivalent. You could do this:

class Fixnum

def to_str

self.to_s

end

end

str = "The number is " + 345 # The number is 345

However, I don’t recommend this sort of thing. There is such a thing as “too much
magic”; Ruby, like most languages, considers strings and numbers to be different, and
I believe that most conversions should be explicit for the sake of clarity.

Another thing to remember: There is nothing magical about the to_str method.
It is intended to return a string, but if you code your own, it is your responsibility to
see that it does.

82 2. Working with Strings

2.17 Appending an Item Onto a String
The append operator << can be used to append a string onto another string. It is
“stackable” in that multiple operations can be performed in sequence on a given
receiver.

str = "A"

str << [1,2,3].to_s << " " << (3.14).to_s

str is now "A123 3.14"

If a Fixnum in the range 0..255 is specified, it will be converted to a character:

str = "Marlow"

str << 101 << ", Christopher"

str is now "Marlowe, Christopher"

2.18 Removing Trailing Newlines and Other
Characters

Often we want to remove extraneous characters from the end of a string. The prime
example is a newline on a string read from input.

The chop method removes the last character of the string (typically a trailing
newline character). If the character before the newline is a carriage return (\r), it will
be removed also. The reason for this behavior is the discrepancy between different sys-
tems’ conceptions of what a newline is. On some systems such as UNIX, the newline
character is represented internally as a linefeed (\n). On others such as DOS and
Windows, it is stored as a carriage return followed by a linefeed (\r\n).

str = gets.chop # Read string, remove newline

s2 = "Some string\n" # "Some string" (no newline)

s3 = s2.chop! # s2 is now "Some string" also

s4 = "Other string\r\n"

s4.chop! # "Other string" (again no newline)

Note that the “in-place” version of the method (chop!) will modify its receiver.

2.18 Removing Trailing Newlines and Other Characters 83

It is also important to note that in the absence of a trailing newline, the last char-
acter will be removed anyway:

str = "abcxyz"

s1 = str.chop # "abcxy"

Because a newline may not always be present, the chomp method may be a better
alternative:

str = "abcxyz"

str2 = "123\n"

str3 = "123\r"

str4 = "123\r\n"

s1 = str.chomp # "abcxyz"

s2 = str2.chomp # "123"

With the default record separator, \r and \r\n are removed

as well as \n

s3 = str3.chomp # "123"

s4 = str4.chomp # "123"

There is also a chomp! method as we would expect.
If a parameter is specified for chomp, it will remove the set of characters specified

from the end of the string rather than the default record separator. Note that if the
record separator appears in the middle of the string, it is ignored:

str1 = "abcxyz"

str2 = "abcxyz"

s1 = str1.chomp("yz") # "abcx"

s2 = str2.chomp("x") # "abcxyz"

2.19 Trimming Whitespace from a String
The strip method removes whitespace from the beginning and end of a string. Its
counterpart strip! modifies the receiver in place.

str1 = "\t \nabc \t\n"

str2 = str1.strip # "abc"

str3 = str1.strip! # "abc"

str1 is now "abc" also

Whitespace, of course, consists mostly of blanks, tabs, and end-of-line characters.

84 2. Working with Strings

If we want to remove whitespace only from the beginning or end of a string, we
can use the lstrip and rstrip methods:

str = " abc "

s2 = str.lstrip # "abc "

s3 = str.rstrip # " abc"

There are in-place variants rstrip! and lstrip! also.

2.20 Repeating Strings
In Ruby, the multiplication operator (or method) is overloaded to enable repetition of
strings. If a string is multiplied by n, the result is n copies of the original string con-
catenated together:

etc = "Etc. "*3 # "Etc. Etc. Etc. "

ruler = "+" + ("."*4+"5"+"."*4+"+")*3

"+....5....+....5....+....5....+"

2.21 Embedding Expressions Within Strings
The #{} notation makes this easy. We need not worry about converting, appending,
and concatenating; we can interpolate a variable value or other expression at any point
in a string:

puts "#{temp_f} Fahrenheit is #{temp_c} Celsius"

puts "The discriminant has the value #{b*b - 4*a*c}."

puts "#{word} is #{word.reverse} spelled backward."

Bear in mind that full statements can also be used inside the braces. The last eval-
uated expression will be the one returned.

str = "The answer is #{ def factorial(n)

n==0 ? 1 : n*factorial(n-1)

end

answer = factorial(3) * 7}, of course."

The answer is 42, of course.

There are some shortcuts for global, class, and instance variables, in which case
the braces can be dispensed with:

2.21 Embedding Expressions Within Strings 85

print "$gvar = #$gvar and ivar = #@ivar."

Note that this technique is not applicable for single-quoted strings (because their
contents are not expanded), but it does work for double-quoted here-documents and
regular expressions.

2.22 Delayed Interpolation of Strings
Sometimes we might want to delay the interpolation of values into a string. There is
no perfect way to do this. One way is to use a block:

str = proc {|x,y,z| "The numbers are #{x}, #{y}, and #{z}" }

s1 = str.call(3,4,5) # The numbers are 3, 4, and 5

s2 = str.call(7,8,9) # The numbers are 7, 8, and 9

A more heavyweight solution is to store a single-quoted string, wrap it in double
quotes, and evaluate it:

str = '#{name} is my name, and #{nation} is my nation'

name, nation = "Stephen Dedalus", "Ireland"

s1 = eval('"' + str + '"')

Stephen Dedalus is my name, and Ireland is my nation.

It’s also possible to pass in a different binding to eval:

bind = proc do

name,nation = "Gulliver Foyle", "Terra"

binding

end.call # Contrived example; returns binding of block's context

s2 = eval('"' + str + '"',bind)

Gulliver Foyle is my name, and Terra is my nation.

The eval technique may naturally have some “gotchas” associated with it. For
example, be careful with escape sequences such as \n for newline.

86 2. Working with Strings

2.23 Parsing Comma-Separated Data
Comma-delimited data are common in computing. It is a kind of “lowest common
denominator” of data interchange used (for example) to transfer information between
incompatible databases or applications that know no other common format.

We assume here that we have a mixture of strings and numbers and that all strings
are enclosed in quotes. We further assume that all characters are escaped as necessary
(commas and quotes inside strings, for example).

The problem becomes simple because this data format looks suspiciously like a
Ruby array of mixed types. In fact, we can simply add brackets to enclose the whole
expression, and we have an array of items.

string = gets.chop!

Suppose we read in a string like this one:

"Doe, John", 35, 225, "5'10\"", "555-0123"

data = eval("[" + string + "]") # Convert to array

data.each {|x| puts "Value = #{x}"}

This fragment produces the following output:

Value = Doe, John

Value = 35

Value = 225

Value = 5' 10"

Value = 555-0123

For a more heavy-duty solution, refer to the CSV library (which is a standard
library). There is also a somewhat improved tool called FasterCSV. Search for it
online; it is not part of the standard Ruby distribution.

2.24 Converting Strings to Numbers (Decimal and
Otherwise)

Basically there are two ways to convert strings to numbers: the Kernel method
Integer and Float and the to_i and to_f methods of String. (Capitalized method
names such as Integer are usually reserved for special data conversion functions like
this.)

The simple case is trivial, and these are equivalent:

2.24 Converting Strings to Numbers (Decimal and Otherwise) 87

x = "123".to_i # 123

y = Integer("123") # 123

When a string is not a valid number, however, their behaviors differ:

x = "junk".to_i # silently returns 0

y = Integer("junk") # error

to_i stops converting when it reaches a non-numeric character, but Integer
raises an error:

x = "123junk".to_i # 123

y = Integer("123junk") # error

Both allow leading and trailing whitespace:

x = " 123 ".to_i # 123

y = Integer(" 123 ") # 123

Floating point conversion works much the same way:

x = "3.1416".to_f # 3.1416

y = Float("2.718") # 2.718

Both conversion methods honor scientific notation:

x = Float("6.02e23") # 6.02e23

y = "2.9979246e5".to_f # 299792.46

to_i and Integer also differ in how they handle different bases. The default, of
course, is decimal or base ten; but we can work in other bases also. (The same is not
true for floating point.)

When talking about converting between numeric bases, strings always are
involved. After all, an integer is an integer, and they are all stored in binary.

Base conversion, therefore, always means converting to or from some kind of
string. Here we’re looking at converting from a string. (For the reverse, see section 5.18
“Performing Base Conversions” and section 5.5 “Formatting Numbers for Output.”)

88 2. Working with Strings

When a number appears in program text as a literal numeric constant, it may have
a “tag” in front of it to indicate base. These tags are 0b for binary, a simple 0 for octal,
and 0x for hexadecimal.

These tags are honored by the Integer method but not by the to_i method:

x = Integer("0b111") # binary - returns 7

y = Integer("0111") # octal - returns 73

z = Integer("0x111") # hexadecimal - returns 291

x = "0b111".to_i # 0

y = "0111".to_i # 0

z = "0x111".to_i # 0

to_i, however, allows an optional second parameter to indicate base. Typically,
the only meaningful values are 2, 8, 10 (the default), and 16. However, tags are not
recognized even with the base parameter.

x = "111".to_i(2) # 7

y = "111".to_i(8) # octal - returns 73

z = "111".to_i(16) # hexadecimal - returns 291

x = "0b111".to_i # 0

y = "0111".to_i # 0

z = "0x111".to_i # 0

Because of the “standard” behavior of these methods, a digit that is inappropriate
for the given base will be treated differently:

x = "12389".to_i(8) # 123 (8 is ignored)

y = Integer("012389") # error (8 is illegal)

Although it might be of limited usefulness, to_i handles bases up to 36, using all
letters of the alphabet. (This may remind you of the base64 encoding; for informa-
tion on that, see section 2.37, “Encoding and Decoding base64 Strings.”)

x = "123".to_i(5) # 66

y = "ruby".to_i(36) # 1299022

It’s also possible to use the scanf standard library to convert character strings to
numbers. This library adds a scanf method to Kernel, to IO, and to String:

2.24 Converting Strings to Numbers (Decimal and Otherwise) 89

str = "234 234 234"

x, y, z = str.scanf("%d %o %x") # 234, 156, 564

The scanf methods implement all the meaningful functionality of their C coun-
terparts scanf, sscanf, and fscanf. It does not handle binary.

2.25 Encoding and Decoding rot13 Text
The rot13 method is perhaps the weakest form of encryption known to humankind.
Its historical use is simply to prevent people from “accidentally” reading a piece of text.
It is commonly seen in Usenet; for example, a joke that might be considered offensive
might be encoded in rot13, or you could post the entire plot of Star Wars: Episode 12
on the day before the premiere.

The encoding method consists simply of “rotating” a string through the alphabet,
so that A becomes N, B becomes O, and so on. Lowercase letters are rotated in the same
way; digits, punctuation, and other characters are ignored. Because 13 is half of 26
(the size of our alphabet), the function is its own inverse; applying it a second time
will “decrypt” it.

The following example is an implementation as a method added to the String
class. We present it without further comment:

class String

def rot13

self.tr("A-Ma-mN-Zn-z","N-Zn-zA-Ma-m")

end

end

joke = "Y2K bug"

joke13 = joke.rot13 # "L2X oht"

episode2 = "Fcbvyre: Naanxva qbrfa'g trg xvyyrq."

puts episode2.rot13

90 2. Working with Strings

2.26 Encrypting Strings
There are times when we don’t want strings to be immediately legible. For example, pass-
words should not be stored in plaintext, no matter how tight the file permissions are.

The standard method crypt uses the standard function of the same name to
DES-encrypt a string. It takes a “salt” value as a parameter (similar to the seed value
for a random number generator). On non-UNIX platforms, this parameter may be
different.

A trivial application for this follows, where we ask for a password that Tolkien fans
should know:

coded = "hfCghHIE5LAM."

puts "Speak, friend, and enter!"

print "Password: "

password = gets.chop

if password.crypt("hf") == coded

puts "Welcome!"

else

puts "What are you, an orc?"

end

It is worth noting that you should never rely on encryption of this nature for a
server-side web application because a password entered on a web form is still trans-
mitted over the Internet in plaintext. In a case like this, the easiest security measure is
the Secure Sockets Layer (SSL). Of course, you could still use encryption on the serv-
er side, but for a different reason—to protect the password as it is stored rather than
during transmission.

2.27 Compressing Strings
The Zlib library provides a way of compressing and decompressing strings and files.

Why might we want to compress strings in this way? Possibly to make database
I/O faster, to optimize network usage, or even to obscure stored strings so that they
are not easily read.

2.27 Compressing Strings 91

The Deflate and Inflate classes have class methods named deflate and
inflate, respectively. The deflate method (which obviously compresses) has an
extra parameter to specify the style of compression. The styles show a typical trade-off
between compression quality and speed; BEST_COMPRESSION results in a smaller
compressed string, but compression is relatively slow; BEST_SPEED compresses faster
but does not compress as much. The default (DEFAULT_COMPRESSION) is typically
somewhere in between in both size and speed.

require 'zlib'

include Zlib

long_string = ("abcde"*71 + "defghi"*79 + "ghijkl"*113)*371

long_string has 559097 characters

s1 = Deflate.deflate(long_string,BEST_SPEED) # 4188 chars

s3 = Deflate.deflate(long_string) # 3568 chars

s2 = Deflate.deflate(long_string,BEST_COMPRESSION) # 2120 chars

Informal experiments suggest that the speeds vary by a factor of two, and the
compression amounts vary inversely by the same amount. Speed and compression are
greatly dependent on the contents of the string. Speed of course also is affected by
hardware.

Be aware that there is a “break-even” point below which it is essentially useless to
compress a string (unless you are trying to make the string unreadable). Below this
point, the overhead of compression may actually result in a longer string.

2.28 Counting Characters in Strings
The count method counts the number of occurrences of any of a set of specified char-
acters:

s1 = "abracadabra"

a = s1.count("c") # 1

b = s1.count("bdr") # 5

The string parameter is like a simple regular expression. If it starts with a caret,
the list is negated:

c = s1.count("^a") # 6

92 2. Working with Strings

d = s1.count("^bdr") # 6

A hyphen indicates a range of characters:

e = s1.count("a-d") # 9

f = s1.count("^a-d") # 2

2.29 Reversing a String
A string may be reversed simply by using the reverse method (or its in-place coun-
terpart reverse!):

s1 = "Star Trek"

s2 = s1.reverse # "kerT ratS"

s1.reverse! # s1 is now "kerT ratS"

Suppose that you want to reverse the word order (rather than character order).
You can use String#split, which gives you an array of words. The Array class also
has a reverse method; so you can then reverse the array and join to make a new
string:

phrase = "Now here's a sentence"

phrase.split(" ").reverse.join(" ")

"sentence a here's Now"

2.30 Removing Duplicate Characters
Runs of duplicate characters may be removed using the squeeze method:

s1 = "bookkeeper"

s2 = s1.squeeze # "bokeper"

s3 = "Hello..."

s4 = s3.squeeze # "Helo."

If a parameter is specified, only those characters will be squeezed.

s5 = s3.squeeze(".") # "Hello."

2.30 Removing Duplicate Characters 93

This parameter follows the same rules as the one for the count method (see the
section 2.28, “Counting Characters in Strings” earlier in this chapter); that is, it
understands the hyphen and the caret.

There is also a squeeze! method.

2.31 Removing Specific Characters
The delete method removes characters from a string if they appear in the list of char-
acters passed as a parameter:

s1 = "To be, or not to be"

s2 = s1.delete("b") # "To e, or not to e"

s3 = "Veni, vidi, vici!"

s4 = s3.delete(",!") # "Veni vidi vici"

This parameter follows the same rules as the one for the count method (see sec-
tion 2.28, “Counting Characters in Strings” earlier in this chapter); that is, it under-
stands the hyphen and the caret.

There is also a delete! method.

2.32 Printing Special Characters
The dump method provides explicit printable representations of characters that may
ordinarily be invisible or print differently:

s1 = "Listen" << 7 << 7 << 7 # Add three ASCII BEL characters

puts s1.dump # Prints: Listen\007\007\007

s2 = "abc\t\tdef\tghi\n\n"

puts s2.dump # Prints: abc\t\tdef\tghi\n\n

s3 = "Double quote: \""

puts s3.dump # Prints: Double quote: \"

For the default setting of $KCODE, dump behaves the same as calling inspect on
a string. The $KCODE variable is discussed in Chapter 4.

2.33 Generating Successive Strings
On rare occasions we may want to find the “successor” value for a string; for example,
the successor for "aaa" is "aab" (then "aad", "aae", and so on).

94 2. Working with Strings

Ruby provides the method succ for this purpose:

droid = "R2D2"

improved = droid.succ # "R2D3"

pill = "Vitamin B"

pill2 = pill.succ # "Vitamin C"

We don’t recommend the use of this feature unless the values are predictable and
reasonable. If you start with a string that is esoteric enough, you will eventually get
strange and surprising results.

There is also an upto method that applies succ repeatedly in a loop until the
desired final value is reached:

"Files, A".upto "Files, X" do |letter|

puts "Opening: #{letter}"

end

Produces 24 lines of output

Again, we stress that this is not used frequently, and you use it at your own risk.
Also we want to point out that there is no corresponding “predecessor” function at the
time of this writing.

2.34 Calculating a 32-Bit CRC
The Cyclic Redundancy Checksum (CRC) is a well-known way of obtaining a “sig-
nature” for a file or other collection of bytes. The CRC has the property that the
chance of data being changed and keeping the same CRC is 1 in 2**N, where N is the
number of bits in the result (most often 32 bits).

The zlib library, created by Ueno Katsuhiro, enables you to do this.
The method crc32 computes a CRC given a string as a parameter:

require 'zlib'

include Zlib

crc = crc32("Hello") # 4157704578

crc = crc32(" world!",crc) # 461707669

crc = crc32("Hello world!") # 461707669 (same as above)

2.34 Calculating a 32-Bit CRC 95

A previous CRC can be specified as an optional second parameter; the result will
be as if the strings were concatenated and a single CRC was computed. This can be
used, for example, to compute the checksum of a file so large that we can only read it
in chunks.

2.35 Calculating the MD5 Hash of a String
The MD5 message-digest algorithm produces a 128-bit fingerprint or message digest of
a message of arbitrary length. This is in the form of a hash, so the encryption is one-
way and does not allow for the discovery of the original message from the digest. Ruby
has an extension for a class to implement MD5; for those interested in the source
code, it’s in the ext/md5 directory of the standard Ruby distribution.

There are two class methods, new and md5, to create a new MD5 object. There is
really no difference in them:

require 'md5'

hash = MD5.md5

hash = MD5.new

There are four instance methods: clone, digest, hexdigest, and update. The
clone method simply copies the object; update is used to add content to the object
as follows:

hash.update("More information...")

You can also create the object and add to the message at the same time:

secret = MD5.new("Sensitive data")

If a string argument is given, it is added to the object using update. Repeated
calls are equivalent to a single call with concatenated arguments:

These two statements...

cryptic.update("Data...")

cryptic.update(" and more data.")

...are equivalent to this one.

cryptic.update("Data... and more data.")

96 2. Working with Strings

The digest method provides a 16-byte binary string containing the 128-bit
digest.

The hexdigest method is actually the most useful. It provides the digest as an
ASCII string of 32 hex characters representing the 16 bytes. This method is equiva-
lent to the following:

def hexdigest

ret = ''

digest.each_byte {|i| ret << sprintf('%02x', i) }

ret

end

secret.hexdigest # "b30e77a94604b78bd7a7e64ad500f3c2"

In short, you can get an MD5 hash as follows:

require 'md5'

m = MD5.new("Sensitive data").hexdigest

2.36 Calculating the Levenshtein Distance Between
Two Strings

The concept of distance between strings is important in inductive learning (AI), cryp-
tography, proteins research, and in other areas.

The Levenshtein distance is the minimum number of modifications needed to
change one string into another, using three basic modification operations: del(-
etion), ins(-ertion), and sub(-stitution). A substitution is also considered to be a
combination of a deletion and insertion (indel).

There are various approaches to this, but we will avoid getting too technical.
Suffice it to say that this Ruby implementation (in Listing 2.2) allows you to provide
optional parameters to set the cost for the three types of modification operations and
defaults to a single indel cost basis (cost of insertion = cost of deletion).

Listing 2.2 The Levenshtein Distance

class String

def levenshtein(other, ins=2, del=2, sub=1)
ins, del, sub are weighted costs

2.36 Calculating the Levenshtein Distance Between Two Strings 97

Continues

return nil if self.nil?
return nil if other.nil?
dm = [] # distance matrix

Initialize first row values
dm[0] = (0..self.length).collect { |i| i * ins }
fill = [0] * (self.length - 1)

Initialize first column values
for i in 1..other.length
dm[i] = [i * del, fill.flatten]

end

populate matrix
for i in 1..other.length
for j in 1..self.length

critical comparison
dm[i][j] = [

dm[i-1][j-1] +
(self[j-1] == other[i-1] ? 0 : sub),
dm[i][j-1] + ins,

dm[i-1][j] + del
].min
end

end

The last value in matrix is the
Levenshtein distance between the strings
dm[other.length][self.length]

end

end

s1 = "ACUGAUGUGA"
s2 = "AUGGAA"
d1 = s1.levenshtein(s2) # 9

s3 = "pennsylvania"
s4 = "pencilvaneya"
d2 = s3.levenshtein(s4) # 7

s5 = "abcd"
s6 = "abcd"
d3 = s5.levenshtein(s6) # 0

98 2. Working with Strings

Now that we have the Levenshtein distance defined, it’s conceivable that we could
define a similar? method, giving it a threshold for similarity. For example:

class String

def similar?(other, thresh=2)

if self.levenshtein(other) < thresh

true

else

false

end

end

end

if "polarity".similar?("hilarity")

puts "Electricity is funny!"

end

Of course, it would also be possible to pass in the three weighted costs to the
similar? method so that they could in turn be passed into the levenshtein
method. We have omitted these for simplicity.

2.37 Encoding and Decoding base64 Strings
base64 is frequently used to convert machine-readable data into a text form with no
special characters in it. For example, newsgroups that handle binary files such as pro-
gram executables frequently will use base64.

The easiest way to do a base64 encode/decode is to use the built-in features of
Ruby. The Array class has a pack method that returns a base64 string (given the
parameter “m”). The String class has a method unpack that likewise unpacks the
string (decoding the base64):

str = "\007\007\002\abdce"

new_string = [str].pack("m") # "BwcCB2JkY2U="

original = new_string.unpack("m") # ["\a\a\002\abdce"]

Note that an array is returned by unpack.

2.38 Encoding and Decoding Strings (uuencode/uudecode) 99

2.38 Encoding and Decoding Strings
(uuencode/uudecode)

The uu in these names means UNIX-to-UNIX. The uuencode and uudecode util-
ities are a time-honored way of exchanging data in text form (similar to the way
base64 is used).

str = "\007\007\002\abdce"

new_string = [str].pack("u") # '(!P<"!V)D8V4`'

original = new_string.unpack("u") # ["\a\a\002\abdce"]

Note that an array is returned by unpack.

2.39 Expanding and Compressing Tab Characters
Occasionally we have a string with tabs in it and we want to convert them to spaces
(or vice versa). The two methods shown here do these operations.

class String

def detab(ts=8)

str = self.dup

while (leftmost = str.index("\t")) != nil

space = " "*(ts-(leftmost%ts))

str[leftmost]=space

end

str

end

def entab(ts=8)

str = self.detab

areas = str.length/ts

newstr = ""

for a in 0..areas

temp = str[a*ts..a*ts+ts-1]

if temp.size==ts

if temp =~ / +/

match=Regexp.last_match[0]

endmatch = Regexp.new(match+"$")

if match.length>1

temp.sub!(endmatch,"\t")

100 2. Working with Strings

end

end

end

newstr += temp

end

newstr

end

end

foo = "This is only a test. "

puts foo

puts foo.entab(4)

puts foo.entab(4).dump

Note that this code is not smart enough to handle backspaces.

2.40 Wrapping Lines of Text
Occasionally we may want to take long text lines and print them within margins of
our own choosing. The code fragment shown here accomplishes this, splitting only on
word boundaries and honoring tabs (but not honoring backspaces or preserving tabs):

str = <<-EOF

When in the Course of human events it becomes necessary

for one people to dissolve the political bands which have

connected them with another, and to assume among the powers

of the earth the separate and equal station to which the Laws

of Nature and of Nature's God entitle them, a decent respect

for the opinions of mankind requires that they should declare

the causes which impel them to the separation.

EOF

max = 20

line = 0

out = [""]

input = str.gsub(/\n/," ")

words = input.split(" ")

2.40 Wrapping Lines of Text 101

while input != ""

word = words.shift

break if not word

if out[line].length + word.length > max

out[line].squeeze!(" ")

line += 1

out[line] = ""

end

out[line] << word + " "

end

out.each {|line| puts line} # Prints 24 very short lines

The Format library also handles this and similar operations. Search for it online.

2.41 Conclusion
Here we have seen the basics of representing strings (both single-quoted and double-
quoted). We’ve seen how to interpolate expressions into double-quoted strings, and
how the double quotes also allow certain special characters to be inserted with escape
sequences. We’ve seen the %q and %Q forms, which permit us to choose our own delim-
iters for convenience. Finally, we’ve seen the here-document syntax, carried over from
older contexts such as Unix shells.

This chapter has demonstrated all the important operations a programmer wants
to perform on a string. These include concatenation, searching, extracting substrings,
tokenizing, and much more. We have seen how to iterate over a string by line or by
byte. We have seen how to transform a string to and from a coded form such as base64
or compressed form.

It’s time now to move on to a related topic—regular expressions. Regular expres-
sions are a powerful tool for detecting patterns in strings. We’ll cover this in the next
chapter.

102 2. Working with Strings

