Types and Objects

ALL THE DATA STORED IN A PYTHON program is built around the concept of an
object. Objects include fundamental data types such as numbers, strings, lists, and diction-
aries. It’s also possible to create user-defined objects in the form of classes or extension
types. This chapter describes the Python object model and provides an overview of the
built-in data types. Chapter 4, “Operators and Expressions,” further describes operators
and expressions.

Terminology

Every piece of data stored in a program is an object. Each object has an identity, a type,
and a value.

For example, when you write a = 42, an integer object is created with the value of
42.You can view the identity of an object as a pointer to its location in memory. a is a
name that refers to this specific location.

The type of an object (which is itself a special kind of object) describes the internal
representation of the object as well as the methods and operations that it supports.
When an object of a particular type is created, that object is sometimes called an instance
of that type. After an object is created, its identity and type cannot be changed. If an
object’s value can be modified, the object is said to be mutable. If the value cannot be
modified, the object is said to be immutable. An object that contains references to other
objects is said to be a container or collection.

In addition to holding a value, many objects define a number of data attributes and
methods. An attribute is a property or value associated with an object. A method is a func-
tion that performs some sort of operation on an object when the method is invoked.
Attributes and methods are accessed using the dot (.) operator, as shown in the follow-
ing example:

a =3+ 4j # Create a complex number

r = a.real # Get the real part (an attribute)

b= [1, 2, 3] # Create a list

b.append(7) # Add a new element using the append method

Object Identity and Type

The built-in function id () returns the identity of an object as an integer. This integer
usually corresponds to the object’s location in memory, although this is specific to the

28 Chapter 3 Types and Objects

Python implementation and the platform being used. The is operator compares the
identity of two objects. The built-in function type () returns the type of an object. For
example:

Compare two objects
def compare(a,b):

print 'The identity of a is ', id(a)
print 'The identity of b is ', id(b)
if a is b:

print 'a and b are the same object'
if a == b:

print 'a and b have the same value'
if type(a) is type(b):
print 'a and b have the same type'

The type of an object is itself an object. This type object is uniquely defined and is
always the same for all instances of a given type. Therefore, the type can be compared
using the is operator. All type objects are assigned names that can be used to perform
type checking. Most of these names are built-ins, such as 1ist, dict, and file. For
example:

if type(s) is list:
print 'Is a list'

if type(f) is file:
print 'Is a file'

However, some type names are only available in the types module. For example:

import types
if type(s) is types.NoneType:
print "is None"

Because types can be specialized by defining classes, a better way to check types is to
use the built-in isinstance (object, type) function. For example:

if isinstance(s,list):
print 'Is a list'

if isinstance (f,file):
print 'Is a file'

if isinstance(n, types.NoneType) :
print "is None"

The isinstance () function also works with user-defined classes. Therefore, it is a
generic, and preferred, way to check the type of any Python object.

Reference Counting and Garbage Collection

All objects are reference-counted. An object’s reference count is increased whenever it’s
assigned to a new name or placed in a container such as a list, tuple, or dictionary, as
shown here:

= 3.4 # Creates an object '3.4'
= a # Increases reference count on '3.4'
= [l

.append (b) # Increases reference count on '3.4

Qoo

References and Copies 29

This example creates a single object containing the value 3.4. a is merely a name that
refers to the newly created object. When b is assigned a, b becomes a new name for the
same object, and the object’s reference count increases. Likewise, when you place b into
a list, the object’s reference count increases again. Throughout the example, only one
object contains 3.4. All other operations are simply creating new references to the
object.

An object’s reference count is decreased by the del statement or whenever a refer-
ence goes out of scope (or is reassigned). For example:
del a # Decrease reference count of 3.4

b=17.8 # Decrease reference count of 3.4
cl[0]=2.0 # Decrease reference count of 3.4

When an object’s reference count reaches zero, it is garbage-collected. However, in
some cases a circular dependency may exist among a collection of objects that are no
longer in use. For example:

a={}
b={}

al'b'] = b # a contains reference to b
b['a'l = a # b contains reference to a
del a
del b

In this example, the del statements decrease the reference count of a and b and destroy
the names used to refer to the underlying objects. However, because each object con-
tains a reference to the other, the reference count doesn’t drop to zero and the objects
remain allocated (resulting in a memory leak). To address this problem, the interpreter
periodically executes a cycle-detector that searches for cycles of inaccessible objects and
deletes them. The cycle-detection algorithm can be fine-tuned and controlled using
functions in the gc module.

References and Copies

When a program makes an assignment such as a = b, a new reference to b is created.

For immutable objects such as numbers and strings, this assignment effectively creates a
copy of b. However, the behavior is quite different for mutable objects such as lists and
dictionaries. For example:

b = [1,2,3,4]

a=>b # a is a reference to b
al[2] = -100 # Change an element in 'a’
print b # Produces '[1, 2, -100, 4]'

Because a and b refer to the same object in this example, a change made to one of the
variables is reflected in the other. To avoid this, you have to create a copy of an object
rather than a new reference.

Two types of copy operations are applied to container objects such as lists and dic-
tionaries: a shallow copy and a deep copy. A shallow copy creates a new object, but popu-
lates it with references to the items contained in the original object. For example:

b=1[11, 2, [3,4] 1]

a =Dbl[:] # Create a shallow copy of b.
a.append(100) # Append element to a.

print b # Produces '[1,2, [3,4]]'. b unchanged.
a[2] [0] = -100 # Modify an element of a.

print b # Produces '[1,2, [-100,4]1]".

30 Chapter 3 Types and Objects

In this case, a and b are separate list objects, but the elements they contain are shared.
Therefore, a modification to one of the elements of a also modifies an element of b, as
shown.

A deep copy creates a new object and recursively copies all the objects it contains.
There is no built-in function to create deep copies of objects. However, the
copy .deepcopy () function in the standard library can be used, as shown in the follow-
ing example:
import copy

b =101, 2, [3, 4]]
a = copy.deepcopy (b)

a[2] = -100
print a # produces [1,2, -100, 4]

print b # produces [1,2,3,4]

Built-in Types

Approximately two dozen types are built into the Python interpreter and grouped into
a few major categories, as shown in Table 3.1. The Type Name column in the table lists
the name that can be used to check for that type using isinstance () and other type-
related functions. Types include familiar objects such as numbers and sequences. Others
are used during program execution and are of little practical use to most programmers.
The next few sections describe the most commonly used built-in types.

Table 3.1 Built-in Python Types

Type Category Type Name Description
None types.NoneType The null object None
Numbers int Integer
long Arbitrary-precision integer
float Floating point
complex Complex number
bool Boolean (True or False)
Sequences str Character string
unicode Unicode character string
basestring Abstract base type for all
strings
list List
tuple Tuple
Xrange Returned by xrange ()
Mapping dict Dictionary
Sets set Mutable set

frozenset Immutable set

Table 3.1 Continued

Built-in Types 31

Type Category
Callable

Modules

Classes

Types

Files

Internal

Classic Classes

Type Name

types.BuiltinFunctionType

types.BuiltinMethodType
type

object

types.FunctionType
types.InstanceType
types.MethodType
types.UnboundMethodType
types.ModuleType

object

type

file

types.CodeType
types.FrameType
types.GeneratorType
types.TracebackType

types.SliceType
types.EllipsisType
types.ClassType
types.InstanceType

Description

Built-in functions
Built-in methods

Type of built-in types and
classes

Ancestor of all types and
classes

User-defined function
Class object instance
Bound class method
Unbound class method
Module

Ancestor of all types and
classes

Type of built-in types and
classes

File

Byte-compiled code
Execution frame
Generator object

Stacks traceback of an
exception

Generated by extended slices
Used in extended slices
Old-style class definition
Old-style class instance

Note that object and type appear twice in Table 3.1 because classes and types are
both callable. The types listed for “Classic Classes” refer to an obsolete, but still support-
ed object-oriented interface. More details about this can be found later in this chapter
and in Chapter 7, “Classes and Object-Oriented Programming.”

The None Type

The None type denotes a null object (an object with no value). Python provides exactly
one null object, which is written as None in a program. This object is returned by func-
tions that don’t explicitly return a value. None is frequently used as the default value of
optional arguments, so that the function can detect whether the caller has actually
passed a value for that argument. None has no attributes and evaluates to False in

Boolean expressions.

32 Chapter 3 Types and Objects

Numeric Types

Python uses five numeric types: Booleans, integers, long integers, floating-point num-
bers, and complex numbers. Except for Booleans, all numeric objects are signed. All
numeric types are immutable.

Booleans are represented by two values: True and False.The names True and
False are respectively mapped to the numerical values of 1 and 0.

Integers represent whole numbers in the range of —2147483648 to 2147483647 (the
range may be larger on some machines). Internally, integers are stored as 2’s comple-
ment binary values, in 32 or more bits. Long integers represent whole numbers of
unlimited range (limited only by available memory). Although there are two integer
types, Python tries to make the distinction seamless. Most functions and operators that
expect integers work with any integer type. Moreover, if the result of a numerical oper-
ation exceeds the allowed range of integer values, the result is transparently promoted to
a long integer (although in certain cases, an OverflowError exception may be raised
instead).

Floating-point numbers are represented using the native double-precision (64-bit)
representation of floating-point numbers on the machine. Normally this is IEEE 754,
which provides approximately 17 digits of precision and an exponent in the range of
—308 to 308.This is the same as the double type in C. Python doesn’t support 32-bit
single-precision floating-point numbers. If space and precision are an issue in your pro-
gram, consider using Numerical Python (http://numpy.sourceforge.net).

Complex numbers are represented as a pair of floating-point numbers. The real and
imaginary parts of a complex number z are available in z.real and z.imag.

Sequence Types

Sequences represent ordered sets of objects indexed by nonnegative integers and include
strings, Unicode strings, lists, and tuples. Strings are sequences of characters, and lists and
tuples are sequences of arbitrary Python objects. Strings and tuples are immutable; lists
allow insertion, deletion, and substitution of elements. All sequences support iteration.

Table 3.2 shows the operators and methods that you can apply to all sequence types.
Element i of sequence s is selected using the indexing operator s[i], and subse-
quences are selected using the slicing operator s[i:j] or extended slicing operator
sl[i:j:stride] (these operations are described in Chapter 4). The length of any
sequence is returned using the built-in len (s) function.You can find the minimum
and maximum values of a sequence by using the built-in min (s) and max (s) functions.
However, these functions only work for sequences in which the elements can be
ordered (typically numbers and strings).

Table 3.3 shows the additional operators that can be applied to mutable sequences
such as lists.

Table 3.2 Operations and Methods Applicable to All Sequences

Item Description

s[1] Returns element i of a sequence
s[i:7] Returns a slice

s[i:j:stride] Returns an extended slice

len(s) Number of elements in s

http://numpy.sourceforge.net

Built-in Types 33

Table 3.2 Continued

Item Description
min (s) Minimum value in s
max (s) Maximum value in s

Table 3.3 Operations Applicable to Mutable Sequences

Item Description

s[i] = v Item assignment

sli:j] = ¢ Slice assignment
s[i:j:stride] = ¢t Extended slice assignment
del sl[i] Item deletion

del sli:jl Slice deletion

del s[i:j:stride] Extended slice deletion

Additionally, lists support the methods shown in Table 3.4.The built-in function

list (s) converts any iterable type to a list. If s is already a list, this function constructs
a new list that’s a shallow copy of s.The s.append (x) method appends a new element,
x, to the end of the list. The s.index (x) method searches the list for the first occur-
rence of x. If no such element is found, a ValueError exception is raised. Similarly, the
s.remove (x) method removes the first occurrence of x from the list. The

s.extend (t) method extends the list s by appending the elements in sequence t.The
s.sort () method sorts the elements of a list and optionally accepts a comparison func-
tion, key function, and reverse flag. The comparison function should take two argu-
ments and return negative, zero, or positive, depending on whether the first argument is
smaller, equal to, or larger than the second argument, respectively. The key function is a
function that is applied to each element prior to comparison during sorting. Specifying
a key function is useful if you want to perform special kinds of sorting operations, such
as sorting a list of strings, but with case insensitivity. The s.reverse () method reverses
the order of the items in the list. Both the sort () and reverse () methods operate on
the list elements in place and return None.

Table 3.4 List Methods

Method Description

list (s) Converts s to a list.

s.append (x) Appends a new element, x, to the end of s.
s.extend (t) Appends a new list, t, to the end of s.
s.count (x) Counts occurrences of x in s.

s.index (x [,start [,stopll) Returns the smallest i where s[i] ==x.

start and stop optionally specify the start-
ing and ending index for the search.

s.insert (i,x) Inserts x at index 1.

34 Chapter 3 Types and Objects

Table 3.4 Continued

Method Description

s.pop ([il) Returns the element i and removes it from
the list. If i is omitted, the last element is
returned.

s.remove (x) Searches for x and removes it from s.

s.reverse () Reverses items of s in place.

s.sort ([empfunc Sorts items of s in place. cmpfunc is a

[, keyf [, reverselll) comparison function. keyf is a key function.

reverse is a flag that sorts the list in reverse
order.

Python provides two string object types. Standard strings are sequences of bytes con-
taining 8-bit data. They may contain binary data and embedded NULL bytes. Unicode
strings are sequences of 16-bit characters encoded in a format known as UCS-2. This
allows for 65,536 unique character values. Although the latest Unicode standard sup-
ports up to 1 million unique character values, these extra characters are not supported
by Python by default. Instead, they must be encoded as a special two-character (4-byte)
sequence known as a surrogate pair—the interpretation of which is up to the application.
Python does not check data for Unicode compliance or the proper use of surrogates. As
an optional feature, Python may be built to store Unicode strings using 32-bit integers
(UCS-4). When enabled, this allows Python to represent the entire range of Unicode
values from U+000000 to U+110000. All Unicode-related functions are adjusted
accordingly.

Both standard and Unicode strings support the methods shown in Table 3.5.
Although these methods operate on string instances, none of these methods actually
modifies the underlying string data. Thus, methods such as s.capitalize (),
s.center (), and s.expandtabs () always return a new string as opposed to modifying
the string s. Character tests such as s.isalnum() and s.isupper () return True or
False if all the characters in the string s satisfy the test. Furthermore, these tests always
return False if the length of the string is zero. The s.£ind (), s.index (), s.rfind (),
and s.rindex () methods are used to search s for a substring. All these functions return
an integer index to the substring in s. In addition, the £ind () method returns -1 if the
substring isn’t found, whereas the index () method raises a ValueError exception.
Many of the string methods accept optional start and end parameters, which are inte-
ger values specifying the starting and ending indices in s. In most cases, these values
may given negative values, in which case the index is taken from the end of the string.
The s.translate () method is used to perform character substitutions. The
s.encode () and s.decode () methods are used to transform the string data to and
from a specified character encoding. As input it accepts an encoding name such as

'ascii', 'utf-8',or 'utf-16"'.This method is most commonly used to convert
Unicode strings into a data encoding suitable for I/O operations and is described fur-
ther in Chapter 9, “Input and Output.” More details about string methods can be found

in the documentation for the string module.

Table 3.5 String Methods

Built-in Types 35

Method

s.capitalize()

s.center (width [, pad])
s.count (sub [,start [,endl])

s.decode ([encoding [,errors]])

s.encode ([encoding [,errors]])

s.endswith (suffix
[,end]l])

s.expandtabs ([tabsizel)

s.find(sub [, [,end]])

[,start

start

s.index(sub [, start [,end]l])
s.isalnum/()

s.isalpha ()

0

.isdigit ()

(
(
.islower ()
.isspace ()
(

h n

.istitle

)

s.isupper ()
s.join(t)
s.ljust (width [, £ill])
s.lower ()

s.lstrip([chrs])

s.replace(old, new

[, maxreplace])

[,end]l])
[,end]])
fill])

s.rfind(sub [, start

s.rindex (sub [, start
s.rjust (width [,

s.rsplit([sep [,maxsplit]])

s.rstrip([chrs])

Description

Capitalizes the first character.

Centers the string in a field of length width.
pad is a padding character.

Counts occurrences of the specified substring
sub.

Decodes a string and returns a Unicode
string.

Returns an encoded version of the string.

Checks the end of the string for a suffix.

Replaces tabs with spaces.

Finds the first occurrence of the specified
substring sub.

Finds the first occurrence or error in the
specified substring sub.

Checks whether all characters are alphanu-
meric.

Checks whether all characters are alphabetic.
Checks whether all characters are digits.
Checks whether all characters are lowercase.
Checks whether all characters are whitespace.

Checks whether the string is a title-cased
string (first letter of each word capitalized).

Checks whether all characters are uppercase.
Joins the strings s and t.

Left-aligns s in a string of size width.
Converts to lowercase.

Removes leading whitespace or characters
supplied in chrs.

Replaces the substring.

Finds the last occurrence of a substring.

Finds the last occurrence or raises an error.
Right-aligns s in a string of length width.
Splits a string from the end of the string using
sep as a delimiter. maxsplit is the maxi-
mum number of splits to perform. If
maxsplit is omitted, the result is identical to
the split () method.

Removes trailing whitespace or characters
supplied in chrs.

Chapter 3 Types and Objects

Table 3.5 Continued

Method

s.split([sep [,maxsplit]])

s.splitlines ([keepends])

s.startswith(prefix
[,start [,end]])

s.strip([chrs])
s.swapcase ()
s.title()
s.translate (table

[,deletechars])

s.upper ()
s.z1ill (width)

Description

Splits a string using sep as a delimiter.
maxsplit is the maximum number of splits
to perform.

Splits a string into a list of lines. If keepends
is 1, trailing newlines are preserved.

Checks whether a string starts with prefix.

Removes leading and trailing whitespace or
characters supplied in chrs.

Converts uppercase to lowercase, and vice

versa.
Returns a title-cased version of the string.

Translates a string using a character translation
table table, removing characters in
deletechars.

Converts a string to uppercase.

Pads a string with zeros on the left up to the

specified width.

Because there are two different string types, Python provides an abstract type,
basestring, that can be used to test if an object is any kind of string. Here’s an
example:

if isinstance(s,basestring):
print "is some kind of string"

The built-in function range ([1,]1j [, stride]l) constructs a list and populates it with
integers k such that i <= k < j.The first index, i, and the stride are optional and
have default values of 0 and 1, respectively. The built-in xrange ([i,]1 7 [, stridel)
function performs a similar operation, but returns an immutable sequence of type
xrange. Rather than storing all the values in a list, this sequence calculates its values
whenever it’s accessed. Consequently, it’s much more memory-efficient when working
with large sequences of integers. However, the xrange type is much more limited than
its list counterpart. For example, none of the standard slicing operations are supported.
This limits the utility of xrange to only a few applications such as iterating in simple
loops. The xrange type provides a single method, s.tolist (), that converts its values
to a list.

Mapping Types
A mapping object represents an arbitrary collection of objects that are indexed by another
collection of nearly arbitrary key values. Unlike a sequence, a mapping object is
unordered and can be indexed by numbers, strings, and other objects. Mappings are
mutable.

Dictionaries are the only built-in mapping type and are Python’s version of a hash
table or associative array. You can use any immutable object as a dictionary key value
(strings, numbers, tuples, and so on). Lists, dictionaries, and tuples containing mutable

Built-in Types 37

objects cannot be used as keys (the dictionary type requires key values to remain con-
stant).

To select an item in a mapping object, use the key index operator m[k], where k is a
key value. If the key is not found, a KeyError exception is raised. The len (m) function
returns the number of items contained in a mapping object. Table 3.6 lists the methods
and operations.

Table 3.6 Methods and Operations for Dictionaries

Item Description

len (m) Returns the number of items in m.

m[k] Returns the item of m with key k.

mlk]=x Sets m[k] to x.

del mlk] Removes m[k] from m.

m.clear () Removes all items from m.

m. copy () Makes a shallow copy of m.

m.has_key (k) Returns True if m has key k; otherwise, returns False.

m.items () Returns a list of (key, value) pairs.

m.iteritems () Returns an iterator that produces (key, value) pairs.

m.iterkeys () Returns an iterator that produces dictionary keys.

m.itervalues () Returns an iterator that produces dictionary values.

m.keys () Returns a list of key values.

m.update (b) Adds all objects from b to m.

m.values () Returns a list of all values in m.

m.get (k [,v]) Returns m[k] if found; otherwise, returns v.

m.setdefault (k [, vl]) Returns m[k] if found; otherwise, returns v and sets
m[k] = wv.

m.pop (k [,default]) Returns m[k] if found and removes it from m; otherwise,

returns default if supplied or raises KeyError if not.

m.popitem() Removes a random (key, value) pair from m and
returns it as a tuple.

The m.clear () method removes all items. The m. copy () method makes a shallow
copy of the items contained in a mapping object and places them in a new mapping
object. The m.items () method returns a list containing (key, value) pairs. The
m.keys () method returns a list with all the key values, and the m.values () method
returns a list with all the objects. The m.update (b) method updates the current map-
ping object by inserting all the (key, value) pairs found in the mapping object b. The
m.get (k [, v]) method retrieves an object, but allows for an optional default value, v,
that’s returned if no such object exists. The m.setdefault (k [,v]) method is similar
to m.get (), except that in addition to returning v if no object exists, it sets m[k] = v.
If v is omitted, it defaults to None.The m.pop () method returns an item from a dic-
tionary and removes it at the same time. The m.popitem() method is used to iteratively
destroy the contents of a dictionary. The m.iteritems (), m.iterkeys (), and
m.itervalues () methods return iterators that allow looping over all the dictionary
items, keys, or values, respectively.

38 Chapter 3 Types and Objects

Set Types

A set is an unordered collection of unique items. Unlike sequences, sets provide no
indexing or slicing operations. They are also unlike dictionaries in that there are no key
values associated with the objects. In addition, the items placed into a set must be
immutable. Two different set types are available: set is a mutable set, and frozenset is
an immutable set. Both kinds of sets are created using a pair of built-in functions:

s = set([1,5,10,15])
f = frozenset(['a',37, 'hello'])

Both set () and frozenset () populate the set by iterating over the supplied argu-
ment. Both kinds of sets provide the methods outlined in Table 3.7

Table 3.7 Methods and Operations for Set Types

Item Description

len(s) Return number of items in s.

s.copy () Makes a shallow copy of s.

s.difference(t) Set difference. Returns all the items in s, but not
in t.

s.intersection (t) Intersection. Returns all the items that are both in s
and in t.

s.issubbset (t) Returns True if s is a subset of t.

s.issuperset (t) Returns True if s is a superset of t.

s.symmetric difference(t) Symmetric difference. Returns all the items that are
in s or t, but not in both sets.

s.union (t) Union. Returns all items in s or t.

The s.difference(t), s.intersection(t), s. symmetric_difference(t), and
s.union (t) methods provide the standard mathematical operations on sets. The
returned value has the same type as s (set or frozenset).The parameter t can be any
Python object that supports iteration. This includes sets, lists, tuples, and strings. These
set operations are also available as mathematical operators, as described further in
Chapter 4.

Mutable sets (set) additionally provide the methods outlined in Table 3.8.

Table 3.8 Methods for Mutable Set Types

Item Description

s.add (item) Adds item to s. Has no effect if itemis
already in s.

s.clear () Removes all items from s.

s.difference update (t) Removes all the items from s that are also
in t.

s.discard (item) Removes item from s.If item is not a

member of s, nothing happens.

Built-in Types 39

Table 3.8 Continued

Item Description

s.intersection_update (t) Computes the intersection of s and t and
leaves the result in s.

s.pop () Returns an arbitrary set element and
removes it from s.

s.remove (item) Removes item from s.If itemis not a
member, KeyError is raised.

s.symmetric_difference update (t) Computes the symmetric difference of s
and t and leaves the result in s.

s.update (t) Adds all the items in t to s. £ may be
another set, a sequence, or any object that
supports iteration.

All these operations modify the set s in place. The parameter t can be any object that
supports iteration.

Callable Types

Callable types represent objects that support the function call operation. There are sev-
eral flavors of objects with this property, including user-defined functions, built-in func-
tions, instance methods, and classes.

User-defined functions are callable objects created at the module level by using the def
statement, at the class level by defining a static method, or with the 1ambda operator.
Here’s an example:

def foo(x,y):
return x+y

class A(object) :
@staticmethod

def foo(x,y):
return x+y

bar = lambda x,y: X + ¥y

A user-defined function £ has the following attributes:

Attribute(s) Description

f. _doc__ or f.func doc Documentation string

f. name_ _ or f.func_ name Function name

f.__dict__ or f.func_dict Dictionary containing function attrib-
utes

£.func_code Byte-compiled code

f.func_defaults Tuple containing the default arguments

£.func_globals Dictionary defining the global name-
space

f.func_closure Tuple containing data related to nested

scopes

40 Chapter 3 Types and Objects

Methods are functions that operate only on instances of an object. Two types of meth-
ods—instance methods and class methods—are defined inside a class definition, as
shown here:
class Foo(object) :
def _ init _ (self):
self.items = []
def update(self, x):
self.items.append (x)
@classmethod
def whatami (cls):
return cls

An instance method is a method that operates on an instance of an object. The instance
is passed to the method as the first argument, which is called self by convention.
Here’s an example:

f = Foo()
f.update(2) # update() method is applied to the object £

A class method operates on the class itself. The class object is passed to a class method in
the first argument, c1s. Here’s an example:

Foo.whatami () # Operates on the class Foo
f.whatami () # Operates on the class of £ (Foo)

A bound method object is a method that is associated with a specific object instance.
Here’s an example:

a = f.update # a is a method bound to £
b = Foo.whatami # b is method bound to Foo (classmethod)

In this example, the objects a and b can be called just like a function. When invoked,
they will automatically apply to the underlying object to which they were bound.
Here’s an example:

a(4) # Calls f.update(4)
b() # Calls Foo.whatami ()

Bound and unbound methods are no more than a thin wrapper around an ordinary
function object. The following attributes are defined for method objects:

Attribute Description
m.__doc__ Documentation string
m.__name__ Method name

m.im_class Class in which this method was defined
m.im func Function object implementing the method

m.im self Instance associated with the method (None if unbound)

So far, this discussion has focused on functions and methods, but class objects (described
shortly) are also callable. When a class is called, a new class instance is created. In addi-
tion, if the class defines an __init__ () method, it’s called to initialize the newly creat-
ed instance.

An object instance is also callable if it defines a special method, __call__ (). If this
method is defined for an instance, x, then x(args) invokes the method
x. _call (args).

Built-in Types 41

The final types of callable objects are built-in functions and methods, which corre-
spond to code written in extension modules and are usually written in C or C++.The
following attributes are available for built-in methods:

Attribute Description
b.__doc__ Documentation string
b. name__ Function/method name
b. self Instance associated with the method
For built-in functions such as len(), _self _ is set to None, indicating that the func-

tion isn’t bound to any specific object. For built-in methods such as x.append (),
where x is a list object, __self _ is set to x.

Finally, it is important to note that all functions and methods are first-class objects in
Python. That is, function and method objects can be freely used like any other type. For
example, they can be passed as arguments, placed in lists and dictionaries, and so forth.

Classes and Types
When you define a class, the class definition normally produces an object of type type.
Here’s an example:

>>> class Foo(object):
pass

>>> type(Foo)
<type 'type's>

When an object instance is created, the type of the instance is the class that defined it.
Here’s an example:
>>> £ = Foo()

>>> type(f)
<class ' main _ .Foo's

More details about the object-oriented interface can be found in Chapter 7. However,
there are a few attributes of types and instances that may be useful. If ¢ is a type or
class, then the attribute t.__name__ contains the name of the type. The attributes
t.__bases__ contains a tuple of base classes. If o is an object instance, the attribute
o. _class__ contains a reference to its corresponding class and the attribute

o._ _dict__ isa dictionary used to hold the object’s attributes.

Modules

The module type is a container that holds objects loaded with the import statement.
When the statement import foo appears in a program, for example, the name foo is
assigned to the corresponding module object. Modules define a namespace that’s imple-
mented using a dictionary accessible in the attribute __dict__.Whenever an attribute
of a module is referenced (using the dot operator), it’s translated into a dictionary
lookup. For example, m.x is equivalent to m.__dict__ ["x"]. Likewise, assignment to
an attribute such as m.x = yis equivalent to m.__dict ["x"] = y.The following
attributes are available:

42 Chapter 3 Types and Objects

Attribute Description

m. _dict Dictionary associated with the module

m. _doc_ Module documentation string

m.__name__ Name of the module

m. file File from which the module was loaded

m. _path Fully qualified package name, defined when the module object

refers to a package

Files

The file object represents an open file and is returned by the built-in open () function
(as well as a number of functions in the standard library). The methods on this type
include common I/O operations such as read () and write (). However, because I/O
is covered in detail in Chapter 9, readers should consult that chapter for more details.

Internal Types

A number of objects used by the interpreter are exposed to the user. These include
traceback objects, code objects, frame objects, generator objects, slice objects, and the
Ellipsis object. It is rarely necessary to manipulate these objects directly. However, their
attributes are provided in the following sections for completeness.

Code Objects

Code objects represent raw byte-compiled executable code, or bytecode, and are typi-
cally returned by the built-in compile () function. Code objects are similar to functions
except that they don’t contain any context related to the namespace in which the code
was defined, nor do code objects store information about default argument values. A
code object, ¢, has the following read-only attributes:

Attribute Description

c.co_name Function name.

c.co_argcount Number of positional arguments (including default
values).

c.co_nlocals Number of local variables used by the function.

c.co_varnames Tuple containing names of local variables.

c.co_cellvars Tuple containing names of variables referenced by
nested functions.

c.co_freevars Tuple containing names of free variables used by
nested functions.

c.co_code String representing raw bytecode.

c.co_consts Tuple containing the literals used by the bytecode.

c.co_names Tuple containing names used by the bytecode.

c.co_filename Name of the file in which the code was compiled.

c.co_firstlineno First line number of the function.

c.co_lnotab String encoding bytecode offsets to line numbers.

Attribute

c.co_stacksize
c.co_flags

Frame Objects

Built-in Types 43

Description

Required stack size (including local variables).
Integer containing interpreter flags. Bit 2 is set if
the function uses a variable number of positional
arguments using "*args". Bit 3 is set if the func-
tion allows arbitrary keyword arguments using
"++kwargs". All other bits are reserved.

Frame objects are used to represent execution frames and most frequently occur in
traceback objects (described next). A frame object, £, has the following read-only

attributes:

Attribute
.f_back
.f_code
.f_locals
.f_globals

.f builtins
.f_restricted

.f _lineno

T T T T B

£ lasti

Description

Previous stack frame (toward the caller).

Code object being executed.

Dictionary used for local variables.

Dictionary used for global variables.

Dictionary used for built-in names.

Set to 1 if executing in restricted execution mode.
Line number.

Current instruction. This is an index into the bytecode
string of £_code.

The following attributes can be modified (and are used by debuggers and other tools):

Attribute

f£.f trace

f.f exc type
f.f _exc_value

f£.f exc traceback

Traceback Objects

Description

Function called at the start of each source code line
Most recent exception type

Most recent exception value

Most recent exception traceback

Traceback objects are created when an exception occurs and contains stack trace infor-
mation. When an exception handler is entered, the stack trace can be retrieved using the
sys.exc_info () function.The following read-only attributes are available in traceback

objects:

Attribute
t.tb next

t.tb_frame
t.tb_line

t.tb_lasti

Description

Next level in the stack trace (toward the execution frame
where the exception occurred)

Execution frame object of the current level
Line number where the exception occurred

Instruction being executed in the current level

44 Chapter 3 Types and Objects

Generator Objects

Generator objects are created when a generator function is invoked (see Chapter 6,
“Functions and Functional Programming”). A generator function is defined whenever a
function makes use of the special yield keyword. The generator object serves as both
an iterator and a container for information about the generator function itself. The fol-
lowing attributes and methods are available:

Attribute Description

g.gi_frame Execution frame of the generator function.

g.gi_running Integer indicating whether or not the generator function is cur-
rently running.

g.next () Execute the function until the next yield statement and return
the value.

Slice Objects

Slice objects are used to represent slices given in extended slice syntax, such as
ali:j:stridel,ali:j, n:ml,oral..., i:7].Slice objects are also created using
the built-in slice([i,] j [,stridel) function.The following read-only attributes
are available:

Attribute Description

s.start Lower bound of the slice; None if omitted
s.stop Upper bound of the slice; None if omitted
s.step Stride of the slice; None if omitted

Slice objects also provide a single method, s.indices (Iength).This function takes a
length and returns a tuple (start, stop, stride) that indicates how the slice would
be applied to a sequence of that length. For example:

s = slice(10,20) # Slice object represents [10:20]

s.indices(100) # Returns (10,20,1) --> [10:20]
s.indices(15) # Returns (10,15,1) --> [10:15]

Ellipsis Object

The Ellipsis object is used to indicate the presence of an ellipsis (. . .) in a slice. There is
a single object of this type, accessed through the built-in name Ellipsis. It has no
attributes and evaluates as True. None of Python’s built-in types makes use of
Ellipsis, but it may be used in third-party applications.

Classic Classes

In versions of Python prior to version 2.2, classes and objects were implemented using
an entirely different mechanism that is now deprecated. For backward compatibility,
however, these classes, called classic classes or old-style classes, are still supported.

The reason that classic classes are deprecated is due to their interaction with the
Python type system. Classic classes do not define new data types, nor is it possible to
specialize any of the built-in types such as lists or dictionaries. To overcome this limita-
tion, Python 2.2 unified types and classes while introducing a different implementation
of user-defined classes.

Special Methods 45

A classic class is created whenever an object does not inherit (directly or indirectly) from
object. For example:
A modern class

class Foo(object) :
pass

A classic class. Note: Does not inherit from object
class Bar:
pass

Classic classes are implemented using a dictionary that contains all the objects defined
within the class and defines a namespace. References to class attributes such as c.x are
translated into a dictionary lookup, c.__dict__ ["x"].If an attribute isn’t found in this
dictionary, the search continues in the list of base classes. This search is depth first in the
order that base classes were specified in the class definition. An attribute assignment such
as c.y = 5 always updates the __dict__ attribute of ¢, not the dictionaries of any
base class.

The following attributes are defined by class objects:

Attribute Description

c._ _dict__ Dictionary associated with the class

c.__doc__ Class documentation string

c. _name_ Name of the class

c.__module Name of the module in which the class was defined
c. bases Tuple containing base classes

A class instance is an object created by calling a class object. Each instance has its own
local namespace that’s implemented as a dictionary. This dictionary and the associated
class object have the following attributes:

Attribute Description
x.__dict__ Dictionary associated with an instance
x.__class__ Class to which an instance belongs

When the attribute of an object is referenced, such as in x. a, the interpreter first
searches in the local dictionary for x. _dict__ ["a"].If it doesn’t find the name local-
ly, the search continues by performing a lookup on the class defined in the __class
attribute. If no match is found, the search continues with base classes, as described earli-
er. If still no match is found and the object’s class defines a __getattr__ () method, it’s
used to perform the lookup. The assignment of attributes such as x.a = 4 always
updates x.__dict__, not the dictionaries of classes or base classes.

Special Methods

All the built-in data types implement a collection of special object methods. The names
of special methods are always preceded and followed by double underscores (__).These
methods are automatically triggered by the interpreter as a program executes. For exam-
ple, the operation x + y is mapped to an internal method, x.__add__ (y), and an
indexing operation, x [k], is mapped to x.__getitem__ (k). The behavior of each data
type depends entirely on the set of special methods that it implements.

46 Chapter 3 Types and Objects

User-defined classes can define new objects that behave like the built-in types simply
by supplying an appropriate subset of the special methods described in this section. In
addition, built-in types such as lists and dictionaries can be specialized (via inheritance)
by redefining some of the special methods.

Object Creation, Destruction, and Representation

The methods in Table 3.9 create, initialize, destroy, and represent objects. _new () is
a static method that is called to create an instance (although this method is rarely rede-
fined). The __init__ () method initializes the attributes of an object and is called
1mmed1ately after an object has been newly created. The __del__ () method is invoked
when an object is about to be destroyed. This method is invoked only when an object is
no longer in use. It’s important to note that the statement del x only decrements an
object’s reference count and doesn’t necessarily result in a call to this function. Further
details about these methods can be found in Chapter 7.

Table 3.9 Special Methods for Object Creation, Destruction, and Representation

Method Description
new (cls [,*args [,**kwargs]]) A static method called to create a new
B o instance
__init__ (self [,*args [,**kwargs]]) Called to initialize a new instance
__del (self) Called to destroy an instance
__repr__ (self) Creates a full string representation of
an object
__str _(self) Creates an informal string representa-
tion
__cmp__ (self,other) Compares two objects and returns
negative, zero, or positive
__hash__ (self) Computes a 32-bit hash index
__nonzero__ (self) Returns 0 or 1 for truth-value testing
__unicode__ (self) Creates a Unicode string representa-
tion
The new_ () and __init__ () methods are used to create and initialize new

instances. When an ObJCCt is created by calling A (args), it is translated into the follow-
ing steps:

x = A._ _new__ (A, args)

is isinstance(x,A): x.__init__ (args)

The repr () and __str () methods create string representations of an object.
The repr () method normally returns an expression string that can be evaluated

to re-create the object. This method is invoked by the built-in repr () function and by
the backquotes operator (*). For example:

a = [2,3,4,5] # Create a list
s = repr(a) #s="02, 3, 4, 5]
Note : could have also used s = “a°

b = eval(s) # Turns s back into a list

Special Methods 47

If a string expression cannot be created, the convention is for __repr__ () to return a
string of the form <. . .message. . ., as shown here:

f = open("foo")
a = repr(f) # a = "<open file 'foo', mode 'r' at dc030>"

The __str () method is called by the built-in str () function and by the print
statement. It differs from __repr__ () in that the string it returns can be more concise
and informative to the user. If this method is undefined, the ~_repr () method is
invoked.

The __cmp__ (self, other) method is used by all the comparison operators. It
returns a negative number if self < other, zero if self == other, and positive if
self > other. If this method is undefined for an object, the object will be compared
by object identity. In addition, an object may define an alternative set of comparison
functions for each of the relational operators. These are known as rich comparisons and
are described shortly. The __nonzero__ () method is used for truth-value testing and
should return 0 or 1 (or True or False). If undefined, the _len () method is
invoked to determine truth.

Finally, the ~_hash () method computes an integer hash key used in dictionary
operations (the hash value can also be returned using the built-in function hash ()).
The value returned should be identical for two objects that compare as equal. Further-
more, mutable objects should not define this method; any changes to an object will alter
the hash value and make it impossible to locate an object on subsequent dictionary
lookups. An object should not define a __hash () method without also defining

cmp ().

Attribute Access

The methods in Table 3.10 read, write, and delete the attributes of an object using the
dot (.) operator and the del operator, respectively.

Table 3.10 Special Methods for Attribute Access

Method Description
___getattribute _ (self, name) Returns the attribute self.name.
__getattr _(self, name) Returns the attribute self.name if not

found through normal attribute lookup.

__setattr (self, name, value) Sets the attribute self.name = value.
Overrides the default mechanism.

__delattr (self, name) Deletes the attribute self.name.

An example will illustrate:

class Foo(object) :
def __init__ (self):
self.x = 37

f = Foo()

a =f.x # Invokes _ getattribute _ (

£,'x
b=~f.y # Invokes __ getattribute _ (f,"y") --> Not found
Then invokes _ _getattr _ (f,'y

48 Chapter 3 Types and Objects

f.x = 42 # Invokes __setattr _ (f,"x",42)
f.y = 93 # Invokes __setattr _ (f,"y",93)
del f.y # Invokes _ delattr (f,"y")

Whenever an attribute is accessed, the ~_getattribute () method is always
invoked. If the attribute is located, it is returned. Otherwise, the getattr ()
method is invoked. The default behavior of __getattr__ () is to raise an
AttributeError exception.The __setattr _ () method is always invoked when set-
ting an attribute, and the __delattr__ () method is always invoked when deleting an
attribute.

A subtle aspect of attribute access concerns a special kind of attribute known as a
descriptor. A descriptor is an object that implements one or more of the methods in Table

3.11.

Table 3.11 Special Methods for Descriptor Attributes

Method Description

__get__(self,instance, owner) Returns an attribute value or raises
AttributeError

__set_ (self,instance,value) Sets the attribute to value

__delete_ (self, instance) Deletes the attribute

Essentially, a descriptor attribute knows how to compute, set, and delete its own value
whenever it is accessed. Typically, it is used to provide advanced features of classes such
as static methods and properties. For example:
class SimpleProperty (object) :

def __init__ (self, fget, fset)

self.fget = fget
self.fset = fset

def _ get (self,instance,cls)
return self.fget (instance) # Calls instance.fget()
def set (self, instance,value)

return self.fset (instance,value) # Calls instance.fset (value)

class Circle(object):
def __init__ (self,radius):
self.radius = radius
def getArea(self):
return math.pi*self.radius**2
def setArea(self):
self.radius = math.sqrt (area/math.pi)
area = SimpleProperty(getArea, setArea)

In this example, the class SimpleProperty defines a descriptor in which two functions,
fget and fset, are supplied by the user to get and set the value of an attribute (note
that a more advanced version of this is already provided using the property () function
described in Chapter 7). In the circle class that follows, these functions are used to
create a descriptor attribute called area. In subsequent code, the area attribute is
accessed transparently.

c = Circle(10)

a = c.area # Implicitly calls c.getArea()
c.area = 10.0 # Implicitly calls c.setArea(10.0)

Special Methods 49

Underneath the covers, access to the attribute c¢.area is being translated into an opera-
tion such as Circle. dict ['area'l._ get (c,Circle).

It is important to emphasize that descriptors can only be created at the class level. It
is not legal to create descriptors on a per-instance basis by defining descriptor objects
inside __init__ () and other methods.

Sequence and Mapping Methods

The methods in Table 3.12 are used by objects that want to emulate sequence and map-
ping objects.

Table 3.12 Methods for Sequences and Mappings

Method Description

__len (self) Returns the length of self

__getitem (self, key) Returns self [key]

__setitem (self, key, value) Sets self [key] = value

__delitem__ (self, key) Deletes self [key]

__getslice__ (self,1i,7) Returns self[1:7]

__setslice__ (self,i,j,s) Sets self[i:j] = s

__delslice_ (self,i,3) Deletes self[i:3]

___contains__ (self,obj) Returns True if obj is in self; otherwise,

returns False

Here’s an example:

a=1[1,2,3,4,5,6]

len(a) # __len (a)
af2] # _ getitem_ _(a,2)
a[l] =7 # _ setitem _(a,1,7)
del a[] # __delitem _(a,2)
all:5] # __getslice__(a,1,5)
a[1.3] = [10,11,12] # _ setslice__(a,1,3,[10,11,12])
del a[l:4] # __delslice__(a,1,4)

The __len__ method is called by the built-in len() function to return a nonnegative
length This function also determines truth values unless the nonzero () method
has also been defined.

For manipulating individual items, the __getitem__ () method can return an item
by key value. The key can be any Python object, but is typically an integer for
sequences. The __setitem _ () method assigns a value to an element. The
__delitem__ () method is invoked whenever the del operation is applied to a single
element.

The slicing methods support the slicing operator s[i:57].The getslice ()
method returns a slice, which is normally the same type of sequence as the original
object. The indices i and j must be integers, but their interpretation is up to the
method. Missing values for i and j are replaced with 0 and sys.maxint, respectively.
The __setslice__ () method assigns values to a slice. Similarly, __delslice _ ()
deletes all the elements in a slice.

The contains__ () method is used to implement the in operator.

50 Chapter 3 Types and Objects

In addition to implementing the methods just described, sequences and mappings
implement a number of mathematical methods, including __add__ (), __radd__ (),
~ mul_ (),and __rmul () to support concatenation and sequence replication.
These methods are described shortly.

Finally, Python supports an extended slicing operation that’s useful for working with
multidimensional data structures such as matrices and arrays. Syntactically, you specify an
extended slice as follows:

a = m[0:100:10] # Strided slice (stride=10)

b = m[1:10, 3:20] # Multidimensional slice

¢ = m[0:100:10, 50:75:5] # Multiple dimensions with strides
m[0:5, 5:10] = n # extended slice assignment

del m[:10, 15:] # extended slice deletion

The general format for each dimension of an extended slice is i: 5 [:stride], where
stride is optional. As with ordinary slices, you can omit the starting or ending values
for each part of a slice. In addition, a special object known as the E11ipsis and written
as ... is available to denote any number of trailing or leading dimensions in an extend-
ed slice:

a =m[..., 10:20

] # extended slice access with Ellipsis
m[10:20, ...] = n

When using extended slices, the __getitem_ _ (), __setitem_ _(),and
__delitem__ () methods implement access, modification, and deletion, respectively.

However, instead of an integer, the value passed to these methods is a tuple containing
one or more slice objects and at most one instance of the E11lipsis type. For example,

a =m[0:10, 0:100:5, ...]

invokes getitem () as follows:

a = __getitem _ (m, (slice(0,10,None), slice(0,100,5), Ellipsis)

Python strings, tuples, and lists currently provide some support for extended slices,
which is described in Chapter 4. Special-purpose extensions to Python, especially those
with a scientific flavor, may provide new types and objects with advanced support for
extended slicing operations.

Iteration

If an object, ob7, supports iteration, it must provide a method, obj. _iter (), that
returns an iterator object. The iterator object iter, in turn, must implement a single
method, iter.next (), that returns the next object or raises StopIteration to signal
the end of iteration. Both of these methods are used by the implementation of the for
statement as well as other operations that implicitly perform iteration. For example, the
statement for x in s is carried out by performing steps equivalent to the following:
_iter = s.__iter ()
while 1:
try:
x = _iter.next()
except Stoplteration:
break
Do statements in body of for loop

Mathematical Operations

Special Methods 51

Table 3.13 lists special methods that objects must implement to emulate numbers.
Mathematical operations are always evaluated from left to right; when an expression
such as x + y appears, the interpreter tries to invoke the method x.__add__ (y).The
special methods beginning with r support operations with reversed operands. These are
invoked only if the left operand doesn’t implement the specified operation. For exam-
ple,if x in x + y doesn’t support the __add__ () method, the interpreter tries to

invoke the method y. radd (x).

Table 3.13 Methods for Mathematical Operations

Result

self + other
self - other
self * other
self / other
self / other (future)

self // other

self % other

divmod (self, other)

self ** other, pow(self, other,

modulo)
self << other

self >> other

self & other
self |

self ~ other

other

other + self
self
self
other / self

other -

other *

other

other

/ self (future)
// self

Method
__add__ (self, other)
__sub__ (self, other)
~ _mul (self, other)
__div__ (self, other)
__truediv__ (self, other)
__floordiv__ (self,other)
__mod__ (self,other)
__divmod__ (self, other)
__pow__ (self,other [,modulo])
__1shift (self,other)
__rshift _(self,other)
__and__ (self, other)
__or _(self,other)
__xor__ (self,other)
__radd__ (self,other)
rsub__ (self, other)
rmul__ (self, other)
rdiv__ (self, other)
__rtruediv__ (self, other)
__rfloordiv__ (self, other)
__rmod__ (self,other)
__rdivmod__ (self, other)
__rpow__ (self,other)
__rlshift__ (self,other)

__rrshift _(self, other)

__rand__ (self,other)
_ror__ (self,other)
__rxor _ (self,other)

__iadd _

(self, other)

o

other % self

divmod (other, self)

other ** gelf
other << self
other >> self
other & self
self
self

other |
other *

self += other

52 Chapter 3 Types and Objects

Table 3.13 Continued

Method Result
__isub_ _(self,other) self -= other
__imul__ (self, other) self *= other
__idiv__ (self,other) self /= other
__itruediv__ (self, other) self /= other (future)
__ifloordiv__ (self, other) self //= other
__imod__ (self, other) self %= other
__ipow _ (self,other) self **= other
__iand__ (self, other) self &= other
__ior _(self,other) self |= other
__ixor _(self,other) self “= other
__1lshift _(self, other) self <<= other
__irshift__ (self,other) self >>= other
__neg__ (self) -self
__pos__ (self) +self
__abs__ (self) abs (self)
__invert _ (self) ~self
__int _ (self) int (self)
_ _long _(self) long (self)
__float__ (self) float (self)
__complex _ (self) complex (self)
__oct__ (self) oct (self)
__hex_ _(self) hex (self)
__coerce__ (self,other) Type coercion
The methods __iadd__ (), __isub__ (), and so forth are used to support in-place

arithmetic operators such as a+=b and a-=b (also known as augmented assignment). A dis-
tinction is made between these operators and the standard arithmetic methods because
the implementation of the in-place operators might be able to provide certain cus-
tomizations such as performance optimizations. For instance, if the self parameter is
not shared, it might be possible to modify its value in place without having to allocate a
newly created object for the result.

The three flavors of division operators, _div__ (), _truediv__ (),and
__floordiv__ (), are used to implement true division (/) and truncating division (//)
operations. The separation of division into two types of operators is a relatively recent
change to Python that was started in Python 2.2, but which has far-reaching effects. As
of this writing, the default behavior of Python is to map the / operator to __div__ ().
In the future, it will be remapped to __truediv__ ().This latter behavior can currently
be enabled as an optional feature by including the statement from __ future
import division in a program.

The conversion methods __int (), long (), _float__(),and
__complex__ () convert an object into one of the four built-in numerical types. The

Special Methods 53

__oct__() and __hex _ () methods return strings representing the octal and hexa-
decimal values of an object, respectively.

The coerce (x,y) method is used in conjunction with mixed-mode numeri-
cal arithmetic. This method returns either a 2-tuple containing the values of x and y
converted to a common numerical type, or Not Implemented (or None) if no such con-
version is possible. To evaluate the operation x op y, where op is an operation such as

+, the following rules are applied, in order:

1. If xhasa __coerce__ () method, replace x and y with the values returned by
x.__coerce__ (y).If None is returned, skip to step 3.

2. If x hasamethod op (), return x. _op _ (y).Otherwise, restore x and y
to their original values and continue.

3. If yhasa _coerce () method, replace x and y with the values returned by
y. _coerce _ (x).If None is returned, raise an exception.
4. If y has amethod __rop _ (), return y.__rop__ (x).Otherwise, raise an excep-
tion.
Although strings define a few arithmetic operations, the ~_coerce () method is not

used in mixed-string operations involving standard and Unicode strings.
The interpreter supports only a limited number of mixed-type operations involving
the built-in types, in particular the following:

= If xis a string, x % y invokes the string-formatting operation, regardless of the
type of y.

= If x is a sequence, x + y invokes sequence concatenation.

= [f either x or y is a sequence and the other operand is an integer, x * y invokes
sequence repetition.

Comparison Operations

Table 3.14 lists special methods that objects can implement to provide individualized
versions of the relational operators (<, >, <=, >=, ==, ! =). These are known as rich com-
parisons. Each of these functions takes two arguments and is allowed to return any kind
of object, including a Boolean value, a list, or any other Python type. For instance, a
numerical package might use this to perform an element-wise comparison of two
matrices, returning a matrix with the results. If a comparison can’t be made, these func-
tions may also raise an exception.

Table 3.14 Methods for Comparisons

Method Result
1t (self,other) self < other
__le (self,other) self <= other
gt (self,other) self > other
__ge__ (self,other) self >= other

_(
eq__ (self,other) self == other
_(

ne__ (self,other) self = other

54 Chapter 3 Types and Objects

Callable Objects

Finally, an object can emulate a function by providing the ~_call _(self [,*args
[, **kwargs]]l) method. If an object, x, provides this method, it can be invoked
like a function. That is, x (argl, arg2, ...) invokes x. call (self, argl,
arg2, ...).

Performance Considerations

The execution of a Python program is mostly a sequence of function calls involving the
special methods described in the earlier section “Special Methods.” If you find that a
program runs slowly, you should first check to see if you’re using the most efficient
algorithm. After that, considerable performance gains can be made simply by under-
standing Python’s object model and trying to eliminate the number of special method
calls that occur during execution.

For example, you might try to minimize the number of name lookups on modules
and classes. For example, consider the following code:

import math

d= 0.0

for i in xrange(1000000) :
d = d + math.sqrt (i)

In this case, each iteration of the loop involves two name lookups. First, the math mod-
ule is located in the global namespace; then it’s searched for a function object named
sqrt. Now consider the following modification:

from math import sqgrt

d=0.0

for i in xrange(1000000) :
d =d + sqrt(i)

In this case, one name lookup is eliminated from the inner loop, resulting in a consider-
able speedup.

Unnecessary method calls can also be eliminated by making careful use of temporary
values and avoiding unnecessary lookups in sequences and dictionaries. For example,
consider the following two classes:

class Point (object) :
def init__ (self,x,y,z):

self.x = x

self.y =y

self.z = z

class Poly(object) :
def __init__ (self):
self.pts = []
def addpoint (self,pt):
self.pts.append (pt)
def perimeter (self):
d=0.0
self.pts.append(self.pts[0]) # Temporarily close the polygon
for i in xrange(len(self.pts)-1):
d2 = (self.pts[i+l].x - self.pts[i].x)**2 + \
(self.pts[i+l] .y - self.pts[i].y)**2 + \
(self.pts[i+l] .z - self.pts[i].z)**2
d = d + math.sqrt(d2)
self.pts.pop() # Restore original list of points
return d

Performance Considerations 55

In the perimeter () method, each occurrence of self.pts[i] involves two special-
method lookups—one involving a dictionary and another involving a sequence.You can
reduce the number of lookups by rewriting the method as follows:

class Poly(object) :

def perimeter (self):
d=10.0
pts = self.pts
pts.append (pts[0])
for i in xrange(len(pts)-1):
pl = pts[i+l]
p2 = ptsli]
d2 = (pl.x - p2.x)**2
(pl.y - p2.y)**2
(pl.z - p2.z)**2
d = d + math.sqgrt(d2)
pts.pop ()
return d

+ +

—

Although the performance gains made by such modifications are often modest
(15%—20%), an understanding of the underlying object model and the manner in which
special methods are invoked can result in faster programs. Of course, if performance is
extremely critical, you often can export functionality to a Python extension module
written in C or C++.

This page intentionally left blank

