
3
Classes and Objects

The Class Hierarchy
A former colleague used to say that he had “developed this new technology” whenever
somebody in his department wrote a few lines of VBScript for the website. He is not the
first person to use overly fanciful language to describe programming exploits. It happens
all the time. Object-oriented programming is a particularly jargon-rich field of study,
laden with ill-formed metaphors and polysyllabic titles.There was a time when object-
oriented programming (OOP) advocates would say that OOP was easier to learn than
more traditional styles of programming. I don’t know if that is true; I suppose the fact
that I have deferred the discussion of the object-oriented features until the third chapter
of this book is some indication of how I feel about this subject.

One of the biggest challenges facing a novice programmer is the reality that knowing
how to program and knowing how to program well are two different things. Learning a
programming language is cut and dried (albeit a bit tedious at times). Learn the syntax
and you’ve learned the language. It’s very much a science. Doing it well, however, is
much more like an art—something that is learned over time and something that you get
a “feel for” that is often difficult to explain simply and clearly. In this chapter, I hope to
provide an overview of object-oriented concepts and how they are implemented in
REALbasic, and give some insight into strategies for executing your object-oriented 
programming effectively.

Cities are full of buildings, and each building has a particular street address, which can
tell you how to find the building if you are looking for it. Computers have addresses,
too, but instead of identifying buildings, these addresses point to locations in memory.
Variables, properties, functions, and subroutines all reside at a particular address, too,
when they are being used by your program.

When you declare a variable, you assign a type to the variable.To date, most of the
variables in the examples have been one of REALbasic’s intrinsic data types.When a



84 Chapter 3 Classes and Objects

variable is used in this way—pointing to an intrinsic data type—it’s said to be a scalar
variable.The variable represents the value that’s stored at a particular location in memory.

Variables can also be used to represent objects.When they do, they aren’t scalar vari-
ables anymore because an object doesn’t represent a value in the way that an intrinsic
data type does.The variable is said to be a reference to the object; it points to the loca-
tion in memory where this object resides.An object is a collection of different things
and can be made up of properties and various methods. In this respect it is like a mod-
ule, but it differs from a module in some very important ways.

Suppose we have an object with two different properties, one called FirstName and
the other called SecondName, both of which are Strings. Let’s also say that we have a
variable called Person that points to this object. Referring to the object itself doesn’t
refer to any particular value, because the object has multiple properties.This means that
to access a particular property of an object, you need to refer to the object itself, plus the
property.You do this using the familiar dot notation, like so:

Person.FirstName

This should look familiar because it’s the way you refer to protected properties and
methods of modules.The biggest difference is that you always have to refer to an object’s
members this way, even if the property is public.

Now knowing that an object is a collection of values is only a small part of the story.
What makes objects powerful is that they are members of classes.To create an object, you
must first create a class.

To explain what classes are conceptually, I’ll return to the building and street address
analogy. If you pull up to any address, you’ll find a building. If you were to come visit
me, you could drive until you reached my address; pull in the driveway and you’d be at
my house. My house is a building, but it’s a different kind of building than you might
find down the street a bit where there is a grocery store and a gas station. Furthermore,
my house is just one example of a particular type of house. Houses come in all styles—
some are ranches and others are Cape Cod or Tudor styles.

Whether you are talking about houses or grocery stores or gas stations, every building
has some things in common—a roof and some walls, for example. I live in a single-
family residential neighborhood, so every building on my street is a house.The fact that
it is a house means that in addition to a roof and some walls (which all buildings have), it
also has at least one bedroom, a bathroom, and a kitchen, because buildings that happen
to be houses all have those features.

If I were to try to systemize my understanding of buildings, I might start by classify-
ing buildings into the different types of buildings and showing how they are related.A
good way to do this is by organizing buildings into a conceptual hierarchy, like the one
outlined in Figure 3.1.

Every node on this tree represents a type of building or, to use object-oriented termi-
nology, a class of building.At the top of the hierarchy is the base class, and it has two
subclasses—residential and commercial.You can say that the building class is the super-
class of the residential and commercial classes. In addition to the super/subclass terminol-
ogy, you also hear people refer informally to them as parent classes and child classes.



85The Class Hierarchy

Figure 3.1 Different styles of houses can be organized in a hierarchy.

One way that we make these classifications is based on physical attributes of the build-
ings themselves—things such as walls and doors.At the same time, we also consider the
kind of activity that takes place in them.

This isn’t the only way to classify buildings.You might come up with a different hier-
archy that’s equally valid. For example, you might decide that the most important differ-
entiating factor isn’t whether a building is residential or commercial, but how many 
stories the building has.You might start off with building, and then branch to one-story
buildings and multistory buildings, and go on from there.

Even the buildings themselves can be subdivided into smaller units.A house doesn’t
just sit empty. People live in them and do things.The house is organized into rooms and
these rooms are designed for certain activities. In one room you cook, in another you
watch TV, and so on. Some rooms have storage areas, such as closets and cupboards, and
others have tools, such as stoves and refrigerators and washing machines.

The hierarchy shows classes of buildings, not particular buildings themselves.A
description of a house is not any particular house; it’s a description of what houses that
are members of that class have in common. One way to think of classes is to think of
them as a blueprint, or a design, for a building.You can build many houses using the
same blueprint. If a class is analogous to a blueprint, an object is analogous to a particular
house.

After you’ve driven to my house and you’re standing in the driveway looking at it,
you are looking at one particular instance of a house.There are other houses in the
neighborhood that were built from the same plan, but they are filled with different peo-
ple, doing different things.

One thing you may have noticed when I classified buildings and organized them into
a hierarchy is that I didn’t list all the features of each class of building at each level.At
the top level, I said buildings have roofs, walls, and doors.At the second level of the hier-
archy, I didn’t repeat that they have roofs, walls, and doors because I wrote down only
what was new and unique about the next group.The assumption is that the subclass has
all the attributes of the superclass, plus some additional attributes that differentiate it from
the superclass.To put it another way, the subclass inherits the features of the superclass.



86 Chapter 3 Classes and Objects

Inheritance is a big deal, and it’s just about the coolest part of object-oriented pro-
gramming. In practical terms, this means that when you write your program, you organ-
ize your code into classes.The advantage of this kind of inheritance from a programmer’s
perspective is that it keeps you from having to rewrite as much code.The subclass inher-
its all the functionality of the superclass, so that means you don’t have to write new
methods in the subclass that replicate the basic functionality of the parent.

And this leads to the challenging part. It’s up to you to decide how to organize your
classes.You can do it any way you like, but you need to do it in a way that makes sense
and in a way that maximizes code reuse (from inheritance). Knowing how to write the
code that creates a class is only half the battle. Knowing what goes into the class is the
hard part.There is no single solution; the answer is really dependent on the kind of pro-
gram you are going to write.You have to figure out what makes the most sense for your
application.

Again, I’ll return to the house analogy. Inside my house, the downstairs is divided into
six rooms: a living room, a dining room, a kitchen, a bedroom, a bathroom, and a laun-
dry room. In the kitchen are cupboards. Some are full of food and others are filled with
plates and dishes.There is a refrigerator, stove, and so on. Likewise, in the laundry room
you’ll find laundry detergent, and then there is the usual stuff that goes into a living and
a dining room.

This makes sense—the reason I put the laundry detergent in the laundry room with
the washing machine is because it’s convenient and makes sense. Likewise, I put my
clothes in my closet so that I can find them in the morning and get dressed.

That’s exactly how object-oriented programming works, too.A class in object-orient-
ed programming groups together information and instructions for what to do with the
information. It’s a place to store information of a particular kind, and a set of instructions
for what to do with it.When you are creating classes, you have to decide what kind of
information makes sense to be associated with what kind of tasks.

Although objects are capable of having properties, constants, and methods, they are
not required to have them.A chair, for example, is an object. By definition, a chair
doesn’t do anything. It can only have things done to it. It can be sat upon. It can be held
in place by gravity. It can be broken and it can be painted red. But it can’t scoot itself up
to the table, or teeter precariously on two legs, unless a child is in the chair to do the
teetering.An object from the programming perspective can be dull and boring like a
chair. It can be a thing, a set of values, or, as they are called in REALbasic and other lan-
guages, it can have properties.

An object can be nothing more than a set of properties. In this respect, an object is
very similar to a struct or User Defined Type familiar to Visual Basic programmers. It can
also have methods, constants, events, and menu handlers, all of which will be covered in
due time.

There are some basic concepts to discuss first, and the best way to discuss them is to
illustrate them by creating a class or two and looking at what we are doing. In particular,
I want to discuss some important OOP concepts: inheritance, encapsulation, and poly-
morphism. Much like calling a new script a new technology, these words create a certain



87Creating a New Class

mysterious aura that make everything sound much more complicated than it is.
Hopefully, after you’ve read this chapter you’ll have enough mastery of REALbasic’s fla-
vor of object-oriented programming to use it with confidence.

Creating a New Class
A new class is created just like a new module. Open up a new project in REALbasic and
click the Add Class button and a new class will be added, as shown in Figure 3.2.
However, App, Window1, and Menubar1 are classes, too.They are provided by
REALbasic automatically, but everything you can do with this class we are about to cre-
ate, you can do with them as well.These three classes will be covered in much more
detail in the next two chapters.

Figure 3.2 Creating a new class in the REALbasic IDE.

After you create this new class, select it, and change the name to Alpha in the
Properties pane on the right side of the window. Double-click the Alpha class in the
Project Editor to bring up the Alpha tab, as shown in Figure 3.3.

When you’ve done this, you’ll see that you have additional buttons on the Code
Editor toolbar. In addition to the familiar Add Method, Add Property, and Add
Constant, you’ll see Add Menu Handler and Add Event Definition. Menu
Handlers and Event Definitions are special kinds of methods that I’ll cover later.



88 Chapter 3 Classes and Objects

Figure 3.3 Editing code for the Alpha class.

The Alpha class won’t do anything really useful.The purpose is to implement some
methods and properties in such a way that you can see the different way that classes
implement and use them.The first method to add is the getName method:

Function getName() as String

Return “Alpha”
End Function

As you can see, this method returns the string “Alpha” when it is called.

Declaration and Instantiation
When you build a house, you start with the blueprints, but it’s not a house until you
build the walls, roof, and so on, and eventually people move in. I said earlier that a class
is like a blueprint. Because the Alpha class is a blueprint, it needs to be built in order to
be used.This is called instantiation, or creating an instance of the Alpha class.An instance
of a class is called an object.

This is one area where classes differ from modules.You do not have to instantiate a
module to have access to the methods and properties of the module. Instantiating an
object is a two-part process. First, the object must be declared, just like variables are
declared.The only difference is that the type of this variable is going to be the class
name rather than one of REALbasic’s intrinsic data types.The second step is the actual
instantiation, the part where the “house is built.”When you build a house, you need



89Constructors and Destructors

boards and nails.When you declare an object, you are setting aside space for the con-
stants, properties, and methods of the class, and when you instantiate an object, you are
filling up the space set aside with the constants, properties, and methods of the class.
Again, it’s like building a house—first the rooms are made, and then people move in to
live in them.

Dim a as Alpha

Dim s as String

a = New Alpha()

s = a.getName() // s equals “Alpha”

The variable is declared with a Dim statement, and it is instantiated using the New
operator.After the class is instantiated and assigned to the variable a, you can use dot
notation to access the members of the class, much like you can access the members of a
module. In this example, the method getName() is called and the value returned is
assigned to the string s.

Always eager to provide help to those like me who have an aversion to extra typing,
the engineers at REALbasic have provided a handy shortcut that combines these two
steps into one (this works with data types, too).

Dim a as New Alpha()

Dim s as String

s = a.getName() //s equals “Alpha”

Constructors and Destructors
When operators were introduced, I said that they were basically functions.They are
given input in the form of operands; the operator causes a calculation to be performed,
and the results are returned. Because New is an operator, that must mean that it’s a func-
tion, too.As you can see from this example, the value returned by the New operator is an
instance of Alpha, which is assigned to the variable a.The reason I followed Alpha with
parentheses when instantiating a is so that it will be more clear that it is acting as a func-
tion.You are, in fact, invoking a function when you use the New operator.Your ability to
refer to the class name alone, without explicitly typing out the method, is a matter of
convenience.

REALbasic (and other object-oriented languages) gives this method a unique name:
Constructor. It is the Constructor method that is being called when you use the New
operator. In many cases, the default Constructor is all you need—all it does is instanti-
ate the object, setting aside space for properties and things like that, but not setting their
value.You can add to this by implementing your own Constructor.

Right now, our Alpha class returns the string “Alpha” when we call the function
getName(). Suppose that we want to be able to decide what value this function will
return when we instantiate the object.The way to do this is to create a property, which



90 Chapter 3 Classes and Objects

will hold the value that the getName() function will return, and we will add a new
Constructor method that will allow us to pass the string we want returned when we
first instantiate the object.

The first step is to create the property, like you did when creating a module. Set the
access scope of this property to Private and give it the name “Name”, and a data type of
string.

Next, add the method called “Constructor” (Constructors are always public). Do
not specify a return value. Implement it as a subroutine (it knows automatically to return
an instance of the class it’s a member of ).

Sub Constructor(aName as String)

me.Name = aName

End

Finally, we need to update our getName() method.

Function getName() as String

return me.Name

End

You have now implemented a new Constructor that takes a string as a parameter
and assigns the value of that string to the property Name. Now, if you try to instantiate
this class like you did before, you’ll get an error. For you to instantiate it, you need to
pass a string to the Constructor.

Dim a as Alpha

Dim s as String

a = New Alpha(“Blue”)
s = a.getName() // s = “Blue”

New in REALbasic 2005, you can set the values of properties implicitly when the
class is instantiated, rather than explicitly as I did in this example.This is done by filling
in the values in the Code Editor as shown in Figure 3.4.

In earlier versions of REALbasic, the Constructor method was named after the
name of the class itself. So in this case, you can name the constructor “Alpha” and it
would be called when the class is instantiated.

There is also a Destructor method that’s called when the object is being purged
from memory. It can be declared by calling it Destructor or by using the object name
preceded by the tilde (~) character. For the Alpha class, you would name it “~Alpha”.
The default is to use the terms Constructor and Destructor, and I would recommend
sticking with that—I only share the other method in case you encounter it in preexist-
ing code.



91Garbage Collection

Figure 3.4 Set values for class properties in the Code Editor.

Garbage Collection
One thing you may have noticed is that I haven’t had to say anything about how to
manage the computer’s memory in REALbasic. In programming languages such as C,
much of the work you do centers on allocating memory for data and making sure that
memory is freed up when you are done with it. In REALbasic, you don’t have to worry
about this very much because REALbasic uses a process called garbage collection, which
means that it automatically purges objects from memory when appropriate.The opera-
tive phrase here is “when appropriate.”

Garbage collection uses a process called reference counting to keep track of objects.
Variables that refer to objects don’t behave like scalar variables do.Although you may
have two scalar variables whose value is “5”, it does not mean that these two scalar values
are references to the same location in memory. Objects, on the other hand, can easily
have more than one variable serve as a reference to their location.

Reference counting refers to keeping track of how many variables (local variables and
properties) reference a particular object.As long as at least one reference to an object
exists, the object stays resident in memory.After the last reference goes away, the object is
dumped.This is when the Destructor method is called.



92 Chapter 3 Classes and Objects

In most cases you won’t have to worry about memory, but there are some situations
where references inadvertently do not go away.This can sometimes result in a situation
where new objects are being instantiated while old objects are still hanging around in
memory, which means that your program will consume larger and larger amounts of
memory as the application runs.This is called a memory leak, and memory leaks are bad.

The trouble usually starts when you have two objects that each refer to each other.
Because object A has a reference to object B and object B has a reference to object A,
neither object is ever going to be garbage collected.The way around this is to imple-
ment a method for object A that explicitly sets the reference to object B to Nil. Do the
same thing with object B. Now when object A is destroyed, the reference to object B is
safely removed (or, more accurately, the reference count to object B is decremented).

Inheritance
Now you have a class that implements one method, and you know how to instantiate
that class. One of the most powerful features of object-oriented programming is that you
organize your classes into conceptual hierarchies, just like you can organize buildings
into a conceptual hierarchy. One class can subclass another and when it does this, it
inherits the members of the class from which it does the inheriting.

Although you are no doubt familiar with the idea of inheritance, object-oriented
inheritance works a little differently than genetic inheritance does. First of all, people
have two parents. I’m a mix of my dad and my mom; 50% of my gene pool comes from
mom and 50% from dad. (I’ve often said that I have the distinct pleasure of having
inherited all of my parents’ worst qualities. In a remarkable reversal of fortune, my
daughter has managed to inherit only the finest traits from her parents, mostly from her
mom). REALbasic takes a simpler view of inheritance.There’s only one parent, which is
the superclass. In REALbasic, at the top of the family tree is the root class; Object and
all other classes are subclasses of it.

In the object-oriented world, the child is called a subclass and the parent is referred to
as the superclass.When you create a subclass in REALbasic, it automatically inherits all
the methods and properties of the parent class.There is absolutely no difference other
than their name.

Creating a subclass that doesn’t do anything differently from the superclass is more or
less a pointless exercise.The reason for creating a subclass is that you want to reuse the
code you’ve written for the superclass, and then either add new capabilities or change
the way certain things are done.

A child inherits all the features of the parent, but it can also add some new ones. In
practice, this means that the subclass has all the methods, constants, and properties of the
parent class (with a few exceptions), but it can also implement its own methods, con-
stants, and properties. In this respect, at least, object-oriented inheritance isn’t all that
much different from the way parent-child relationships work with humans.That’s why I
always had to set the time on the VCR when I was growing up. My parents didn’t know



93Object Operators

how to do it, but I did. In addition to the methods passed along by the parent, the child
can have its own set of methods.

To create a subclass of Alpha in REALbasic, create a class as if it is a new class. Let’s
name it Beta, which can be done by typing the name into the Properties pane.There
are two other properties listed in the pane that we have not discussed yet.After Name
comes Interfaces, which I cover later, followed by Super. Setting the value of Super is
how you designate this object’s superclass, as shown in Figure 3.5.Type in Alpha, and
you now have an official subclass of Alpha. It is identical in every way, except that it’s
called Beta instead of Alpha.

Figure 3.5 Define an object’s superclass in the Properties pane.

Dim a as Alpha

Dim b as Alpha

a = New Alpha(“Woohoo!”)
b = New Beta(“Woohoo!”)

At this point, the only difference between a and b is their type (or class).

Object Operators
Now it’s time to introduce some more operators that are used with classes. I’ve already
introduced New.Two others are Isa and Is.



94 Chapter 3 Classes and Objects

Isa is used to determine whether an object belongs to a class:

Dim t,u as Boolean

t = (a Isa Alpha) // t is True

u = (b Isa Alpha) // u is True

t = (a Isa Beta) // t is False

u = (b Isa Beta) // u is True

This is an example of the most basic feature of inheritance.A subclass is a member of
the superclass, but the superclass is not a member of the subclass.

The related Is operator tests to see if one object is the same object as another one.

Dim t as Boolean

t = (a Is b) // t is False

Note that even though a and b both have the same values, they are different objects
because they were both instantiated independently. Here’s an example of when this test
would return True:

Dim a,b as Alpha

Dim t as Boolean

a = new Alpha(“Woohoo!”)
b = a

t = (a is b) // t is True

Because b is a reference to a, it is considered the same object. In other words, both a
and b point to the same location in memory.They do not simply share an equivalent
value; they are, in fact, the very same object.

Adding and Overriding Methods
So far, I’ve created Beta, a subclass of Alpha, but that is all. Except for the type, there’s
really no difference between them. If you wanted to, you could add new methods to
Beta that would be available only to Beta and not Alpha.This is easy enough to do—
just add methods to Beta as you would to any class or module.

A more interesting thing you may consider doing is overriding an existing method.
Again, there is a shade of resemblance between object-oriented inheritance and

human inheritance. Once in a while (as children are wont to do), the child decides to do
something that the parent already does, but in a different way. For example, my father
and I both go to church, but he goes to a Baptist church and I go to a Catholic one. In
object-oriented circles, this is called overriding.

The way to override one of Alpha’s methods in Beta is to implement a method
with the exact (and I mean exact) signature as a method that is found in Alpha. Because
Alpha implements only one method, getName() (well, two if you count the
Constructor, which can also be overridden), we’ll override getName() in Beta.



95Overloading

Function getName() as String

Return “Beta says: “ + me.Name

End Function

Now let’s see how this works in practice.

Dim a as Alpha

Dim b as Beta

Dim s,t as String

a = New Alpha(“Golly!”)
b = New Beta(“Golly!”)
s = a.getName() // s = “Golly!”
t = b.getName() // b = “Beta says: Golly!”

Calling the Overridden Method
Normally, when you override a method, you want the new method to replace the over-
ridden method, but there are also times when you want the new method to merely add
a few steps to the parent method.You can do this by calling “super” on the method.

When deciding which method to call, REALbasic starts at the lowest level of the class
hierarchy and looks to see whether the method is implemented there. If it is not,
REALbasic checks the parent class, and so on, until it finds an implementation of the
method. Because of this approach, as soon as it finds an implementation of the method,
it stops looking and never touches any implementation further up the hierarchy.

Overloading
Overloading and overriding are two words that look alike, sound alike, and refer to simi-
lar things with markedly different behavior.That’s a recipe for confusion if ever there was
one.When you are creating classes and subclassing them, you will be making use of both
overloading and overriding.

Overloading is associated with the idea of Polymorphism (who comes up with these
words?).All that Polymorphism means is that you can have multiple versions of the same
method that are distinguished according to the parameters that are passed to them.

Note that REALbasic does not pay any attention to the return value offered by a
method when overloading methods.This means you can’t do something like this:

Function myFunction(aString as String) as Integer

Function myFunction(aString as String) as String

and expect to be able to do this:

Dim i as Integer

Dim s as String

i = myFunction(“Hello”)
s = myFunction(“Hello”)



96 Chapter 3 Classes and Objects

The only thing that counts are the arguments.
Now, when I instantiate the Alpha or Beta classes, I pass a string to the

Constructor, and this is the value that the getName() method returns. Let’s say for the
moment that there are times when I want getName() to return a different value. One
way to do it is to change the value of the property, but because that property is Private,
it requires some extra steps, so we’ll hold off on that approach for now.

Another way to do it would be to overload the getName() method, which means
implementing another version of getName() with a different signature. Remember, a
method signature refers to the collection of parameters that it takes. Because the original
getName() doesn’t take any parameters, we will implement a new version of getName()
that takes a string as a parameter. For this example, implement the new method in Beta.

Function getName(aNewName as String) as String

Return aNewName

End Function 

Now let’s see this overloaded method in practice.

Dim a as Alpha

Dim b as Beta

Dim s,t, u as String

a = New Alpha(“Good morning.”)
b = New Beta(“Good night.”)
s = b.getName() // s = “Good night.”
t = b.getName(“Hello.”) // t = “Hello.”
u = a.getName(“Goodbye.”) // Error! 
// Won’t compile because Alpha doesn’t implement this method.

As you can see, REALbasic knows which version of getName() to call for the Beta
class based solely on the parameters passed. In the first example, because nothing is
passed, it returns the value of the property Name.When a string is passed, it returns the
value of the string. Out of curiosity, I tried to pass a string to the Alpha implementation
of getName(), and the compiler fell into all kinds of histrionics because Alpha doesn’t
implement a method called getName() that expects a string as a parameter. Remember,
Beta is a subclass of Alpha. Alpha’s methods are available to Beta, but Beta’s aren’t
available to Alpha.

Casting
I alluded to the fact that a subclass is a member of the parent class, but the parent class is
not a member of the subclass.This makes perfect sense, but it can at times make for
some confusion, especially when dealing with overridden and overloaded methods.

I want to return to the Alpha and Beta classes from the previous examples and add a
method to each one; this will illustrate the potential confusion (at least, it was confusing
to me).



97Oddities

Alpha will add the following:

Sub TestMethod(a as Alpha)

Beta will add the following:

Sub TestMethod(b as Beta)

First, take a look at the following example:

Dim a as Alpha

Dim b as Beta

Dim s as String

a = New Beta(“What’s this?”)

What is a? Is it an Alpha or a Beta? One way to tell would be to invoke the
getName() method and see what is returned. If you recall, I overloaded the getName()
method so that it accepted a string as a parameter.

s = a.getName(“My String”) // Error!

If you try to call the Beta method you’ll get an error.That’s because as far as
REALbasic is concerned, a represents an Alpha. However, because you instantiated it as
a Beta, you do have access to Beta’s methods.You can do this by casting the a as a
Beta.

s = Beta(a).getName(“My String”) // s equals “My String”

Reference the class to which you are casting the object, followed by the object sur-
rounded in parentheses, and now you will get access to the methods of Beta.

Note that the following will not work:

Dim a as Alpha

Dim b as Beta

Dim s as String

a = New Alpha(“What’s this?”)
s = Beta(a).getName(“A String”) // Error

The reason is that a is an Alpha, not a Beta. Recall that the superclass is not a mem-
ber of the subclass.

Dim a as Alpha

Dim bool as Boolean

a = New Alpha(“What’s this?”)
bool = (a Isa Beta) // bool is False

Oddities
When you subclass a class that has overloaded methods, if the subclass overloads meth-
ods, the superclass doesn’t know about them. So if you instantiate the subclass but assign



98 Chapter 3 Classes and Objects

it to a variable as the superclass, the overloaded method can’t be called from it (this con-
trasts with how overridden methods are handled, because you can call an overridden
method in the same way and get the subclass implementation of it).

I’ll provide an example of one way that really confused me for a few days until I real-
ized what I was doing wrong.

An overloaded method is one that takes different arguments (but has the same name).
An overridden method has the same signature (takes the same arguments), but is imple-
mented differently.This applies to inheritance between a class and a subclass.An over-
loaded method is overloaded in the same class, and overridden method is overridden in a
subclass.

Start with two classes, Parent and Child. Set the parent of the Child class to Parent.
For both classes, implement a method called WhoAmI and one called GetName() as follows:

Parent:
Sub WhoAmI(aParent as Parent) 

MsgBox “Parent.WhoAmI(aParent as Parent) /” + _ “Parameter:
➥” + aParent.getName()

End Sub

Function getName() as String

Return “Parent”
End Function

Child:
Sub WhoAmI(aChild as Child)

MsgBox “Child.WhoAmI(aChild as Child) /” + _ “Parameter: “ + aChild.getName()

End Sub

Function getName() as String

Return “Child”
End Function

The MsgBox subroutine will cause a small Window to appear, displaying the string
passed to it.

Next, take a look at the following code.The text that would appear in the MsgBox is
listed in a comment next to the method.

Dim p as Parent

Dim c as Child

Dim o as Parent

p = New Parent

c = New Child

o = New Child

p.WhoAmI p // “Parent.WhoAmI : Parent.getName”
p.WhoAmI c // “Parent.WhoAmI : Child.getName”

c.WhoAmI p // “Parent.WhoAmI : Parent.getName”
c.WhoAmI c // “Child.WhoAmI : Child.getName”



99Oddities

o.WhoAmI p // “Parent.WhoAmI : Parent.getName”
o.WhoAmI c // “Parent.WhoAmI : Child.getName”
o.WhoAmI o // “Parent.WhoAmI : Child.getName”

Child(o).WhoAmI p // “Parent.WhoAmI : Parent.getName”
Child(o).WhoAmI c // “Child.WhoAmI : Child.getName”
Child(o).WhoAmI o // “Parent.WhoAmI : Child.getName”

The left side of the response shows which class implemented the WhoAmI method
that was just called, and the right side of the response shows which class implemented
the getName() that was called on the object passed as an argument to the WhoAmI
method.

The first two examples show the Parent object p calling the WhoAmI method. In the
first example, a Parent object is passed as the argument for WhoAmI and in the second
example, a Child instance is passed as the argument. Both examples act as you would
expect them to.The p object always uses the methods implemented in the Parent class
and the c object uses a method implemented in the Child class.

The next group of examples are the same as the first two, with one important differ-
ence:A Child instance is calling WhoAmI instead of a Parent instance.There’s something
strange about the results, however:

c.WhoAmI p // “Parent.WhoAmI : Parent.getName”
c.WhoAmI c // “Child.WhoAmI : Child.getName”

If c is a Child object, why do the results show that c called the Parent class imple-
mentation of the WhoAmI method? Why does it call the Child class implementation of
WhoAmI in the second example?

The answer is that Child.WhoAmI() does not override Parent.WhoAmI(). It overloads
it. Remember that to override a method, the signatures have to be the same.When
Child implements WhoAmI, the parameter is defined as a Child object, but when Parent
implements it, the parameter is defined as a Parent. REALbasic decides which version
of the overloaded method to call based on the signature.What is tricky here is that it is
easy to forget that WhoAmI is overloaded only in the Child class, not in the Parent class,
so when a Parent object is passed as an argument, REALbasic uses the Parent class
implementation of WhoAmI. However, the c object has access to the methods of the
Parent class because it is a subclass of the Parent class.

The rest of the examples work on the object o, which is in a unique situation. It was
declared to be a variable in the Parent class, but when it was instantiated, it was instanti-
ated as a Child and this makes for some interesting results.The first three sets of respons-
es all show that o is calling the Parent class version of the WhoAmI method:

o.WhoAmI p // “Parent.WhoAmI : Parent.getName”
o.WhoAmI c // “Parent.WhoAmI : Child.getName”
o.WhoAmI o // “Parent.WhoAmI : Child.getName”

The getName() method is where things get interesting.As expected, when the argu-
ment is an instance of the Parent class, the Parent.getName() method is executed; like-
wise, if it is a member of the Child class. But when you pass o as the argument to



100 Chapter 3 Classes and Objects

WhoAmI, o calls the Child implementation of getName(), rather than the Parent imple-
mentation.

This seems odd because when o calls WhoAmI, it calls the Parent class method, but
when it calls getName(), it calls the Child class method. Because o was declared as a
member of the Parent class, it is cast as a member of the Parent class, even though you
used the Child class Constructor. In fact, when you cast o as a Child, you get an
entirely different set of results:

Child(o).WhoAmI p // “Parent.WhoAmI : Parent.getName”
Child(o).WhoAmI c // “Child.WhoAmI : Child.getName”
Child(o).WhoAmI o // “Parent.WhoAmI : Child.getName”
Child(o).WhoAmI child(o)  // “Child.WhoAmI : Child.getName”

In the first of this quartet, you get the expected answer because p is a Parent
instance, and that means that regardless of whether o is a Child or a Parent, REALbasic
will call the Parent class implementation of WhoAmI. In the second example of this
group, after o is cast as a Child, it behaves as expected, calling the Child class version of
WhoAmI.

However, when o is passed as the argument to WhoAmI, it doesn’t matter that o has
been cast as a Child, it again calls the Parent.WhoAmI method. On the other hand, if
you also cast the o object passed in the argument as a Child as well, things again are as
they should be. So the question is why does this happen:

Child(o).WhoAmI o // “Parent.WhoAmI : Child.getName”

The implementation of WhoAmI that is used is determined by the type of the object
passed in the parameter.The implementation of getName() is not determined by any
parameter because it doesn’t require a parameter.You can also do the following and get
the same result:

Child(o).WhoAmI parent(o) // “Parent.WhoAmI : Child.getName”

The getName method is overridden, not overloaded. Because o was instantiated as a
Child object, it will always call the Child implementation of getName. WhoAmI is over-
loaded, not overridden, and it is overloaded only in the Child class and not the Parent
class.

Encapsulation
The idea of encapsulation is that an object does a lot of things privately that no one else
needs to know about.

The Public methods of an object provide an interface to the outside world. It expos-
es the methods that can be called by other objects in your program.These typically aren’t
all the methods that compose the object because the object itself has lots of little details
to attend to.



101Encapsulation

It’s kind of like the drive-up window at a fast-food restaurant.When I pull up, the
first thing I encounter is the menu that tells me what I can order; then there’s the stat-
icky speaker that I talk into to place my order.After ordering, I proceed to the first win-
dow to pay, then go to the second window to pick up my food, and then drive off.

A fast-food restaurant is encapsulated. It provides a means for me to place an order
and pick it up, but I don’t really have any idea what’s going on inside, except that I
know that when I place an order, it triggers a sequence of events inside the restaurant
that results in food being handed over to me at the second window.

There’s a fast-food restaurant near my house that I go to all the time. I do the same
thing every time I go, and even order the same food (I’m a creature of habit). Even
though my experience with the restaurant doesn’t change, for all I know, they could have
hired a consultant last week who showed them a new way to make hamburgers that was
more cost efficient and would save them lots of money. I don’t know about it and don’t
really need to know about it.As long as the steps I take to order the food are the same
and the hamburger I order tastes the same, I really don’t care.

Sometimes encapsulation is described in a slightly different way.These developers say
that encapsulation means that an object should know how to do all the important things
required to do its job. So if you create a class that represents a square, the class should
also be able to display that square in a window or print that square on a sheet of paper.
Although it’s true that the class should group together related properties and methods
that function as a unit, you shouldn’t infer that the class needs to know about and be
able to do everything related to it. If you follow that logic to the bitter end, all your pro-
grams will just be one gigantic class, and that defeats the purpose.

In practice, people often organize their classes quite differently. Some objects you use
in your program will have only properties and no methods at all, which means that they
don’t know anything about themselves other than the data they represent.That’s not a
violation of the principle of encapsulation.

The fast-food restaurant I frequent doesn’t slaughter its own cattle, grind it up in the
back room, and cook my patties all the in same place.They hire someone to provide the
ground-up meat.They “outsource.” Classes and objects outsource, too. Often, a class is
just a collection of other classes.

We’ll dispense with the concepts for a moment.There’s a practical side to object-ori-
ented programming, too.Your goal is to create a program that maximizes code reuse, so
you don’t spend your life doing the same thing over and over.You also want a program
that is easy to change in the future so that if something goes wrong, it’s easy to figure
out what it is that goes wrong.These factors are as important, and maybe more so, as the
conceptual purity of your object model.

For example, I have a program that I use to write books and create websites. In fact,
I’m using it right now.The “documents” I create will end up in print and sometimes
online in different formats. Some of the documents are retrieved off of the file systems,
others are pulled from Subversion, others are opened up using an HTTP request over
the web.



102 Chapter 3 Classes and Objects

If I took the encapsulation advice offered by some, I would have methods in my doc-
ument class for opening files from the file system, from Subversion or through the web
within the document class. However, because I know that I may be adding additional
sources of data in the future, in different formats, which means I would have to go back
and continue to add to this class, making it bigger and more complex over time, I creat-
ed a group of classes. One group represents the data in the documents, another group
handles getting the data from different sources, and a third group handles writing the
documents out into different formats. If I have a new data source, I just subclass my
Provider class and override the open method. I don’t have to change the document
class.

Access Scope: Public, Private, Protected
In practice, encapsulation is practiced by setting the scope of methods and properties.
You’ve already encountered the idea of scope in the section on modules, but it takes on
much greater importance when you’re working with classes.

The whole point of encapsulation is that you want your objects to have a little mod-
esty; not everything has to be hanging out in public for the whole world to see.The rea-
son this is a good idea when programming is the same reason you don’t want to do it
personally.When things are exposed, other people have access to things they should not
have access to and can thereby cause mischief.You might get sunburned or pregnant.
Encapsulation, like modesty, is a virtue.

You only want to expose those parts of you that others have any business dealing
with. Keep everything else safely tucked away.

When it comes to deciding how much of yourself you expose to others, or what oth-
ers are allowed to do to or with you, it really depends on who that other person is.

Have you ever noticed that it’s okay for you to make fun of your mom or dad or sis-
ter, but it’s not okay if one of your friends does? What’s considered acceptable behavior
changes according to whether you’re one of the family or not one of the family. Being a
member of the family is a privileged position.

There are also some things that only certain members of the family are able to do,
like drink beer out of the refrigerator.The kids and their friends don’t get to do it
because that’s dad’s beer and nobody is going to touch it.

This is how encapsulation works. If a method is protected, it’s a method that you’re
keeping “in the family.” Subclasses can call the method, but unrelated classes cannot.A
method can also be designated as private, which is like Dad’s beer stash. Only dad and
no one else, not even his firstborn, can drink his beer. It’s dad’s private beer supply.A
private method can be called only by the method that implements it, and no other
classes, superclasses, or subclasses can touch it.

Recall that we have dealt with access scope before, when working with modules.The
way that access scope is handled in modules is slightly different, with an emphasis on
avoiding namespace collisions.



103Default and Optional Parameters

With classes, these terms have the following meaning:
n Public—Any other object or module can access this class member.
n Protected—Only members of this class or subclasses of this class can access this

member.
n Private—Only this class can access this member; subclass members cannot.

Setting Properties with Methods
One thing that advocates of pure object-oriented programming often recommend is that
you should avoid setting properties directly. Instead, you should use a method (sometimes
called getter and setter methods).

It should be noted that there is a slight performance hit from using getter and setter
methods because there’s an extra step involved. I doubt that it is enough to make a sub-
stantial difference in most applications, but if you really want to convince yourself that
it’s okay to set your properties directly, I suppose that’s about as good a reason as I can
find.

The rationale behind this is our friend encapsulation. Being able to set properties
directly is sort of like walking into the kitchen of the fast-food restaurant and making
your own hamburger. It’s not really safe to do that. In programming terms it’s because
the underlying mechanism that establishes the value for the property might change, or a
subclass might want to set the value of the property in a different way.You obviously
can’t override the setting of properties.

Generally speaking, I think it’s good advice to avoid directly accessing properties.That
doesn’t mean that it’s bad to do otherwise. It’s just that I’ve found, in practice, that the
classes that use getter and setter methods tend to be easier to maintain over time.Your
mileage may vary, as they say.

Default and Optional Parameters
Optional parameters are really just shortcuts to overloading methods.There are two ways
to indicate that a parameter is optional.The obvious way is to use the Optional key-
word, like so:

aMethod(aString as String, Optional anInteger as Integer)

The second way is to establish a default value for one of the parameters.Another way
to accomplish what I just did in the previous example is this:

aMethod(aString as String, anInteger as Integer = 100)

Really, the Optional keyword just sets a default value of “0” to the anInteger vari-
able, so the only real difference is that you get to set an arbitrary default value when
using the second approach.



104 Chapter 3 Classes and Objects

Declaring Variables Static and Const
When declaring variables within a method, they are treated by default like local variables
that come in scope when the method starts and go out of scope when the method has
completed executing.There are two variants of local variables that are also available.

Const
If you declare a variable within a method using Const instead of Dim, you are declaring a
constant.The difference between this kind of constant and the other kind that I have
written about is that these are local constants and so are active only for the duration of
the method:

Const a = 100

This constant is local to the method, but it can be declared anywhere within the
method.

Static
Static variables are new to REALbasic 2005.As such I haven’t used them extensively in
real-life, but they are an interesting addition.A static variable is like a local variable that’s
declared in a method except for one thing: It retains its value between invocations of
that method.

Static a as Integer

Revisiting the StringParser Module
In the previous chapter, I created a StringParser module that did two things: it would
take a string and split it up into sentences and it would take a string and split it up into
words.Although a module works just fine, I think it would be worthwhile to take that
same code and rethink it in terms of classes and objects.

Turning the module into a class is fairly straightforward.You can follow the same
original steps to get started; the only difference is that you should click New Class
rather than New Module in the editor and name it Parser.The differences come into
play with the methods. Because one of the goals of object-oriented design is to maxi-
mize code reuse, it’s instructive to think about this problem in terms of code reuse.You
also want to think about it in terms of making it easy to work with.With the module,
we had two different methods we could call, and they both called the same private
method.

Right away, this creates an opportunity because the two methods are already sharing
code—the private Split method.

Because I want to maximize code reuse, I’ll dispense with the constant and use prop-
erties instead.The first step is to create a string property that will hold the string that
will be used to split up the other string.There’s no need for any other object to access



105Revisiting the StringParser Module

this property directly, so I’ll set its scope to Protected. If I set the scope to Private,
subclasses of the base class will not be able to access it, and I want them to be able to do
that.

Parser.Delimiter as String

In the module, the two primary functions returned an Array. I could do the same
with this class, but that’s actually a little more awkward because when I call those func-
tions, I have to declare an Array to assign the value that’s returned from them. If I were
to do the same with a class, I would have to declare the Array plus the class instance,
which strikes me as extra work. Instead, I can create the Array as a property of the class.
You create an Array property just like any other data type, except that you follow the
name with two parentheses. I’ll call this Array Tokens.

Parser.Tokens() as String

Next I will implement the protected Split method, but with a few differences.The
biggest is that I do not need to return the Array in a function. Instead, I am going to
use the Tokens() Array, which is a property of the class. First, this means that the func-
tion will now be a subroutine and instead of declaring a word_buffer() Array, I’ll refer
to the Tokens() Array.

Protected Sub Split(aString as String)

Dim chars(-1) as String

Dim char_buffer(-1) as String

Dim x,y as Integer

Dim pos as Integer

Dim prev as Integer

Dim tmp as String

// Use the complete name for the global Split function

// to avoid naming conflicts

chars = REALbasic.Split(aString, “”)
y = ubound(chars)

prev = 0

for x = 0 to y

pos = me.Delimiter.inStr(chars(x))

// If inStr returns a value greater than 0,

// then this character is a whitespace

if pos > 0 then

Me.Tokens.append(join(char_buffer,””))
prev = x+1

reDim char_buffer(-1)

else

char_buffer.append(chars(x))

end if

next



106 Chapter 3 Classes and Objects

// get the final word

Me.Tokens.append(join(char_buffer,””))

End Sub

One thing you may have noticed is the use of the word Me when referring to Tokens.
That’s because Tokens is a property of the Parser class and, as I said before, you refer to
an object by the object’s name and the name of the property or method you are wanting
to access. REALbasic uses the word Me to refer to the parent object where this method is
running, and this helps to distinguish Tokens() as a property rather than as a local vari-
able. REALbasic 2005 is much more finicky about this than previous versions (and
rightly so, I think). Before, Me was mostly optional, but now it is required.We’ll revisit Me
when talking about Windows and Controls, because there is a companion to Me, called
Self, that comes into play in some situations.

I also pass only the string to be parsed as a parameter, because the delimiter list value
will come from the Delimiter property.

Now, the final two questions are how to set the value for the Delimiter property
and how to replicate what was done previously with two different methods. I’m going
to do this by subclassing Parse, rather than implementing them directly.

Create a new class and call it SentenceParser and set the Super to be Parser.
Create a new Constructor that doesn’t take any parameters, like so:

Sub Constructor()

me.Delimiter = “.,?!()[]”
End Sub

Create another method called Parse:

Sub Parse(aString as String)

me.Split(aString)

End Sub

Now if I want to parse a string into sentences, I do this:

Dim sp as SentenceParser

Dim s as String

sp = new SentenceParser()

sp.Parse(“This is the first sentence. This is the second.”)
s = sp.Tokens(0) // s= “This is the first sentence”

If I want to add the functionality of splitting the string into words, I need to create a
new class, called WordParser, set the Super to SentenceParser, and override the
Constructor:

Sub Constructor()

me.Delimiter = “ “ + chr(13) + chr(10)

End Sub



107Revisiting the StringParser Module

And I can use this in this manner:

Dim wp as WordParser

Dim s as String

wp = new WordParser()

wp.Parse(“This is the first sentence. This is the second.”)
s = wp.Tokens(0) // s= “This”
s = wp.Tokens(Ubound(wp.Tokens)) // s = “second.”

In this particular example, I think a strong argument could be made that it would
have been just as easy to have stuck with the module.That’s probably true, because this is
a simple class with simple functionality.You do have the advantage, however, of having an
easy way to add functionality by subclassing these classes, and each one uses the same
basic interface, so it’s relatively easy to remember how to use it.

REALbasic provides a large number of predefined classes. Most of the rest of this
book will be examining them. In the next section, I’ll take a look at one in particular,
the Dictionary class, and then I’ll show a more realistic (and hopefully useful) example
of how you can subclass the Dictionary class to parse a file of a different format.

The Dictionary Class
Although you will be creating your own classes, REALbasic also provides you with a
large library of classes that you will use in your applications.You’ve been exposed to
some of them already—Windows and Controls, for example.

The Dictionary class is a class provided by REALbasic that you’ll use a lot, and it
will serve as the superclass of our new Properties class.

A Dictionary is a class that contains a series of key/value pairs. It’s called a
Dictionary because it works a lot like a print dictionary works. If you’re going to look
up the meaning of a word in a dictionary, you first have to find the word itself.After
you’ve found the word you can read the definition that’s associated with it.

If you were to start from scratch to write your own program to do the same thing,
you might be tempted to use an Array.To implement an Array that associated a key
with a value, you would need to create a two-dimensional Array something like this:

Dim aDictArray(10,1) as String

aDictArray(0,0) = “My First Key”
aDictArray(0,1) = “My First Value”
aDictArray(1,0) = “My Second Key”
aDictArray(1,1) = “My Second Value”
aDictArray(2,0) = “My Third Key”
aDictArray(2,1) = “My Third Value”
// etc…

If you wanted to find the value associated with the key “My Second Key”, you would
need to loop through the AArray until you found the matching key.

For x = 0 to 10

If aDictArray(x, 0) = “My Second Key” Then



108 Chapter 3 Classes and Objects

// The value is aDictArray(x,1)

Exit

End If

Next

Using this technique, you have to check every key until you find the matching key
before you can find the associated value.This is okay if you have a small list, but it can
get a little time consuming for larger lists of values. One feature of a printed dictionary
that makes the search handy is that the words are all alphabetized.That means that when
you go to look up a word, you don’t have to start from the first page and read every
word until you find the right one. If the keys in the Array are alphabetized, the search
can be sped up, too.

Using the current Array, the best way to do this would be with a binary search,
which isn’t a whole lot different from the way you naturally find a word in the diction-
ary. For example, if the word you want to look up starts with an “m,” you might turn to
the middle of the dictionary and start your search for the word there.A binary search is
actually a little more primitive than that, but it’s a similar approach.To execute a binary
search for “My Second Key”, a binary search starts by getting the upper bound of the
Array (“10”, in this case) and cutting that in half.This is the position in the Array that
is checked first .

result = StrComp(aDictArray(5,0), “My Second Key”)

If the result of StrComp is 0, you’ve found the key. However, if the value returned is 
-1, then “My Second Key” is less than the value found at aDictArray(5,0). Because the
key of aDictArray(5,0) would be “My Sixth Key”, -1 is the answer we would get. So
the next step is to take the value 5 and cut it in half, as well (I’ll drop the remainder).
This gives us 2. Now you test against aDictArray(2,0) and you still get -1, so you cut
2 in half, which gives you 1.When you test aDictArray(1,0), you find that it matches
“My Second Key”, so you can now find the value associated with it.

This is all well and good if you happen to have a sorted two-dimensional Array con-
sisting of one of REALbasic’s intrinsic data types. If the Array isn’t sorted (and you have
to jump through some hoops to get a sorted two-dimensional Array), things begin to
get complicated.What happens if the key is not an intrinsic data type? 

These are really the two reasons for using Dictionaries—you don’t have to have a
sorted list of keys to search on, and your keys do not have to be limited to intrinsic data
types. It’s still easier (and possibly more efficient) to sequentially search through an Array
if the list of keys is relatively short.As the list grows larger, the more beneficial the use of
a dictionary becomes.

The Properties File Format
For our new subclass, we are going to be parsing a properties file. Java developers often
use properties files in their applications.The file format used by properties files is very
simple, so I will use this format in my example.



109Revisiting the StringParser Module

The format is a list of properties and an associated value separated (or delimited) by
an equal sign (=). In practice, the property names are usually written using dot notation,
even though that’s not necessary. Here’s an example:

property.color=blue

property.size=1

The format doesn’t distinguish between integers and strings or other data types, so
this unknown is something that the module will need to be prepared to deal with.
Because the properties file has a series of key/value pairs, a Dictionary is well suited to
be the base class.The Dictionary already has members suited for dealing with data that
comes in a key/value pair format, so our subclass will be able to use those properties and
methods, while adding only a few to deal with the mechanics of turning a string in the
properties file format into keys and values in the Dictionary.

Dictionary Properties

Dictionaries use hash tables to make searches for keys faster.Without getting into too
much detail, you can adjust the following property at times in order to optimize per-
formance:

Dictionary.BinCount as Integer

In most cases you’ll never need to adjust this because the class automatically adjusts it
as necessary, but there are times when you can improve performance.This is especially
true if you know you are going to have a particularly large dictionary with lots of
key/value pairs.

The following property returns the number of key/value pairs in the dictionary:

Dictionary.Count as Integer

Dictionary Methods

The following method removes all the key/value pairs from the Dictionary:

Sub Dictionary.Clear

This removes a particular entry, based on the key:

Sub Dictionary.Remove(aKey as Variant)

When using a Dictionary, you almost always access the value by way of the key.
That’s more or less the whole point of a Dictionary.You do not always know if any
given key is available in the Dictionary, so you need to find out if the key exists first
before you use it to get the associated value. Use the following method to do so:

Function Dictionary.HasKey(aKey as Variant) as Boolean

The values in a Dictionary are accessed through the Value function.

Function Dictionary.Value(aKey as Variant) as Variant



110 Chapter 3 Classes and Objects

Here’s an example of how to use the Value function:

Dim d as Dictionary

Dim s as String

d = new Dictionary

d.value(“My key”) = “My value”
If d.HasKey(“My Key”) Then
s = d.value(“My key”) // s equals “My value”

End If

The Dictionary class also provides you with a way to get access to the keys by their
index, which can be helpful in some circumstances, using the following method:

Function Dictionary.Key(anIndex as Integer) as Variant

There’s no guarantee that the keys are in any particular order, but this can be used in
circumstances where you want to get all the key/value pairs.Assume d is a Dictionary
with 100 key/value pairs:

Dim d as Dictionary

Dim x as Integer

Dim ThisKey, ThisValue as Variant

Dim s as String

// Assign 100 haves to d…

For x = 0 to 99 // 

ThisKey = d.Key(x)

ThisValue = d.Value(ThisKey)

s = s  + ThisKey.StringValue + “:” + ThisValue.StringValue + Chr(13)

Next

This example takes all the keys and values in the Dictionary and places each
key/value pair on a single line, separated by a colon.The ASCII value for a newline
character is 13, which explains the Chr(13).

The Lookup function is new for REALbasic 2005:

Function Dictionary.Lookup(aKey as Variant, defaultValue as Variant) as Variant

It works like the Value function, but instead of passing only the key, you also pass a
default value to be used if the key doesn’t exist in the dictionary.This saves you the near-
ly unbearable hassle of having to use the HasKey() function every time you try to get at
a value in the Dictionary.

Here’s how it works:

Dim d as Dictionary

Dim s as String

d = New Dictionary()

d.Value(“Alpha”) = “a”
d.Value(“Beta”) = “b”
s = d.Lookup(“Delta”, “d”) // s equals “d”



111Example: Creating a Properties Class

In this example, the key “Delta” does not exist, so d returns the default value “d” and
this value gets assigned to s.

This next example can be used in replacement of this older idiom, which is the way
you had to do it before the Lookup method was added:

Dim d as Dictionary

Dim s as String

d = New Dictionary()

d.Value(“Alpha”) = “a”
d.Value(“Beta”) = “b”
If d.HasKey(“Delta”) Then
s = d.Value(“Delta”)

Else

s = “d”
End If

Example: Creating a Properties Class
In the following pages, I will create a new class called Properties, which will be a sub-
class of the Dictionary class.

Properties.Constructor
There are three potential scenarios to consider for the Constructor.You may get the
data to be parsed for the Properties class from a file or a string, and you also may want
to be able to instantiate the class without any data so that you can add it later, either by
individually setting the key/value pairs or by some other method.

To accomplish this, I’ll overload the Constructor method with three versions. If I did
nothing, the default Constructor would be used, which takes no parameters.
However—and this is a big “however”—if I overload the Constructor class with any
other Constructor, the default Constructor goes away and is not accessible.The reason
is that it allows you to require that the class accept a parameter in the Constructor
because you do not always want the default Constructor available.

This means that you have to reimplement the default Constructor to retain the
capability to instantiate the class with no parameters, so that is what I do first:

Sub Constructor()

// Do nothing

End Sub

The second implementation will accept a string in the parameter.Whenever this
Constructor is called, the class automatically parses the file as part of the Constructor.
This means that after the class is instantiated, the key/value pairs are accessible, with no
further steps required.

Sub Constructor(myPropertyString as String)



112 Chapter 3 Classes and Objects

If myPropertyString <> “” Then

Me.parsePropertyFile(myPropertyString)

Else

// An error as occurred

End If

End Sub

The following implementation accepts a FolderItem. It tests to make sure the
FolderItem is readable and writeable, both of which are functions of the FolderItem
class. If the FolderItem instance is readable and writeable, it sends the file to the over-
loaded parsePropertyFile function.

Sub Constructor(myPropertyFile as FolderItem)

If myPropertyFile.exists Then

If myPropertyFile.IsReadable and myPropertyFile.IsWriteable Then

Me.parsePropertyFile(myPropertyFile)

Else

// An error has occurred

End If

Else

// An error has occurred

End If

End Sub

Properties.get
Function get(aKey as string, aDefault as string) As string

Dim s as String

s = Me.Lookup(aKey, aDefault)

End Function

The get() function is also overloaded to take only one string as a parameter.When
this occurs, I need to test first to see whether the Dictionary has the key passed in the
parameter, and if it doesn’t, respond appropriately.

Function get(aKey as string) As string

Dim s as String

If Me.HasKey(aKey) = True Then

s = Me.Value(aKey)

Return

Else

// Handle the Error



113Example: Creating a Properties Class

Return “”
End If

End Function

You can accomplish the equivalent by using the Dictionary’s Lookup() function.
Remember that nothing is stopping you from calling the Lookup() function directly
from other parts of your program because it is a public method of Dictionary.

Function get(aKey as string) As string

Dim s as String

s = Me.Lookup(aKey, “”)
End Function

I can also replicate the same functionality by calling the first get() function from the
second:

Function get(aKey as string) As string

Dim s as String

s = Me.get(aKey, “”)
End Function

Of the three options I have given for implementing function get(aKey) as String,
the last option is preferable, in my opinion.You may be wondering why you should
bother implementing the get() method at all, because you can use the native
Dictionary methods anyway. One reason is because get() provides a simpler syntax.
Dictionaries can use Variants for keys and values, but I really care only about strings,
so get() makes the assumption that it’s a string. More importantly, because of the two
versions of get() that I am using, I can change the implementation in the future of how
the default value is generated when no default value is given, or add tests to the code to
make sure that the default value that is passed is a valid default value.

There is yet another approach to implementing get() that accomplishes the same
goals, more or less: instead of overloading get(), you can override and overload
Lookup() to achieve the same effect.

I’ll override Lookup() first. Remember that to override a method, the signature has
to be the same, which means the parameters must accept Variants.Also, the reason I
said I liked using get() was that it gave me an opportunity to test for legal values first.
You can do the same here, by calling the parent class’s version of Lookup after you’ve
tested the values:

Function Lookup(aKey as Variant, aDefaultValue as Variant) as String

Dim key,default as String

key = aKey.StringValue

default = aDefaultValue.StringValue

If default <> “” Then

Return Dictionary.Lookup(key, default).StringValue()

End If

End Function



114 Chapter 3 Classes and Objects

I can also keep things simple by using an overloaded version of Lookup() that accepts
only a key in the parameter and handles the default value automatically:

Function Lookup(aKey as Variant) as String

Dim key,default as String

key = aKey.StringValue

default = aDefaultValue.StringValue

If default <> “” Then

Return Dictionary.Lookup(key, default).StringValue()

End If

End Function

Note that in both cases, I returned a string rather than a Variant. REALbasic doesn’t
pay attention to the return value when determining whether a method is overloaded.
This allows me to force the return of a string, even though the original Lookup() imple-
mentation returns a Variant.

Properties.set
In addition to get(), I also implemented a set() subroutine.Again, this is for simplici-
ty’s sake because I could also just call the Dictionary.Value() function directly. It also
means I can test the values before assigning them, which always helps. I also use the
Assigns keyword, which alters the way that the method can be called in your program.
An example of how it is used follows this example:

Sub set(aKey as string, assigns aProperty as string)

If aKey <> “” and aProperty <> “” Then

Me.Value(aKey) = aProperty

Else

// An error occurred

End if

End Sub

By using the Assigns keyword in the parameter, you can set a key/value pair using
the following syntax, which mirrors the syntax used for the Value() function of
Dictionary:

Dim prop as Properties

prop = New Properties()

prop.set(“FirstKey”) = “FirstValue”

Properties.parsePropertyFile
The first step to parsing the file is to split the string into individual lines. I have two
functions for this—one that accepts a string and another that accepts a FolderItem.The
string version splits the string on a newline character (ASCII value of 13) and then
cycles through each line, parsing the lines individually.



115Example: Creating a Properties Class

Protected Sub parsePropertyFile(myFile as string)

Dim my_array(-1) as String

Dim line as String

my_array = myFile.split(Chr(13))

For Each line In my_array

Me.parseLine(line)

Next

End Sub

A second version of parsePropertyFile accepts a FolderItem as a parameter.
FolderItems are discussed at length later in the book, but the code in this example is
sufficiently self-explanatory that you get the general idea of what is happening.When
you open a FolderItem as a text file, it returns a TextInputStream.A
TextInputStream allows you to read it line by line by calling the ReadLine() function.

Protected Sub parsePropertyFile(myPropertyFile as folderItem)

Dim textInput as TextInputStream

Dim astr as string

If myPropertyFile Is Nil Then

// An error has occurred

Return

End If

If myPropertyFile.exists Then

Me.file = myPropertyFile

textInput = me.file.OpenAsTextFile

Do

astr=textInput.ReadLine()

Me.parseLine(astr)

Loop Until textInput.EOF

textInput.Close

Else

// An error has occurred

End If

End Sub

Properties.parseLine:
Each line is parsed individually.

Protected Sub parseLine(my_line as string)

Dim aKey, aValue as string



116 Chapter 3 Classes and Objects

// Split line at “=”, and ignore comments
If Left(my_line, 1) <> “#” Then

If CountFields(my_line, “=”)= 2 Then

aValue = Trim(NthField(my_line, “=”, 2))
aKey = Trim(NthField(my_line, “=”, 1))

Me.set(aKey) = aValue

End If

End If // starts with “#”

End Sub

The first thing I test for is to see whether the line starts with a # character. In prop-
erty files, a # at the beginning of a line indicates a comment, and because comments are
only for human consumption, I can safely ignore them in my program.

The next step is to split the line into two values, one for the property and the other
for the value.Although I could use the Split() function, I have chosen to use the
CountFields/NthField combination primarily because it makes it a little easier to
count how many fields there are. Because each property is separated from its value by an
equal sign, I will parse the line only if there are two fields in the line (which is the same
thing as saying that there is only one “=” sign on the line).

The property name, or key, is in the first field, and the value is in the second field.
When extracting the values using NthField, I trim the results, which removes white-
space on either side of the string.This accounts for situations where there are extra
spaces between the “=” sign and the values themselves.As a result, both of these formats
will be parsed correctly:

aProperty=aValue

aProperty = aValue

Finally, I use the set() method to add the key/value pair to the Dictionary.
Now that all the members of the class are implemented, here is an example of how

you can use the class:

Dim prop as Properties

Dim s as String

Dim propStr as String

propStr = “First=FirstValue” + Chr(13) + “Second=SecondValue”
prop = New Properties(propStr)

s = prop.get(“First”) // s equals “FirstValue”
prop.set(“Third”) = “ThirdValue”
s = prop.get(“Third”) // s equals “ThirdValue”



117Data-Oriented Classes and Visual Basic Data Types

Data-Oriented Classes and Visual Basic Data
Types
In the previous chapter, I said that some data types in Visual Basic don’t exist in
REALbasic as data types.The reason is that REALbasic often has an object-oriented
alternative. For example, an intrinsic data type in Visual Basic is a Date, but in
REALbasic it’s a class. In other situations, I said that similar functionality could be imple-
mented with the MemoryBlock class. Now that you know about classes, I can review
these two classes in more detail and complete the discussion of data types and how
REALbasic compares with Visual Basic. I will also review the Collection class, because
it is very similar to the Dictionary class. REALbasic recommends sticking to the
Dictionary class for new projects and retains the Collection class only for compatibili-
ty with Visual Basic and earlier versions of REALbasic.

Date Class
Date is an intrinsic data type in Visual Basic, but it’s a class in REALbasic. It measures
time in seconds since 12:00 a.m., January 1, 1904.The total number of seconds since that
time is how a particular date and time are identified, and it is stored in the
TotalSeconds property of the Date class as a double.

The Variant type treats Dates in a special way to help maintain compatibility with
Visual Basic.The VarType() function returns a 7 as the data type for dates, rather than 9,
which is what is typically done with objects. Basically, all the Variant is doing is storing
the TotalSeconds property as a double.

ParseDate Function

There is a ParseDate helper function that accepts a date formatted as a string and parses
it into a Date object. It returns a Boolean representing success or failure in parsing the
string that was passed to it. If it returns a Boolean, how then do you pass it a string and
get a Date object back? The function signature looks like this:

REALbasic.ParseDate(aDate as String, aParsedDate as Date) as Boolean

The answer is that objects, like Date, are passed by reference, rather than by their
value. I wrote earlier that variables that were one of REALbasic’s intrinsic data types
were called scalar variables.These variables refer to the value held in memory, whereas
variables that referred to objects were references to the object, like a pointer to a partic-
ular section of memory.When you pass the Date object to the ParseDate function, the
ParseDate function does its work on the Date object passed to it so that when it
changes a value of the Date object, that change is reflected in the original variable that
was passed to the function.

Dim d as Date

Dim s,t as String

Dim b as Boolean



118 Chapter 3 Classes and Objects

s = “12/24/2004”
b = ParseDate(s, d) // b is True

t = d.ShortDate // t = “12/24/2004”

Note that all you have to do is Declare d as a Date; you do not need to instantiate
it prior to passing it to the ParseDate function.

You can also do the same trick with scalar variables if you use the ByRef keyword in
the function signature.There are actually two keywords here—ByRef and ByVal—and
scalar variables are, by default, passed ByVal.

The acceptable formats of the string are the following:

1/1/2006

1-1-2006

1.1.2006

1Jan2006

1.Jan.2006

1 Jan. 2006

Date Properties

TotalSeconds reflects how the date and time are actually stored in a Date object.When
you instantiate a new Date object, it automatically gets set to the current date and time.

Date.TotalSeconds as Double

You can also get or set different components of the time with the following proper-
ties. Changes made to these will be reflected in TotalSeconds:

Date.Second as Integer

Date.Minute as Integer

Date.Hour as Integer

Date.Day as Integer

Date.Month as Integer

Date.Year as Integer

The following two methods set the date or date and time using the standard SQL
format used in databases.This comes in handy when dealing with databases.

Date.SQLDate as String

You can get or set the date using the format YYYY-MM-DD.

Date.SQLDateTime as String

You can get or set the date using the format YYYY-MM-DD HH:MM:SS.
These properties are all read-only and return the date or time in different formats,

according to your wishes:

Date.LongDate as String

Date.LongTime as String

Date.ShortDate as String

Date.ShortTime as String

Date.AbbreviatedDate as String



119Data-Oriented Classes and Visual Basic Data Types

The following example shows how they are used.

Dim d as new Date()

Dim dates() as String

d.TotalSeconds = 3204269185

dates.append “TotalSeconds: “ + format(d.TotalSeconds, “#”)
dates.append “Year: “ + str(d.Year)

dates.append “Month: “ + str(d.Month)

dates.append “Day: “ + str(d.Day)

dates.append “Hour: “ + str(d.Hour)

dates.append “Minute: “ + str(d.Minute)

dates.append “Second: “ + str(d.Second)

dates.append “--”
dates.append “SQLDateTime: “ + d.SQLDateTime

dates.append “SQLDate: “ + d.SQLDate

dates.append “--”
dates.append “DayOfWeek: “ + str(d.DayOfWeek)

dates.append “DayOfYear: “ + str(d.DayOfYear)

dates.append “WeekOfYear: “ + str(d.WeekOfYear)

dates.append “--”
dates.append “LongDate: “ + d.LongDate

dates.append “LongTime: “ + d.LongTime

dates.append “ShortDate: “ + d.ShortDate

dates.append “ShortTime: “ + d.ShortTime

dates.append “AbbreviatedDate: “ + d.AbbreviatedDate

EditField1.text = join(dates, EndOfLine)

I executed this action using three different locale settings (which I changed on my
Macintosh in System Preferences, International).The first setting was the standard (for
me) setting of United States, using the Gregorian calendar. I followed that by setting my
locale to France, and then Pakistan, using the Islamic civil calendar.The only properties
that change according to your locale are the LongDate, LongTime, ShortDate,
ShortTime, and AbbreviatedDate.

United States, Gregorian Calendar:

TotalSeconds: 3204269185

Year: 2005

Month: 7

Day: 15

Hour: 10

Minute: 46

Second: 25

--

SQLDateTime: 2005-07-15 10:46:25

SQLDate: 2005-07-15

--



120 Chapter 3 Classes and Objects

DayOfWeek: 6

DayOfYear: 196

WeekOfYear: 29

--

LongDate: Friday, July 15, 2005

LongTime: 10:46:25 AM

ShortDate: 7/15/05

ShortTime: 10:46 AM

AbbreviatedDate: Jul 15, 2005

France, Gregorian Calendar:

LongDate: vendredi 15 juillet 2005

LongTime: 10:46:25

ShortDate: 15/07/05

ShortTime: 10:46

AbbreviatedDate: 15 juil. 05

Pakistan Islamic Civil Calendar:

LongDate: Friday 8 Jumada II 1426

LongTime: 10:46:25 AM

ShortDate: 08/06/26

ShortTime: 10:46 AM

AbbreviatedDate: 08-Jumada II-26

MemoryBlock Class
The MemoryBlock class is a catch-all class that lets you do a lot of interesting things
with REALbasic. MemoryBlocks are generally helpful when dealing with any binary
data and can replace some of the missing data types from Visual Basic.They are com-
monly used with Declares, which are statements in REALbasic that allow you to access
functions in shared libraries.

A MemoryBlock is exactly what is says it is: it’s a stretch of memory of a certain
byte length that you can access and manipulate.

The NewMemoryBlock Function

REALbasic.NewMemoryBlock(size as Integer) as MemoryBlock

There are two ways to instantiate MemoryBlocks in REALbasic.The first is the
old-fashioned way, using the New operator, and the second uses the global
NewMemoryBlock function.

Dim mb as MemoryBlock

Dim mb2 as MemoryBlock

mb = New MemoryBlock(4)

mb2 = NewMemoryBlock(4)



121Data-Oriented Classes and Visual Basic Data Types

You may have to look closely to see the difference between the two techniques.The
second one is missing a space between New and MemoryBlock because it’s a global
function and not a Constructor for the MemoryBlock class.Whether you use the tra-
ditional way of instantiating an object or the NewMemoryBlock function, you need to pass
an integer indicating how many bytes the MemoryBlock should be.The integer can be
0, but some positive number has to be passed to it (a negative number causes it to raise
an UnsupportedFormat exception).

In this example, both MemoryBlocks are 4 bytes long.The fact that a
MemoryBlock can be of an arbitrary length is what makes it so flexible. It can be any-
where from 0 bytes to however much memory your computer has available (the
NewMemoryBlock function returns Nil if there is not enough memory to create the
MemoryBlock).

Visual Basic has a Byte data type that takes up 1 byte.This can be replicated with
MemoryBlock quite easily:

Dim bytetype as MemoryBlock

Dim i as Integer

bytetype = NewMemoryBlock(1)

bytetype.byte(0) = 1

i = bytetype.byte(0) // i equals 1

MemoryBlock provides a slew of functions to let you get at the individual bytes it
contains. I’ll review those shortly.

MemoryBlock Properties

This property refers to the order in which bytes are sequenced when representing a
number:

MemoryBlock.LittleEndian as Boolean

I know that’s kind of an obtuse sentence, but that’s about the best I can do at the
moment.As is often the case, an example will be more illuminating. Recall that an inte-
ger is made up of 4 bytes.When the computer stores or processes those 4 bytes, it
expects them to be in a particular order.This makes perfect sense.The number 41 is not
the same as 14, for instance.The problem is that not all operating systems use the same
standard. Intel x86 platforms use one type and Macintosh uses another. (With the recent
announcement that Macs are moving to Intel chips, this may be less of a problem.)
Linux runs on Intel, so you can expect those applications to be the same as those com-
piled for Windows.

In any event, the example is this. Let’s use a really big number, like 10 million. If you
look at that number expressed in hexadecimal format on a Macintosh, it looks like this:

00 98 96 80

If you do it on an Intel machine, which is LittleEndian, it looks like this:

80 96 98 00



122 Chapter 3 Classes and Objects

The terms big-endian and little-endian refer to where the “most significant byte” is in
position. In big-endian format, the most significant byte comes first (which also happens
to be the way our decimal number system works. In little-endian systems, the least sig-
nificant byte comes first.According to WikiPedia, this particular nuance can also be
referred to as byte order.

You can both read and write to this property. If you are writing a cross-platform
application, you need to be aware of this if you will be sharing binary data across 
systems.

MemoryBlock.Size as Integer

You can read and write to this property. It refers to the size, in bytes, of this
MemoryBlock. If you modify the Size, the MemoryBlock will be resized. Bear in
mind that if you make it smaller than it currently is, you might lose data.

MemoryBlock Methods

All five of the following functions return a value of the given type, at the location speci-
fied by the Offset parameter:

Function MemoryBlock.BooleanValue(Offset as Integer) as Boolean

Function MemoryBlock.ColorValue(Offset as Integer) as Color

Function MemoryBlock.DoubleValue(Offset as Integer) as Double

Function MemoryBlock.SingleValue(Offset as Integer) as Single

Function MemoryBlock.StringValue(Offset as Integer, [Length as Integer]) as String

Because each of these data types has a predefined size (except for string), all you do is
pass the Offset to it. If you call MemoryBlock.DoubleValue(0), the MemoryBlock
will return a double based on the first 8 bytes of the MemoryBlock.

When using StringValue, you may specify the length of the string, but you do not
have to. If you don’t, it will just return a string from the offset position to the end of the
MemoryBlock.The string can contain nulls and other non-normal characters, so some
caution may be necessary when doing this, unless you know for certain what values you
will come across.

These three functions work very much like their global function cousins LeftB, MidB,
and RightB:

Function MemoryBlock.LeftB(Length as Integer) as MemoryBlock

Function MemoryBlock.MidB(Offset as Integer, [Length as Integer]) as MemoryBlock

Function MemoryBlock.RightB(Length as Integer) as MemoryBlock

They do the same thing except that instead of returning strings, they return
MemoryBlocks.

Get or set a 1-byte integer:

Function MemoryBlock.Byte(Offset as Integer) as Integer

Get or set a signed, 2-byte integer:Function MemoryBlock.Short(Offset as Integer)
as Integer



123Data-Oriented Classes and Visual Basic Data Types

Get or set an unsigned 2-byte integer.:Function MemoryBlock.UShort(Offset as
Integer) as Integer

Get or set a 4-byte integer, just like REALbasic’s native type.

Function MemoryBlock.Long(Offset as Integer) as Integer

These four functions, Byte, Short, Ushort, and Long, return integers based on their
offset position.They return integers even though they often refer to data that requires
fewer bytes to represent, because an integer is really the only thing they can return—it’s
the smallest numeric data type.The primary use of this is when handling Declares,
because it allows you to pass values and access values using a broader selection of data
types than those offered by REALbasic.

Also, note that when I say that one of these functions “gets or sets a 2-byte integer,” I
really mean an integer within the range that can be expressed by 2 bytes.An integer is an
integer, and it takes up 4 bytes of memory when REALbasic gets hold of it, even if it can
be stored in a MemoryBlock with fewer bytes.

MemoryBlock.Cstring, MemoryBlock.Pstring, MemoryBlock.Wstring, MemoryBlock.Ptr:

Function CString(Offset as Integer) as String

Returns a String terminated.

Function PString(Offset as Integer) as String

Function WString(Offset as Integer, [Length as Integer]) as String

Function Ptr(Offset as Integer) as MemoryBlock

A pointer to an address in memory. Used by Declares.

Example: Mimicking a Structure with a MemoryBlock

I’d be getting ahead of myself if I gave an example of how to use a MemoryBlock with
a Declare, so I’ve come up with another example. One advantage to using a
MemoryBlock (in some cases) is that you can store data in it more efficiently and can
often access it faster.

To illustrate this, I’ve developed two classes, both of which emulate a structure.The
first is a class that has only properties, and the second is a subclass of MemoryBlock.
These two structurelike classes will hold data representing the two-character United
States state abbreviation, the five-digit ZIP code, a three-digit area code, and a seven-digit
phone number.

The first class is called Struct, and it has the following properties:

Struct.State as String

Struct.Zip as Integer

Struct.AreaCode as Integer

Struct.PhoneNumber as Integer

If I were to save these items as strings, I would need 17 bytes to represent it—one for
each character.The Struct class already reduces that to 14 bytes because it uses Integers



124 Chapter 3 Classes and Objects

for the ZIP code, the area code, and the phone number, all of which can be expressed as
Integers.

Implementing the MemoryBlock structure will be a little different because to create
the MemoryBlock, I first have to know how many bytes to allocate for it. I could allo-
cate 14 bytes, just like the class version, but I would be allocating more bytes than I
need. For example, an area code is three digits, meaning it can be anywhere from 0 to
999.Although an Integer can represent that number, an integer takes 4 bytes and you
don’t need 4 bytes to represent 999; all you need are 2 bytes.The same is true for the
ZIP code.The only number that requires an Integer is the phone number.This means
we can shave off 4 bytes and create a MemoryBlock of only 10 bytes.That’s a fairly
significant size difference.

The next question is how do we best implement the MemoryBlock. I could use the
NewMemoryBlock function and pass it a value of 10 to create an appropriate
MemoryBlock, but that means I’d have to keep passing 10 to the function each time I
wanted to create one and that seems to me to be a bit of a hassle; because I’m a little
lazy by nature, I’d like to avoid that if at all possible.

The next option would be to instantiate a New MemoryBlock, but that, too, requires
that I pass a parameter to the Constructor and I don’t want to do that either.All I want
is a class that I can instantiate without having to think about it.The answer is to subclass
MemoryBlock and overload the Constructor with a new Constructor that does not
take any integers as a parameter.Then, while in the Constructor, call the Constructor
of the superclass. Create a subclass of MemoryBlock and call it MemBlockStruct.
Create the following Constructor:

Sub MemBlockStruct.Constructor()

MemoryBlock.Constructor(10)

End Sub 

Now you can do this to create a 10-byte MemoryBlock:

Dim mb as MemBlockStruct

Dim sz as Integer

mb = New MemBlockStruct

sz = mb.Size // sz = 10

Because this is a subclass of MemoryBlock, you can still call the original constructor
and pass any value you want to it, like so:

Dim mb as MemBlockStruct

Dim sz as Integer

mb = New MemBlockStruct(25)

sz = mb.Size // sz = 25

If you don’t want that to happen, you need to override that Constructor and ignore
the value that is passed to it:

Sub MemBlockStruct.Constructor(aSize as Integer)

Me.Constructor()

End Sub



125Data-Oriented Classes and Visual Basic Data Types

Note that I could have called the superclass MemoryBlock.Constructor(10), like I
did in the other Constructor, but that would mean that if at a later time I decided I
wanted to add 1 or more bytes to the MemBlockStruct class, I would have to go back
and change the value from 10 to something else in both Constructors.This way, should
I decide to do that, I need to change only the MemBlockStruct.Constructor() method
and no other.

I now have done enough to have two workable classes. Here is how they can be used
in practice:

Dim ms as MemBlockStruct

Dim ss as Struct

Dim a,b,c as Integer

ss = new Struct()

ss.State = “NH”
ss.Zip = 3063 // the first character is “0”, which is dropped
ss.AreaCode = 603

ss.PhoneNumber = 5551212

ms = new MemBlockStruct()

ms.StringValue(0,2) = “NH”
ms.Short(2) = 3063

ms.Short(4) = 603

ms.Long(6) = 5551212

a = ms.Short(2) // a = 3063

b = ms.Short(4) // b = 603

c = ms.Long(6) // c = 5551212

Accessing the values of the MemBlockStruct class by the offset position is a little
clunky, so I can optionally take the step of creating methods for this class to make it easi-
er. Here is an example for how the methods would look for setting the state abbrevia-
tion:

Function MemBlockStruct.setState(aState as String) as String

If LenB(aState) = 2 Then

me.StringValue(0,2) = aState

End If

End Function

Function MemBlockStruct.getState() as String

Return me.StringValue(0,2)

End Function

Collection Class
The Collection class is another class, similar to the Dictionary class.The documenta-
tion for REALbasic recommends that you use the Dictionary class instead, but that
they have retained the collection class for reasons of compatibility with Visual Basic.



126 Chapter 3 Classes and Objects

The big differences between a Collection and a Dictionary are these:
n Collections can only have strings as their keys.
n A Collection does not use a hash table like a Dictionary does.This means that

the time required searching for a value is determined by how many key/value
pairs are in the collection.The larger the collection, the longer, on average, it will
take to find your value.

Collection Methods

Collection uses a slightly different terminology than Dictionaries do.The Add method
is roughly equivalent to Value() for Dictionaries, in the sense that you use it to add
items to the Collection.

Sub Collection.Add(Value as Variant, Key as String)

Much like it does with a Dictionary, the Count property returns the number of
items in the Collection:

Function Collection.Count As Integer

As you would expect, you can get and remove values using the key:

Function Collection.Index(Key as String) as Variant

Function Collection.Remove(Key as String) as Variant

You can also get or remove an item by referring to it’s indexed position:

Function Collection.Index(Index as Integer) as Variant

Function Collection.Remove(Index as Integer) as Variant

When getting or removing an item in a collection using the index, remember that
Collection indexes are 1 based, not 0 based like Arrays and Dictionaries.

Advanced Techniques
In this section I will review some relatively more advanced programming techniques you
can use to extend the functionality of your REALbasic classes.

Interfaces and Component-Oriented Programming
Interfaces are an alternative to subclassing.With subclassing, one class can be a subclass of
another. Interfaces do not deal in subclasses.When talking about Interfaces, you say that
a class implements a particular Interface.

Interfaces are another means by which you encapsulate your program.This is also one
of those areas where the term is used differently in different programming languages. In
REALbasic, an interface is used much in the same way that the term is used with Java.
Other languages, such as Objective-C, refer to a similar concept as a protocol.



127Advanced Techniques

Nevertheless, when one class is a subclass of another, it shares all the same members
with the parent class.Although the subclass may optionally reimplement or override a
method from the parent class, it doesn’t have to reimplement any method unless it wants
to modify what that method does.The benefit to this, so the story goes, is that it enables
code reuse. Simply put, you don’t have to write any new methods for the subclass to get
the functionality resident in the superclass.

There are some cases when you have two objects (or classes) that are related and that
perform the same tasks, but they both do it in such a fundamentally different way that
establishing the class/subclass relationship doesn’t really buy you anything.At the same
time, it’s convenient to formally establish this relationship so that the different objects can
be used in similar contexts. If two class share a common set of methods, it is possible to
link these two classes together by saying they share a common interface.This task
involves defining the interface itself and then modifying to classes to indicate that they
both implement this common interface.

When this is the case, no code is shared. In the immediate sense, at least, code reuse
isn’t the object of this activity, but as you will see, it does make it possible to streamline
the code that interacts with objects that share the same interface, which is why it can be
so helpful.

When I talked about encapsulation, I used the fast-food restaurant drive-up window
as an example.The fast-food restaurant I was thinking about when I wrote that example
had three points of interaction for me: the first was the menu and speaker where I placed
my order, the second was the first window, where I paid, and the third was the second
window where I picked up my order. I said that the fast-food restaurant was encapsulat-
ed because I only had three touch points where I interacted with it, even though a
whole lot happened between the time I placed my order and picked up my order.

Fast-food restaurants aren’t the only places that use the drive-up window “interface.”
Banks use them, too. Even liquor stores in Texas do.At least they did when I lived in
Texas—at that time the drinking age was 19, and as a 19-year-old living in Texas, I
thought that drive-up liquor stores were a very clever idea. I know better than that now.
But I digress.

The point is that fast-food restaurants, banks, and liquor stores really don’t have all
that much in common, other than the drive-up window.As a consumer of hamburgers,
liquor, and money (for hamburgers and liquor), I go to each place for entirely different
reasons, but there is an advantage to my knowing that all three locations have drive-up
windows. From a practical perspective, it means that I can drive to all three locations and
never have to get out of my car.As long as I am in my car, I can interact with things that
have drive-up windows. I might drive to the bank for a little cash, then swing by the
fast-food restaurant for a hamburger and cola, followed by a quick jaunt to the liquor
store for an aperitif. Same car, same guy at all three locations.

In my own humble opinion, I think interfaces are underrated and underused in
REALbasic.Whenever you read about object-oriented programming, you almost invari-
ably read about classes and objects and inheritance and things like that. Based on my
own experience, I used to try to squeeze everything into a class/subclass relationship,



128 Chapter 3 Classes and Objects

regardless of whether it made sense to do so, when I could more easily have implement-
ed an interface and be left with a more flexible program. So my advice to you (painfully
learned, I might add) is to give due consideration to interfaces when you are thinking
about how to organize your program.

Interfaces seem to have higher visibility in the Java programming world. I really began
to see and understand their usefulness when I worked with the Apache Cocoon content-
management framework.At the heart of Cocoon is the Cocoon pipeline, and the
pipeline represents a series of steps that a piece of content must take to be displayed in a
web page, or written to a PDF file. Basically, there are three stages:

1. The content must first be generated. Perhaps it resides as a file on the local file sys-
tem, or it could live somewhere out on the Web, or it could even be stored in a
database or some other dynamic repository.

2. The content must then be converted or transformed into the format required for
the particular task at hand. If you are using Cocoon to manage your website, you
might take the source data and transform it into HTML.

3. Finally, the content must be sent to the destination—either to a web browser at
some distance location or into a file of a particular format to be stored on your
computer.

In all three cases, the basic task is the same, but the specific steps taken within each stage
are different, depending on the situation.

Cocoon uses a component-based approach; a component is basically an object that
implements a particular interface. In the Cocoon world of components there are
Generators,Transformers, and Serializers.These are not classes—they are interface defini-
tions that say that any object that is a Generator is expected to behave in a certain way.
There is a component manager that manages these components and shepherds the con-
tent through the pipeline as it goes from component to component.

The task or activity that a Generator must do is simple. It has to accept a request for
content in the form of a URL, and it returns XML.That’s it. Regardless of where the
content comes from—a local file, a remote file, or a database, the same basic activity gets
done.All the component manager knows about the Generator is that it can ask for a file
at a given URL, and it can expect a file in return in XML format.

Now, if you are a programmer and you need to supply Cocoon with content, all you
have to do is write an object that implements the interfaces specified by the Generator
component and plug it into the pipeline. It’s as simple as that.That’s the beauty of com-
ponents—you can mix and match them, plug them in, and take them out.

If you were to try the same thing using classes, you’d find your life to be extremely
more complicated.You’d have to start with some abstract “Generator” class that had meth-
ods for requesting data and returning data as XML.Then you’d have to write a subclass for
each kind of content you might want to retrieve and then override the associated meth-
ods. But what happens if you want to use a class as a generator that doesn’t subclass your
“Generator” class? Because REALbasic supports only single inheritance, each class can
have only one superclass, and this imposes some limits on what you can do.



129Advanced Techniques

Interfaces, on the other, do not have the same limitations.A class can implement any
number of interfaces, as long as it has the right methods.

Interfaces in REALbasic

To demonstrate how interfaces can be put to use in REALbasic, I’ll define an Interface
and then modify the Properties class to work with this interface.The interface will also
be used extensively in the following section when I talk about how to create your own
customized operator overloaders in REALbasic.

Before I get started, I should say that REALbasic uses interfaces extensively with
Controls in a process called Control Binding. In the chapters that follow, I will revisit
interfaces and show you how REALbasic uses them to make it easier to program your
user interface.

If you recall, the Properties class implemented earlier in the chapter was designed to
be able to accept both a string or a FolderItem in the Constructor.This is good
because it makes it convenient to use, but it gets a little ugly when you get inside to
look at the guts of the program.The reason I don’t like it is that there are also two
ParsePropertyFile methods, one for strings and the other for FolderItems, and each
one is implemented differently. I don’t like this because if I want to make a change in
the future, I need to make sure that the change doesn’t break either method. I’d rather
have to check only one.

I will repeat them here to refresh your memory:

Protected Sub parsePropertyFile(myFile as string)

Dim my_array(-1) as String

Dim line as String

my_array = myFile.split(Chr(13))

For Each line In my_array

Me.parseLine(line)

Next

End Sub

This first version accepts a string in the parameter and then does two things. First, it
splits the string into an Array and then it cycles through that Array to parse each indi-
vidual line. Next, take a look at the FolderItem version:

Protected Sub parsePropertyFile(myPropertyFile as folderItem)

Dim textInput as TextInputStream

Dim astr as string

If myPropertyFile Is Nil Then

// An error has occurred

Return

End If



130 Chapter 3 Classes and Objects

If myPropertyFile.exists Then

Me.file = myPropertyFile

textInput = me.file.OpenAsTextFile

Do

astr=textInput.ReadLine()

Me.parseLine(astr)

Loop Until textInput.EOF

textInput.Close

Else

// An error has occurred

End If

End Sub

This, too, can be divided into two basic steps. First, the file is opened and a
TextInputStream is returned, and second, a loop cycles through the TextInputStream
parsing each line in the file.A much better design would be to have the “looping” take
place in one method, and the other prep work take place elsewhere.To do that, we need
to find a common way to loop through these two sources of data so that they can be
handled by one method.

The obvious and easiest-to-implement solution would be to get a string from the
TextInputStream and then pass that string to the parsePropertyFile method that
accepts strings. Unfortunately, that doesn’t help me explain how to use interfaces, so I’m
not going to do it that way. Instead, I’m going to implement an interface called
ReadableByLine and then pass objects that implement the ReadableByLine interface
to a new, unified parsePropertyFile method.

There are advantages to doing it this way—some of which are immediate, whereas
others are advantageous later on when you want to do something else with this class. In
fact, this interface will come in even handier in the next section when I am writing cus-
tom operators for the Properties class.

To implement the class interface, you first have to decide which methods will com-
pose the interface.To make it the most useful, you want to use ones that will be applica-
ble to the most situations. In the previous implementation of the parsePropertyFile
methods, the loop that iterated over the TextInputStream is most promising. (Because
Arrays are not really classes, the techniques used to iterate over the Array aren’t applica-
ble.) The methods are used by the TextInputStream class, and the code in question is
this:

Do

astr=textInput.ReadLine()

Me.parseLine(astr)

Loop Until textInput.EOF



131Advanced Techniques

If you look up TextInputStream in the language reference, you’ll find that there are
two implementations of Readline, and that EOF is a method.Their signatures follow:

TextInputStream.ReadLine() as String

TextInputStream.ReadLine(Enc as TextEncoding) as String

TextInputStream.EOF() as Boolean

There are other methods used by TextInputStream, but these are the ones I used
previously.The language reference also says that the TextInputStream implements the
Readable class interface. (The current language reference is in a state of flux as I write
this, so I can only assume it still says this, but it’s possible that it may not.) If REALbasic
has already defined an interface, that’s worth looking into. Readable is also implemented
by BinaryStream, and the interface has two implementations of a Read method:

.Read(byteCount as Integer) as String

.Read(byteCount as Integer, Enc as Encoding) as String

Rather than reading text line by line, it reads a certain number of bytes of data, which
isn’t what we need.Therefore, inspired by the Readable title, I’ll create a
ReadableByLine interface that can be implemented by any class that wants you to be
able to read through it line by line.

You create a class interface just like you create a class or a module. In the same proj-
ect that contains the Properties class, click the Add Class Interface button on the
Project toolbar, and you’ll be presented with an screen much like the one used for
modules and classes.The primary difference is that all your options are grayed out except
Add Method; that’s because interfaces contain only methods.

All you do when creating an interface is define the signature of the method—you do
not implement it in any way.To implement the ReadableByLine interface, we’ll imple-
ment the ReadLine() and EOF() methods like those used by TextInputStream. I’ll
also add another called GetString(), the usefulness of which will become evident later.

.ReadLine() as String

.ReadLine(Enc as TextEncoding) as String

.EOF() as Boolean

.GetString() as String

The next step is to go back to the Properties class and make the following modifica-
tions.

Implement the following parsePropertiesFile method:

Protected Sub parsePropertyFile(readable as ReadableByLine)

Dim aString as String

If Not (Readable Is Nil) Then

Me.readableSource = readable

Do

aString=readable.readLine()

me.parseLine(aString)



132 Chapter 3 Classes and Objects

Loop Until readable.EOF

End if

End Sub

Note that in the parameter, we refer to ReadableByLine exactly as if it were a class
and readable was an instance of the class.Any variable that is declared an “instance” of
ReadableByLine only has access to the methods of the interface, regardless of what the
underlying class of the object is (which can be anything as long as it implements the
ReadableByLine methods).

Next, the Constructors need to get updated. Instead of supplying a FolderItem or
a string to the parsePropertyFile method, we want to send objects that implement the
ReadableByLine interface.

The TextInputStream implements those methods.After all, that’s where we got
them from, but this also presents a problem. Because TextInputStream is a built-in
class, I just can’t go in and say that TextInputStream implements the ReadableByLine
interface. REALbasic doesn’t provide a mechanism for that.

The next possibility is to create a custom subclass of the TextInputStream and then
say that it implements the interface, but that creates a problem, too. TextInputStream is
one of a handful of built-in classes that can’t be subclassed. Every time you use
TextInputStream, you generate it from a FolderItem as a consequence of calling the
OpenAsTextFile method.You can instantiate it yourself, or subclass it, but you can’t
assign any text to it (as far as I can tell), so it’s only worthwhile when you get it from a
FolderItem.

There’s a third approach, which does mean you have to create a new class, but it’s a
good solution for these kinds of problems.All you do is create a class that’s a wrapper of
the TextInputStream class and say that it implements the ReadableByLine interface.
This is a common tactic and it’s sometimes called the “façade design pattern” in object-
oriented circles because its one object provide a false front to another.

When you create the class, name it ReadableTextInputStream and add
ReadableByLine to the interfaces label in the Properties pane.

ReadableTextInputStream Methods

The Constructor accepts a TextInputStream object and assigns it to the protected
InputStream property.

Sub Constructor(tis as TextInputStream) 

InputStream = tis 

End Sub 

The other methods call the associated method from the TextInputStream class.
They also append the value to the SourceLines() Array, which is primarily a conven-
ience. It also provides a way to get at the data after you have iterated through all the
“ReadLines” of TextInputStream.



133Advanced Techniques

Function ReadLine() As String 

Dim s as String 

s = InputStream.ReadLine 

Me.SourceLines.Append(s)

Return s 

End Function 

Function ReadLine(Enc as TextEncoding) As String 

Dim s as String 

s = InputStream.ReadLine(Enc) 

Me.SourceLines.Append(s)

Return s 

End Function 

Function EOF() As Boolean 

Return InputStream.EOF 

End Function 

Function getString() As String 

Return Join(SourceLines, EndOfLine.UNIX) 

End Function 

The final getString() method provides a way to get a string version of the
TextInputStream.

ReadableTextInputStream Properties

Protected InputStream As TextInputStream 

SourceLines(-1) As String 

Now that the TextInputStream problem is solved, something similar needs to be
done for strings.

ReadableString Methods

The string to be read is passed to the Constructor. Because I will be reading the string
line by line, the first step is to “normalize” the character used to signify the end of a line.
The ReplaceLineEndings function does that for me, and I have opted to standardize on
Unix line endings, which are the ASCII character 13, otherwise known as the newline
character.

Then I use the familiar Split function to turn the string into an Array. Finally, I will
need to be able to track my position in the Array when using ReadLine so that I will
know when I come to the end. I initialize those values in the Constructor.
LastPosition refers to the last item in the Array.The ReadPosition is the current
item in the Array being accessed, and it starts at zero. It will be incremented with each
call to ReadLine until all lines have been read.

Sub Constructor(aSource as String) 

Source = ReplaceLineEndings(aSource, EndOfLine.UNIX) 

SourceLines = Split(Source, EndOfLine.UNIX) 

LastPosition = Ubound(SourceLines) 

ReadPosition = 0 

End Sub 



134 Chapter 3 Classes and Objects

If you recall, the Do…Loop we used to iterate through the ReadLines() of the
TextInputStream tested to see if it had reached the end of the file after each loop.The
EOF() function provides for this functionality and will return true if the ReadPosition
is larger than the LastPosition.

Function EOF() As Boolean 

If ReadPosition >  LastPosition Then 

Return True 

Else

Return False 

End if 

End Function 

In the ReadLine() methods, the line is accessed using the ReadPosition prior to
incrementing the ReadPosition.The line text is assigned to the s variable.After that,
ReadPosition is incremented, then s is returned. ReadPosition is incremented after
accessing the Array because the EOF test comes at the end of the loop.This is also the
way we check to see if ReadPosition is greater than LastPosition, because after you
have read the last line and incremented ReadPosition, it will be equal to LastPosition
+ 1.

Function ReadLine() As String 

Dim s as String 

s = SourceLines(ReadPosition) 

ReadPosition = ReadPosition + 1 

Return s 

End Function 

Function ReadLine(Enc as TextEncoding) As String 

// Not implemented; 

Return ReadLine() 

End Function 

Because I start with a string, the getString() method is only a matter of returning
it.The Source property is assigned the passed string in the Constructor.

Function getString() As String 

Return Source 

End Function 

ReadableString Properties

ReadPosition As Integer 

Encoding As TextEncoding 

Source As String 

SourceLines(-1) As String

LastPosition As Integer 



135Advanced Techniques

Finally, the two constructors for the Properties class need to be modified as follows:

Sub Properties.Constructor(aPropertyFile as FolderItem)

Dim readable as ReadableTextInputStream

readable = new _ ReadableTextInputStream(myPropertyFile.OpenAsTextFile)

parsePropertyFile readable

End Sub

Sub Properties.Constructor(myPropertyString as String) 

Dim readable As ReadableString

readable = New ReadableString(myPropertyString)

parsePropertyFile readable 

End Sub

For good measure, I create a Constructor that accepts a ReadableByLine imple-
menting object directly.

Sub Properties.Constructor(readable as ReadableByLine) 

parsePropertyFile readable 

End Sub

This may seem like a lot of work to implement an interface, but it shows you a realis-
tic example of how one might be used. Now that this groundwork is laid, it is easy to
come up with additional sources of “properties.” For example, you could store them in a
database.A database cursor would adapt to the ReadableByLine interface easily, and it
would take very little work to add that as a new source for key/value pairs.

In the next section it will come up again, and at that point you will be able to see
how the interface provides a lot more flexibility as the class you are working on grows in
functionality.

Custom Operator Overloading
The fact that you can use the + with integers and strings is an example of operator
overloading that you have already encountered. Customizable operator overloading is a
relatively new feature in REALbasic, and I think it’s extremely powerful and fun to use.
It creates a lot of flexibility for the developer, and it is a good thing.A very good thing.

To refresh your memory, an operator works like a function except that instead of
arguments being passed to it, operators work with operands.There’s usually an operand
to the left and the right of the operator, and REALbasic determines which overloaded
version of the operator to use, based upon the operand types.That’s how REALbasic
knows to treat 1+1 different from “One” + “Two”.



136 Chapter 3 Classes and Objects

Customized operator overloading is accomplished by implementing one or more of
the following methods in your class. I’m going to use the Properties class as our opera-
tor overloading guinea pig and add a lot of new features that will allow you to do all
kinds of lovely things with the class, including adding together two Properties objects,
testing for equality between two different instances, coercing a Properties object into a
string and so on.

The operators will also work with the ReadableByLine interface so that in addition
to being able to add two Properties objects together, you can add an object that imple-
ments ReadableByLine to a Properties object, and so on.

Special Operators

Function Operator_Lookup(aMemberName as String) as Variant

Operator_Lookup() counts among my favorite operators to overload. I don’t know why.
I just think it’s fun because it effectively allows you to define objects in a much more
dynamic way by adding members to the object at runtime.You’re not really adding
members, but it gives the appearance of doing so.The Operator_Lookup() function
overloads the “.” operator, which is used when accessing a method or property of an
object.

Here is an example from the Properties class:

Function Operator_Lookup(aKey as String) as String

Return me.get(aKey)

End Function

By implementing this function, I can now access any key in the Properties class as if
it were a public property or method of the Properties class.This is how it would work
in practice:

Dim prop as Properties

Dim s as String

prop = New Properties()

prop.set(“FirstKey”) = “FirstValue”
prop.set(“SecondKey”) = “SecondValue”
s = prop.FirstKey // s equals “FirstValue”

As you can see in this example, I am able to access the “FirstKey” key using dot (“.”)
notation.When you try to access a member that REALbasic doesn’t recognize, it first
turns to see if an Operator_Lookup() method has been implemented. If one has been
implemented, it passes the member name to the Operator_Lookup() method and lets
that function handle it any way it likes.

In the Properties example, it calls the get() function, which returns a value for the
key or, if the key is not in the Properties object, returns an empty string. Basically, I
have a Dictionary whose keys are accessible as if they were members of the object. If
you are familiar with Python, this may sound familiar because Python objects are
Dictionaries, and you can access all Python objects both through Python’s Dictionary



137Advanced Techniques

interface or as members of the Python class. I should say, however, that I would not rec-
ommend using a Dictionary subclass with the Operator_Lookup() overloaded method
as a general replacement for custom objects because there is a lot of overhead when
instantiating Dictionaries. It’s a perfect solution for situations like the Properties class,
which needs to be a Dictionary subclass for a lot of reasons.

Function Operator_Compare(rightSideOperand as Variant) as Double

The Operator_Compare() function overloads the “=” operator. It tests to see if one
operand is equal to the other one.The developer gets to decide what constitutes “equal
to.”

This is illustrated in the following example, which was implemented in the
Properties class.The Properties object is the operand on the left side of the expres-
sion, and the right side of the expression is the argument passed using the “readable as
ReadableByLine” parameter.

One thing you should notice right away is that the right side operand isn’t of the
same class as the left side operand; that’s okay because you get to decide how this works.
I find this approach useful because I may want to compare a file with an instantiated
Properties object to see if there are any differences between the two. It’s an extra step if
I have to open the file, instantiate a Properties object, and then compare it with the
original.This approach lets me compare the values represented by two distinct but relat-
ed objects.

In practice, you can return any numeric data type—an integer, a short, or a double,
but the answer is evaluated much like the StrComp() function. In other words, the num-
ber 0 means that both operands are equal to each other.A number greater than 0 means
the left-side operand is greater than the right-side operand, and a number less than 0
means the left operand is less than the right.

Function Operator_Compare(readable as ReadableByLine) as Integer

// mode = lexicographic

dim newReadable as ReadableString

Return StrComp(me.getString, readable.getString, 1 )

Function

This example actually uses StrComp() to make the comparison between the two
related objects. It compares the string provided by the Properties object with that pro-
vided by the ReadableByLine argument.The function returns the results of the
StrComp() function.

Function Operator_Convert() as Variant

There is an Operator_Convert() function and an Operator_Convert subroutine, both
of which work with the assignment operator, but in slightly different ways. Consider the
following implementation:

Function Operator_Convert() as String

Return Me.getString()

End Function



138 Chapter 3 Classes and Objects

This is how it is used:

Dim prop as Properties

Dim s as String

prop = New Properties(“a=first” + chr(13) + “b=second”)
s = prop // s equals the string ‘“a=first” + chr(13) + “b=second”’

In this example, the prop object is assigned to a variable with a string data type.The
Operator_Convert() function coerces the prop object into a string.This is functionally
equivalent to called the prop.getString() method.

Sub Operator_Convert(rightSideOperand as Variant)

The subroutine version handles assignment as well.The difference is that whereas the
function assigns the value of the object executing the method to some other variable, the
subroutine assigns the value of some other variable to the object executing the method.
The argument passed in the “readable as ReadableByLine” parameter is the object
whose value is being assigned to the calling object.

Sub Operator_Convert(readable as ReadableByLine)

Dim tmpReadable as ReadableByLine

If Not (me.readableSource is Nil) Then 

Me.Clear

tmpReadable = Me.readableSource

Me.readableSource = Nil 

Try

Me.parsePropertyFile(readable)

Catch

// If new file fails, restore old version

me.readableSource = tmpReadable

me.parsePropertyFile(me.readableSource)

End

Else

// No pre-existing data; so read new data

Me.parsePropertyFile(readable)

End If

End Function

In this example, I assign the value of a ReadableByLine object to that of a
Properties object.This means that I can use the assignment operator (“=”) to instanti-
ate a new Properties object.

Dim prop1, prop2 as Properties

Dim s1, s2 as String

Dim r as ReadableString

s1 = “a=first” + chr(13) + “b=second”
s2 = “c=third” + chr(13) + “d=fourth”
prop1 = New Properties(s1)



139Advanced Techniques

r = New ReadableString(s2)

prop2=r

In this example, prop1 is instantiated using the New operator, whereas prop2 is instan-
tiated using simple assignment. In a sense, this functionality gives the Properties class
something of the flavor of a data type.

Addition and Subtraction

You can also overload the “+” and “-” operators, enabling you to add objects to each
other or subtract objects from each other.You have already seen an overloaded version of
“+” that is used with strings.When used with strings, the “+” operator concatenates the
strings. Because our Properties class deals with strings, you can create similar function-
ality for your objects. In this case, you can add two Properties objects together and this
will concatenate the strings associated with each object and return a new object generat-
ed from the concatenated string.

Listing 3.1 Function Operator_Add(rightSideOperand as Variant) as Variant

Function Operator_Add(readable as ReadableByLine) as Properties

// Since parsePropertyFile does not reset 

//the data when called, this adds more values 

//to the Property object

Dim s as String

Dim newProp as Properties

s = Self.getString + EndOfLine.UNIX + readable.getString

newProp = New Properties(s)

return newProp

End Function

When you implement the Operator_AddRight() version, you do the same thing, but
switch the order in which the strings are concatenated. In the following example, note
that the string concatenation happens in the opposite order from the previous example.

Listing 3.2 Operator_AddRight(leftSideOperand as Variant) as Variant

Function Operator_AddRight(readable as ReadableByLine) as Properties

Dim prop as Properties

Dim s as String

s = readable.getString+ EndOfLine.UNIX +  me.getString

prop = New Properties(s)

Return prop

End Function



140 Chapter 3 Classes and Objects

Operator_Subtract(rightSideOperand as Variant) as Variant, Operator_SubtractRight

(leftSideOperand as Variant) as Variant

The subtraction operators work in a predictable way, just like the add operators, except
that the values are being subtracted.Although I did not implement this method in the
Properties class, I can imagine it working something like this:Any key/value pair that
exists in the left-side operand is deleted from that object if it also exists in the right-side
operand. If I wanted to delete a group of key/value pairs from a Properties object, I
could use a Properties object that contained these key/value pairs as one of the
operands.

Boolean

Operator_And(rightSideOperand as Variant) as Boolean, Operator_AndRight

(leftSideOperand as Variant) as Boolean, Operator_Or(rightSideOperand as Variant) as

Boolean, Operator_OrRight(leftSideOperand as Variant) as Boolean

For the And operator to return True, both operands must evaluate to True as well. Here’s
a scenario where this might make sense: the Properties class (and many other classes,
too) can be instantiated, but not populated by any values. If you tested to see if the
operands were equal to Nil, you would be told that they are not Nil. However, it might
be useful to be able to distinguish whether there are any values at all in the object.You
can use the And operator to do this.Within the Operator_And method, test to see if each
operand has a value. If both do, return True. If one or more does not, return False.

More Operator Overloading

There are several more operators that can be overloaded, but they do not have an appli-
cation with the Properties class.They work much like the ones I have covered here,
except that they overload negation, the Not operator, and the multiplication operators
such as *, /, Mod, and so on.They are

Operator_Negate() as Variant

Operator_Not() as Boolean

Operator_Modulo(rightSideOperand as Variant) as Variant

Operator_ModuloRight(leftSideOperand as Variant) as Variant

Operator_Multiply(rightSideOperand as Variant) as Variant

Operator_MultiplyRight(leftSideOperand as Variant) as Variant

Operator_Power(rightSideOperand as Variant) as Variant

Operator_PowerRight(leftSideOperand as Variant) as Variant

Operator_Divide(rightSideOperand as Variant) as Variant

Operator_DivideRight(leftSideOperand as Variant) as Variant

Operator_IntegerDivide(rightSideOperand as Variant) as Variant

Operator_IntegerDivideRight(leftSideOperand as Variant) as Variant



141Advanced Techniques

Extends
Finally, there is an additional way of extending a class that does not involve subclassing
or interfaces. REALbasic allows you to implement methods in Modules and use those
methods to extend or add functionality to other classes. Some classes, like the
TextInputStream class I discussed earlier, can’t really be effectively subclassed in
REALbasic, and this is where using the Extends keyword can come in handy because it
gives you an opportunity to add methods to TextInputStream without subclassing it.

I’ll start with an example, which should make things clearer.

Unix Epoch

Unix uses a different epoch to measure time than REALbasic does. Instead of January 1,
1904 GMT, Unix measures time since January 1, 1970 GMT.The difference between
these two values is 2,082,848,400 seconds. One useful addition to the Date object would
be a method that converted REALbasic’s measurement of time to the way that Unix
measures time.

It’s possible to subclass Date, but that only provides a partial solution because it
doesn’t help you with all the other instances of data objects that you encounter while
programming. For example, the FolderItem class has Date properties for the file cre-
ation date and the date the file was last modified.A subclass won’t help you there.

It is for this kind of problem in particular that Extends is made. Extends allows you
to extend a class with a new method without having to subclass it.The method that will
be used to extend the class must be implemented in a module, and the first parameter
must be preceded by the Extends keyword, followed by a parameter of the class that is
being extended.

The following example adds a method UnixEpoch that can be called as a member of
the Date class. It returns the date as the number of seconds since January 1, 1970, rather
than January 1, 1904.

Protected Function UnixEpoch(Extends d as Date) As Double

Return d.TotalSeconds - 2082848400

End Function

Conclusion
In addition to being an object-oriented programming language, one of the most impor-
tant distinguishing characteristics of REALbasic is that it is a cross-platform application
development environment.You can compile applications for Windows, Macintosh, and
Linux. In my experience, REALbasic is the easiest language to use for this kind of devel-
opment, but it is not without its own idiosyncrasies and, despite their similarities, the
three platforms vary in fundamental ways that a developer needs to be aware of. In the
next chapter, I write about the cross-platform features of REALbasic and how the differ-
ences among the platforms will impact your development.



This page intentionally left blank 




