
CHAPTER 5

IN THIS CHAPTER

• Data Definition Language
(DDL)

• Objects in DDL

Conceptual Data
Model

The conceptual multidimensional data model is
the foundation for multidimensional databases. All
the components and architecture of a multidimen-
sional database create, control, and provide access to
the data in the model. Because it is simple and flexi-
ble, not to mention effective, our model has led to
widespread adoption of Analysis Services in a very
short period of time.

Many people look at the multidimensional data
model as simply metadata—data that describes the
data stored in the relational database. We’re going
to look at this from a different angle. We see the
conceptual model as an independent specification
of the data in the multidimensional system. A rela-
tional database might be the source of the data or
the place where the data is stored. But the multidi-
mensional database is a completely independent
system that can be both the source and the storage
place of the data. If the source of the data is external
to the multidimensional database, it is defined by
the Data Source property. Any dependency between
multidimensional data and relational data is defined
by the Data Binding property.

Data Definition Language
We use Data Definition Language (DDL) to define
and alter the data models. Extensible Markup
Language (XML), which has grown popular among
software developers in recent years, turns up in
many of the components of our system, including
DDL. As the foundation for DDL, XML is easy to
use, convenient, and efficient. Throughout this

book we use DDL a lot to describe the data model, so you’ll want to be familiar with it.
But we’re going to focus our discussion here on the semantic properties of the language.
You can look for details of the syntax of DDL in Books Online.

DDL is object oriented. It enables you to define a set of objects that are part of the multi-
dimensional model and to define all the properties necessary to those objects.

Objects in DDL
All the objects in DDL are either major objects or minor objects. Major objects are objects
that the user can manipulate—independently of their parent objects—to create and
change the model. Minor objects are children of major objects. The root object (which is a
major one) of the model is Database (sometimes called Catalog), which contains a list of
all the objects of the model (see Listing 5.1).

Major objects must have two unique identifiers: the ID and Name properties. A minor
object that is part of a major object doesn’t need these properties. In addition, each object
(major or minor) can have a Description property that contains text that describes the
purpose of the object (useful for the developer who created the object and the user of the
application that uses the object). Objects can also have the Annotation property, or lists
of annotations, that external applications use to display or manipulate their data.

LISTING 5.1 The DDL Definition of the FoodMart Database

<Database

xmlns=”http://schemas.microsoft.com/analysisservices/2003/engine”>

<ID>FoodMart 2005</ID>

<Name>FoodMart 2005</Name>

<CreatedTimestamp>0001-01-01T08:00:00Z</CreatedTimestamp>

<LastSchemaUpdate>0001-01-01T08:00:00Z</LastSchemaUpdate>

<LastProcessed>0001-01-01T08:00:00Z</LastProcessed>

<State>Unprocessed</State>

<LastUpdate>0001-01-01T08:00:00Z</LastUpdate>

<DataSourceImpersonationInfo>

<ImpersonationMode>Default</ImpersonationMode>

<ImpersonationInfoSecurity>Unchanged</ImpersonationInfoSecurity>

</DataSourceImpersonationInfo>

<Dimensions />

<Cubes />

<DataSources />

<DataSourceViews />

<Translations />

</Database>

You can see in the example that the database contains collections of the object, dimen-
sions, cubes, and so forth. (The ending s on Dimensions, Cubes, and so on denotes a
collection.) The Dimension and Cube objects are major objects and can be changed

CHAPTER 5 Conceptual Data Model40

independently of the database definition. You can find detailed information about dimen-
sions in Chapter 6, “Dimensions in the Conceptual Model,” and about cubes in Chapter
7, “Cubes and Multidimensional Analysis.”

Figure 5.1 contains the most important objects of our multidimensional model, with
major objects in darker gray. Objects that represent the physical model and objects that
represent database security aren’t included in the figure. These objects will be discussed in
later chapters.

Data Definition Language 41

Catalog

Dimension

Cube

MeasureGroup

Perspective

Attribute

MeasureGroupDimension

Measure

MeasureGroupAttribute

PerspectiveMeasureGroup

PerspectiveMeasure

PerspectiveHierarchy

CubeHierarchy

CubeAttribute

Hierarchy

Level

CubeDimension

PerspectiveDimension

PerspectiveAttribute

FIGURE 5.1 The major objects of the conceptual model are shown in darker gray.

In the following sections, we’ll give you an idea of some of the properties that are
commonly used in our conceptual model:

• Multilanguage support

• Ways of ordering your data

• Ways to specify default properties

NOTE

When you specify the identifier, name, and translation of an object, you choose from a
limited set of characters; in addition, the strings are limited in length. It’s important to
pay attention to all these limitations, because usually it takes a long time to figure out
what’s causing an error or strange behavior that is related to errors in the names.
Sometimes the fix of an error like this can require a change in design.

Multilanguage Support
Our model features multilanguage support, which comes in handy for the trend toward
internationalization and globalization characteristic of today’s enterprises. That support
means that the data warehouse can contain data in multiple languages, which, of course,
affects data storage requirements. The object’s Language (sometimes known as locale)
property is the identifier for any specific language; it is used for both the metadata and in
the data itself.

The related Translation property specifies what the name of the object will be for the
language specified by the Language property (see Listing 5.2). The ID property of the
object, once it’s specified, can’t be changed. The name of the object and the translation of
that name can be easily changed, and because of that can’t be used for cross references.

LISTING 5.2 Translating a Database Object Name to Russian

<Database xmlns=”http://schemas.microsoft.com/analysisservices/2003/engine”>

<ID>FoodMart 2005</ID>

<Name>FoodMart 2005</Name>

<Translations>

<Translation>

<Language>1049</Language>

<Caption> </Caption>

</Translation>

</Translations>

</Database>

If you specify this translation in DDL definition, the user application will have access to
the caption that is specified in the translation, and can use it in place of the name wher-
ever necessary.

CHAPTER 5 Conceptual Data Model42

Rules of Ordering
The order of object elements is not all that important, but when possible, Analysis
Services preserves the order that you assigned for the elements. However, for some
objects, Analysis Services assigns a new order, usually based on the alphabet.

If the order is based on the alphabet, the order can differ from one language to another.
Not only does alphabetic order change from one language to another, but there are rules
of ordering, defined by the Collation property, that add different bases for ordering.
Collation and its properties, such as Ignore Case or the ignoring of special characters,
define different ways of ordering for different languages. If you don’t specify a collation,
Analysis Services uses the default collation, Case Insensitive.

Specifying Default Properties
The DDL language has rules for specifying default properties. These rules specify the
values that properties take if they’re not explicitly specified in the object definition.
Usually if there isn’t a specific default value, the server assigns a value. This means that
it’s not always possible to predict what value will be assigned. It also might turn out that
in the next version of Analysis Services, the default values will be interpreted differently.
It’s a good idea to avoid situations where the server would define values for you. However,
if you’re not interested in the value, you can just go with whatever value the server
assigns.

Another rule holds that you don’t need to specify a collection of objects if the collection
is empty. The server doesn’t have default values for empty collections; it assumes that an
empty collection doesn’t have any objects, and therefore no values. (We would assume
that, too.) However, there are some cases in which the server would copy a collection
from another object. (For more information about exceptions to these rules, see Chapters
7 and 8, “Measures and Multidimensional Analysis.”)

Summary
All the components and architecture of a multidimensional database create, control, and
provide access to the data in the conceptual model. The conceptual model is an indepen-
dent specification of the data in the multidimensional system.

Data Definition Language (DDL), based on XML, is used to define and alter the data
models. Objects in DDL are either major objects or minor objects. The DDL object’s
Language property (sometimes known as locale) provides multilanguage support. Rules of
ordering are defined by the Collation property.

Summary 43

This page intentionally left blank

