
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672326141
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672326141
https://plusone.google.com/share?url=http://www.informit.com/title/9780672326141
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672326141
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672326141/Free-Sample-Chapter

a l a n c o o p e r

A Division of Pearson Education
800 East 96th Street, Indianapolis, Indiana 46240

The Inmates Are Running the Asylum

Copyright © 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, with-
out written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepa-
ration of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained
herein.

International Standard Book Number: 0-672-32614-0

Library of Congress Catalog Card Number: 2003116997

Printed in the United States of America

First Printing: March 2004

07 06 05 4 3

Trademarks

All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affect-
ing the validity of any trademark or service mark.

Goal-Directed design is a trademark of Cooper Interaction Design.

Warning and Disclaimer

Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Publisher
Paul Boger

Executive Editor
Candace Hall

Managing Editor
Charlotte Clapp

Project Editor
Dan Knott

Copy Editor
Eileen Cohen

Indexer
Ken Johnson

Proofreader
Juli Cook

Publishing Coordinator
Cindy Teeters

Interior Designer
Karen Ruggles

Cover Designer
Alan Clements

Page Layout
Eric S. Miller

Dedication

For Sue, Scott and Marty, with love.

Acknowledgments

I could not have written this book without the care and help of many wonderful
friends and colleagues. In particular, several people performed the demanding
and difficult job of reading and commenting on the manuscript, sometimes
more than once. Their comments made me answer tough questions, introduce
my topics, sum up my points, quench my flames, and corral my wild fits of
indignation. The book is far better because of the contributions of Kim
Goodwin, Lane Halley, Kelly Bowman, Scott McGregor, David West, Mike
Nelson, Mark Dziersk, Alan Karp, Terry Swack, Louie Weitzman, Wayne
Greenwood, Ryan Olshavsky, John Meyer, Lisa Saunders, Winnie Shows, Kevin
Wandryk, Glenn Halstead, Bryan O’Sullivan, Chuck Owen, Mike Swaine, and
Skip Walter. I really appreciate your time, care, and wisdom. In particular,
Jonathan Korman’s comments and counsel were invaluable in helping me to
distill my themes. I must also thank all the talented and hard-working people at
Cooper Interaction Design who did my job for me while I was busy writing.
Deserving of special thanks is Design Director Wayne Greenwood, who did a
great job under pressure keeping our design quality and morale high.

Getting the illustrations done turned out to be one of the more interesting pro-
duction challenges. Chad Kubo, the masterful creator of the images, did a
remarkable job of interpreting my vague ideas into crisp and memorable
images. They add a lot to the book. The illustrations could not have been done
at all without the tireless art direction work of Penny Bayless and David Hale.
Still others helped with the many production tasks. Thanks to Brit Katzen for
fact checking and research and Mike Henry for copy editing.

Writing a book is a business, and for making it a successful one I also owe sin-
cere thanks to my team of technology-savvy businesspersons, headed by my
agent Jim Levine, and including Glenn Halstead, Lynne Bowman, Kelly
Bowman, and Sue Cooper. At Pearson, Brad Jones supported this project
throughout, but the most credit goes to Chris Webb, whose tenacity, focus, and
hard work really made The Inmates happen.

I really appreciate the many people who provided moral support, anecdotes,
advice, and time. Thanks very much to Daniel Appleman, Todd Basche, Chris
Bauer, Jeff Bezos, Alice Blair, Michel Bourque, Po Bronson, Steve Calde, David
Carlick, Jeff Carlick, Carol Christie, Clay Collier, Kendall Cosby, Dan Crane,
Robert X. Cringely, Troy Daniels, Lisa Powers, Philip Englehardt, Karen Evensen,
Ridgely Evers, Royal Farros, Pat Fleck, David Fore, Ed Forman, Ed Fredkin, Jean-
Louis Gassee, Jim Gay, Russ Goldin, Vlad Gorelik, Marcia Gregory, Garrett
Gruener, Chuck Hartledge, Ted Harwood, Will Hearst, Tamra Heathershaw-
Hart, J.D. Hildebrand, Laurie Hills, Peter Hirshberg, Larry Keeley, Gary Kratkin,
Deborah Kurata, Tom Lafleur, Paul Laughton, Ellen Levy, Steven List, T.C.
Mangan, David Maister, Robert May, Don McKinney, Kathryn Meadows, Lisa
Mitchell, Geoffrey Moore, Bruce Mowery, Nate Myers, Ed Niehaus, Constance
Petersen, Keith Pleas, Robert Reimann, John Rivlin, Howard Rheingold, Heidi
Roizen, Neil Rubenking, Paul Saffo, Josh Seiden, Russ Siegelman, Donna Slote,
Linda Stone, Toni Walker, Kevin Weeks, Kevin Welch, Dan Willis, Heather
Winkle, Stephen Wildstrom, Terry Winograd, John Zicker, and Pierluigi
Zappacosta.

This “year long” project took 20 months, and my family showed great patience
with me. I owe the greatest debt of love and thanks to my wife, Sue Cooper, and
to my handsome young sons, Scott and Marty. I love you with all of my heart.

Table of Contents

Foreword..xvii

Part I Computer Obliteracy

Chapter 1 Riddles for the Information Age ..3

What Do You Get When You Cross a Computer

with an Airplane? ..3

What Do You Get When You Cross a Computer

with a Camera?..4

What Do You Get When You Cross a Computer

with an Alarm Clock?..6

What Do You Get When You Cross a Computer with a Car?8

What Do You Get When You Cross a Computer with a Bank?8

Computers Make It Easy to Get into Trouble9

Commercial Software Suffers, Too ..11

What Do You Get When You Cross a Computer

with a Warship? ..13

Techno-Rage..13

An Industry in Denial ..14

The Origins of This Book..15

Chapter 2 Cognitive Friction ..19

Behavior Unconnected to Physical Forces19

Design Is a Big Word ..21

The Relationship Between Programmers and Designers..............22

Most Software Is Designed by Accident..22

“Interaction” Versus “Interface” Design ..23

Why Software-Based Products Are Different..................................24

The Dancing Bear ..26

The Cost of Features ..27

Apologists and Survivors..29

How We React to Cognitive Friction..33

The Democratization of Consumer Power34

Blaming the User ..34

Software Apartheid ..36

Part II It Costs You Big Time

Chapter 3 Wasting Money..41

Deadline Management ..41

What Does “Done” Look Like? ..42

Parkinson’s Law ..43

The Product That Never Ships ..44

Shipping Late Doesn’t Hurt..45

Feature-List Bargaining..46

Programmers Are in Control ..47

Features Are Not Necessarily Good ..47

Iteration and the Myth of the Unpredictable Market48

The Hidden Costs of Bad Software..52

The Only Thing More Expensive Than Writing Software

Is Writing Bad Software..53

Opportunity Cost ..54

The Cost of Prototyping ..54

Chapter 4 The Dancing Bear ..59

If It Were a Problem, Wouldn’t It Have Been Solved

by Now?..59

Consumer Electronics Victim ..59

How Email Programs Fail ..61

How Scheduling Programs Fail..62

How Calendar Software Fails ..63

Mass Web Hysteria..64

What’s Wrong with Software? ..65

Software Forgets ..65

Software Is Lazy..65

Software Is Parsimonious with Information..............................66

Software Is Inflexible..66

Software Blames Users ..67

Software Won’t Take Responsibility ..67

Chapter 5 Customer Disloyalty ..71

Desirability ..71

A Comparison ..74

Time to Market..77

Table of Contents / vii

Part III Eating Soup with a Fork

Chapter 6 The Inmates Are Running the Asylum ..81

Driving from the Backseat ..81

Hatching a Catastrophe ..83

Computers Versus Humans ..87

Teaching Dogs to Be Cats ..88

Chapter 7 Homo Logicus ..93

The Jetway Test..93

The Psychology of Computer Programmers95

Programmers Trade Simplicity for Control96

Programmers Exchange Success for Understanding97

Programmers Focus on What Is Possible to the Exclusion

of What Is Probable ..99

Programmers Act Like Jocks ..101

Chapter 8 An Obsolete Culture ..105

The Culture of Programming ..105

Reusing Code ..106

The Common Culture ..109

Programming Culture at Microsoft ..110

Cultural Isolation ..115

Skin in the Game ..116

Scarcity Thinking ..119

The Process Is Dehumanizing, Not the Technology120

Part IV Interaction Design Is Good Business

Chapter 9 Designing for Pleasure ..123

Personas ..123

Design for Just One Person ..124

The Roll-Aboard Suitcase and Sticky Notes126

The Elastic User ..127

Be Specific ..128

Hypothetical..129

Precision, Not Accuracy ..129

A Realistic Look at Skill Levels ..131

Personas End Feature Debates ..132

Both Designers and Programmers Need Personas134

It’s a User Persona, Not a Buyer Persona135

The Cast of Characters ..135

Primary Personas ..137

viii / Table of Contents

Case Study: Sony Trans Com’s P@ssport138

The Conventional Solution ..139

Personas..142

Designing for Clevis ..144

Chapter 10 Designing for Power ..149

Goals Are the Reason Why We Perform Tasks149

Tasks Are Not Goals ..150

Programmers Do Task-Directed Design151

Goal-Directed Design ..151

Goal-Directed Television News ..152

Goal-Directed Classroom Management153

Personal and Practical Goals ..154

The Principle of Commensurate Effort155

Personal Goals ..156

Corporate Goals ..156

Practical Goals ..157

False Goals ..158

Computers Are Human, Too ..159

Designing for Politeness ..160

What Is Polite? ..161

What Makes Software Polite? ..162

Polite Software Is Interested in Me ..162

Polite Software Is Deferential to Me ..163

Polite Software Is Forthcoming ..164

Polite Software Has Common Sense ..164

Polite Software Anticipates My Needs......................................165

Polite Software Is Responsive..165

Polite Software Is Taciturn About Its Personal Problems165

Polite Software Is Well Informed ..166

Polite Software Is Perceptive ..166

Polite Software Is Self-Confident ..167

Polite Software Stays Focused ..167

Polite Software Is Fudgable ..168

Polite Software Gives Instant Gratification..............................170

Polite Software Is Trustworthy ..170

Case Study: Elemental Drumbeat ..171

The Investigation ..172

Who Serves Whom ..173

Table of Contents / ix

The Design..174

Pushback ..175

Other Issues ..176

Chapter 11 Designing for People ..179

Scenarios ..179

Daily-Use Scenarios..180

Necessary-Use Scenarios ..180

Edge-Case Scenario ..181

Inflecting the Interface ..181

Perpetual Intermediates ..182

“Pretend It’s Magic” ..185

Vocabulary ..185

Breaking Through with Language ..186

Reality Bats Last ..187

Case Study: Logitech ScanMan ..188

Malcolm, the Web-Warrior..189

Chad Marchetti, Boy ..189

Magnum, DPI ..190

Playing “Pretend It’s Magic” ..191

World-Class Cropping ..193

World-Class Image Resize ..194

World-Class Image Reorient ..195

World-Class Results ..197

Bridging Hardware and Software ..197

Less Is More ..198

Part V Getting Back into the Driver’s Seat

Chapter 12 Desperately Seeking Usability ..203

The Timing ..203

User Testing ..205

User Testing Before Programming..206

Fitting Usability Testing into the Process206

Multidisciplinary Teams ..207

Programmers Designing ..207

How Do You Know? ..208

Style Guides ..209

Conflict of Interest ..210

x / Table of Contents

Focus Groups ..210

Visual Design ..211

Industrial Design ..212

Cool New Technology ..213

Iteration ..213

Chapter 13 A Managed Process ..217

Who Really Has the Most Influence? ..217

The Customer-Driven Death Spiral..218

Conceptual Integrity Is a Core Competence219

A Faustian Bargain ..220

Taking a Longer View ..221

Taking Responsibility ..221

Taking Time ..222

Taking Control ..222

Finding Bedrock..222

Knowing Where to Cut ..222

Making Movies ..223

The Deal ..225

Document Design to Get It Built ..226

Design Affects the Code ..227

Design Documents Benefit Programmers228

Design Documents Benefit Marketing229

Design Documents Help Documenters and Tech Support....230

Design Documents Help Managers ..230

Design Documents Benefit the Whole Company231

Who Owns Product Quality?..231

Creating a Design-Friendly Process ..232

Where Interaction Designers Come From233

Building Design Teams ..234

Chapter 14 Power and Pleasure ..235

An Example of a Well-Run Project ..236

A Companywide Awareness of Design..238

Benefits of Change..239

Let Them Eat Cake..240

Changing the Process ..242

Index ..245

Table of Contents / xi

Introduction

Run for your lives—the computers are invading. Awesomely powerful comput-
ers tackling ever more important tasks with awkward, old-fashioned interfaces.
As these machines leak into every corner of our lives, they will annoy us, infuri-
ate us, and even kill a few of us. In turn, we will be tempted to kill our comput-
ers, but we won’t dare because we are already utterly, irreversibly dependent on
these hopeful monsters that make modern life possible.

Fortunately, we have another option. We need to fundamentally rethink how
humans and machines interact. And rethink the relationship in deep and novel
ways, for the fault for our burgeoning problems lies not with our machines, but
with us. Humans designed the interfaces we hate; humans continue to use dys-
functional machines even as the awkward interfaces strain their eyes, ache
their backs, and ruin their wrist tendons. We all are, as the title of this book sug-
gests, the inmates running the techno-asylum of our own creation.

This book is a guide to our escape. Or rather, Alan Cooper reveals that the door
to the asylum lies wide open. We are free to leave any time we want, but mad as
we have all become, we never noticed until now. The secret lies in redefining
the way we interact with our computers in a larger context.

Alan Cooper is not merely a fellow inmate; he is also a heretic whose ideas will
likely infuriate those who would want to keep us locked up. These are the engi-
neers who built the systems we hate and who still believe the way out of this
mess is to build better interfaces. But the very notion of interface is itself an
artifact of an age when computers were scarce and puny, and barely able to
interact with their human masters. Interface made sense when the entire inter-
action took place across the glass-thin no-man land of a computer screen. Now
it is an utterly dangerous notion in a world where computers are slipping into
every corner of our lives. Computers no longer interface with humans—they
interact, and the interaction will become steadily deeper, more subtle, and
more crucial to our collective sanity and ultimate survival.

Alan Cooper understands the shift from interface to interaction better than
anyone I know. His ideas come from years of experience in helping design
products that slip elegantly and unobtrusively into our lives. He has walked his
talk for years, and now he has finally found the time to turn his practice into a
lucid description of the challenge we face, and a methodology for escaping the
asylum we have so lovingly built. Read on and you will find your freedom.

Paul Saffo
Director
Institute for the Future

Foreword to the Original Edition

The Business-Case Book

I intended to write a very different book from this one: a how-to book about the
interaction-design process. Instead, in May 1997 on a family visit to Tuscany,
my friends Don McKinney and Dave Carlick talked me into this one. They con-
vinced me that I needed to address a business audience first.

They knew I wanted to write a how-to design book, and—although they were
encouraging—they expressed their doubts about the need for interaction
design, and they wanted me to write a book to convince them of its value. Their
argument was intriguing, but I was unsure that I could write the book they
wanted.

Late one night on the veranda of our shared ochre villa overlooking Firenze, I
was having an earnest conversation with Dave and Don. Several empty bottles
of Chianti stood on the table, along with the remains of some bread, cheese,
and olives. The stars shone brightly, the fireflies danced over the lawn, and the
lights on the ancient domes of the Tuscan capital twinkled in the distance.
Once again, Dave suggested that I postpone the idea of a how-to book on
design and instead “make the business case for interaction design.”

I protested vigorously, “But Dave, I don’t know how to write that book.” I ticked
off the reasons on my fingertips. “It means that I’d have to explain things like
how the current development process is messed up, how companies waste
money on inefficient software construction, how unsatisfied customers are
fickle, and how a better design process can solve that.”

Dave interrupted me to say simply, “They’re called chapters, Alan.”

His remark stopped me dead in my tracks. I realized that I was reciting an old
script, and that Dave was right. A book that made “the business case” was
necessary—and more timely—than a book that explained “how to.” And both
Dave and Don convinced me that I really could write such a book.

Business-Savvy Technologist/Technology-Savvy
Businessperson

The successful professional for the twenty-first century is either a business-
savvy technologist or a technology-savvy businessperson, and I am writing for
this person.

The technology-savvy businessperson knows that his success is dependent on
the quality of the information available to him and the sophistication with
which he uses it. The business-savvy technologist, on the other hand, is an
entrepreneurial engineer or scientist trained for technology, but possessing a
keen business sense and an awareness of the power of information. Both of
these new archetypes are coming to dominate contemporary business.

You can divide all businesspeople into two categories: those who will master
high technology and those who will soon be going out of business. No longer
can an executive delegate information processing to specialists. Business is
information processing. You differentiate yourself today with the quality of your
information-handling systems, not your manufacturing systems. If you manu-
facture anything, chances are it has a microchip in it. If you offer a service, odds
are that you offer it with computerized tools. Attempting to identify businesses
that depend on high technology is as futile as trying to identify businesses that
depend on the telephone. The high-tech revolution has invaded every business,
and digital information is the beating heart of your workday.

It’s been said, “To err is human; to really screw up, you need a computer.”
Inefficient mechanical systems can waste a couple of cents on every widget you
build, but you can lose your entire company to bad information processes. The
leverage that software-based products—and the engineers that build them—
have on your company is enormous.

Sadly, our digital tools are extremely hard to learn, use, and understand, and
they often cause us to fall short of our goals. This wastes money, time, and

opportunity. As a business-savvy technologist/technology-savvy businessper-
son, you produce software-based products or consume them—probably both.
Having better, easier-to-learn, easier-to-use high-tech products is in your per-
sonal and professional best interest. Better products don’t take longer to create,
nor do they cost more to build. The irony is that they don’t have to be difficult,
but are so only because our process for making them is old-fashioned and
needs fixing. Only long-standing traditions rooted in misconceptions keep us
from having better products today. This book will show you how you can
demand—and get—the better products that you deserve.

The point of this book is uncomplicated: We can create powerful and pleasura-
ble software-based products by the simple expedient of designing our computer-
based products before we build them. Contrary to the popular belief, we are not
already doing so. Designing interactive, software-based products is a specialty as
demanding as constructing them.

x

Having made my choice to write the business-case book rather than the how-to
design book, I beg forgiveness from any interaction designers reading this
book. In deference to the business audience, it has only the briefest treatment
of the actual nuts and bolts of interaction-design methodology (found primari-
ly in Part IV, “Interaction Design Is Good Business”). I included only enough to
show that such methodology exists, that it is applicable to any subject matter,
and that its benefits are readily apparent to anyone, regardless of their techni-
cal expertise.

Alan Cooper
Palo Alto, California
http://www.cooper.com

inmates@cooper.com

http://www.cooper.com

Foreword

I recently met with a senior executive at one of the world’s largest technology
companies. His official title is Vice President for Ease of Use, and he is responsi-
ble for a great number of software products, large and small. He is a brilliant and
accomplished fellow with roots in the formal Human-Computer Interaction
community. He is steeped in the ways of “usability”—of testing and observing
behind one-way mirrors—as is his company. But he came to talk about design,
not testing, and about personas, not users. He said that his company has com-
pletely ceased all postdevelopment usability testing and has instead committed
to predevelopment design efforts. He further asserted that all of his staffers
trained in the art of in vitro user observation were being retrained to do in situ
ethnographic research.

This executive and his company are emblematic of the sea of change that has
occurred in the industry in the five short years since The Inmates was first pub-
lished. The book has served as both a manifesto for a revolution and a handbook
for a discipline. Countless midlevel product managers have sent me email
describing why—after reading The Inmates—they purchased a copy of the book
for each of their departments’ senior executives. Meanwhile, software builders
and universities alike have used the three chapters in Part IV, “Interaction Design
Is Good Business,” as a rudimentary how-to manual for implementing Goal-
Directed® design using personas.

I am deeply grateful to all of the managers, programmers, executives, and usabil-
ity practitioners who have used the ideas in this book to help bring usability out
of the laboratory and into the field and changed its focus from testing to design.
Because of their efforts, the entire landscape of the usability profession has
changed. Today, most of the organizations I have contact with have one or more
interaction-design professionals on their payrolls, who have an ever-increasing
influence over the quality and behavior of the software products and services
being created. It’s gratifying to know that this book has contributed to their
success.

I recall giving a keynote presentation at a programmer’s conference in 1999,
shortly after this book was first published. That talk had the same title as the
book, and I opened by asserting that “inmates are running the asylum, and you
are the inmates.” You could hear a pin drop as the more than 2,500 engineers in
the audience grappled with that accusation. In the silence that engulfed the
auditorium, I went on to present the basic premise of this book, and an hour
later, that crowd of Homo logicus was so sufficiently convinced that they honored
me with a standing ovation. Surprisingly, most programmers have become
enthusiastic supporters of design and designers. They know that they need help
on the human side of software construction, and they are very happy to be final-
ly receiving some useful guidance. They recognize that any practice that
improves the quality and acceptance of their programs doesn’t threaten them.

In the past, executives assumed that interaction design was a programming
problem and delegated it to programmers, who diligently tried to solve the prob-
lem even though their skills, training, mindset, and work schedule prevented
them from succeeding. In the spirit of problem diagnosis, this book takes pains
to describe this failure, which is necessarily a story of the programmer’s failure.
Some of them took offense at my descriptions, imagining that I was maligning or
blaming programmers for bad software. They are certainly the agents by which
bad software is created, but they are by no means culpable. I do not blame pro-
grammers for hard-to-use software, and I’m very sorry to have given any pro-
grammer a contrary impression. With few exceptions, the programmers I know
are diligent and conscientious in their desire to please end users and are unceas-
ing in their efforts to improve their programs’ quality. Just like users, program-
mers are simply another victim of a flawed process that leaves them too little
time, too many conflicting orders, and utterly insufficient guidance. I am very
sorry to have given any programmers the impression that I fault them.

The intractability of the software-construction process—particularly the high
cost of programming and the low quality of interaction—is simply not a techni-
cal problem. It is the result of business practices imposed on a discipline—
software programming—for which they are obsolete. With pure hearts, the best
of intentions, and the blessing of upper management, programmers attempt to
fix this problem by engineering even harder. But more or better engineering can-
not solve these problems. Programmers sense the growing futility of their efforts,
and their frustration mounts.

In my recent travels I have noticed a growing malaise in the community of pro-
grammers. Sadly, it is the best and most experienced of them who are afflicted
the worst. They reflect cynicism and ennui about their efforts because they know
that their skills are being wasted. They may not know exactly how they are mis-
applied, but they cannot overlook the evidence. Many of the best programmers

xviii / The Inmates Are Running the Asylum

have actually stopped programming because they find the work frustrating. They
have retreated into training, evangelism, writing, and consulting because it does-
n’t feel so wasteful and counterproductive. This is a tragic and entirely avoidable
loss. (The open-source movement is arguably a haven for these frustrated
programmers—a place where they can write code according to their own stan-
dards and be judged solely by their peers, without the advice or intervention of
marketers or managers.)

Programmers are not given sufficient time, clear enough direction, or adequate
designs to enable them to succeed. These three things are the responsibility of
business executives, and they fail to deliver them for preventable reasons, not
because they are stupid or evil. They are simply not armed with adequate tools
for solving the complex and unique problems that confront them in the infor-
mation age. Now here I am sounding like I’m slamming people again, only this
time businesspeople are in my sights instead of programmers. Once again, to
solve the problem one must deconstruct it. I’m questing after solutions, not
scapegoats.

Management sage Peter Drucker can see the problem from his unique view-
point, having both observed and guided executives for the majority of his 92
years. In a recent interview in CIO magazine, he commented on the wide-eyed
optimism of executives in the 1950s and 1960s as digital computers first nudged
their way into their businesses. Those executives imagined that computers
“would have an enormous impact on how the business was run,” but Drucker
exclaims, “This isn’t what happened. Very few senior executives have asked the
question, ‘What information do I need to do my job?’” Although digital comput-
ers have given executives unprecedented quantities of data, few have asked
whether this data is appropriate for guiding the corporation. Operations have
changed dramatically, but management has not followed suit. Drucker accuses
our obsolete accounting systems, born in mercantilism, come of age in an era of
steam and iron, and doddering into senility in the dawning twenty-first century
information age. Drucker asserts, “The information you need the most is about
the outside world, and there is absolutely none.”

During the last few years of the twentieth century, as the dot-com bubble inflat-
ed, truckloads of ink were used to sell the idea that there was a “new economy”
on the Internet. The pundits said that selling things on the World Wide Web,
where stores were made of clicks instead of bricks, was a fundamentally different
way of doing business, and that the “old economy” was as good as dead. Of
course, almost all of those new-economy companies are dead and gone, the ven-
ture capitalists who backed them are in shock, and the pundits who pitched the
new economy have now recanted, claiming it was all a hopeless dream. The new,
new thinking says we must still be in the old, old economy.

Foreword / xix

Actually, I believe that we really are in a new economy. What’s more, I think that
the dot-coms never even participated in it. Instead, the dot-coms were the last
gasp of the old economy: the economy of manufacturing.

In the industrial age, before software, products were manufactured from solid
material—from atoms. The money it took to mine, smelt, purchase, transport,
heat, form, weld, paint, and transport dominated all other expenditures.
Accountants call these “variable costs” because that expense varies directly with
each product built. “Fixed costs,” as you might expect, don’t vary directly and
include things such as corporate administration and the initial cost of the factory.

The classic rules of business management are rooted in the manufacturing tra-
ditions of the industrial age. Unfortunately, they have yet to address the new real-
ities of the information age, in which products are no longer made from atoms
but are mostly software, made only from the arrangements of bits. And bits don’t
follow the same economic rules that atoms do.

Some fundamental truths hold for both the old and the new economies. The goal
of all business is to make a sustainable profit, and there is only one legal way to
do so: Sell some goods or services for more money than it costs you to make or
acquire them. It follows that there are two ways to increase your profitability:
Either reduce your costs or increase your revenues. In the old economy, reducing
your costs worked best. In the new economy, increasing your revenue works
much, much better.

Today’s most vital and expensive products are made largely or completely of soft-
ware. They consume no raw materials. They have no manufacturing cost. They
have no transportation cost. There is no welding, hammering, or painting. This
is the real difference between the industrial-age economy and the information-
age economy: In the information age, there is little or no variable cost, whereas
in the late industrial age, variable cost was the dominant factor. Indeed, the
absence of variable cost is what makes this a new economy.

Is the salary you pay the programmers on your staff a fixed cost or a variable cost?
One hour of programming is definitely not directly related to one product sale;
you can sell that same code over and over again. An investment in programming
can be leveraged across millions of salable items, just as an investment in a fac-
tory is leveraged across all the products built within it.

Writing software is not a variable cost, but it’s not really a fixed cost either.
Writing software is an ongoing, revenue-generating operation of the company,
and it is not the same as constructing a factory. The expensive craftsmen who
build the factory leave and go to work on some other job after the building is
erected. Programmers are far more expensive than carpenters or ironworkers,
and they never go away because their work is apparently never completed. Some

xx / The Inmates Are Running the Asylum

might suggest that programming is research and development, and there are
similarities. However, R & D is the thinking and experimenting done to establish
the theoretical viability of a product and is not performed the same way that
products are built in a production environment. Fittingly, traditional accounting
separates R & D expenditures from the daily operations that generate revenue.
Writing software doesn’t work well in any of those old business-accounting cate-
gories.

Now, you might discount this little terminology mismatch as a minor quibble for
bean-counters with green eyeshades to debate over beers, but it actually has a
huge effect on how software is funded, managed, and—most significantly—
regarded by senior executives.

Programmers create software, and business executives create revenue streams
and profit centers. Programmers measure their success by the quality of the
product, and business executives measure their success by the profitability of
their investments. They measure this profitability by applying the language of
business mathematics, which recognizes fixed costs, variable costs, corporate
overhead, and research and development, but, unfortunately, it has no model
appropriate for software or programming. Accounting is the basic language of
business, and these categories are so fundamental to all business measurement
and communication that contemporary executives have completely internalized
them. They see programming as simply another corporate expense to be fitted
into an already existing category. In practice, most executives simply treat pro-
gramming as a manufacturing effort—a variable cost. (For tax purposes, most
software companies account for programming as R & D, but it is regarded as a
variable cost in every other respect.) This is the worst possible choice because it
hopelessly prejudices their business decision making.

The key advantage of the industrial age was that products could be mass-pro-
duced, which means they could be made available to the masses at affordable
prices. The advantage to customers was the availability of functions that were
previously unavailable or only expensively hand built for the wealthy.
Companies competed on the basis of their sales prices, which were directly relat-
ed to their variable costs: the cost of manufacturing and shipping. In the infor-
mation age, it is taken for granted that products are available at affordable prices
to everyone. After all, software can be downloaded and distributed to any num-
ber of customers for essentially no cost and with little or no human effort.

Remember, businesses can grow profits by increasing revenue or reducing costs.
That is, a business can increase its fixed-cost investment, improving its product’s
quality, which increases its pricing strength, or it can reduce its variable cost,
which means decreasing the cost of manufacturing. In the old manufacturing
economy of atoms, reducing costs was simple and effective, and it was the

Foreword / xxi

preferred tactic. When today’s executives regard programming the same as man-
ufacturing, they imagine that reducing the cost of programming is similarly sim-
ple and effective. Unfortunately, those rules don’t apply anymore.

Because software has relatively insignificant variable costs, there is little business
advantage to be had in reducing them. Programmers’ salaries appear to be a vari-
able cost from an accountant’s point of view, but they are much more like a long-
term investment—a fixed cost. Reducing the cost of programming is not the
same as reducing the cost of manufacturing. It’s more like giving cheap tools to
your workers than it is like giving the workers smaller paychecks. The companies
that are shipping programming jobs overseas in order to pay reduced salaries are
missing the point entirely.

What’s more, the only available economic upside comes from making your prod-
uct or service more desirable by improving its quality, and you can’t do that by
reducing the money you spend designing or programming it. In fact, you need to
invest more time and money on the research, thinking, planning, and designing
phase to make your results better suited to your customers’ needs.

Of course, this requires a mode of thinking that is quite unfamiliar to twenty-first
century businesspeople. Instead of reducing what they spend to build each object,
they need to increase what they spend to build all objects. This is the essence of
the real new economy and precisely what Peter Drucker was talking about.

Modern pharmaceutical companies inventing high-tech drugs share some simi-
larities to the new software economy. The actual manufacturing cost of a single
pill is miniscule, but the development costs can run to billions of dollars over a
decade or more. The upside of shipping a new miracle drug can be boundless,
but there is only a catastrophic downside in shipping that drug before it has been
developed completely. Pharmaceuticals know that reducing development costs
is not a viable business strategy.

Like inventing medicine, building software isn’t the same as building a factory. The
factory is a physical asset that a company owns, and the factory workers are large-
ly interchangeable. The intangible but extremely complicated patterns of thought
that is software has value only when accompanied by the programmers who wrote
it. No company can treat programmers the same as a factory. Programmers
demand continuous attention and support well above that of any factory.

Architecture—the human design part of programming, in which users are studied,
use scenarios are defined, interaction is designed, form is determined, and behav-
ior is described—is the part of the software-construction process that is most fre-
quently dispensed with as a cost-saving measure. It is certainly possible to do too
much design, but there is no advantage in reducing it. Every dollar or hour spent
on architecture will yield tenfold savings during programming. Additionally, when

xxii / The Inmates Are Running the Asylum

you invest a sufficient amount of competent design, your product becomes very
desirable, which means that it will make more money for you. Its desirability will
establish your brand, increase your ability to raise prices, generate customer loyal-
ty, and give your product a longer, stronger lifespan. Although there’s no advantage
in cost reduction, there is big advantage in quality enhancement. Ironically, the
best way to increase profitability in the information age is to spend more.

Unfortunately, most executives have an almost irresistible desire to reduce the
time and money invested in programming. They see, incorrectly, the obsolete
advantage in reducing costs. What they don’t see is that reduction in investment
in programming has strong negative effects on a product’s long-term quality,
desirability, and therefore profitability. Of course, simply spending more money
doesn’t guarantee improvement, and it can often make things worse when addi-
tional money is unaccompanied by wisdom, analysis, and guidance. My first
mentor, Dan Joaquin, used to say that the old maxim “You get what you pay for”
should properly be inverted to “You don’t get what you don’t pay for.” Proceeding
without proper planning risks spending way too much. The trick is to spend
the correct amount, and that demands significant expertise in software-
construction management. It also demands process tools that provide managers
with the insight and information they need to make the correct decisions.
Providing those tools is this book’s goal.

The dot-com boom was populated with companies whose entire business model
consisted of the reduction of variable costs. Although many dot-coms claimed
various online advantages, their Web sites were sufficiently ponderous and
unhelpful to be far less satisfying than simply driving to the mall. Dot-com
founders swooned with ecstasy (as did the press) because they could establish a
retail enterprise for a remarkably lower variable cost. Their complete and spec-
tacular failure demonstrated beyond doubt that the economic rules of the infor-
mation age are different from those of the industrial age.

In the old economy, lower variable costs meant wider distribution and lower
retail costs. Those twin advantages directly benefited the consumer, and they are
the foundation for the economic success of the industrial revolution. In the new
economy, business success depends on adding something new and better for the
consumer. The actual quality of every part of the transaction, from browsing to
comparison shopping to comprehensiveness, must be noticeably better for the
end user. Wading through 11 screens only to have to telephone the company
anyway is far less satisfying than making the purchase conventionally. Entering
your name, address, and credit card information three or four times, only to find
that the site can’t sell you everything you need and a trip to the atom-based store
is necessary anyway, has the unfortunate effect of making the entire online sale
completely unnecessary and undesirable. Today, simply lowering costs for the
vendor doesn’t guarantee success.

Foreword / xxiii

When Pets.com sold dog food over the Internet, it didn’t offer better dog food,
and it didn’t offer a customer experience better than you could get at the local
brick-and-mortar pet store; it didn’t offer any better information, intelligence, or
confidence. All it offered was cheaper shipping, stocking, and selling—variable
costs all—for Pets.com. It was a classic industrial-age-economy tactic of cost
reduction that ignored the fundamental principles of the new economy. Far from
being the first breath of a new economy, it was the last gasp of the old.

I am absolutely convinced that you can sell anything on the Internet profitably
and successfully. The trick is that your online store must offer a measurably
greater degree of shopper satisfaction than any competing retail medium, and
price is only one small component of satisfaction. There is only one way to
accomplish this: You must architect your system to deliver the highest possible
end-user satisfaction. Treating any aspect of software design and construction as
if it were a manufacturing process courts failure. The design and programming
of software is simply not a viable target for conventional cost-reduction meth-
ods. It’s certainly possible to spend too much time and money on building soft-
ware, but the danger of spending too little is far greater.

Such danger is probably not shocking or unfamiliar to you, but it is nearly incon-
ceivable to most senior business executives who are responsible for running big
companies. Those execs are still using accounting models popular in the age of
steam, yet every aspect of their companies is fully dependent on software for
operations, decision making, communications, and finance. The terms and con-
cepts those executives use are simply not cognizant of the unique nature of
doing business in an era when the tools and products of commerce are intangi-
ble arrangements of bits instead of railroad carloads of iron. The sock puppets
were cool, though.

Even though corporations are hiring interaction designers and applying goal-
directed methods, the quality of our software products hasn’t actually improved
that much. What’s more, the high cost of programming and the basic intractabil-
ity of the software-construction process remain ever-present. Why?

Change is impossible until senior business executives realize that software prob-
lems are not technical issues, but are significant business issues. Our problems will
remain unsolved until we change our process and our organization.

Not only do companies follow obsolete financial models, but they also follow an
inappropriate organizational model. This model is copied directly from acade-
mia, where the act of creating software is entangled with the planning and
engineering of that software. Such is the nature of research. Tragically, and
apparently without notice, this paradigm has been carried over intact into the
world of business, where it does not belong.

xxiv / The Inmates Are Running the Asylum

All modern manufacturing disciplines have roots in preindustry except software,
whose unique medium appeared well after industrialization was a fait accompli.
Only programming comes directly from academia, where there are no time lim-
its on research, student power is dirt cheap, profit is against the rules, and a fail-
ing program can be considered a very successful experiment. It’s not a
coincidence that Microsoft, IBM, Oracle, and other leading software companies
reside in “campuses.” Universities never have to make money, hit deadlines, or
build desirable, useful products.

All nonsoftware businesses begin with research and end with mass production
and distribution of their products or services. They plan carefully in between,
cognizant of the dangers to both bank account and reputation if they attempt
premature production of an ill-conceived product. They know that time,
thought, and money invested in planning will pay big dividends in the smooth-
ness and speed of manufacturing and the popularity and profitability of their
end products.

In all other construction disciplines, engineers plan a construction strategy that
craftsmen execute. Engineers don’t build bridges; ironworkers do. Only in software
is the engineer tasked with actually building the product. Only in software is the
“ironworker” tasked with determining how the product will be constructed. Only
in software are these two tasks performed concurrently instead of sequentially. But
companies that build software seem totally unaware of the anomaly. Engineering
and construction are so crossbred as to be inseparable and apparently indistin-
guishable by practitioners or executives. Planning of all sorts is either omitted or
delayed until far too late. Profoundly complex technical engineering problems are
habitually left unsolved until construction of code intended for public release is
well underway, when it is too economically embarrassing to back up.

Architecture must be integrated into early-stage engineering planning. In fact, it
should drive early-stage engineering, but because such engineering is typically
deferred until construction has begun and is corrupted by intermingling with
production coding, the architectural design lacks an entry point into the con-
struction process. Despite the fact that companies are hiring interaction design-
ers and retraining their usability testers to create personas, their work has little
effect on either the cost of construction or the quality of the finished product.

The solution lies in the hands of corporate presidents and chief executive offi-
cers. When these execs delegate the solution to their chief technology officers or
vice presidents of engineering they miss the point. Those worthy officers are
technicians, and the problem is not a technical one. As Drucker pointed out, the
accounting tools CEOs depend on simply do not represent the true state of their
organizations. It’s like saying that because the speedometer is accurate the car is
headed in the right direction. In a business world dominated by digital technol-
ogy, that is simply no longer true.

Foreword / xxv

One of the biggest problems of applying incorrect accounting and organization-
al methods to software construction is that executives don’t realize how much of
their programming dollar is wasted. An accurate system would show that at least
one half of every dollar is misspent and that it takes another two or three dollars
to fix the problems caused by the initial bad investment. In any other business,
such statistics would be cause for revolution, but in software we remain in a state
of blissful ignorance.

Over the past 13 years my company, Cooper, has consulted with hundreds of
companies. My talented designers have provided most of them with blueprints
for products that would help them enormously, yet only a handful have been
able to take full advantage of them. Most of them treat interaction design and
software architecture as advice, and their programmers and engineers always
have the last word. None of those companies’ CEOs has any clue as to what is
really going on in the engineers’ cubicles, so they squeeze the schedule without
reason. The programmers are always working in an environment of scarcity, pri-
marily lacking time to program well, but also lacking the time to determine what
should be programmed at all. They are forced to protect themselves by rejecting
advice and prevaricating to their managers.

I believe that there are two kinds of executives: those who are engineers, and those
who are terrified of engineers. The former propagate the familiar problems
because their viewpoint is hopelessly blinkered by a conflict of interest. The latter
propagate them because they cannot speak the language of programmers. I don’t
mean Java or C#. I mean that business people and programmers lack common
tools and common goals. Homo sapiens delegate human problems to Homo logi-
cus and are unaware that the solution could be so much better if they applied—at
the executive level—appropriate financial and organizational models instead.

There is a colossal opportunity for companies to break this logjam and organize
around customer satisfaction instead of around software, around personas instead
of around technology, around profit instead of around programmers. I eagerly
await the enlightened executive who seizes this chance and forever alters the way
software is built by providing the industry with a bold and successful example.

xxvi / The Inmates Are Running the Asylum

Alan Cooper
Menlo Park, California
October 2003
http://www.cooper.com

inmates@cooper.com

http://www.cooper.com

3
Wasting Money

It’s harder than you might think to squander millions of dollars, but a flawed
software-development process is a tool well suited to the job. That’s because soft-
ware development lacks one key element: an understanding of what it means to
be “done.” Lacking this vital knowledge, we blindly bet on an arbitrary deadline.
We waste millions to cross the finish line soonest, only to discover that the finish
line was a mirage. In this chapter I’ll try to untangle the expensive confusion of
deadline management.

Deadline Management

There is a lot of obsessive behavior in Silicon Valley about time to market. It is fre-
quently asserted that shipping a product right now is far better than shipping it
later. This imperative is used as a justification for setting impossibly ambitious
ship dates and for burning out employees, but this is a smoke screen that hides
bigger, deeper fears—a red herring. Shipping a product that angers and frus-
trates users in three months is not better than shipping a product that pleases
users in six months, as any businessperson knows full well.

Managers are haunted by two closely related fears. They worry about when their
programmers will be done building, and they doubt whether the product will be
good enough to ultimately succeed in the marketplace. Both of these fears stem
from the typical manager’s lack of a clear vision of what the finished product
actually will consist of, aside from mother-and-apple-pie statements such as
“runs on the target computer” and “doesn’t crash.” And lacking this vision, they
cannot assess a product’s progress towards completion.

The implication of these two fears is that as long as it “doesn’t crash,” there isn’t
much difference between a program that takes three months to code and one
that takes six months to code, except for the prodigious cost of three months of
unnecessary programming. After the programmers have begun work, money
drains swiftly. Therefore, logic tells the development manager that the most
important thing to do is to get the coding started as soon as possible and to end
it as soon as possible.

The conscientious development manager quickly hires programmers and sets
them coding immediately. She boldly establishes a completion date just a few
months off, and the team careens madly toward the finish line. But without prod-
uct design, our manager’s two fears remain unquelled. She has not established
whether the users will like the product, which indeed leaves its success a mys-
tery. Nor has she established what a “complete” product looks like, which leaves
its completion a mystery. Later in the book, I’ll show how interaction design can
ease these problems. Right now, I’ll show how thoroughly the deadline subverts
the development process, turning all the manager’s insecurities into self-
fulfilling prophecies.

What Does “Done” Look Like?

After we have a specific description of what the finished software will be, we can
compare our creation with it and really know when the product is done.

There are two types of descriptions. We can create a very complete and detailed
physical description of the actual product, or we can describe the reaction we’d
like the end user to have. In building architecture, for example, blueprints fill the
first requirement. When planning a movie or creating a new restaurant, however,
we focus our description on the feelings we’d like our clients to experience. For
software-based products, we must necessarily use a blend of the two.

Unfortunately, most software products never have a description. Instead, all they
have is a shopping list of features. A shopping bag filled with flour, sugar, milk,
and eggs is not the same thing as a cake. It’s only a cake when all the steps of the
recipe have been followed, and the result looks, smells, and tastes substantially
like the known characteristics of a cake.

Having the proper ingredients but lacking any knowledge of cakes or how to
bake, the ersatz cook will putter endlessly in the kitchen with only indeterminate
results. If we demand that the cake be ready by 6 o’clock, the conscientious cook
will certainly bring us a platter at the appointed hour. But will the concoction be
a cake? All we know is that it is on time, but its success will be a mystery.

42 / Part II: It Costs You Big Time

In most conventional construction jobs, we know we’re done because we have a
clear understanding of what a “done” job looks like. We know that the building is
completed because it looks and works just like the blueprints say it should look
and work. If the deadline for construction is June 1, the arrival of June doesn’t
necessarily mean that the building is done. The relative completeness of the
building can only be measured by examining the actual building in comparison
to the plans.

Without blueprints, software builders don’t really have a firm grasp on what
makes the product “done,” so they pick a likely date for completion, and when
that day arrives they declare it done. It is June 1; therefore, the product is com-
pleted. “Ship it!” they say, and the deadline becomes the sole definition of proj-
ect completion.

The programmers and businesspeople are neither stupid nor foolish, so the prod-
uct won’t be in complete denial of reality. It will have a robust set of features, it will
run well, and it won’t crash. The product will work reasonably well when operated
by people who care deeply that it works well. It might even have been subjected to
usability testing, in which strangers are asked to operate it under the scrutiny of
usability professionals1. But, although these precautions are only reasonable, they
are insufficient to answer the fundamental question: Will it succeed?

Parkinson’s Law

Managers know that software development follows Parkinson’s Law: Work will
expand to fill the time allotted to it. If you are in the software business, perhaps
you are familiar with a corollary to Parkinson called the Ninety-Ninety Rule,
attributed to Tom Cargill of Bell Labs: “The first 90% of the code accounts for the
first 90% of the development time. The remaining 10% of the code accounts for
the other 90% of the development time.” This self-deprecating rule says that when

Chapter 3: Wasting Money / 43

1 Usability professionals are not interaction designers. I discuss this difference in detail in
Chapter 12, “Desperately Seeking Usability.”

the engineers have written 90% of the code, they still don’t know where they are!
Management knows full well that the programmers won’t hit their stated ship
dates, regardless of what dates it specifies. The developers work best under pres-
sure, and management uses the delivery date as the pressure-delivery vehicle.

In the 1980s and 1990s, Royal Farros was the vice president of development for
T/Maker, a small but influential software company. He says, “A lot of us set dead-
lines that we knew were impossible, enough so to qualify for one of those
Parkinson’s Law corollaries. ‘The time it will take to finish a programming project
is twice as long as the time you’ve allotted for it.’ I had a strong belief that if you
set a deadline for, say, six months, it would take a year. So, if you had to have
something in two years, set the deadline for one year. Bonehead sandbagging,
but it always worked.”

When software entrepreneur Ridgely Evers was with Intuit, working on the cre-
ation of QuickBooks, he experienced the same problem. “The first release of
QuickBooks was supposed to be a nine-month project. We were correct in esti-
mating that the development period would be the same as a gestation period,
but we picked the wrong species: It took almost two-and-a-half years, the gesta-
tion period for the elephant.”

Software architect Scott McGregor points out that Gresham’s Law—that bad cur-
rency drives out good—is also relevant here. If there are two currencies, people
will hoard the good one and try to spend the bad one. Eventually, only the bad
currency circulates. Similarly, bad schedule estimates drive out good ones. If
everybody makes bogus but rosy predictions, the one manager giving realistic
but longer estimates will appear to be a heel-dragger and will be pressured to
revise his estimates downward.

Some development projects have deadlines that are unreasonable by virtue of
their arbitrariness. Most rational managers still choose deadlines that, while
reachable, are only reachable by virtue of extreme sacrifice. Sort of like the pilot
saying, “We’re gonna make Chicago on time, but only if we jettison all our bag-
gage!” I’ve seen product managers sacrifice not only design, but testing, func-
tion, features, integration, documentation, and reality. Most product managers
that I have worked with would rather ship a failure on time than risk going late.

The Product That Never Ships

This preference is often due to every software development manager’s deepest
fear: that after having become late, the product will never ship at all. Stories of
products never shipping are not apocryphal. The project goes late, first by one
year, then two years, then is euthanized in its third year by a vengeful upper man-
agement or board of directors. This explains the rabid adherence to deadlines,
even at the expense of a viable product.

44 / Part II: It Costs You Big Time

For example, in the late 1990s, at the much-publicized start-up company Worlds,
Inc., many intelligent, capable people worked on the creation of a virtual, online
world where people’s avatars could wander about and engage other avatars in
real-time conversation. The product was never fully defined or described, and
after tens of millions of investment capital was spent, the directors mercifully
pulled the plug.

In the early 1990s, another start-up company, Nomadic Computing, spent about
$15 million creating a new product for mobile businesspeople. Unfortunately, no
one at the company was quite sure what its product was. They knew their mar-
ket, and most of the program’s functions, but weren’t clear on their users’ goals.
Like mad sculptors chipping away at a huge block of marble hoping to discover
a statue inside, the developers wrote immense quantities of useless code that
was all eventually thrown away, along with money, time, reputations, and
careers. The saddest waste, though, was the lost opportunity for creating soft-
ware that really was wanted.

Even Microsoft isn’t immune from such wild goose chases. Its first attempt at cre-
ating a database product in the late 1980s consumed many person-years of effort
before Bill Gates mercifully shut it down. Its premature death sent a shock wave
through the development community. Its successor, Access, was a completely
new effort, staffed and managed by all new people.

Shipping Late Doesn’t Hurt

Ironically, shipping late generally isn’t fatal to a product. A third-rate product that
ships late often fails, but if your product delivers value to its users, arriving
behind schedule won’t necessarily have lasting bad effects. If a product is a hit,
it’s not a big deal that it ships a month—or even a year—late. Microsoft Access
shipped several years late, yet it has enjoyed formidable success in the market.
Conversely, if a product stinks, who cares that it shipped on time?

Certainly, some consumer products that depend on the Christmas season for the
bulk of their sales have frighteningly important due dates. But most software-based
products, even consumer products, aren’t that sensitive to any particular date.

For example, in 1990 the PenPoint computer from GO was supposed to be the
progenitor of a handheld-computer revolution. In 1992, when the PenPoint
crashed and burned, the Apple Newton inherited the promise of the handheld
revolution. When the Newton failed to excite people, General Magic’s Magic Link
computer became the new hope for handhelds. That was in 1994. When the
Magic Link failed to sell, the handheld market appeared dead. Venture capitalists
declared it a dry hole. Then, out of nowhere, in 1996, the PalmPilot arrived to uni-
versal acclaim. It seized the handheld no-man’s-land six years late. Markets are
always ready for good products that deliver value and satisfy users.

Chapter 3: Wasting Money / 45

Of course, companies with a long history of making hardware-only products now
make hybrid versions containing chips and software. They tend to underesti-
mate the influence of software and subordinate it to the already-established
completion cycles of hardware. This is wrong because as Chapter 1, “Riddles for
the Information Age,” showed, these companies are now in the software busi-
ness, whether or not they know it.

Feature-List Bargaining

One consequence of deadline management is a phenomenon that I call “feature-
list bargaining.”

Years ago programmers got burned by the vague product-definition process con-
sisting of cocktail-napkin sketches, because they were blamed for the unsuccess-
ful software that so often resulted. In self-defense, programmers demanded that
managers and marketers be more precise. Computer programs are procedural,
and procedures map closely to features, so it was only natural that programmers
would define “precision” as a list of features. These feature lists allowed program-
mers to shift the blame to management when the product failed to live up to
expectations. They could say, “It wasn’t my fault. I put in all the features manage-
ment wanted.”

Thus, most products begin life with a document variably called a “marketing
specification,” “technical specification,” or “marketing requirements document.”
It is really just a list of desired features, like the list of ingredients in the recipe for
cake. It is usually the result of several long brainstorming sessions in which man-
agers, marketers, and developers imagine what features would be cool and jot
them down. Spreadsheet programs are a favorite tool for creating these lists, and
a typical one can be dozens of pages long. (Invariably, at least one of the line
items will specify a “good user interface.”) Feature suggestions can also come
from focus groups, market research, and competitive analysis.

The managers then hand the feature list to the programmers and say, “The prod-
uct must ship by June 1.” The programmers—of course—agree, but they have
some stipulations. There are far too many features to create in the time allotted,
they claim, and many of them will have to be cut to meet the deadline. Thus
begins the time-honored bargaining.

The programmers draw a dividing line midway through the list. Items above it
will be implemented, they declare, while those below the “line of death” are
postponed or eliminated. Management then has two choices: to allow more time
or to cut features. Although the project will inevitably take more time, manage-
ment is loath to play that trump so early in the round, so it negotiates over fea-
tures. Considerable arguing and histrionics occur. Features are traded for time;
time is traded for features. This primitive capitalist negotiation is so human and

46 / Part II: It Costs You Big Time

natural that both parties are instantly comfortable with it. Sophisticated parallel
strategies develop. As T/Maker’s Royal Farros points out, when one “critical-path
feature was blamed for delaying a deadline, it would let a dozen other tardy fea-
tures sneak onto the list without repercussion.” Lost in the battle is the perspec-
tive needed for success.

Farros described T/Maker’s flagship product, a word processor named WriteNow,
as “a perfect product for the university marketplace. In 1987, we actually shipped
more copies of WriteNow to the university market than Microsoft shipped Word.
However, we couldn’t hold our lead because we angered our very loyal, core fans
in this market by not delivering the one word-processor feature needed in a uni-
versity setting: endnotes. Because of trying to make the deadline, we could never
slip this feature into the specification. We met our deadline but lost an entire
market segment.”

Programmers Are in Control

Despite appearances, programmers are completely in control of this bottom-up
decision-making process. They are the ones who establish how long it will take
to implement each item, so they can force things to the bottom of the list mere-
ly by estimating them long. The programmers will—in self-defense—assign
longer duration to the more nebulously defined items, typically those concerned
with substantive user-interface issues. This inevitably causes them to migrate to
the bottom of the list. More familiar idioms and easy-to-code items, such as
menus, wizards, and dialog boxes, bubble to the top of the list. All of the analysis
and careful thinking done by high-powered and high-priced executives is made
moot by the unilateral cherry picking of a programmer following his own muse
or defending his turf.

Like someone only able to set the volume of a speaker that isn’t within hearing
distance, managers find themselves in the unenviable position of only having
tools that control ineffective parameters of the development process. It is cer-
tainly true that management needs to control the process of creating and ship-
ping successful software, but, unfortunately, our cult of deadline ignores the
“successful” part to concentrate only on the “creating” part. We give the creators
of the product the reins to the process, thus relegating management to the role
of passenger and observer.

Features Are Not Necessarily Good

Appearances to the contrary, users aren’t really compelled by features. Product
successes and failures have shown repeatedly that users don’t care that much
about features. Users only care about achieving their goals. Sometimes features
are needed to reach goals, but more often than not, they merely confuse users

Chapter 3: Wasting Money / 47

and get in the way of allowing them to get their work done. Ineffective features
make users feel stupid. Borrowing from a previous example, the successful
PalmPilot has far fewer features than did General Magic’s failed Magic Link com-
puter, Apple’s failed Newton, or the failed PenPoint computer. The PalmPilot
owes its success to its designers’ single-minded focus on its target user and the
objectives that user wanted to achieve.

About the only good thing I can say about features is that they are quantifiable.
And that quality of being countable imbues them with an aura of value that they
simply don’t have. Features have negative qualities every bit as strong as their
positive ones. The biggest design problem they cause is that every well-meant
feature that might possibly be useful obfuscates the few features that will proba-
bly be useful. Of course, features cost money to implement. They add complexi-
ty to the product. They require an increase in the size and complexity of the
documentation and online help system. Above all, cost-wise, they require addi-
tional trained telephone tech-support personnel to answer users’ questions
about them.

It might be counterintuitive in our feature-conscious world, but you simply can-
not achieve your goals by using feature lists as a problem-solving tool. It’s quite
possible to satisfy every feature item on the list and still hatch a catastrophe.
Interaction designer Scott McGregor uses a delightful test in his classes to prove
this point. He describes a product with a list of its features, asking his class to
write down what the product is as soon as they can guess. He begins with 1)
internal combustion engine; 2) four wheels with rubber tires; 3) a transmission
connecting the engine to the drive wheels; 4) engine and transmission mounted
on metal chassis; 5) a steering wheel. By this time, every student will have writ-
ten down his or her positive identification of the product as an automobile,
whereupon Scott ceases using features to describe the product and instead men-
tions a couple of user goals: 6) cuts grass quickly and easily; 7) comfortable to sit
on. From the five feature clues, not one student will have written down “riding
lawnmower.” You can see how much more descriptive goals are than features.

Iteration and the Myth of the Unpredictable Market

In an industry that is so filled with money and opportunities to earn it, it is often
just easier to move right along to another venture and chalk up a previous failure
to happenstance, rather than to any real reason.

I was a party to one of these failures in the early 1990s. I helped to start a venture-
funded company whose stated goal was to make it absurdly simple to network
PCs together.2 The product worked well and was easy to use, but a tragic series of

48 / Part II: It Costs You Big Time

2 Actually, we said that we wanted to make it “as easy to network Intel/Windows computers as it
was to network Macintosh computers.” At the time, it was ridiculously simple to network Macs
together with AppleTalk. Then, as now, it was quite difficult to network Wintel PCs together.

self-inflicted marketing blunders caused it to fail dismally. I recently attended a
conference where I ran into one of the investors who sat on the doomed compa-
ny’s board of directors. We hadn’t talked since the failure of the company, and—
like veterans of a battlefield defeat meeting years later—we consoled each other
as sadder but wiser men. To my unbridled surprise, however, this otherwise
extremely successful and intelligent man claimed that in hindsight he had
learned a fundamental lesson: Although the marketing, management, and tech-
nical efforts had been flawless, the buying public “just wasn’t interested in easy-
to-install local area networks.” I was flabbergasted that he would make such an
obviously ridiculous claim and countered that surely it wasn’t lack of desire, but
rather our failure to satisfy the desire properly. He restated his position, arguing
forcefully that we had demonstrated that easy networking just wasn’t something
that people wanted.

Later that evening, as I related this story to my wife, I realized that his rationali-
zation of the failure was certainly convenient for all the parties involved in the
effort. By blaming the failure on the random fickleness of the market, my col-
league had exonerated the investors, the managers, the marketers, and the
developers of any blame. And, in fact, each of the members of that start-up has
gone on to other successful endeavors in Silicon Valley. The venture capitalist has
a robust portfolio of other successful companies.

During development, the company had all the features itemized on the feature
list. It stayed within budget. It shipped on schedule. (Well, actually, we kept
extending the schedule, but it shipped on a schedule.) All the quantitatively
measurable aspects of the product-development effort were within acceptable
parameters. The only conclusion this management-savvy investor could make
was the existence of an unexpected discontinuity in the marketplace. How could
we have failed when all the meters were in the green?

The fact that these measures are objective is reassuring to everyone. Objective
and quantitative measure is highly respected by both programmers and busi-
nesspeople. The fact that these measures are usually ineffective in producing
successful products tends to get lost in the shuffle. If the product succeeds, its
progenitors will take the credit, attributing the victory to their savvy understand-
ing of technology and marketing.

On the other hand, if the product fails, nobody will have the slightest motivation
to exhume the carcass and analyze the failure. Almost any excuse will do, as long
as the players—both management and technical—can move along to the next
high-tech opportunity, of which there is an embarrassment of riches. Thus, there
is no reason to weep over the occasional failure. The unfortunate side effect of not
understanding failure is the silent admission that success is not predictable—that
luck and happenstance rule the high-tech world. In turn, this gives rise to what

Chapter 3: Wasting Money / 49

the venture capitalists call the “spray and pray” method of funding: Put a little bit
of money into a lot of investments and then hope that one of them gets lucky.

x

Rapid-development environments such as the World Wide Web—and Visual
Basic before it—have also promoted this idea of simply iterating until something
works. Because the Web is a new advertising medium, it has attracted a multi-
tude of marketing experts who are particularly receptive to the myth of the
unpredictable market and its imperative to iterate. Marketers are familiar with
the harsh and arbitrary world of advertising and media. After all, much of adver-
tising really is random guesswork. For example, in advertising, “new” is the sin-
gle most effective marketing concept, yet when Coca-Cola introduced “New
Coke” in the mid-1980s, it failed utterly. Nobody could have predicted this result.
People’s tastes and styles change randomly, and the effectiveness of marketing
can appear to be random.

On the Web, the problem arises when a Web site matures from the online-
catalog stage into the online-store stage. It changes from a one-way presentation
of data to an interactive software application. The advertising and media people
who had such great success with the first-generation site now try their same iter-
ation methods on the interactive site and run into trouble, often without realiz-
ing it. Marketing results may be random, but interaction is not. The cognitive
friction generated by the software’s interactivity is what gives the impression of
randomness to those untrained in interaction design.

The remarkably easy-to-change nature of the World Wide Web plays into this
because an advertisement or marketing campaign can be aired for a tiny fraction
of the cost (and time) of print or TV advertising. The savvy Web marketer can get
almost instantaneous feedback on the effectiveness of an ad, so the speed of the
iteration increases dramatically, and things are hacked together overnight. In
practice, it boils down to “throw it against the wall and see what sticks.” Many
managers of Web start-ups use this embarrassingly simple doctrine of design by
guesswork. They write any old program that can be built in the least time and
then put it before their users. They then listen to the complaints and feedback,
measure the patterns of the user’s navigation clicks, change the weak parts, and
then ship it again.

Generally, programmers aren’t thrilled about the iterative method because it
means extra work for them. Typically, it’s managers new to technology who like
the iterative process because it relieves them of having to perform rigorous plan-
ning, thinking, and product due diligence (in other words, interaction design). Of
course, it’s the users who pay the dearest price. They have to suffer through one
halfhearted attempt after another before they get a program that isn’t too painful.

50 / Part II: It Costs You Big Time

Just because customer feedback improves your understanding of your product
or service, you cannot then deduce that it is efficient, cheap, or even effective to
toss random features at your customers and see which ones are liked and which
are disliked. In a world of dancing bears, this can be a marginally viable strategy,
but in any market in which there is the least hint of competition, it is suicidal.
Even when you are all alone in a market, it is a very wasteful method.

Many otherwise sensitive and skilled managers are unashamedly proud of this
method. One mature, experienced executive (a former marketing man) asked
me, in self-effacing rhetoric, “How could anyone presume to know what the
users want?” This is a staggering question. Every businessperson presumes. The
value that most businesspeople bring to their market is precisely their “pre-
sumption” of what the customer wants. Yes, that presumption will miss the mark
with some users, but not to presume at all means that every user won’t like it. This
foolish man believed that his customers didn’t mind plowing through his guess-
es to do his design work for him. Today, in Silicon Valley, there might be lots of
enthusiastic Web-surfing apologists who are willing to help this lazy executive
figure out his business, but how many struggling survivors did he alienate with
that haughty attitude? As he posted sketchy version after sketchy version of his
site, reacting only to those people with the stamina to return to it, how many cus-
tomers did he lose permanently? What did they want? It has been said that the
way Stalin cleared a minefield was to march a regiment through it. Effective? Yes.
Efficient, humanitarian, viable, desirable? No.

Chapter 3: Wasting Money / 51

The biggest drawback, of course, is that you immediately scare away all survivors,
and your only remaining users will be apologists. This seriously skews the nature
and quality of your feedback, condemning you to a clientele of technoid apolo-
gists, which is a relatively small segment. This is one reason why so few personal-
computer software-product makers have successfully crossed over into mass
markets.

I am not saying that you cannot learn from trial and error, but those trials should
be informed by something more than random chance and should begin from a
well-thought-out solution, not an overnight hack. Otherwise, it’s just giving lazy
or ignorant businesspeople license to abuse consumers.

The Hidden Costs of Bad Software

When software is frustrating and difficult to use, people will avoid using it. That is
unremarkable until you realize that many people’s jobs are dependent on using
software. The corporate cost of software avoided is impossible to quantify, but it
is real. Generally, the costs are not monetary ones, anyway, but are exacted in far
more expensive currencies, such as time, order, reputation, and customer loyalty.

People who use business software might despise it, but they are paid to tolerate
it. This changes the way people think about software. Getting paid for using soft-
ware makes users far more tolerant of its shortcomings because they have no
choice, but it doesn’t make it any less expensive. Instead—while the costs remain
high—they become very difficult to see and account for.

Badly designed business software makes people dislike their jobs. Their produc-
tivity suffers, errors creep into their work, they try to cheat the software, and they
don’t stay in the job very long. Losing employees is very expensive, not just in
money but in disruption to the business, and the time lost can never be made up.
Most people who are paid to use a tool feel constrained not to complain about
that tool, but it doesn’t stop them from feeling frustrated and unhappy about it.

One of the most expensive items associated with hard-to-use software is techni-
cal support. Microsoft spends $800 million annually on technical support. And
this is a company that spends many hundreds of millions of dollars on usability
testing and research, too. Microsoft is apparently convinced that support of this
magnitude is just an unavoidable cost of doing business. I am not. Imagine the
advantage it would give your company if you didn’t make the same assumption
that Microsoft did. Imagine how much more effective your development efforts
would be if you could avoid spending over five percent of your net revenue on
technical support.

Ask any person who has ever worked at any desktop-software company in tech-
nical support, and he will tell you that the one thing he spends most of his time
and effort on is the file system. Just like Jane in Chapter 1, users don’t understand
the recursive hierarchy of the file system—the Finder or Explorer—on Windows,
the Mac, or Unix. Surprisingly, very few companies will spend the money to
design and implement a more human-friendly alternative to the file system.
Instead, they accept the far more expensive option of answering phone calls
about it in perpetuity.

52 / Part II: It Costs You Big Time

You can blame the “stupid user” all you want, but you still have to staff those
phones with expensive tech-support people if you want to sell or distribute with-
in your company software that hasn’t been designed.

The Only Thing More Expensive Than Writing Software Is
Writing Bad Software

Programmers cost a lot, and programmers sitting on their hands waiting for
design to be completed gall managers in the extreme. It seems foolish to have
programmers sit and wait, when they could be programming, thinks the manag-
er. It is false economy, though, to put programmers to work before the design is
completed. After the coding process begins, the momentum of programming
becomes unstoppable, and the design process must now respond to the needs of
programmers, instead of vice versa. Indeed, it is foolish to have programmers
wait, and by the simple expedient of having interaction designers plan your next
product or release concurrently with the construction of this product or release,
your programmers will never have to idly wait.

It is more costly in the long run to have programmers write the wrong thing than
to write nothing at all. This truth is so counterintuitive that most managers balk
at the very idea. After code is written, it is very difficult to throw it out. Like writ-
ers in love with their prose, programmers tend to have emotional attachments to
their algorithms. Altering programs in midstride upsets the development process
and wounds the code, too. It’s hard on the manager to discard code because she
is the one who paid dearly for it, and she knows she will have to spend even more
to replace it.

If design isn’t done before programming starts, it will never have much effect.
One manager told me, “We’ve already got people writing code and I’m not gonna
stop.” The attitude of these cowboys is, “By the time you are ready to hit the
ground, I’ll have stitched together a parachute.” It’s a bold sentiment, but I’ve
never seen it work.

Lacking a solid design, programmers continually experiment with their pro-
grams to find the best solutions. Like a carpenter cutting boards by eye until he
gets one that fits the gap in the wall, this method causes abundant waste.

The immeasurability and intangibility of software conspires to make it nearly
impossible to estimate its size and assess its state of completion. Add in the pro-
grammer’s joy in her craft, and you can see that software development always
grows in scope and time and never shrinks. We will always be surprised during its
construction, unless we can accurately establish milestones and reliably meas-
ure our progress against them.

Chapter 3: Wasting Money / 53

Opportunity Cost

In the information age, the most expensive commodity is not the cost of building
something, but the lost opportunity of what you are not building. Building a failure
means that you didn’t build a success. Taking three annual releases to get a good
product means that you didn’t create three good products in one release each.

Novell’s core business is networking, but it attempted to fight Microsoft toe-to-
toe in the office-applications arena. Although its failed efforts in the new market
were expensive, the true cost was its loss of leadership in the networking market.
The money is nothing compared to the singular potential of the moment.
Netscape lost its leadership in the browser market in the same way when it
decided to compete against Microsoft in the operating-system business.

Any developer of silicon-based products has to evaluate what the most impor-
tant goals of its users are and steadfastly focus on achieving them. It is far too
easy to be beguiled by the myriad of opportunities in high tech and to gamble
away the main chance. Programmers—regardless of their intelligence, business
acumen, loyalty, and good intentions—march to a slightly different drummer
and can easily drag a business away from its proper area of focus.

The Cost of Prototyping

Prototyping is programming, and it has the momentum and cost of program-
ming, but the result lacks the resiliency of real code. Software prototypes are
scaffolds and have little relation to permanent, maintainable, expandable
code—the equivalent of stone walls. Managers, in particular, are loath to discard
code that works, even if it is just a prototype. They can’t tell the difference
between scaffolding and stone walls.

You can write a prototype much faster than a real program. This makes it attrac-
tive because it seems so inexpensive, but real programming gives you a reliable
program, and prototyping gives you a shaky foundation. Prototypes are experi-
ments made to be thrown out, but few of them ever are. Managers look at the run-
ning prototype and ask, “Why can’t we just use this?” The answer is too technically
complex and too fraught with uncertainty to have sufficient force to dissuade the
manager who sees what looks like a way to avoid months of expensive effort.

The essence of good programming is deferred gratification. You put in all of the
work up front, and then you reap the rewards later. There are very few tasks that
aren’t cheaper to do manually. Once written, however, programs can be run a
million times with no extra cost. The most expensive program is one that runs
once. The cheapest program is the one that runs ten billion times. However, any
inappropriate behavior will also be magnified ten billion times. Once out of the
realm of little programs, such as the ones you wrote in school, the economics of

54 / Part II: It Costs You Big Time

software take on a strange reversal in which the cheapest programs to own are
the ones that are most expensive to write, and the most expensive programs to
own are the cheapest to write.

Writing a big program is like making a pile of bricks. The pile is one brick wide
and 1,000 bricks tall, with each brick laid right on top of the one preceding it. The
tower can reach its full height only if the bricks are placed with great precision on
top of one another. Any deviation will cause the bricks above to wobble, topple,
and fall. If the 998th brick deviates by a quarter of an inch, the tower can still
probably achieve 1,000 bricks, but if the deviation is in the fifth brick, the tower
will never get above a couple dozen.

This is very characteristic of software, whose foundations are more sensitive to
hacking than the upper levels of code. As any program is constructed, the pro-
grammer makes false starts and changes as she goes. Consequently, the program
is filled with the scar tissue of changed code. Every program has vestigial func-
tions and stubbed-out facilities. Every program has features and tools whose
need was discovered sometime after construction began grafted onto it as after-
thoughts. Each one of these scars is like a small deviation in the stack of bricks.
Moving a button from one side of a dialog box to the other is like joggling the
998th brick, but changing the code that draws all button-like objects is like jog-
gling the 5th brick. Object-oriented programming and the principles of encap-
sulation are defensive techniques whose sole purpose is to immunize the
program from the effects of scar tissue. In essence, object orientation divides the
1,000-brick tower into 10 100-brick towers.

Chapter 3: Wasting Money / 55

Good programmers spend enormous amounts of time and energy setting up to
write a big program. It can take days just to set up the programming environ-
ment, before a line of product code is written. The proper libraries must be
selected. The data must be defined. The storage and retrieval subsystems must
be analyzed, defined, coded, and tested.

As the programmers proceed into the meat of the construction, they invariably
discover mistakes in their planning and flaws in their assumptions. They are then
faced with Hobson’s choice of whether to spend the time and effort to back up
and fix things from the start, or to patch over the problem wherever they are and
accept the burden of the new scar tissue—the deviation. Backing up is always
very expensive, but that scar tissue ultimately limits the size of the program—the
height of the bricks.

Each time a program is modified for a new revision to fix bugs or to add features,
scar tissue is added. This is why software must be thrown out and completely
rewritten every couple of decades. After a while, the scar tissue becomes too
thick to work well anymore.

Prototypes—by their very nature—are programs that are slapped together in a
hurry so that the results can be assayed. What the programmer exchanges in
order to build the prototype so speedily is the perfect squaring of the bricks.
Instead of using the “right” data structures, information is thrown in helter-
skelter. Instead of using the “right” algorithms, whatever code fragments happen
to be lying around are drafted for service. Prototypes begin life as masses of scar
tissue. They can never grow very large.

Some software developers have arrived at the unfortunate conclusion that mod-
ern rapid-prototyping tools—such as Visual Basic—are effective design tools.
Rather than designing the product, they just whip out an extremely anemic ver-
sion of it with a visual programming tool. This prototype typically becomes the
foundation for the product. This trades away the robustness and life span of the
product for an illusory benefit. You can get a better design with pencil and paper
and a good methodology than you can with any amount of prototyping.

For those who are not designers, visualizing the form and behavior of software
that doesn’t yet exist is difficult, if not impossible. Prototypes have been drafted
into the role of a visualization tool for these businesspeople. Because a prototype
is a rough model created with whatever prebuilt facilities are most readily avail-
able, prototypes are by nature filled with expedient compromises. But software
that actually works—regardless of how badly—exerts a powerful pull on those
who must pay for its development. A running—limping—prototype has an
uncanny momentum out of proportion to its real value.

56 / Part II: It Costs You Big Time

It is all too compelling for the manager to say, “Don’t throw out the prototype. Let’s
use it as the foundation for the real product.” This decision can often lead to a sit-
uation in which the product never ships. The programmers are condemned to a
role of perpetually resuscitating the program from life-threatening failures as it
grows. Like the stack in which the first 25 bricks were placed haphazardly, no mat-
ter how precisely the bricks above them are placed, no matter how diligently the
mason works, no matter how sticky and smooth the mortar, the force of gravity
inevitably pulls it down somewhere around the 50th level of bricks.

The value of a prototype is in the education it gives you, not in the code itself.
Developer sage Frederick Brooks says, “Plan to throw one away.” You will anyway,
so you might as well do it under controlled circumstances.

In 1988, I sold a program called Ruby to Bill Gates. Ruby was a visual program-
ming language that, when combined with Bill’s QuickBasic product, became
Visual Basic. What Gates saw was just a prototype, but it demonstrated some sig-
nificant advances both in design and technology. (When he first saw it, he asked,
“How did you do that?”) The Microsoft executive in charge of then-under-
construction Windows 3.0, Russ Werner, was also assigned to Ruby. The
subsequent deal we struck included having me write the actual program to com-
pletion. The first thing I did was to throw Ruby-the-prototype away and start over
from scratch with nothing but the wisdom and experience. When Russ found
out, he was astonished, angry, and indignant. He had never heard of such an out-
rageous thing, and was convinced that discarding the prototype would delay the
product’s release. It was a fait accompli, though, and despite Russ’s fears we
delivered the completed program on schedule. After Basic was grafted on, VB was
one of Microsoft’s more successful initial releases. In contrast, Windows 3.0
shipped more than a year late, and ever since it has been notoriously handi-
capped by its profuse quantities of vestigial prototype code.

In general, nontechnical managers erroneously value completed code—
regardless of its robustness—much higher than design, or even the advice of
those who wrote the code. A colleague, Clay Collier, who creates software for in-
car navigation systems, told me this story about one system that he worked on
for a large Japanese automotive electronics company. Clay developed—at his
client’s behest—a prototype of a consumer navigation system. As a good proto-
type should, it proved that the system would work, but beyond that the program
barely functioned. One day the president of the Japanese electronics company
came to the United States and wanted to see the program demonstrated. Clay’s
colleague—we’ll call him Ralph—knew that he could not deny the Japanese pres-
ident; he would have to put on a demo. So Ralph picked the president up at LAX
in a car specially equipped with the prototype navigation system. Ralph knew
that the prototype would give them directions to their offices in Los Angeles, but

Chapter 3: Wasting Money / 57

nothing else had been tested. To Ralph’s chagrin, the president asked instead to
go to a specific restaurant for lunch. Ralph was unfamiliar with the restaurant
and wasn’t at all confident that the prototype could get them there. He crossed
his fingers and entered the restaurant’s name, and to his surprise, the computer
began to issue driving instructions: “Turn right on Lincoln,” “Move into the left
lane,” and so on. Ralph dutifully followed as the president ruminated silently, but
Ralph began to grow more uneasy as the instructions took them into increasing-
ly unsavory parts of town. Ralph’s anxiety peaked when he stopped the car on the
computer’s command and the passenger door was yanked open. To Ralph’s eter-
nal relief, the valet at the desired restaurant had opened it. A smile broke across
the president’s face.

However, the very success of this prototype demonstration backfired on Ralph.
The president was so impressed by the system’s functioning that he commanded
that Ralph turn it into a product. Ralph protested that it was just a feasibility
proof and not robust enough to use as the foundation for millions of consumer
products. The president wouldn’t hear of it. He had seen it work. Ralph did as he
was told, and eight long years later his company finally shipped the first working
version of the product. It was slow and buggy, and it fell short of newer, younger
competitors. The New York Times called it “clearly inferior.”

The expertise and knowledge that Ralph and his team gained by building the
prototype incorrectly was far more valuable than the code itself. The president
misunderstood that and, by putting greater value on the code, made the entire
company suffer for it.

x

If you define the boundaries of a development project only in terms of deadlines
and feature lists, the product might be delivered on time, but it won’t be desired.
If, instead, you define the project in terms of quality and user satisfaction, you
will get a product that users want, and it won’t take any longer. There’s an old
Silicon Valley joke that asks, “How do you make a small fortune in software?” The
answer, of course, is, “Start with a large fortune!” The hidden costs of even well-
managed software-development projects are large enough to give Donald Trump
pause. Yacht racing and drug habits are cheaper in the long run than writing soft-
ware without the proper controls.

58 / Part II: It Costs You Big Time

Numbers
1-Click interface (Amazon.com),

108-109
3Com’s PalmPilot, 198
3M Post-It Notes, 126

A
About Face, 199, 211
Access, 45
Accidental Empires, 161
Action Request System project, 135
Adobe Photoshop, 65
aesthetics versus functionality, 212
airplanes

IFEs, 11-13
navigation computers, 3-4
programmers as pilots, 96

alarm clocks, design problems, 6-7
aliasing, 195
Amazon.com 1-Click interface, 108-109
American Airlines flight 965, 3-4
anticipation of needs, 165
apologists, 30-33, 36
Apple, 75-77, 210
Apple Newton, 45
Atkinson, Bill, 89
ATMs

confirmation messages, 68
design problems, 8-9

attrition strategy, 214-215
audience, narrowing, 124-126
automated systems, 168
automobile market, 241

B
bad design. See also cognitive friction

acceptance of, 59
ATMs, confirmation messages, 68
blaming users, 34-36
calendar software, 63
causes, 14-16
confirmation dialog boxes, 67-68

costs, 17, 27-29
business software, 52-53
loss of market share, 82-83
narratives about, 83-87
opportunity cost, 54
prototyping, 54-55

effects
alarm clock, 6-7
ATMs, 8-9
digital cameras, 4-6
employability, 11
IFEs, 11-13
navigational computers (air-

planes), 3-4
Porsche Boxster, 8
productivity loss, 9-11
techno-rage, 13-14
USS Yorktown, 13

email, 61-62
file systems, 9-11
reaction to, 33-34
scheduling programs, 62-63
technology as solution for, 213
VCRs, 60-61

bargaining. See feature list bargaining
behavioral design, 23
bell curve of skill levels, 182-185
“Betsy” (Elemental Drumbeat persona),

172
Bezos, Jeff, 108-109
Bjerke, Carolyn, 114
Blair, Alice, 115
“blaming the user”, 34-36, 67
bloatware, 29
blueprints

as product descriptions, 42-43
design documentation as, 226, 235-

236
Borland International, 72-73
Borque, Michel, 236
boundary conditions, 100
“brains” versus “gray hair” (consulting),

220
brick towers, programs as, 55-56
Bronson, Po, 95-96, 100-101, 208

Index

Brooks, Frederick, 57, 219
browser-based software, 64-65
building design teams, 234
business people, role of, 71-72
business software, 52-53
buyer personas, 135

C
calendar software, usability problems,

63
cancellation of products, 44-45
capability, 71, 78
case studies

Elemental Drumbeat, 171
competition, 173
design, 174-176
floating palettes, 176-177
goals, 173-174
personas, 172-173
product success, 177

Logitech ScanMan
cropping tools, 193-194
personas, 188-191
“pretend it’s magic” exercise,

191-192
reorienting images, 195-197
resizing images, 194
results, 197

Sony Trans Com’s P@ssport, 138
designing interface, 144-147
original interface, 139, 142
personas, 142-144

cast of characters, 135-138. See also per-
sonas

CD-ROM player, cognitive friction of, 28
“Chad Marchetti, Boy” (Logitech

ScanMan persona), 189
choices, presenting, 167-168
classroom management system, 153
“Clevis McCloud” (P@ssport persona),

142-147
“clinical vortex”, 236
cognitive friction, 19. See also bad

design
apologists, 30-33, 36
CD-ROM player, 28
computers, 20
costs of, 27-29
engineering skills and, 92
microwaves, 20
picture-in-picture television, 33

246 / Brooks, Frederick

reaction to, 33-34
remote keyless entry, 24-26
source of, 27
survivors, 31-33
Swiss Army knife, 24
typewriters, 20
versus industrial design problems,

212-213
violins, 20
WWW, 20

common sense in software, 164
common vocabulary, specifying, 185-186
competing against attrition strategies,

215
completion, determining, 42-43
“computer literacy”, 11, 35-38, 242
Computer Tourette’s, 14
computerized devices versus manual

devices, 7
computerized systems, 168
computers

ATMs, 8-9
cognitive friction of, 20
democratization of, 34
emotional response to, 159-160
employee training, 11
handheld, 45
IFEs, 11-13
in alarm clocks, 6-7
in cameras, 4-6
navigational (airplanes), 3-4
Porsche Boxster, 8
problems, displaying to user,

165-166
technological advances, 119
versus humans, 87-88

conceptual design, 23
conceptual integrity, 219-220
confirmation dialog boxes, 67-68
conflicts of interest

interface style guides, 210
programmers 16, 108
users, 108

consultants, 220-221
consumer electronics as dancing bear-

ware, 60-61
control, programmers’ need for, 96-97
core competence, design as, 238-239
corner cases, 100
corporate goals, 156-157
Cosby, Kendall, 115
CPUs, sparing, 119

design / 247

Cringely, Robert X., 95, 161
cropping tools, Logitech ScanMan,

193-194
Crossing the Chasm, 77
culture of programming, 105. See also

psychology of programmers
authority figures and, 118
isolation, 115-116
Microsoft, 110-114
military culture comparison, 109
propagation of, 110
reusing code, 106-109
reverence for technical skill,

109-110
“scarcity thinking”, 119-120
sense of responsibility, 116-118
sense of superiority, 117

customer demands, personas and, 222
customer loyalty

advantages, 76-77
Apple, 75-77
generating, 73

by narrowing user audience,
124-126

through interaction design,
240-241

Microsoft, 75
Novell, 74-75

customer-driven companies, 218
as service companies, 220-221
conceptual integrity, 219-220

cutting features, 222-223

D
daily use scenarios, 180
dancing bears, 26-27

calendar software as, 63
email as, 61-62
Explorapedia as, 111
NetWare, 74
satisfaction with, 59
scheduling programs as, 62-63
VCRs as, 60-61
WWW as, 32

de Bono, Edward, 187
deadline management, 41

determining completion, 42-43
fear of cancellation, 44-45
“feature list bargaining”, 46-47
Gresham’s Law, 44
late shipment, 45-46

Ninety-Ninety Rule, 43
Parkinson’s Law, 43
Product Managers, 44

debugging, 242-243
deferential role of software, 163-164
dehumanizing processes, 120
design

advantages versus time to market
advantages, 77, 84-85

after programming, 53, 110
as core competence, 238-239
as “pre-production” phase, 223-225
before programming, 204
behavioral, 23
company-wide awareness, 238-239
conceptual, 23
conceptual integrity, 219-220
disrespect for, 117
documenting, 226-227, 235-236

benefit to companies, 231
benefit to managers, 230-231
benefit to marketing, 229-230
benefit to programmers,

228-229
benefit to tech support, 230
benefit to technical writers,

230
effect on code, 227-228
evaluating, 149, 208-209
for narrow audiences, 124-126
free features, 28
generating customer loyalty with

(Apple), 75-77
Goal-Directed

classroom management sys-
tem example, 153

defined, 151-152
television news show exam-

ple, 152-153
implementation model, 27
industrial, 212-213
interaction design, 21, 87
interface

disadvantages, 23
versus interaction design,

227-228
iteration in, 213-214
politeness, 160

“polite” software characteris-
tics, 162-171

politeness versus humanness,
161-162

processes, 21
program design, 21
scheduling time for, 222
self-referential, 87
task-directed, 151
timing, 203-205
versus iteration, 50-52
versus product specifications, 81
versus prototyping, 56
visual, 211-212

design personas. See personas
design teams, 207, 234
design-dominated markets, 78
design-friendly processes, 232-233
designers

building teams, 234
disrespect for, 117
hiring, 233
programmers as, 22-23, 207-208

conflicts of interest, 108
General Magic, 81
shortcomings, 82-83, 87-92
training, 88

responsibility for quality, 231-232
role of, 72

desirability versus need, 72-74
development processes

changing, 242-243
dehumanizing effects of, 120
sequence of events, 203-205
usability testing, 206-207

“devil’s advocate”, 188
digital cameras, design problems, 4-6
discrimination, 37
Doblin Group, 71
documenting design, 226-227, 235-236

benefit to companies, 231
benefit to managers, 230-231
benefit to marketing, 229-230
benefit to programmers, 228-229
benefit to tech support, 230
benefit to technical writers, 230

“dog’s breakfast”, 219
Drumbeat. See Elemental Drumbeat

case study

E
edge case scenarios, 181
edge cases, 100
Einstein, Albert, 123
“elastic users”, 127-128

248 / design

Elemental Drumbeat case study, 171
competition, 173
design, 174-176
floating palettes, 176-177
goals, 173-174
personas, 172-173
product success, 177

Elemental Software, 107
email

threads, 61
usability problems, 61-62

emotional response to computers,
159-160

employability, 11
encapsulation, 55
end-user design. See interaction design
enterprise resource planning (ERP) com-

panies, 218
“Ernie” (Elemental Drumbeat persona),

172
ERP (enterprise resource planning) com-

panies, 218
“euphemism pyramid”, 35. See also skill

levels
evaluating design, 149, 208-209
Evenson, Shelley, 209
Evers, Ridgely, 44
excise, 176
“expect what you inspect”, 85
experience versus expertise (consulting),

220
expertise versus experience (consulting),

220
Explorapedia, 110

as dancing bear, 111
development of, 111
programmers’ views on, 112
success of, 111
weaknesses of, 112

F
facts versus information, 4
false goals, 158-159
Farros, Royal, 44, 47
“feature list bargaining”. See also product

descriptions
“line of death”, 46
personas as solution for, 132-134
programmer’s role in, 47

feature-dominated markets, 78

inflexibility of software / 249

features
advantages/disadvantages, 47
cost of, 27-29
customer demands, personas and,

222
cutting, 222-223
influence on marketplace, 77
“less is more” philosophy, 198-200
list of, versus product description,

42
lists, 46
usage/interaction relationship, 33
versus goals, 48

feedback loops
negative, 27
software design, 28-29

file systems
hierarchical, 9-11
technical support costs, 52

filmmaking (compared to software
development), 223-225

focus groups, 210-211
forgetfulness of software, 65
Forman, Ed, 107
Fox, Sara, 112
free features, 28
Fry, Art, 126
“fudgability” of software, 168-170
functionality versus aesthetics, 212

G
Gammill, Kevin, 112-114
Gates, Bill, 45
Gay, Jim, 91-92
Gellerman, Saul, 157
General Magic, 81, 89
Glen, Paul, 119
Goal-Directed design. See also interac-

tion design
defined, 151-152
examples, 152-153

goals, 124, 149. See also personas
corporate, 156-157
Elemental Drumbeat case study,

173-174
false, 158-159
hygienic, 157
personal, 154-156
practical, 154, 157
versus features, 48
versus tasks, 150-151

Gorelik, Vlad, 115
graphical user interfaces (GUIs), 211
“gray hair” versus “brains” (consulting),

220
Gresham’s Law, 44
GUIs (graphical user interfaces), 211

H
handheld computers, 45
hardware, bridging software to, 197-198
haves and have-nots, 37
Heathershaw-Hart, Tamra, 118
Hertzfeld, Andy, 89
Hewlett-Packard, 197
hierarchical file systems, 9-11
high-technology businesses

capability, 71
desirability, 72
viability, 71

hiring designers, 233
“Homo logicus”, 93-101
How the Mind Works, 160
humanness in software, 161-162. See

also “polite” software
humans versus computers, 87-88
hybrid products, 197-198
hygienic factors, 157
hygienic goals, 157
hypothetical archetypes. See personas

I
I Sing the Body Electronic, 110-114
IBM as customer-driven company, 218
IFEs (in-flight entertainment systems),

11-13. See also Sony Trans Com’s
P@ssport case study

images (Logitech ScanMan)
reorientation, 195-197
resizing, 194

implementation model, 27
in-car navigation system prototype,

57-58
in-flight entertainment systems (IFEs),

11-13. See also Sony Trans Com’s
P@ssport case study

industrial age, 19
industrial design, 212-213
“inflecting the interface”, 181-182
inflexibility of software, 66-67

information
software’s providing of, 164
versus facts, 4

information age, 19
installation, 64-65
instant gratification in software, 170
interaction design

as Goal-Directed, 151-152
assumptions of limitations, 187
benefits, 239-240
cast of characters, 135-137
commitment to, 225-226
defined, 21
documenting, 226-227, 235-236

benefit to companies, 231
benefit to managers, 230-231
benefit to marketing, 229-230
benefit to programmers,

228-229
benefit to tech support, 230
benefit to technical writers,

230
effect on code, 227-228
frustrations of, 200
generating customer loyalty with,

240-241
goals, 149

corporate, 156-157
false, 158-159
hygienic, 157
personal, 154-156
practical, 154, 157
versus tasks, 150-151

hiring designers, 233
“inflecting the interface”, 181-182
interaction implementation and,

117
“less is more” philosophy, 198-200
perpetual intermediates, 182-185
personas, 123-124

as communications tools,
132-134

buyer personas, 135
customer demands and, 222
designers’ need for, 134
Logitech ScanMan case study,

188-191
naming, 128
negative personas, 136
precision versus accuracy,

129-131

250 / information

primary personas, 137-138
skill levels, 131-132
Sony Trans Com’s P@ssport

case study, 142-147
specifying, 128-129
stereotyping, 128
versus users, 127-129

politeness, 160
“polite” software characteris-

tics, 162-171
politeness versus humanness,

161-162
“pretend it’s magic” exercise, 185,

191-192
priority of, 22
scenarios, 179-181
separating from program design, 22
versus industrial design, 212-213
versus interface design, 23, 227-228
versus new technology, 213
versus self-referential design, 87
vocabulary, 185-186

interaction designers, responsibility for
quality, 231-232

interaction implementation, interaction
design and, 117

interactive design versus product speci-
fications, 81

interface design
disadvantages, 23
versus interaction design, 227-228

interface style guides, 209-210
Internet. See WWW
iteration

in design, 213-214
personas, 124
reducing, 240
versus design, 50-52

J - K
“jaggies”, 195
“Jetway Test”, 93-94
“jocks,” programmers as, 101-104

Karp, Alan, 200
Keeley, Larry, 211

tripod model, 71-73
Apple, 75-77
Microsoft, 75
Novell, 74-75

Novell / 251

Korman, Jonathan, 98
Krause, Kai, 199

L
late product shipment, 45-46
lateral thinking, 187
Lateral Thinking, 187
laziness of software, 65
Leading Geeks, 119
“less is more” philosophy, 198-200
limitations, assumptions of, 187
“line of death” (“feature list bargain-

ing”), 46
Logitech ScanMan case study

cropping tools, 193-194
personas, 188

Chad Marchetti, Boy, 189
Magnum, DPI, 190-191
Malcom, the Web-warrior,

189
“pretend it’s magic” exercise,

191-192
reorienting images, 195-197
resizing images, 194
results, 197

long-term versus short-term thinking
(managers), 221-222

M
Magic Link computer, 45
“Magnum, DPI” (Logitech ScanMan

persona), 190-191
Maister, David, 220-221
making movies (compared to software

development), 223-225
“Malcom, the Web-Warrior” (Logitech

ScanMan persona), 189
managers

commitment to design, 225-226
cutting features, 222-223
design documents and, 230-231
influences on, 217
moviemaker comparison, 223-225
short-term versus long-term think-

ing, 221-222
taking control, 222

Managing the Professional Service Firm,
220-221

manual devices versus computerized
devices, 7

manual systems, 168
market unpredictability, myth of, 48-49
marketing, design documents and,

229-230
marketing personas, 134
marketing requirements documents, 46
marketing specifications, 46
McGregor, Scott, 44, 83-86
measures

importance of, 85
objective, 49
quantitative, 49

memory, human versus computer, 87
Merrin, Seymour, 240
metafunctions, 20-21
method acting, scenarios as, 179
Microsoft, 45, 75

attrition strategy, 214-215
competing against, 215, 241
interface style guides, 210
programming culture, 110-114
technical support costs, 52
Windows, design interaction, 214

microwaves, cognitive friction of, 20
monocline groupings, 145
Moody, Fred, 110-114
Moore, Geoffrey, 77
Motivation and Productivity, 157
moviemaker, manager comparison,

223-225
mud-hut design, 22-23
multidisciplinary design teams, 207

N
naive users, 35
naming personas, 128
narrowing user audience, 124-126
Nass, Clifford, 159
navigational computers (airplanes), 3-4
necessary use scenarios, 180
need versus desirability, 73-74
negative feedback loops, 27-29
negative personas, 136
NetWare, 74
new technology versus interaction

design, 213
Newton computer, 45
Ninety-Ninety Rule, 43
Nomadic Computing, 45
Novell, 74-75

O - P
object-oriented programming, 55
objective measures, 49
opportunity cost, 54
options, presenting, 167-168
Oracle, as customer-driven company,

218

“painting the corpse”, 142, 212
PalmPilot, 45, 48, 198
Parkinson’s Law, 43
Peacock. See Logitech ScanMan case

study
PenPoint computer, 45
perceptiveness in software, 166
performance measures, 85
perpetual intermediates, 182-185
personal goals, 154-156
personalization of software, 162-163
personas, 123. See also goals

as communications tools, 132-134
buyer personas, 135
cast of characters, 135-137
customer demands and, 222
defining, 124
designers’ need for, 134
Elemental Drumbeat case study,

172-173
Logitech ScanMan case study,

188-191
marketing personas, 134
naming, 128
negative personas, 136
precision versus accuracy, 129-131
primary personas, 137-138
Shared Healthcare Systems project,

236
skill levels, 131-132
Sony Trans Com’s P@ssport case

study, 142-147
specifying, 128-129
stereotyping, 128
versus users, 127-129

picture-in-picture television, cognitive
friction of, 33

pilots, programmers as, 96
Pinker, Steven, 160
planning

financial/operational, 222
product, 222

252 / object-oriented programming

“playing devil’s advocate”, 188
Pleas, Keith, 161
“polite” design, 161
“polite” software, 160

characteristics of
anticipation of needs, 165
common sense, 164
deferential role, 163-164
“fudgability”, 168-170
instant gratification, 170
perceptiveness, 166
personalization, 162-163
presentation of choices,

167-168
providers of information, 164
responsiveness, 165
self-confidence, 167
taciturn about problems,

165-166
trustworthiness, 170
well-informed, 166

politeness versus humanness,
161-162

Porsche Boxster, design problems, 8
Post-It Notes, 126
power user. See apologist
practical goals, 154, 157
“pre-production” phase, design as,

223-225
precision versus accuracy (in personas),

129-131
presentation of choices, 167-168
“pretend it’s magic” exercise, 185,

191-192
primary personas, 137-138
“Principle of Commensurate Effort”, 155
problems (of computer), displaying to

users, 165-166
processes

changing, 242-243
dehumanizing effects of, 120
design-friendly, 232-233

product completion, determining, 42-43
product descriptions. See also “feature

list bargaining”
blueprints as, 42-43
versus feature lists, 42

product development
customer-driven, 218

as service provider, 220-221
conceptual integrity, 219-220

Ruby / 253

filmmaking comparisons, 223-225
influences on, 217

product development managers. See
managers

Product Managers
deadline creation, 44
fear of product cancellation, 44-45

productivity loss, 9-11, 52
products

cancellations, 44-45
late shipment, 45-46
quality, responsibility for, 231-232
specifications versus design, 81

program design
defined, 21
priority of, 22
traditional practices, 22-23

programmers
”feature list bargaining”, 47
as “Homo logicus”, 93-98
as apologists, 30
as designers, 22-23, 207-208

conflicts of interest, 108
General Magic, 81
shortcomings, 82-83, 87-92
training, 88

conflict of interest, 16
control over products, 82-83, 228
cost of, 53
design documents and, 228-229
psychology of, 95

desire for control, 96-97
desire for understanding,

97-99
focus on possibilities, 99-101
programmers as “jocks”,

101-104
programmers as pilots, 96

role of, 71-72
shortcomings, 14-16
willingness to change, 242-243

programming
before design, 53, 110
complexity of, 205
culture of, 105

authority figures and, 118
isolation, 115-116
Microsoft, 110-114
military culture comparison,

109

propagation of, 110
reusing code, 106-109
reverence for technical skill,

109-110
“scarcity thinking”, 119-120
sense of responsibility,

116-118
sense of superiority, 117

designing before, 204
usability testing and, 206

prototypes, 54-55
as product foundations, 57
in-car navigation system example,

57-58
Ruby, 57
value, 57-58
versus design, 56

psychology of programmers, 95. See also
culture of programming

desire for control, 96-97
desire for understanding, 97-99
focus on possibilities, 99-101
programmers as “jocks”, 101-104

Q - R
quality, responsibility for, 231-232
quality measures, 85
quantitative measures, 49
QuickBooks, development time, 44

Raymond, Eric, 106
recognizing good design, 208-209
“redlining”, 38
Reeves, Byron, 159
Remedy Inc, 135
remote keyless entry, cognitive friction

of, 24-26
reorienting images, Logitech ScanMan,

195-197
resizing images, Logitech ScanMan, 194
response to computers, 159-160
responsibility of software, 67-69
responsiveness in software, 165
reusing code, 106-109
Rheinfrank, John, 209
“riding the tiger”, 217
Rivlin, John, 86-87
roll-aboard suitcases, 126, 130
Ruby (programming language), 57

S
Sagent Technology, 115
SAP, as customer-driven company, 218
ScanMan. See Logitech ScanMan case

study
“scar tissue” in programs, 55-56
“scarcity thinking”, 119-120
scenarios, 179

breadth versus depth, 180
constructing, 180
daily use, 180
necessary use, 180-181

scheduling programs, usability prob-
lems, 62-63

“seat at the table” design teams, 207
self-confidence in software, 167
self-referential design versus interaction

design, 87
service companies, 220-221
“Seven Habits of Highly Engineered

People”, 95-96
Shared Healthcare Systems project

“clinical vortex”, 236-237
personas, 236
programmers, 237
unification of system, 237

shipping products late, 45-46
“shopping lists” of features, 42
short-term versus long-term thinking

(managers), 221-222
Silicon Valley, California, 240
skill levels, 131-132, 182-185. See also

euphemism pyramid
“skin in the game”, 116-118, 225
software

bridging hardware to, 197-198
browser-based, 64-65
forgetfulness, 65
inflexibility, 66-67
installation, 64-65
lack of responsibility, 67-69
laziness, 65
user blame, 67
witholding information, 66

“software apartheid”, 11, 36-38
software design, usability problems. See

also design
alarm clock, 6-7
ATMs, 8-9
causes, 14-16

254 / Sagent Technology

costs, 17
digital cameras, 4-6
file systems, 9-11
IFEs, 11-13
navigational computers (airlines),

3-4
Porsche Boxster, 8
Windows NT (USS Yorktown), 13

software development process, chang-
ing, 242-243

software engineers. See programmers
Sony Trans Com’s P@ssport case study,

138
original interface, 139, 142
personas, 142-147

source code versus vocabulary, 186
special cases, 100
specifying personas, 128-129
stereotyping personas, 128
sticky notes, 126
“stinking gods among men”, 95
style guides, 209-210
survivors, 31-33
Swiss Army knife, cognitive friction of,

24

T
T/Maker software company, 44, 47
task-directed design, 151
tasks versus goals, 150-151
“teaching dogs to be cats”, 88
teams, 207
tech support, design documents and,

230
technical managers. See managers
technical specifications, 46
technical support, 52
technical writers, design documents

and, 230
techno-rage, 13-14
technology

democratization of, 34
versus interaction design, 213

television news show application,
152-153

testing code, 242-243
testing. See usability testing
The First $20 Million Is Always the

Hardest, 96
The Media Equation, 159

Zicker, John / 255

The Secrets of Consulting “A Guide to
Giving & Getting Advice Successfully”,
88

They’re Mad as Hell Out There, 244
threads (email), 61
time to market advantage versus design

advantage, 77, 84-85
timing of design, 203-205
training, 11
TransPhone, 91-92
trustworthiness of software, 170
typewriters, cognitive friction of, 20

U
U.S. Navy warships, 13
understanding, programmers’ need for,

97-99
“uninformed consent”, 140
unpredictable markets, myth of, 48-49
usability problems

acceptance of, 59
alarm clock, 6-7
ATMs, 8-9, 68
blaming users, 34-36
calendar software, 63
causes, 14-16
costs, 17, 27-29

business software, 52-53
loss of market share, 82-83
narratives about, 83-87

digital cameras, 4-6
email, 61-62
engineering skills and, 92
file systems, 9-11
IFEs, 11-13
navigational computers (airlines),

3-4
Porsche Boxster, 8
reaction to, 33-34
scheduling programs, 62-63
technology as solution for, 213
VCRs, 60-61
Windows NT (USS Yorktown), 13

usability testing, 205
before programming, 206
evaluating design, 208-209
focus groups, 210-211
iteration, 213-214
timing, 206-207

“user friendly”, 60
users versus personas, 127-129
USS Yorktown, 13

V - W
VCRs, as dancing bearware, 60-61
viability, 71, 78
violins, cognitive friction of, 20
visual design, 211-212
“visual design language” (Xerox), 209
vocabulary

specifying, 185-186
versus source code, 186

warships, 13
Web. See WWW
Weinberg, Jerry, 88
well-informed software, 166
West, David, 237
“wet dogs”, 31
Wildstrom, Stephen, 244
Windows, design iteration, 214
Windows 95 file system, 9-11
Windows NT, USS Yorktown problems,

13
Worlds, Inc., 45
WriteNow, 47
WWW (World Wide Web)

as dancing bear, 32
cognitive friction of, 20
ease of use, 241

X - Y - Z
Xerox, “visual design language”, 209

Zicker, John, 219

Alan Cooper

As a software inventor in the mid-70s, Alan got it into his head that there must be
a better approach to software construction. This new approach would free users
from annoying, difficult, and inappropriate software behavior by applying a
design and engineering process that focuses on the user first, and silicon second.
Using this process, engineering teams could build better products faster by doing
it right the first time.

His determination paid off. In 1990 he founded Cooper, a technology product
design firm. Today, Cooper’s innovative approach to software design is recognized
as an industry standard. Over a decade after Cooper opened its doors for busi-
ness, the San Francisco firm has provided innovative, user-focused solutions for
companies such as Abbott Laboratories, Align Technologies, Discover Financial
Services, Dolby, Ericsson, Fujitsu, Fujitsu Softek, Hewlett Packard, Informatica,
IBM, Logitech, Merck-Medco, Microsoft, Overture, SAP, SHS Healthcare, Sony,
Sun Microsystems, the Toro Company, Varian, and VISA. The Cooper team offers
training courses for the Goal-Directed® interaction design tools they have invent-
ed and perfected over the years, including the revolutionary technique for mod-
eling and simulating users called personas, first introduced to the public in 1999
via the first edition of The Inmates.

In 1994, Bill Gates presented Alan with a Windows Pioneer Award for his inven-
tion of the visual programming concept behind Visual Basic, and in 1998 Alan
received the prestigious Software Visionary Award from the Software Developer’s
Forum. Alan introduced a taxonomy for software design in 1995 with his best-
selling first book, About Face: The Essentials of User Interface Design. Alan and co-
author Robert Reimann published a significantly revised edition, About Face: The
Essentials of Interaction Design, in 2003.

Alan’s wife, Susan Cooper, is President and CEO of Cooper. They have two teenage
sons, Scott and Marty, neither of whom is a nerd. In addition to software design,
Alan is passionate about general aviation, urban planning, architecture, motor
scooters, cooking, model trains, and disc golf, among other things. Please send
him email at inmates@cooper.com or visit Cooper’s Web site at www.cooper.com.

http://www.cooper.com

	Table of Contents
	Foreword
	Chapter 3 Wasting Money
	Deadline Management
	What Does “Done” Look Like?
	Shipping Late Doesn’t Hurt
	Feature-List Bargaining
	Features Are Not Necessarily Good
	Iteration and the Myth of the Unpredictable Market
	The Hidden Costs of Bad Software
	The Cost of Prototyping

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K
	L
	M
	N
	O - P
	Q - R
	S
	T
	U
	V - W
	X - Y - Z

