SAMS

C

Primer Plus

Fourth Edition

Stephen Prata

Primer Plus

Fourth Edition

Stephen Prata

SAMS

800 East 96th St., Indianapolis, Indiana, 46240 USA

C Primer Plus, Fourth Edition

Copyright © 2002 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors
or omissions. Nor is any liability assumed for damages resulting from the use of the infor-
mation contained herein.

International Standard Book Number: 0-672-32222-6
Library of Congress Catalog Card Number: 2001089225
Printed in the United States of America

First Printing: September 2001

06 05 04 03 6 5 4

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Apple is a registered trademark of Apple Computer, Inc.

Borland C++ is a registered trademark of Borland International, Inc.
CodeWarrior is a registered trademark of Metrowerks, Inc.

Cray is a registered trademark of Cray Computer, Inc.

IBM and PC are registered trademarks and PC DOS is a trademark of the International Business
Machines Company.

Macintosh is a registered trademark of Macintosh Laboratory, Inc., licensed by Apple
Computer, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

Primer Plus is a registered trademark of The Waite Group, Inc.

Think C is a registered trademark of Symantec Corporation.

Turbo C is a registered trademark of Borland International, Inc.

Unix is a trademark of American Telephone and Telegraph Corporation.

VAX is a registered trademark and VMS is a trademark of Digital Equipment Corporation.
Windows is a registered trademark of Microsoft Corporation.

WordPerfect is a registered trademark of WordPerfect Corporation.

WordStar is a registered trademark of MicroPro International Corporation.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The author
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book or from
the use of the Web site or programs accompanying it.

ASSOCIATE PUBLISHER

Linda Engelman

ACQUISITIONS EDITORS

Linda Scharp
Karen Wachs

DEVELOPMENT EDITOR

Karen Wachs

MANAGING EDITOR
Charlotte Clapp

PROJECT EDITOR
Sheila Schroeder

COPY EDITOR
Pat Kinyon

INDEXER
Sandra Henselmeier

PROOFREADER
Plan-It Publishing

TECHNICAL EDITOR
Jeff Perkins
Chris Maunder

TEAM COORDINATORS

Chris Feather
Lynne Williams

MEDIA DEVELOPER
Dan Scherf

INTERIOR DESIGNER
Gary Adair

PAGE LAYOUT
Tim Osborn

CONTENTS AT A GLANCE

PREFACE

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
APPENDIX A
APPENDIX B

00 N & U1 A W N =

[(]

INDEX

XX

GettingReady 1
Introducing C 23
Dataand C 49
Character Strings and Formatted Input/Output 89
Operators, Expressions and Statements 129
C Control Statements: Looping 169
C Control Statements: Branching and Jumps 219
Character Input/Output and Redirection 267
Functions 301
Arraysand Pointers 345
Character Strings and String Functions 397
Storage Classes, Linkage, and Memory Management 449
File Input/Output 493
Structures and Other Data Forms 527
Bit Fiddling 587
The C Preprocessor and the C Library 615
Advanced Data Representation 665
Answers to the Review Questions 741
Reference Section 781
871

TABLE OF CONTENTS

CHAPTER 1: GettingReady 1
Whence C? ... o 1
Why C? o 2

Design Features 2
Efficiency 3
Portability 3

Power and Flexibility 3

Programmer Oriented 3
Shortcomings 4

Whither C? .. . 4
What Computers Do 5
High-Level Computer Languages and Compilers 6
Using C: SeVeN STEPS oottt 7
Step 1: Define the Program Objectives 8
Step 2: Design the Program 8
Step 3: Write the Code 9
Step 4: Compile 9
Step 5: Run the Program 10

Step 6: Test and Debug the Program 10
Step 7: Maintain and Modify the Program 10
COMMENIATY . .. oo o oottt e e e e 10

Programming Mechanics 11
Object Code Files, Executable Files, and Libraries 12
UNIX SYStemo 13
Linux System 15

Integrated Development Environments (Windows) 15
DOS Compilers forthe IBMPC 17
ContheMacintosh 17

Language Standards 18
The First ANSI/ISO C Standard i, 18
The C99 Standard 19
Book Organization 19
Some CONVENtioNSttt 20
Typeface 20
Screenn OULPUL ..o ottt 20
SUMMATY . ..o 21
Review QUeSHIONS 22

Programming Exercise 22

CONTENTS v

CHAPTER 2: Introducing C i, 23
ASimple Sample of C 23
The Explanation 24

Pass 1 Quick Synopsis 24
Pass 2 Details 26
The Structure of a Simple Program 34
Tips on Making Your Programs Readable 35
Taking Another Step 36
Documentation 37
Multiple Declarations 37
Multiplication 37
Printing Multiple Values 37
While You're at It...Multiple Functions 38
Debugging 39
Syntax Errors 40
Semantic Errors 41
Program State 42
Keywords and Reserved Identifiers 43
Key Concepts 43
Summary ... 44
Review Questions 45
Programming EXercises 46

CHAPTER 3: Dataand C 49

ASample Program 49
Whats New in This Program? 51
Data Variables and Constants 52
Data: Data-Type Keywords 52
Integer Versus Floating-Point Types 54
The Integer 54
The Floating-Point Number 54
CDataTypes 55
Theint Typeo 56
Other Integer Typesot 59
Using Characters: Type char 64
The _Bool Type oo 70
Portable Types: inttypes.h 70
Types float, double, and long double 72
Complex and Imaginary Types 76
Other Types 77

Type Sizes 79

Vi

C PRIMER PLUS

Using Data Types 80
Argumentsand Pitfalls 81
One More Example 82
What Happens 83
Flushing the Output 84
Key Concepts 84
SUMMATY . ..ot 85
Review Questions 86
Programming Exercises 88
CHAPTER 4: Character Strings and Formatted Input/Output 89
Introductory Program 89
Character Strings: An Introduction 91
Type char Arrays and the Null Character 91
Using SIrings 92
The strlen() FUNCHON o 93
Constants and the C Preprocessor 95
The const Modifier 98
Manifest Constantsonthe Job 98
Exploring and Exploiting printfQ) and scanfQ) 101
The printf() Function 101
Using printfQ 102
Conversion Specification Modifiers for printfQ) 104
The Meaning of Conversion 110
Usingscanf() 116
The * Modifier with printfQ and scanfQ 121
Usage Tipso 123
Key Concepts 124
SUMMATY . ..ot 124
Review Questions 125
Programming Exercises 127
CHAPTER 5: Operators, Expressions, and Statements 129
Introducing Loopso 129
Fundamental Operators 132
Assignment Operator: =ttt 132
Addition Operator: + 134
Subtraction Operator: —t 134
Sign Operators: —and + 134
Multiplication Operator: * 135
Division Operator: / 137
Operator Precedence 138

Precedence and the Order of Evaluation 140

CONTENTS vii

Some Additional Operators, 141
The sizeof Operator and the size_t Type 142
Modulus Operator: % 142
Increment and Decrement Operators: ++and - 144
Decrementing: -- 147
Precedence 148
Don'tBe Too Clever i, 149

Expressions and Statements 150
EXPIessionst 150
SLAtEMENLSo 151
Compound Statements (Blocks) 154

Type Conversions 156
The Cast Operatoriiiiiii .. 158

Function with Arguments 159

A Sample Program 161

Key Concepts 163

SUMMATY . ..o 163

Review QUeSHIONS 164

Programming Exercises 167

CHAPTER 6: C Control Statements: Looping 169

An Initial Example 170
Program COomments it 171
C-Style Reading Loop oo 172

The while Statement 173
Terminating a while Loop 173
When a Loop Terminatesot . 174
while: An Entry-Condition Loop 174
Syntax Points 175

Which Is Bigger: Using Relational Operators and Expressions 176
What Is Truth? 178
What Else Is True? 179
Troubles with Truth 180
The New _Bool Typeo 182
Precedence of Relational Operators 183

Indefinite Loops and Counting Loops 186

The for Loop oo 187
Using for for Flexibility 188

More Assignment Operators: +=, -=, *=,/=, %= 192

The Comma Operatorttt 193

Zeno Meets the forLoop 196

viii

C PRIMER PLUS

An Exit-Condition Loop: dowhile L 198
Which Loop?o 200
Nested LOOPS .« . o oo 201
Program Discussion 202
A Nested Variation 202
ATTAYS .o 203
Using a for Loop withan Array 204

A Loop Example Using a Function
Return Value 206
Program Discussion 208
Using Functions with Return Values 209
Key Concepts 210
SUMMATY . ..ot 211
Review Questions 212
Programming Exercises 216
CHAPTER 7: C Control Statements: Branching and Jumps 219
The if Statement 220
Adding else to the if Statement 222
Another Example: Introducing getchar() and putchar() 223
The ctype.h Family of Character Functions 226
Multiple Choice else if L 228
Pairing else with if o o 231
More Nested ifs 232
Lets Get Logical 236
Alternate Spellings: the iso646.h header file 237
Precedence 238
Order of Evaluation 238
Ranges 240
A Word-Count Program 240
The Conditional Operator: ?, 244
Loop Aids: continue and break o 246
The continue Statement 246
The break Statement 249
Multiple Choice: switch and break 250
Using the switch Statement 252
Reading Only the First Characterof aLine 254
Multiple Labels 254
switchandifelse 256
The goto Statemento 257

Avolding g@oto 257

CONTENTS ix

Key Concepts 260
SUMMATyY 261
Review QUeSHONS 262
Programming Exercises 205
CHAPTER 8: Character Input/Output and Input Validation 267
Single-Character I/O: getchar() and putcharQ) 268
Buffers 269
Terminating Keyboard Input 270
Files, Streams, and Keyboard Input 270
The Endof File 271
Redirectionand Files 274
Unix, Linux, and DOS Redirection 275
Creating a Friendlier User Interface 279
Working with Buffered Input 279
Mixing Numeric and Character Input 281
Input Validation 284
Analyzing the Program 288
The Input Stream and Numbers 289
Menu Browsing 290
Tasks ..o 290
Toward a Smoother Execution 290
Mixing Character and Numeric Input 292
Key Concepts 295
SUMMATY . ..ot 296
Review QUESHIONS 296
Programming Exercises 297
CHAPTER 9: Functions 301
Reviewing Functions 301
Creating and Using a Simple Function 303
Analyzing the Program 303
Function Arguments 306
Defining a Function with an Argument:

Formal Parameters 308
Prototyping a Function with Arguments 308
Calling a Function with an Argument: Actual Arguments 309
The Black Box Viewpoint 310
Returning a Value from a Function with return 310
Function Types 313

ANSI C Function Prototyping i 314
The Problem 315

The ANSI Solution 316

X

C PRIMER PLUS

No Arguments and Unspecified Arguments 317
Hooray for Prototypes 318
Recursion 318
Recursion Revealed 318
Recursion Fundamentals 320
Tail Recursion 321
Recursion and Reversal 323
Recursion Prosand Cons 324
All C Functions Are Created Equal 325
Compiling Programs with Two or More Source Code Files 326
UNIX 326
LINUX ..o 326
DOS Command-Line Compilers 326
Windows and Macintosh Compilers 327
Using Header Files 327
Finding Addresses: The & Operator 330
Altering Variables in the Calling Function 332
Pointers: A First Look 334
The Indirection Operator: * 334
Declaring Pointers 335
Using Pointers to Communicate Between Functions 336
Key Concepts 340
SUMMATYo 341
Review QUeSHIONS 341
Programming Exercises 342
CHAPTER 10: Arraysand Pointers 345
ATTAYS L 345
Initialization 346
Designated Initializers (C99), 350
Assigning Array Values 351
Array Bounds 352
Specifying an Array Size 353
Multidimensional Arrays 354
Initializing a Two-Dimensional Array 357
More Dimensions 358
Pointers and Arrays 358
Functions, Arrays, and Pointers 361
Using Pointer Arguments 364
Comment: Pointers and Arrays 367

Pointer Operations 367

CONTENTS xi

Protecting Array CONtents ittt . 370
Using const with Formal Parameters 371
More AbOUL CONSEot 373

Pointers and Multidimensional Arrays, 375
Pointers to Multi-Dimensional Arrays 377
Pointer Compatibility 379
Functions and Multidimensional Arrays 380

Variable-Length Arrays (VLAS) 383

Compound Literals 387

Key Concepts 389

SUMMATY . ..o 390

Review QUeSHIONS 391

Programming Exercises 393

CHAPTER 11: Character Strings and String Functions 397

Defining Strings Within a Program, 399
Character String Constants (String Literals) 399

Character String Arrays and Initialization 400
Array Versus Pointer 401
Arrays of Character Strings 404
Pointers and Strings 405

String Input 406
Creating Space 407
The getsO) Function 407
The fgetsO Function 409
The scanf() Function 410

String OULPUL ... oot 412
The putsQ Function 412
The fputsQ Function 413
The printf() Function 414

The Do-Tt-Yourself Option 414

String Functions 417
The strlen() FUNCHON e e 417
The strcat() and strncat() Functions 419
The stremp() and strnemp() Functions oL 420
The strepy() and strnepy() Functions 425
The sprintf() Function 429
Other String Functions i 430

A String Example: Sorting Strings L 432
SOTHNG . . .o 435

The ctype.h Character Functions and Strings 435

xii

C PRIMER PLUS

Command-Line ATguments 437
Command-Line Arguments in Integrated Environments 439
Command-Line Arguments with the Macintosh 440

String to Number Conversionsoaiiio.... 440

Key Concepts 443

SUMMATYot 443

Review QuUesStions 444

Programming Exercises 447

CHAPTER 12: Storage Classes, Linkage, and Memory Management 449

Storage Classes 449
SCOPE .o 450
Linkage 452
Storage Duration 452
Automatic Variables 453
Register Variables L 457
Static Variables with Block Scope 457
Static Variables with External Linkage 459
Static Variables with Internal Linkage 463
Multiple Files 464
Storage-Class Specifiers 464
Storage Classes and Functions 467
Which Storage Class? 467

A Random Number Function and a Static Variable 468

ROIVEM . oo 471
Allocated Memory: mallocQ and free() 475
The Importance of free() 478
The calloc) Function 479
Dynamic Memory Allocation and Variable-Length Arrays 480
Storage Classes and Dynamic Memory Allocation 481

ANSI C Type Qualifiers 481
The const Type Qualifier 482
The volatile Type Qualifier 484
The restrict Type Qualifier 485

New Places for Old Keywords 486

Key Concepts 487

SUMIMATY . . oottt et e e e e e 487

Review QUESHIONS 488

Programming Exercises 490

CONTENTS xiii

CHAPTER 13: File Input/Output 493
Communicating with Files o o L 493
What Isa File? 494
Levels of /Oo 495
Standard Files 495
Standard /O ... 496
Checking for Command-Line Arguments 497
The fopen() Function 498
The getc() and putc() Functions 499
Endof File 499
The fclose() FUNCUHON e e 500
Standard Files 501
A Simple-Minded File-Condensing Program 501
File [/O: fprintf(), fscanf(), fgetsO, and fputsQ 503
The fprintf() and fscanf() Functions 503
The fgets() and fputsQ Functions 504
Adventures in Random Access: fseek() and ftell) 506
How fseek() and ftell) Work 508
Binary Versus Text Mode 509
Portability 510
The fgetpos() and fsetpos() Functions 510
Behind the Scenes with Standard /O 511
Other Standard I/O Functions 511
The int ungetc(int ¢, FILE *fp) Function 512
The int fflush(FILE *fp) Function 512
The int setvbuf(FILE *fp, char *buf, int mode, size_t size) Function512
Binary I/O: fread() and fwrite() L 513

The size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE *p)
Function 514

The size_t fread(void *ptr, size_t size, size_t nmemb, FILE *fp)
Function 515
The int feof(FILE *fp) and int ferror(FILE *fp) Functions 515
An Example 515
Random Access with Binary /O 518
Key Concepts 520
SUMMATY . ..ot 520
Review QUESHIONS 521
Programming Exercises 523
CHAPTER 14: Structures and Other Data Forms 527
Sample Problem: Creating an Inventory of Books 527

Setting Up the Structure Declaration 529

Xiv

C PRIMER PLUS

Defining a Structure Variable o o oL 530
Initializing a Structure 531
Designated Initializers for Structures 532

Gaining Access to Structure Members L 532

Arrays of SETUCTUTES o 533
Declaring an Array of Structures 535
Identifying Members of an Array of Structures 535
Program Discussion 536

Nested SIUCTUIES . ..o oot e 537

Pointers to Structures 539
Declaring and Initializing a Structure Pointer 540
Member Access by Pointer 541

Telling Functions About Structures 541
Passing Structure Members 542
Using the Structure Address 543
Passing a Structure as an Argument 544
More on Structure Features L 545
Structures or Pointer to Structures? 548
Character Arrays or Character Pointers in a Structure 549
Structure, Pointers, and malloc() 550
Compound Literals and Structures (C99) 552
Flexible Array Members (C99) 554
Functions Using an Array of Structures 556

Saving the Structure ContentsinaFile 557
Program Points 560

Structures: What Next? 561

Unions: A Quick Look 562

Enumerated Types 565
enum CONSLANESttt 566
Default Values 566
Assigned Values 566
Usage 567
Shared Namespaces 568

typedef: A Quick Look 569

Fancy Declarations 571

Functions and Pointers 573

Key Concepts 579

SUMMATY . ..o 580

Review QUeSHIONS 581

Programming Exercises 583

CONTENTS

CHAPTER 15: BitFiddling 587
Binary Numbers, Bits, and Bytes, 587
Binary Integers 588
Signed Integers 589
Binary Floating Point 589
Other Basest 590
Octal . ..o 590
Hexadecimal 591
Cs Bitwise OPeratorsottt e 592
Bitwise Logical Operators, 592
Usage: Masks 594
Usage: Turning Bits On 595
Usage: Turning Bits Off 595
Usage: Toggling Bits 595
Usage: Checking the Valueof aBit 596
Bitwise Shift Operators 596
Programming Example 598
Another Example 599
Bit Flelds 601
Bit-Field Example 603
Bit Fields and Bitwise Operators 606
Key Concepts 611
SUMMATY . ..o 611
Review QUESHIONS 612
Programming Exercises 614
CHAPTER 16: The C Preprocessor and the C Library 615
FIrst Stepso 616
Manifest Constants: #define 616
Tokens 620
Redefining Constantsot 620
Using Arguments with #define 621
Creating Strings from Macro Arguments:

The # OPerator 624
Preprocessor Glue: the ## Operator 625
Variadic Macros: ...and __ VA_ARGS__ 626

Macro or Function? 627
File Inclusion: #include 628
Header Files: An Example 629

Uses for Header Files 631

XV

xvi

C PRIMER PLUS

Other Directives i 632
The #undef Directive 632
Being Defined—the C Preprocessor Perspective 633

Conditional Compilation 633
Predefined Macros 638
#line and #error 639
HPTAZIMA . o . oo e 639

Inline Functions 640

The CLibrary 643
Gaining Access to the CLibrary 643
Using the Library Descriptions 644

The Math Library 645

The General Utilities Library 648
The exit() and atexit() Functionst 648
The gsort(Q) Function 650

The Assert Library 654

memcpy() and memmove() from the string.h Library 656

Variable Arguments: stdarg.h 658

Key Concepts 660

SUMMATY . ..o 660

Review Questions 6601

Programming Exercises 662

CHAPTER 17: Advanced Data Representation 665

Exploring Data Representation 666

Beyond the Array to the Linked List 668
Using a Linked List 672
Afterthoughts 675

Abstract Data Types (ADTS)ot 676
Getting AbStract 677
Building an Interface 678
Using the Interface 681
Implementing the Interface 683

Getting Queued withan ADT 689
Implementing the Interface Data Representation 691
Testing the Queue 700

Simulating witha Queue 702

The Linked List Versus the Array 708

Binary Search Trees 711
A Binary Tree ADT 713
The Binary Search Tree Interface 713

The Binary Tree Implementation 716

CONTENTS xvii

Tryingthe Tree 731
Tree Thoughts 735
Other DITeCtONS 736
Key Concepts 737
SUMMATY . ..o 737
Review Questions 737
Programming Exercises 738
APPENDIX A: Answers to the Review Questions 741
hapter 1 ... o 741
Chapter 2 ... 741
Chapter 3 .. 743
Chapter4 ... 746
Chapter 5 ... 748
Chapter 6 751
Chapter 7 .. 754
Chapter 8 758
Chapter O ... 759
Chapter 10 ... 761
Chapter 11 ... o 763
Chapter 12 766
Chapter 13 . .. 767
Chapter 14 770
Chapter 15 .. 773
Chapter 16 774
Chapter 17 . . 776
APPENDIX B: Reference Section 781
Section [—Additional Reading 781
Magazine 781
Online Resources 781
Clanguage Books 782
Programming 783
Reference 783
C++Books 784
Section [I—C Operators 784
Arithmetic Operators it 785
Relational Operators i 785
Assignment OPeratorsttt 786
Logical Operatorsot 787
The Conditional Operator 787

Pointer-Related Operators 788

xviii

C PRIMER PLUS

SIgn OPeratorsot 788
Structure and Union Operators, 788
Bitwise OPeratorsottt 789
Miscellaneous Operators, 790

Section III—Basic Types and Storage Classes 790
Summary: The Basic Data Types 790
Summary: How to Declare a Simple Variable 792

Summary: Qualifiers 793

Section IV—Expressions, Statements, and Program Flow 794
Summary: Expressions and Statements 794
Summary: The while Statement 795
Summary: The for Statement 796
Summary: The do while Statement 797
Summary: Using if Statements for Making Choices 797
Summary: Multiple Choice with switch 798
Summary: Program Jumps 799

Section V—The Standard ANSI C Library with C99 Additions 800
Diagnostics: assert.h 801
Complex Numbers: complex.h (C99) 801
Character Handling: ctype.h oo o 803
Error Reporting: errno.ho 804
Floating-Point Environment: fenvh (C99) 805
Format Conversion of Integer Types: inttypes.h (C99) 807
Localization: locale.h 808

Math Library: math.h ... o 811
Non-Local Jumps: setjimp.h L 817
Signal Handling: signal.h 817

Variable Arguments: stdarg.h o o 818
Boolean Support: stdboolh (C99) 819
Common Definitions: stddef.h 820
Integer Types: stdint.h 820

Standard I/O Library: stdioh o oL 824

General Utilities: stdlib.ho oo oo 827
String Handling: string.h o o 834
Type-Generic Math: tgmath.h (C99) 837
Date and Time: time.h 838
Extended Multibyte and Wide Character Utilities: wchar.h (C99) 842
Wide Character Classification and Mapping Utilities: wctype.h (C99) .. .849

Section VI—Extended Integer Types 852
Exact Width Types 853

Minimum Width Types 853

CONTENTS

Fastest Minimum Width Types 854
Maximum Width Types 855
Integers That Can Hold Pointer Values 855
Extended Integer COnstantsviuurninaron.. 855
Section VII—Expanded Character Support 856
Trigraph Sequences 856
Digraphs 857
Alternative Spellings: iso646.h 857
Multibyte Characters 858
Universal Character Names (UCNs) 858
Wide Characters 859
Wide Characters and Multibyte Characters 860
Section VIII—C99 Numeric Computational Enhancements 860
The IEC Floating-Point Standard 861
The fenvh Header File 861
The STDC FP_CONTRACT Pragma 862
Additions to the math.h Library 862
Support for Complex Numbers 863
Section IX—Differences Between Cand C++ 864
Function Prototypes 864
char Constants i 865
The const Modifier 866
Structures and Unions 867
Enumerations 867
Pointer tovoid 868
Boolean Types 868
Alternative Spellings 868
Wide Character SUPPOTto 868
Complex TPes . . oo 868
Inline Functions 869
C++Doesn't Have It 869

Xix

PREFACE

C was a relatively little-known language when the first edition of C Primer Plus was written in
1984. Since then, the language has boomed, and many people have learned C with the help of
this book. In fact, over 500,000 people have purchased C Primer Plus throughout its various
editions.

With the emergence of a new standard for C, it’s time for a 4" edition. As with all the editions,
my aim has been to create an introduction to C that is instructive, clear, and helpful.

Approach and Goals

My goal is for this book to serve as a friendly, easy-to-use, self-study guide. To accomplish that
objective, C Primer Plus employs the following strategies:

* Programming concepts are explained, along with details of the C language; the book
does not assume that you are a professional programmer.

* Many short, easily-typed examples illustrate just one or two concepts at a time, because
learning by doing is one of the most effective ways to master new information.

* Figures and illustrations clarify concepts that are difficult to grasp in words alone.
» Highlight boxes summarize the main features of C for easy reference and review.

* Review questions and programming exercises at the end of each chapter allow you to
test and improve your understanding of C.

To gain the greatest benefit, you should take as active a role as possible in studying the topics
in this book. Don't just read the examples, enter them into your system and try them. Cis a
very portable language, but you may find differences between how a program works on your
system and how it works on ours. Experiment—change part of a program to see what the
effect is. Modify a program to do something slightly different. Ignore the occasional warnings
and see what happens when you do the wrong thing. Try the questions and exercises. The
more you do yourself, the more you will learn and remember.

I hope that you'll find this newest edition an enjoyable and effective introduction to the C
language.

Changes in the 4™ Edition

There is a new standard for the C language. It5s called the ISO/IEC 9899:1999 International
Standard, but among friends it often goes by the simpler name of C99. It was adopted by the
International Organization for Standardization (ISO) and the International Electrotechnical

Committee (IEC) in 1999 and approved as the American standard by the American National
Standards Institute (ANSI) in 2000. This new edition of C Primer Plus incorporates the new
standard. Here are some of the new features covered:

Extended integer types

Expanded character support
Boolean support

Variable-length arrays
Compound literals

Designated initializers

Expanded computational support

Inline functions

This edition also reorganizes the presentation of some topics. For example, the discussion of
pointers in Chapter 10, “Arrays and Pointers,” has been consolidated and expanded, and
Chapter 12, “Storage Classes, Linkage, and Memory Management,” incorporates dynamic
memory allocation into the discussion of C storage classes and memory management.
Numerous other changes and additions have been incorporated in response to reader requests
to make this edition an even more effective learning tool.

ABOUT THE AUTHOR

Stephen Prata is a professor of physics and astronomy at the College of Marin in Kentfield,
California, where he teaches astronomy, physics, and programming. He received his B.S. from
the California Institute of Technology and his Ph.D. from the University of California, Berkeley.
His association with computers began with the computer modeling of star clusters. Stephen
has authored or coauthored over a dozen books, including C++ Primer Plus and Unix Primer
Plus.

DEDICATION

With love to Vicky and Bill Prata, who, for more than 65 years, have been
showing how rewarding a marriage can be. —SP

ACKNOWLEDGMENTS

[wish to thank Linda Scharp of Sams Publishing for getting this project underway and Karen
Wachs of Sams Publishing for seeing it through. Also, thank you Ron Liechty of Metrowerks
and Greg Comeau of Comeau Computing for your help with new C99 features and your note-
worthy commitment to customer service.

TELL US WHAT YOU THINK!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’ title and author as well as your name
and phone or fax number. I will carefully review your comments and share them with the
author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

This page intentionally left blank

CHAPTER 3

DATA AND C

You will learn about the following in this chapter:

e Keywords: e The basic data types that C uses
int, short, long, unsigned, e The distinctions between integer
char, float, double, Bool, types and floating-point types

Compl I i L. .
=P ONBEER, R ANy e \Writing constants and declaring

e Operator: variables of those types.
sizeof e How to use the printf() and
e Function: scanf () functions to read and
write values of different types.
scanf ()

rograms work with data. You feed numbers, letters, and words to the computer, and

you expect it to do something with the data. For example, you might want the com-

puter to calculate an interest payment or display a sorted list of vintners. In this chap-
ter, you do more than just read about data; you practice manipulating data, which is much
more fun.

This chapter explores the two great families of data types: integer and floating point. C offers
several varieties of these types. This chapter tells you what the types are, how to declare them,
and how and when to use them. Also, you discover the differences between constants and
variables and, as a bonus, your first interactive program is coming up shortly.

A Sample Program

Once again, you begin with a sample program. As before, youw'll find some unfamiliar wrinkles
that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling
and running the source code shown in Listing 3.1. To save time, you can omit typing the com-
ments.

50 CPRIMER PLUS

LISTING 3.1 The rhodium.c Program

/* rhodium.c -- your weight in rhodium */
#include <stdio.h>
int main(void)

{
float weight; /* user weight */
float value; /* rhodium equivalent */
printf("Are you worth your weight in rhodium?\n");
printf("Let's check it out.\n");
printf("Please enter your weight in pounds: ");

/* get input from the user */
scanf ("%f", &weight);

/* assume platinum is $2000 per ounce */

/* 14.5833 converts pounds avd. to ounces troy */
value = 2000.0 * weight * 14.5833;
printf("Your weight in rhodium is worth $%.2f.\n", value);
printf("You are easily worth that! If rhodium prices drop,\n");
printf("eat more to maintain your value.\n");

return 0;

@ Errors and Warnings

If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax error
message. Even if you type it correctly, however, the compiler may give you a warning similar to
“Warning—conversion from ‘double’ to ‘float,” possible loss of data.” An error message means you
did something wrong and prevents the program from being compiled. A warning, however, means
you've done something that is valid code but possibly is not what you meant to do. A warning does
not stop compilation. This particular warning pertains to how C handles values like 2000.0. It's not a
problem for this example, and the chapter explains the warning later.

When you type this program, you might want to change the 2000.0 to the current price of the
precious metal thodium. Don't, however, fiddle with the 14.5833, which represents the num-
ber of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoirdu-
pois, used for people—precious and otherwise.)

Note that “entering” your weight means to type your weight and then press the Enter or Return
key. (Don't just type your weight and wait.) Pressing Enter informs the computer that you have
finished typing your response. The program expects you to enter a number, such as 160, not
words, such as too much. Entering letters rather than digits causes problems that require an if
statement (Chapter 7, “C Control Statements: Branching and Jumps”) to defeat, so please be
polite and enter a number. Here is a sample output:

Are you worth your weight in rhodium?
Let's check it out.
Please enter your weight in pounds: 160

Chapter 3 ¢« DATAANDC 51

Your weight in rhodium is worth $4666656.00.
You are easily worth that! If rhodium prices drop,
eat more to maintain your value.

What's New in This Program?

There are several new elements of C in this program:

* Notice that the code uses a new kind of variable declaration. The previous examples just
used an integer variable type (int), but this one adds a floating-point variable type
(float) so that you can handle a wider variety of data. The float type can hold num-
bers with decimal points.

* The program demonstrates some new ways of writing constants. You now have numbers
with decimal points.

* To print this new kind of variable, use the %f specifier in the printf () code to handle a
floating-point value. Use the .2 modifier to the %f specifier to fine-tune the appearance
of the output so that it displays two places to the right of the decimal.

* To provide keyboard input to the program, use the scanf () function. The %f instructs
scanf () to read a floating-point number from the keyboard, and the &weight tells
scanf () to assign the input value to the variable named weight. The scanf () function
uses the & notation to indicate where it can find the weight variable. The next chapter
discusses & further; meanwhile, trust us that you need it here.

 Perhaps the most outstanding new feature is that this program is interactive. The com-
puter asks you for information and then uses the number you enter. An interactive pro-
gram is more interesting to use than the noninteractive types. More important, the
interactive approach makes programs more flexible. For example, the sample program
can be used for any reasonable weight, not just for 160 pounds. You don’t have to
rewrite the program every time you want to try it on a new person. The scanf () and
printf () functions make this interactivity possible. The scanf () function reads data
from the keyboard and delivers that data to the program, and printf () reads data from
a program and delivers that data to your screen. Together, these two functions enable
you to establish a two-way communication with your computer (see Figure 3.1), and
that makes using a computer much more fun.

This chapter explains the first two items in this list of new features: variables and constants of
various data types. Chapter 4, “Character Strings and Formatted Input/Output,” covers the last
three items, but this chapter will continue to make limited use of scanf () and printf().

52 CPRIMER PLUS

FIGURE 3.1 Body

The scanf()and |27 "7 TTTTTTTTTTTTTO
printf() functions at /*rhodium.c*/

work.

int main(void)

scanf("-----) 4 getting keyboard input

printf("Are you--) displaying program output > Are you
printf(-----) ===

Data Variables and Constants

A computer, under the guidance of a program, can do many things. It can add numbers, sort
names, command the obedience of a speaker or video screen, calculate cometary orbits, pre-
pare a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else
your imagination can create. To do these tasks, the program needs to work with data, the
numbers and characters that bear the information you use. Some data are preset before a pro-
gram is used and keep their values unchanged throughout the life of the program. These are
constants. Other data may change or be assigned values as the program runs; these are
variables. In the sample program, weight is a variable and 14.5833 is a constant. What about
the 2000.0? True, the price of rthodium isn’t a constant in real life, but this program treats it as
a constant. The difference between a variable and a constant is that a variable can have its
value assigned or changed while the program is running, and a constant can't.

Data: Data-Type Keywords

Beyond the distinction between variable and constant is the distinction between different types
of data. Some data are numbers. Some are letters or, more generally, characters. The computer
needs a way to identify and use these different kinds. C does this by recognizing several funda-
mental data types. If a datum is a constant, the compiler can usually tell its type just by the way
it looks: 42 is an integer, and 42.100 is floating point. A variable, however, needs to have its
type announced in a declaration statement. You'll learn the details of declaring variables as you

Chapter 3 « DATA AND C

move along. First, though, take a look at the fundamental types recognized by C. K&R C rec-
ognized seven keywords relating to types. The C90 standard added two to the list. The C99
standard adds yet another three (see Table 3.1).

TABLE 3.1 C Data Keywords

Original C90 c99

K&R Keywords Keywords Keywords
int signed _Bool

long void _Complex
short _Imaginary
unsigned

char

float

double

The int keyword provides the basic class of integers used in C. The next three keywords
(long, short, and unsigned) and the ANSI addition signed are used to provide variations of
the basic type. Next, the char keyword designates the type used for letters of the alphabet and
for other characters, such as #, $, %, and *. The char type also can be used to represent small
integers. Next, float, double, and the combination long double are used to represent num-
bers with decimal points. The _Bool type is for Boolean values (true and false), and
_Complex and _Imaginary represent complex and imaginary numbers, respectively.

The types created with these keywords can be divided into two families on the basis of how
they are stored in the computer: integer types and floating-point types.

Bits, Bytes, and Words

The terms bit, byte, and word can be used to describe units of computer data or to describe units of
computer memory. We'll concentrate on the second usage here.

The smallest unit of memory is called a bit. It can hold one of two values: @ or 1. (Or you can say
that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a computer has
a tremendous stock of them. The bit is the basic building block of computer memory.

The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and that is
the standard definition, at least when used to measure storage. (The C language, however, has a dif-
ferent definition, as discussed in the “Using Characters: Type char” section later in this chapter).
Because each bit can be either 0 or 1, there are 256 (that's 2 times itself 8 times) possible bit pat-
terns of Os and 1s that can fit in an 8-bit byte. These patterns can be used, for example, to represent

53

54

C PRIMER PLUS

the integers from 0 to 255 or to represent a set of characters. Representation can be accomplished
with binary code, which uses (conveniently enough) just Os and 1s to represent numbers. (Chapter
15, “Bit Fiddling,” discusses binary code, but you can read through the introductory material of that
chapter now if you like.)

A word is the natural unit of memory for a given computer design. For 8-bit microcomputers, such
as the original Apples, a word is just 8 bits. Early IBM compatibles using the 80286 processor are 16-
bit machines. This means that they have a word size of 16 bits. Machines like the Pentium-based PCs
and the Macintosh PowerPCs have 32-bit words. More powerful computers can have 64-bit words
or even larger.

Integer Versus Floating-Point Types

Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax. We
are about to give you a brief rundown of their meanings. If you are unfamiliar with bits, bytes,
and words, you might want to read the nearby note about them first. Do you have to learn all
the details? Not really, not any more than you have to learn the principles of internal combus-
tion engines to drive a car, but knowing a little about what goes on inside a computer or
engine can help you occasionally.

For a human, the difference between integers and floating-point numbers is reflected in the
way they can be written. For a computer, the difference is reflected in the way they are stored.
Let’s look at each of the two classes in turn.

The Integer

An integer is a number with no fractional part. In C, an integer is never written with a decimal
point. Examples are 2, 23, and 2456. Numbers like 3.14, 0.22, and 2.000 are not integers.
Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary.
Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits
to 1 (see Figure 3.2).

FIGURE 3.2 olojo|ofof1]1]1|——8bitword
Storing the integer 7
using a binary code. ‘ ‘

22 21 20

4 +2+1=7 integer 7

The Floating-Point Number

A floating-point number more or less corresponds to what mathematicians call a real number.
Real numbers include the numbers between the integers. Some floating-point numbers are
2.75,3.16E7, 7.00, and 2e-8. Notice that adding a decimal point makes a value a floating-
point value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more

Chapter 3 ¢« DATAANDC 55

than one way to write a floating-point number. We will discuss the e-notation more fully later,
but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1
followed by 7 zeros. The 7 would be termed the exponent of 10.

The key point here is that the scheme used to store a floating-point number is different from
the one used to store an integer. Floating-point representation involves breaking up a number
into a fractional part and an exponent part and storing the parts separately. Therefore, the 7.00
in this list would not be stored in the same manner as the integer 7, even though both have

the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the fractional
part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point stor-
age. A computer, of course, would use binary numbers and powers of two instead of powers of
ten for internal storage. You'll find more on this topic in Chapter 15. Now, let’s concentrate on
the practical differences, which are

* An integer has no fractional part; a floating-point number can have a fractional part.

¢ Floating-point numbers can represent a much larger range of values than integers can.
See Table 3.3 near the end of this chapter.

 For some arithmetic operations, such as subtracting one large number from another,
floating-point numbers are subject to greater loss of precision.

* Because there are an infinite number of real numbers in any range—for example, in the
range between 1.0 and 2.0—computer floating-point numbers can't represent all the val-
ues in the range. Instead, floating-point values are often approximations of a true value.
For example, 7.0 might be stored as a 6.99999 float value—more about precision later.

¢ Floating-point operations are normally slower than integer operations. However, micro-
processors developed specifically to handle floating-point operations are now available,
and they have closed the gap.

FIGURE 3.3
. . + .314159 1
Storing the number pi in
floating-point format | | |
(decimal version). sign fraction exponent
+ .314159 x 10" ———— 3.14159

C Data Types

Now let’s look at the specifics of the basic data types used by C. For each type, we describe
how to declare a variable, how to represent a constant, and what a typical use would be. Some
older C compilers do not support all these types, so check your documentation to see which
ones you have available.

56

C PRIMER PLUS

The int Type

C offers many integer types, and you might wonder why one type isn't enough. The answer is
that C gives the programmer the option of matching a type to a particular use. In particular,
the C integer types vary in the range of values offered and in whether negative numbers can be
used. The int type is the basic choice, but should you need other choices to meet the require-
ments of a particular task or machine, they are available.

The int type is a signed integer. That means it must be an integer and it can be positive, nega-
tive, or zero. The range in possible values depends on the computer system. Typically, an int
uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit
word, use 16 bits to store an int. This allows a range in values from —32768 to 32767. Current
personal computers typically have 32-bit integers and fit an int to that size. See Table 3.3 near
the end of this chapter for examples. ISO/ANSI C specifies that the minimum range for type
int should be from —82767 to 32767. Typically, systems represent signed integers by using the
value of a particular bit to indicate the sign. Chapter 15 discusses common methods.

Declaring an int Variable

As you saw in Chapter 2, “Introducing C,” the keyword int is used to declare the basic integer
variable. First comes int, and then the chosen name of the variable, and then a semicolon. To
declare more than one variable, you can declare each variable separately, or you can follow the
int with a list of names in which each name is separated from the next by a comma. The fol-
lowing are valid declarations:

int erns;
int hogs, cows, goats;

You could have used a separate declaration for each variable, or you could have declared all
four variables in the same statement. The effect is the same: Associate names and arrange stor-
age space for four int-sized variables.

These declarations create variables but don’t supply values for them. How do variables get val-
ues? You've seen two ways that they can pick up values in the program. First, there is assign-
ment:

cows = 112;

Second, a variable can pick up a value from a function, from scanf (), for example. Now let’s
look at a third way.

Initializing a Variable

To initialize a variable means to assign it an initial, or starting, value. In C, this can be done as
part of the declaration. Just follow the variable name with the assignment operator (=) and the
value you want the variable to have. Here are some examples:

int hogs = 21;
int cows = 32, goats = 14;
int dogs, cats = 94; /* valid, but poor, form */

Chapter 3 ¢« DATAANDC 57

In the last line, only cats is initialized. A quick reading might lead you to think that dogs is
also initialized to 94, so it is best to avoid putting initialized and noninitialized variables in the
same declaration statement.

In short, these declarations create and label the storage for the variables and assign starting val-
ues to each (see Figure 3.4).

FIGURE 3.4)
.. .. int sows;
Defining and initializing a
variable.
create storage
2
int boars=2; Boars
| create storage and give it value T

Type int Constants

The various integers (21, 32, 14, and 94) in the last example are integer constants. When you
write a number without a decimal point and without an exponent, C recognizes it as an inte-
ger. Therefore, 22 and —44 are integer constants, but 22.0 and 2.2E1 are not. C treats most
integer constants as type int. Very large integers can be treated differently; see the later discus-
sion of the long int type in section “Type long and long long Constants.”

Printing int Values

You can use the printf() function to print int types. As you saw in Chapter 2, the %d nota-
tion is used to indicate just where in a line the integer is to be printed. The %d is called a format
specifier because it indicates the form that printf () uses to display a value. Each %d in the for-
mat string must be matched by a corresponding int value in the list of items to be printed.
That value can be an int variable, an int constant, or any other expression having an int
value. It’s your job to make sure the number of format specifiers matches the number of val-
ues; the compiler won't catch mistakes of that kind. Listing 3.2 presents a simple program that
initializes a variable and prints the value of the variable, the value of a constant, and the value
of a simple expression. It also shows what can happen if you are not careful.

LISTING 3.2 The print1.c Program

/* printi.c-displays some properties of printf() */
#include <stdio.h>
int main(void)

{

int ten = 10;

58

C PRIMER PLUS

LISTING 3.2 Continued

int two = 2;

printf("Doing it right: ");

printf("%d minus %d is %d\n", ten, 2, ten - two);

printf("Doing it wrong: ");

printf("%d minus %d is %d\n", ten); // forgot 2 arguments
}

Compiling and running the program produced this output on one system:

Doing it right: 10 minus 2 is 8
Doing it wrong: 10 minus 10 is 2

Therefore, the first %d represents the int variable ten, the second %d represents the int con-
stant 2, and the third %d represents the value of the int expression ten - two. The second
time, however, the program used ten to provide a value for the first %d and used whatever val-
ues happened to be lying around in memory for the next two! (The numbers you get could
very well be different from those shown here.)

You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the
unusual design of printf (). Most functions take a specific number of arguments, and the
compiler can check to see whether you've used the correct number. However, printf() can
have one, two, three, or more arguments, and that keeps the compiler from using its usual
methods for error checking. Remember, check to see that the number of format specifiers you
give to printf () matches the number of values to be displayed.

Octal and Hexadecimal

Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal
(base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8
and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more conve-
nient way for expressing computer-related values. For example, the number 65536, which
often pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadeci-
mal number corresponds to exactly four bits. But how can the computer tell whether 10000 is
meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate which num-
ber base you are using. A prefix of @x or X (zero-exe) means that you are specifying a hexa-
decimal value, so 16 is written as 0x10, or 0X10, in hexadecimal. Similarly, a @ (zero) prefix
means that you are writing in octal. For example, the decimal value 16 is written as 020 in
octal. Chapter 15 discusses these alternative number bases more fully.

Be aware that this option of using different number systems is provided as a service for your
convenience. It doesn't affect how the number is stored. That is, you can write 16 or 020 or

0x10, and the number is stored exactly the same way in each case—in the binary code used
internally by computers.

Displaying Octal and Hexadecimal

Just as C enables you write a number in any one of three number systems, it also enables you
to display a number in any of these three systems. To display an integer in octal notation

Chapter 3 ¢ DATA AND C

instead of decimal, use %o instead of %d. To display an integer in hexadecimal, use %x. If you
want to display the C prefixes, you can use specifiers %#o, %#x, and %#X to generate the 0, 0x,
and X prefixes, respectively. Listing 3.3 shows a short example. (Recall that you may have to
insert a getchar () ; statement in the code for some IDEs to keep the program execution win-
dow from closing immediately.)

LISTING 3.3 The bases.c Program

/* bases.c--prints 100 in decimal, octal, and hex */
#include <stdio.h>
int main(void)

{
int x = 100;
printf("dec = %d; octal = %0; hex = %x\n", X, X, X);
printf("dec = %d; octal = %#0; hex = S%#x\n", x, X, X);
return 0;

}

Compiling and running this program produces this output:

dec = 100; octal 144; hex = 0x64
dec 100; octal = 0144; hex = 0x64

You see the same value displayed in three different number systems. The printf () function
makes the conversions. Note that the @ and the 0x prefixes are not displayed in the output
unless you include the # as part of the specifier.

Other Integer Types

When you are just learning the language, the int type will probably meet most of your integer
needs. To be complete, however, we'll cover the other forms now. If you like, you can skim
this section and jump to the discussion of the char type in the “Using Characters: Type char”
section, returning here when you have a need.

C offers three adjective keywords to modify the basic integer type: short, long, and unsigned.

* The type short int or, more briefly, short may use less storage than int, thus saving
space when only small numbers are needed. Like int, short is a signed type.

* The type long int, or long, may use more storage than int, thus enabling you to
express larger integer values. Like int, long is a signed type.

* The type long long int, or long long (both introduced in the C99 standard), may use
more storage than long, thus enabling you to express even larger integer values. Like
int, long long is a signed type.

 The type unsigned int, or unsigned, is used for variables that have only nonnegative
values. This type shifts the range of numbers that can be stored. For example, a 16-bit
unsigned int allows a range from @ to 65535 in value instead of from —32768 to 32767.
The bit used to indicate the sign of signed numbers now becomes another binary digit,
allowing the larger number.

59

60

C PRIMER PLUS

e The types unsigned long int, or unsigned long, and unsigned short int, or
unsigned short, are recognized as valid by the C90 standard. To this list, C99 adds
unsigned long long int, or unsigned long long.

o The keyword signed can be used with any of the signed types to make your intent
explicit. For example, short, short int, signed short, and signed short int are all
names for the same type.

Declaring Other Integer Types

Other integer types are declared in the same manner as the int type. The following list shows
several examples. Not all older C compilers recognize the last three, and the final example is
new with the C99 standard.

long int estine;

long johns;

short int erns;

short ribs;

unsigned int s_count;
unsigned players;
unsigned long headcount;
unsigned short yesvotes;
long long ago;

Why Multiple Integer Types?

Why do we say that long and short types “may” use more or less storage than int? Because C
guarantees only that short is no longer than int and that long is no shorter than int. The
idea is to fit the types to the machine. On an IBM PC running Windows 3.1, for example, an
int and a short are both 16 bits, and a 1long is 32 bits. On a Windows XL machine or a
Macintosh PowerPC, however, a short is 16 bits, and both int and long are 32 bits. The nat-
ural word size on a Pentium chip or a PowerPC chip is 32 bits. Because this allows integers in
excess of 2 billion (see Table 3.3), the implementers of C on these processor/operating system
combinations did not see a necessity for anything larger; therefore, long is the same as int.
For many uses, integers of that size are not needed, so a space-saving short was created. The
original IBM PC, on the other hand, has only a 16-bit word, which means that a larger long
was needed.

Now that 64-bit processors are beginning to become more common, there’s a need for 64-bit
integers, and that’s the motivation for the long long type.

The most common practice today is to set up long long as 64 bits, long as 32 bits, short as
16 bits, and int to either 16 bits or 32 bits, depending on the machine’s natural word size. In
principle, however, these four types could represent four distinct sizes.

The C standard provides guidelines specifying the minimum allowable size for each basic data
type. The minimum range for both short and int is —=32,767 to 32,767, corresponding to a
16-bit unit, and the minimum range for long is —2,147,483,647 to 2,147,483,647, corre-
sponding to a 32-bit unit. (Note: For legibility, we've used commas, but C code doesn’t allow
that option.) For unsigned short and unsigned int, the minimum range is 0 to 65,535, and

Chapter 3 « DATAAND C 61

for unsigned long, the minimum range is O to 4,294,967,295. The long long type is
intended to support 64-bit needs. Its minimum range is a substantial
-9,223,372,036,854,775,807 t0 9,223,372,036,854,775,807, and the minimum range for
unsigned long long is O to 18,446,744,073,709,551,615. (For those of you writing checks,
thats eighteen quintillion, four hundred and forty-six quadrillion, seven hundred forty-four
trillion, seventy-three billion, seven hundred nine million, five hundred fifty-one thousand, six
hundred fifteen in U.S. notation, but who'’s counting?)

When do you use the various int types? First, consider unsigned types. It is natural to use
them for counting because you don’t need negative numbers, and the unsigned types enable
you to reach higher positive numbers than the signed types.

Use the long type if you need to use numbers that long can handle and that int cannot.
However, on systems for which long is bigger than int, using long can slow down calcula-
tions, so don't use long if it is not essential. One further point, if you are writing code on a
machine for which int and long are the same size, and if you do need 32-bit integers, you
should use long instead of int so that the program will function correctly if transferred to a
16-bit machine.

Similarly, use long long if you need 64-bit integer values. Some computers already use 64-bit
processors, and 64-bit processing in servers, workstations, and even desktops may soon
become common.

Use short to save storage space if, say, you need a 16-bit value on a system where int is 32-
bit. Usually, saving storage space is important only if your program uses arrays of integers that
are large in relation to a system’ available memory. Another reason to use short is that it may
correspond in size to hardware registers used by particular components in a computer.

ﬁ Integer Overflow

What happens if an integer tries to get too big for its type? Let's set an integer to its largest possible
value, add to it, and see what happens. Try both signed and unsigned types. (The printf () function
uses the su specifier to display unsigned int values.)

/* toobig.c--exceeds maximum int size on our system */
#include <stdio.h>
int main(void)

{
int 1 = 2147483647;
unsigned int j = 4294967295;
printf("%d %d %d\n", i, i+1, i+2);
printf("Ssu %u %su\n", j, j+1, j+2);
return 0;

}

Here is the result for our system:

2147483647 -2147483648 -2147483647
4294967295 0 1

62

C PRIMER PLUS

The unsigned integer j is acting like a car's odometer. When it reaches its maximum value, it starts
over at the beginning. The integer i acts similarly. The main difference is that the unsigned int
variable j, like an odometer, begins at 0, but the int variable i begins at —2147483648. Notice that
you are not informed that i has exceeded (overflowed) its maximum value. You would have to
include your own programming to keep tabs on that.

The behavior described here is mandated by the rules of C for unsigned types. The standard doesn’t
define how signed types should behave, but the behavior shown here is typical.

long Constants and long long Constants

Normally, when you use a number like 2345 in your program code, it is stored as an int type.
What if you use a number like 1000000 on a system in which int will not hold such a large
number? Then the compiler treats it as a long int, assuming that type is large enough. If the
number is larger than the long maximum, C treats it as unsigned long. If that is still insuffi-
cient, C treats the value as long long or unsigned long long, if those types are available.

Octal and hexadecimal constants are treated as type int unless the value is too large. Then the
compiler tries unsigned int. If that doesn’t work, it tries, in order, long, unsigned long,
long long, and unsigned long long.

Sometimes you might want the compiler to store a small number as a long integer.
Programming that involves explicit use of memory addresses on an IBM PC, for instance, can
create such a need. Also, some standard C functions require type long values. To cause a small
constant to be treated as type long, you can append an 1 (lowercase L) or L as a suffix. The
second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit
int and a 32-bit long treats the integer 7 as 16 bits and the integer 7L as 32 bits. The 1 and L
suffixes can also be used with octal and hex integers, as in 020L and @x10L.

Similarly, on those systems supporting the long long type, you can use an 11 or LL suffix to
indicate a long long value, asin 3LL. Add a u or U to the suffix for unsigned long long, as
in 5ull or 10LLU or 6LLU or 9U11.

Printing short, long, long long, and unsigned Types

To print an unsigned int number, use the %u notation. To print a long value, use the %1d for-
mat specifier. If int and long are the same size on your system, just %d will suffice, but your
program will not work properly when transferred to a system on which the two types are dif-
ferent, so use the %1d specifier for long. You can use the 1 prefix for x and o, too. Therefore,
you would use %1x to print a long integer in hexadecimal format and %10 to print in octal for-
mat. Note that although C allows both uppercase and lowercase letters for constant suffixes,
these format specifiers use just lowercase.

C has several additional printf () formats. First, you can use an h prefix for short types.
Therefore, %hd displays a short integer in decimal form, and %ho displays a short integer in
octal form. Both the h and 1 prefixes can be used with u for unsigned types. For instance, you
would use the %1u notation for printing unsigned long types. Listing 3.4 provides an exam-
ple. Systems supporting the long long types use %11d and %11u for the signed and unsigned
versions. Chapter 4 provides a fuller discussion of format specifiers.

Chapter 3 « DATAANDC 63

LISTING 3.4 The print2.c Program

/* print2.c-more printf() properties */
#include <stdio.h>
int main(void)

{

unsigned int un = 3000000000; /* system with 32-bit int */
short end = 200; /* and 16-bit short */
long big = 65537;

long long verybig = 12345678908642;

printf("un = %u and not %d\n", un, un);

printf("end = %hd and %d\n", end, end);

printf("big = %ld and not %hd\n", big, big);
printf("verybig= %11d and not %ld\n", verybig, verybig);
return 0;

}
Here is the output on one system:

un = 3000000000 and not -1294967296

end = 200 and 200

big = 65537 and not 1

verybig= 12345678908642 and not 1942899938

This example points out that using the wrong specification can produce unexpected results.
First, note that using the %d specifier for the unsigned variable un produces a negative number!
The reason for this is that the unsigned value 3000000000 and the signed value —129496296
have exactly the same internal representation in memory on our system. (Chapter 15 explains
this property in more detail.) So if you tell printf() that the number is unsigned, it prints one
value, and if you tell it that the same number is signed, it prints the other value. This behavior
shows up with values larger than the maximum signed value. Smaller positive values, such as
96, are stored and displayed the same for both signed and unsigned types.

Next, note that the short variable sn is displayed the same whether you tell printf () that end
is a short (the %hd specifier) or an int (the %d specifier). That’s because C automatically
expands a type short value to a type int value when it’s passed as an argument to a function.
This may raise two questions in your mind: Why does this conversion take place, and what’s
the use of the h modifier? The answer to the first question is that the int type is intended to be
the integer size that the computer handles most efficiently. So, on a computer for which short
and int are different sizes, it may be faster to pass the value as an int. The answer to the sec-
ond question is that you can use the h modifier to show how a longer integer would look if
truncated to the size of short. The third line of output illustrates this point. When the value
65537 is written in binary format as a 32-bit number, it looks like
00000000000000010000000000000001. Using the %hd specifier persuaded printf () to look
at just the last 16 bits; so it displayed the value as 1. Similarly, the final output line shows the
full value of verybig and then the value stored in the last 32 bits, as viewed through the %1d
specifier.

64

C PRIMER PLUS

Earlier you saw that it is your responsibility to make sure the number of specifiers matches the
number of values to be displayed. Here you see that it is also your responsibility to use the
correct specifier for the type of value to be displayed.

Match the Type printf() Specifiers

Remember to check to see that you have one format specifier for each value being displayed in a
printf () statement. And also check that the type of each format specifier matches the type of the

corresponding display value.

Using Characters: Type char

The char type is used for storing characters such as letters and punctuation marks, but techni-
cally it is an integer type. Why? Because the char type actually stores integers, not characters.
To handle characters, the computer uses a numerical code in which certain integers represent
certain characters. The most commonly used code in the US is the ASCII code given in
Reference Section X, “ASCII Table.” It is the code this book assumes. In it, for example, the
integer value 65 represents an uppercase A. So to store the letter A, you actually need to store
the integer 65. (Many IBM mainframes use a different code, called EBCDIC, but the principle
is the same. Computer systems outside the U.S. may use entirely different codes.)

The standard ASCII code runs numerically from 0 to 127. This range is small enough that 7
bits can hold it. The char type is typically defined as an 8-bit unit of memory, so it is more
than large enough to encompass the standard ASCII code. Many systems, such as the IBM PC
and the Apple Macintosh, offer extended ASCII codes (different for the two systems) that still
stay within an 8-bit limit. More generally, C guarantees that the char type is large enough to
store the basic character set for the system on which C is implemented.

Many character sets have many more than 127 or even 255 values. For example, there is the
Japanese kanji character set. The commercial Unicode initiative has created a system to repre-
sent a variety of characters sets worldwide and currently has over 40,000 characters. The
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (EIC) has developed a standard called ISO/IEC 10646 for character sets.
Fortunately, the Unicode standard has been kept compatible with the more extensive ISO/IEC
10646 standard.

A platform that used one of these sets as its basic character set could use a 16-bit or even a 32-
bit char representation. The C language defines a byte to be the number of bits used by type
char, so as far as C documentation goes, a byte would be 16 or 32 bits, rather than 8 bits on
such systems.

Declaring Type char Variables

As you might expect, char variables are declared in the same manner as other variables. Here
are some examples:

Chapter 3 « DATAAND C 65

char response;
char itable, latan;

This code would create three char variables: response, itable, and latan.

Character Constants and Initialization

Suppose you want to initialize a character constant to the letter A. Computer languages are
supposed to make things easy, so you shouldn't have to memorize the ASCII code, and you
don't. You can assign the character A to grade with the following initialization:

char grade = 'A';

A single letter contained between single quotes is a C character constant. When the compiler
sees 'A', it converts the 'A' to the proper code value. The single quotes are essential.

char broiled; /* declare a char variable */
broiled = 'T'; /* 0K */
broiled = T; /* NO! Thinks T is a variable */
broiled = "T"; /* NO! Thinks "T" is a string */

If you leave off the quotes, the compiler thinks that T is the name of a variable. If you use dou-
ble quotes, it thinks you are using a string. We'll discuss strings in Chapter 4.

Because characters are really stored as numeric values, you can also use the numerical code to
assign values:

char grade = 65; /* ok for ASCII, but poor style */

In this example, 65 is type int, but, because the value is smaller than the maximum char size,
it can be assigned to grade without any problems. Because 65 is the ASCII code for the letter
A, this example assigns the value A to grade. Note, however, that this example assumes that
the system is using ASCII code. Using 'A" instead of 65 produces code that works on any sys-
tem. Therefore, it’s much better to use character constants than numeric code values.

Somewhat oddly, C treats character constants as type int rather than type char. For example,
on an ASCII system with a 32-bit int and an 8-bit char, the code

char grade = 'B';

represents 'B' as the numerical value 66 stored in a 32-bit unit, but grade winds up with 66
stored in an 8-bit unit. This characteristic of character constants makes it possible to define a
character constant like 'FATE', with four separate 8-bit ASCII codes stored in a 32-bit unit.
However, attempting to assign such a character constant to a char variable results in only the
last 8 bits being used, so the variable gets the value 'E'.

Nonprinting Characters

The single-quote technique is fine for characters, digits, and punctuation marks, but if you
look through Reference Section X, you see that some of the ASCII characters are nonprinting.
For example, some represent actions such as backspacing or going to the next line or making
the terminal bell ring (or speaker beep). How can these be represented? C offers three ways.

66

C PRIMER PLUS

The first way we have already mentioned—just use the ASCII code. For example, the ASCII
value for the beep character is 7, so you can do this:

char beep = 7;
The second way to represent certain awkward characters in C is to use special symbol

sequences. These are called escape sequences. Table 3.2 shows the escape sequences and their
meanings.

TABLE 3.2 Escape Sequences

Sequence Meaning

\a Alert (ANSI C)

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash (\)

\! Single quote (')

\ ! Double quote (")

\? Question mark (?)

\@oo Octal value (o represents an octal digit)
\xhh Hexadecimal value (h represents a hexadecimal digit)

Escape sequences must be enclosed in single quotes when assigned to a character variable. For
example, you could make the statement

nerf = '\n';
and then print the variable nerf to advance the printer or screen one line.

Now take a closer look at what each escape sequence does. The alert character (\a), added by
C90, produces an audible or visible alert. The nature of the alert depends on the hardware,
with the beep being the most common. (With some systems, the alert character has no effect.)
The ANSI standard states that the alert character shall not change the active position. By active
position, the standard means the location on the display device (screen, teletype, printer, and so
on) at which the next character would otherwise appear. In short, the active position is a gen-

Chapter 3 ¢ DATA AND C

eralization of the screen cursor with which you are probably accustomed. Using the alert char-
acter in a program displayed on a screen should produce a beep without moving the screen
cursor.

Next, the \b, \f, \n, \r, \t, and \v escape sequences are common output device control char-
acters. They are best described in terms of how they affect the active position. A backspace
(\b) moves the active position back one space on the current line. A form feed character (\f)
advances the active position to the start of the next page. A newline character (\n) sets the
active position to the beginning of the next line. A carriage return (\r) moves the active posi-
tion to the beginning of the current line. A horizontal tab character tab (\t) moves the active
position to the next horizontal tab stop (typically, they are found at character positions 1, 9,
17,25, and so on). A vertical tab (\v) moves the active position to the next vertical tab posi-
tion.

These escape characters do not necessarily work with all display devices. For example, the
form feed and vertical tab characters produce odd symbols on a PC screen instead of any cur-
sor movement, but they work as described if sent to a printer instead of to the screen.

The next three escape sequences (\\, \'', and \") enable you to use \, ', and " as character
constants. (Because these symbols are used to define character constants as part of a printf ()
command, the situation could get confusing if you use them literally.) Suppose you want to
print the following line:

Gramps sez, "a \ is a backslash."

The use this code:

printf("Gramps sez, \"a \\ is a backslash.\"\n");

The final two forms (\@oo and \xhh) are special representations of the ASCII code. To repre-
sent a character by its octal ASCII code, precede it with a backslash (\) and enclose the whole
thing in single quotes. For example, if your compiler doesn’t recognize the alert character (\a),
you could use the ASCII code instead:

beep = "\007';

You can omit the leading zeros, so '\07"' or even '\7' will do. This notation causes numbers
to be interpreted as octal, even if there is no initial 0.

Beginning with C90, C provides a third option—using a hexadecimal form for character con-
stants. In this case, the backslash is followed by an x or X and one to three hexadecimal digits.
For example, the Control+P character has an ASCII hex code of 10 (16, in decimal), so it can
be expressed as '\x10"' or '\X@10"'. Figure 3.5 shows some representative integer types.

When you use ASCII code, note the difference between numbers and number characters. For
example, the character 4 is represented by ASCII code value 52. The notation '4' represents
the symbol 4, not the numerical value 4.

67

68

C PRIMER PLUS

At this point, you may have three questions.

FIGURE 3.5
o) Examples of Integer Constants

Writing constants with

the int famﬂy. type hexadecimal octal decimal
char \0x41 \0101 N.A.
int 0x41 0101 65
unsigned int 0x41u 0101u 65u
long 0x41L 0101L 65L
unsigned long 0x41UL 0101UL 65UL
long long 0x41LL 0101LL 65LL
unsigned long long | @x41ULL 0101ULL | 65ULL

Why aren't the escape sequences enclosed in single quotes in the last example
(printf("Gramps sez, \"a \\ is a backslash\"\"n");)?>—When a character, be it
an escape sequence or not, is part of a string of characters enclosed in double quotes,
don’t enclose it in single quotes. Notice that none of the other characters in this example
(G,r,a,m,p,s, and so on) are marked off by single quotes. A string of characters enclosed
in double quotes is called a character string. (Chapter 4 explores strings.) Similarly,
printf("Hello!\007\n"); will print Hello! and beep, but printf("Hello!7\n"); will
print Hello!7. Digits that are not part of an escape sequence are treated as ordinary
characters to be printed.

When should you use the ASCII code, and when should you use the escape sequences?—If you
have a choice between using one of the special escape sequences, say '\f', or an equiva-
lent ASCII code, say '\014", use the '\f'. First, the representation is more mnemonic.
Second, it is more portable. If you have a system that doesn’t use ASCII code, the '\f"
will still work.

If you need to use numeric code, why use, say, '\032' instead of 032?—First, using '\032'
instead of @32 makes it clear to someone reading the code that you intend to represent a
character code. Second, an escape sequence like \032 can be embedded in part of a C
string, the way \007 was in point #1.

Printing Characters

The printf () function uses %c to indicate that a character should be printed. Recall that a
character variable is stored as a 1-byte integer value. Therefore, if you print the value of a
char variable with the usual %d specifier, you get an integer. The %c format specifier tells
printf() to display the character that has that integer as its code value. Listing 3.5 shows a
char variable both ways.

Chapter 3 « DATAAND C 69

LISTING 3.5 The charcode.c Program

/* charcode.c--displays code number for a character */
#include <stdio.h>
int main(void)

{
char ch;
printf("Please enter a character.\n");
scanf("%c", &ch); /* user inputs character */
printf("The code for %c is %d.\n", ch, ch);
return 0;

}

Here is a sample run:

Please enter a character.
c
The code for C is 67.

When you use the program, remember to press the Enter or Return key after typing the char-
acter. The scanf () function then fetches the character you typed, and the ampersand (&)
causes the character to be assigned to the variable ch. The printf () function then prints the
value of ch twice, first as a character (prompted by the %c code) and then as a decimal integer
(prompted by the %d code). Note that the printf () specifiers determine how data is dis-
played, not how it is stored (see Figure 3.6).

FIGURE 3.6
Data display versus data
storage. | |

TS nog code

C 67 display

chlo|1]|]olo|o]|o|1]1 storage (ASCII code)

Signed or Unsigned?

Some C implementations make char a signed type. This means a char can hold values typi-
cally in the range —128 through 127. Other implementations make char an unsigned type,
which provides a range of 0 through 255. Your compiler manual should tell you which type
your char is, or you can check the limits.h header file, discussed in the next chapter.

With C90, C enabled you to use the keywords signed and unsigned with char. Then, regard-
less of what your default char is, signed char would be signed, and unsigned char would
be unsigned. These versions of char are useful if you're using the type to handle small inte-
gers. For character use, just use the standard char type without modifiers.

70

C PRIMER PLUS

The _Bool Type

The _Bool type is a C99 addition that’s used to represent Boolean values, that is, the logical
values true and false. Because C uses the value 1 for true and O for false, the _Bool type
really is just an integer type, but one that, in principle, only requires one bit of memory,
because that is enough to cover the full range from 0 to 1.

Programs use Boolean values to choose which code to execute next. Code execution is covered
more fully in Chapter 6, “C Control Statements: Looping” and Chapter 7, “C Control
Statements: Branching and Jumps”, so let’s defer further discussion until then.

Portable Types: inttypes.h

Are there even more integer types? No, but there are more names that you can use for the
existing types. You might think you've seen more than an adequate number of names, but the
primary names do have a problem. Knowing that a variable is an int doesn't tell you how
many bits it is unless you check the documentation for your system. To get around this prob-
lem, C99 provides an alternative set of names that describe exactly what you get. For example,
the name int16_t indicates a 16-bit signed integer type and the name uint32_t indicates a
32-bit unsigned integer type.

To make these names available to a program, include the inttypes.h header file. That file uses
the typedef facility (first described briefly in Chapter 5, “Operators, Expressions, and
Statements”) to create new type names. For example, it will make uint32_t a synonym or alias
for a standard type with the desired characteristics—perhaps unsigned int on one system
and unsigned long on another. Your compiler will provide a header file consistent with the
computer system you are using. These new designations are called exact width types. Note that,
unlike int, uint32_t is not a keyword, so the compiler won't recognize it unless you include
the inttypes.h header file.

One possible problem with attempting to provide exact width types is that a particular system
might not support some of the choices, so there is no guarantee that there will be, say, an
int8_t type (8-bit signed). To get around that problem, the C99 standard defines a second set
of names that promise the type is at least big enough to meet the specification and that no
other type that can do the job is smaller. These types are called minimum width types. For
example, int_least8_t will be an alias for the smallest available type that can hold an 8-bit
signed integer value. If the smallest type on a particular system were 8 bits, the int8_t type
would not be defined. But the int_least8_t type would be available, perhaps implemented as
a 16-bit integer.

Of course, some programmers are more concerned with speed than with space. For them, C99
defines a set of types that will allow the fastest computations. These are called the fastest mini-
mum width types. For example, the int_fast8_t will be defined as an alternative name for the
integer type on your system that allows the fastest calculations for 8-bit signed values.

Finally, for some programmers, only the biggest possible integer type on a system will do; int-
max_t stands for that type, a type that can hold any valid signed integer value. Similarly, uint-

Chapter 3 « DATAANDC 71

max_t stands for the largest available unsigned type. Incidentally, if these types could be bigger
than long long and unsigned long because C implementations can define types beyond the
required ones.

C99 not only provides these new, portable type names, it also has to assist with input and out-
put. For example, printf () requires specific specifiers for particular types. So what do you do
to display an int32_t value when it might require a %d specifier for one definition and a %1d
for another? The C99 standard provides some string macros (introduced in Chapter 4) to be
used to display the portable types. For example, the inttypes.h header file will define PRId16
as a string representing the appropriate specifier (hd or d, for instance) for a 16-bit signed
value. Listing 3.6 shows a brief example illustrating how to use a portable type and its associ-
ated specifier.

LISTING 3.6 The altnames.c Program

/* altnames.c -- portable names for integer types */
#include <stdio.h>

#include <inttypes.h> // supports portable types
int main(void)

{
int16_t me16; // mei16 a 16-bit signed variable
mei16 = 4593;
printf("First, assume int16_t is short: ");
printf("me16 = %hd\n", me16);
printf("Next, let's not make any assumptions.\n");
printf("Instead, use a \"macro\" from inttypes.h: ");
printf('me16 = %" PRId16 "\n", me16);
return 0;

I3

In the final printf () argument, the PRId16 is replaced by its inttypes.h definition of "hd",
making the line this:

printf("me16 = %" "hd" "\n", mel6);

But C combines consecutive quoted strings into a single quoted string, making the line this:
printf("me16 = %hd\n", mel6);

Here’s the output; note that the example also uses the \" escape sequence to display double
quotation marks:

First, assume int16_t is short: me16 = 4593
Next, let's not make any assumptions.
Instead, use a "macro" from inttypes.h: mel16 = 4593

Reference Section VI, “Expanded Integer Types,” provides a complete rundown of the int-
types.h header file additions, and also lists all the specifier macros.

72 CPRIMER PLUS

Types float, double, and long double

The various integer types serve well for most software development projects. However, finan-
cial and mathematically oriented programs often make use of floating-point numbers. In C,
such numbers are called type float, double, or long double. They correspond to the real
types of FORTRAN and Pascal. The floating-point approach, as already mentioned, enables
you to represent a much greater range of numbers, including decimal fractions. Floating-point
number representation is similar to scientific notation, a system used by scientists to express
very large and very small numbers. Let’s take a look.

In scientific notation, numbers are represented as decimal numbers times powers of 10. Here
are some examples.

Number Scientific Exponential
Notation Notation
1,000,000,000 =1.0x10° = 1.0e9
123,000 =1.23x10° =1.23e5
322.56 =3.2256x10? =3.2256e2
0.000056 =5.6x10" =5.6e-5

The first column shows the usual notation, the second column scientific notation, and the
third column exponential notation, or e-notation, which is the way scientific notation is usu-
ally written for and by computers, with the e followed by the power of 10. Figure 3.7 shows
more floating-point representations.

The C standard provides that a float has to be able to represent at least six significant figures
and allow a range of at least 1037 10 10+37. The first requirement means, for example, that a
float has to represent accurately at least the first six digits in a number like 33.333333. The
second requirement is handy if you like to use numbers such as the mass of the sun (2.0e30
kilograms), the charge of a proton (1.6e—19 coulombs), or the national debt. Often, systems
use 32 bits to store a floating-point number. Eight bits are used to give the exponent its value
and sign, and 24 bits are used to represent the nonexponent part, called the mantissa or signifi-
cand, and its sign.

C also has a double (for double precision) floating-point type. The double type has the same
minimum range requirements as float, but it extends the minimum number of significant fig-
ures that can be represented to 10. Typical double representations use 64 bits instead of 32.
Some systems use all 32 additional bits for the nonexponent part. This increases the number
of significant figures and reduces round-off errors. Other systems use some of the bits to
accommodate a larger exponent; this increases the range of numbers that can be accommo-
dated. Either approach leads to at least 13 significant figures, more than meeting the minimum
standard.

Chapter 3 « DATAANDC 73

FIGURE 3.7
. : 2.58
Some floating-point
numbers. 1.6E-19
1.376+7
12E20
I} O

C allows for a third floating-point type: long double. The intent is to provide for even more
precision than double. However, C guarantees only that long double is at least as precise as
double.

Declaring Floating-Point Variables

Floating-point variables are declared and initialized in the same manner as their integer
cousins. Here are some examples:

float noah, jonah;
double trouble;

float planck = 6.63e-34;
long double gnp;

Floating-Point Constants

There are many choices open to you when you write a floating-point constant. The basic form
of a floating-point constant is a signed series of digits, including a decimal point, followed by
an e or E, followed by a signed exponent indicating the power of 10 used. Here are two valid
floating-point constants:

-1.56E+12
2.87e-3

You can leave out positive signs. You can do without a decimal point (2E5) or an exponential
part (19.28), but not both simultaneously. You can omit a fractional part (3.E16) or an integer
part ((45E-6), but not both (that wouldn't leave much!). Here are some more valid floating-
point constants:

3.14159
.2

4e16
.8E-5
100.

74

C PRIMER PLUS

Don't use spaces in a floating-point constant.

WRONG 1.56 E+12

By default, the compiler assumes floating-point constants are double precision. Suppose, for
example, that some is a float variable, and that you have the following statement:

some = 4.0 * 2.0;

Then the 4.0 and 2.0 are stored as double, using (typically) 64 bits for each. The product is
calculated using double precision arithmetic, and only then is the answer trimmed to regular
float size. This ensures greater precision for your calculations, but can slow down a program.

C enables you to override this default by using an f or F suffix to make the compiler treat a
floating-point constant as type float; examples are 2.3f and 9.11E9E An 1 or L suffix makes a
number type long double; examples are 54.31 and 4.32e4L. Note that L is less likely to be
mistaken for a 1 than is 1. If the floating-point number has no suffix, it is type double.

C99 has added a new format for expressing floating-point constants. It uses a hexadecimal pre-
fix (@x or @X) with hexadecimal digits, a p or P instead of e or E, and an exponent that is a
power of 2 instead of a power of 10. Here’s what such a number might look like:

Oxa.1fp10

The a is 10, the .1f is 1/16™ plus 15/256", and the p10 is 2'°, or 1024, making the complete
value 10364.0 in base ten notation.

Printing Floating-Point Values

The printf () function uses the %f format specifier to print type float and double numbers
using decimal notation, and it uses %e to print them in exponential notation. If your system
supports the C99 hexadecimal format for floating-point numbers, you can use a or A instead of
e or E. The long double type requires the %Lf, %Le, and %La specifiers to print that type. Note
that both float and double use the %f, %e, or %a specifiers for output. That’s because C auto-
matically expands type float values to type double when they are passed as arguments to any
function, such as printf (), that doesn’t explicitly prototype the argument type. Listing 3.7
illustrates these behaviors.

LISTING 3.7 The showfpt.c Program

/* showf_pt.c-displays float value in two ways */
#include <stdio.h>
int main(void)

{

float aboat = 32000.0;

double abet = 2.14e9;

long double dip = 5.32e-5;

printf("%f can be written %e\n", aboat, aboat);

Chapter 3 ¢ DATA AND C

LISTING 3.7 Continued

printf("%f can be written %e\n", abet, abet);
printf("%f can be written %e\n", dip, dip);
return 0;

}
This is the output:

32000.000000 can be written 3.200000e+04
2140000000.000000 can be written 2.140000e+09
0.000053 can be written 5.320000¢-05

This example illustrates the default output. The next chapter discusses how to control the
appearance of this output by setting field widths and the number of places to the right of the
decimal.

Floating-Point Overflow and Underflow
Suppose the biggest possible float value on your system is about 3.4E38 and you do this:

float toobig = 3.4E38 * 100.0f;
print("%se\n", toobig);

What happens? This is an example of overflow, when a calculation leads to a number too large
to be expressed. The behavior for this case used to be undefined, but now C specifies that
toobig gets assigned a special value that stands for infinity and that printf () displays either
inf or infinity for the value.

What about dividing very small numbers? Here the situation is more involved. Recall that a
float number is stored as an exponent and as a value part, or mantissa. There will be a num-
ber that has the smallest possible exponent and also the smallest value that still uses all the bits
available to represent the mantissa. This will be the smallest number that still is represented to
the full precision available to a float value. Now divide it by 2. Normally, this reduces the
exponent, but the exponent already is as small as it can get. So, instead, the computer moves
the bits in the mantissa over, vacating the first position and losing the last binary digit. An
analogy would be taking a base-ten value with four significant digits like 0.1234E-10, dividing
by 10, and getting 0.0123E-10. You get an answer, but you've lost a digit in the process. This
situation is called underflow, and C refers to floating-point values that have lost the full preci-
sion of the type as subnormal. So dividing the smallest positive normal floating-point value by
2 results in a subnormal value. If you divide by a large enough value, you lose all the digits
and are left with 0. The C library now provides functions that let you check whether your
computations are producing subnormal values.

There’s another special floating-point value that can show up: NaN, or not-a-number. For
example, you give the asin() function a value, and it returns the angle that has that value as
its sine. But the value of a sine can’t be greater than 1, so the function is undefined for values
in excess of 1. In such cases, the function returns the NaN value, which printf () displays as
nan.

75

76

C PRIMER PLUS

ﬁ Floating-Point Round-off Errors

Take a number, add 1 to it, and subtract the original number. What do you get? You get 1. A float-
ing-point calculation, such as the following, may give another answer:

/* floaterr.c--demonstrates round-off error */

#include <stdio.h>
int main(void)

{
float a,b;
b =2.0e20 + 1.0;
a=>b - 2.0e20;
printf("sf \n", a);
return 0;

}

The output is this:

0.000000 «gcc, Linux
-13584010575872.000000 «Turbo C 1.5
4008175468544 .000000 «CodeWarrior 5.0, MSVC++ 6.0

The reason for these odd results is that the computer doesn’t keep track of enough decimal places to
do the operation correctly. The number 2.0e20 is 2 followed by 20 zeros and, by adding 1, you are
trying to change the 21st digit. To do this correctly, the program would need to be able to store a
21-digit number. A float number is typically just 6 or 7 digits scaled to bigger or smaller numbers
with an exponent. The attempt is doomed. On the other hand, if you used 2.0e4 instead of 2.0e20,
you would get the correct answer because you are trying to change the 5th digit, and\ float num-
bers are precise enough for that.

Complex and Imaginary Types

Many computations in science and engineering use complex and imaginary numbers. C99
supports these numbers, with some reservations. A free-standing implementation, such as that
used for embedded processors, doesn't need to have these types. (A VCR chip probably doesn't
need complex numbers to do its job.) Also, more generally, the imaginary types are optional.

In brief, there are three complex types, called float _Complex, double _Complex, and long
double _Complex. A float _Complex variable, for example, would contain two float values,
one representing the real part of a complex number and one representing the imaginary part.
Similarly, there are three imaginary types, called float _Imaginary, double _Imaginary, and
long double _Imaginary.

Including the complex.h header file lets you substitute the word complex for _Complex, the
word imaginary for _Imaginary, and allows you to use the symbol I to represent the square
root of —1.

Chapter 3 ¢ DATA AND C

Other Types

That finishes the list of fundamental data types. For some of you, the list must seem long.
Others of you might be thinking that more types are needed. What about a character string
type? C doesn’t have one, but it can still deal quite well with strings. You will take a first look
at strings in Chapter 4.

C does have other types derived from the basic types. These types include arrays, pointers,
structures, and unions. Although they are subject matter for later chapters, we have already
smuggled some pointers into this chapter’s examples. (A pointer points to the location of a vari-
able or other data object. The & prefix used with the scanf () function creates a pointer telling
scanf () where to place information.)

#

Summary: The Basic Data Types
Keywords:

The basic data types are set up using eleven keywords: int, long, short, unsigned, char, float,
double, signed, Bool, Complex, and _Imaginary.

Signed Integers:
They can have positive or negative values.
int: The basic integer type for a given system. C guarantees at least 16 bits for int.

short or short int: The largest short integer is no larger than the largest int and may be smaller.
C guarantees at least 16 bits for short.

long or long int: Can hold an integer at least as large as the largest int and possibly larger. C
guarantees at least 32 bits for long.

long long or long long int: This type can hold an integer at least as large as the largest 1ong and
possibly larger. The long long type is least 64 bits.

Typically, 1long will be bigger than short, and int will be the same as one of the two. For example,
DOS-based systems for the PC provide 16-bit short and int and 32-bit long, and Windows
95-based systems provide 16-bit short and 32-bit int and long.

You can, if you like, use the keyword signed with any of the signed types, making the fact that they
are signed explicit.

Unsigned Integers:

They have zero or positive values only. This extends the range of the largest possible positive number.
Use the keyword unsigned before the desired type: unsigned int, unsigned long, unsigned
short. A lone unsigned is the same as unsigned int.

Characters:
They are typographic symbols such as A, &, and +. By definition, the char type uses 1 byte of mem-

ory to represent a character. Historically, this character byte has most often been 8 bits, but it can be
16 bits or larger, if needed to represent the base character set.

char: The keyword for this type. Some implementations use a signed char, but others use an
unsigned char. C enables you to use the keywords signed and unsigned to specify which form you
want.

77

78

C PRIMER PLUS

Boolean:
Boolean values represent true and false; C uses 1 for true and 0 for false.

_Bool: The keyword for this type. It is an unsigned int and need only be large enough to accommo-
date the range 0 through 1.

Real Floating Point:
They can have positive or negative values.

float: The basic floating-point type for the system; it can represent at least six significant figures
accurately.

double: A (possibly) larger unit for holding floating-point numbers. It may allow more significant fig-
ures (at least 10, typically more) and perhaps larger exponents than float.

long double: A (possibly) even larger unit for holding floating-point numbers. It may allow more
significant figures and perhaps larger exponents than double.

Complex and Imaginary Floating Point:

The imaginary types are optional. The real and imaginary components are based on the correspond-
ing real types:

float _Complex
double _Complex

long double _Complex
float _Imaginary
double _Imaginary

long double _Imaginary

Summary: How to Declare a Simple Variable

1. Choose the type you need.
2. Choose a name for the variable using the allowed characters.
3. Use the following format for a declaration statement:
type-specifier variable-name;
The type-specifier is formed from one or more of the type keywords; here are examples of dec-
larations:
int erest;
unsigned short cashj.
4. You can declare more than one variable of the same type by separating the variable names with
commas, for example,
char ch, init, ans;.
5. You can initialize a variable in a declaration statement:
float mass = 6.0E24;

Type Sizes

Tables 3.3 and 3.4 show type sizes for some common C environments. (In some environ-
ments, you have a choice.) What is your system like? Try running the program in Listing 3.8 to

Chapter 3 « DATAANDC 79

find out.

TABLE 3.3 Integer Type Sizes (Bits) for Representative Systems
Macintosh Linux IBM PC ANSI C
Metrowerks ona Windows 98 and Minimum

Type CW (default) PC Windows NT

char 8 8 8 8

int 32 32 32 16

short 16 16 16 16

long 32 32 32 32

long long 64 64 64 64

Table 3.4 Floating-point Facts for Representative Systems
Macintosh Linux IBM PC ANSI C
Metrowerks ona Windows 98 and Minimum

Type CW (default) PC Windows NT

float 6 digits 6 digits 6 digits 6 digits
—37 to 38 -37 to 38 -37 to 38 —37 to 37

double 18 digits 15 digits 15 digits 10 digits
—4931 to 4932 —-307 to 308 —-307 to 308 —37 to 37

long double 18 digits 18 digits 18 digits 10 digits
—4931 to 4932 -4931t0 4932 4931 to 4932 —37 to 37

For each type, the top row is the number of significant digits and the second row is the expo-
nent range (base 10).

80 CPRIMER PLUS

LISTING 3.8 The typesize.c Program

/* typesize.c--prints out type sizes */
#include <stdio.h>
int main(void)

{
printf("Type int has a size of %u bytes.\n", sizeof(int));
printf("Type char has a size of %u bytes.\n", sizeof(char));
printf("Type long has a size of %u bytes.\n", sizeof(long));
printf("Type double has a size of %u bytes.\n",

sizeof (double));

return 0;

}

C has a built-in operator called sizeof that gives sizes in bytes. (Some compilers require %1u
instead of %u for printing sizeof quantities. That's because C leaves some latitude as to the
actual unsigned integer type that sizeof uses to report its findings. C99 provides a %z specifier
for this type, and you should use it if your compiler supports it.) The output from Listing 3.8
is as follows:

Type int has a size of 4 bytes.
Type char has a size of 1 bytes.
Type long has a size of 4 bytes.
Type double has a size of 8 bytes.

This program found the size of only four types, but you can easily modify it to find the size of
any other type that interests you. Note that the size of char is necessarily 1 byte because C
defines the size of one byte in terms of char. So, on a system with a 16-bit char and a 64-bit
double, sizeof will report double as having a size of 4 bytes. You can check the 1imits.h
and float.h header files for more detailed information on type limits. (The next chapter dis-
cusses these two files further.)

Incidentally, notice in the last line how the printf () statement is spread over two lines. You
can do this as long as the break does not occur in the quoted section or in the middle of a
word.

Using Data Types

When you develop a program, note the variables you need and which type they should be.
Most likely, you can use int or possibly float for the numbers and char for the characters.
Declare them at the beginning of the function that uses them. Choose a name for the variable
that suggests its meaning. When you initialize a variable, match the constant type to the vari-

able type.
int apples = 3; /* RIGHT */
int oranges = 3.0; /* POOR FORM */

C is more forgiving about type mismatches than, say, Pascal. C compilers allow the second ini-
tialization, but they might complain, particularly if you have activated a higher warning level.
It is best not to develop sloppy habits.

Chapter 3 ¢ DATA AND C

When you initialize a variable of one numeric type to a value of a different type, C converts the
value to match the variable. This means you may lose some data. For example, consider the
following initializations:

int cost = 12.99; /* initializing an int to a double */
float pi = 3.1415926536; /* initializing a float to a double */

The first declaration assigns 12 to cost; when converting floating-point values to integers, C
simply throws away the decimal part (truncation), instead of rounding. The second declaration
loses some precision, because a float is guaranteed to represent only the first six digits accu-
rately. Compilers may issue a warning (but don’t have to) if you make such initializations. You
might have run into this when compiling Listing 3.1.

Many programmers and organizations have systematic conventions for assigning variable
names in which the name indicates the type of variable. For example, you could use an i_ pre-
fix to indicate type int and us_ to indicate unsigned short, so i_smart would be instantly
recognizable as a type int variable and us_verysmart would be an unsigned short variable.

Arguments and Pitfalls

1t’s worth repeating and amplifying a caution made earlier in this chapter about using

printf (). The items of information passed to a function, as you may recall, are termed argu-
ments. For instance, the function call printf("Hello, pal.") has one argument, "Hello,
pal.". A series of characters in quotes, such as "Hello, pal.", is called a string. We'll discuss
strings in Chapter 4. For now, the important point is that one string, even one containing sev-
eral words and punctuation marks, counts as one argument.

Similarly, the function call scanf ("%d", &weight) has two arguments, "%d” and &weight. C
uses commas Lo separate arguments to a function. The printf () and scanf () functions are
unusual in that they aren’t limited to a particular number of arguments. For example, we’ve
used calls to printf () with one, two, and even three arguments. For a program to work prop-
erly, it needs to know how many arguments there are. The printf () and scanf () functions
use the first argument to indicate how many additional arguments are coming. The trick is that
each format specification in the initial string indicates an additional argument. For instance,
the following statement has two format specifiers, %d and %d:

printf("%sd cats ate %d cans of tuna\n", cats, cans);

This tells the program to expect two more arguments, and indeed, there are two more—cats
and cans.

Your responsibility as a programmer is to make sure that the number of format specifications
matches the number of additional arguments and that the specifier type matches the value
type. C now has a function-prototyping mechanism that checks if a function call has the cor-
rect number and correct kind of arguments, but it doesn’t work with printf () and scanf ()
because they take a variable number of arguments. What happens if you don't live up to the
programmer’s burden? Suppose, for example, you write a program like that in Listing 3.9.

81

82 CPRIMER PLUS

LISTING 3.9 The badcount.c Program

/* badcount.c--incorrect argument counts */
#include <stdio.h>
int main(void)

{
int f = 4;
int g = 5;
float h = 5.0f;
printf("%sd\n", f, g); /* too many arguments */
printf("%d %d\n",f); /* too few arguments */
printf("%d %f\n", h, g); /* wrong kind of values */
return 0;
}
Here’s the output from Microsoft Visual C++ 6.0 (Windows 98 PC):
4
40
0 0.000000

Next, here’s the output from Linux on a PC:

4
4 5
0 0.000000

And the following here’s the output from Metrowerks CodeWarrior Pro 5 (Macintosh):

4
4 2
1075052544 0.000000

Note that using %d to display a float value doesn't convert the float value to the nearest int;
instead, it displays what appears to be garbage. Similarly, using %f to display an int value
doesn't convert an integer value to a floating-point value. Also, the results you get for too few
arguments or the wrong kind of argument differ from platform to platform.

None of the compilers we tried raised any objections to this code. Nor were there any com-
plaints when we ran the program. As you can see, the computer doesn't catch this kind of
error during runtime, and because the program may otherwise run correctly, you might not
notice the errors, either. If a program doesn’t print the expected number of values or if it prints
unexpected values, check to see whether you've used the correct number of

printf ()arguments. (Incidentally, the UNIX syntax-checking program lint, which is much
pickier than the UNIX compiler, does mention erroneous printf () arguments.)

One More Example

Let’s run one more printing example, one that makes use of some of Cs special escape charac-
ters. In particular, the program in Listing 3.10 shows how backspace (\b), tab (\t), and car-
riage return (\r) work. These concepts date from when computers used teletype machines for

Chapter 3 ¢ DATA AND C

output and they don’t always translate successfully to contemporary graphical interfaces. For
example, this listing doesn’t work as described on some Macintosh implementations.

LISTING 3.10 The escape.c Program

/* escape.c--uses escape characters */
#include <stdio.h>
int main(void)

{
float salary;
printf("\aEnter your desired monthly salary:");/* 1 */
printf(" $ \b\b\b\b\b\b\b"); /* 2 */
scanf("%f", &salary);
printf("\n\t$%.2f a month is $%.2f a year.", salary,

salary * 12.0); /* 3 */

printf("\rGee!\n"); /* 4 */
return 0;

I3

What Happens

Let’s walk through this program step by step as it would work under an ANSI C implementa-
tion. The first printf () statement (the one numbered 1) sounds the alert signal (prompted by
the \a), then prints the following:

Enter your desired monthly salary:
Because there is no \n at the end of the string, the cursor is left positioned after the colon.

The second printf () statement picks up where the first one stops, so after it is finished, the
screen looks as follows:

Enter your desired monthly salary: $

The space between the colon and the dollar sign is there because the string in the second
printf () statement starts with a space. The effect of the seven backspace characters is to move
the cursor seven positions to the left. This backs the cursor over the seven underline charac-
ters, placing the cursor directly after the dollar sign. Usually, backspacing does not erase the
characters that are backed over, but some implementations may use destructive backspacing,
negating the point of this little exercise.

At this point, you type your response, say 2000.00. Now the line looks like this:
Enter your desired monthly salary: $2000.00

The characters you type replace the underlined characters, and when you press Enter (or
Return) to enter your response, the cursor moves to the beginning of the next line.

The third printf () statement output begins with \n\t. The newline character moves the cur-
sor to the beginning of the next line. The tab character moves the cursor to the next tab stop
on that line, typically, but not necessarily, to column 9. Then the rest of the string is printed.
After this statement, the screen looks like this:

84

C PRIMER PLUS

Enter your desired monthly salary: $2000.00
$2000.00 a month is $24000.00 a year.

Because the printf () statement doesn't use the newline character, the cursor remains just
after the final period.

The fourth printf () statement begins with \r. This positions the cursor at the beginning of
the current line. Then Gee! is displayed there, and the \n moves the cursor to the next line.
The final appearance of the screen is this:

Enter your desired monthly salary: $2000.00
Gee! $2000.00 a month is $24000.00 a year.

Flushing the Output

When does printf () actually send output to the screen? Initially, printf ()statements send
output to an intermediate storage area called a buffer. Every now and then, the material in the
buffer is sent to the screen. The standard C rules for when output is sent from the buffer to the
screen are clear: It is sent when the buffer gets full, when a newline character is encountered,
or when there is impending input. (Sending the output from the buffer to the screen or file is
called flushing the buffer.) For instance, the first two printf () statements don' fill the buffer
and don't contain a newline, but they are immediately followed by a scanf () statement asking
for input. That forces the printf () output to be sent to the screen.

You may encounter an older implementation for which scanf () doesn't force a flush, which
would result in the program looking for your input without having yet displayed the prompt
onscreen In that case, you can use a newline character to flush the buffer. The code can be
changed to look like this:

printf("Enter your desired monthly salary:\n");
scanf("%f", &salary);

This code works whether or not impending input flushes the buffer. However, it also puts the
cursor on the next line, preventing you from entering data on the same line as the prompting
string. Another solution is to use the fflush() function described in Chapter 13, “File
Input/Output.”

Key Concepts

C has an amazing number of numeric types. This reflects the intent of C to avoid putting
obstacles in the path of the programmer. Instead of mandating, say, that one kind of integer is
enough, C tries to give the programmer the options of choosing a particular variety (signed or
unsigned) and size that best meets the needs of a particular program.

Floating-point numbers are fundamentally different from integers on a computer. They are
stored and processed differently. Two 32-bit memory units could hold identical bit patterns,
but if one were interpreted as a float and the other as a long, they would represent totally
different and unrelated values. For example, on a PC, if you take the bit pattern that represents

Chapter 3 ¢ DATA AND C

the float number 256.0 and interpret it as a Long value, you get 113246208. C does allow
you to write an expression with mixed data types, but it will make automatic conversions so
that the actual calculation uses just one data type.

In computer memory, characters are represented by a numeric code. The ASCII code is the
most common in the US, but C supports the use of other codes. A character constant is the
symbolic representation for the numeric code used on a computer system—it consists of a
character enclosed in single quotes, such as 'A".

Summary

C has a variety of data types. The basic types fall into two categories: integer types and float-
ing-point types. The two distinguishing features for integer types are the amount of storage
allotted to a type and whether it is signed or unsigned. The smallest integer type is char,
which can be either signed or unsigned, depending on the implementation. You can use
signed char and unsigned char to explicitly specify which you want, but that’s usually done
when you are using the type to hold small integers rather than character codes. The other inte-
ger types include short, int, long, and long long type. C guarantees that each of these types
is at least as large as the preceding type. Each of them is a signed type, but you can use the
unsigned keyword to create the corresponding unsigned types: unsigned short, unsigned
int, unsigned long, and unsigned long long. Or you can add the signed modifier to
explicitly state that the type is signed. Finally, there is the _Bool type, an unsigned type able to
hold the values @ and 1, representing false and true.

The three floating-point types are float, double, and, new with ANSI C, long double. Each
is at least as large as the preceding type. Optionally, an implementation can support complex

and imaginary types by using the keywords _Complex and _Imaginary in conjunction with the

floating-type keywords. For example, there would be a double _Complex type and a float
_Imaginary type.

Integers can be expressed in decimal, octal, or hexadecimal form. A leading @ indicates an
octal number, and a leading @x or 0X indicates a hexadecimal number. For example, 32, 040,
and 0x20 are decimal, octal, and hexadecimal representations of the same value. An 1 or L suf-
fix indicates a long value, and an 11 or LL indicates a long long value.

Character constants are represented by placing the character in single quotes: 'Q', '8"', and
'$', for example. C escape sequences, such as '\n', represent certain nonprinting characters.
You can use the form '\007"' to represent a character by its ASCII code.

Floating-point numbers can be written with a fixed decimal point, as in 9393.912, or in expo-
nential notation, asin 7.38E10.

The printf () function enables you to print various types of values by using conversion speci-
fiers, which, in their simplest form, consist of a percent sign and a letter indicating the type, as
in %d or %f.

85

86 C PRIMER PLUS

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”
1. Which data type would you use for each of the following kinds of data?
a. The population of East Simpleton
b. The cost of a movie on DVD
¢. The most common letter in this chapter
d. The number of times that the letter occurs in this chapter
2. Why would you use a type long variable instead of type int?

3. What portable types might you use to get a 32-bit signed integer, and what would the
rationale be for each choice?

4. Identify the type and meaning, if any, of each of the following constants:
a. "\b'
b. 1066
c. 99.44
d. oxAA
e. 2.0e30

5. Dottie Cawm has concocted an error-laden program. Help her find the mistakes.

include <stdio.h>
main

(

float g; h;
float tax, rate;

g = e21;
tax = rate*g;

)

6. Identify the data type (as used in declaration statements) and the printf () format speci-
fier for each of the following constants:

Constant Type Specifier
a. 12
b. 0X3
C. 'C'

d. 2.34E07

10.

Chapter 3 « DATAANDC 87

Constant Type Specifier
e. '\040'
f. 7.0
g. 6L
6.0f

Identify the data type (as used in declaration statements) and the printf () format speci-
fier for each of the following constants (assume a 16-bit int):

Constant Type Specifier
a. 012

b. 2.9e05L

C. 's'

d. 100000

e. ‘“\n'

f. 20.0f

g. 0x44

. Suppose a program begins with these declarations:

int imate = 2;

long shot = 53456;
char grade = 'A';
float log = 2.71828;

Fill in the proper type specifiers in the following printf () statements:

printf("The odds against the %__ were % __ to 1.\n", imate, shot);
printf("A score of %__ is not an %__ grade.\n", log, grade);

. Suppose that ch is a type char variable. Show how to assign the carriage-return charac-

ter to ch by using an escape sequence, a decimal value, an octal character constant, and
a hex character constant. (Assume ASCII code values.)

Correct this silly program. (The / in C means division.)

void main(int) / this program is perfect /
{
cows, legs integer;
printf("How many cow legs did you count?\n);

88

C PRIMER PLUS

11.

scanf("%c", legs);
cows = legs / 4;
printf("That implies there are %f cows.\n", cows)
}
Identify what each of the following escape sequences represents:
a. \n
b. \\
c. \"
d. \t

Programming Exercises

1.

Find out what your system does with integer overflow, floating-point overflow, and float-
ing-point underflow by using the experimental approach; that is, write programs having
these problems.

Write a program that asks you to enter an ASCII code value, such as 66, and then prints
the character having that ASCII code.

Write a program that sounds an alert and then prints the following text:

Startled by the sudden sound, Sally shouted, "By the Great Pumpkin, what was
that!"

Write a program that reads in a floating-point number and prints it first in decimal-point
notation and then in exponential notation. Have the output use the following format
(the actual number of digits displayed for the exponent depends upon the system):

The input is 21.290000 or 2.129000e+001.

There are approximately 3.156 X 107 seconds in a year. Write a program that requests
your age in years and then displays the equivalent number of seconds.

The mass of a single molecule of water is about 3.0x10% grams. A quart of water is
about 950 grams. Write a program that requests an amount of water, in quarts, and dis-
plays the number of water molecules in that amount.

There are 2.54 centimeters to the inch. Write a program that asks you to enter your
height in inches and then displays your height in centimeters. Or, if you prefer, ask for
the height in centimeters and convert that to inches.

INDEX

Symbols

\Ooo (escape character), 66-67
-, (unary operator), 785
— (decrement operator), 144, 147-149, 159
~ (tilde)
bitwise unary operator, 789

unary operator), bitwise logical operator, 592-593

= (assignment operator), 132-133, 158, 181-182, 786
-= (assignment operator), 192-195, 786
== (equal to relational operator), 171, 177, 181-182,
185, 785
0 flag (printf() function), 107
! (logical NOT operator), 237, 787
I= (not equal to relational operator), 177, 185, 785
7 (pi) constant, 95
‘¢ (single quotation marks), 66, 85
_ (underscore)), naming variables, 31
[1 (brackets)
arrays, 91, 346
declaration modifier, 571-572
pointers, 378
{ } (curly braces), 26, 35, 357, 404, 634
blocks, 131, 455-456
functions, 29
if else statements, 233
initializers, 531
statements, 29
structure member declarations, 529
while loops, 131
, (comma), 37, 404
initializers, 531
operator, 790
variables, 56, 339
““(double quotation marks), 66, 91, 404, 628-629
files, 327,473
macros, 619
printf() function, 33

... (ellipsis), 197, 404, 658
parameters, 818
variadic macro, 626-627
- (hyphen)
arithmetic operator, 785
minus sign operator, 134
subtraction operator, 134, 159, 785
unary operator, 159
() (parentheses)
arguments, 621, 628
declaration modifier, 571-572
definitions, 628
functions, 25, 28, 33, 304
operator precedence, 139, 141, 148
pointers, 378
sizeof operator, 95
subexpressions, 225
; (semicolon), 35-36, 597, 786, 795
assignment statement, 32
functions, 304
statements, 151, 155
structure member declarations, 529
? (conditional operator), 244-246, 260, 787
? (question mark), 66
A (caret)
EXCLUSIVE OR (bitwise binary operator), 789
EXCLUSIVE operator (bitwise logical operator),
593-594
A= (assignment operator), 786
. (dot) operator, 532, 541, 563-564
. (membership operator), 788-789
. (period), 226, 236
(pound sign), 27, 159, 268-270, 616, 640
<> (angle brackets), 628
< and > cautionary note, floating-point comparisons,
177

872

C PRIMER PLUS

greater than relational operator, 148, 177, 185
redirection operator, 276-277
>>
bitwise binary operator, 227, 790
right shift operator, 597
>= (greater than or equal to relational operator), 177,
185
-> (indirect membership operator), 541, 563-565
< (less than)
operator, 148
relational operator, 177, 185, 275, 277, 785
symbol, 131, 629
<<
bitwise binary operator, 789
left shift operator, 596

<= (less than or equal to relational operator), 177, 185,

785
<<= (assignment operator), 786
+ (addition operator), 134, 158, 785
+= (assignment operator), 192-195, 786
++
arithmetic operator, 785
unary operator, 366
increment operator, 144-150, 159
[(OR)
bitwise binary operator, 789
bitwise logical operator, 593
| (pipe) operator, 277
|= (assignment operator), 786
| (logical OR operator), 237, 787
% (percent sign)
arithmetic operator, 785
printing, 104
modulus operator, 142-144, 159
%= (assignment operator), 192-195, 786
%% (conversion specifier), 102
%% (strftime function() format specifier), 842
& (ampersand), 51, 69, 77
address operator, 335, 368, 540
pointer-related operator, 788
unary operator, finding addresses, 330-332
& (AND operator)
bitwise binary operator, 789
bitwise logical operator, 593
&= (assignment operator), 786
&& (logical AND operator), 237, 787
/ (forward slash, 226
/ (division operator), 137-138, 159, 785
/* (comment symbol), 26-29
/= (assignment operator), 192-195, 786

// symbol, 29

\ (backslash), 34, 66-67, 616

\” (escape character), 66-67

\’ (escape character), 66-67

\? (escape character), 66

\\ (escape character), 66-67

* (asterisk)
conversion modifier, 118
declaration modifier, 571-572
indirection operator, 334-335, 361
modifier, 121-123
multiplication operator, 37, 135-136, 159, 785
operator, 360, 368
pointer-related operator, 788
pointers, 336, 378
unary operator, 366

*/ (comment symbol), 26

*/ symbol, 26, 28-29

*= assignment operator, 192-195, 786

A

\a (escape character), 66
“a” mode string, 498
%A (conversion specifier), 101, 118
%A (strftime function() format specifier), 840
“a+” mode string, 498
“a+b” mode string, 498
“ab” mode string, 498
“ab+ mode string, 498
abstract data types. See ADTs
access
random, array elements, 708
sequential, linked list elements, 708
accessing
C library, 643-644
files randomly, 506-510, 518-520
structure members, 532-533
structure pointer members, 541
active positions (characters), 66
actual arguments, 160, 309-310, 340
add one.c program, code, 144
addaword.c program, code, 503-504
addemup.c program, code, 152
AddItem() function, 687, 716, 719
addition operator (+), 134, 158, 785
AddNode() function, 717

addresses
address operator (&), 335, 368
arrays, 358-361
byte addressable, 360
finding, & (unary operator), 330-332
head pointers, 670
pointers, 330, 334-338, 375
structures, 540, 543-544
transmitting, 337
variables, 339
Adel’son-Velskii (AVL trees), 735
ADTs (abstract data types), 666
binary search trees, 713
data types, defining abstract to concrete, 677
defining, 677
integer properties, 676
interfaces, 678-688
lists, 677-678
queues, 689-708
advice booths in malls, simulating, 702-708
algorithms, 666
recursion, calculating binary equivalents of inte-
gers, 323-324
selection sort, 435
sorting, 652
Algorithms in C: Fundamentals, Data Structures, Sorting,
Searching, 783
allocating
memory, 475-481, 530, 793
structures, comparing in blocks or individually, 669
alphabetically sorting strings, 432-434
alphanumeric to integer (atoi() function), 440-441
altering variables in calling functions, 332-334
alternate spellings for logical operators, 237-238
alternative buffers, creating, 512-513
altnames.c program, code, 71
American National Standards Institute. See ANSI
ampersand (&), 51, 69, 77
analyses
characters, 226-227
checking.c program, 288-289
letheadl.c program, 303-305
anatomy of a C program, 24
and (&&) logical operator, 237, 787
AND (&)
bitwise binary operator, 789
bitwise logical operator, 593
angle brackets (< >), 628-629
animals.c program, code, 251-252

INDEX

ANSI (American National Standards Institute) C, 18
buffered input, 270
C library, 643-645
C standard, 18
const type qualifier, 482-484
conversion specifiers, scanf() function, 118
files, 494-495, 513
fseek() function, portability, 510
ftell() function, portability, 510
functions
arguments, 317-318
buffering, 270
defining, 339
prototyping, 314-318
string conversions, 441
general utilities library, 648-654
/O functions, 824-827
library
assert.h header file, 801
C99 additions, 801-811
complex.h header file, 801-803
ctype.h header file, 803-804
errno.h header file, 804
fenv.h header file, 805-807
inttypes.h header file, 807-808
locale.h header file, 808-811
stdlib.h header file, 827-833
string functions, 417, 430-432
string.h header file, 834-837
tgmath.h header file, 837-838
time.h header file, 838-842
Unix I/0O functions, 267
wchar.h header file, 842-849
wetype.h header file, 849-852
math functions (standard), 812-816
math library, 645-648
preprocessor, 615
qualifiers, keywords, 486-487
restrict type qualifier, 485-486
setbuf() function, 270
setvbuf() function, 270
standard library, 800-811
stdio.h header file, 268
stdlib.h header file, function prototypes, 648
string.h file, 418
type qualifiers, 481-482
volatile type qualifier, 484-485
append() function, 518
append.c program code, 516-517
appending text files, 498

873

874 C PRIMER PLUS

arf.c program, code, 372-373 + addition, 134, 158
argc (argument count), 439 ++ increment, 159
argument values (argv), pointer arrays, 439 — decrement, 159
arguments, 81 - subtraction, 134, 159
() (parentheses), 621, 628 - unary, 159
actual, 160, 309-310, 340 binary, 134
ANSI C functions, 317-318 dyadic, 134
arge (argument count), 439 exponential growth, 136-137
argv (argument values), 439 expression trees, 139
arrays, argy, 439 operator precedence, 138-141
command-line, 437-440, 497 array2d.c program, 381-383
data types, 81-82, 157 arrays
declaration list, 339 [] (brackets), 91, 571-572
#define preprocessor directive, 621-625 addresses, 358-361
FILE pointer, 508 array of, 377
float, conversion specifications, 106 binary searches, ordered list elements, 710
formal, 160, 308 char, 91, 204, 397
fseek() function, 508 characters
function-like macros, 621-625 character pointers and character arrays, com-
functions, 33, 159, 304-307 paring, 549-550
calling, 340 strings, 90, 204, 404-405
defining, 308 compound literals, 387-389
pointers, 573 concepts, 210
pound.c program, code, 159-161 constants, 358
prototyping, 308-309 content protection, const keyword, 370-375
int, argc (argument count), 439 copying, mems.c program code, 656-657
macros, 624-62 creating, 476
main() function, 438 declaring, 345-346
malloc() function, 475 designated initializers (C99), 350-351
mode, 508 elements
offset, 508 indexes, 346
parameters, comparing, 160 inserting, 708
passing, 113 random access, 708
pfun, 681 subscript numbers, 346
pointers, 364-366 flexible array members (C99), structures, 554-556
printf() function, 33, 103 for loops, 204-206
strings, 415, 437-440, 624-625 functions, 361-364, 383
structure pointers and structure arguments, com- gsort() function, 573
paring, 548-549 indices, 204, 352-353
structures, passing as, 544 initializing, 346-351
type void functions, 650 int, 204
variables linked lists, comparing, 708-710
macros, 819 loops, 203-204
stdarg.h header file, 818-824, 658-660 malloc() function, 476
argv (argument values), pointer arrays, 439 multidimentional, 354-358, 375-383
arithmetic operators, 132, 139, 785 numbers, 204
= assignment, 133 offsets, 204
/ division, 137-138, 159 one-dimensional, 358, 390
% modulus, 159 parameters, declaring, 363

* multiplication, 135-136, 159 pointers, 358-367, 375

program modularity, 206
gsort() function, 650-653
queues, 691-694
ragged, 404
rectangular, 404
sizes, 347, 353-354
storage classes, 348
storage units, 359
strings, 91
of structures, functions, 533-537, 556-557
subscripts, 204
talkback.c program, 90
three-dimensional, 358
two-dimensional, 355-358
values, 351-352
variable-length dynamic memory allocation,
480-481
variables, comparing declarations, 91
VLAs (variable-length arrays), 354
dynamic memory allocation, 387
sizes, 384
vararr2d.c program code, 385-386
Art of Computer Programming (The), Volume 1, 783
ASCII code, 64, 85
.asm file extension, 17
assert library, 654-656
assert.c program code, 655
assert.h header file, 654-656, 801
assigned values, 566-567
assignment operation, pointers, 368
assignment operators, 132, 158, 181-182, 192-195, 786
assignment statements, 32, 35, 152, 157, 795
association rule (operators), 140
asterisk (*)
modifier, 121
multiplication, 37
pointers, 336, 378
atan() function, 646
atan2() function, 646
atexit() function, 648-650
atoi() function, 440-441
auto keyword, 453
auto specifier, 464
automated reseeding, 471
automatic access to C library, 643
automatic storage class, 453, 488, 793
automatic storage duration, variables, 452-455
AVL (Adelson-Velskii) trees, binary search trees, 735

INDEX

/b (backspace character), 34
\b (escape character), 66-67, 82
%B (strftime function() format specifier), 840
backslash (\), 34, 66-67, 616
backspace character (/b), 34
badlimits() function, 285, 288
balanced binary search trees, 735
base 2 number system (binary), 588
base 8 number system (octal), 590-591
base 10 number system (decimal), 588, 591
base 16 number system (hexadecimal), 591-592
basenames of files, 11
bases.c program, code, 59
Bell Labs, 1
benefits to programmers, 3-4
beta() function, 467
binary code, integer 7, 54
binary data, writing to files, 514-515
binary equivalents of integers, calculating, 323-324
binary exponents, 590
binary floating-point numbers, 589-590
binary form, storing data, 513
binary fractions, 590
binary I/O, 513, 518-520
binary integers, 588
binary mode and text mode, comparing, 509
binary numbers, 587-591
binary operators, 134, 784, 789-790
binary output, 513
binary search trees, 711
ADTs (abstract data types), 713
AVL trees, 735
balanced, 735
emptying, 725
implementing, 716-730
interfaces, 713-716
items, managing, 716-724, 735
Nerfville Pet Club, 735
nodes, deleting, 722-723
petclub.c program, 731-735
programming package, 725-729
stringy, 735
subtrees, 712, 721-722
traversing, 724-725
tree.c implementation file program code, 725-729
unbalanced, 735
words, storing, 712

875

876

C PRIMER PLUS

binary searches, ordered list elements, 710
binary tree structures, 561
binary views (files), 494
binary.c program, code, 323-324, 598-599
bit 0 (low-order bit), 588
bit 7 (high-order bit), 588
bitmapped graphic images, 666
bits, 53, 587
accessing, 611
fields, 601-611
high-order (bit 7), 588
low-order (bit 0), 588
numbers, 588
positions, bit fields, 611
toggling, 595-596
turning on or off, 595
values, 588, 596
bitwise logical operators, 789-790
& (AND operator), 593
A (EXCLUSIVE operator), 593-594
| (OR operator), 593
~ (unary operator), 592-593
binary.c program, code, 598-599
bit fields, 606-611
bits, toggling, 595-596
invert4.c program, code, 600-601
logical, 593
masks, 594-595
programming example, 598-599
shift operators, 598
bitwise shift operators, 596-598
black box viewpoint, functions, 310
block scope, variables, 450-451, 457-459
blocks
compound statements, 131, 154-156, 454-456,
795
statements in functions, { } (curly braces), 29
body
#define preprocessor directive lines, 617
functions, 29, 35
book.c program, 528-529
books. See also reference sources
Algorithms in C: Fundamentals, Data Structures,
Sorting, Searching, 783
Art of Computer Programming (The), Volume 1, 783
C: A Reference Manual, Fourth Edition, 783
C Programming FAQs, 783
C Programming Language (The), Second Edition, 782
C Pugzzle Book (The), 782
C Traps and Pitfalls, 783
C++ Primer Plus, Fourth Edition, 784

C++ Programming Language (The), Third Edition,

784
conventions, 20-21
Elements of Programming Style (The), 783

International C Standard (The) (ISO/IEC 9899

1999), 783
inventory, 527-529
organization, 19-20
Reliable Data Structures in C, 783
Standard C Library (The), 783
booksave.c program, 558-561
Bool keyword, 53, 78, 791
bool macro, 819
bool true false are defined macro, 819
Bool types, 70, 182
Boole, George, 182
Boolean support, stdbool.h header file, 819
Boolean types
C and C+, comparing, 868
C99, 791
Boolean values, 78
Boolean variables, 182
boolean.c program, code, 182-183
bore() function, 452
Borland C/C++, 533
bottles.c program, code, 147-148
bounds, array indices, 352-353
bounds.c program code, 352
braces, curly ({ }), 26, 35, 357, 404, 634
blocks, 131, 455-456
functions, 29
if else statements, 233
initializers, 531
structure member declarations, 529
while loops, 131
brackets
<> (angle), 628-629
[1,91, 346, 378
branching statements. See if statements
break command, 259, 799
break keyword, 799
break statements, 246, 249-250, 254-255
break.c program, code, 249-250
broken-down time, 838
buffers
alternative, creating, 512-513
flushing, 84, 512
functions, 270
/0, 269-270, 279-281, 496
printf() statements, 84
sizes, 269

bugs, debugging programs, 10, 39-43, 654-656
butler() function, 38-39

byebye.c program code, 648-649

byte addressable, 360

bytes, 53, 295, 520, 587-588

C

advantages, 4-5
Borland C/C++, 533
C: A Reference Manual, Fourth Edition, 783
compilers, 3
and C++, comparing, 864-869
design features, 2
efficiency, 3
flexibility, 3
function library, 94
history, 1
language standards, 18-19
library, 643-645
new elements, 51
overview, 2
portability, 3
power, 3
preprocessor, 90, 95-101
programmer benefits, 3-4
programming mechanics, 7-18
purpose, 1
shortcomings, 4
simple C program, 23-25
trends, 4-5
%c conversion specifier, 102, 118
.c file extension, 11, 16-17, 24, 327
%c format specifier, 68
C Programming FAQs, 783
C Programming Language (The), 18
C Programming Language (The), Second Edition, 782
C Puzzle Book (The), 782
%C specifier, scanf() function, 289
%c (strftime function() format specifier), 840
C Traps and Pitfalls, 783
C++, 4,533
C++ and C, comparing, 864-869
C++ Primer Plus, Fourth Edition, 784

C++ Programming Language (The), Third Edition, 784

c.type.h header file, 226-228
C/C++ Users Journal, 781
C90 standard, 18

INDEX 877

C99 standard, 19
additions to ANSI C standard library, 801-811
Boolean type, 791
compilers, identifiers, 462
complex numbers, 792
compound literals, 552-553
conversion specifiers, scanf() function, 118
designated initializers, arrays, 350-351
flexible array members, 554-556
imaginary numbers, 792
Math library, 811-818
numeric computations, 860-864
stdbool.h header file, Boolean support, 819
talkback.c program, code, 89
wctype.h header file, 849-852
CO9X committee (C99 standard), 19
caching, 484
calculations, fathm ft.c program, 37
calendar time, 839
calling functions, 33, 38, 161, 303-304
arguments, 309, 340
recursion, 318-325
variables, 332-334
calloc() function, memory allocation, 479-480
capitalization, macro function names, 628
case labels, break or switch statement, vowels.c program
code, 254-255
case sensitivity, naming variables, 31
cast operator, 158-159
category macros, 809
cc command (UNIX), 326
cc compiler (UNIX), 14
ccommand() function, 278, 440
centering text, 306
central processing units (CPUs), 5-6
char keyword, 77
char * fgets(char * restrict, int, FILE * restrict), function,
825
char * gets(char *), function, 826
char * setlocale(int category, const char * locale), func-
tion, 808
char * strerror(int errnum), function, 836
char * tmpnam(char *), function, 826
char *asctime(const struct tm *tmpt), function, 840
char *ctime(const time_t *ptm) Wed Aug 11 10:48:24
1999\n\0 function, 840
char *currency_symbol macro, 809
char *decimal_point macro, 809
char *getenv(const char * name) function, 831
char *grouping macro, 809
char *int_curr_symbol macro, 809

878

C PRIMER PLUS

char *mon_decimal_point macro, 809

char *mon_grouping macro, 810

char *mon_thousands_sep macro, 809

char *negative_sign macro, 810

char *positive_sign macro, 810

char *strcat(char * restrict s1, const char * restrict s2)
function, 834

char *strcat(char * s1, const char * s2) function, 431

char *strchr(const char * s, int ¢) function, 431

char *strchr(const char *s, int ¢) function, 836

char *strcpy(char * restrict s1, const char * restrict s2)
function, 835

char *strepy(char * s1, const char * s2) function, 430

char *strncat(char * restrict s1, const char * restrict s2,
size_t n) function, 834

char *strncat(char * s1, const char * s2, size_t n) func-
tion, 431

char *strncpy(char * restrict s1, const char * restrict s2,
size_t n) function, 835

char *strncpy(char * s1, const char * s2, size_t n) func-
tion, 430

char *strpbrk(const char * s1, const char * s2) function,
431

char *strpbrk(const char *s1, const char *s2) function,
836

char *strrchr(const char * s, int ¢) function, 431

char *strrchr(const char *s, int ¢) function, 836

char *strstr(const char * s1, const char * s2) function,
431

char *strstr(const char *s1, const char *s2), function,
836

char *strtok(char * restrict s1, const char * restrict s2),
function, 836

char *thousands_sep macro, 809

char arrays, 91, 204, 397

char frac_digits macro, 810

char int_frac_digits macro, 810

char int_n_cs_precedes macro, 810

char int_n_sep_by_space macro, 811

char int_n_sign_posn macro, 811

char int_p_cs_precedes macro, 810

char int_p_sep_by_space macro, 810

char int_p_sign_posn macro, 811

char keyword, 53, 791

char n_cs_precedes macro, 810

char n_sep_by_space macro, 810

char n_sign_posn macro, 810

char p_cs_precedes macro, 810

char p_sep_by_space macro, 810

char p_sign_posn macro, 810

char types, 64-69, 865-866

characters, 77

\” (escape character), 66-67

\’ (escape character), 66-67
\Ooo (escape character), 66-67
\? (escape character), 66

\\ (escape character), 66-67

\a (escape character), 66
active positions, 66

analyzing, cypher2.c program code, 226-227

arrays, loops or strings, 204

/b (backspace character), 34
\b (escape character), 66-67, 82
collating sequences, 423
concepts, 124

constants, 65, 85

#define statement, 98
digraphs, 857

echoed input, 270

escape, 34, 66-68, 82-84
evaluating, functions, 227-228

extensible wide-character classification functions,

850-851
\f (escape character), 66-67
format strings, 120-121
functions, strings, 435-437
gete() function, 499
handling, 803-804
input, 281-284, 292-295

1/0, standard, getc() or putc() function, 499

keywords, 791

mapping, 227, 616

multibyte, 858-860

\n (escape character), 66-67

/n (newline), 33

newline, 271, 432, 616
nonprinting, 65-68

null, 91-92, 418, 859

numeric code, 85

printing, 68-69

punctuation, counting, 436
pushing back to input stream, 512
putc() function, 499

\r (escape character), 66-67, 82
reading first of a line, 254
returning to strings, 431
scanf() function, specifiers, 289
sets, sizes of bytes, 588
single-character 1/0, 268
spelling, 857-858

strings, 90-95, 397-405
supporting, 856

/t (tab character), 34
\t (escape character), 66-67, 82
testing, functions, 227
trigraph sequences, 856
UCNs (universal character names), 858-859
\v (escape character), 66-67
whitespace, scanf() function, 124
wide, 859-860, 868
wide-characters, 843-852
word-count programs, 240-244
\xhh (escape character), 66-67
charcode.c program, code, 68-69
chcount.c program, code, 236
checking.c program, 286-289
child nodes deleting, 721-722
circular queues, 692
classes, storage, 792-793
arrays, 348
auto specifier, 464
automatic, 453-456, 488, 793
duration, structure initialization, 531
extern specifier, 465
files of code, 464
functions, 467-468
parta.c file program, code, 465-466
partb.c file program, code, 466
register, 453, 488, 793
register specifier, 465
specifiers, 453, 464-465
static specifier, 465
static, 399, 453, 488, 793
typedef specifier, 464
variables, 449-467
classifications, wide character classification utilities,
849-852
cleanup() function, names3.c program code, 551-552
clock_t clock(void) function, 839
clock_t type, 838
closing files, fclose() function, 500-501
clubs (Nerfville Pet Club), binary search trees, 735
cmpflt.c program, code, 177-178
code
add one.c program, 144
addaword.c program, 503-504
addemup.c program, 152
altnames.c program, 71
animals.c program, 251-252
append.c program, 516-517
arf.c program, 372-373
array2d.c program, 381-382
ASCII, 64, 85

INDEX

assert.c program, 655

bases.c program, 59

binary, integer 7, storing, 54
binary.c program, 323-324, 598-599
book.c program, 528
booksave.c program, 558-560
boolean.c program, 182-183
bottles.c program, 147-148
bounds.c program, 352
break.c program, 249-250
byebye.c program, 648-649
C source, 9

charcode.c program, 68-69
chcount.c program, 236
checking.c program, 286-288
cmpflt.c program, 177-178
colddays.c program, 220-221
compare.c program, 421
compback.c program, 422
concrete.c program, 11
convert.c program, 157-158, 436, 646-647
copyl.c program, 425-426
copy2.c program, 427
copy3.c program, 428-429
count.c program, 496-497
cube.c program, 188
cypherl.c program, 224
cypher2.c program, 226-227
day monl.c program, 346-347
day mon2.c program, 349
day mon3.c program, 361
defines.c program, 100
designate.c program, 350
diceroll.c file program, 472-473
dicerollh file program, 473
divide.c program, 137-138
divisors.c program, 234-235
doubincl.c program, 637
dowhile.c program, 198
dual.c program, 607-609

dyn arr.c program, 477
EBCDIC, 64

echo eof.c program, 272-273
echo.c program, 268, 438
electric.c program, 228-229
entry.c program, 198-199
enum.c program, 567-568
error messages, 50

escape.c program, 83-84
executable, 9

factor.c program, 321-322

879

C PRIMER PLUS

fathm ft.c program, 36-37
fields.c program, 604-605

file eof.c program, 278

files of, storage classes, 464
films1.c program, 667
films2.c program, 672-673
films3.c program, 681-682
flags.c program, 109

fle.c program, 388-389
flexmemb.c program, 554-556
floatenv.c program, 112-113
floats.c program, 108-109
forc99.c program, 455-456
format.c program, 429-430
friend.c program, 537-538
friends.c program, 539-540
func ptr.c program, 575-577
fundsl.c program, 542
funds2.c program, 543
funds3.c program, 544
funds4.c program, 556-557
global.c program, 461-462
glue.c program, 625

golf.c program, 133

guess.c program, 279-280
hello.c program, 440-441
hiding.c program, 454-455
hotel.c function support module, 328-329
hotel.h header files, 329-330
ifdef.c program, 634

input.c program, 117, 423-424
intconv.c program, 111-112
invert4.c program, 600-601
join chk.c program, 419-420
lesser.c program, 310-311
lethead1.c program, 303
lethead2.c program, 306-307
list.c implementation file program, 684-685
list.h interface header file program, 680
loccheck.c program, 331
longstrg.c program, 115-116
mac arg.c program, 621-622
mall.c program, 704-706
manybook.c program, 534
manydice.c file program, 473-474
mems.c program, 656-657
menuette.c program, 293-295
min sec.c program, 143-144
misuse.c program, 315
namel.c program, 407-408
name?2.c program, 408

name3.c program, 409-410
nameln2.c program, 551-553
names.c source file program, 630

names.h header file program, 629, 636

namesl.c program, 545-546
names2.c program, 547

no data.c program, 347-348
nogo.c program, 420-421
nogood.c program, 39
nono.c program, 413
numeric, characters, 85
order.c program, 366

p and s.c program, 405-406
paint.c program, 244-245
parrot.c program, 505
parta.c file program, 465-466
partb.c file program, 466
petclub.c program, 731-734
pizza.c program, 96-98

pnt add.c program, 359
post pre.c program, 146
postage.c program, 193-194
pound.c program, 159-161
power.c program, 207-209
praisel.c program, 92-93
praise2.c program, 93-95
predef.c program, 638-639
preproc.c program, 617
printl.c program, 57-58
print2.c program, 62-63
printout.c program, 102-104
protval.c program, 115
protol.c program, 316-317
pseudocode, 172

pt ops.c program, 367-368
put out.c program, 412

put put.c program, 416
putl.c program, 414

put2.c program, 415-416
gsorter.c program, 651-652

queue.c implementation file program, 698-700
queue.h interface header file program, 694-695

r drivel.c driver program, 469

1 drive2.c program, 470

rain.c program, 355-356

rand0.c function file program, 468
randbin.c program, 518-519
recur.c program, 318-319
reducto.c program, 501-502
reverse.c program, 507

rhodium.c program, 49-50

rowsl.c program, 201-202
rows2.c program, 202-203
rules.c program, 140-141
running.c program, 161-162
s and r.c program, 469-470
scan str.c program, 411
scores.c program, 204-206
shoe2.c program, 144-145
shoesl.c program, 129-130
shoes2.c program, 130-131
showcharl.c program, 282
showchar2.c program, 283
showfpt.c program, 74-75
simple C program, 23-25
sizeof.c program, 142
skip.c program, 246-247
skip2.c program, 122-123
somedata.c program, 348-349
sort str.c program, 432-433
source
compiler instructions, 639-640
converting to executable files, 12
preprocessing, 27
squares.c program, 135-136
starsrch.c program, 424-425
start-up, 12
stillbad.c program, 41-42
str cat.c program, 419
strenvt.c program, 442
strings.c program, 109-110, 397-399
subst.c program, 624
sum arrl.c program, 363-364
sum arr2.c program, 364-365
summing.c program, 170
swapl.c program, 332-333
swap2.c program, 333
swap3.c program, 336-337
sweetiel.c program, 186
sweetie2.c program, 187
tand f.c program, 178-179
talkback.c program, 89-91
test.c program, 417-418
tree.c implementation file, 725-729
tree.h interface header file program, 714-716
trouble.c program, 180-182
truth.c program, 179-180
two func.c program, 38-39
typesize.c program, 79-80
use qc program, 700-701
useheader.c program, 630-631

INDEX

usehotel.c control module, 327-328
varargs.c program, 659-660
vararr2d.c program, 385-386
variadic.c program, 626
varwid.c program, 121-122
vowels.c program, 254-255
warnings, 50
wheat.c program, 136-137
when.c program, 174
whilel.c program, 175
while2.c program, 175-176
width.c program, 107-108
wordent.c program, 242-244
zeno.c program, 196-197
zippol.c program, 376
zippo2.c program, 378
colddays.c program, code, 220-221
collating sequences, 423
colors, bit fields, 604-611
columns
creating, nested loops, 202
printing, fixed field widths, 123
combined redirection, 277
combining tokens (## operator), 625
Comeau C/C++ compiler, 17
comma (,), 37, 404
initializers, 531
operator, 193-197, 235, 790
variable declarations, 339
variables, separating, 56
command-line arguments, 437-440, 497
commands
break, 259, 799
cc (UNIX), 326
continue, 259, 800
goto, 260, 800
make (UNIX), 326
rewind(), 561
commentary, programs, 10-11
comments
*/ symbol, 26, 28-29
/* symbol, 26, 28-29
// symbol, 29
function preconditions or postconditions, 680
redirection, 278
syntax, 26
text, breaking into sequences, 616
variables, qualifying, 793
committees, COX, C99 standard, 19
compare.c program, code, 421

881

882 C PRIMER PLUS

comparing
arguments and parameters, 160
arrays and pointers, 401-402
binary and text modes, 509
buffered and unbuffered input, 269
Cand C++, 864-869
character pointers and character arrays, 549-550
continue statements and break statements, 249
data display and storage, 69
floating-point, < and > cautionary note, 177
if statements and if else statements, 223
integer types and floating-point types, 54
linked lists and arrays, 708-710
macros and functions, 627-628
recursion and loops, 318
strings, 420-424, 431-434
strings and characters, 93
structure allocation in blocks or individually, 669
structure pointers and structure arguments,
548-549
variable and array declarations, 91
comparison expressions (relational expressions), 173,
176-185, 785
compback.c program, code, 422
compilations, conditional, 633-638
compile time substitution, 96
compilers, 12
\ (backslash) and newline characters, 616
: (semicolon), 36
array declarations, 345
Borland C/C++, floating-point values, 533
G 3
C/C++, 17
C99 standard, identifiers, 462
cc (UNIX), 14
characters, mapping, 616
DOS
command-line, compiling functions,
326-327
IBM PCs, 17
echo.c file, 270
forward declarations, 210
functions, 304
gec
GNU, 15
Linux, 326
high-level programming languages, 7
instructions, placing in source code, 639-640
Macintosh, 327
Metrowerks CodeWarrior, 17-18

preprocessing source code, 27
programs
concepts, 44
translations for preprocessing, 616
text, breaking into sequences, 616
UNIX, 3
compiling
C source code, 9
error messages, 50
executable files, 12
functions, 326-327
programs
files, 270
preprocessor, 615
source code files, 326
on UNIX systems, 14
complex floating points, 78
Complex I macro, 801
complex keyword, 53
complex macro, 801
complex numbers, 76, 792, 801-803, 863-864
complex types, comparing C and C++, 868
complex.h header file, 76, 801-803, 863-864
components of computers, 5
compound literals, 387-389, 552-553
compound statements (blocks), 154-156, 795
compression, lossless or lossy, 666
computations, C99 numeric, 860-864
computers, 5-6
concatenating strings, 419-420, 431, 483, 626
concrete data types, defining, 677
concrete.c program, code, 11
condensing files, 501-503
conditional compilations, 633-638
conditional expressions, 244-245
conditional loops, 174-175
conditional operator (?), 244-246, 260, 787
conditions, testing, 260
conio.h header file, 270
const (char * restrict, const char * restrict, FILE *
restrict) function, 825
const keyword, 481-482, 793
arrays, initializing, 347
constants, 373-375
parameters, 371-373
strings, 432
const modifier, 98, 866
const type qualifier, 482-484
constant expressions, WEOE 850
constant pi (1), 95

constants, 51-52

arrays, 358
C preprocessor, 95-98

char type, comparing C and C++, 865-866

character strings, 92, 399-400
characters, 65, 85
compound literals, 387-389
const keyword, 373-375
const modifier, 98

#define statement, 98
defines.c program, code, 100
defining, 96, 823, 827-828
enum, 566

EXIT_FAILURE, 827
EXIT_SUCCESS, 828
extended integers, 855
floating-point, 73-74

int type, 57, 98

integers, 62, 565-566, 823-824
INTMAX_MAX, 823
INTMAX_MIN, 823
INTN_MAX, 823
INTN_MIN, 823
INTPTR_MAX, 823
INTPTR_MIN, 823
INT_FASTN_MAX, 823
INT_FASTN_MIN, 823
INT_LEASTN_MAX, 823
INT_LEASTN_MIN, 823
long, 62

long long, 62

manifest, 98-101, 616-621, 631
MB_CUR_MAX, 828

NULL, 827

numerical, 124

pointers, 359
PTRDIFF_MAX, 824
PTRDIFF_MIN, 824
RAND_MAX, 828

read-only values, 98
redefining, 620-621
SIG_ATOMIC_MAX, 824
SIG_ATOMIC_MIN, 824
SIZE_MAX, 824

strings, static storage class, 399
symbolic, 95-100, 347, 620
UINTMAX_MAX, 823
UINTN_MAX, 823
UINTPTR_MAX, 823
UINT_FASTN_MAX, 823
UINT_LEASTN_MAX, 823

INDEX

WCHAR_MAX, 824
WCHAR_MIN, 824
WINT_MAX, 824
WINT_MIN, 824
writing with int types, 68
continue command, 259, 800
continue keyword, 799
continue statements, 246-249
contrasting arrays and pointers, 402-403
control flow, lethead1.c program, 305
control mode values, floating-point numbers, 861
control statements, 795
control strings, 103-104
conventions
books, 20-21
functions, naming, 302
conversions
data types, promotions, 156
errors, 113
floatenv.c program, code, 112-113
format, integer types, 807-808
intconv.c program, code, 111-112
mismatched, 110-113
printf() function, 110-113
specifications
float arguments, 106
printf() function, 101-110
scanf() function, 117-119
talkback.c program, 90
types, 156-157
wide-character multibyte conversion functions,
846-849
convert.c program, code, 157-158, 436, 646-647
converting
numbers to strings, 440
strings to numbers, 440-443
coordinates, polar or rectangular, 662
copyl.c program, code, 425-426
copy2.c program, code, 427
copy3.c program, code, 428-429
copying
arrays, 656-657
strings, 430
CopyToNode() function, 686, 697
count variable, 305
count() function, 292-293
count.c program, code, 496-497
counting
loops, 186
punctuation characters, 436
words, 240-244

883

884 C

PRIMER PLUS

CPUs (central processing units), 5-6
creating

arrays, 476

book inventory, 527-529

data forms, 561-562

functions, 303

linked lists, 674-675

strings, 397-399

text files, 498

type names with typedef, 569-571
user interfaces, 279-284

critic() function, 462

Ctrl+D keyboard shortcut, 276

Curl+Z keyboard shortcut, 271, 274, 276
ctype.h header file, 435-437, 803-804
cube.c program, code, 188

curly braces ({ }), 26, 35, 404

blocks, 131, 455-456
functions, 29

if else statements, 233
statements, 29

while loops, 131

cypherl.c program, code, 224
cypher2.c program, code, 226-227

D

%d

conversion specifier, 68, 102, 118, 289
strftime function() format specifier, 840-841
symbol group, 34

data

bits, 53
bytes, 53
constants, 52
data structures. See structures
data-type keywords, 52-55
displaying and storing, comparing, 69
forms, creating, 561-562
global, const type qualifier, 483-484
hiding, 680, 689
objects

lvalues, 133

side effects, sequence points, 153-154
pointers, 573
rhodium.c program, code, 49-50
storing in binary form, 513
unions, 562-565
variables, 52
words, 53-54

data representation, 736-737

ADTs (abstract data types)
films3.c program code, 681-682
integer properties, 676
interfaces, 678-683, 688-689

list.c implementation file program, 684-688
list.h interface header file program code, 680

lists, 677-678
queues, 689-708

algorithms, 666

binary search trees, 711
ADTs (abstract data types), 713
AVL trees, 735
balanced, 735
emptying, 725
implementing, 716-730
interfaces, 713-716
items, managing, 716-724, 735
Nerfville Pet Club, 735
nodes, deleting, 722-723
petclub.c program, 731-735
programming package, 725-729
stringy, 735
subtrees, 712
traversing, 724-725

tree.c implementation file program code,

725-729

tree.h interface header file program code,

714-716

unbalanced, 735

words, storing, 712
bitmapped graphics images, 666
data hiding, 680, 689
films1.c program, code, 667-668
linked lists, 668-676
linked lists and arrays, comparing, 708-710
lossless compression, 666
lossy compression, 666
malloc() function, 668

data types, 790 data types. See also ADTs; arrays

arguments, 81-82
Bool types, 70
Boolean
type (C99), 791
values, 78
C9X changes, 854
char types, 64-69
characters, 77
complex floating points, 78
complex numbers, 76, 792
defining abstract to concrete, 677

INDEX

double types, 72-73 modifiers, (), [], *, 571-572
fastest minimum width types, 70 names, modifiers, 571-573
float types, 72-73 one-dimensional arrays, 390
floating-points parameters, const type qualifier, 482-483
constants, 73-74 pf pointer (ToUpper() function), 573
numbers, 75-76, 791-792 pointers, 335-336, 382-383, 573-579
types, sizes for systems, 79 referencing, 463
values, showfpt.c program, code, 74-75 statements, 29-30, 35, 795
variables, declaring, 73 structure pointers, 540-541
imaginary floating points, 78 structures, 529
imaginary numbers, 76, 792 variables and arrays, comparing, 91
int, 29, 56-64, 68, 79 variables, 29-32, 78, 339, 792
inttypes.h header file, 70-71 decrement operator (—), 144, 147-149, 159
keywords, 52-55, 77, 790-791 decrementing a pointer operation, 369
long double types, 72-73 default values, 566
long long types, 60 #define
long types, 60 preprocessor directive, 616-625, 632-633
minimum width types, 70 statement, 98
pitfalls, 81-82 defines.c program, code, 100
pointer types, 77 defining
portable types, 70-71 ADTs (abstract data types) queues, 690-691
promotion, 156 ANSI C functions, 339
real floating points, 78 constants, 96, 823, 827-828
short types, 60 data types, abstract to concrete, 677
signed integers, 77 declarations, external variables, 463
sizeof operator, 80 external variables, 463
sizes, 79 functions, 308, 339
truncation, 81 int type variables, 57
typesize.c program, code, 79-80 Item type, 678
unsigned, 60-61, 77 macros, 633, 843
variables, declaring, 30, 78, 792 main() function, 304
DATE macro, 638 mycomp() function, 653-654
dates, time.h header file, 838-842 program objectives, 8
day monl.c program, code, 346-347 starbar() function, 304
day mon2.c program, code, 349 strings, 399-400
day mon3.c program, code, 361 structure variables, 530-531
debugging programs, 10, 39-43, 654-656 types
decimal numbers (base 10 system), 588, 591 stdlib.h header file, 827
decimal points time.h header file, 838
floating-point numbers, 85 wchar.h header file, 842-843
numbers, keywords, 53 union variables, 563
declarations variables, statements, 26
arrays, 345-346, 363, 535, 571-572 definitions
char type variables, 64-65 () (parentheses), 628
defining, 463 functions, 38, 303
external variables, 463, 632 hiding outer definitions (variables), 454
floating-point variables, 73 macros (function-like), 621
functions, 39, 210, 313-317, 467, 571-579 object-like macros, 617
identifiers, modifiers, 571-573 projects, 327
int type variables, 56 removing, 632-633

integer types, 60 stddef.h header file, 820

885

886

C PRIMER PLUS

structure template, header files, 631
type, 631, 676
DeleteAll() function, 725
DeleteAllNodes() function, 725
Deleteltem() function, 719, 724
DeleteNode() function, 724
deleting
items from binary search trees, 720-724
definitions, 632-633
items from queues, 691, 697
DeQueue() function, 698
dereferencing operation, pointers, 368
dereferencing operator, * (indirection operator),
334-335, 361
dereferencing uninitialized pointers, 369
descriptions
C library, 644-645
functions, 27, 34
design features, 2
designate.c program code, 350
designated initializers, 350-351, 532
designing programs, 8
diagnostics, assert.h header file, 801
dice, rolling, 471-475
diceroll.c file program, code, 472-473
dicerolLh file program, code, 473
diceroll.h header file, roll_n_dice() function, 473
differencing operation, pointers, 369
digit(s) conversion modifier, 118
.digit(s) modifier, printf() function, 105
digraphs (characters), 857
direct input, comparing unbuffered input and buffered
input, 269
directives
#define preprocessor, 616-627
#elif, conditional compilations, 637-638
#else, conditional compilations, 633-635
#endif, conditional compilations, 633-635
#error, 639
#if, conditional compilations, 637-638
#ifdef, conditional compilations, 633-635
#ifndef, conditional compilations, 635-637
#include “/ust/biff/p.h”, 628
#include “hot.h”, 628
#include “mystuff.h”, 628
#include <stdio.h*, 628
#include preprocessor, 628-632
#line, 639
#pragma, 639-640
#undef preprocessor, 632-633

include, 631

preprocessor, 27, 632-639
displaying

data, compared with storing, 69

hexademical numbers, 58-59

linked lists, 673

octal numbers, 5859
divide.c program, code, 137-138
division operator (/), 137-138, 159, 785
divisors.c program, code, 234-235
div_t div(int numer, int denom), function, 832
div_t type, 827
do keyword, 797
do while loops, 198-200
do while statements, 200, 797
doble indirection, pointer addresses, 375
documentation, 27-29, 37. See also reference sources
DOS

> (redirection operator), 276-277

>> operator, 277

< (redirection operator), 275-277

| (pipe) operator, 277

compilers

command-line, compiling functions,
326-327
IBM PCs, 17

Curl+Z keyboard shortcut, 276

input, redirecting, 275-276, 279
dot ()

membership operator, 788-789

operator, 541, 563-564

structure member operator, 532
doubincl.c program, code, 637
double acos(double x) function, 645, 813
double asin(double x) function, 645, 813
double atan(double x) function, 645, 813
double atan2(double y, double x) function, 645, 813
double atof(const char * nptr) function, 828
double cabs(double complex z) function, 803
double carg(double complex z) function, 803
double cbrt(double x) function, 814
double ceil(double x) function, 646, 814
double cimag(double complex z) function, 803
double complex cacos(double complex z) function, 802
double complex cacosh(double complex z) function,

802
double complex casin(double complex z) function, 802
double complex casinh(double complex z) function, 802
double complex catan(double complex z) function, 802
double complex catanh(double complex z) function,
802

double complex ccos(double complex z) function, 802

double complex ccosh(double complex z) function, 802

double complex cexp(double complex z) functions, 802

double complex clog(double complex z) function, 803

double complex conj(double complex z) function, 803

double complex cpows(double complex z, double com-
plex y) function, 803

double complex cproj(double complex z) function, 803

double complex csin(double complex z) function, 802

double complex csinh(double complex z) function, 802

double complex csqrt(double complex z) function, 803

double complex ctan(double complex z) function, 802

double complex ctanh(double complex z) function, 802

double complex function, 803

double complex type, 76

double copysign(double x, double y) function, 815

double cos(double x) function, 645, 813

double cosh(double x) function, 813

double creal(double complex z) function, 803

double difftime(time_t t1, time_t t0) function, 839

double erf(double x) function, 814

double erfc(double x) function, 814

double exp(double x) function, 646, 813

double exp2(double x) function, 813

double expm1(double x) function, 813

double fabs(double x) function, 646, 814

double fdim(double x, double y) function, 816

double floor(double x) function, 646, 814

double fma(double x, double y, double z) function, 816

double fmax(double x, double y) function, 816

double fmin(double x, double y) function, 816

double frexp(double v, int *pt_e) function, 813

double hypot(double x, double y) function, 814

double keyword, 53

double 1dexp(double x, int p) function, 814

double Ilgamma(double x) function, 814

double log(double x) function, 814

double log(double x) function, 646

double log10(double x) function, 646, 814

double log2(double x) function, 814

double logb(double x) function, 814

double logp1(double x) function, 814

double modf(double x, double *p) function, 814

double nan(const char *tagp) function, 815

double nearbyint(double x) function, 814

double nextafter(double x, double y) function, 816

double nexttoward(double x, long double y) function,
816

double pow(double x, double y) function, 646, 814

INDEX

double quotation marks (“), 66, 91, 404, 628-629
files, 473
include files, 327
macros, 619
printf() function, 33
double recursion, 325
double remainder(double x, double y) function, 815
double remquo(double x, double y, int *quo) function,
815
double rint(double x) function, 815
double round(double x) function, 815
double scalbln(double x, long n) function, 814
double scalbn(double x, int n) function, 814
double sin(double x) function, 645, 813
double sinh(double x) function, 813
double sqrt(double x) function, 646, 814
double strtod(char * restrict npt, char ** restrict ept)
function, 828
double tan(double x) function, 645, 813
double tanh(double x) function, 813
double tgamma(double x) function, 814
double trunc(double x) function, 815
double types, 72-73, 78, 792
dowhile.c program, code, 198
drivers
r drivel.c driver program, code, 469
1 drive2.c program, code, 470
testing functions, 310
dual.c program, code, 607-609
duplicating items in binary search trees, 735
duration of storage classes, structure initialization, 531
dyadic operators, 134
dyn arr.c program, code, 477
dynamic memory allocation, 387, 480-481

E

%e
conversion specifier, 102, 118
strftime function() format specifier, 841
eatline() function, 579
EBCDIC code, 64
echo eof.c program, code, 273-274
echo.c program
code, 268, 438
stopping, 270
echoing input, 268-270
eddyred file, 502

887

888

C PRIMER PLUS

editing on UNIX systems, 13-14
EDOM macro, 804
efficiency, 3
EIC (International Electrotechnical Commission), 858
EILSEQ macro, 804
electric.c program, code, 228-229
elements
arrays, 346, 708
inserting into arrays, 708
inserting into linked lists, 709
linked lists, sequential access, 708-709
ordered lists, binary searches, 710
Elements of Programming Style (The), 783
#elif preprocessor directive, conditional compilations,
637-638
ellipsis (...), 197, 404, 658
parameters, 818
variadic macro, 626-627
else if statements, 228-230
#else preprocessor directive, conditional compilations,
633-635
else statements and if else statements, pairing, 231-232
emptying
binary search trees, 725
queues, 698
EmptyTheList() function, 688
end of file. See EOF
end recursion (tail recursion), 321-323
#endif preprocessor directive, conditional compilations,
633-635
EnQueue() function, 698
entry errors, avoiding, 295
entry-condition loops. See for loops; while loops
entry.c program, code, 198-199
enum constants, 566
enum keyword, 565
enum.c program, code, 567-568
enumerated types, 565-569
enumerations, C and C++, comparing, 867-868
environments
IDEs (Integrated development environments), 10,
15-17, 629
integrated, command-line arguments, 439
programs, running, 10
EOF (end of file), 499-500, 520
Ctrl+Z keyboard shortcut, 271
echo eof.c program, 272-274
file eof.c program, code, 278
getchar()function, 272
GUIs (graphical user interfaces), 274
int feof(FILE *fp) function, 515

int ferror(FILE *fp) function, 515
marking, 271-274
scanf()function, 272
equal to (==) relational operator, 177, 185, 785
equality of functions, 325-326
equality operator (==), 171
ERANGE macro, 804
errno.h header file, 804
#error preprocessor directive, 639
erTors
conversion, 113
debugging, 39-43
entry, avoiding, 295
messages, 50, 639
output, 495-496
reporting, errno.h header file, 804
round-off, floating-point numbers, 76
semantic, 41-42
syntax, 40-41
escape characters, printing, 82-84
escape sequences, 34, 66-68, 83
escape.c program, code, 83-84
evaluating
ADTs (abstract data types) interfaces, 688-689
characters, functions, 227-228
logical operators, order of, 238-239
evaluation order (operator precedence), rules.c program
code, 140-141
exact width types, 820-821, 853
exceptions, floating-point numbers, 861
EXCLUSIVE operator (") (bitwise logical operator),
593-594
EXCLUSIVE OR (*) (bitwise binary operator), 789
executable code, 9
executable files, 10-13
executing. See implementing
.EXE file extension, 17
exit() function, 477, 497, 648-650
exit-condition loops (do while loops), 198-200
EXIT_FAILURE constant, 827
EXIT_SUCCESS constant, 828
exiting. See terminating
expansions (macro), #define preprocessor directive lines,
617
exponential growth, wheat.c program code, 136-137
exponential notations, 72, 85
exponentiating operator (pow() function), 132, 206
exponents, binary, 590
expressions, 795
comma operator, 194
concepts, 163

conditional, 244-245
constant, WEOE 850
full, 153
if statements, 235
logical, 787
logical operators, testing conditions, 260
operators, logical, 239
relational, 173-185, 236-240, 786
statements, 151-158
subexpressions, 150, 225
test, 222, 240-241, 248, 253
trees, 139
values, 150-151
extended integer contants, 824
extended integer types, 852-855
extended multibyte utilities, wchar.h header file,
842-849
extensible wide-character classification functions,
850-851
extensions of files
.asm, 17
11, 16-17, 24, 327
EXE, 17
h, 327,629
0, 14,326
.obj, 17, 326
red, 501
axt, 17
extern keyword, 459, 463, 467, 793
extern specifier, 465
external linkage, 452-453, 459-461, 488
external storage class (static variables), 457-464,
468-471
external variables, 459-463, 632

F

%f conversion specifier, 102, 118
\f (escape character), 66-67
%{ specifier
printf() function, 51
scanf() function, 289
%F (strftime function() format specifier), 841
fabs() function, 177
factor.c program, code, 321-322
false macro, 819
false values of expressions, 178-180
false variables, Bool type, 182
fastest minimum width types, 70, 821-822, 854

INDEX

fathm ft.c program, 36-38
fclose() function, closing files, 500-501
FE ALL EXCEPT macro, 806
FE DFL ENV macro, 806
FE DIVBYZERO macro, 805
FE DOWNWARD macro, 806
FE INEXACT macro, 805
FE INVALID macro, 806
FE OVERFLOW macro, 806
FE TONEAREST macro, 806
FE TOWARDZERO macro, 806
FE UNDERFLOW macro, 806
FE UPWARD macro, 806
fenv t type, 805
fenv.h header file, 805-807, 861-862
Feuer, Alan R., 782
fexcept t type, 805
fflush() function, 84
fgetpos() function, 510
fgets() function, 504
newline characters, 432
parrot.c program code, 505-506
string input, name3.c program code, 409-410
Fibonacci numbers, 325
field widths, 123, 410
fields
bit, 601-611
structure records, 557
structures, 529
fields.c program, code, 604-605
FIFO (first in, first out), queues, 690
FILE * fopen(const char * restrict, const char *restrict)
function, 825
FILE * freopen(const char * restrict, char * restrict, FILE
* restrict) function, 825
FILE * tmpfile(void) function, 826
file_eof.c program, code, 278
FILE
macro, 638
pointer argument, 508
files
““(double quotation marks), 473
accessing, 520
ANSI C, binary or text view, 494
.asm extension, 17
assert.h header, 654-656, 801
basenames, 11
binary, 513-515
.c extension, 11, 16-17, 24, 327
c.type.h header, 226-228
code, storage classes, 464

889

C PRIMER PLUS

complex.h header, 76, 801-803, 863-864
conio.h header, 270
ctype.h header, 437, 803-804
diceroll.c file program, code, 472-473
dicerolLh file program, code, 473
echo.c, 270
eddy.red, 502
EOF (end of file), 271-274, 499-500, 515, 520
errno.h header, 804
executable, 10-13
.EXE extension, 17
fclose() function, closing, 500-501
fenv.h header, 805-807, 861-862
fgets() function, 504-506
file-condensing programs, 501-503
file inclusion, accessing C library, 643-644
file scope, variables, 451
float.h, constants, 98-101
fprintf() function, addaword.c program code,
503-504
fputs() function, 504-506
fscanf() function, addaword.c program code,
503-504
fseek() function, 506-510
ftell() function, 506-510
functions, 304, 326-327
gets() function, 506
.h extension, 327, 629
header, 27, 327-331, 631-632, 815
hotel.h header, code, 329-330
1/0,493-510, 518-520
include, “ “ (double quotation marks), 327
#include
preprocessor directive, 628-632
statement, 26
input
buffered, 496
redirecting, 274-276, 279
inttypes.h header, 70-71, 807-808
is0646.h header, 857-858
limits.h, constants, 98-101
linkers, 12
list.c, 683-688
list.h, 680, 683, 688
locale.h header, 808-811
low-level 1/0, 271
manydice.c file program, code, 473-474
math.h header, 811-818, 862-863
names, resetting, 639
naming conventions, 11
.0 extension, 14, 326

.obj extension, 17, 326
object code, 12-13
opening, fopen() function, 498-499
output
binary and text, 513
buffered, 49, 5126
naming, 502
redirecting, 274-279
parta.c file program, code, 465-466
partb.c file program, code, 466
pointers, 498
programs, 270
queue.c implementation file program code,
698-700
queue.h, 690, 694-695
rand0.c function file program, code, 468
random access, 506-510, 518-520
-red extension, 501
redirection, 493-494
rewind() function, addaword.c program code,
503-504
scope, variables, 451
SEEK CUR mode, 508
SEEK END mode, 508
SEEK SET mode, 508
setjmp.h header, 817
side effects, sequence points, 153-154
signal.h header, 817-818
source code, 327, 630-631
standard, 271, 501
stdarg.h header, variable arguments, 658-659,
818-824
stdbool.h header, 819
stddef.h header, 820
stderr pointer, 501
stdin pointer, 501
stdint.h header, integer types, 820-824
stdio.h, 24-27, 268, 824-827
stdlib.h header, 648, 827-833
stdout pointer, 501
streams, 271
string.h header, 94, 418, 834-837
structure contents, saving, 557-561
system header, IDEs (integrated development envi-
ronments), 629
text, 27, 5135
tgmath.h header, 837-838
time.h header, 838-842
tree.c, 717, 725-729
tree.h interface header file program code, 714-716
Xt extension, 17

wchar.h header, 842-849
wetype.h header, 849-852
films1.c program, code, 667
films2.c program, code, 672-673
films3.c program, code, 681-682
finding
addresses, & (unary operator), 330-332
items, binary search trees, 719-720
first in, first out (FIFO), queues, 690
fit() function, test.c program code, 417-418
fixed decimal points, floating-point numbers, 85
fixed field widths, 123
flags, 234
+ flag (printf() function), 106
-flag (printf() function), 105-106
flag (printf() function), 107
printf() function, 106
status, floating-point numbers, 861
flags.c program, code, 109
flc.c program, code, 388-389
flexibility of C, 3
flexibility of for loops, 188-192
flexible array members (C99), structures, 554-556
flexmemb.c program code, 554-556
float arguments, conversion specifications, 106
float Complex type, 76
float keyword, 53
float strtof(const char * restrict npt, char ** restrict ept)
function, 828
float types, 72-73, 78, 791
float-point standard, IEC (IEC International
Electrotechnical Committee), 861
float.h files, constants, 98-101
floatenv.c program, code, 112-113
floating-point numbers, 84, 792
binary, 589-590
comparisons, < and > cautionary note, 177
constants, 73-74
control mode values, 861
division, 137
double types, 72-73, 78, 792
environment, fenv.h header file, 805-807
exceptions, 861
exponential notations, 85
fixed decimal points, 85
float types, 72-73, 78, 791
long double types, 72-73, 78, 792
overflow, 75
pi () numbers, storing, 55
real numbers, 54
relational operators, 177

INDEX

representing, 590
round-off errors, 76
status flags, 861
types, 53-54, 79
underflow, 75
values, 74-75++, 533
variables, 51, 73
floats.c program, code, 108-109
flow
control, letheadl.c program, 305
electric.c program, 229
programs, forms of, 169, 253
flushing buffers, 84, 269, 512
flushing output, escape.c program, 84
fonts, book convention, 20
fopen() function files, opening, 498-499
for keyword, 796
for loops, 192
arrays, 204-206
comma operator, 193-197, 235
cube.c program, code, 188
flexibility, 188-192
structure, 187
sweetie2.c program, code, 187
variations, 191
for statements, 192, 796
forc99.c program, code, 455-456
formal arguments, 160, 308
formal parameters, 160, 308-310, 340
format conversions, integer types, 807-808
format specifiers, strftime function(), 840-842
format strings, characters, 120-121
format.c program, code, 429-430
formats, free-form, 36
forms (data), creating, 561-562
forward declarations, 210
forward slash (/), 226
fprintf() function, 503-504
fputs() function, 413-414, 504-506
FP_FAST_FMA macro, 812
FP_FAST_FMAF macro, 812
FP_FAST_FMAL macro, 812
FP_ILOGBO macro, 812
FP_ILOGBNAN macro, 812
FP_INFINITE macro, 812
FP_NAN macro, 812
FP_NORMAL macro, 812
FP_SUBNORMAL macro, 812
FP_ZERO macro, 812
fractions, binary, 590
fread() function, 513, 516-517

891

892

C PRIMER PLUS

free() function, 475-479, 675, 720, 793
freek-form formats, 36

friend.c program, code, 537-538
friends.c program code, 539-540

fscanf() function, addaword.c program, code, 503-504

fseek() function, 506-510
fseek(file, OL, SEEK_CUR) function, 510
fseek(file, OL, SEEK_END) function, 510
fseek(file, OL, SEEK_SET) function, 510
fseek(file,ftell-pos, SEEK_SET) function, 510
fsetpos() function, 510
ftell() function, 506-510
full expressions, 153
fully buffered 1/O, 269
func ptr.c program, 575-579
functions, 25, 301
, (comma), 339
{} (curly braces), 29
() (declaration modifier), 571-572
() (parentheses), 25, 33, 304
(pound sign), 159
; (semicolon), 304, 828-833
& (unary operator), finding addresses, 330-332
aan2(), 646
actual arguments, 309-310, 340
AddItem(), 687,716, 719
AddNode(), 717
addresses

finding with & (unary operator), 330-332

transmitting, 337
ADTs (abstract data types) queue interfaces,
696-700
ANSI C
arguments, 317-318
defining, 339
1/0, 824-827
prototyping, 314-318
standard math functions, 645-646
string conversions, 441
append(), 518
arguments, 33, 159-161, 304-308, 317-318,
339-340
arrays
const keyword, 371-375
content protection, 370-375
multidimentional, 382-383
pointers, 361-367
of structures, 556-557
sum arrl.c program code, 363-364
VLAs (variable-length arrays), 383-387

atan(), 646

atexit(), 648-650

atoi(), 440-441

badlimits(), 288

bad_limits(), 285

beta(), 467

binary I/0, 513

binary.c program, code, 323-324

black box viewpoint, 310

blocks of statements, 29

body, 35

bore(), 452

buffering for IBM PC compatibles, 270

butler(), 38-39

C function library, 94

call statements, 35, 795

calling, 33, 304, 309, 318-325, 340

calloc(), memory allocation, 479-480

calls, 161, 303

ccommand(), 278, 440

char * fgets(char * restrict, int, FILE * restrict), 825

char * gets(char *), 826

char * setlocale(int category, const char * locale),
808

char * strerror(int errnum), 836

char * tmpnam(char *), 826

char *asctime(const struct tm *tmpt), 840

char *ctime(const time_t *ptm) Wed Aug 11
10:48:24 1999\n\0, 840

char *getenv(const char * name), 831

char *strcat(char * restrict s1, const char * restrict
s2), 834

char *strcat(char * sl, const char * s2), 431

char *strchr(const char * s, int ¢), 431

char *strchr(const char *s, int ¢), 836

char *strepy(char * restrict s1, const char * restrict
s2), 835

char *strepy(char * s1, const char * s2), 430

char *strncat(char * restrict s1, const char * restrict
s2,size_tn), 834

char *strncat(char * s1, const char * s2, size_t n),
431

char *strncpy(char * restrict s1, const char *
restrict s2, size_t n), 835

char *strncpy(char * s1, const char * s2, size_tn),
430

char *strpbrk(const char * s1, const char * s2), 431

char *strpbrk(const char *s1, const char *s2), 836

char *strrchr(const char * s, int ¢), 431

char *strrchr(const char *s, int ¢), 836

char *strstr(const char * s1, const char * s2), 431
char *strstr(const char *s1, const char *s2), 836
char *strtok(char * restrict s1, const char * restrict
s2), 836
characters
cypher2.c program, code, 226-227
handling, 803-804
in strings, 435-437
cleanup(), names3.c program code, 551-552
clock_t clock(void), 839
compiling, 326-330
complex numbers, 802-803
concepts, 340-341
const (char * restrict, const char * restrict, FILE *
restrict), 825
CopyToNode(), 686, 697
count(), 292-293
creating, 303
critic(), 462
ctype.h, macros, 437
declaring, 210
by type, 313-314
extern keyword, 467
header files, 631
old style, 314-316
old style compared to ANSI C, 317
prototypes, 39
definitions, 38, 303, 308
DeleteAll(), 725
DeleteAllNodes(), 725
Deleteltem(), 719, 724
DeleteNode(), 724
DeQueue(), 698
description documentation, 27
descriptions, 34
div_t div(int numer, int denom), 832
double acos(double x), 645, 813
double asin(double x), 645, 813
double atan(double x), 645, 813
double atan2(double y, double x), 645, 813
double atof(const char * nptr), 828
double cabs(double complex z), 803
double carg(double complex z), 803
double cbrt(double x), 814
double ceil(double x), 646, 814
double cimag(double complex z), 803
double complex, 803
double complex cacos(double complex z), 802
double complex cacosh(double complex z), 802
double complex casin(double complex z), 802
double complex casinh(double complex z), 802

INDEX

double complex catan(double complex z), 802

double complex catanh(double complex z), 802

double complex ccos(double complex z), 802

double complex ccosh(double complex z), 802

double complex cexp(double complex z), 802

double complex clog(double complex z), 803

double complex conj(double complex z), 803

double complex cpows(double complex z, double
complex y), 803

double complex cproj(double complex z), 803

double complex csin(double complex z), 802

double complex csinh(double complex z), 802

double complex csqrt(double complex z), 803

double complex ctan(double complex z), 802

double complex ctanh(double complex z), 802

double copysign(double x, double y), 815

double cos(double x), 645, 813

double cosh(double x), 813

double creal(double complex z), 803

double difftime(time_t t1, time_t t0), 839

double erf(double x), 814

double erfc(double x), 814

double exp(double x), 646, 813

double exp2(double x), 813

double expm1(double x), 813

double fabs(double x), 646, 814

double fdim(double x, double y), 816

double floor(double x), 646, 814

double fma(double x, double y, double z), 816

double fmax(double x, double y), 816

double fmin(double x, double y), 816

double frexp(double v, int *pt_e), 813

double hypot(double x, double y), 814

double ldexp(double x, int p), 814

double lgamma(double x), 814

double log(double x), 646, 814

double log10(double x), 646, 814

double log2(double x), 814

double logb(double x), 814

double logp1l(double x), 814

double modf(double x, double *p), 814

double nan(const char *tagp), 815

double nearbyint(double x), 814

double nextafter(double x, double y), 816

double nexttoward(double x, long double y), 816

double pow(double x, double y), 646, 814

double recursion, 325

double remainder(double x, double y), 815

double remquo(double x, double y, int *quo), 815

double rint(double x), 815

double round(double x), 815

893

C PRIMER PLUS

double scalbln(double x, long n), 814

double scalbn(double x, int n), 814

double sin(double x), 645, 813

double sinh(double x), 813

double sqrt(double x), 646, 814

double strtod(char * restrict npt, char ** restrict
epu), 828

double tan(double x), 645, 813

double tanh(double x), 813

double tgamma(double x), 814

double trunc(double x), 815

drivers, 310

eatline(), 579

employing, 210

EmptyTheList(), 688

EnQueue(), 698

equality of, 325-326

escape sequences, 34

exit(), 477,497, 648-650

extensible wide-character classification, 850-851

fabs(), 177

factor.c program, code, 321-322

fclose(), closing files, 500-501

fflush(), 84

fgetpos(), 510

fgets(), 409-410, 432, 504-506

Fibonacci numbers, 325

FILE * fopen(const char * restrict, const char
*restrict), 825

FILE * freopen(const char * restrict, char * restrict,

FILE * restrict), 825
FILE * tmpfile(void), 826
files, 304
fit(Jtest.c program, code, 417-418

float strtof(const char * restrict npt, char ** restrict

epu), 828
fopen(), opining files, 498-499
formal arguments, 308
formal parameters, 308-310, 340
forward declarations, 210
fprintf(), addaword.c program code, 503-504
fputs(), 413-414, 504-506
fread(), 513, 516-517
free(), 475-479, 675, 720, 793
fscanf(), addaword.c program code, 503-504
fseek(), 506-510
fseek(file, OL, SEEK_CUR), 510
fseek(file, OL, SEEK_END), 510
fseek(file, OL, SEEK_SET), 510
fseek(file,ftell-pos, SEEK_SET), 510

fsetpos(), 510

fell(), 506-510

function calls, 38

function statement, 152

function-like macros, 617, 621-625

fwrite(), 513, 516-517

gamma(), 467

general utilities, 652

get choice(), menus, 291-292

getint(), 288

getc(), getting characters from files, 499

getchar(), 16, 223-226, 268-272, 295

getche(), 270

getchoice(), menus, 291

getinfo(), 546, 550

gets(), 397-399, 407-409, 506

get_first(), 292

gobble(), 479

greatest width integers, 807-808

gsort(), arrays, 573

headers, 34

hotel.c function support module, code, 328-329

hotel.h header files, code, 329-330

/0 (input and output), 27, 267-268, 516-517

identifiers, 30

imax(), 315-317

imaxdiv_t imaxdiv(intmax_t numer, intmax_t
denom), 807

imin(), 310-313

InitializeList(), 680, 686

inline, 640-643, 869

InOrder(), 724

int abs(int n), 832

int atexit(void (*func)(void)), 830

int atoi(const char * nptr), 828

int atol(const char * nptr), 828

int classify(real-floating x), 813

int fclose(FILE *), 824

int fegetround(void), 806

int feholdexcept(fenv_t *envp), 807

int feof(FILE *), 825

int feof(FILE *fp), 515

int ferror(FILE *), 825

int ferror(FILE *fp), 515

int fesetround(int round), 806

int fetestexcept(int excepts), 806

int fflush(FILE *), 825

int fllush(FILE *fp), 512

int fgetc(FILE *), 825

int fgetpos(FILE * restrict, fpos_t * restrict), 825

int fmod(double x, double y), 815

int fprintf(FILE * restrict, const char * restrict, ...),
825

int fputc(int, FILE *), 825

int fputs(const char * restrict, FILE * restrict), 825

int fscanf(FILE * restrict, const char * restrict, ...),
825

int fseek(FILE *, long, int), 825

int fsetpos(FILE *, const fpos_t *), 825

int getc(FILE *), 825

int getchar(), 826

int ilogb(double x), 813

int isalnum(int ¢), 803

int isalpha(int ¢), 803

int isblank(int ¢), 803

int iscntrl(int ¢), 804

int isdigit(int ¢), 804

int isfin(real-floating x), 813

int isfinite(real-floating x), 813

int isgraph(int ¢), 804

int isgreater(real-floating x, real-floating y), 816

int isgreaterequal(real-floating x, real-floating y),
816

int isless(real-floating x, real-floating y), 816

int islessequal(real-floating x, real-floating y), 816

int islessgreater(real-floating x, real-floating y), 816

int islower(int ¢), 804

int isnan(real-floating x), 813

int isnormal(real-floating %), 813

int isprint(int ¢), 804

int ispunct(int ¢), 804

int isspace(int ¢), 804

int isunordered(real-floating x, real-floating y), 816

int isupper(int ¢), 804

int iswalnum(wint_t wc), 850

int iswalpha(wint_t wc), 850

int iswblank(wint_t wc), 850

int iswentrl(wint_t wc), 850

int iswdigit(wint_t wc), 850

int iswgraph(wint_t wc), 850

int iswlower(wint_t wc), 850

int iswprint(wint_t wc), 850

int iswpunct(wint_t wc), 850

int iswspace(wint_t wc), 850

int iswupper(wint_t wc), 850

int iswxdigit(wint_t wc), 850

int isxdigit(int ¢), 804

int mblen(const char *s, size_t n), 833

int mbsinit(const mbstate_t *ps), 847

int mbtowc(wchar_t *pw, const char, 833

INDEX

int memecmp(const void *s1, const void *s2, size_t
n), 834

int printf(const char * restrict, ...), 826

int putc(int, FILE *), 826

int putchar(int), 826

int puts(const char *), 826

int raise(int sig), 818

int rand(void), 829

int remove(const char *), 826

int rename(const char *, constchar *), 826

int scanf(const char * restrict, ...), 826

int setjump(jmp_buf env), 817

int setvbuf(FILE * restrict, char *restrict, int,
size_t), 826

int setvbuf(FILE *fp, char *buf, int mode, size_t
size), 512-513

int signbit(real-floating x), 813

int snprintf(char * restrict, size_t n, const char *
restrict, ...), 826

int sprintf(char * restrict, const char * restrict, ...),
826

int sscanf(const char *restrict, const char * restrict,
..), 826

int stremp(const char * s1, const char * s2), 431

int stremp(const char *s1, const char *s2), 835

int strcoll(const char *s1, const char *s2), 835

int strlen(const char * s), 836

int strnemp(const char * s1, const char * s2, size_t
n), 431

int strncmp(const char *s1, const char *s2, size_t
n), 835

int system(const char *str), 831

int tolower(int ¢), 804

int toupper(int ¢), 804

int ungetc(int ¢, FILE *{p) function, 512

int ungetc(int, FILE *), 826

int viprintf(FILE * restrict, const char * restrict,
va_list), 826

int vprintf(const char * restrict, va_list), 827

int vsprintf(char * restrict, const char * restrict,
va_list), 827

int vsprintf(char * restrict, size_t n) const char *
restrict, va_list), 827

int wctob(wint_t ¢), 847

int wetomb(char *s, wchar_t we), 833

interchange(), 332-334

intmax_t imaxabs(intmax_t j), 807

intmax_t strtoimax(const char * restrict nptr, char
** restrict endptr, int base), 808

895

C PRIMER PLUS

intmax_t westoimax(const wehar_t * restrict nptr,
wchar_t ** restrict endptr, int base), 808
InTree(), 719
ioctl(), 270
isalnum(), 227
isalpha(), 226-227
isentrl(), 227
isdigit(), 227
isgraph(), 227
islower(), 227, 240
isprint(), 227
ispunct(), 227, 436
isspace(), 227, 241
isupper(), 227
Idiv_t ldiv(long numer, long denom), 832
lesser.c program, code, 310-311
letheadl.c program, analyzing, 303-305
lethead2.c program, code, 306-307
libraries, 802
library routines, 9, 12
ListIsEmpty(), 686
ListIsFull(), 686
ListItemCount(), 686
ldiv_t lldiv(long numer, long denom), 832
localization, 808
loccheck.c program, code, 331
long double strtols(const char * restrict npt, char
#* restrict ept), 829
long int Irint(double x), 815
long int lround(double x), 815
long labs(int n), 832
long long int llrint(double x), 815
long long int llround(double x), 815
long long llabs(int n), 832
long long strtoll(const char * restrict npt, char **
restrict ept, int base), 829
long strtol(const char * restrict npt char ** restrict
ept, int base), 829
macros, 627-628
main(), 28, 288
arguments, 438
defining, 304
getinfo() function, 546
int, 25
int statement, 34
interchange() function, variable swapping,
332-334
return statements, 34
return types, 27
void, 25

makeinfo(), 546-548
MakeNode(), 717
malloc(), 475-481, 550-552, 668-670, 793
math, 815
memcpy(), 486, 656-657
memmove(), 486, 656-657
misuse.c program, code, 315
modules, 288
multidimensional arrays, 380-383
mycomp(), defining, 653-654
names, 302, 578, 628
operators, 301
parameters, 82, 308, 340
parentheses (), 28
pointers, 330, 334-339, 573-575, 578-579
postconditions, 680
pound(), 159
pow(), 132,206
power(), 209
preconditions, 680
printf(), 34, 51, 81-82, 85, 101, 124, 271,
301-302
““(double quotation marks), 33
* (modifier), 121-123
arguments, 33, 103
conversions, 101-113
digit(s) modifier, 105
exercise, 46
%f specifier, 51
flag, 107
+ flag, 106
- flag, 106
0 flag, 107flags, 105-106
flags.c program, code, 109
float arguments, conversion specifications,
106
floatenv.c program, code, 112-113
floating-point values, printing, 74
floats.c program, code, 108-109
functions, calling, 33
h modifier, 105
hh modifier, 105
intconv.c program, code, 111-112
interactive programs, 51
j modifier, 105
1 modifier, 105-106
1l modifier, 105
long strings, printing, 115-116
longstrg.c program, code, 115-116
printout.c program, code, 102-104

pratval.c program, code, 115
return values, 114-115
skip2.c program, code, 122-123
space flag, 107
specifiers, matching, 64
string output, 414
strings, converting to numbers, 440
strings.c program, code, 109-110
t modifier, 106
%u specifier, 61
unsigned int values, 61
values, printing, 37-38
varwid.c program, code, 121-122
warnings, 84
width.c program, code, 107-108
z modifier, 106
programs, adding, 38-39
protol.c program, code, 316-317
prototyping with arguments, 308-309
putc(), putting characters into files, 499
putchar(), 223-226, 268, 271, 302
puts(), 397-399, 412-413, 418
gsort(), 650-654
queues, 696-697
1 drive2.c program, code, 470
raise(), 817
rand(), 468-471, 475
rand0()m r drivel.c driver program, code, 469
rand1(), 475
random numbers, 468-471
recur.c program, code, 318-319
recursion, 318-325
return keyword, 301
return types, 340
return values, 206-210
reviewing, 301-302
rewind(), addaword.c program code, 503-504
rollem(), 473
roll_n_dice(), 473
scanf, 118-121
scanf(), 51,81, 101, 116, 124, 271, 295
& (ampersand), 51, 77
* modifier, 121-123
%C specifier, 289
conversions, 117-119
%d specifier, 289
EOF (end of files), 272
%f specifier, 289
format string characters, 120-121
input, reading, 119-120

INDEX

input.c program, code, 117
interactive programs, 51
loops, 171
null characters, 92
%s specifier, 289
skip2.c program, code, 122-123
string input, 410-412
summing.c program, 171-172
varwid.c program, code, 121-122
whitespaces, 93, 117, 124
scope, variables, 451
SeekItem(), 719
SeekNode(), 724
setbuf(), 270
sejmp.h header file, 817
setvbuf(), 270, 516
show(), 575-579
showinfo(), 548
showmenu(), 579
showmovies(), 687
show_n_char(), 306-308
sign off(), 649
signal(), 817-818
signals, 818
size_t fread(void * restrict, size_t, size_t, FILE *
restrict), 825
size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *fp), 515
size_t fwrite(const void * restrict, size_t, size_t,
FILE * restrict), 825
size_t fwrite(void *ptr, size_t size, size_t nmemb,
FILE *fp), 514-515
size_t mbrlen(const char * restrict s, size_t n,
mbstate_t * restrict ps), 847
size_t mbrtowc(wchar_t * restrict pwe, const char *
restrict s, size_t n, mbstate_t * restrict ps), 847
size_t mbsrtowcs(wchar_t * restrict dst, const char
** restrict src, size_t len, mbstate_t * restrict ps),
848
size_t mbstowcs(wchar_t * restrict pwcs, const char
*s restrict, size_t n), 833
size_t strespn(const char *s1, const char *s2), 836
size_t strftime(char * restrict s, size_t max, const
char * restrict fmt, const struct tm * restrict
tmpt), 840
size_t strlen(const char * s), 431
size_t strspn(const char *s1, const char *s2), 836
size_t strxfrm(char * restrict s1, const char *
restrict s2, size_t n), 835
size_t wertomb(char * restrict s, wchar_t we,
mbstate_t * restrict ps), 848

897

C PRIMER PLUS

size_t wesrtombs(char * restrict dst, const wchar_t
** restrict src, size_t len, mbstate_t * restrict ps),
849
size_t westombs(char * restrict s, const wchart_t *
restrict pwcs, size_tn), 833
sprintf(), 429-430, 440
sqrt(), 646
srand1(), 469-470
standard 1/0, 271, 511-515, 518
starbar(), 303-305
statements, blocks, 29
storage classes, 467-468
strcat(), 419-420, 483
strchr(), newline characters, 432
stremp(), 420-424, 432-434
strepy(), 425-427
strftime(), format specifiers, 840-842
strings, 414-432, 435-437, 834-836
strlen(), 90-95, 301, 417-418
strncat(), join chk.c program code, 419-420
strnemp(), 420-425
strnepy(), 425, 428-429
strtod(), 441
strtok(), 837
streol(), 441-443
streoul(), 441
struct lconv * localeconv(void), 808
struct tm *gmtime(const time_t *ptm), 840
struct tm *localtime(const time_t *ptm), 840
structures, 306
addresses, 543-544
compound literals (C99), 552-553
flexible array members (C99), 554-556
malloc() function, 550-552
members, passing, 541-543
namesl.c program code, 545-546
names2.c program code, 547
passing as arguments, 544
pointers, 550-552
structure pointers and structure arguments,
comparing, 548-549
sum(), pointer arguments, 364-365
sump(), 365
sun squares(), 288
sun(), sum arrl.c program code, 363-364
swapl.c program, code, 332-333
swap2.c program, code, 333
swap3.c program, code, 336-337
tail recursion, 321-323
terminating, 313
testing, 310

time(), 471
time.h header file, 839-840
time_t mktime(struct tm *tmptr), 839
time_t time(time_t *ptm), 839
Toleft(), 717-718
tolower(), 227
too bad(), 649
ToRight(), 717-718
toupper(), 228, 435-437
ToUpper(), 573
Traverse(), 681, 687, 724
trystat(), 458
two-dimentional, applying to arrays, 383
type void, 650
types, int or void, 304
uintmax_t strtoumax(const char * restrict nptr,
char ** restrict endptr, int base), 808
uintmax_t westoumax(const wchar_t * restrict
nptr, wchar_t ** restrict endptr, int base), 808
ungete(), 512
Unix /O, 267
unsigned long long strtoull(const char * restrict
npt, char ** restrict ept, int base), 829
unsigned long strtoul(const char * restrict npt, char
** restrict ept, int base), 829
usehotel.c control module, code, 327-328
valuelong ftell(FILE *), 825
values, returning, 26, 310-313, 340
variables
altering, 332-334
arguments, stdarg.h header file, 658-660
count, 305
local, 305
private names, 160
swapping, 332-334
void (*signal(int sig, void (*func)(int)))(int), 818
void *bsearch(const void *key,const void *base,
size_t nmem, size_t size, int (*comp)
(const void *, const void *)), 831
void *calloc(size_t nmem, size_t size), 829
void *malloc(size_t size), 830
void *memchr(const void *s, int ¢, size_t n), 834
void *memcpy(void * restrict s1, const void *
restrict s2, size_t n), 834
void *memmove(void *s1, const void *s2,
size_tn), 834
void *memset(void *s, int v, size_t n), 834
void *realloc(void *ptr, size_t size), 830
void abort(void), 830
void clearer(FILE *), 824
void exit(int status), 831

void feclearexcept(int excepts), 806
void fegetenv(fenv_t *envp), 806
void fegetexceptflag(fexcept_t *flagp, int excepts),
806
void feraiseexcept(int excepts), 806
void fesetenv(const fenv_t *envp), 807
void fesetexceptflag(const fexcept_t *flagp,int
excepts), 806
void feupdateenv(const fenv_t *envp), 807
void free(void *ptr), 830
void functions, 304
void longimp(jmp_buf env, int val), 817
void perror(const char *), 826
void gsort(void *base, size_t nmem, size_t size, int
(*comp) (const void *, const void *)), 832
void rewind(FILE *), 826
void setbuf(FILE * restrict, char * restrict), 826
void srand(unsigned int seed), 829void _Exit(int
status), 831
wide-characters, 843-852
fundsl.c program, code, 542
funds2.c program code, 543
funds3.c program, code, 544
funds4.c program, code, 556-557
fwrite() function, 513, 516-517

G

%G conversion specifier, 102, 118
%g (strftime function() format specifier), 841
gamma() function, 467
gce compiler
GNU, 15
Linux, 326
Web site, 15
general utilities library
atexit() function, 648-650
exit() function, 648-650
gsort() function, 650-654
stdlib.h header file, 827-833
string.h header file, 834-837
tgmath.h header file, 837-838
time.h header file, 838-842
wchar.h header file, 842-849
wetype.h header file, 849-852
get choice() function, menus, 291-292
get int() function, 288
getc() function, getting characters from files, 499
getchar() function, 16, 223-226, 268-272, 295

INDEX

getche() function, 270
getchoice() function, menus, 291
getinfo() function, 546, 550
gets() function, 397-399, 407-409, 506
get_first() function, 292
global data, const type qualifier, 483-484
global variables, 451
global.c program, code, 461-462
glue.c program, code, 625
GNU, gcc compiler, 15
gobble() function, 479
golf.c program, code, 133
goto
command, 260, 800
keyword, 799
statements, 257-259
graphical user interfaces (GUIs), 274
graphics
bitmapped images, 666
lossless compression, 666
lossy compression, 666
greater than operator (>), 148, 177, 185, 785
greater than or equal to (>=) relational operator, 177,
185, 785
greatest width integer functions, 807-808
gsort() function, arrays, 573
guess.c program, code, 279-280
GUIs (graphical user interfaces), 274

H

h conversion modifier, 119
.h file extension, 327, 629
h modifier, printf() function, 105
%h (strftime function() format specifier), 841
handling characters, 803-804
handling signals, 817-818
handling strings, 834-837
Harbison, Samuel P, 783
hash symbol (#), 268
header files, 34
assert.h, 801
complex.h, 801-803, 863-864
conio.h, 270
ctype.h, 803-804
errno.h, 804
external variables declarations, 632
fenv.h, 805-807, 861-862
float.h files

899

900 C PRIMER PLUS

functions |
compiling, 327-330
declarations, 631 %i conversion specifier, 102, 118
descriptions, 27 %I (strftime function() format specifier), 841
‘h file extension, 327, 629 I macro, 801
#include preprocessor directive, 631-632 IBM PCs
inttypes.h, 807-808 compatibles, buffering functions, 270
is0646.h, 857-858 DOS compilers, 17
limits.h files, constants, 98-101 identifiers, 30
list.h interface header file program code, 680 compilers, C99 standard, 462
locale.h, 808-811 keywords, 43
macro functions, 631 of declarations, modifiers, 571-573
manifest constants, 631 preprocessor, 633
math.h, 815, 862-863 reserved, 31, 43
names.c source file program code, 630 starbar, 303
names.h header file program code, 629 identifying members, arrays of structures, 535-536
queue h interface header file program code, IDEs (integrated development environments), 10, 15-17,
694-695 629
setjmp.h, 817 IEC, 861
signal.h, 817-818 if else statements, 222-223, 260
stdarg.h, variable arguments, 658-660, 818-824 ? (conditional operator), 244-245
stdbool.h, 819 {} (curly braces), 233
stddef.h, 820 conditional expressions, 244-245
stdint.h, integer types, 820-824 else if statements, 228-230
stdio.h, 268, 824-827 else statements, pairing, 231-232
stdlib.h, 827-833 getchar() function, 223-226
string.h, 834-837 if statements, comparing, 223
structure template definitions, 631 multiple choices, 228-230
tgmath.h, 837-838 nesting, 232-235
time.h, 838-842 putchar() function, 223-226
tree.h interface header file program code, 714-716 switch statements, when to use, 256
type definitions, 631 if keyword, 797
useheader.c program code, 630-631 #if preprocessor directive, conditional compilations,
wchar.h, 842-849 637-638
wetype.h, 849-852 if statements, 235, 260, 797-798
hello.c program, code, 440-441 colddays.c program, code, 220-221
hexadecimal numbers (base 16 system), 58-59, 591-592 expressions, 235
hh conversion modifier, 118 if else statements, comparing, 223
hh modifier (printf() function), 105 if...else if...else sequence, 232
hiding #ifdef preprocessor directive, conditional compilations,
data, 680, 689 633-635
outer definitions (variables), 454 ifdef.c program, code, 634
hiding.c program, code, 454-455 #ifndef preprocessor directive, conditional compilations,
high-level programming languages, 6-7 635-637
high-order bit (bit 7), 588 images, bitmapped graphics, 666
history of C, 1 imaginary floating points, 78
Hoare, C.AR., 650 Imaginary I macro, 801
hotel.c function support module, code, 328-329 imaginary keyword, 53
hotel.h header files, code, 329-330 imaginary macro, 801
HUGE_VAL macro, 811 imaginary numbers, 76, 792
HUGE_VALF macro, 811 imax() function, 315-317

HUGE_VALL macro, 811

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom)
function, 807

imin() function, 310-313
implementation files, 684-688, 698-700, 725-729
implementing

ADTs (abstract data types) queues, interfaces, 683,

691-700

binary search trees, 716-730

menus, 290-291
#include “/ust/biff/p.h” directive, 628
#include “hot.h” directive, 628
#include “mystuff.h” directive, 628
#include <stdio.h* directive, 628
#include directive, 631
include files, “ “ (double quotation marks), 327
#include preprocessor directive, 628-632
include statement, preprocessor directives, 26-27
including files, accessing C library, 643-644
including libraries, accessing C library, 644
increment operator (++), 144-150, 159
incrementing a pointer operation, pointers, 368
incrementing int pointers, 370
indefinite loops, sweetiel.c program, code, 186
index variable, 452
indices

arrays, 204, 346, 351-353

values, changing, 173
indirect membership operator (->), 565, 789
indirection operator (*), 334-335, 361, 375
infinite loops, 146, 175
INFINITY macro, 811
init statement, main() function, 27
InitializeList() function, 680, 686
initializers

designated, 350-351, 532

structures, 531
initializing

arrays, 346-351

automatic variables, 456

char types, 65

character string arrays, 400-401

external variables, 461

int type variables, 56-57

structure pointers, 540-541

structure variables, 531-532

two-dimensional arrays, 357

unions, 563
inline functions, 640-643, 869
InOrder() function, 724

INDEX

input. See also /O
buffered, 269-270, 279-281, 496
buffered and unbuffered, comparing, 269
character, user interfaces, 281-284
character and numeric, mixing, 292-295
echoing, 268-270
files, standard input, 495-496
numeric, user interfaces, 281-284
reading, scanf() function, 119-120
scanf function, 120
sign off() function, 649
standard, 274-276, 279, 495-496
streams, 271, 295,512, 520
strings, 406-412
terminating, 268
too bad() function, 649
unbuffered, 269
unechoed, 270
validating, 268, 284-290, 295
input.c program, code, 117, 423-424
input/output. See I/0
inserting elements, 708-709
instruction sets, CPUs (central processing units), 6
instructions for compilers, placing in source code,
639-640
int abs(int n) function, 832
int atexit(void (*func)(void)) function, 830
int atoi(const char * nptr) function, 828
int atol(const char * nptr) function, 828
int classify(real-floating x) function, 813
int fclose(FILE *) function, 824
int fegetround(void) function, 806
int feholdexcept(fenv_t *envp) function, 807
int feof(FILE *) function, 825
int feof(FILE *fp) function, 515
int ferror(FILE *) function, 825
int ferror(FILE *fp) function, 515
int fesetround(int round) function, 806
int fetestexcept(int excepts) function, 806
int fflush(FILE *) function, 825
int fflush(FILE *fp) function, 512
int fgetc(FILE *) function, 825
int fgetpos(FILE * restrict, fpos_t * restrict) function,
825
int fmod(double x, double y) function, 815
int fprintf(FILE * restrict, const char * restrict, ...) func-
tion, 825
int fputc(int, FILE *) function, 825
int fputs(const char * restrict, FILE * restrict) function,
825

901

902

C PRIMER PLUS

int fscanf(FILE * restrict, const char * restrict, ...) func-
tion, 825
int fseek(FILE *, long, int) function, 825
int fsetpos(FILE *, const fpos_t *) function, 825
int getc(FILE *) function, 825
int getchar() function, 826
int ilogh(double x) function, 813
int (integer) types, 77
argument, argc (argument count), 439
arrays, 204
constants, 57, 62, 98
data type, 29, 57, 61
declaring, 60
floating-point types, comparing, 54
format conversions, inttypes.h header file, 8307-808
functions, 304
hexadecimal numbers, 58-59
keywords, 29, 53, 59-60
long constants, 62
long long constants, 62
long long types, 62-64
long types, 62-64
main() function, 25
multiple types, 60-61
octal numbers, 58-59
overflow, 61-62
pointers, incrementing, 370
pointer-to-int, 362
short types, 62-64
signed, 601, 791
sizes for systems, 79
statement, 25
stdint.h header file, 820-824
unsigned, 62-64, 601, 606
values, printl.c program, code, 57-58
variables, initializing, 56-57
int isalnum(int ¢) function, 803
int isalpha(int ¢) function, 803
int isblank(int ¢) function, 803
int iscntrl(int ¢) function, 804
int isdigit(int ¢) function, 804
int isfin(real-floating x) function, 813
int isfinite(real-floating x) function, 813
int isgraph(int ¢) function, 804
int isgreater(real-floating x, real-floating y) function, 816
int isgreaterequal(real-floating x, real-floating y) func-
tion, 816
int isless(real-floating x, real-floating y) function, 816
int islessequal(real-floating x, real-floating y) function,
816

int islessgreater(real-floating x, real-floating y) function,
816

int islower(int ¢) function, 804

int isnan(real-floating x) function, 813

int isnormal(real-floating x) function, 813

int isprint(int ¢) function, 804

int ispunct(int ¢) function, 804

int isspace(int ¢) function, 804

int isunordered(real-floating x, real-floating y) function,
816

int isupper(int ¢) function, 804

int iswalnum(wint_t wc) function, 850

int iswalpha(wint_t wc) function, 850

int iswblank(wint_t wc) function, 850

int iswentrl(wint_t we) function, 850

int iswdigit(wint_t we) function, 850

int iswgraph(wint_t wc) function, 850

int iswlower(wint_t wc) function, 850

int iswprint(wint_t we) function, 850

int iswpunct(wint_t we) function, 850

int iswspace(wint_t we) function, 850

int iswupper(wint_t we) function, 850

int iswxdigit(wint_t wc) function, 850

int isxdigit(int ¢) function, 804

int mblen(const char *s, size_t n) function, 833

int mbsinit(const mbstate_t *ps) function, 847

int mbtowc(wchar_t *pw, const char function, 833

int memcmp(const void *s1, const void *s2, size_t n)
function, 834

int printf(const char * restrict, ...) function, 826

int putc(int, FILE *) function, 826

int putchar(int) function, 826

int puts(const char *) function, 826

int raise(int sig) function, 818

int rand(void) function, 829

int remove(const char *) function, 826

int rename(const char *, constchar *) function, 826

int scanf(const char * restrict, ...) function, 826

int setjump(jmp_buf env) function, 817

int setvbuf(FILE * restrict, char *restrict, int, size_t)
function, 826

int setvbuf(FILE *fp, char *buf, int mode, size_t size)
function, 512-513

int signbit(real-floating x) function, 813

int snprintf(char * restrict, size_t n, const char * restrict,
...) function, 826

int sprintf(char * restrict, const char * restrict, ...) func-
tion, 826

int sscanf(const char *restrict, const char * restrict, ...)
function, 826

int stremp(const char * s1, const char * s2) function,
431
int stremp(const char #s1, const char *s2) function, 835
int strcoll(const char *s1, const char *s2) function, 835
int strlen(const char * s) function, 836
int strncmp(const char * s1, const char * s2, size_t n)
function, 431
int strncmp(const char *s1, const char *s2, size_t n)
function, 835
int system(const char *str) function, 831
int tm hour (struct tm structure member), 838
int tm isdst (struct tm structure member), 839
int tm mday (struct tm structure member), 838
int tm min (struct tm structure member), 838
int tm mon (struct tm structure member), 839
int tm sec (struct tm structure member), 838
int tm wday (struct tm structure member), 839
int tm yday (struct tm structure member), 839
int tm year (struct tm structure member), 839
int tolower(int ¢) function, 804
int toupper(int ¢) function, 804
int ungetc(int ¢, FILE *fp) function, 512
int ungetc(int, FILE *) function, 826
int viprintf(FILE * restrict, const char * restrict, va_list)
function, 826
int vprintf(const char * restrict, va_list) function, 827
int vsprintf(char * restrict, const char * restrict, va_list)
function, 827
int vsprintf(char * restrict, size_t n) const char * restrict,
va_list) function, 827
int wetob(wint_t ¢) function, 847
int wetomb(char *s, wchar_t we) function, 833
intlo_t type, 820
int32_t type, 821
int64_t type, 821
int8_t type, 820
intconv.c program, code, 111-112
integer 7, storing as binary code, 54
integers, 54
binary, 323-324, 588
bits, accessing, 611
constants, 565-569, 823-824, 855
data-type keywords, 53
division, 137
exact width types, 853
extended types, 852-855
fastest minimum width types, 854
greatest width funtions, 807-808
int, 77, 791
long,77, 791

INDEX

long int, 77, 791
long long, 77, 791
long long int, 7
maximum width types, 855
minimum width types, 853-854
pointer values, 822, 855
properties, 676
short, 77, 791
shortint, 77, 791
signed, 77, 589, 791
truncation, 81
types, 59-60
unions, 607
unsigned, 77, 791
Integrated Development Environments (IDEs), 10,
15-17, 629
integrated environments, command-line arguments, 439
interactive programs, 51
interchange() function, 332-334
interfaces
ADTs (abstract data types), 678-700
binary search trees, 713-716
creating, 280-282
GUIs (graphical user interfaces), 274
user, 279-284, 290-295
internal linkage, 452-453, 463-464, 488
International C Standard (The) (ISO/IEC 9899 1999), 783
International Electrotechnical Committee (IEC), 858,
861
International Organization for Standardization (I1SO),
858
INTMAX_MAX constant, 823
INTMAX_MIN constant, 823
intmax_t imaxabs(intmax_t j) function, 807
intmax_t strtoimax(const char * restrict nptr, char **
restrict endptr, int base) function, 808
intmax_t type, 822
intmax_t westoimax(const wehar_t * restrict nptr,
wchar_t ** restrict endptr, int base) function, 808
INTN_MAX constant, 823
INTN_MIN constant, 823
INTPTR_MAX constant, 823
INTPTR_MIN constant, 823
intptr_t type, 822
InTree() function, 719
inttypes.h header file, 70-71, 807-808
int_fast16_t type, 822
int_fast32_t type, 822
int_fast64_t type, 822
int_fast8_t type, 822

903

904

C PRIMER PLUS

INT_FASTN_MAX constant, 823
INT_FASTN_MIN constant, 823
int_least16_t type, 821
int_least32_t types, 821
int_least64_t type, 821
int_least8_t type, 821
INT_LEASTN_MAX constant, 823
INT_LEASTN_MIN constant, 823
inventories, book, 527-529
invert4.c program, code, 600-601
invoking. See calling functions
/0 (input and output)
(hash symbol), 268
buffers, 269-270, 280
C preprocessor, 95-98
character strings, 91-95
checking.c program, 286-289
const modifier, 98
constants, 95-98
echo eof.c program, 273-274
echo.c program, 268-270
echoing the input, 268
end of files, marking, 271-274
entry errors, avoiding, 295
files, 493-497, 501-510, 518-520
float.h file, symbolic constants, 100

fread() function, append.c program code, 516-517

fully buffered, 269
functions, 27, 267-268, 515-518, 824-827

fwrite() function, append.c program code, 516-517

guess.c program, code, 279-280
input
buffered, 269
redirecting, 274-276, 279
terminating, 268
unbulffered, 269
validating, 284-290, 295
keyboards, 270-274
library, 824-827
limits.h file, symbolic constants, 99
line-buffered, 269
low-level, 271
manifest constants, 98-101
menuette.c program, code, 293-295
menus, 290-295
newline character, checking, 271
output, redirecting, 274-279
pizza.c program, code, 96-98
printf() function, 101-116, 121-124
printout.c program, code, 102-104
scanf() function, 101, 116-124

showcharl.c program, code, 282
showchar2.c program, code, 283
standard, 271, 496-501, 512-520
std stream, 271
stdout stream, 271
streams, 271
strings, options, 414-417
talkback.c program, code, 89-91
wide-character I/O functions, 843-844

ioctl() function, 270

isalnum() function, 227

isalpha() function, 226-227

isentrl() function, 227

isdigit() function, 227

isgraph() function, 227

islower() function, 227, 240

ISO (International Organization for Standardization),

858

ISO C standard, 18

ISO/ANSI C standard, 19

ISO/ANSI C90, keywords, 43

ISO/ANSI C99, keywords, 43

is0646.h header file, 857-858

isprint() function, 227

ispunct() function, 227, 436

isspace() function, 227, 241

isupper() function, 227

item duplication, binary search trees, 735

Item type, 690, 678

iterations, 173

J

j (modifier, printf() function), 105
%j (strftime function() format specifier), 841
join chk.c program, code, 419-420
journals, C/C++ Users Journal, 781
jumps
non-local, 817
programs, 259-260, 799-800
statements (break statements), 246, 249-250,
254-255, 261

K

Kernighan, Brian W, 18, 782-783
keyboards
input, 51, 270-274
logical operators, alternate spellings, 237-238

shortcuts
Cul+D, 276
Curl+Z, 271, 274-276

output, stdout stream, 271

keystrokes, 20-21, 270
keywords

ANSI C qualifiers, 486-487

auto, 453

Bool, 53, 78, 791

break, 799

char, 53, 77, 791

characters, 791

complex, 53

const, 481-482, 793
arrays, initializing, 347
constants, 373-375
parameters, 371-373
strings, 432

continue, 799

data type, 52-55, 77, 790-791

do, 797

double, 53

enum, 565

extern, 459, 463, 467, 793

float, 53

for, 796

goto, 799

if, 797

imaginary, 53

int, 29, 53

int data type, 61

integer types, 59-60

ISO/ANSI C90, 43

ISO/ANSI C99, 43

long, 53, 59

long double, 53

register, 453

restrict, 485-486, 793

restricted, 457

return, 301, 311

short, 53, 59

signed, 53, 60, 77

signed integers, 791

static, 346, 452, 486-487, 792

struct, 529, 540

switch, 798

typedef, 464

unsigned, 53, 59, 791

unsigned integers, 791

variables, qualifying, 793

INDEX

volatile, 481, 484, 793
while, 795
Knuth, Donald E., 783
Koenig, Andrew, 783

conversion modifier, 119
modifier, printf() function, 105-106
labels (case), vowels.c program code, 254-255
Landis (AVL trees), 735
languages
programming, 1
standards (C), 18-19
LC ALL macro, 809
LC COLLATE macro, 809
LC CTYPE macro, 809
LC MONETARY macro, 809
LC NUMERIC macro, 809
LC TIME macro, 809
1div_t ldiv(long numer, long denom) function, 832
1div_t type, 827
leaf (nodes), 720
left shift operator (<<), 596
lengths of strings, strlen() function, 93-95
less than (<), 131
operator, 148
relational operator, 177, 185, 785
less than or equal to (<=) relational operator, 177, 185,
785
lesser.c program, code, 310-311
lethead1l.c program, analyzing, 303-305
lethead2.c program, code, 306-307
levels of files, 495
libraries
ANSI C, 800
assert.h header file, 801
C99 additions, 801-811
complex.h header file, 801-803
ctype.h header file, 803-804
errno.h header file, 804
fenv.h header file, 805-807
inttypes.h header file, 807-808
locale.h header file, 808-811
stdlib.h header file, 827-833
string functions, 417, 430-432
string.h header file, 834-837
tgmath.h header file, 837-838

905

C PRIMER PLUS

time.h header file, 838-842
Unix I/O functions, 267
wchar.h header file, 842-849
wetype.h header file, 849-852
assert, debugging programs, 654-656
C library, 94, 643-645
functions, 802
general utilities
atexit() function, 648-650
exit() function, 648-650
gsort() function, 650-654
stdlib.h header file, 827-833
string.h header file, 834-837
tgmath.h header file, 837-838
time.h header file, 838-842
wchar.h header file, 842-849
wetype.h header file, 849-852
inclusion, accessing C library, 644
/0O, 824-827
math, 645-648, 862-863
Math, C99, 811-818
routines, linkers, 9, 12
stdarg.h header file, variable arguments, 658-660
string.h, 656-657
limitations of C, 4
limits.h files, constants, 98-101
LINE macro, 638
line-buffered 170, 269
#line preprocessor directive, 639
lines, 616-617, 639
linkages, variables, 449, 452-453, 459-464, 488
linked lists, 668-676, 708-710
linkers, 9, 12
Linux
>> (operator), 277
| (pipe) operator, 277
> (redirection operator), 276-277
< (redirection operator), 275-277
functions, compiling, 326
gce compiler, 15, 326
input, redirecting, 275-276, 279
output, redirecting, 275-279
programs, 10, 15
list.c file, 683, 688
list.c implementation file program, 684-688
list.h file, 683, 688
list.h interface header file program code, 680
listings. See code
ListIsEmpty() function, 686
ListIsFull() function, 686
ListitemCount() function, 686

lists
ADTs (abstract data types), 677-678
EmptyTheList() function, 688
InitializeList() function, 680, 686
linked, 668-676, 708-710
ListIsEmpty() function, 686
ListIsFull() function, 686
ListItemCount() function, 686
ordered elements, binary searches, 710
replacement, #define preprocessor directive lines,

617

showmovies() function, 687
Traverse() function, 687

literals, 387-389, 552-553

1l conversion modifier, 119

1l modifier, printf() function, 105

1ldiv_t lldiv(long numer, long denom) function, 832

ldiv_t type, 827

local time, 839

local variables, 305

locale.h header file, 808-811

localization functions, 808

localizations, locale.h header file, 808-811

loccheck.c program, code, 331

logical expressions, 787

logical lines, 616-617

logical operators, 787
&& (and), 237
I (not), 237
|| (or), 237
alternate spellings, 237-238
bitwise, 592-594
chcount.c program, code, 236
conditions, testing, 260
evaluations, order of, 238-239
expressions, 239
precedence, 238
ranges, testing, 240

long constants, 62

long double complex type, 76

long double keyword, 53

long double strtols(const char * restrict npt, char **

restrict ept) function, 829

long double types, 72-73, 78, 792

long int Irint(double x) function, 815

long int Iround(double x) function, 815

long int (signed integer), 791

long int types, 77

long keyword, 53, 59

long labs(int n) function, 832

long long constants, 62

long long int llrint(double x) function, 815
long long int llround(double x) function, 815
long long int types, 77
long long llabs(int n) function, 832
long long (signed integer), 791
long long strtoll(const char * restrict npt, char ** restrict
ept, int base) function, 829
long long types, 60-63, 77
long (signed integer), 791
long strings, printing, 115-116
long strtol(const char * restrict npt char ** restrict ept,
int base) ” function, 829
long types, 60-64, 77
longstrg.c program, code, 115-116
looping statements, sequences, 169
loops
arrays, 203-206
break statements, 246, 249-250
buffered input, 280
char arrays, 204
choosing, 200-201
concepts, 210
conditional, 174-175
continue statements, 246-249
counting, 186
do while, 198-200
entry-condition, while statement, 795
evaluating expressions, troubleshooting, 181
floating-point comparisons, < and > cautionary
note, 177
for, 187-197, 204-206, 235
functions, 206-209
indefinite, sweetiel.c program, code, 186
indexes, changing values, 173
infinite, 146, 175
int arrays, 204
iterations, 173
nested, 201-203
null statements, 176
pseudocode, 172
reading, while loops (summing.c program), 172
recursion, comparing, 318
relational expressions, 173
scanf() function, 171
shoesl.c program, code, 129-130
shoes2.c program, code, 130-131
strings, 204
sump() function, 365
test expressions, 248

INDEX

while (entry-condition loops), 152

{ } (curly braces), 131
Bool type, 182
boolean.c program, code, 182-183
cmplflt.c program, code, 177-178
compound statements (blocks), 154-155
conditional loops, 174-175
entry.c program, code, 198-199
relational expressions, 176-184
shoes2.c program, code, 130-131
single-character /O, 268
structure, 173
summing.c program, 170-172
sweetiel.c program, code, 186
switch statements, 290
tand f.c program, code, 178-179
terminating, 173-174
trouble.c program, code, 180-182
truth.c program, code, 179-180
values, processing, 288
when.c program, code, 174
while statements, 173, 185

lossless compression, 666

lossy compression, 666

low-level files, 495

low-level 1/0, 271

low-order bit (bit 0), 588

lvalues, data objects, 133

M

%m (strftime function() format specifier), 841
mac arg.c program, code, 621-622
machine language (numeric instruction code), 6
machines, collating sequences, 423
Macintosh
command-line arguments, 440
compilers, 327
Metrowerks CodeWarrior compiler, 17-18
macros
““(double quotation marks), 619
... (ellipsis) variadic macro, 626-627
arguments, 621, 624, 628
bool, 819
category, 809
char *currency_symbol, 809
char *decimal_point, 809
char *grouping, 809
char *int_curr_symbol, 809

907

908

C PRIMER PLUS

char *mon_decimal_point, 809
char *mon_grouping, 810
char *mon_thousands_sep, 809
char *negative_sign, 810

char *positive_sign, 810

char *thousands_sep, 809
char frac_digits, 810

char int_frac_digits, 810

char int_n_cs_precedes, 810
char int_n_sep_by_space, 811
char int_n_sign_posn, 811
char int_p_cs_precedes, 810
char int_p_sep_by_space, 810
char int_p_sign_posn, 811
char n_cs_precedes, 810

char n_sep_by_space, 810
char n_sign_posn, 810

char p_cs_precedes, 810

char p_sep_by_space, 810
char p_sign_posn, 810
complex, 801

Complex I, 801

ctype.h functions, 437

DATE, 638

#define preprocessor directive, 617-622

defining, 633, 843
EDOM, 804
EILSEQ, 804
ERANGE, 804

expansion, #define preprocessor directive lines, 617

false, 819

FE ALL EXCEPT, 806
FE DFL ENV, 806

FE DIVBYZERO, 805
FE DOWNWARD, 806
FE INEXACT, 805

FE INVALID, 806

FE OVERFLOW, 806
FE TONEAREST, 806
FE TOWARDZERO, 806
FE UNDERFLOW, 806
FE UPWARD, 806
fenv.h header file, 805-806
FILE, 638
FP_FAST_FMA, 812
FP_FAST_FMAE 812
FP_FAST_FMAL, 812
FP_ILOGBO, 812
FP_ILOGBNAN, 812
FP_INFINITE, 812
FP_NAN, 812

FP_NORMAL, 812
FP_SUBNORMAL, 812
FP_ZERO, 812
function-like, 617, 621-625
functions, 627-628, 631
HUGE_VAL, 811
HUGE_VALE 811
HUGE_VALL, 811
1,801

imaginary, 801
Imaginary I, 801
INFINITY, 811

LCALL, 809

LC COLLATE, 809

LC CTYPE, 809

LC MONETARY, 809
LC NUMERIC, 809

LC TIME, 809

LINE, 638
MATH_ERREXCEPT, 812
math_errhandling, 812
MATH_ERRNO, 812
names, spaces, 628
NAN, 811

NULL, 809, 820, 843
object-like, 617

offsetof (type, member-designator), 820
predefined, predef.c program code, 638-639

program speeds, 628
SIGABRT, 817

SIGFPE, 817

SIGILL, 817

SIGINT, 817

signal.h header file, 817
SIGSEGYV, 817

SIGTERM, 817
SIG_DFL, 818

SIG_ERR, 818

SIG_IGN, 818

SQUARE, 622

stdbool.h header file, 819
STDC, 638

STDC HOSTED, 638
STDC VERSION, 638
stddef h header file, 820
struct lconv, 809-811
TIME, 638

true, 819

type va_arg(va_list ap, type), 819
VA ARGS variadic, 626-627
va copy(), 659

vaend(), 659
va start(), 658
variable arguments, 819
variadic, 626-627
va_arg(), 658
void (*f)(int), 818
void assert(int exprs), 801
void va_copy(va_list dest, va_list src), 819
void va_end(va_list ap), 819
void va_start(va_list ap, parmN), 819
WCHAR_MAX, 843
WCHAR_MIN, 843
wctrans_t, 850
wetype.header file, 849-850
wctype_t, 850
WEOF 843
WEOF constant expression, 850
wint_t, 849
main() function, 26-28, 288
arguments, 438
defining, 304
getinfo() function, 546
int, 25
int statement, 34
interchange() function, variable swapping,
332-334
return statements, 34
void, 25
maintaining programs, 10
make command (UNIX), 326
makeinfo() function, 546-548
MakeNode() function, 717
mall advice booth simulation, 702-708
mall.c program, code, 704-706
malloc() function, 670, 793
arguments, 475
arrays, 476
data presentation, 668
dynamic memory allocation, 480-481
memory allocation, 475-478
pointers, 476
structures, 550-552
manifest constants, 98-101, 631. See also symbolic con-
stants
manybook.c program, 533-537
manydice.c file program, code, 473-474
mapping
characters, 616, 227
wide characters, 849-852
marking end of files, 271-274
masks, bitwise operators, 594-595

INDEX

matching printf() function specifiers, 64
math

functions, ANSI C standard, 812-816

type-generic, 837-838
Math library, 645-648, 811-818, 862-863
math.h header file, 811-818, 862-863
MATH_ERREXCEPT macro, 812
math_errhandling macro, 812
MATH_ERRNO macro, 812
maximum width types, 822, 855
mbstate_t type, 843
MB_CUR_MAX constant, 828
mechanics of programming, 11-18
members (structure)

. (dot) operator, 532

accessing, 532-533

arrays of structures, identifying, 535-536

declarations, 529

flexible array (C99), 554-556

functions, 541-542

passing, 542-543

pointers, accessing, 541

struct tm structure, 838-839
membership (.) operators, 788-789
memcpy() function, 486, 656-657
memmove() function, 486, 656-657
memory

addresses, finding, 331

allocating, 475-481, 793

bits, 53

bytes, 53

caching, 484

char arrays, 204

dynamic memory allocation, 387

int arrays, 204

manybook.c program, 533

programs, free() function, 675

RAM (random-access memory), 5

static, strings, 402

structures, 530, 533

words, 54
mems.c program code, 656-657
menuette.c program, code, 293-295
menus, 290-295
messages, error, 50, 639
Metrowerks CodeWarrior compiler, 17-18
min sec.c program, code, 143-144
minimum width types, 70, 821, 853-854
minus sign (-) operator, 134
mismatched conversions, printf() function, 110-113
misuse.c program, code, 315

909

910 C PRIMER PLUS

mixing character and numeric input, 292-295 names.c source file program code, 630
modes names.h header file program, code, 629, 636
binary and text, comparing, 509 namesl.c program code, 545-546
mode argument, 508 names2.c program code, 547
postfix, 144 namespaces, shared, 568-569
strings, fopen() function, 498 naming
modifiable lvalue, 132-133 conventions for files, 11
modifiers functions, 25, 302
* (printf() or scanf() function), 121-123 output files, 502
const, 98, 866 symbolic constants, 96
conversions, 104-110, 118-119 variables, 31, 462-463
declarations, 571-573 NAN macro, 811
modularity, programs, 206 Nerfville Pet Club, binary search trees, 735
modules nesting
functions, 288 if else statements, 232-235
hotel.c function support, code, 328-329 if statements, if...else if...else sequence, 232
usehotel.c control, code, 327-328 loops, 201-203
modulus operator (%), 142-144, 159 structures, 537-539
monitors, printing to, 24 new C elements, 51
MONTHS symbolic constant, 347 newline character (/n), 33
MS-DOS, running programs, 10 \ (backslash), 616
multibyte characters, 858-860 checking, 271
multidimensional arrays, 354 fgets() function, 432
one-dimensional, 358, 390 strchr() function, 432
functions, 380-383 no data.c program, code, 347-348
pointers, 375-380 no linkage, 452-453, 488
rain.c program code, 355-356 nodes
three-dimensional, 358 AddItem() function, 687
two-dimensional, 355-358 CopyToNode() function, 686, 697
multiplication operator (¥), 37, 135-136, 159 deleting binary search trees, 722-723
mycomp() function, defining, 653-654 leaf, deleting, 720

one-child, deleting, 721
two-child, deleting, 722
N nogo.c program, code, 420-421
nogood.c program, code, 39
non-local jumps, 817
nono.c program, code, 413
nonprinting characters, 65-68
not (1) logical operator, 237, 787
not equal to (!=) relational operator, 177, 185
notations
exponential, 72
pointers, 367

\n (escape character), 66-67

/n (newline character), 33

name variables, 339

namel.c program, code, 407-408
name2.c program, code, 408
name3.c program, code, 409-410
nameln2.c program, code, 551-553

names niers
declarations, modifiers, 571-573 scientific, 72
files, 11, 639 null
functions, uses, 578 characters, 91-92, 418
macros, 628 pointer, 476

statements, 176, 795

tags, structure declarations, 529 i
wide characters, 859

types, creating with typedef, 569-571
UCNss (universal character names), 858-859
variables, 31, 160

NULL
constant, 827
macro, 809, 820, 843
num variable, 26, 29
numbering lines, resetting, 639
numbers
arrays, identifying, 204
binary, 323-324, 587-591
bit, 588
complex, 76, 792, 801-803, 863-864
converting to strings, 440
decimal (base 10 system), 588, 591
decimal points, keywords, 53
exponential notations, 72
Fibonacci, 325
floating-point, 54, 84
binary, 589-590
control mode values, 861
double types, 72-73, 78, 792
environment, fenv.h header file, 805-807
exceptions, 861
exponential notations, 85
fixed decimal points, 85
float types, 72-73, 78, 791
IEC (International Electrotechnical
Committee), 861
long double types, 72-73, 78, 792
overflow, 75
pi () numbers, storing, 55
relational operators, 177
round-off errors, 76
status flags, 861
underflow, 75
hexadecimal (base 16 system), 58-59, 591-592
imaginary, 76, 792
input, validation, 289-290
integers, 54, 57
number variable, 452
number systems
base 2 (binary), 588
base 8 (octal), 590-591
base 10 (decimal), 588, 591
base 16 (hexadecimal), 591-592
octal (base 8 system), 58-59, 590-591
pi (=) storing in floating-point format, 55
prime, finding, 234
random, 468-474
real, 54
scientific notations, 72
sign magnitude, 589
signed, 589

INDEX

strings, converting, 440-443

subscript, array elements, 346

truncation, 81
numeric code, characters, 85
numeric computations (C99), 860-864
numeric input, 281-284, 292-295
numeric instruction code (machine language), 6
numerical constants, 124

0

%o conversion specifier, 102, 118
.0 file extension, 14, 326
.obj file extension, 17, 326
object code files, 12-13
object-like macros, 617
objectives of programs, defining, 8
objects, 133, 326
octal numbers (base 8 system), 58-59, 590-591
offset argument, 508
offsetof (type, member-designator) macro, 820
offsets, arrays, 204
one’s-complement method, binary or signed numbers,
589
one-child nodes, deleting, 721
one-dimensional arrays, 358, 390
opening files (fopen() function), 498-499
operands, 133
? (conditional operator), 246
expressions, values, 150-151
sizeof operator, 142
operations, pointers, 367-370, 511
operators
A (EXCLUSIVE OR) (bitwise binary operator),
593-594, 789
-, (unary), 785
~ (bitwise unary operator), 592-59, 789
. (dot), 532, 541, 564
/ (division), 137-138, 159, 785
? (conditional), 244-246, 260, 787
| (or) logical operator, 237
() (parentheses)
precedence, 139-141, 148
sizeof, 95
(operator), strings, 624-626
(operator), tokens, 625
— (arithmetic), 785
— (decrement), 144, 147-149, 159
= (assignment), 132-133, 158, 181-182

911

912 CPRIMER PLUS

== (equal to relational operator), 171, 181-182, expressions, 139, 150-151
785 functions, 301
! (logical NOT operator), 237, 787 indirect membership (->), 789
I= (unequal relational operator), 785 logical, 236-240, 260, 592-593, 787
-> (operator), 541, 563 membership (.), 788-789
-> (indirect membership), unions, 565 NOT (!) logical operator, 237, 787
(strings), 624-626 operands, 133
(tokens), 625 OR () (bitwise binary operator), 789
% (arithmetic), 785 OR (|]) (logical operator), 787
% modulus, 142-144, 159 pointer-related, 788
- (minus sign), 134 precedence, 138-141, 784-785
- (subtraction), 134, 159, 785 redirection, 276-277
- (unary), 159 relational, 148, 176-185, 785
| (OR operator), 593 shift, 596-597
| (OR) (bitwise binary operator), 789 sign, 788
| (pipe), 277 sizeof, 80, 95, 142, 159, 790
Il (logical OR operator), 787 structures, 565, 788-789
& (address), 335, 368, 540 (type), 159, 790
& (AND) (bitwise binary operator), 593, 789 unary, 134, 784, 789-790
& (pointer-related operator), 788 &, 330-332
&& (logical AND operator), 237, 787 * 366
* (indirection operator), 334-335, 360-361, 368 ++, 366
* (multiplication), 135-136, 159, 785 union, 788-789
* (pointer-related operator), 788 OR () (bitwise binary operator), 593, 789
* (unary), 366 OR (I (logical operator), 237, 787
+ (addition), 134, 158, 785 order of evaluation (operator precedence), 140-141,
++ (arithmetic), 785 238-239
++ (increment), 144-150, 159 order.c program, code, 366
++ (unary), 366 ordered lists, elements, binary searches, 710
< (less than), 148 organization of book, 19-20
< (less than relational operator), 785 output, 267. See also /O
< (redirection), 275-277 binary, 513
<< (bitwise binary operator), 789-790 buffered, 496
<< (left shift), 596 files
<= (less than or equal to relational operator), 785 buffers, flushing to, 512
> (greater than), 148 naming, 502
>> (right shift), 277, 597 standard output, 495-496
arithmetic, 132, 159, 785 flushing, escape.c program, 84
assignment, 192-195, 786 standard, 275-279, 495-496
association rule, 140 streams, 520, 271
binary, 134, 784, 789-790 strings, 412-414
bitwise, 592-601, 606-611, 789-790 text, 513
cast, 158-159 overflows, 61-62, 75

comma (,), 193-196, 235, 790
concepts, 163

conditional, 787 P
dyadic, 134

EXCLUSIVE OR (*) (bitwise binary operator), 789 %p

exponential growth, wheat.c program, code,
136-137

exponentiating (pow() function), 132, 206

conversion specifier, 102, 118
strftime function() format specifier, 841
p and s.c program, code, 405-406

packages
programming, binary search tree, 725-729
programs, parts of, 683
standard 1/0, 271
paint.c program, code, 244-245
pairing if else statements and else statements, 231-232
parameter declarations, const type qualifier, 482-483
parameters, 82
... (ellipsis), 818
arguments, comparing, 160
arrays, declaring, 363
const keyword, 371-373
formal, 160, 308-310, 340
functions, defining with arguments, 308
register variables, 457
parentheses ()
arguments, 621, 628
definitions, 628
functions, 25, 28, 33, 304
operator precedence, 139-141, 148
pointers, 378
sizeof operator, 95
subexpressions, 225
parrot.c program, 505-506
parta.c file program, code, 465-466
partb.c file program, code, 466
passing
arguments, 113
structure members, 542-543
structures as arguments, 544
pausing programs, 16
PCs (IBM), 17, 270
percent sign (%), printing, 104
percent symbol group (%d), 34
period (.), 226, 236
pet clubs (Nerfville Pet Club), binary search trees, 735
petclub.c program, 731-735
pf pointer (ToUpper() function), declaring, 573
pfun argument, 681
physical lines, changing to logical lines, 616
pi ()
constant, 95
numbers, storing in floating-point format, 55
pizza.c program, code, 96-98
Plauger, PJ., 783
Plum, Thomas, 783
plus sign (+) operator, 134
pnt add.c program, code, 359
pointer-related operators, 788
pointer-to-char, 476, 479
pointer-to-float, 360

INDEX

pointer-to-int, 360-362
pointer-to-void, 476, 479, 868
pointers, 330

& (address operator), 335

* (asterisk), 336

* (declaration modifier), 571-572

* (indirection operator), 334-335

* (operator), 360

-> (operator), 541, 563

addresses, double indirection, 375

arguments, 364-366

argv array, 439

arrays, 358-364, 367

assignment operation, 368

byte addressable, 360

character pointers and character arrays, comparing,

549-550
character string arrays, 401-403
communicating between functions, 336-338
const type qualifier, 482-483
constants, 359
data, 573
data objects, 360
declaring, 335-336, 382-383, 574
decrementing a pointer operation, 369
dereferencing operation, 368
differencing operation, 369
file, 498
FILE argument, 508
functions, 336-338, 573-579
head pointers, 670
incrementing a pointer operation, 368
int, incrementing, 370
malloc() function, 476
multidimentional arrays, 375-380
notation, 367
null, 476
operations, 367-370
pf (ToUpper() function), declaring, 573
properties, 375
returning to string location, 431
standard files, 501
stderr, 501
stdin, 501
stdout, 501
strepy() function, 427
strings, 405-4006, 434-435
structure pointers and structure arguments, com-

paring, 548-549
structures, 539-541, 550-552
sump() function, 365

913

C PRIMER PLUS

taking a pointer address operation, 368
types, 77

uninitialized, dereferencing, 369

unions, -> (operator), 563

value-finding (dereferencing) operation, 368
types, 77

variables, 339, 359, 367-368

polar coordinates, 662
portability, 3

fseek() and ftell() functions, 510
types, 70-71

positions

active (characters), 66
bit, bit fields, 611

identifiers, 633
#if preprocessor directive, 637-638
#ifdef preprocessor directive, 633-635
#ifndef preprocessor directive, 635-637
#include preprocessor directive, 628-632
#line preprocessor directive, 639
#pragma preprocessor directive, 639-640
programs, translations for, 616
#undef preprocessor directive, 632-633

prime numbers, finding, 234

print statements, 35

printl.c program, code, 57-58

print2.c program, code, 62-63

printf() function, 34, 51, 81-82, 85, 101, 124, 271,

post pre.c program, code, 146 301-302

postage.c program, code, 193-194 ““(double quotation marks), 33
postconditions, functions, 680 # flag, 107

postfix mode, 144 + flag, 106

pound sign (#), 27, 159, 268, 270, 616, 640 - flag, 106

pound() function, 159 0 flag, 107

* modifier, 121-123

arguments, 33, 103

characters, 68

conversions, 101-107, 110-113
digit(s) modifier, 105

exercise, 46

%f specifier, 51

fathm ft.c programs, 37-38

flags, 105-106

flags.c program, code, 109

float arguments, conversion specifications, 106
floatenv.c program, code, 112-113
floating-point values, printing, 74
floats.c program, code, 108-109
functions, calling, 33

h modifier, 105

hh modifier, 105

intconv.c program, code, 111-112
interactive programs, 51

j modifier, 105

I modifier, 105-106

1l modifier, 105

long strings, printing, 115-116
longstrg.c program, code, 115-116
printout.c program, code, 102-104
protval.c program, code, 115
return values, 114-115

skip2.c program, code, 122-123
space flag, 107

specifiers, matching, 64

strings, 414, 440

pound.c program, code, 159-161
pow() function, 132, 206
power of C, 3
power() function, 209
power.c program, code, 207-209
#pragma preprocessor directive, 639-640
praisel.c program, code, 92-93
praise2.c program, code, 93-95
Prata, Stephen, 784
precedence
— (decrement operator), 148-149
++ (increment operator), 148-150
() (parentheses), 148
logical operators, 238
operators, 138-141, 784-785
relational operators, 183-184
preconditions, functions, 680
predef.c program code, 638-639
predefined macros, predef.c program code, 638-639
preproc.c program, code, 617
preprocessing source code, 27
preprocessor
ANSI C standards, 615
compiling programs, 615
#define preprocessor directive, 616-627, 632-633
directives, 27, 631-639
#elif preprocessor directive, 637-638
#else preprocessor directive, 633-635
#endif preprocessor directive, 633-635
#error preprocessor directive, 639
functions, inline, 640-643

strings.c program, code, 109-110
t modifier, 106
%u specifier, 61
unsigned int values, 61
utilizing, 104
values, printing, 37-38
varwid.c program, code, 121-122
warnings, 84
width.c program, code, 107-108
z modifier, 106
printf statement, 26
printf() statement, 83-84
printing
% (percent sign), 104
characters, 68-69
columns, fixed field widths, 123
control strings, 103
escape characters, 82-84
fathm ft.c program values, 37-38
floating-point values, 74-75
int type values, 57-58
long long types, 62-64
long strings, 115-116
long types, 62-64
short types, 62-64
strings, 92, 397-399
to screens, 24
unsigned types, 62-64
values, 37-38
printout.c program, code, 102-104
private variable names, 160
protval.c program, code, 115
programmers, C benefits, 3-4
programming
C, steps, 7-8
data representation, 665, 736-737
ADTs (abstract data types), 676-708
algorithms, 666
binary search trees, 711-735
bitmapped graphics images, 666
data hiding, 680, 689
films1.c program, code, 667
integer properties, 676
linked lists, 668-676, 708-710
lossless compression, 666
lossy compression, 666
malloc() function, 668
examples, bitwise operators, 598-601
exercises, 46-47

INDEX

languages, 1
C++, 4
high-level, 6-7
portability, 3
mechanics, 11-18
modular, 288
packages (binary search trees), 725-729
portability, 3
steps, 9

programs

add one.c, code, 144
addaword.c, code, 503-504
addemup.c, code, 152
altnames.c, code, 71
animals.c, code, 251-252
append.c, code, 516-517
arf.c program, code, 372-373
array2d.c, 381-383

assert library, 654-656
assert.c, code, 655

bases.c, code, 59

binary.c, code, 323-324, 598-599
book.c, code, 528-529
booksave.c, 560-561
boolean.c, code, 182-183
bounds.c, code, 352

break.c, code, 249-250
bugs, debugging, 10
byebye.c, code, 648-649

C code, 9

charcode.c, code, 68-69
chcount.c, code, 236
checking.c, 286-289
cmpflt.c, code, 177-178
colddays.c, code, 220-221
commentary, 10-11
comments, 28-29

compare.c, code, 421
compback.c, code, 422
compile time substitution, 96
compiling, 326, 615
concepts, 43-44

concrete.c, code, 11
convert.c, code, 157-158, 436, 646-647
copyl.c, code, 425-426
copy2.c, code, 427

copy3.c, code, 428-429
count.c, code, 496-497
creating (Linux), 15

cube.c, code, 188

915

916 C PRIMER PLUS

cypherl.c, code, 224
cypher2.c, code, 226-227
day monl.c, code, 346-347
day mon2.c, code, 349

day mon3.c, code, 361
debugging, 10, 39-43, 654-656
defines.c, code, 100
designate.c, code, 350
designing, 8

diceroll.c file, code, 472-473
diceroll.h file, code, 473
divisors.c program, 234-235
doubincl.c, code, 637
dowhile.c, code, 198
dual.c, code, 607-609

dyn arr.c, code, 477

echo eof.c, 272-274

echo.c, 268-270, 438
electric.c, code, 228-229
entry errors, avoiding, 295
entry.c, code, 198-199
enum.c, code, 567-568
error messages, 50
escape.c, code, 83-84
factor.c, code, 321-322
fathm ft.c, 36-38

fields.c, code, 604-605

file eof.c, code, 278
file-condensing, 501-503
files, 11, 270

files of code, storage classes, 464
films1.c, code, 667
films2.c, code, 672-673
films3.c, code, 681-682
flags.c program, code, 109
flc.c, code, 388-389
flexmemb.c, code, 554-556
floatcnv.c, code, 112-113
floats.c program, code, 108-109
flow, 169, 253

forc99.c, code, 455-456
format.c, code, 429-430
friend.c, code, 537-538
friends.c, code, 539-540
func ptr.c, 575-579
functions, adding, 38-39
fundsl.c, code, 542
funds3.c, code, 544
funds4.c, code, 556-557
fundsd2.c, code, 543
global.c, code, 461-462

glue.c, code, 625
golf.c, code, 133
guess.c, code, 279-280
hello.c, code, 440-441
hiding.c, code, 454-455
ifdef.c, code, 634
input.c, code, 117, 423-424
intconv.c, code, 111-112
interactive, 51
invert4.c, code, 600-601
/0 functions, 27, 267
join chk.c, code, 419-420
jumps, 259-260, 799-800
keywords, 43
lesser.c, code, 310-311
letheadl.c, analyzing, 303-305
lethead2.c, code, 306-307
linkers, 9
list.c implementation file, 684-688
list.h interface header file, code, 680
loccheck.c, code, 331
longstrg.c, code, 115-116
loops
shoesl.c program, code, 129-130
shoes2.c program, code, 130-131
mac arg.c, code, 621-622
maintaining, 10
mall.c, 704-708
manybook.c, 533-537
manydice.c file, code, 473-474
memory, free() function, 675
mems.c, code, 656-657
menuette.c, code, 293-295
misuse.c, code, 315
modifying, 10
modularity, 206
namel.c, code, 407-408
name?2.c, code, 408
name3.c, code, 409-410
nameln2.c, code, 551-553
names.c source file, code, 630
names.h header file, code, 629, 636
namesl.c program code, 545-546
names2.c program code, 547
no data.c, code, 347-348
nogo.c, code, 420-421
nogood.c, code, 39
nono.c, code, 413
objectives, defining, 8
order.c, code, 366
p and s.c, code, 405-406

packages, parts of, 683

paint.c, code, 244-245
parrot.c, 505-506

parta.c file, code, 465-466
partb.c file, code, 466

pausing, 16

petclub.c, 731-735

pizza.c, code, 96-98

pnt add.c, code, 359

post pre.c, code, 146
postage.c, code, 193-194
pound.c, code, 159-161
power.c, code, 207-209
praisel.c program, code, 92-93
praise2.c program, code, 93-95
predef.c, code, 638-639
preproc.c, code, 617

printl.c, code, 57-58

print2.c, code, 62-63
printout.c, code, 102-104
pratval.c, code, 115

program states, examining, 42-43
programming exercises, 46-47
protol.c, code, 316-317

pt ops.c, code, 367-368

put out.c, code, 412

put put.c, code, 416

putl.c, code, 414

put2.c, code, 415-416
gsorter.c, code, 651-652
queue.c implementation file, code, 698-700
queue.h interface header file, code, 694-695
r drivel.c driver, code, 469

r drive2.c, code, 470

rain.c, code, 355-356

randO.c function file, code, 468
randbin.c, 519-520, code, 518-519
readability, 35-36, 565-569
recur.c, code, 318-319
reducto.c, 501-503

reserved identifiers, 43
reverse.c, code, 507
rhodium.c, 49-51

rowsl.c, code, 201-202
rows2.c, code, 202-203
rules.c, code, 140-141

running in environments, 10
running.c, code, 161-162

s and r.c, code, 469-470

scan str.c, code, 411

scores.c, code, 204-206

INDEX

shoesl.c, code, 129-130
shoes2.c, code, 130-131, 144-145
showcharl.c, code, 282
showchar2.c, code, 283
showfpt.c, code, 74-75
simple C, 23-25

sizeof.c, code, 142

skip.c, code, 246-247
skip2.c, code, 122-123
somedata.c, code, 348-349
sort str.c, code, 432-433
speeds, macros, 628
squares.c, code, 135-136
starsrch.c, code, 424-425
statements, 151-155
stillbad.c, code, 41-42

str cat.c, code, 419
strenvt.c, code, 442
streams, 271

strings, 399-400

strings.c, code, 109-110, 397-399
structure, 34-35

subst.c, code, 624

sum arrl.c, code, 363-364
sum arr2.c, code, 364-365
summing.c, 170-172
swapl.c, code, 332-333
swap2.c, code, 333
swap3.c, code, 336-337
sweetiel.c, code, 186
sweetie2.c, code, 187
tand f.c, code, 178-179
talkback.c, code, 89-91
terminating, 497

test.c, code, 417-418
testing, 10

tracing, 42

translations for preprocessing, 616
tree.h interface header file, code, 714-716
trouble.c, code, 180-182
truth.c, code, 179-180
two func.c, code, 38-39
typesize.c, code, 79-80
use qc, code, 700-701
useheader.c, code, 630-631
varargs.c, code, 659-660
vararr2d.c, code, 385-386
variadic.c, code, 626
varwid.c, code, 121-122
vowels.c, code, 254-255
warnings, 50

917

C PRIMER PLUS

wheat.c, code, 136-137

while loops, 130-131

whilel.c, code, 175

while2.c, code, 175-176

width.c program, code, 107-108

word-count, 240-244

wordent.c, code, 242-244

writing, 6

zeno.c, code, 196-197

zippol.c, 376-377

zippo2.c, code, 378
projects, 16, 327
promotion, data types, 156
properties

of integers, 676

pointers, 375

strepy () function, 427

variables, qualifying, 794
protol.c program, code, 316-317
prototyping

ANCI C functions, 314-318

functions with arguments, 308-309
pseudocode, 172
pt ops.c program, code, 367-368
PTRDIFF_MAX constant, 824
PTRDIFF_MIN constant, 824
ptrdiff_t type, 820
punctuation characters, counting, 436
pushing characters to input stream, 512
put out.c program, code, 412
put put.c program, code, 416
putl.c program, code, 414
put2.c program, code, 415-416
putc() function, putting characters into files, 499
putchar() function, 223-226, 268, 271, 302
puts() function, 412-413, 418, 397-399

Q

gsort() function (quick sort), 650-654
gsorter.c program code, 651-652
qualifiers

ANSI C types, 481-487

const type, 482-484

restrict type, 485-486

volatile type, 484-485
qualifying variables, 793-794
question mark (?), 66
Queue type, 690

queue.c implementation file program code, 698-700

queue.h file, 690

queue.h interface header file program code, 694-695

queues
ADTs (abstract data types), 689-708
arrays, 691
circular, 692
emptying, 698
FIFO (first in, first out), 690
items, manipulating, 691, 694-697
quick sort function (gsort() function), 650-654
quotation marks
““(double), 66,91, 404, 628-629
files, 327,473
macros, 619
printf() function, 33
“* (single), 66, 85

R

r drivel.c driver program, code, 469
1 drive2.c program, code, 470

\r (escape character), 66-67, 82

“r” (mode string), 498

“r+” (mode string), 498

%t (strftime function() format specifier), 841
ragged array, 404

rain.c program, code, 355-356
raise() function, 817

RAM (random-access memory), 5
rand() function, 468-471, 475

rand0() function, r drivel.c driver program, code, 469

rand0.c function file program, code, 468
rand1() function, 470, 475
randbin.c program, 518-520
random access
array elements, 708
files, 506-510, 518-520
random numbers, 468-475
random-access memory (RAM), 5
RAND_MAX constant, 828
ranges, testing, 240
“rb” mode string, 498
read-only values, constants, 98
readability of programs, 35-36, 565-569
reading
characters, first of a line, 254
input, scanf() function, 119-120
strings, 397-399
text files, 498

reading loop (while loops), summing.c program, 172
real floating points, 78
real numbers, 54
records, fields, 557
rectangular arrays, 404
rectangular coordinates, 662
recur.c program, code, 318-319
recursion
algorithms, calculating binary equivalents of inte-
gers, 323-324
functions, 318-325
loops, comparing, 318
.red file extension, 501
redefining constants, #define preprocessor directive,
620-621
redirection
files, 493-494
operators, < or >, 275-277
standard input or output, 274-279
reducto.c program, 501-503
reference sources
Algorithms in C: Fundamentals, Data Structures,
Sorting, Searching, 783
ANSI C 1I/0 functions, 824-827
ANSI C library, 800
assert.h header file, 801
C99 additions, 801-811
complex.h header file, 801-803
ctype.h header file, 803-804
errno.h header file, 804
fenv.h header file, 805-807
inttypes.h header file, 807-808
locale.h header file, 808-811
stdlib.h header file, 827-833
string functions, 417, 430-432
string.h header file, 834-837
tgmath.h header file, 837-838
time.h header file, 838-842
Unix I/0 functions, 267
wchar.h header file, 842-849
wetype.h header file, 849-852
Art of Computer Programming (The), Volume 1, 783
Boolean support, stdbool.h header file, 819
C: A Reference Manual, Fourth Edition, 783
C and C++, comparing, 864-869
C Programming FAQs, 783

C Programming Language (The), Second Edition, 782

C Puzzle Book (The), 782
C Traps and Pitfalls, 783
C++ Primer Plus, Fourth Edition, 784

INDEX

C++ Programming Language (The), Third Edition,
784

C/C++ Users Journal, 781, 860-864

C99 numeric computations, 860

character support, 856-860

data types, 790-792

definitions, stddef.h header file, 820

do while statements, 797

Elements of Programming Style (The), 783

expressions, 795-787

extended integer types, 852-855

for statements, 796

free() function, 793

1/0 library, 824-827

if statements, 797-798

integer types, stdint.h header file, 820-824

integers (extended types), 852-855

International C Standard (The) (ISO/IEC 9899
1999), 783

malloc() function, 793

Math library, 811-818

memory, allocated, 793

numeric computations (C99), 860-864

online, 781-782

operators, 784-790

program jumps, 799-800

Reliable Data Structures in C, 783

Standard C Library (The), 783

statements, 795

stdarg.h header file, 818-824

stdbool.h header file, 819

stddef h header file, 820

stdint.h header file, 820-824

stdio.h header file, 824-827

stdlib.h header file, 827-833

storage classes, 792-793

string.h header file, 834-837

switch statements, 798-799

tgmath.h header file, 837-838

time.h header file, 838-842

UCNSs (universal character names), 858-859

variables, 792-794, 818-824

wchar.h header file, 842-849

wetype.h header file, 849-852

Web sites, 781-782

while statement, 795-796

referencing

declarations, external variables, 463
uninitialized pointers, dereferencing, 369

919

920

C PRIMER PLUS

register
keyword, 453
specifier, 465
storage class, 453, 488, 793
variables, 457
registers, CPUs (central processing units), 6
relational
expressions, 173, 176-185, 236-240, 786
operator (==), 181-182
operators, 148, 176-183, 185, 785
Reliable Data Structures in C, 783
removing. See deleting

replacement lists, #define preprocessor directive lines,

617
reporting errors, errno.h header file, 804
representing floating-point numbers, 590
reseeding, automated, 471
reserved identifiers, 31, 43
resources. See reference sources
restrict keyword, 485-486, 793
restricted keyword, 457
return
keyword, 301, 311
statements, 34-35
types (functions), 27, 340
return values
assigning to variables, 312
functions, 206-210
printf() function, 114-115
scanf() function, 121
stremp() function, 422-424
returning
characters or pointers to strings, 431
values, 26, 310-313
reversal and recursion (functions), 323-324
reverse.c program code, 507
rewind()
command, 561
function, addaword.c program code, 503-504
rhodium.c program, 49-51
right shift operator (>>), 597
Ritchie, Dennis M., 1, 18, 782
rollem() function, 473
rolling dice, 471-475
roll_n_dice() function, 473
round-off errors, floating-point numbers, 76
routines of libraries, 9, 12
rows, creating, 202
rowsl.c program, code, 201-202
rows2.c program, code, 202-203
rules (association), operators, 140

rules.c program code, 140-141
running programs in environments, 10
running.c program, code, 161-162
rvalues, 133

S

%s
conversion specifier, 90, 102, 118
specifier, scanf() function, 289
s and r.c program, code, 469-470
%S (strftime function() format specifier), 841
saving structure contents to files, 557-561
scalar variables (single-valued variables), 346
scan str.c program, code, 411
scanf() function, 81, 101, 116, 271, 295
& (ampersand), 51, 77
* modifier, 121-123
%C specifier, 289
conversions, 117-119
%d specifier, 289
EOF (end of files), 272
%f specifier, 289
format string characters, 120-121
input, reading, 119-120
input.c program, code, 117
interactive programs, 51
loops, 171
null characters, 92
return values, 121
%s specifier, 289
skip2.c program, code, 122-123
string input, 410-412
summing.c program, 170-172
varwid.c program, code, 121-122
whitespace characters, 124
whitespaces, 93, 117
scientific notations, 72
scope (variables), 449-451, 457-459
scores.c program, code, 204-206
screens
output, book convention, 20
printing to, 24
searches
binary, 710-735
sequential, linked list elements, 709
Sedgewick, Robert, 783
seeds, automated reseeding, 471
SEEK CUR mode (files), 508
SEEK END mode (files), 508

SEEK SET mode (files), 508
SeeklItem() function, 719
SeekNode() function, 724
selection sort algorithm, sorting pointers, 435
selection statements. See if statements
semantic errors, 41-42
semicolon (;), 35-36, 795
assignment statement, 32
functions, 304
statements, 151, 155
structure member declarations, 529
sequences
access, linked list elements, 708
points, 153-154
searches, linked list elements, 709
statements, branching, 169
trigraph (characters), 856
setbuf() function, 270
setjmp.h header file, 817
setvbuf() function, 270, 516
shared namespaces, 568-569
shift operators (bitwise), 596-598
shoesl.c program, code, 129-130
shoes2.c program, code, 130-131, 144-145
short
int types, 77, 791
keyword, 53, 59
signed integer, 791
types, 60-64, 77
shortcomings of C, 4
shortcuts, keyboard
Ctrl+D, 276
Ctrl+Z, 271, 274-276
show() function, 575-579
showcharl.c program, code, 282
showchar2.c program, code, 283
showfpt.c program, code, 74-75
showinfo() function, 548
showmenu() function, 579
showmovies() function, 687
show_n_char() function, 306-308
side effects, sequence points, 153-154
SIGABRT macro, 817
SIGFPE macro, 817
SIGILL macro, 817
SIGINT macro, 817
sign off() function, 649
sign operators, 134, 788
sign-magnitude (numbers), 589
signal handling, 817-818
signal() function, 817-818

INDEX

signal.h header file, 817-818
signals, functions, 818
signed
char types, 69
int, bit fields, 601
integers, 77, 589, 791
keyword, 53, 60, 77
numbers, 589
signs (two's-complement binary numbers), reversing,
589
SIGSEGV macro, 817
SIGTERM macro, 817
SIG_ATOMIC_MAX constant, 824
SIG_ATOMIC_MIN constant, 824
SIG_DFL macro, 818
SIG_ERR macro, 818
SIG_IGN macro, 818
simple C program, 23-25
simple statements, 155, 795
simulating with ADTs (abstract data types) queues,
702-708
simulations
single quotation mark (), 66
single-character /O, 268
single-valued variables, 346
sites. See Web sites
size t type, 142, 432
sizeof operator, 80, 95, 142, 159, 790
sizeof.c program, code, 142
sizes
arrays, 347, 353-35
bulffers, 269
data types, 79-80
VLAs (variable-length arrays), 384
SIZE_MAX constant, 824
size_t fread(void * restrict, size_t, size_t, FILE * restrict)
function, 825
size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*fp) function, 515
size_t fwrite(const void * restrict, size_t, size_t, FILE *
restrict) function, 825
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE
*fp) function, 514-515
size_t mbrlen(const char * restrict s, size_t n, mbstate_t
* restrict ps) function, 847
size_t mbrtowc(wchar_t * restrict pwe, const char *
restrict s, size_t n, mbstate_t * restrict ps) function,
847
size_t mbsrtowcs(wchar_t * restrict dst, const char **
restrict src, size_t len, mbstate_t * restrict ps) function,
848

921

922 C PRIMER PLUS

size_t mbstowes(wchar_t * restrict pwcs, const char *s %d, 68, 289
restrict, size_t n) function, 833 extern, 465
size_t strespn(const char #s1, const char *s2) function, %I, 51,289
836 formats, 840-842
size_t stritime(char * restrict s, size_t max, const char * matching, 64
restrict fmt, const struct tm * restrict tmpt) function, register, 465
840 %s, 289
size_t strlen(const char * s) function, 431 static, 465
size_t strspn(const char *s1, const char *s2) function, storage classes, 453, 464-465
836 typedef, 464
size_t strxfrm(char * restrict s1, const char * restrict s2, %u, 61
size_t n) function, 835 speed of programs, macros, 628
size_t type, 820, 827, 838, 842 spelling alternatives
size_t wertomb(char * restrict s, wchar_t we, mbstate_t C and C++, comparing, 868
* restrict ps) function, 848 characters, 857-858
size_t wesrtombs(char * restrict dst, const wchar_t ** logical operators, 237-238
restrict src, size_t len, mbstate_t * restrict ps) function, sprintf() function, 429-430, 440
849 sqrt() (square root) function, 646
size_t westombs(char * restrict s, const wchart_t * SQUARE macro, 622
restrict pwcs, size_t n) function, 833 squares.c program, code, 135-136
skip.c program, code, 246-247 srand1() function, 469-470
skip2.c program, code, 122-123 srtlen() function, 93-95
slashes standard ANSI C library, 800-811
\ (backslash), 34, 66-67 Standard C Library (The), 783
/ (forward slash), 226 standard error output, files, 495-496
software developers, 4 standard files, pointers, 501
somedata.c program, code, 348-349 standard high-level files, 495
sort str.c program, code, 432-433 standard I/O
sorting binary /0O, 513, 518-520
algorithms, 652 command-line arguments, 497
pointers, 435 count.c program code, 496-497
strings, 432-434 EOF (end of file), 499-500
source code fclose() function, 500-501
compiling, 9, 639-640 files, pointers, 501
converting to executable files, 12 fopen() function, 498-499
files, 327, 630-631 functions, 511-512, 515, 518
preprocessing, 27 getc() function, 499
writing, 9 input, 274-276, 279, 495-496
sources. See reference sources input/output header (stdio.h file), 24-27, 268,
space flag, printf() function, 107 824-827
spaces int feof(FILE *fp) function, 515
macro names, 628 int ferror(FILE *fp) function, 515
string input, 407 int fflush(FILE *fp) function, 512
whitespaces, 93 int setvbuf(FILE *fp, char *buf, int mode, size_t
specifications size) function, 512-513
array sizes, 353-354 int ungetc(int ¢, FILE *fp) function, 512
conversions, 90, 101-110, 117-118 library, 824-827
specifiers operation, 511
auto, 464 output, 275-279, 495-496
%C, 289 package, 271, 498

%c format, 68 putc() function, 499

size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *fp) function, 515
size_t fwrite(void *ptr, size_t size, size_t nmemb,
FILE *fp) function, 514-515

standard math functions (ANSI C), 812-816
standards

ANSIC, 18

C language, 18-19

C90, 18

C99,19,118

data types, C9X changes, 854

ISO C, 18

ISO/ANSI C standard, 19

ISO/ANSI C90, keywords, 43

ISO/ANSI C99, keywords, 43
starbar identifier, 303
starbar()

function, 304-305

statement, 304
starsrch.c program, code, 424-425
start-up code, 12
statements

{} (curly braces), 26, 29

: (semicolon), 36, 151, 155, 795

addemup.c program, code, 152

assignment, 32, 35, 152, 157, 795

blocks, 29, 131, 795

break, 249-255

compound, 154-156, 795

continue, 246-249

control, 795

declaration, 29-30, 35, 795

#define, 98

do while, 200, 797

else, pairing with if else statements, 231-232

else if, 228-230

expression statements, 151

for, 192, 796

function, 152

function call, 35, 795

goto, 257-261

if, 220-223, 232, 235, 260, 797-798

if else, 222-235, 244-245, 256, 260

#include, 26-27

init, main() function, 27

int, 25

jump (break and continue statements), 246-255

null, 176, 795

print, 35

printf, 26

printf(), 83-84

INDEX

return, 34-35
selection, 260
sequences, 169
side effects, sequence points, 153-154
simple, 155, 795
star(), 304
structured, 152
switch, 250-256, 290, 798-799
test expressions, 253
type conversions, 156-158
variables, defining, 26
void, 25
while, 152, 173-176, 185, 290, 421, 795-796
states of programs, examining, 42-43
static
keyword, 346, 452, 486-487, 792
memory, strings, 402
specifier, 465
storage class, 399, 452-453, 488
variables, 457-464, 468-471
static with external linkage storage class, 793
static with internal linkage storage class, 793
static with no linkage storage class, 793
static.c program, The (code listing), 458
status flags, floating-point numbers, 861
stdarg.h header file, variable arguments, 658-660,
818-824
stdbool.h header file, 819
STDC FP CONTRACT, 862
STDC HOSTED macro, 638
STDC macro, 638
STDC VERSION macro, 638
stddef.h header file, 820
stderr file pointer, 501
stdin
file pointer, 501
stream, 271
stdint.h header file, integer types, 820-824
stdio.h file, 24-27, 268, 824-827
stdlib.h header file, 648, 827-833
stdout
file pointer, 501
stream, 271
Steele, Guy L., 783
stillbad.c program, code, 41-42
storage classes, 792
arrays, 348
automatic, 453, 488, 793
block scope, 450-451
duration, structure initialization, 531
dynamic memory allocation, 480-481

923

C PRIMER PLUS

file scope, 451
files of code, 464
functions, 451, 467-468
memory allocation, 475-480
parta.c file program, code, 465-466
partb.c file program, code, 466
register, 793
register class, 453, 488
specifiers, 453, 464-465
static class, 453, 488
static with external linkage, 793
static with internal linkage, 793
static with no linkage, 793
variables, 449-467
storage duration, 449, 452-455
storage units, arrays, 359
storage-class specifiers, 464-465
storing
data, 69, 513
words in binary search trees, 712
str cat.c program, code, 419
strcat() function, 419-420, 483
strchr() function, newline characters, 432
stremp() function, 420-424, 432-434
strenvt.c program, code, 442
strepy() function, 425-427
streams
bytes, 295
input, 289-290, 512, 520
output, 520
standard /O package, functions, 271
stdin, 271
stdout, 271
strftime function(), format specifiers, 840-842
string comparison (stremp() function), 420-424,
432-434
string concatenation (strcat() function), 419-420, 483
string constants (string literals), defining character
strings, 399-400
string lengths (strlen () function), 90, 301, 417-418
string.h header file, 94, 418, 834-837
string.h library, 656-657
stringizing macro arguments, 624
strings, 81
arguments, 415, 437-440
arrays, 91
atoi() function, 441
char *strcat(char * s1, const char * s2) function,
431
char *strchr(const char * s, int ¢) function, 431

char *strepy(char * s1, const char * s2) function,
430
char *strncat(char * s1, const char * s2, size_t n)
function, 431
char *strncpy(char * s1, const char * s2, size_t n)
function, 430
char *strpbrk(const char * s1, const char * s2)
function, 431
char *strrchr(const char * s, int ¢) function, 431
char *strstr(const char * s1, const char * s2) func-
tion, 431
characters, 90, 397-399
arrays, 204
comparing, 93
functions, 435-437
returning, 431
string arrays, 400-405
string constants, 92, 399-400
comparing, 421-423, 431
concatenating, 431, 626
const keyword, 432
constants, static storage class, 399
control, 103-104
conversions, ANSI C functions, 441
convert.c program, code, 436
converting to numbers, 440-443
copying, 430
creating, 397-399, 624-625
ctype.h, 435-437
#define statement, 98
defining, 399
fit() function, 417-418
format, characters, 120-121
functions, 834-836
ANSI C library, 430-432
character, 435-437
convert.c program, code, 436
ctype.h, 435-437
fit(), test.c program, code, 417-418
gets, 408
puts(), null character, 418
sprintf(), 429-430
sprintf(), format.c program code, 429-430
strcat(), 419-420
stremp(), 420-424
strepy(), 425-427
strlen(), 417-418
strncat(), 419-420
strnemp(), 420-425
strnepy(), 425, 428-429

handling, 834-837
/O, options, 414-417
input, 406-411
int stremp(const char * s1, const char * s2) func-
tion, 431
int strncmp(const char * s1, const char * s2, size_t
n) function, 431
lengths of (strlen() function), 93-95
long, printing, 115-116
loops, 204
mode, fopen() function, 498
output, 412-414
pointers, 405-406, 431, 434-435
praisel.c program, code, 92-93
printing, 92, 397-399
punctuation characters, counting, 436
puts() function, null character, 418
reading, 397-399
size t type, 432
size_t strlen(const char * s) function, 431
sorting alphabetically, 432-434
sources, 426
sprintf() function, 429-430
static memory, 402
strcat() function, 419-420
stremp() function, 420-424
strepy() function, 425-427
strings.c program, code, 397-399
strlen() function, 417-418
strncat() function, 419-420
strnecmp() function, 420-425
strnepy() function, 425, 428-429
strtod() function, 441
strtol() function, 441-443
strtoul() function, 441
targets, 426
toupper() function, string characters, 435, 437
wide-character string utilities, 845-846
strings.c program, code, 109-110, 397-399
stringy, binary search trees, 735
strlen() function, 90, 301, 417-418
strncat() function, join chk.c program, code, 419-420
strncmp() function, 420-425
strnepy() function, 425, 428-429
Stroustrup, Bjarne, 784
strtod() function, 441
strtok() function, 837
strtol() function, 441-443
strtoul() function, 441
struct keyword, 529, 540

INDEX 925

struct lconv * localeconv(void) function, 808
struct lconv macros, 809-811
struct lconv structure members, 810
struct tm *gmtime(const time_t *ptm) function, 840
struct tm *localtime(const time_t *ptm) function, 840
struct tm structure members, 838-839
struct tm type, 838, 843
structured statement, 152
structures, 548
. (dot) operator, 541
addresses, 540, 543-544
allocating in blocks or individually, comparing, 669
arrays, 533-537, 556-557
binary trees, 561
book inventory, 527-529
Borland C/C++, 533
C and C++, comparing, 867
character pointers and character arrays, comparing,
549-550
compound literals (C99), complit.c program code,
552-553
contents, saving to files, 557-561
data forms, creating, 561-562
declarations, 529
do while loops, 199
fields, 529
flexible array members (C99), 554-556
for loops, 187
functions, 306
initializers, 531
malloc() function, 550-552
members, 529, 532-533, 541-543
memory, allocating, 530
namesl.c program code, 545-546
names2.c program code, 547
nested, 537-539
operators, 565, 788-789
passing as arguments, 544
pointers, 539-541, 550-552
programs, 34-35
records, fields, 557
struct lconv, members, 810
struct tm structure members, 838-839
structure pointers and structure arguments, com-
paring, 548-549
template definitions, header files, 631
unions, 562-565, 607
variables variables, 527, 530-532
while loops, 173
styles, while loops, 155
subexpressions, 150, 225

926

C PRIMER PLUS

subnormal (floating-point values), 75
subscripts

arrays, 204, 351

numbers, array elements, 346
subst.c program, code, 624
substitutions, compile time, 96
subtraction operator (-), 134, 159, 785
subtrees

binary search trees, 712

child nodes, deleting, 721-722
sum arrl.c program, code, 363-364
sum arr2.c program, code, 364-365
sum() function, 363-365
summing.c program, 170-172
Summit, Steve, 783
sump() function, 365
sun squares() function, 288
swapl.c program, code, 332-333
swap2.c program, code, 333
swap3.c program, code, 336-337
swapping variables in calling functions, 332-334
sweetiel.c program, code, 186
sweetie2.c program, code, 187
switch

keyword, 798

statements, 250-256, 290, 798-799
symbolic constants, 95-100, 347, 620. See also manifest

constants

symbols. See Symbols (index section)
syntax

comments, 26

errors, 40-41

points, 175
system header files, IDEs (integrated development envi-

ronments), 629

systems

book convention, 21

floating-point type sizes, 79

integer type sizes, 79

Linux, 15

UNIX, 13-14

T

tand f.c program, code, 178-179

\t (escape character), 66-67, 82

t (modifier), printf() function, 106

%t (strftime function() format specifier), 841
/t (tab character), 34

tables
creating, nested loops, 202
operators, high to low precedence, 784-785
tag names, structure declarations, 529
tail recursion, 321-323
taking a pointer address operation, 368
talkback.c program, 89-91
targets, 16, 426
tasks, menus, 290
templates, structure, 529, 631
terminating
functions, 313
input, 268
keyboard input, 270-274
programs, 497
while loops, 173-174
test.c program, code, 417-418
testing
ADTs (abstract data types) queues, 700-702
characters, functions, 227
conditions, 260
functions, 310
programs, 10
ranges, 240
tests
conditions, concepts, 210
expressions, 222, 240
loops, 248
non-whitespaces, detecting, 241
switch statements, 253
whitespace, detecting, 241
text, 306, 513, 616
files, 275, 498
mode and binary mode, comparing, 509
views, files, 494
tgmath.h header file, 837-838
Thompson, Ken, 1
three-dimensional arrays, 358
tilde (~)
bitwise unary operator, 789
unary operator, bitwise logical operator, 592-593
time, 838-842
TIME macro, 638
time() function, 471
time.h header file, 838-842
time_t mktime(struct tm *tmptr) function, 839
time_t time(time_t *ptm) function, 839
time_t type, 838
toggling bits, 595-596
tokens, 616, 620, 625
ToLeft() function, 717-718

tolower() function, 227
too bad() function, 649
ToRight() function, 717-718
toupper() function, 228, 435-437
ToUpper() function, 573
tracing programs, 42
transformations, wide-character functions, 851-852
translations, program preprocessing, 616
Traverse() function, 681, 687, 724
traversing binary search trees, 724-725
tree.c file, 717
tree.c implementation file code, 725-729
tree.h interface header file program code, 714-716
trees
AVL, 735
binary, 561, 711-735
expression, 139
trends of C, 4
trigraph sequences (characters), 856
trouble.c program, code, 180-182
troubleshooting, debugging programs, 10, 39-43,
654-656
true macro, 819
true values of expressions, 178-180
true variables, Bool type, 182
truncating text files, 498
truncation, 81, 137
truth.c program, code, 179-180
trystat() function, 458
turning bits on or off, 595
two-child nodes, deleting, 722
two-dimensional arrays, 355, 358, 390
two-dimentional functions, applying to arrays, 383
two func.c program, code, 38-39
twos-complement method, 589
.txt file extension, 17
(type) operators, 159, 790
type-generic math, 837-838
typedef
constants, 823-824
exact width types, 820-821
fastest minimum width types, 821-822
integers, 822-824
Item type, 690
keyword, 464
maximum width types, 822
minimum width types, 821
Queue type, 690
specifier, 464
types, creating names, 569-571

INDEX

typeface, book convention, 20
types. See also ADTs

Boolean (C99), 791, 868
char constants, comparing C and C++, 865-866
clock_t, 838
complex, comparing C and C++, 868
conversions, 156-158
data, defining abstract to concrete, 677
defining, 631, 676
stdlib.h header file, 827
time.h header file, 838
wchar.h header file, 842-843
div_t, 827
double (floating-point numbers), 792
enumerated, 565-569
exact width, 820-821, 853
extended integers, 852-855
fastest minimum width, 821-822, 854
fenv t, 805
fenv.h header file, 805
fexcept t, 805
float (floating-point numbers), 791
functions, 304, 313-314
int8_t, 820
intl6_t, 820
int32_t, 821
int64_t, 821
integers, 820-824, 852-855
intmax_t, 822
intptr_t, 822
int_fast8_t, 822
int_fast16_t, 822
int_fast32_t, 822
int_fast64_t, 822
int_least8_t, 821
int_least16_t, 821
int_least32_t, 821
int_least64_t, 821
Item, 678, 690
Idiv_t, 827
lldiv_t, 827
long double (floating-point numbers), 792
maximum width, 822, 855
mbstate_t, 843
minimum width, 821, 853-854
names, creating with typedef, 569-571
ptrdiff_t, 820
qualifiers, ANSI C, 481-486
Queue, 690
size_t, 142,820, 827, 838, 842

927

C PRIMER PLUS

stddef.h header file, 820

struct tm, 838, 843

time_t, 838

ToUpper() function, 573

typedef, 569-571

uint8_t, 821

uintl6_t, 821

uint32_t, 821

uint64_t, 821

uintmax_t, 822

uintptr_t, 822

uint_fast8_t, 822

uint_fast16_t, 822

uint_fast32_t, 822

uint_fast64_t, 822

uint_least8_t, 821

uint_least16_t, 821

uint_least32_t, 821

uint_least64_t, 821

va_arg(va_list ap, type) macro, 819

void (*f)(int) macros, 818

void functions, 650

wchar_t, 820, 827, 842

wectrans_t, 850

wetype.header file, 849-850

wctype_t, 850

wint_t, 842, 849
typesize.c program, code, 79-80

U

%u
conversion specifier, 102, 118
specifier, printf() function, 61
%U (strftime function() format specifier), 841
UCNSs (universal character names), 858-859
uint8_t type, 821
uintl6_t type, 821
uint32_t type, 821
uint64_t type, 821
UINTMAX_MAX constant, 823
uintmax_t strtoumax(const char * restrict nptr, char **
restrict endptr, int base) function, 808
uintmax_t type, 822
uintmax_t westoumax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base) function, 808
UINTN_MAX constant, 823
UINTPTR_MAX constant, 823
uintptr_t type, 822

uint_fast8_t type, 822
uint_fast16_t type, 822
uint_fast32_t type, 822
uint_fast64_t type, 822
UINT_FASTN_MAX constant, 823
uint_least8_t type, 821
uint_least16_t type, 821
uint_least32_t type, 821
uint_least64_t type, 821
UINT_LEASTN_MAX constant, 823
unary operators, 134, 784, 789-790

& (ampersand), finding addresses, 330-332

* 366

++, 360

-, 159,785

~ (bitwise logical operator), 592-593
unbalanced binary search trees, 735
unbuffered input and buffered input, comparing, 269
#undef preprocessor directive, 632-633
underflows, floating-point numbers, 75
underscore (_), naming variables, 31
unechoed input, 270
unequal (!=) relational operator, 785
ungetc() function, 512
uninitialized pointers, dereferencing, 369
unions, 562

. (dot operator), 563-564

-> (indirect membership operator), 565

as a structure, 607

as an integer, 607

C and C++, comparing, 867

initializing, 563

operators, 788-789

variables, defining, 563
United States Postal Service Web site, 193
universal character names (UCNs), 858-859
Unix

>> (operator), 277

> (redirection operator), 276-277

< (redirection operator), 275-277

| (pipe) operator, 277

buffering functions, 270

C compilers, 3

cc command, 326

cc compiler, 14

compiling on, 14

Ctrl+D keyboard shortcut, 276

echo eof.c program, 273

editing on, 13-14

functions, compiling, 326

/0 functions, 267

input, redirecting, 275-276, 279
ioctl() function, 270
make command, 326
output, redirecting, 275-279
programs, running, 10
UNIX Primer Plus, Third Edition, 277
unsigned
char types, 69
int, bit fields, 601, 606
int types, 60
int values, printf() function, 61
integers, 77, 791
keyword, 53, 59, 791
long long types, 61
short types, 60
types, 61-64

unsigned long long strtoull(const char * restrict npt,

char ** restrict ept, int base) function, 829

unsigned long strtoul(const char * restrict npt, char **

restrict ept, int base) function, 829
updating text files, 498
use qc program code, 700-701
useheader.c program code, 630-631
usehotel.c control module, code, 327-328
user interfaces
buffered input, 279-281
character input, 281-284
creating, 279
menus, 290-295
numeric input, 281-284
utilities, wide character, 842-852. See also ANSI C,
library; general utilities library

\'

\v (escape character), 66-67

%V (strftime function() format specifier), 841
VA ARGS variadic macro, 626-627

va copy() macro, 659

va end() macro, 659

validating input, 268, 284-290, 295

value variables, 339

value-assigning operators, = (assignment operator), 132
value-finding (dereferencing) operation, pointers, 368

valuelong ftell(FILE *) function, 825
values
arguments, 818-824
argv (argument values), 439
arrays, 351-352

INDEX

assigned, 566-567
bits, 588, 596, 601
default, 566
expressions, 150-151, 178-180
fathm ft.c programs, printing, 37-38
floating-point, showfpt.c program, code, 74-75
from functions, returning, 310-313
functions, return types, 340
indexes, changing, 173
int type, printl.c program, code, 57-58
lvalues, data objects, 133
modifiable lvalue, 133
pointer (integers), 822, 855
printing, 37-38
return
printf() function, 114-115
scanf() function, 121
stremp() function, 422-424
returning, 26
rvalues, 133
unsigned int, printf() function, 61
variables, 26, 42-43
varargs.c program code, 659-660
vararr2d.c program code, 385-386
variable-length arrays, dynamic memory allocation,
480-481
variable-length arrays (VLAs), 354, 383-387, 480
variables, 52
, (comma), 56, 339
actual arguments, 160
addresses, 339
altering in calling functions, 332-334
arguments, 658-660
arrays, comparing declarations, 91
automatic, 452-456
blocks, 450-454
Boolean, 182
char types, declaring, 64-65
comma separated lists, 308
const keyword, 793
count, 305
declaring, 29-32, 77-78
defining, statements, 26
external, 452, 459-463, 632
fathm ft.c program, 37
file scope, 451
flags, 234
floating-point, 51, 73
formal arguments or parameters, 160
function scope, 451
global, 451

929

930 CPRIMER PLUS

hiding.c program, code, 454-455
identifiers, 30
index, 452
int type, 56-57
internal linkage, 452
linkage, 449, 452
local, 305
names, 31, 339
no linkage, 452
num, 26, 29
number, 452
pointers, 334-339, 359, 367-369
private names, 160
qualifying, 793-794
recursion, 320
register, 457
restrict keyword, 793
return values, assigning, 312
scope, 449-451
single-values, 346
static, 452-453, 457-464, 468-471
storage classes, 449-467, 792-793
structures, 527, 530-532
swapping in calling functions, 332-334
true and false, 182
unions, defining, 563
values, 26, 42-43, 339
volatile keyword, 793
variadic
functions, variable arguments, 658-660
macros, 626-627
variadic.c program code, 626
varwid.c program, code, 121-122
va_arg() macro, 658
va_start() macro, 658
viewpoints (black box), functions, 310
views, binary or text, 494
VLAs (variable-length arrays), 354, 383-387, 480
VMS, running programs, 10
void (*f)(int) macros, 818
void (*signal(int sig, void (*func)(int)))(int) function,
818
void (main() function), 25
void *bsearch(const void *key,const void *base, size_t
nmem, size_t size, int (*comp)(const void *, const
void *)) function, 831
void *calloc(size_t nmem, size_t size) function, 829
void *malloc(size_t size) function, 830
void *memchr(const void *s, int ¢, size_t n) function,

834

void *memcpy(void * restrict s1, const void * restrict s2,
size_t n) function, 834

void *memmove(void *s1, const void *s2, size_t n)
function, 834

void *memset(void *s, int v, size_t n) function, 834

void *realloc(void *ptr, size_t size) function, 830

void abort(void) function, 830

void assert(int exprs) macro, 801

void clearer(FILE *) function, 824

void exit(int status) function, 831

void feclearexcept(int excepts) function, 806

void fegetenv(fenv_t *envp) function, 806

void fegetexceptflag(fexcept_t *flagp, int excepts) func-
tion, 806

void feraiseexcept(int excepts) function, 806

void fesetenv(const fenv_t *envp) function, 807

void fesetexceptflag(const fexcept_t *flagp,int excepts)
function, 806

void feupdateenv(const fenv_t *envp) function, 807

void free(void *ptr) function, 830

void functions, 304

void longjmp(jmp_buf env, int val) function, 817

void perror(const char *) function, 826

void gsort(void *base, size_t nmem, size_t size, int
(*comp) (const void *, const void *)) function, 832

void rewind(FILE *) function, 826

void setbuf(FILE * restrict, char * restrict) function, 826

void srand(unsigned int seed) function, 829

void statement, 25

void type, functions, 304

void va_copy(va_list dest, va_list src) macro, 819

void va_end(va_list ap) macro, 819

void va_start(va_list ap, parmN) macro, 819

void _Exit(int status) function, 831

volatile

keyword, 481, 484, 793
type qualifier, 484-485
vowels.c program, code, 254-255

w

“w” mode string, 498

%w (strftime function() format specifier), 841
“w+” mode string, 498

“w+b” mode string, 498

warnings, error messages, 50

“wb” mode string, 498

“wb+” mode string, 498

wchar.h header file, 842-849

WCHAR_MAX constant or macro, 824
WCHAR_MIN
constant, 824
macro, 843
wchar_t type, 820, 827, 842
wectrans_t type, 850
wetype.h header file, 849-852
wctype_t type, 850
Web sites
gce compiler, 15
reference sources, 781-782
United States Postal Service, 193
WEOF
constant expression, 850
macro, 843
wheat.c program, code, 136-137
while keyword, 795-797
while loops (entry-condition loops), 152
{} (curly braces), 131
compound statements (blocks), 154-155
conditional loops, 174-175
entry.c program, code, 198-199
relational expressions or operators, 176-183
shoes2.c program, code, 130-131
single-character /O, 268
structure, 173
summing.c program, 170-172
sweetiel.c program, code, 186
switch statements, 290
syntax points, 175
terminating, 173-174
values, processing, 288
when.c program, code, 174
while statements, 173, 185
whilel.c program, code, 175
while2.c program, code, 175-176
while statements, 152, 185, 795-796
abbreviating, 421
accessing menus, 290
entry-condition loops, 795
keywords, 795
while loops, 173-176
whilel.c program, code, 175
while2.c program, code, 175-176
whitespaces, 93
characters, scanf() function, 124
non-whitespaces, test to detect, 241
scanf() function, 117
test to detect, 241
text, breaking into sequences, 616

INDEX

wide characters, 860
classification, 849-852
extensible classification functions, 850-851
/0 functions, 843-844
mapping utilities, 849-852
multibyte conversion functions, 846-849
null wide, 859
string utilities, 845-846
support, comparing C and C++, 868
transformation functions, 851-852
utilities, 842-849
width.c program, code, 107-108
widths
exact width types, 820-821, 853
fastest minimum width types, 70, 821-822, 854
greatest width integer functions, 807-808
maximum width types, 822, 855
minimum width types, 70, 821, 853-854
Windows
compilers, compiling functions, 327
IDEs (Integrated Development Environments),
15-17
WINT_MAX constant, 824
WINT_MIN constant, 824
wint_t type, 842, 849
word-count programs, 240-244
wordent.c program, code, 242-244
words, 53-54, 712
writing
binary data to files, 514-515
C source code, 9
constants with int types, 68
programs, 6
text files, 498

X-Y-Z

%X (conversion specifier), 102, 118
%x (strftime function() format specifier), 841
\xhh (escape character), 66-67

%Y (strftime function() format specifier), 841

z (modifier, printf() function), 106

%z (strftime function() format specifier), 842
Zeno, 196

zeno.c program, code, 196-197

zippol.c program, 376-377

zippo2.c program, code, 378

931

	TABLE OF CONTENTS
	CHAPTER 3: Data and C
	A Sample Program
	What’s New in This Program?

	Data Variables and Constants
	Data: Data-Type Keywords
	Integer Versus Floating-Point Types
	The Integer
	The Floating-Point Number

	C Data Types
	The int Type
	Other Integer Types
	Using Characters: Type char
	The _Bool Type
	Portable Types: inttypes.h
	Types float, double, and long double
	Complex and Imaginary Types
	Other Types
	Type Sizes

	Using Data Types
	Arguments and Pitfalls
	One More Example
	What Happens
	Flushing the Output

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

