
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321996329
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321996329
https://plusone.google.com/share?url=http://www.informit.com/title/9780321996329
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321996329
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321996329/Free-Sample-Chapter

Core Java® for the Impatient

This page intentionally left blank

Core Java®

for the Impatient

Cay S. Horstmann

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,

and the publisher was aware of a trademark claim, the designations have been printed

with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for errors

or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information or programs contained

herein.

For information about buying this title in bulk quantities, or for special sales

opportunities (which may include electronic versions; custom cover designs; and

content particular to your business, training goals, marketing focus, or branding

interests), please contact our corporate sales department at corpsales@pearsoned.com

or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact

international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Horstmann, Cay S., 1959-

 Core Java for the impatient / Cay S. Horstmann.

 pages cm

 Includes index.

 ISBN 978-0-321-99632-9 (pbk. : alk. paper)—ISBN 0-321-99632-1 (pbk. : alk. paper)

 1. Java (Computer program language) I. Title.

 QA76.73.J38H67535 2015

 005.13’3—dc23

 2014046523

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is

protected by copyright, and permission must be obtained from the publisher prior

to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise.

To obtain permission to use material from this work, please submit a written request

to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle

River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-99632-9

ISBN-10: 0-321-99632-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,

Indiana.

First printing, February 2015

To Chi—the most patient person in my life.

This page intentionally left blank

Preface xxi

Acknowledgments xxiii

About the Author xxv

FUNDAMENTAL PROGRAMMING STRUCTURES 11
Our First Program 21.1

Dissecting the “Hello, World” Program 21.1.1

Compiling and Running a Java Program 31.1.2

Method Calls 51.1.3

Primitive Types 71.2

Integer Types 71.2.1

Floating-Point Types 81.2.2

The char Type 91.2.3

The boolean Type 101.2.4

Variables 101.3

Variable Declarations 101.3.1

Names 111.3.2

vii

Contents

Initialization 111.3.3

Constants 121.3.4

Arithmetic Operations 131.4

Assignment 141.4.1

Basic Arithmetic 141.4.2

Mathematical Methods 151.4.3

Number Type Conversions 161.4.4

Relational and Logical Operators 181.4.5

Big Numbers 191.4.6

Strings 201.5

Concatenation 201.5.1

Substrings 211.5.2

String Comparison 211.5.3

Converting Between Numbers and Strings 231.5.4

The String API 241.5.5

Code Points and Code Units 251.5.6

Input and Output 261.6

Reading Input 271.6.1

Formatted Output 281.6.2

Control Flow 301.7

Branches 301.7.1

Loops 321.7.2

Breaking and Continuing 341.7.3

Local Variable Scope 361.7.4

Arrays and Array Lists 371.8

Working with Arrays 371.8.1

Array Construction 381.8.2

Array Lists 391.8.3

Wrapper Classes for Primitive Types 401.8.4

The Enhanced for Loop 411.8.5

Copying Arrays and Array Lists 411.8.6

Array Algorithms 421.8.7

Command-Line Arguments 431.8.8

Multidimensional Arrays 441.8.9

Contentsviii

Functional Decomposition 461.9

Declaring and Calling Static Methods 471.9.1

Array Parameters and Return Values 471.9.2

Variable Arguments 481.9.3

Exercises 49

OBJECT-ORIENTED PROGRAMMING 532
Working with Objects 542.1

Accessor and Mutator Methods 562.1.1

Object References 562.1.2

Implementing Classes 582.2

Instance Variables 592.2.1

Method Headers 592.2.2

Method Bodies 602.2.3

Instance Method Invocations 602.2.4

The this Reference 612.2.5

Call by Value 622.2.6

Object Construction 632.3

Implementing Constructors 632.3.1

Overloading 642.3.2

Calling One Constructor from Another 652.3.3

Default Initialization 652.3.4

Instance Variable Initialization 662.3.5

Final Instance Variables 672.3.6

The Constructor with No Arguments 682.3.7

Static Variables and Methods 682.4

Static Variables 682.4.1

Static Constants 692.4.2

Static Initialization Blocks 702.4.3

Static Methods 712.4.4

Factory Methods 722.4.5

Packages 722.5

Package Declarations 732.5.1

The Class Path 742.5.2

ixContents

Package Scope 762.5.3

Importing Classes 772.5.4

Static Imports 782.5.5

Nested Classes 792.6

Static Nested Classes 792.6.1

Inner Classes 812.6.2

Special Syntax Rules for Inner Classes 832.6.3

Documentation Comments 842.7

Comment Insertion 852.7.1

Class Comments 852.7.2

Method Comments 862.7.3

Variable Comments 862.7.4

General Comments 872.7.5

Links 872.7.6

Package and Overview Comments 882.7.7

Comment Extraction 882.7.8

Exercises 89

INTERFACES AND LAMBDA EXPRESSIONS 933
Interfaces 943.1

Declaring an Interface 943.1.1

Implementing an Interface 953.1.2

Converting to an Interface Type 973.1.3

Casts and the instanceof Operator 973.1.4

Extending Interfaces 983.1.5

Implementing Multiple Interfaces 983.1.6

Constants 993.1.7

Static and Default Methods 993.2

Static Methods 993.2.1

Default Methods 1003.2.2

Resolving Default Method Conflicts 1013.2.3

Examples of Interfaces 1023.3

The Comparable Interface 1033.3.1

The Comparator Interface 1043.3.2

Contentsx

The Runnable Interface 1053.3.3

User Interface Callbacks 1063.3.4

Lambda Expressions 1073.4

The Syntax of Lambda Expressions 1073.4.1

Functional Interfaces 1093.4.2

Method and Constructor References 1103.5

Method References 1103.5.1

Constructor References 1113.5.2

Processing Lambda Expressions 1123.6

Implementing Deferred Execution 1123.6.1

Choosing a Functional Interface 1133.6.2

Implementing Your Own Functional Interfaces 1153.6.3

Lambda Expressions and Variable Scope 1163.7

Scope of a Lambda Expression 1163.7.1

Accessing Variables from the Enclosing Scope 1173.7.2

Higher-Order Functions 1203.8

Methods that Return Functions 1203.8.1

Methods That Modify Functions 1203.8.2

Comparator Methods 1213.8.3

Local Inner Classes 1223.9

Local Classes 1223.9.1

Anonymous Classes 1233.9.2

Exercises 124

INHERITANCE AND REFLECTION 1274
Extending a Class 1284.1

Super- and Subclasses 1284.1.1

Defining and Inheriting Subclass Methods 1294.1.2

Method Overriding 1294.1.3

Subclass Construction 1314.1.4

Superclass Assignments 1314.1.5

Casts 1324.1.6

Final Methods and Classes 1334.1.7

Abstract Methods and Classes 1334.1.8

xiContents

Protected Access 1344.1.9

Anonymous Subclasses 1354.1.10

Inheritance and Default Methods 1364.1.11

Method Expressions with super 1374.1.12

Object: The Cosmic Superclass 1374.2

The toString Method 1384.2.1

The equals Method 1404.2.2

The hashCode Method 1434.2.3

Cloning Objects 1444.2.4

Enumerations 1474.3

Methods of Enumerations 1474.3.1

Constructors, Methods, and Fields 1494.3.2

Bodies of Instances 1494.3.3

Static Members 1504.3.4

Switching on an Enumeration 1514.3.5

Runtime Type Information and Resources 1514.4

The Class Class 1524.4.1

Loading Resources 1554.4.2

Class Loaders 1554.4.3

The Context Class Loader 1574.4.4

Service Loaders 1594.4.5

Reflection 1604.5

Enumerating Class Members 1604.5.1

Inspecting Objects 1614.5.2

Invoking Methods 1624.5.3

Constructing Objects 1634.5.4

JavaBeans 1644.5.5

Working with Arrays 1654.5.6

Proxies 1674.5.7

Exercises 169

EXCEPTIONS, ASSERTIONS, AND LOGGING 1735
Exception Handling 1745.1

Throwing Exceptions 1745.1.1

Contentsxii

The Exception Hierarchy 1755.1.2

Declaring Checked Exceptions 1775.1.3

Catching Exceptions 1785.1.4

The Try-with-Resources Statement 1795.1.5

The finally Clause 1815.1.6

Rethrowing and Chaining Exceptions 1825.1.7

The Stack Trace 1845.1.8

The Objects.requireNonNull Method 1855.1.9

Assertions 1855.2

Using Assertions 1855.2.1

Enabling and Disabling Assertions 1865.2.2

Logging 1875.3

Using Loggers 1875.3.1

Loggers 1875.3.2

Logging Levels 1885.3.3

Other Logging Methods 1895.3.4

Logging Configuration 1905.3.5

Log Handlers 1915.3.6

Filters and Formatters 1945.3.7

Exercises 194

GENERIC PROGRAMMING 1996
Generic Classes 2006.1

Generic Methods 2016.2

Type Bounds 2026.3

Type Variance and Wildcards 2036.4

Subtype Wildcards 2046.4.1

Supertype Wildcards 2056.4.2

Wildcards with Type Variables 2066.4.3

Unbounded Wildcards 2076.4.4

Wildcard Capture 2086.4.5

Generics in the Java Virtual Machine 2086.5

Type Erasure 2096.5.1

xiiiContents

Cast Insertion 2096.5.2

Bridge Methods 2106.5.3

Restrictions on Generics 2116.6

No Primitive Type Arguments 2126.6.1

At Runtime, All Types Are Raw 2126.6.2

You Cannot Instantiate Type Variables 2136.6.3

You Cannot Construct Arrays of Parameterized Types 2156.6.4

Class Type Variables Are Not Valid in Static Contexts 2166.6.5

Methods May Not Clash after Erasure 2166.6.6

Exceptions and Generics 2176.6.7

Reflection and Generics 2186.7

The Class<T> Class 2196.7.1

Generic Type Information in the Virtual Machine 2206.7.2

Exercises 221

COLLECTIONS 2277
An Overview of the Collections Framework 2287.1

Iterators 2327.2

Sets 2337.3

Maps 2357.4

Other Collections 2387.5

Properties 2387.5.1

Bit Sets 2407.5.2

Enumeration Sets and Maps 2417.5.3

Stacks, Queues, Deques, and Priority Queues 2427.5.4

Weak Hash Maps 2437.5.5

Views 2447.6

Ranges 2447.6.1

Empty and Singleton Views 2447.6.2

Unmodifiable Views 2457.6.3

Exercises 246

Contentsxiv

STREAMS 2498
From Iterating to Stream Operations 2508.1

Stream Creation 2518.2

The filter, map, and flatMap Methods 2528.3

Extracting Substreams and Combining Streams 2548.4

Other Stream Transformations 2548.5

Simple Reductions 2558.6

The Optional Type 2568.7

How to Work with Optional Values 2568.7.1

How Not to Work with Optional Values 2578.7.2

Creating Optional Values 2588.7.3

Composing Optional Value Functions with flatMap 2588.7.4

Collecting Results 2598.8

Collecting into Maps 2608.9

Grouping and Partitioning 2628.10

Downstream Collectors 2628.11

Reduction Operations 2648.12

Primitive Type Streams 2668.13

Parallel Streams 2678.14

Exercises 269

PROCESSING INPUT AND OUTPUT 2739
Input/Output Streams, Readers, and Writers 2749.1

Obtaining Streams 2749.1.1

Reading Bytes 2759.1.2

Writing Bytes 2769.1.3

Character Encodings 2769.1.4

Text Input 2799.1.5

Text Output 2809.1.6

Reading and Writing Binary Data 2819.1.7

Random-Access Files 2829.1.8

Memory-Mapped Files 2839.1.9

File Locking 2839.1.10

xvContents

Paths, Files, and Directories 2849.2

Paths 2849.2.1

Creating Files and Directories 2869.2.2

Copying, Moving, and Deleting Files 2879.2.3

Visiting Directory Entries 2889.2.4

ZIP File Systems 2919.2.5

URL Connections 2929.3

Regular Expressions 2939.4

The Regular Expression Syntax 2939.4.1

Finding One or All Matches 2989.4.2

Groups 2989.4.3

Removing or Replacing Matches 2999.4.4

Flags 3009.4.5

Serialization 3019.5

The Serializable Interface 3019.5.1

Transient Instance Variables 3039.5.2

The readObject and writeObject Methods 3039.5.3

The readResolve and writeReplace Methods 3049.5.4

Versioning 3069.5.5

Exercises 307

CONCURRENT PROGRAMMING 31110
Concurrent Tasks 31210.1

Running Tasks 31210.1.1

Futures and Executor Services 31410.1.2

Thread Safety 31710.2

Visibility 31710.2.1

Race Conditions 31910.2.2

Strategies for Safe Concurrency 32110.2.3

Immutable Classes 32210.2.4

Parallel Algorithms 32310.3

Parallel Streams 32310.3.1

Parallel Array Operations 32410.3.2

Contentsxvi

Threadsafe Data Structures 32410.4

Concurrent Hash Maps 32510.4.1

Blocking Queues 32610.4.2

Other Threadsafe Data Structures 32810.4.3

Atomic Values 32910.5

Locks 33110.6

Reentrant Locks 33110.6.1

The synchronized Keyword 33310.6.2

Waiting on Conditions 33510.6.3

Threads 33710.7

Starting a Thread 33710.7.1

Thread Interruption 33810.7.2

Thread-Local Variables 33910.7.3

Miscellaneous Thread Properties 34010.7.4

Asynchronous Computations 34110.8

Long-Running Tasks in User Interface Callbacks 34110.8.1

Completable Futures 34210.8.2

Processes 34510.9

Building a Process 34510.9.1

Running a Process 34710.9.2

Exercises 348

ANNOTATIONS 35511
Using Annotations 35611.1

Annotation Elements 35611.1.1

Multiple and Repeated Annotations 35811.1.2

Annotating Declarations 35811.1.3

Annotating Type Uses 35911.1.4

Making Receivers Explicit 36011.1.5

Defining Annotations 36111.2

Standard Annotations 36411.3

Annotations for Compilation 36511.3.1

Annotations for Managing Resources 36611.3.2

Meta-Annotations 36611.3.3

xviiContents

Processing Annotations at Runtime 36811.4

Source-Level Annotation Processing 37111.5

Annotation Processors 37211.5.1

The Language Model API 37211.5.2

Using Annotations to Generate Source Code 37311.5.3

Exercises 376

THE DATE AND TIME API 37912
The Time Line 38012.1

Local Dates 38212.2

Date Adjusters 38512.3

Local Time 38612.4

Zoned Time 38712.5

Formatting and Parsing 39012.6

Interoperating with Legacy Code 39312.7

Exercises 394

INTERNATIONALIZATION 39713
Locales 39813.1

Specifying a Locale 39913.1.1

The Default Locale 40113.1.2

Display Names 40213.1.3

Number Formats 40313.2

Currencies 40313.3

Date and Time Formatting 40413.4

Collation and Normalization 40613.5

Message Formatting 40813.6

Resource Bundles 41013.7

Organizing Resource Bundles 41013.7.1

Bundle Classes 41213.7.2

Character Encodings 41313.8

Preferences 41313.9

Exercises 415

Contentsxviii

COMPILING AND SCRIPTING 41914
The Compiler API 42014.1

Invoking the Compiler 42014.1.1

Launching a Compilation Task 42014.1.2

Reading Source Files from Memory 42114.1.3

Writing Byte Codes to Memory 42214.1.4

Capturing Diagnostics 42314.1.5

The Scripting API 42414.2

Getting a Scripting Engine 42414.2.1

Bindings 42514.2.2

Redirecting Input and Output 42614.2.3

Calling Scripting Functions and Methods 42614.2.4

Compiling a Script 42814.2.5

The Nashorn Scripting Engine 42814.3

Running Nashorn from the Command Line 42914.3.1

Invoking Getters, Setters, and Overloaded Methods 43014.3.2

Constructing Java Objects 43114.3.3

Strings in JavaScript and Java 43214.3.4

Numbers 43214.3.5

Working with Arrays 43314.3.6

Lists and Maps 43414.3.7

Lambdas 43514.3.8

Extending Java Classes and Implementing Java

Interfaces 435

14.3.9

Exceptions 43714.3.10

Shell Scripting with Nashorn 43714.4

Executing Shell Commands 43814.4.1

String Interpolation 43814.4.2

Script Inputs 43914.4.3

Exercises 440

Index 443

xixContents

This page intentionally left blank

Java is now about twenty years old, and the classic book, Core Java

™

, covers, in

meticulous detail, not just the language but all core libraries and a multitude of

changes between versions, spanning two volumes and well over 2,000 pages.

But Java 8 changes everything. Many of the old Java idioms are no longer required,

and there is a much faster, easier pathway for learning Java. In this book, I show

you the “good parts” of modern Java so you can put them to work quickly.

As with my previous “Impatient” books, I quickly cut to the chase, showing you

what you need to know for solving a programming problem without lecturing

about the superiority of one paradigm over another. I also present the information

in small chunks, organized so that you can quickly retrieve it when needed.

Assuming you are proficient in some other programming language, such as C++,

JavaScript, Objective C, PHP, or Ruby, with this book you will learn how to be-

come a competent Java programmer. I cover all aspects of Java that a developer

needs to know, including the powerful lambda expressions and streams that

were introduced in Java 8. I tell you where to find out more about old-fashioned

concepts that you might still see in legacy code, but I don’t dwell on them.

A key reason to use Java is to tackle concurrent programming. With parallel al-

gorithms and threadsafe data structures readily available in the Java library, the

way application programmers should handle concurrent programming has

completely changed. I provide fresh coverage, showing you how to use the

powerful library features instead of error-prone, low-level constructs.

xxi

Preface

Traditional books on Java are focused on user interface programming—but

nowadays, few developers produce user interfaces on desktop computers. If you

intend to use Java for server-side programming or Android programming,

you will be able to use this book effectively without being distracted by desktop

GUI code.

Finally, this book is written for application programmers, not for a college course

and not for systems wizards. The book covers issues that application programmers

need to wrestle with, such as logging and working with files—but you won’t

learn how to implement a linked list by hand or how to write a web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it will

make your work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit

http://horstmann.com/javaimpatient and leave a comment. On that page, you will also

find a link to an archive file containing all code examples from the book.

Prefacexxii

http://horstmann.com/javaimpatient

My thanks go, as always, to my editor Greg Doench, who enthusiastically sup-

ported the vision of a short book that gives a fresh introduction to Java 8. Dmitry

Kirsanov and Alina Kirsanova once again turned an XHTML manuscript into

an attractive book with amazing speed and attention to detail. My special grati-

tude goes to the excellent team of reviewers who spotted many errors and gave

thoughtful suggestions for improvement. They are: Andres Almiray, Brian

Goetz, Marty Hall, Mark Lawrence, Doug Lea, Simon Ritter, Yoshiki Shibata,

and Christian Ullenboom.

Cay Horstmann

Biel/Bienne, Switzerland

January 2015

xxiii

Acknowledgments

This page intentionally left blank

Cay S. Horstmann is the author of Java SE 8 for the Really Impatient and Scala

for the Impatient (both from Addison-Wesley), is principal author of Core Java

™

,

Volumes I and II, Ninth Edition (Prentice Hall, 2013), and has written a dozen

other books for professional programmers and computer science students. He

is a professor of computer science at San Jose State University and is a Java

Champion.

xxv

About the Author

Java was designed as an object-oriented programming language in the 1990s

when object-oriented programming was the principal paradigm for software

development. Interfaces are a key feature of object-oriented programming:

They let you specify what should be done, without having to provide an

implementation.

Long before there was object-oriented programming, there were functional pro-

gramming languages, such as Lisp, in which functions and not objects are the

primary structuring mechanism. Recently, functional programming has risen in

importance because it is well suited for concurrent and event-driven (or “reac-

tive”) programming. Java supports function expressions that provide a convenient

bridge between object-oriented and functional programming. In this chapter,

you will learn about interfaces and lambda expressions.

The key points of this chapter are:

• An interface specifies a set of methods that an implementing class must

provide.

• An interface is a supertype of any class that implements it. Therefore, one

can assign instances of the class to variables of the interface type.

• An interface can contain static methods. All variables of an interface are

automatically static and final.

• An interface can contain default methods that an implementing class can

inherit or override.

93

3Chapter

• The Comparable and Comparator interfaces are used for comparing objects.

• A lambda expression denotes a block of code that can be executed at a later

point in time.

• Lambda expressions are converted to functional interfaces.

• Method and constructor references refer to methods or constructors without

invoking them.

• Lambda expressions and local inner classes can access effectively final

variables from the enclosing scope.

3.1 Interfaces
An interface is a mechanism for spelling out a contract between two parties:

the supplier of a service and the classes that want their objects to be usable

with the service. In the following sections, you will see how to define and use

interfaces in Java.

3.1.1 Declaring an Interface
Consider a service that works on sequences of integers, reporting the average of

the first n values:

public static double average(IntSequence seq, int n)

Such sequences can take many forms. Here are some examples:

• A sequence of integers supplied by a user

• A sequence of random integers

• The sequence of prime numbers

• The sequence of elements in an integer array

• The sequence of code points in a string

• The sequence of digits in a number

We want to implement a single mechanism for deal with all these kinds of

sequences.

First, let us spell out what is common between integer sequences. At a minimum,

one needs two methods for working with a sequence:

• Test whether there is a next element

• Get the next element

To declare an interface, you provide the method headers, like this:

Chapter 3 Interfaces and Lambda Expressions94

public interface IntSequence {
 boolean hasNext();
 int next();
}

You need not implement these methods, but you can provide default implemen-
tations if you like—see Section 3.2.2, “Default Methods,” on p. 100. If no
implementation is provided, we say that the method is abstract.

NOTE: All methods of an interface are automatically public. Therefore, it is
not necessary to declare hasNext and next as public. Some programmers do
it anyway for greater clarity.

The methods in the interface suffice to implement the average method:

public static double average(IntSequence seq, int n) {
 int count = 0;
 double sum = 0;
 while (seq.hasNext() && count < n) {
 count++;
 sum += seq.next();
 }
 return count == 0 ? 0 : sum / count;
}

3.1.2 Implementing an Interface
Now let’s look at the other side of the coin: the classes that want to be usable
with the average method. They need to implement the IntSequence interface. Here is
such a class:

public class SquareSequence implements IntSequence {
 private int i;

 public boolean hasNext() {
 return true;
 }

 public int next() {
 i++;
 return i * i;
 }
}

953.1 Interfaces

There are infinitely many squares, and an object of this class delivers them all,
one at a time.

The implements keyword indicates that the SquareSequence class intends to conform
to the IntSequence interface.

CAUTION: The implementing class must declare the methods of the inter-
face as public. Otherwise, they would default to package access. Since the
interface requires public access, the compiler would report an error.

This code get the average of the first 100 squares:

SquareSequence squares = new SquareSequence();
double avg = average(squares, 100);

There are many classes that can implement the IntSequence interface. For example,
this class yields a finite sequence, namely the digits of a positive integer starting
with the least significant one:

public class DigitSequence implements IntSequence {
 private int number;

 public DigitSequence(int n) {
 number = n;
 }

 public boolean hasNext() {
 return number != 0;
 }

 public int next() {
 int result = number % 10;
 number /= 10;
 return result;
 }

 public int rest() {
 return number;
 }
}

An object new DigitSequence(1729) delivers the digits 9 2 7 1 before hasNext returns
false.

Chapter 3 Interfaces and Lambda Expressions96

NOTE: The SquareSequence and DigitSequence classes implement all methods
of the IntSequence interface. If a class only implements some of the methods,
then it must be declared with the abstract modifier. See Chapter 4 for more
information on abstract classes.

3.1.3 Converting to an Interface Type
This code fragment computes the average of the digit sequence values:

IntSequence digits = new DigitSequence(1729);
double avg = average(digits, 100);
 // Will only look at the first four sequence values

Look at the digits variable. Its type is IntSequence, not DigitSequence. A variable of
type IntSequence refers to an object of some class that implements the IntSequence
interface. You can always assign an object to a variable whose type is an
implemented interface, or pass it to a method expecting such an interface.

Here is a bit of useful terminology. A type S is a supertype of the type T (the subtype)
when any value of the subtype can be assigned to a variable of the supertype
without a conversion. For example, the IntSequence interface is a supertype of the
DigitSequence class.

NOTE: Even though it is possible to declare variables of an interface type,
you can never have an object whose type is an interface. All objects are
instances of classes.

3.1.4 Casts and the instanceof Operator
Occasionally, you need the opposite conversion—from a supertype to a subtype.
Then you use a cast. For example, if you happen to know that the object stored
in an IntSequence is actually a DigitSequence, you can convert the type like this:

IntSequence sequence = ...;
DigitSequence digits = (DigitSequence) sequence;
System.out.println(digits.rest());

In this scenario, the cast was necessary because rest is a method of DigitSequence
but not IntSequence.

See Exercise 2 for a more compelling example.

973.1 Interfaces

You can only cast an object to its actual class or one of its supertypes. If you are

wrong, a compile-time error or class cast exception will occur:

String digitString = (String) sequence;
 // Cannot possibly work—IntSequence is not a supertype of String
RandomSequence randoms = (RandomSequence) sequence;
 // Could work, throws a class cast exception if not

To avoid the exception, you can first test whether the object is of the desired type,

using the instanceof operator. The expression

object instanceof Type

returns true if object is an instance of a class that has Type as a supertype. It is a

good idea to make this check before using a cast.

if (sequence instanceof DigitSequence) {
 DigitSequence digits = (DigitSequence) sequence;
 ...
}

3.1.5 Extending Interfaces
An interface can extend another, providing additional methods on top of the

original ones. For example, Closeable is an interface with a single method:

public interface Closeable {
 void close();
}

As you will see in Chapter 5, this is an important interface for closing resources

when an exception occurs.

The Channel interface extends this interface:

public interface Channel extends Closeable {
 boolean isOpen();
}

A class that implements the Channel interface must provide both methods, and its

objects can be converted to both interface types.

3.1.6 Implementing Multiple Interfaces
A class can implement any number of interfaces. For example, a FileSequence class

that reads integers from a file can implement the Closeable interface in addition

to IntSequence:

Chapter 3 Interfaces and Lambda Expressions98

public class FileSequence implements IntSequence, Closeable {
 ...
}

Then the FileSequence class has both IntSequence and Closeable as supertypes.

3.1.7 Constants
Any variable defined in an interface is automatically public static final.

For example, the SwingConstants interface defines constants for compass directions:

public interface SwingConstants {
 int NORTH = 1;
 int NORTH_EAST = 2;
 int EAST = 3;
 ...
}

You can refer to them by their qualified name, SwingConstants.NORTH. If your class
chooses to implement the SwingConstants interface, you can drop the SwingConstants
qualifier and simply write NORTH. However, this is not a common idiom. It is far
better to use enumerations for a set of constants; see Chapter 4.

NOTE:You cannot have instance variables in an interface. An interface
specifies behavior, not object state.

3.2 Static and Default Methods
In earlier versions of Java, all methods of an interface had to be abstract—that is,
without a body. Nowadays you can add two kinds of methods with a concrete
implementation: static and default methods. The following sections describe
these methods.

3.2.1 Static Methods
There was never a technical reason why an interface could not have static meth-
ods, but they did not fit into the view of interfaces as abstract specifications. That
thinking has now evolved. In particular, factory methods make a lot of sense in
interfaces. For example, the IntSequence interface can have a static method digitsOf
that generates a sequence of digits of a given integer:

IntSequence digits = IntSequence.digitsOf(1729);

993.2 Static and Default Methods

The method yields an instance of some class implementing the IntSequence interface,
but the caller need not care which one it is.

public interface IntSequence {
 ...
 public static IntSequence digitsOf(int n) {
 return new DigitSequence(n);
 }
}

NOTE: In the past, it had been common to place static methods in a com-
panion class. You find pairs of interfaces and utility classes, such as
Collection/Collections or Path/Paths, in the standard library. This split is no
longer necessary.

3.2.2 Default Methods
You can supply a default implementation for any interface method. You must tag
such a method with the default modifier.

public interface IntSequence {
default boolean hasNext() { return true; }

 // By default, sequences are infinite
 int next();
}

A class implementing this interface can choose to override the hasNext method or
to inherit the default implementation.

NOTE: Default methods put an end to the classic pattern of providing an
interface and a companion class that implements most or all of its methods,
such as Collection/AbstractCollection or WindowListener/WindowAdapter in the
Java API. Nowadays you should just implement the methods in the interface.

An important use for default methods is interface evolution. Consider for example
the Collection interface that has been a part of Java for many years. Suppose that
way back when, you provided a class

public class Bag implements Collection

Later, in Java 8, a stream method was added to the interface.

Suppose the stream method was not a default method. Then the Bag class no longer
compiles since it doesn’t implement the new method. Adding a nondefault
method to an interface is not source-compatible.

Chapter 3 Interfaces and Lambda Expressions100

But suppose you don’t recompile the class and simply use an old JAR file contain-

ing it. The class will still load, even with the missing method. Programs can still

construct Bag instances, and nothing bad will happen. (Adding a method to an

interface is binary-compatible.) However, if a program calls the stream method on

a Bag instance, an AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will

again compile. And if the class is loaded without being recompiled and the stream
method is invoked on a Bag instance, the Collection.stream method is called.

3.2.3 Resolving Default Method Conflicts
If a class implements two interfaces, one of which has a default method and the

other a method (default or not) with the same name and parameter types, then

you must resolve the conflict. This doesn’t happen very often, and it is usually

easy to deal with the situation.

Let’s look at an example. Suppose we have an interface Person with a getId method:

public interface Person {
 String getName();
 default int getId() { return 0; }
}

And suppose there is an interface Identified, also with such a method.

public interface Identified {
 default int getId() { return Math.abs(hashCode()); }
}

You will see what the hashCode method does in Chapter 4. For now, all that matters

is that it returns some integer that is derived from the object.

What happens if you form a class that implements both of them?

public class Employee implements Person, Identified {
 ...
}

The class inherits two getId methods provided by the Person and Identified inter-

faces. There is no way for the Java compiler to choose one over the other. The

compiler reports an error and leaves it up to you to resolve the ambiguity. Provide

a getId method in the Employee class and either implement your own ID scheme,

or delegate to one of the conflicting methods, like this:

public class Employee implements Person, Identified {
 public int getId() { return Identified.super.getId(); }
 ...
}

1013.2 Static and Default Methods

NOTE: The super keyword lets you call a supertype method. In this case, we
need to specify which supertype we want. The syntax may seem a bit odd,
but it is consistent with the syntax for invoking a superclass method that you
will see in Chapter 4.

Now assume that the Identified interface does not provide a default
implementation for getId:

interface Identified {
 int getId();
}

Can the Employee class inherit the default method from the Person interface? At first
glance, this might seem reasonable. But how does the compiler know whether
the Person.getId method actually does what Identified.getId is expected to do? After
all, it might return the level of the person’s Freudian id, not an ID number.

The Java designers decided in favor of safety and uniformity. It doesn’t matter
how two interfaces conflict; if at least one interface provides an implementation,
the compiler reports an error, and it is up to the programmer to resolve the
ambiguity.

NOTE: If neither interface provides a default for a shared method, then there
is no conflict.An implementing class has two choices: implement the method,
or leave it unimplemented and declare the class as abstract.

NOTE: If a class extends a superclass (see Chapter 4) and implements an
interface, inheriting the same method from both, the rules are easier. In that
case, only the superclass method matters, and any default method from the
interface is simply ignored. This is actually a more common case than
conflicting interfaces. See Chapter 4 for the details.

3.3 Examples of Interfaces
At first glance, interfaces don’t seem to do very much. An interface is just a set
of methods that a class promises to implement. To make the importance of inter-
faces more tangible, the following sections show you four examples of commonly
used interfaces from the standard Java library.

Chapter 3 Interfaces and Lambda Expressions102

3.3.1 The Comparable Interface
Suppose you want to sort an array of objects. A sorting algorithm repeatedly
compares elements and rearranges them if they are out of order. Of course, the
rules for doing the comparison are different for each class, and the sorting algo-
rithm should just call a method supplied by the class. As long as all classes can
agree on what that method is called, the sorting algorithm can do its job. That is
where interfaces come in.

If a class wants to enable sorting for its objects, it should implement the Comparable
interface. There is a technical point about this interface. We want to compare
strings against strings, employees against employees, and so on. For that reason,
the Comparable interface has a type parameter.

public interface Comparable<T> {
 int compareTo(T other);
}

For example, the String class implements Comparable<String> so that its compareTo
method has the signature

int compareTo(String other)

NOTE: A type with a type parameter such as Comparable or ArrayList is a
generic type.You will learn all about generic types in Chapter 6.

When calling x.compareTo(y), the compareTo method returns an integer value to indicate
whether x or y should come first. A positive return value (not necessarily 1) indi-
cates that x should come after y. A negative integer (not necessarily -1) is re-
turned when x should come before y. If x and y are considered equal, the returned
value is 0.

Note that the return value can be any integer. That flexibility is useful because
it allows you to return a difference of non-negative integers.

public class Employee implements Comparable<Employee> {
 ...
 public int compareTo(Employee other) {
 return getId() - other.getId(); // Ok if IDs always ≥ 0
 }
}

1033.3 Examples of Interfaces

CAUTION: Returning a difference of integers does not work if the integers
can be negative. Then the difference can overflow for large operands of op-
posite sign. In that case, use the Integer.compare method that works correctly
for all integers.

When comparing floating-point values, you cannot just return the difference.
Instead, use the static Double.compare method. It does the right thing, even for ±∞
and NaN.

Here is how the Employee class can implement the Comparable interface, ordering
employees by salary:

public class Employee implements Comparable<Employee> {
 ...
 public int compareTo(Employee other) {
 return Double.compare(salary, other.salary);
 }
}

NOTE: It is perfectly legal for the compare method to access other.salary. In
Java, a method can access private features of any object of its class.

The String class, as well as over a hundred other classes in the Java library, imple-
ments the Comparable interface. You can use the Arrays.sort method to sort an array
of Comparable objects:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends); // friends is now ["Mary", "Paul", "Peter"]

NOTE: Strangely, the Arrays.sort method does not check at compile time
whether the argument is an array of Comparable objects. Instead, it throws an
exception if it encounters an element of a class that doesn’t implement the
Comparable interface.

3.3.2 The Comparator Interface
Now suppose we want to sort strings by increasing length, not in dictionary order.
We can’t have the String class implement the compareTo method in two ways—and
at any rate, the String class isn’t ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method
whose parameters are an array and a comparator—an instance of a class that
implements the Comparator interface.

Chapter 3 Interfaces and Lambda Expressions104

public interface Comparator<T> {
 int compare(T first, T second);
}

To compare strings by length, define a class that implements Comparator<String>:

class LengthComparator implements Comparator<String> {
 public int compare(String first, String second) {
 return first.length() - second.length();
 }
}

To actually do the comparison, you need to make an instance:

Comparator<String> comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) ...

Contrast this call with words[i].compareTo(words[j]). The compare method is called on
the comparator object, not the string itself.

NOTE: Even though the LengthComparator object has no state, you still need
to make an instance of it.You need the instance to call the compare method—it
is not a static method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul", "Peter"].

You will see in Section 3.4.2, “Functional Interfaces,” on p. 109 how to use a
Comparator much more easily, using a lambda expression.

3.3.3 The Runnable Interface
At a time when just about every processor has multiple cores, you want to keep
those cores busy. You may want to run certain tasks in a separate thread, or give
them to a thread pool for execution. To define the task, you implement the Runnable
interface. This interface has just one method.

class HelloTask implements Runnable {
 public void run() {
 for (int i = 0; i < 1000; i++) {
 System.out.println("Hello, World!");
 }
 }
}

1053.3 Examples of Interfaces

If you want to execute this task in a new thread, create the thread from the Runnable
and start it.

Runnable task = new HelloTask();
Thread thread = new Thread(task);
thread.start();

Now the run method executes in a separate thread, and the current thread can
proceed with other work.

NOTE: In Chapter 10, you will see other ways of executing a Runnable.

NOTE: There is also a Callable<T> interface for tasks that return a result of
type T.

3.3.4 User Interface Callbacks
In a graphical user interface, you have to specify actions to be carried out when
the user clicks a button, selects a menu option, drags a slider, and so on. These
actions are often called callbacks because some code gets called back when a
user action occurs.

In Java-based GUI libraries, interfaces are used for callbacks. For example, in
JavaFX, the following interface is used for reporting events:

public interface EventHandler<T> {
 void handle(T event);
}

This too is a generic interface where T is the type of event that is being reported,
such as an ActionEvent for a button click.

To specify the action, implement the interface:

class CancelAction implements EventHandler<ActionEvent> {
 public void handle(ActionEvent event) {
 System.out.println("Oh noes!");
 }
}

Then, make an object of that class and add it to the button:

Button cancelButton = new Button("Cancel");
cancelButton.setOnAction(new CancelAction());

Chapter 3 Interfaces and Lambda Expressions106

NOTE: Since Oracle positions JavaFX as the successor to the Swing GUI
toolkit, I use JavaFX in these examples. (Don’t worry—you need not know
any more about JavaFX than the couple of statements you just saw.) The
details don’t matter; in every user interface toolkit, be it Swing, JavaFX, or
Android, you give a button some code that you want to run when the button
is clicked.

Of course, this way of defining a button action is rather tedious. In other lan-
guages, you just give the button a function to execute, without going through
the detour of making a class and instantiating it. The next section shows how
you can do the same in Java.

3.4 Lambda Expressions
A “lambda expression” is a block of code that you can pass around so it can be
executed later, once or multiple times. In the preceding sections, you have seen
many situations where it is useful to specify such a block of code:

• To pass a comparison method to Arrays.sort

• To run a task in a separate thread

• To specify an action that should happen when a button is clicked

However, Java is an object-oriented language where (just about) everything is
an object. There are no function types in Java. Instead, functions are expressed
as objects, instances of classes that implement a particular interface. Lambda
expressions give you a convenient syntax for creating such instances.

3.4.1 The Syntax of Lambda Expressions
Consider again the sorting example from Section 3.3.2, “The Comparator Interface,”
on p. 104. We pass code that checks whether one string is shorter than another.
We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed language,
and we must specify that as well:

(String first, String second) -> first.length() - second.length()

You have just seen your first lambda expression. Such an expression is simply a
block of code, together with the specification of any variables that must be passed
to the code.

1073.4 Lambda Expressions

Why the name? Many years ago, before there were any computers, the logician
Alonzo Church wanted to formalize what it means for a mathematical function
to be effectively computable. (Curiously, there are functions that are known to
exist, but nobody knows how to compute their values.) He used the Greek letter
lambda (λ) to mark parameters, somewhat like

λfirst. λsecond. first.length() - second.length()

NOTE:Why the letter λ? Did Church run out of letters of the alphabet? Actually,
the venerable Principia Mathematica (see
http://plato.stanford.edu/entries/principia-mathematica) used the ̂ accent to
denote function parameters, which inspired Church to use an uppercase
lambda Λ. But in the end, he switched to the lowercase version. Ever since,
an expression with parameter variables has been called a lambda expression.

If the body of a lambda expression carries out a computation that doesn’t fit in
a single expression, write it exactly like you would have written a method:
enclosed in {} and with explicit return statements. For example,

(String first, String second) -> {
 int difference = first.length() < second.length();
 if (difference < 0) return -1;
 else if (difference > 0) return 1;
 else return 0;
}

If a lambda expression has no parameters, supply empty parentheses, just as
with a parameterless method:

Runnable task = () -> { for (int i = 0; i < 1000; i++) doWork(); }

If the parameter types of a lambda expression can be inferred, you can omit them.
For example,

Comparator<String> comp
 = (first, second) -> first.length() - second.length();
 // Same as (String first, String second)

Here, the compiler can deduce that first and second must be strings because the
lambda expression is assigned to a string comparator. (We will have a closer look
at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the
parentheses:

EventHandler<ActionEvent> listener = event ->
 System.out.println("Oh noes!");
 // Instead of (event) -> or (ActionEvent event) ->

Chapter 3 Interfaces and Lambda Expressions108

http://plato.stanford.edu/entries/principia-mathematica

You never specify the result type of a lambda expression. However, the compiler
infers it from the body and checks that it matches the expected type. For example,
the expression

(String first, String second) -> first.length() - second.length()

can be used in a context where a result of type int is expected (or a compatible
type such as Integer, long, or double).

3.4.2 Functional Interfaces
As you already saw, there are many interfaces in Java that express actions, such
as Runnable or Comparator. Lambda expressions are compatible with these interfaces.

You can supply a lambda expression whenever an object of an interface with a
single abstract method is expected. Such an interface is called a functional interface.

To demonstrate the conversion to a functional interface, consider the Arrays.sort
method. Its second parameter requires an instance of Comparator, an interface with
a single method. Simply supply a lambda:

Arrays.sort(words,
 (first, second) -> first.length() - second.length());

Behind the scenes, the second parameter variable of the Arrays.sort method receives
an object of some class that implements Comparator<String>. Invoking the compare
method on that object executes the body of the lambda expression. The mana-
gement of these objects and classes is completely implementation-dependent
and highly optimized.

In most programming languages that support function literals, you can declare
function types such as (String, String) -> int, declare variables of those types,
put functions into those variables, and invoke them. In Java, there is only one
thing you can do with a lambda expression: put it in a variable whose type is a
functional interface, so that it is converted to an instance of that interface.

NOTE:You cannot assign a lambda expression to a variable of type Object,
the common supertype of all classes in Java (see Chapter 4). Object is a
class, not a functional interface.

The standard library provides a large number of functional interfaces (see
Section 3.6.2, “Choosing a Functional Interface,” on p. 113). One of them is

public interface Predicate<T> {
 boolean test(T t);
 // Additional default and static methods
}

1093.4 Lambda Expressions

The ArrayList class has a removeIf method whose parameter is a Predicate. It is

specifically designed to pass a lambda expression. For example, the following

statement removes all null values from an array list:

list.removeIf(e -> e == null);

3.5 Method and Constructor References
Sometimes, there is already a method that carries out exactly the action that you’d

like to pass on to some other code. There is special syntax for a method reference

that is even shorter than a lambda expression calling the method. A similar

shortcut exists for constructors. You will see both in the following sections.

3.5.1 Method References
Suppose you want to sort strings regardless of letter case. You could call

Arrays.sort(strings, (x, y) -> x.compareToIgnoreCase(y));

Instead, you can pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase);

The expression String::compareToIgnoreCase is a method reference that is equivalent to

the lambda expression (x, y) -> x.compareToIgnoreCase(y).

Here is another example. The Objects class defines a method isNull. The call

Objects.isNull(x) simply returns the value of x == null. It seems hardly worth having

a method for this case, but it was designed to be passed as a method expression.

The call

list.removeIf(Objects::isNull);

removes all null values from a list.

As another example, suppose you want to print all elements of a list. The ArrayList
class has a method forEach that applies a function to each element. You could call

list.forEach(x -> System.out.println(x));

It would be nicer, however, if you could just pass the println method to the forEach
method. Here is how to do that:

list.forEach(System.out::println);

As you can see from these examples, the :: operator separates the method name

from the name of a class or object. There are three variations:

Chapter 3 Interfaces and Lambda Expressions110

1. Class::instanceMethod

2. Class::staticMethod

3. object::instanceMethod

In the first case, the first parameter becomes the receiver of the method, and any
other parameters are passed to the method. For example, String::compareToIgnoreCase
is the same as (x, y) -> x.compareToIgnoreCase(y).

In the second case, all parameters are passed to the static method. The method
expression Objects::isNull is equivalent to x -> Objects.isNull(x).

In the third case, the method is invoked on the given object, and the parameters
are passed to the instance method. Therefore, System.out::println is equivalent to
x -> System.out.println(x).

NOTE: When there are multiple overloaded methods with the same name,
the compiler will try to find from the context which one you mean. For example,
there are multiple versions of the println method.When passed to the forEach
method of an ArrayList<String>, the println(String) method is picked.

You can capture the this parameter in a method reference. For example, this::equals
is the same as x -> this.equals(x).

NOTE: In an inner class, you can capture the this reference of an enclosing
class as EnclosingClass.this::method.You can also capture super—see
Chapter 4.

3.5.2 Constructor References
Constructor references are just like method references, except that the name of
the method is new. For example, Employee::new is a reference to an Employee constructor.
If the class has more than one constructor, then it depends on the context which
constructor is chosen.

Here is an example for using such a constructor reference. Suppose you have a
list of strings

List<String> names = ...;

You want a list of employees, one for each name. As you will see in Chapter 8,
you can use streams to do this without a loop: Turn the list into a stream, and
then call the map method. It applies a function and collects all results.

1113.5 Method and Constructor References

Stream<Employee> stream = names.stream().map(Employee::new);

Since names.stream() contains String objects, the compiler knows that Employee::new
refers to the constructor Employee(String).

You can form constructor references with array types. For example, int[]::new is
a constructor reference with one parameter: the length of the array. It is equivalent

to the lambda expression n -> new int[n].

Array constructor references are useful to overcome a limitation of Java: It is not

possible to construct an array of a generic type. (See Chapter 6 for details.) For

that reason, methods such Stream.toArray return an Object array, not an array of the

element type:

Object[] employees = stream.toArray();

But that is unsatisfactory. The user wants an array of employees, not objects. To

solve this problem, another version of toArray accepts a constructor reference:

Employee[] buttons = stream.toArray(Employee[]::new);

The toArray method invokes this constructor to obtain an array of the correct type.

Then it fills and returns the array.

3.6 Processing Lambda Expressions
Up to now, you have seen how to produce lambda expressions and pass them

to a method that expects a functional interface. In the following sections, you

will see how to write your own methods that can consume lambda expressions.

3.6.1 Implementing Deferred Execution
The point of using lambdas is deferred execution. After all, if you wanted to execute

some code right now, you’d do that, without wrapping it inside a lambda. There

are many reasons for executing code later, such as:

• Running the code in a separate thread

• Running the code multiple times

• Running the code at the right point in an algorithm (for example, the

comparison operation in sorting)

• Running the code when something happens (a button was clicked, data has

arrived, and so on)

• Running the code only when necessary

Chapter 3 Interfaces and Lambda Expressions112

Let’s look at a simple example. Suppose you want to repeat an action n times.

The action and the count are passed to a repeat method:

repeat(10, () -> System.out.println("Hello, World!"));

To accept the lambda, we need to pick (or, in rare cases, provide) a functional

interface. In this case, we can just use Runnable:

public static void repeat(int n, Runnable action) {
 for (int i = 0; i < n; i++) action.run();
}

Note that the body of the lambda expression is executed when action.run() is

called.

Now let’s make this example a bit more sophisticated. We want to tell the action

in which iteration it occurs. For that, we need to pick a functional interface that

has a method with an int parameter and a void return. Instead of rolling your

own, I strongly recommend that you use one of the standard ones described in

the next section. The standard interface for processing int values is

public interface IntConsumer {
 void accept(int value);
}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action) {
 for (int i = 0; i < n; i++) action.accept(i);
}

And here is how you call it:

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

3.6.2 Choosing a Functional Interface
In most functional programming languages, function types are structural. To

specify a function that maps two strings to an integer, you use a type that looks

something like Function2<String, String, Integer> or (String, String) -> int. In Java,

you instead declare the intent of the function using a functional interface such

as Comparator<String>. In the theory of programming languages this is called nominal

typing.

Of course, there are many situations where you want to accept “any function”

without particular semantics. There are a number of generic function types for

that purpose (see Table 3–1), and it’s a very good idea to use one of them when

you can.

1133.6 Processing Lambda Expressions

Table 3–1 Common Functional Interfaces

Other
methods

DescriptionAbstract
method
name

Return
type

Parameter
types

Functional Interface

Runs an action

without

arguments or

return value

runvoidnoneRunnable

Supplies a value

of type T

getTnoneSupplier<T>

andThenConsumes a value

of type T

acceptvoidTConsumer<T>

andThenConsumes values

of types T and U

acceptvoidT, UBiConsumer<T, U>

compose,

andThen,

identity

A function with

argument of type T

applyRTFunction<T, R>

andThenA function with

arguments of

types T and U

applyRT, UBiFunction<T, U, R>

compose,

andThen,

identity

A unary operator

on the type T

applyTTUnaryOperator<T>

andThen,

maxBy,

minBy

A binary operator

on the type T

applyTT, TBinaryOperator<T>

and, or,

negate,

isEqual

A boolean-valued

function

testbooleanTPredicate<T>

and, or,

negate

A boolean-valued

function with two

arguments

testbooleanT, UBiPredicate<T, U>

For example, suppose you write a method to process files that match a certain

criterion. Should you use the descriptive java.io.FileFilter class or a Predicate<File>?
I strongly recommend that you use the standard Predicate<File>. The only reason

not to do so would be if you already have many useful methods producing

FileFilter instances.

Chapter 3 Interfaces and Lambda Expressions114

NOTE: Most of the standard functional interfaces have nonabstract methods
for producing or combining functions. For example, Predicate.isEqual(a) is the
same as a::equals, but it also works if a is null. There are default methods
and, or, negate for combining predicates. For example, Predicate.isEqual(a).
or(Predicate.isEqual(b)) is the same as x -> a.equals(x) || b.equals(x).

Table 3–2 lists the 34 available specializations for primitive types int, long, and
double. It is a good idea to use these specializations to reduce autoboxing. For that
reason, I used an IntConsumer instead of a Consumer<Integer> in the example of the
preceding section.

Table 3–2 Functional Interfaces for Primitive Types
p, q is int, long, double; P, Q is Int, Long, Double

Abstract method nameReturn typeParameter typesFunctional Interface

getAsBooleanbooleannoneBooleanSupplier

getAsPpnonePSupplier

acceptvoidpPConsumer

acceptvoidT, pObjPConsumer<T>

applyTpPFunction<T>

applyAsQqpPToQFunction

applyAsPpTToPFunction<T>

applyAsPpT, UToPBiFunction<T, U>

applyAsPppPUnaryOperator

applyAsPpp, pPBinaryOperator

testbooleanpPPredicate

3.6.3 Implementing Your Own Functional Interfaces
Ever so often, you will be in a situation where none of the standard functional
interfaces work for you. Then you need to roll your own.

Suppose you want to fill an image with color patterns, where the user supplies
a function yielding the color for each pixel. There is no standard type for a map-
ping (int, int) -> Color. You could use BiFunction<Integer, Integer, Color>, but that
involves autoboxing.

1153.6 Processing Lambda Expressions

In this case, it makes sense to define a new interface

@FunctionalInterface
public interface PixelFunction {
 Color apply(int x, int y);
}

NOTE:You should tag functional interfaces with the @FunctionalInterface
annotation. This has two advantages. First, the compiler checks that the an-
notated entity is an interface with a single abstract method. Second, the
javadoc page includes a statement that your interface is a functional interface.

Now you are ready to implement a method:

BufferedImage createImage(int width, int height, PixelFunction f) {
 BufferedImage image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);

 for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++) {
 Color color = f.apply(x, y);
 image.setRGB(x, y, color.getRGB());
 }
 return image;
}

To call it, supply a lambda expression that yields a color value for two integers:

BufferedImage frenchFlag = createImage(150, 100,
 (x, y) -> x < 50 ? Color.BLUE : x < 100 ? Color.WHITE : Color.RED);

3.7 Lambda Expressions and Variable Scope
In the following sections, you will learn how variables work inside lambda ex-
pressions. This information is somewhat technical but essential for working with
lambda expressions.

3.7.1 Scope of a Lambda Expression
The body of a lambda expression has the same scope as a nested block. The same
rules for name conflicts and shadowing apply. It is illegal to declare a parameter
or a local variable in the lambda that has the same name as a local variable.

Chapter 3 Interfaces and Lambda Expressions116

int first = 0;
Comparator<String> comp = (first, second) -> first.length() - second.length();
 // Error: Variable first already defined

Inside a method, you can’t have two local variables with the same name, therefore

you can’t introduce such variables in a lambda expression either.

As another consequence of the “same scope” rule, the this keyword in a lambda

expression denotes the this parameter of the method that creates the

lambda. For example, consider

public class Application() {
 public void doWork() {
 Runnable runner = () -> { ...; System.out.println(this.toString()); ... };
 ...
 }
}

The expression this.toString() calls the toString method of the Application object,

not the Runnable instance. There is nothing special about the use of this in a lambda

expression. The scope of the lambda expression is nested inside the doWork method,

and this has the same meaning anywhere in that method.

3.7.2 Accessing Variables from the Enclosing Scope
Often, you want to access variables from an enclosing method or class in a

lambda expression. Consider this example:

public static void repeatMessage(String text, int count) {
 Runnable r = () -> {
 for (int i = 0; i < count; i++) {
 System.out.println(text);
 }
 };
 new Thread(r).start();
}

Note that the lambda expression accesses the parameter variables defined in the

enclosing scope, not in the lambda expression itself.

Consider a call

repeatMessage("Hello", 1000); // Prints Hello 1000 times in a separate thread

Now look at the variables count and text inside the lambda expression. If you

think about it, something nonobvious is going on here. The code of the lambda

expression may run long after the call to repeatMessage has returned and the

1173.7 Lambda Expressions and Variable Scope

parameter variables are gone. How do the text and count variables stay around
when the lambda expression is ready to execute?

To understand what is happening, we need to refine our understanding of a
lambda expression. A lambda expression has three ingredients:

1. A block of code

2. Parameters

3. Values for the free variables—that is, the variables that are not parameters
and not defined inside the code

In our example, the lambda expression has two free variables, text and count. The
data structure representing the lambda expression must store the values for these
variables—in our case, "Hello" and 1000. We say that these values have been captured
by the lambda expression. (It’s an implementation detail how that is done. For
example, one can translate a lambda expression into an object with a single
method, so that the values of the free variables are copied into instance variables
of that object.)

NOTE: The technical term for a block of code together with the values of free
variables is a closure. In Java, lambda expressions are closures.

As you have seen, a lambda expression can capture the value of a variable in the
enclosing scope. To ensure that the captured value is well defined, there is an
important restriction. In a lambda expression, you can only reference variables
whose value doesn’t change. This is sometimes described by saying that
lambda expressions capture values, not variables. For example, the following is
a compile-time error:

for (int i = 0; i < n; i++) {
 new Thread(() -> System.out.println(i)).start();
 // Error—cannot capture i
}

The lambda expression tries to capture i, but this is not legal because i changes.
There is no single value to capture. The rule is that a lambda expression can only
access local variables from an enclosing scope that are effectively final. An effec-
tively final variable is never modified—it either is or could be declared as final.

NOTE: The same rule applies to variables captured by local inner classes
(see Section 3.9, “Local Inner Classes,” on p. 122). In the past, the rule was
more draconian and required captured variables to actually be declared final.
This is no longer the case.

Chapter 3 Interfaces and Lambda Expressions118

NOTE:The variable of an enhanced for loop is effectively final since its scope
is a single iteration. The following is perfectly legal:

for (String arg : args) {
 new Thread(() -> System.out.println(arg)).start();
 // OK to capture arg
}

A new variable arg is created in each iteration and assigned the next value
from the args array. In contrast, the scope of the variable i in the preceding
example was the entire loop.

As a consequence of the “effectively final” rule, a lambda expression cannot
mutate any captured variables. For example,

public static void repeatMessage(String text, int count, int threads) {
 Runnable r = () -> {
 while (count > 0) {
 count--; // Error: Can’t mutate captured variable
 System.out.println(text);
 }
 };
 for (int i = 0; i < threads; i++) new Thread(r).start();
}

This is actually a good thing. As you will see in Chapter 10, if two threads update
count at the same time, its value is undefined.

NOTE: Don’t count on the compiler to catch all concurrent access errors.The
prohibition against mutation only holds for local variables. If count is an instance
variable or static variable of an enclosing class, then no error is reported even
though the result is just as undefined.

CAUTION: One can circumvent the check for inappropriate mutations by using
an array of length 1:

int[] counter = new int[1];
button.setOnAction(event -> counter[0]++);

The counter variable is effectively final—it is never changed since it always
refers to the same array, so you can access it in the lambda expression.

Of course, code like this is not threadsafe. Except possibly for a callback in
a single-threaded UI, this is a terrible idea.You will see how to implement a
threadsafe shared counter in Chapter 10.

1193.7 Lambda Expressions and Variable Scope

3.8 Higher-Order Functions
In a functional programming language, functions are first-class citizens. Just like

you can pass numbers to methods and have methods that produce numbers, you

can have arguments and return values that are functions. Functions that process

or return functions are called higher-order functions. This sounds abstract, but it

is very useful in practice. Java is not quite a functional language because it uses

functional interfaces, but the principle is the same. In the following sections,

we will look at some examples and examine the higher-order functions in the

Comparator interface.

3.8.1 Methods that Return Functions
Suppose sometimes we want to sort an array of strings in ascending order and

other times in descending order. We can make a method that produces the correct

comparator:

public static Comparator<String> compareInDirecton(int direction) {
 return (x, y) -> direction * x.compareTo(y);
}

The call compareInDirection(1) yields an ascending comparator, and the call

compareInDirection(-1) a descending comparator.

The result can be passed to another method (such as Arrays.sort) that expects such

an interface.

Arrays.sort(friends, compareInDirection(-1));

In general, don’t be shy to write methods that produce functions (or, technically,

instances of classes that implement a functional interface). This is useful to

generate custom functions that you pass to methods with functional interfaces.

3.8.2 Methods That Modify Functions
In the preceding section, you saw a method that yields an increasing or decreasing

string comparator. We can generalize this idea by reversing any comparator:

public static Comparator<String> reverse(Comparator<String> comp) {
 return (x, y) -> comp.compare(x, y);
}

This method operates on functions. It receives a function and returns a modified

function. To get case-insensitive descending order, use

reverse(String::compareToIgnoreCase)

Chapter 3 Interfaces and Lambda Expressions120

NOTE: The Comparator interface has a default method reversed that produces
the reverse of a given comparator in just this way.

3.8.3 Comparator Methods
The Comparator interface has a number of useful static methods that are higher-order
functions generating comparators.

The comparing method takes a “key extractor” function that maps a type T to a
comparable type (such as String). The function is applied to the objects to
be compared, and the comparison is then made on the returned keys. For example,
suppose you have an array of Person objects. Here is how you can sort them by
name:

Arrays.sort(people, Comparator.comparing(Person::getName));

You can chain comparators with the thenComparing method for breaking ties. For
example,

Arrays.sort(people, Comparator
 .comparing(Person::getLastName)
 .thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

There are a few variations of these methods. You can specify a comparator to be
used for the keys that the comparing and thenComparing methods extract. For example,
here we sort people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,
 (s, t) -> s.length() - t.length()));

Moreover, both the comparing and thenComparing methods have variants that avoid
boxing of int, long, or double values. An easier way of sorting by name length
would be

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

If your key function can return null, you will like the nullsFirst and nullsLast
adapters. These static methods take an existing comparator and modify it so that
it doesn’t throw an exception when encountering null values but ranks them as
smaller or larger than regular values. For example, suppose getMiddleName
returns a null when a person has no middle name. Then you can use
Comparator.comparing(Person::getMiddleName(), Comparator.nullsFirst(...)).

The nullsFirst method needs a comparator—in this case, one that compares two
strings. The naturalOrder method makes a comparator for any class implementing
Comparable. Here is the complete call for sorting by potentially null middle names.

1213.8 Higher-Order Functions

I use a static import of java.util.Comparator.* to make the expression more legible.
Note that the type for naturalOrder is inferred.

Arrays.sort(people, comparing(Person::getMiddleName,
 nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order.

3.9 Local Inner Classes
Long before there were lambda expressions, Java had a mechanism for concisely
defining classes that implement an interface (functional or not). For functional
interfaces, you should definitely use lambda expressions, but once in a while,
you may want a concise form for an interface that isn’t functional. You will also
encounter the classic constructs in legacy code.

3.9.1 Local Classes
You can define a class inside a method. Such a class is called a local class. You
would do this for classes that are just tactical. This occurs often when a class
implements an interface and the caller of the method only cares about the
interface, not the class.

For example, consider a method

public static IntSequence randomInts(int low, int high)

that generates an infinite sequence of random integers with the given bounds.

Since IntSequence is an interface, the method must return an object of some class
implementing that interface. The caller doesn’t care about the class, so it can be
declared inside the method:

private static Random generator = new Random();

public static IntSequence randomInts(int low, int high) {
 class RandomSequence implements IntSequence {
 public int next() { return low + generator.nextInt(high - low + 1); }
 public boolean hasNext() { return true; }
 }

 return new RandomSequence();
}

NOTE: A local class is not declared as public or private since it is never
accessible outside the method.

Chapter 3 Interfaces and Lambda Expressions122

There are two advantages of making a class local. First, its name is hidden in the
scope of the method. Second, the methods of the class can access variables from
the enclosing scope, just like the variables of a lambda expression.

In our example, the next method captures three variables: low, high, and generator.
If you turned RandomInt into a nested class, you would have to provide an explicit
constructor that receives these values and stores them in instance variables (see
Exercise 15).

3.9.2 Anonymous Classes
In the example of the preceding section, the name RandomSequence was used exactly
once: to construct the return value. In this case, you can make the class anonymous:

public static IntSequence randomInts(int low, int high) {
 return new IntSequence() {
 public int next() { return low + generator.nextInt(high - low + 1); }
 public boolean hasNext() { return true; }
 }
}

The expression

new Interface() { methods }

means: Define a class implementing the interface that has the given methods,
and construct one object of that class.

NOTE: As always, the () in the new expression indicate the construction
arguments. A default constructor of the anonymous class is invoked.

Before Java had lambda expressions, anonymous inner classes were the most
concise syntax available for providing runnables, comparators, and other func-
tional objects. You will often see them in legacy code.

Nowadays, they are only necessary when you need to provide two or more
methods, as in the preceding example. If the IntSequence interface has a default
hasNext method, as in Exercise 15, you can simply use a lambda expression:

public static IntSequence randomInts(int low, int high) {
 return () -> low + generator.nextInt(high - low + 1);
}

1233.9 Local Inner Classes

Exercises
1. Provide an interface Measurable with a method double getMeasure() that measures

an object in some way. Make Employee implement Measurable. Provide a method

double average(Measurable[] objects) that computes the average measure. Use it

to compute the average salary of an array of employees.

2. Continue with the preceding exercise and provide a method Measurable
largest(Measurable[] objects). Use it to find the name of the employee with the

largest salary. Why do you need a cast?

3. What are all the supertypes of String? Of Scanner? Of ImageOutputStream? Note

that each type is its own supertype. A class or interface without declared

supertype has supertype Object.

4. Implement a static of method of the IntSequence class that yields a sequence

with the arguments. For example, IntSequence.of(3, 1, 4, 1, 5, 9) yields a se-

quence with six values. Extra credit if you return an instance of an anonymous

inner class.

5. Implement a static constant method of the IntSequence class that yields an infinite

constant sequence. For example, IntSequence.constant(1) yields values 1 1 1 . . . ,
ad infinitum. Extra credit if you do this with a lambda expression.

6. In this exercise, you will try out what happens when a method is added to

an interface. In Java 7, implement a class DigitSequence that implements

Iterator<Integer>, not IntSequence. Provide methods hasNext, next, and a do-nothing

remove. Write a program that prints the elements of an instance. In Java 8, the

Iterator class gained another method, forEachRemaining. Does your code still

compile when you switch to Java 8? If you put your Java 7 class in a JAR file

and don’t recompile, does it work in Java 8? What if you call the forEachRemaining
method? Also, the remove method has become a default method in Java 8,

throwing an UnsupportedOperationException. What happens when remove is called

on an instance of your class?

7. Implement the method void luckySort(ArrayList<String> strings, Comparator<String>
comp) that keeps calling Collections.shuffle on the array list until the elements

are in increasing order, as determined by the comparator.

8. Implement a class Greeter that implements Runnable and whose run method

prints n copies of "Hello, " + target, where n and target are set in the con-

structor. Construct two instances with different messages and execute them

concurrently in two threads.

9. Implement methods

public static void runTogether(Runnable... tasks)
public static void runInOrder(Runnable... tasks)

Chapter 3 Interfaces and Lambda Expressions124

The first method should run each task in a separate thread and then return.

The second method should run all methods in the current thread and

return when the last one has completed.

10. Using the listFiles(FileFilter) and isDirectory methods of the java.io.File class,

write a method that returns all subdirectories of a given directory. Use a

lambda expression instead of a FileFilter object. Repeat with a method

expression and an anonymous inner class.

11. Using the list(FilenameFilter) method of the java.io.File class, write a method

that returns all files in a given directory with a given extension. Use a lambda

expression, not a FilenameFilter. Which variable from the enclosing scope does

it capture?

12. Given an array of File objects, sort it so that directories come before files, and

within each group, elements are sorted by path name. Use a lambda expression

to specify the Comparator.

13. Write a method that takes an array of Runnable instances and returns a Runnable
whose run method executes them in order. Return a lambda expression.

14. Write a call to Arrays.sort that sorts employees by salary, breaking ties by

name. Use Comparator.thenComparing. Then do this in reverse order.

15. Implement the RandomSequence in Section 3.9.1, “Local Classes,” on p. 122 as a

nested class, outside the randomInts method.

125Exercises

Symbols and Numbers
- (minus sign)

flag (for output), 30

in dates, 390

in regular expressions, 294

operator, 13–14

--

in shell scripts, 439

operator, 13, 15

->, in lambda expressions, 107, 110–111

-∞, in string templates, 409

_ (underscore)

in number literals, 8

in variable names, 11, 61

, (comma)

flag (for output), 30

in numbers, 398, 403, 408

; (semicolon)

in Java vs. JavaScript, 426

path separator (Windows), 75, 240

: (colon)

in assertions, 185–186

in dates, 390

in switch statement, 31

path separator (Unix), 75, 240

:: operator, 110–111, 137

! (exclamation sign)

comments, in property files, 239

operator, 13, 18

!= operator, 13, 18

for wrapper classes, 40

? (quotation mark)

in regular expressions, 293–294, 296

replacement character, 281, 413

wildcard, for types, 204–208, 219

? : operator, 13, 18

/ (slash)

file separator (Unix), 239, 284

in javac path segments, 4

operator, 13–14

root component, 284

//, /*...*/ comments, 3

/**...*/ comments, 84–85

/= operator, 13

. (period)

in method calls, 5

in numbers, 398, 403, 408

in package names, 4, 73

in regular expressions, 293–294, 301

operator, 13

443

Index

.., parent directory, 285

... (ellipsis), for varargs, 48

`...` (back quotes), in shell scripts, 438–439

^ (caret)

for function parameters, 108

in regular expressions, 293–297, 300

operator, 13, 18

^= operator, 13

~ operator, 13, 18

'...' (single quotes)

for character literals, 9–10

in JavaScript, 426

in string templates, 409

"..." (double quotes)

for strings, 6

in javadoc hyperlinks, 88

in shell scripts, 438

"" (empty string), 22–23, 139

((left parenthesis), in formatted output,

30

() (empty parentheses), for anonymous

classes, 123

(...) (parentheses)

for anonymous functions (JavaScript),

435

for casts, 17, 97

in regular expressions, 293–296, 298–299

operator, 13

[] (empty square brackets), for arrays,

37–38

[...] (square brackets)

for arrays, 37, 44

in JavaScript, 430, 433–434

in regular expressions, 293–295

operator, 13

{...} (curly braces)

in annotation elements, 357

in lambda expressions, 108

in regular expressions, 293–296, 300

in string templates, 408

with arrays, 38

{{...}}, double brace initialization, 136

@ (at), in javadoc comments, 85

$ (dollar sign)

currency symbol, 408

flag (for output), 30

in JavaScript function calls, 432, 437

in regular expressions, 293–294, 297, 300

in variable names, 11

${...}, in shell scripts, 438–440

€ currency symbol, 403, 408

* (asterisk)

for annotation processors, 372

in documentation comments, 86

in regular expressions, 293–296, 299

operator, 13–14

wildcard:

in class path, 75

in imported classes, 77–78

*= operator, 13

\ (backslash)

character literal, 10

file separator (Windows), 239, 284

in regular expressions, 293–294, 300

& (ampersand), operator, 13, 18–19

&& (double ampersand)

in regular expressions, 295

operator, 13, 18

&= operator, 13

(number sign)

comments, in property files, 239

flag (for output), 30

in javadoc hyperlinks, 87

in string templates, 409

#!, in shell scripts, 440

% (percent sign)

conversion character, 28–29

operator, 13–14

%% pattern variable, 193

%= operator, 13

+ (plus sign)

flag (for output), 30

in regular expressions, 293–296

operator, 13–14

for strings, 20–21, 23, 139

++ operator, 13, 15

+= operator, 13

< (left angle bracket)

flag (for output), 30

in shell syntax, 28

in string templates, 409

operator, 18, 432

Index444

<< operator, 13, 18–19

<<= operator, 13

<= operator, 13, 18

<%...%>, <%=...%> delimiters (JSP), 440

≤, in string templates, 409

<> (diamond syntax)

for array lists, 39

for constructors of generic classes, 201

<...> (angle brackets)

for type parameters, 103, 200

in javadoc hyperlinks, 88

in regular expressions, 296

=, -= operators, 13–14

== operator, 13, 18, 141

for class objects, 153

for enumerations, 147

for strings, 22

for wrapper classes, 40

> (right angle bracket)

in shell syntax, 28

operator, 18

>=, >>, >>> operators, 13, 18

>>=, >>>= operators, 13

| (vertical bar)

in regular expressions, 293–295

in string templates, 409

operator, 13, 18–19

|= operator, 13

|| operator, 13, 18

0 (zero)

as default value, 65, 68

flag (for output), 30

formatting symbol (date/time), 393

prefix, for octal literals, 8

\0, in regular expressions, 294

0b prefix, 8

0x prefix, 8

in formatted output, 30

0xFEFF byte order mark, 277

A
a formatting symbol (date/time), 392

a, A conversion characters, 29

\a, \A, in regular expressions, 294, 297

abstract classes, 133–134

abstract methods, of an interface, 109

abstract modifier, 97, 133–134

AbstractCollection class, 100

AbstractMethodError, 101

AbstractProcessor class, 372

accept methods (Consumer, XXXConsumer), 114–115

acceptEither method (CompletableFuture),

344–345

AccessibleObject class, 163

setAccessible method, 162–163

accessors, 56

accumulate method (LongAccumulator), 331

accumulateAndGet method (AtomicXXX), 330

accumulator functions, 265

add method

of ArrayDeque, 242

of ArrayList, 39, 56

of BlockingQueue, 327

of Collection, 228

of List, 229

of ListIterator, 233

of LongAdder, 330

addAll method

of Collection, 206, 228

of Collections, 231

addExact method (Math), 16

addHandler method (Logger), 191

addition, 14

identity for, 265

addSuppressed method (IOException), 181

allMatch method (Stream), 256

allOf method

of CompletableFuture, 344–345

of EnumSet, 241

and, andNot methods (BitSet), 241

and, andThen methods (functional interfaces),

114

Android, 342

AnnotatedConstruct interface, 373

AnnotatedElement interface, 369–371

annotation interfaces, 361–364

annotation processors, 372

annotations

accessing, 362

and modifiers, 360

container, 368, 370

declaration, 358–359

445Index

annotations (cont.)

documented, 367

generating source code with, 373–376

inherited, 367, 370

key/value pairs in. See elements

meta, 362–368

multiple, 358

processing:

at runtime, 368–371

source-level, 371–376

repeatable, 358, 368, 370

standard, 364–368

type use, 359–360

anonymous classes, 123

anyMatch method (Stream), 256

anyOf method (CompletableFuture), 344–345

Applet class, 155

applications. See programs

apply, applyAsXXX methods (functional

interfaces), 114–115

applyToEither method (CompletableFuture),

344–345

$ARG, in shell scripts, 440

arguments array (jjs), 440

arithmetic operations, 13–19

Array class, 165–167

array list variables, 39

array lists, 39–40

accessing elements in, 40

adding elements to, 39

anonymous, 136

checking for nulls, 207

constructing, 39

converting between, 204

copying, 42

filling, 42

instantiating with type variables, 214

removing elements from, 40

size of, 40

sorting, 43

visiting all elements of, 41

array variables

assigning values to, 38

copying, 41

declaring, 37–38

initializing, 37

ArrayBlockingQueue class, 328

ArrayDeque class, 242

ArrayIndexOutOfBoundsException, 38

ArrayList class, 39–40, 230

add method, 39, 56

clone method, 146–147

forEach method, 110

get, set methods, 40

remove method, 40

removeIf method, 110

size method, 40

arrays, 37–39

accessing nonexisting elements in,

38

allocating, 214

annotating, 359

casting, 166

checking, 165

comparing, 141

computing values of, 324

constructing, 37–38

constructor references with, 112

converting:

to a reference of type Object, 138

to/from streams, 259, 268, 324

copying, 42

covariant, 203

filling, 38, 42

generating Class objects for, 153

growing, 165–167

hash codes of, 144

in JavaScript, 433–434

length of, 38–39, 119

multidimensional, 44–46, 140

of bytes, 274–275

of generic types, 112, 215

of objects, 38, 324

of primitive types, 324

of strings, 299

passing into methods, 47

printing, 43, 46, 140

serializable, 301

sorting, 43, 103–104, 324

superclass assignment in, 132

using class literals with, 152

visiting all elements of, 41

Index446

Arrays class

asList method, 42, 244

copyOf method, 42

deepToString method, 140

equals method, 141

fill method, 42

hashCode method, 144

parallelXXX methods, 43, 324

sort method, 43, 104–105, 109–110

stream method, 252, 266

toString method, 43, 140

ArrayStoreException, 132, 203, 215

ASCII, 25, 276, 300

for property files, 412

for source files, 413

asList method (Arrays), 42, 244

ASM tool, 376

assert statement, 185–186

AssertionError, 186

assertions, 185–187

checking, 359

enabling/disabling, 186–187

assignment operators, 14

associative operations, 265

asSubclass method (Class), 219

asynchronous computations, 341–344

AsyncTask class (Android), 342

atomic methods, 326

atomic operations, 319, 321, 329–331

and performance, 330

AtomicXXX classes, 329–330

atZone method (LocalDateTime), 387

@author tag (javadoc), 85, 89

autoboxing, 40, 115

AutoCloseable interface, 180, 202

availableCharsets method (Charset), 278

availableProcessors method (Runtime), 313

average method (XXXStream), 267

B
b, B conversion characters, 29

\b (backspace), 10

\b, \B, in regular expressions, 297

bash scripts, 438

bash scripts (Unix), 437

BasicFileAttributes class, 289

batch files (Windows), 437–438

BeanInfo class, 165

between method (Duration), 381

BiConsumer interface, 114

BiFunction interface, 114–115

BigDecimal, BigInteger classes, 19

big-endian format, 277, 282–283

binary data, reading/writing, 282

binary numbers, 8–9

binary trees, 234

BinaryOperator interface, 114

binarySearch method (Collections), 231

Bindings interface, 425

BiPredicate interface, 114

BitSet class, 240–241

collecting streams into, 266

methods of, 240–241

bitwise operators, 18–19

block statement, labeled, 35

blocking queues, 326–328

BlockingQueue interface, 327–328

Boolean class, 40

boolean type, 10

default value of, 65, 68

formatting for output, 29

reading/writing, 282

streams of, 266

BooleanSupplier interface, 115

bootstrap class loader, 156

boxed method (XXXStream), 267

branches, 30–32

break statement, 31–32, 34–35

labeled, 35

bridge methods, 210–211

clashes of, 217

BufferedReader class, 280

bulk operations, 326

Byte class, 40

MIN_VALUE, MAX_VALUE constants, 7

toUnsignedInt method, 8

byte codes, 4

writing to memory, 422–423

byte order mark, 277

byte type, 7–8, 275

streams of, 266

type conversions of, 17

447Index

ByteArrayClass class, 422

ByteArrayClassLoader class, 423

ByteArrayInputStream class, 274

ByteArrayOutputStream class, 274–275

ByteBuffer class, 283

bytes

arrays of, 274–275

converting to strings, 278

reading, 275

writing, 276

C
c, C conversion characters, 29

C:\ root component, 284

C/C++ programming languages

#include directive in, 78

allocating memory in, 321

integer types in, 7

pointers in, 57

C# programming language, type

parameters in, 207

\c, in regular expressions, 294

caching, 318

calculators, 149–150

Calendar class, 379

weekends in, 384

calendars, 54

call method (CompilationTask), 421

call by reference, 63

Callable interface, 106

call method, 314

extending, 421

callbacks, 106–107

camel case, 11

cancel method (Future), 315

cancellation requests, 338

cardinality method (BitSet), 241

carriage return, 10

case label, 31–32

cast method (Class), 219

cast insertion, 209–210

casts, 17, 97–98, 132

and generic types, 212

annotating, 360

catch statement, 178–179

annotating parameters of, 358

in JavaScript, 437

in try-with-resources, 181

no type variables in, 217

ceiling method (NavigableSet), 235

Channel interface, 98

channels, 283

char type, 9–10

streams of, 266

type conversions of, 17

Character class, 40

character classes, 294

character encodings, 276–279

detecting, 278

in PrintWriter constructor, 281

localizing, 413

partial, 277, 281

platform, 278, 413

character literals, 9–10

characters, 274

combined, 407

formatting for output, 29

normalized, 408

reading/writing, 282

charAt method (String), 26

CharSequence interface, 24

chars, codePoints methods, 266

splitting by regular expressions, 252

Charset class

availableCharsets method, 278

defaultCharset method, 278, 413

displayName method, 413

forName method, 278

checked exceptions, 176–178

and generic types, 218

combining in a superclass, 177

declaring, 177–178

documenting, 178

in lambda expressions, 178

not allowed in a method, 183

rethrowing, 182

checked views, 213, 245

checkedXXX methods (Collections), 232, 245

Checker Framework, 359

childrenNames method (Preferences), 415

choice indicator, in string templates, 409

Church, Alonzo, 108, 382

Index448

Class class, 152–155, 220

asSubclass method, 219

cast method, 219

comparing objects of, 153

forName method, 152–153, 157–158, 176,

184, 423

generic, 219

getCanonicalName method, 153

getClassLoader method, 154, 156

getComponentType method, 154, 165

getConstructor(s) methods, 154, 161, 163,

219

getDeclaredConstructor(s) methods, 154, 161,

219

getDeclaredField(s) methods, 154

getDeclaredMethod(s) methods, 154, 162

getDeclaringClass method, 154

getEnclosingXXX methods, 154

getEnumConstants method, 219

getField(s) methods, 154, 161

getInterfaces method, 153

getMethod(s) methods, 154, 161–162

getModifiers method, 153

getName method, 152–153

getPackage method, 153

getResource method, 155, 410

getResourceAsStream method, 154–155

getSimpleName method, 153

getSuperclass method, 153, 219

getTypeName method, 153

getTypeParameters method, 220

isXXX methods, 153–154, 165

newInstance method, 154, 163, 219

toString, toGenericString methods, 153

class comments, 85–86

class declarations

annotations in, 358, 367

initialization blocks in, 66–67

class files, 4, 155

compressing, 74

paths of, 73

processing annotations in, 376

class literals, 152

no annotations for, 360

no type variables in, 213

class loaders, 155–157

class objects, 152

comparing, 153

class path, 74–76, 156

.class suffix, 152–153

ClassCastException, 98, 212

classes, 2, 54

abstract, 97, 102, 133–134

adding functionality to, 71

adding to packages, 77

anonymous, 123

companion, 100

compiling on the fly, 422

constructing objects of, 10

deprecated, 87

evolving, 306

extending, 128–137

in JavaScript, 435–437

fields of, 127

final, 133

generic, 39

immutable, 24, 322

implementing, 58–63, 145

importing, 77–78

inner, 81–83

instances of, 5, 59, 72

loading, 161

local, 122–123

members of, 127, 160–161

names of, 11, 72, 152

nested, 79–84, 359

nested enumerations in, 151

not known at compile time, 152, 167

protected, 134–135

public, 76

static initialization of, 157

super- and sub-, 128–129

system, 186

testing, 76

utility, 76, 157

wrapper, 40

classes win rule, 144

classifier functions, 262

ClassLoader class, 77

extending, 423

findClass, loadClass methods, 157

setXXXAssertionStatus methods, 187

449Index

classloader inversion, 158

ClassNotFoundException, 176

CLASSPATH environment variable, 75

clear method

of BitSet, 240

of Collection, 228

of Map, 237

clone method

of ArrayList, 146–147

of Enum, 148

of Message, 146–147

of Object, 135, 138, 144–147, 163

protected, 144

Cloneable interface, 145

CloneNotSupportedException, 146–148

cloning, 144–147

close method (PrintWriter), 179–180

Closeable interface, 98

close method, 180

closures, 118

code element (HTML), in documentation

comments, 85

code generator tools, 365–366

code points, 26, 276

code units, 9, 26, 266

in regular expressions, 294

codePoints method (CharSequence), 266

codePoints, codePointXXX methods (String), 26

Collator class, 23

getInstance, setDecomposition, setStrength

methods, 407

collect method (Stream), 259–260, 266

Collection interface, 100, 228

add method, 228

addAll method, 206, 228

clear method, 228

contains, containsAll, isEmpty methods, 229

iterator, spliterator methods, 229

parallelStream method, 229, 250–251, 267,

323

remove, removeXXX, retainAll methods, 228

size method, 228

stream method, 229, 250–251

toArray method, 229

collections, 227–246

generic, 245

iterating over elements of, 250–251

processing, 230

serializable, 301

threadsafe, 328

unmodifiable views of, 245

vs. streams, 251

Collections class, 100, 230–231

addAll method, 231

binarySearch method, 231

checkedXXX, emptyXXX methods, 232, 245

copy method, 231

disjoint method, 231

fill method, 42, 231

frequency method, 231

indexOfSubList, lastIndexOfSubList methods,

231

nCopies method, 230–231

replaceAll method, 231

reverse, shuffle method, 43, 232

rotate method, 232

singleton, singletonXXX methods, 232, 245

sort method, 43, 206–207, 231

static methods, 244

swap method, 231

synchronizedXXX, unmodifiableXXX methods, 232

Collector interface, 259

Collectors class, 79

counting method, 263

groupingBy method, 262–264

groupingByConcurrent method, 262, 269

joining method, 259–260

mapping method, 263–264

maxBy, minBy methods, 263

partitioningBy method, 262, 264

reducing method, 264

summarizingXXX methods, 260, 264

summingXXX methods, 263

toCollection method, 259

toConcurrentMap method, 261

toList method, 259

toMap method, 260–261

toSet method, 259, 263

com global object (JavaScript), 431

command-line arguments, 43–44

comments, 3

documentation, 84–89

Index450

companion classes, 100

Comparable interface, 103–104, 148, 207, 234

compareTo method, 103

streams of, 254

with priority queues, 243

Comparator interface, 79, 104–105, 120–122,

234

comparing, comparingXXX, thenComparing
methods, 121

naturalOrder method, 121–122

nullsFirst, nullsLast methods, 121

reversed method, 121

reverseOrder method, 122

streams of, 254–255

with priority queues, 243

compare method (Integer, Double), 104

compareTo method

of Enum, 148

of Instant, 381

of String, 22–23, 103, 406

compareToIgnoreCase method (String), 110

compareUnsigned method (Integer, Long), 16

compatibility, drawbacks of, 208

Compilable interface, 428

compilation, 4

CompilationTask interface, 420

call method, 421

compile method (Pattern), 298, 300

compiler, 420

compile-time errors, 11

CompletableFuture class, 342–344

acceptEither, applyToEither methods,

344–345

allOf, anyOf methods, 344–345

get method, 344

handle method, 344

runAfterXXX methods, 344–345

thenAccept, thenAcceptBoth, thenCombine, thenRun,

whenComplete methods, 344

thenApply, thenApplyAsync, thenCompose

methods, 343–344

CompletionStage interface, 344

compose method (functional interfaces),

114

compute, computeIfXXX methods (Map), 236

concat method (Stream), 254

concatenation, 20–21

objects with strings, 139

concurrent access errors, 119

concurrent programming, 311–348

for scripts, 425

strategies for, 321

ConcurrentHashMap class, 325–326

compute method, 325–326

computeIfXXX, forEachXXX, merge, putIfAbsent,
reduceXXX, searchXXX methods, 326

keySet method, 329

newKeySet method, 328

no null values in, 238

ConcurrentModificationException, 233, 325

ConcurrentSkipListXXX classes, 328

conditional operator, 18

configuration files, 413–415

editing, 190–191

locating, 155

resolving paths for, 285

confinement, 321

connect method (URLConnection), 292

Console class, 27

console, displaying fonts on, 413

ConsoleHandler class, 191, 194

constants, 12–13, 99

names of, 12

static, 69–70

using in another class, 12

Constructor interface, 160–161

getModifiers, getName methods, 160

newInstance method, 163–164

constructor references, 111–112

annotating, 360

constructors, 63–68

annotating, 358–359

executing, 64

for subclasses, 131

implementing, 63–64

in abstract classes, 134

invoking another constructor from, 65

no-argument, 131, 163

overloading, 64–65

public, 64, 161

this references in, 322–323

with no arguments, 68

451Index

Consumer interface, 114

contains method (String), 24

contains, containsAll methods (Collection), 229

containsXXX methods (Map), 237

Content-Type header, 278

context class loaders, 157–159

continue statement, 34–35

labeled, 35

control flow, 30–37

conversion characters, 29

cooperative cancellation, 338

copy method

of Collections, 231

of Files, 275–276, 287–288, 291

copyOf method (Arrays), 42

CopyOnWriteArrayXXX classes, 328

count method (Stream), 251, 255

CountdownLatch class, 337

counters, de/incrementing, 181

counting method (Collectors), 263

country codes, 262, 399–400

covariance, 203

createBindings method (ScriptEngine), 425

createInstance method (Util), 158

createTempXXX methods (Files), 287

createXXX methods (Files), 286

critical sections, 332, 338

Crockford, Douglas, 427

currencies, 403–404

formatting, 408

Currency class, 404

currency indicator, in string templates, 409

CyclicBarrier class, 337

D
d

conversion character, 29

formatting symbol (date/time), 392

D suffix, 9

\d, \D, in regular expressions, 295

daemon threads, 341

databases, 355

annotating access to, 366

DataInput/Output interfaces, 281–282

read/writeXXX methods, 282–283, 304

DataXXXStream classes, 282

Date class, 379, 393–394

formatting values of, 409

date indicator, in string templates, 409

DateFormat class, 405

dates

computing, 385–386

formatting, 390–393, 398, 404–406

local, 382–384

nonexistent, 384, 388, 406

parsing, 393

DateTimeFormat class, 404–406

DateTimeFormatter class, 390–393

and legacy classes, 394

format method, 390, 405

ofLocalizedXXX methods, 391, 405

ofPattern method, 392

parse method, 393

toFormat method, 392

withLocale method, 392, 405

DateTimeParseException, 405

daylight savings time, 387–390

DayOfWeek enumeration, 55, 383–384, 389

getDisplayName method, 392, 406

dayOfWeekInMonth method (TemporalAdjusters),

385

deadlocks, 321, 332, 336, 338

debugging

messages for, 175

overriding methods for, 133

primary arrays for, 43

streams, 255

using anonymous subclasses for,

135–136

with assertions, 185

DecimalFormat class, 72

number format patterns of, 409

declaration-site variance, 207

decomposition (for classes), 46–48

decomposition modes (for characters), 407

decrement operator, 15

decrementExact method (Math), 16

deep copies, 145

deepToString method (Arrays), 140

default label (switch statement), 31–32, 151

default methods, 100–102

in interfaces, 144

Index452

resolving conflicts of, 101–102, 136–137

default modifier, 100, 363

defaultCharset method (Charset), 278, 413

defaultXXXObject methods (ObjectXXXStream),
304

defensive programming, 185

deferred execution, 112–113

delete, deleteIfExists methods (Files), 288

delimiters, 280

@Deprecated annotation, 87, 364–365

@deprecated tag (javadoc), 87, 365

Deque interface, 230, 242

destroy, destroyForcibly methods (Process), 348

DiagnosticCollector class, 423

DiagnosticListener interface, 423–424

diamond syntax

for array lists, 39

for constructors of generic classes, 201

directories, 284

checking for existence, 286, 288

creating, 286–288

deleting, 288, 290–291

moving, 287

temporary, 287

user, 285

visiting, 288–291

working, 346

directory method (ProcessBuilder), 346

disjoint method (Collections), 231

displayName method (Charset), 413

distinct method (Stream), 254, 268

dividedBy method (Duration), 381–382

divideUnsigned method (Integer, Long), 16

division, 14

do statement, 33

doc-files directory, 85

documentation comments, 84–89

@Documented annotation, 365, 367

domain names, using for package names,

73

dot notation, 5, 12

double brace initialization, 136

Double class, 40

compare method, 104

equals method, 141

isFinite, isInfinite methods, 9

NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY

values, 9

parseDouble method, 23

toString method, 23

double type, 8–9

atomic operations on, 331

functional interfaces for, 115

streams of, 266

type conversions of, 16–17

DoubleAccumulator, DoubleAdder classes, 331

DoubleConsumer, DoubleXXXOperator, DoublePredicate,
DoubleSupplier, DoubleToXXXFunction
interfaces, 115

DoubleFunction interface, 115, 212

doubles method (Random), 267

DoubleStream class, 266–267

DoubleSummaryStatistics class, 260, 267

doubleValue method (Number), 403

downstream collectors, 262–264, 269

Duration class

between method, 381

dividedBy, isZero, isNegative, minus, minusXXX,
multipliedBy, negated, plus, plusXXX
methods, 381–382

ofDays method, 384, 388

toXXX methods, 381

dynamic method lookup, 131–132,

210–211

dynamically typed languages, 432

E
E constant (Math), 16

e, E

conversion characters, 29

formatting symbols (date/time), 392

\e, \E, in regular expressions, 294–295

Eclipse, 4

ECMAScript standard, 435

edu global object (JavaScript), 431

effectively final variables, 118–119

efficiency, and final modifier, 133

Element interface, 372–373

element method (BlockingQueue), 327

elements (in annotations), 356–357

values of, 357, 363

else statement, 30

453Index

em element (HTML), in documentation

comments, 85

Emacs text editor, running jjs inside,

430

empty method

of Optional, 258

of Stream, 252

empty string, 22, 139

concatenating, 23

emptyXXX methods (Collections), 232, 245

encapsulation, 54

encodings. See character encodings

<<END, in shell scripts, 439

endsWith method (String), 24

engine scope, 425

enhanced for loop, 41, 46, 119

for collections, 232

for enumerations, 148

for iterators, 160

for paths, 286

entering, exiting methods (Logger), 189

Entry class, 209

entrySet method (Map), 237

Enum class, 147–148

enum instances

adding methods to, 149–150

construction, 149

referred by name, 151

enum keyword, 13, 147

enumeration sets, 241

enumerations, 13, 147–151

adding constructors, methods, and

fields to, 149

annotating, 358

comparing, 147–148

immutable empty, 244

nested inside classes, 151

serialization of, 305

static members of, 150–151

traversing instances of, 148

using in switch, 151

EnumSet, EnumMap classes, 241

$ENV, in shell scripts, 440

environment variables, modifying, 347

epoch, definition of, 380

equality, testing for, 18

equals method

final, 142

for subclasses, 141

for values from different classes, 142

null-safe, 141

of Arrays, 141

of Double, 141

of Instant, 381

of Object, 138, 140–143

of Objects, 141

of String, 21–22

of wrapper classes, 40

overriding, 140–142

symmetric, 142

equalsIgnoreCase method (String), 22

$ERR, in shell scripts, 438

Error class, 175

error messages, for generic methods, 202

eval method (ScriptEngine), 425–427

even numbers, 14

EventHandler interface, 106

Exception class, 176

exceptions, 174–185

and generic types, 217–218

annotating, 360

catching, 178–182

in JavaScript, 437

chaining, 182–183–183

combining in a superclass, 177

creating, 176

documenting, 178

hierarchy of, 175–177

logging, 189

rethrowing, 180–183

suppressed, 180

throwing, 174–175

uncaught, 184

unchecked, 176

exec method (Runtime), 345

Executable class

getModifiers method, 164

getParameters method, 161

ExecutableElement interface, 373

ExecutionException, 315, 344

Executor interface, 343

execute method, 313

Index454

ExecutorCompletionService class, 316

Executors class, 313–314

ExecutorService interface, 314, 421

invokeAll method, 315

invokeAny method, 316

exists method (Files), 286, 288

exit function (shell scripts), 440

$EXIT, in shell scripts, 438

exitValue method (Process), 348

exportSubtree method (Preferences), 415

expression closures, 435

extends keyword, 98, 128, 202–206

extension class loader, 156

Externalizable interface, 304

F
f conversion character, 29

F suffix, 9

\f, in regular expressions, 294

factory methods, 64, 72

failures, 344

logging, 182

falling through, 32

false value (boolean), 10

as default value, 65, 68

Field interface, 160–161

get, getXXX, set, setXXX methods, 162–163

getModifiers, getName method, 160, 163

getType method, 160

fields (instance and static variables), 127

final, 319

provided, 135

public, 161

retrieving values of, 161–162

setting, 162

transient, 303

File class, 286

file attributes

copying, 287

filtering paths by, 289

file handlers

configuring, 192–193

default, 191

file pointers, 282

file.encoding system property, 278

file.separator system property, 239

FileChannel class

get, getXXX, put, putXXX methods, 283

lock, tryLock methods, 284

open method, 283

FileFilter class, 114

FileHandler class, 191–194

FileNotFoundException, 176

files

archiving, 291

channels to, 283

checking for existence, 176, 286–288

closing, 179

copying/moving, 287–288

creating, 285–288

deleting, 288

empty, 286

encoding of, 276–277

locking, 283–284

memory-mapped, 283

missing, 424

random-access, 282–283

reading from/writing to, 28, 176,

275

temporary, 287

Files class

copy method, 275–276, 287–288, 291

createTempXXX methods, 287

createXXX methods, 286

delete, deleteIfExists methods, 288

exists method, 286, 288

find method, 288–289

isXXX methods, 286, 288

lines method, 252, 279

list method, 288–289

move method, 287–288

newBufferedReader method, 280, 424

newBufferedWriter method, 280, 287

newXXXStream methods, 274, 287, 302

readAllBytes method, 275, 279

readAllLines method, 279

walk method, 288–291

walkFileTree method, 288, 290

write method, 281, 287

FileSystem, FileSystems classes, 291

FileTime class, 394

FileVisitor interface, 290

455Index

fill method

of Arrays, 42

of Collections, 42, 231

filter method (Stream), 251–253, 255

Filter interface, 194

final fields, 319

final methods, 322

final modifier, 12, 67, 133

final variables, 318, 322

finalize method

of Enum, 148

of Object, 138

finally statement, 181–182

for locks, 332

financial calculations, 9

find method (Files), 288–289

findAny method (Stream), 256

findClass method (ClassLoader), 157

findFirst method (Stream), 255

fine method (Logger), 188

first method (SortedSet), 234

firstDayOfXXX methods (TemporalAdjusters), 385

flag bits, sequences of, 240

flatMap method

general concept of, 254

of Optional, 258–259

of Stream, 253

flip method (BitSet), 240

Float class, 40

float type, 8–9

streams of, 266

type conversions of, 16–17

floating-point types, 8–9

and binary number system, 9

comparing, 104

division of, 14

formatting for output, 29

in hexadecimal notation, 9

type conversions of, 16–17

floor method (NavigableSet), 235

floorMod method (Math), 15

fonts, missing, 413

for statement, 33–34

continuing, 34

declaring variables for, 36

enhanced, 41, 46, 119, 148, 232, 286

multiple variables in, 34

for each loop (JavaScript), 434

forEach method

of ArrayList, 110

of Map, 237

forEach, forEachOrdered methods (Stream), 259

forEachXXX methods (ConcurrentHashMap), 326

ForkJoinPool class, 343

forLanguageTag method (Locale), 402

format method

of DateTimeFormatter, 390, 405

of MessageFormat, 408–410

Format class, 393

format specifiers, 28

formatted output, 28–30

Formatter class, 194

formatters, for date/time values

custom, 392

locale-specific, 391

predefined, 390

forName method

of Charset, 278

of Class, 152–153, 157–158, 176, 184,

423

frequency method (Collections), 231

from method (Instant, ZonedDateTime), 393

full indicator, in string templates, 409

Function interface, 114, 260

function keyword (JavaScript), 435

function types, 107

structural, 113

functional interfaces, 109–110

as method parameters, 205–206

common, 114

contravariant in parameter types, 205

for primitive types, 115

implementing, 115–116

@FunctionalInterface annotation, 116, 364,

366–367

functions, 54

higher-order, 120–122

Future interface, 315

futures, 315

combining, 344–345

completable, 342–344

in order of completion, 316

Index456

G
G formatting symbol (date/time), 392

g, G conversion characters, 29

\G, in regular expressions, 297

%g pattern variable, 193

garbage collector, 243

generate method (Stream), 252, 266

@Generated annotation, 365–366

generators, converting to streams, 268

generic classes, 39, 200–201

constructing objects of, 201

information available at runtime,

220

instantiating, 200

generic collections, 245

generic constructors, 220

generic methods, 201–202

calling, 201

declaring, 201

information available at runtime, 220

generic type declarations, 220–221

generic types, 103

and exceptions, 217–218

and lambda expressions, 205

and reflection, 218–221

annotating, 359

arrays of, 112

casting, 212

in JVM, 208–211

invariant, 203, 205

restrictions on, 211–218

GenericArrayType interface, 220

get method

of Array, 166

of ArrayList, 40

of BitSet, 240

of CompletableFuture, 344

of Field, 162–163

of FileChannel, 283

of Future, 315

of List, 229

of LongAccumulator, 331

of Map, 235–236

of Optional, 257

of Path, 284–286

of Preferences, 414–415

of Supplier, 114

of ThreadLocal, 340

getAndXXX methods (AtomicXXX), 330

getAnnotation, getAnnotationsByType methods

(AnnotatedConstruct), 373

getAnnotationXXX methods (AnnotatedElement),

369–371

getAsXXX methods

of OptionalXXX, 267

of XXXSupplier, 115

getAudioClip method (Applet), 155

getAvailableCurrencies method (Currency), 404

getAvailableIds method (ZoneId), 387

getAvailableLocales method (Locale), 401

getAverage method (XXXSummaryStatistics), 260

getBundle method (ResourceBundle), 411–412

getCanonicalName method (Class), 153

getClass method (Object), 133, 138, 141, 152,

213, 219

getClassLoader method (Class), 154, 156

getComponentType method (Class), 154, 165

getConstructor(s) methods (Class), 154, 161,

163, 219

getContents method (ListResourceBundle), 412

getContextClassLoader method (Thread), 158

getCountry method (Locale), 262

getCurrencyInstance method (NumberFormat), 403

getDayXXX, getMonthXXX, getYear methods

of LocalDate, 55, 383–384

of LocalTime, 386

of ZonedDateTime, 389

getDeclaredAnnotationXXX methods

(AnnotatedElement), 369–371

getDeclaredConstructor(s) methods (Class), 154,

161, 219

getDeclaredField(s) methods (Class), 154

getDeclaredMethod(s) methods (Class), 154, 162

getDeclaringClass method

of Class, 154

of Enum, 148

getDefault method (Locale), 401–402

getDisplayDefault method (Locale), 411

getDisplayName method

of Currency, 404

of DayOfWeek, Month, 392, 406

of Locale, 402

457Index

getElementsAnnotatedWith method

(RoundEnvironment), 373

getEnclosedElements method (TypeElement), 373

getEnclosingXXX methods (Class), 154

getEngineXXX methods (ScriptEngineManager), 424

getEnumConstants method (Class), 219

getErrorStream method (Process), 347

getField(s) methods (Class), 154, 161

getFileName method (Path), 286

getFilePointer method (RandomAccessFile), 283

getGlobal method (Logger), 187

getHead method (Formatter), 194

getHeaderFields, getInputStream methods

(URLConnection), 292

getInstance method

of Collator, 407

of Currency, 404

getInterfaces method (Class), 153

getLength method (Array), 166

getLogger method (Logger), 188

getMax method (XXXSummaryStatistics), 260

getMethod(s) methods (Class), 154, 161–162

getMethodCallSyntax method

(ScriptEngineFactory), 427

getModifiers method

of Class, 153

of Constructor, 160

of Executable, 164

of Field, 160, 163

of Method, 160

getName method

of Class, 152–153

of Constructor, 160

of Field, 160, 163

of Method, 160

of Parameter, 164

of Path, 286

of PropertyDescriptor, 165

getNumberInstance method (NumberFormat), 403

getObject method (ResourceBundle), 412

getOrDefault method (Map), 235–236

getOrElse method (Optional), 255

getOutputStream method (URLConnection), 292

getPackage method (Class), 153

getParameters method (Executable), 161

getParent method (Path), 286

getPath method (FileSystem), 291

getPercentInstance method (NumberFormat), 403

getProperties method (System), 239

getPropertyDescriptors method (BeanInfo), 165

getPropertyType method (PropertyDescriptor),

165

getQualifiedName method (TypeElement), 373

getReadMethod method (PropertyDescriptor), 165

getResource method (Class), 155, 410

getResourceAsStream method (Class), 154–155

getRoot method (Path), 286

getSimpleName method

of Class, 153

of Element, 373

getStackTrace method (Throwable), 184

getString method (ResourceBundle), 411

getSuperclass method (Class), 153, 219

getSuppressed method (IOException), 181

getSymbol method (Currency), 404

getSystemJavaCompiler method (ToolProvider),

420

getTail method (Formatter), 194

getTask method (JavaCompiler), 420–421

getType method (Field), 160

getTypeName method (Class), 153

getTypeParameters method (Class), 220

getURLs method (URLClassLoader), 156

getValue method (LocalDate), 55

getWriteMethod method (PropertyDescriptor), 165

getXXX methods (Array), 166

getXXX methods (Field), 162–163

getXXX methods (FileChannel), 283

getXXX methods (Preferences), 415

getXXXInstance methods (NumberFormat), 72

getXXXStream methods (Process), 346

GlassFish administration tool, 439

Goetz, Brian, 311

Gregorian calendar reform, 383

GregorianCalendar class, 393–394

toZonedDateTime method, 393–394

grouping, 262

classifier functions of, 262

reducing to numbers, 263

groupingBy method (Collectors), 262–264

groupingByConcurrent method (Collectors), 262,

269

Index458

GUI (graphical user interface)

callbacks in, 106–107

long-running tasks in, 341–342

missing fonts in, 413

H
H formatting symbol (date/time), 392

h, H conversion characters, 29

\h, \H, in regular expressions, 295

%h pattern variable, 193

handle method (CompletableFuture), 344

Handler class, 194

Hansen, Per Brinch, 334

hash method (Object), 144

hash codes, 143–144

computing in String class, 143

formatting for output, 29

hash functions, 143–144, 234

hash maps

concurrent, 325–326

weak, 243

hash tables, 234

hashCode method

of Arrays, 144

of Enum, 148

of Object, 138, 140, 143–144

HashMap class, 235

null values in, 238

HashSet class, 234

Hashtable class, 334

hasNext method (Iterator), 232

hasNext, hasNextXXX methods (Scanner), 27, 279

headMap method (SortedMap), 244

headSet method

of NavigableSet, 235

of SortedSet, 234, 244

heap pollution, 212–213, 245

HelloWorld class, 2

helper methods, 208

here documents, 439

hexadecimal numbers, 8–9

formatting for output, 29

higher method (NavigableSet), 235

higher-order functions, 120–122

hn, hr elements (HTML), in documentation

comments, 85

Hoare, Tony, 334

HTML documentation, generating,

376

HttpURLConnection class, 292

hyperlinks, 87–88, 293

I
[I prefix, 140, 153

IANA (Internet Assigned Numbers

Authority), 387

IDE (integrated development

environment), 3–4

identity method

of Function, 114, 260

of UnaryOperator, 114

identity values, 265

if statement, 30–31

ifPresent, isPresent methods (Optional), 257

IllegalArgumentException, 185

IllegalStateException, 260, 327

ImageIcon class, 155

images, locating, 155

img element (HTML), in documentation

comments, 85

immutability, 321

immutable classes, 322

implements keyword, 95–96

import statement, 6, 77–78

no annotations for, 360

static, 78–79

import static statement, 151

importPreferences method (Preferences), 415

increment method (LongAdder), 330

increment operator, 15

incrementAndGet method (AtomicXXX), 329

incrementExact method (Math), 16

indexOf method

of List, 229

of String, 24

indexOfSubList method (Collections), 231

info method (Logger), 187

inheritance, 128–147

and default methods, 136–137

classes win rule, 137, 144

@Inherited annotation, 365, 367

initCause method (Throwable), 183

459Index

initialization blocks, 66–67

static, 70–71

inlining, 133

inner classes, 81–83

capturing this references in, 111

invoking methods of outer classes, 82

local, 122–123

syntax for, 83

input

reading, 27–28

redirecting, 426

input prompts, 28

input streams, 274

copying into output streams, 276

obtaining, 274

reading from, 275

InputStream class, 275

InputStreamReader class, 279

INSTANCE instance (enum types), 305

instance methods, 5, 60–61

instance variables, 59, 61–62

annotating, 358

comparing, 141

default values of, 65–66

final, 67

in abstract classes, 134

in JavaScript, 436

initializing, 66–67, 131

not accessible from static methods,

72

of deserialized objects, 304–306

protected, 135

setting, 64

transient, 303

vs. local, 66

instanceof operator, 98, 132, 141–142

annotating, 360

instances, 5

Instant class, 380

and legacy classes, 394

compareTo, equals methods, 381

from method, 393

minus, minusXXX, plus, plusXXX methods,

381–382

now method, 381

instruction reordering, 318

int type, 7–8

functional interfaces for, 115

processing values of, 113

random number generator for, 6, 32

streams of, 266

type conversions of, 16–17

using class literals with, 152

IntBinaryOperator interface, 115

IntConsumer interface, 113, 115

Integer class, 40

compare method, 104

MIN_VALUE, MAX_VALUE constants, 7

parseInt method, 23, 176

toString method, 23

xxxUnsigned methods, 16

integer indicator, in string templates, 409

integer types, 7–8

comparing, 104

computations of, 16

division of, 14

even or odd, 14

formatting for output, 29

in hexadecimal notation, 8

reading/writing, 282–283

type conversions of, 16–17

@interface declaration, 361–363

interface keyword, 95

interface methods, 100–102

interfaces, 94–99

annotating, 358–359

compatibility of, 100–101

declarations of, 94–95

defining variables in, 99

evolution of, 100

extending, 98

functional, 109–110

implementing, 95–97

in JavaScript, 435–437

in scripting engines, 427

multiple, 98–99

methods of, 95–96

no instance variables in, 99

no redefining methods of the Object class

in, 144

views of, 244

Internet Engineering Task Force, 399

Index460

interrupted method (Thread), 338

interrupted status, 338

InterruptedException, 337, 339

interruption requests, 315

intersects method (BitSet), 241

IntFunction interface, 115, 212

IntPredicate interface, 115

intrinsic locks, 333–334

ints method (Random), 267

IntSequence interface, 122

IntStream class, 266–267

parallel method, 267, 323

IntSummaryStatistics class, 260, 267

IntSupplier, IntToXXXFunction, IntUnaryOperator
interfaces, 115

InvalidClassException, 306

InvalidPathException, 284

Invocable interface, 426–427

InvocationHandler interface, 167

invoke method (Method), 162, 164

invokeAll method (ExecutorService), 315

invokeAny method (ExecutorService), 316

IOException, 176, 279

addSuppressed, getSuppressed methods, 181

isAfter, isBefore methods

of LocalDate, 383

of LocalTime, 386

of ZonedDateTime, 389

isAlive method (Process), 348

isCancelled, isDone methods (Future), 315

isEmpty method

of BitSet, 241

of Collection, 229

of Map, 237

isEqual method (Predicate), 114–115

isFinite, isInfinite methods (Double), 9

isInterrupted method (Thread), 315, 338

isLoggable method (Filter), 194

isNamePresent method (Parameter), 164

isNull method (Objects), 110

ISO 8601 format, 366

ISO 8859-1 encoding, 277, 281

isXXX methods (Class), 153–154, 165

isXXX methods (Files), 286, 288

isXXX methods (Modifier), 155, 160–161

isZero, isNegative methods (Duration), 381

Iterable interface, 232–233, 286, 434

iterator method, 232

iterate method (Stream), 252, 255, 259, 266

iterator method

of Collection, 229

of ServiceLoader, 160

Iterator interface

next, hasNext methods, 232

remove, removeIf methods, 233

iterators, 232–233, 259

converting to streams, 268

for random numbers, 435

immutable empty, 244

invalid, 233

traversing, 160

weakly consistent, 325

J
JAR files, 74–76

resources in, 155, 410

sealed, 77

jar program, 74, 77

Java Persistence Architecture, 355

java program, 4

-classpath (-cp) option, 75

-disableassertions (-da) option, 186

-enableassertions (-ea) option, 186

-enablesystemassertions (-esa) option, 186

specifying locales in, 402

Java programming language

compatibility with older versions of,

137, 208

online API documentation on, 24

portability of, 15

strongly typed, 10

Unicode support in, 25–26

uniformity of, 3, 102

java, javax, javafx global objects (JavaScript),

431

java.awt package, 76

java.class.path, java.home, java.io.tmpdir system

properties, 239

Java.extend function (JavaScript), 435–436

Java.from function (JavaScript), 434

java.lang, java.lang.annotation packages, 364

java.lang.reflect package, 160

461Index

java.sql package, 393

Java.super function (JavaScript), 436–437

java.time package, 379–394

Java.to function (JavaScript), 434

Java.type function (JavaScript), 431–432

java.util package, 6, 325

java.util.concurrent package, 325, 328

java.util.concurrent.atomic package, 329

java.version system property, 239

JavaBeans, 164–165

javac program, 4

-author option, 89

-classpath (-cp) option, 75

-d option, 74, 89

-encoding option, 413

-link, -linksource options, 89

-parameters option, 161

-processor option, 372

-version option, 89

-Xlint option, 32

-XprintRounds option, 375

JavaCompiler interface, 420–421

javadoc program, 84–89

including annotations in, 367

JavaFileObject interface, 421

JavaFX platform, 106–107

and threads, 342

javan.log file, 192

JavaScript programming language

accessing classes of, from Java, 428

anonymous functions in, 435

anonymous subclasses in, 436

arrays in, 433–434

bracket notation in, 430, 433–434

calling static methods in, 431

catching Java exceptions in, 437

constructing Java objects in, 431–432

delimiters in, 426

extending Java classes in, 435–437

implementing Java interfaces in,

435–437

inner classes in, 432

instance variables in, 436

lists and maps in, 434

methods in, 430

numbers in, 432–433

objects in, 432

REPL in, 429–430

semicolons in, 426

strings in, 432

superclasses in, 436

JavaServer Faces framework, 238

javax.annotation package, 364

jconsole program, 191

JDK (Java Development Kit), 3

jjs tool, 429–430

command-line arguments in, 439

executing commands in, 438

job scheduling, 242

join method

of String, 20

of Thread, 337

joining method (Collectors), 259–260

jre/lib/ext directory, 76

JSP (JavaServer Pages), 440

JUnit, 355–356

K
K formatting symbol (date/time), 392

\k, in regular expressions, 296

key/value pairs

adding new keys to, 235

in annotations. See elements

removed by garbage collector, 243

values of, 235

keys method (Preferences), 415

keySet method

of ConcurrentHashMap, 329

of Map, 237, 244

keywords, 11

L
L suffix, 8

[L prefix, 153

labeled statements, 35

lambda expressions, 107–110

and generic types, 205

annotating targets for, 366

capturing variables in, 117–119

executing, 113

for loggers, 187

parameters of, 108

Index462

processing, 112–116

return type of, 109

scope of, 116–117

this reference in, 117

throwing exceptions in, 178

using with streams, 253

vs. anonymous functions (JavaScript),

435

with parallel streams, 323

language codes, 262, 399–400

language model API, 372–373

last method (SortedSet), 234

lastIndexOf method

of List, 229

of String, 24

lastIndexOfSubList method (Collections), 231

lastXXX methods (TemporalAdjusters), 385

lazy operations, 251, 255, 269, 299

leap seconds, 380

leap years, 383–384

legacy code, 393–394

length method, 38

of arrays, 38

of RandomAccessFile, 283

of String, 6, 26

.level suffix, 190

limit method (Stream), 254, 268

line feed, 10

formatting for output, 29

in regular expressions, 297

line.separator system property, 240

lines method

of BufferedReader, 280

of Files, 252, 279

@link tag (javadoc), 87–88

linked lists, 230, 233

LinkedBlockingQueue class, 328

LinkedHashMap class, 238

LinkedList class, 230

list method (Files), 288–289

List interface, 206–207, 229–230

add, get, indexOf, lastIndexOf, listIterator,

remove, replaceAll, set, sort methods,

229

subList method, 229, 244

ListIterator interface, 233

ListResourceBundle class, 412

lists

converting to streams, 268

immutable empty, 244

in Nashorn, 434

printing elements of, 110

removing null values from, 110

sublists of, 244

unmodifiable views of, 245

little-endian format, 277

load method (ServiceLoader), 160

load balancing, 301

loadClass method (ClassLoader), 157

local classes, 122–123

local date/time, 382–387

local variables, 36–37

annotating, 358–359

vs. instance, 66

LocalDate class, 55

and legacy classes, 394

getXXX methods, 55, 383–384

isXXX methods, 383

minus, minusXXX methods, 383–384

now method, 64, 71, 382–383

of method, 55, 64, 382–383

parse method, 405

plus, plusXXX methods, 55–56, 58, 383–384

until method, 383

withXXX methods, 383

LocalDateTime class, 387

and legacy classes, 394

atZone method, 387

parse method, 405

Locale class, 261

forLanguageTag method, 402

get/setDefault methods, 401–402

getAvailableLocales method, 401

getCountry method, 262

getDisplayDefault methods, 411

getDisplayName method, 402

predefined fields, 401

locales, 260–264, 398–402

date/time formatting for, 404–406

default, 392, 401–402, 404–405, 411

displaying names of, 402

for template strings, 408–410

463Index

locales (cont.)

formatting styles for, 391, 405

sorting words for, 406–408

specifying, 399–401

weekdays and months in, 392

LocalTime class, 386–387

and legacy classes, 394

final, 133

getXXX, isXXX, minus, minusXXX, now, of, plus,
plusXXX, toXXXOfDay, withXXX methods,

386

parse method, 405

lock method

of FileChannel, 284

of ReentrantLock, 332

locks, 321

intrinsic, 333–334

reentrant, 331–332

releasing, 181, 318

log handlers, 191–193

default, 188, 191

filtering/formatting, 194

installing custom, 191

levels of, 191

suppressing messages in, 188

Logger class

addHandler method, 191

entering, exiting methods, 189

fine method, 188

getGlobal method, 187

getLogger method, 188

info method, 187

log method, 188–189

logp, logrb methods, 190

setFilter method, 194

setLevel method, 187–188, 191

setUseParentHandlers method, 191

throwing method, 189–190

warning method, 188

loggers

defining, 187–188

filtering/formatting, 194

hierarchy of, 188

logging, 187–194

configuring, 188–191

enabling/disabling, 188

failures, 182

levels of, 188–191

localizing, 190

overriding methods for, 133

using for unexpected exceptions, 189

Long class, 40

MIN_VALUE, MAX_VALUE constants, 7

xxxUnsigned methods, 16

long indicator, in string templates, 409

long type, 7–8

atomic operations on, 330–331

functional interfaces for, 115

streams of, 266

type conversions of, 16–17

LongAccumulator class, 330

accumulate, get methods, 331

LongAdder class, 330–331

add, increment, sum methods, 330

LongConsumer, LongXXXOperator, LongPredicate,
LongSupplier, LongToXXXFunction interfaces,

115

LongFunction interface, 115, 212

longs method (Random), 267

LongStream class, 266–267

LongSummaryStatistics class, 260, 267

long-term persistence, 306

loops, 32–34

exiting, 34–35

infinite, 34

M
m, M formatting symbols (date/time),

392–393

main method, 2, 5

decomposing, 46–48

string array parameter of, 43

map method

of Optional, 257

of Stream, 253

Map interface, 230

clear method, 237

compute, computeIfXXX methods, 236

containsXXX methods, 237

entrySet method, 237

forEach method, 237

get, getOrDefault methods, 235–236

Index464

isEmpty method, 237

keySet method, 237, 244

merge method, 235–236

put method, 235–236

putAll, putIfAbsent methods, 236

remove method, 236

replace method, 236

replaceAll method, 237

size method, 237

values method, 237, 244

mapping method (Collectors), 263–264

maps, 235–238

concurrent, 236, 261

empty, 237

immutable empty, 244

in Nashorn, 434

iterating over, 237

of stream elements, 260–261, 269

order of elements in, 238

unmodifiable views of, 245

views of keys, values, and entries of,

237

mapToInt method (Stream), 265

mapToXXX methods (XXXStream), 267

marker interfaces, 145

Matcher class, 298

replaceAll method, 300

matcher, matches methods (Pattern), 298

Math class

E constant, 16

floorMod method, 15

max, min methods, 16

PI constant, 16, 69

pow method, 15, 71

round method, 17

sqrt method, 15

xxxExact methods, 16–17

max method

of Stream, 255

of XXXStream, 267

MAX_VALUE constant (integer classes), 7

maxBy method

of BinaryOperator, 114

of Collectors, 263

medium indicator, in string templates,

409

members (fields, methods, nested

classes/interfaces), 127

enumerating, 160–161

memory allocation, 321

memory-mapped files, 283

merge method

of ConcurrentHashMap, 326

of Map, 235–236

Message class, 146–147

MessageFormat class, 408–410

meta-annotations, 362–368

Method interface, 160–161

getModifiers method, 160

getName method, 160

invoke method, 162, 164

method calls, 5

receiver of, 61

method comments, 86

method expressions, 110, 137

method references, 110–111, 213

annotating, 360

methods, 2

abstract, 109, 133–134

accessor, 56

annotating, 358

atomic, 326

body of, 60

chaining calls of, 56

clashes of, 216–217

compatible, 143

declarations of, 59

default, 100–102

deprecated, 87

factory, 64, 72

final, 133, 322

header of, 59

inlining, 133

instance, 60–61

invoking, 162–163

modifying functions, 120

mutator, 56

names of, 11

native, 70

overloading, 65, 111

overriding, 100, 129–130, 133, 177–178,

365

465Index

methods (cont.)

parameters of, 161

null checks for, 185

passing arrays into, 47

proxied, 168

public, 95–96, 161

restricted to subclasses, 134–135

return value of, 2, 60

returning functions, 120

static, 47, 71–72, 78, 99–100

storing in variables, 6

symmetric, 142

synchronized, 333–336

utility, 76

variable number of arguments of, 48

Microsoft Notepad, 277

Microsoft Windows

batch files, 437–438

path separator, 75, 240

registry, 414

min method

of Math, 16

of Stream, 255

of XXXStream, 267

MIN_VALUE constant (integer classes), 7

minBy method

of BinaryOperator, 114

of Collectors, 263

minus, minusXXX methods

of Instant, Duration, 381–382

of LocalDate, 383–384

of LocalTime, 386

of ZonedDateTime, 389

Modifier interface

isXXX methods, 155, 160–161

toString method, 155

modifiers, checking, 160

monads, 254

monitors (classes), 334

Month enumeration, 382–383, 389

getDisplayName method, 392, 406

MonthDay class, 384

move method (Files), 287–288

Mozilla JavaScript implementation, 435

multiplication, 14

multipliedBy method (Duration), 381–382

mutators, 56

and unmodifiable views, 245

N
n

conversion character, 29

formatting symbol (date/time), 393

\n

for character literals, 10

in regular expressions, 294–296, 301

newline, in property files, 239–240

name method (Enum), 148

NaN (not a number), 9

Nashorn engine, 424, 428–437

anonymous subclasses in, 436

arrays in, 433–434

catching Java exceptions in, 437

class objects in, 431

extending Java classes in, 435–437

getters/setters in, 430

implementing Java interfaces in,

435–437

instance variables in, 436

lists and maps in, 434

methods in, 430

no standard input source in, 426

numbers in, 432–433

running from command line, 429

shell scripting in, 437–440

strings in, 432

superclasses in, 436

native methods, 70

native2ascii tool, 412

naturalOrder method (Comparator), 121–122

navigable maps/sets

immutable empty, 244

unmodifiable views of, 245

NavigableMap interface, 328

NavigableSet interface, 230, 234, 244

methods of, 235

nCopies method (Collections), 230–231

negate method (Predicate, BiPredicate), 114

negated method (Duration), 381–382

negateExact method (Math), 16

NEGATIVE_INFINITY value (Double), 9

negative values, 7

Index466

nested classes, 79–84

annotating, 359

inner, 81–83

public, 80

static, 79–80

new operator, 6, 10, 13, 64

as constructor reference, 111

for anonymous classes, 123

for arrays, 37–38, 44

in JavaScript, 431–433, 436

newBufferedReader method (Files), 280, 424

newBufferedWriter method (Files), 280, 287

newFileSystem method (FileSystems), 291

newInputStream method (Files), 274, 287,

302

newInstance method

of Array, 166

of Class, 154, 163, 219

of Constructor, 163–164

newKeySet method (ConcurrentHashMap), 328

newline. See line feed

newOutputStream method (Files), 274, 287, 302

newProxyInstance method (Proxy), 167

newXXXThreadPool methods (Executors), 313–314

next method (Iterator), 232

next, nextOrSame methods (TemporalAdjusters),

385

next, nextXXX methods (Scanner), 27, 279

nextInt method (Random), 6, 32

nextXXXBit methods (BitSet), 241

nominal typing, 113

noneMatch method (Stream), 256

noneOf method (EnumSet), 241

noninterference, of stream operations, 269

@NonNull annotation, 359

normalize method (Path), 285

Normalizer class, 408

NoSuchElementException, 257, 327

notify, notifyAll methods (Object), 138,

336–337

NotSerializableException, 303

now method

of Instant, 381

of LocalDate, 64, 71, 382–383

of LocalTime, 386

of ZonedDateTime, 389

null value, 22, 58

as default value, 65, 68

checking parameters for, 185

comparing against, 141

converting to strings, 139

NullPointerException, 22, 39, 58, 66, 176, 185,

235

vs. Optional, 255

nullsFirst, nullsLast methods (Comparator), 121

Number class, 403

number indicator, in string templates, 409

Number type (JavaScript), 432–433

NumberFormat class

getXXXInstance methods, 72, 403

not threadsafe, 339–340

parse method, 403

setCurrency method, 404

NumberFormatException, 176

numbers

big, 19

comparing, 104

converting to strings, 23

default value of, 65, 68

even or odd, 14

formatting, 29, 398, 403, 408

from grouped elements, 263

in regular expressions, 295

non-negative, 186, 240

printing, 28

random, 6, 32, 252, 254, 267

reading/writing, 279, 282–283

rounding, 9, 17

type conversions of, 16–17

unsigned, 8, 16

with fractional parts, 8–9

O
o conversion character, 29

Object class, 137–147

clone method, 135, 138, 144–147, 163

equals method, 138, 140–143

finalize method, 138

getClass method, 133, 138, 141, 152, 213,

219

hashCode method, 138, 140, 143–144

notify, notifyAll methods, 138, 336–337

467Index

Object class (cont.)

toString method, 138–140

wait method, 138, 335–337

object references, 56–58

and serialization, 302

attempting to change, 63

comparing, 140

default value of, 65, 68

null, 58

passed by value, 63

ObjectInputStream class, 302–303

defaultReadObject method, 304

readFields method, 307

readObject method, 302–304, 306–307

object-oriented programming, 53–91

ObjectOutputStream class, 302

defaultWriteObject method, 304

writeObject method, 302–304

objects, 2, 54–58

calling methods on, 6

casting, 97–98

cloning, 144–147

comparing, 40, 140–143

constructing, 6, 63–68, 163–164

in JavaScript, 431–432

converting to strings, 138–140

deep/shallow copies of, 144–146

deserialized, 304–306

externalizable, 304

immutable, 56

initializing variables with, 10

inspecting, 161–162

invoking static methods on, 71

mutable, 67

serializable, 301–303

sorting, 103–104

state of, 54

Objects class

equals method, 141

hash method, 144

isNull method, 110

requireNonNull method, 185

ObjXXXConsumer interfaces, 115

octal numbers, 8

formatting for output, 29

octonions, 26

odd numbers, 14

of method

of EnumSet, 241

of IntStream, 266

of LocalDate, 55, 64, 382–383

of LocalTime, 386

of Optional, 258

of Stream, 251–252

of ZonedDateTime, 387–389

ofDateAdjuster method (TemporalAdjusters),

385

ofDays method (Duration, Period), 384, 388

offer method (BlockingQueue), 327

offsetByCodePoints method (String), 26

OffsetDateTime class, 390

ofInstant method (ZonedDateTime), 389

ofLocalizedXXX methods (DateTimeFormatter), 391,

405

ofNullable method (Optional), 258

ofPattern method (DateTimeFormatter), 392

open method (FileChannel), 283

openConnection method (URL), 292

openStream method (URL), 274

Operation interface, 150

operations

associative, 265

atomic, 319, 321, 329–331

bulk, 326

lazy, 251, 255, 269, 299

performed optimistically, 330

stateless, 267

threadsafe, 324–329

operators, 13–19

precedence of, 14

Optional class, 255–259

creating values of, 258

empty method, 258

flatMap method, 258–259

for empty streams, 264–265

get method, 257

getOrElse method, 255

ifPresent, isPresent methods, 257

map method, 257

of, ofNullable methods, 258

orElse, orElseXXX methods, 256

OptionalXXX classes, 267

Index468

or method

of BitSet, 241

of Predicate, BiPredicate, 114

order method (ByteBuffer), 283

ordinal method (Enum), 148

org global object (JavaScript), 431

os.arch, os.name, os.version system properties,

239

$OUT, in shell scripts, 438

output

formatted, 28–30

redirecting, 426

output streams, 274

closing, 276

copying from input streams, 276

obtaining, 274

writing to, 276

OutputStream class, 302

write method, 276

OutputStreamWriter class, 280

@Override annotation, 130, 364–365

overriding, 129–130

for logging/debugging, 133

overview.html file, 88

P
\p, \P, in regular expressions, 295

package statement, 73

package comments, 88

package declarations, 73–74

Package object (JavaScript), 431

package-info.java file, 88, 358

packages, 3, 72–79

accessing, 135

adding classes to, 77

annotating, 358–359

default, 73

names of, 73

not nesting, 73

scope of, 76–77

parallel method (XXXStream), 267, 323

parallel streams, 323

parallelStream method (Collection), 229,

250–251, 267, 323

parallelXXX methods (Arrays), 43, 324

@param tag (javadoc), 86

Parameter class, 164

parameter variables, 62

annotating, 358

scope of, 36

ParameterizedType interface, 220

parse method

of DateTimeFormatter, 393

of LocalXXX, ZonedDateTime, 405

of NumberFormat, 403

parseDouble method (Double), 23

ParseException, 403

parseInt method (Integer), 23, 176

partitioning, 322

partitioningBy method (Collectors), 262, 264

Pascal triangle, 45

passwords, 27

Path interface, 100, 284–286

get method, 284–286

getXXX methods, 286

normalize, relativize methods, 285

resolve, resolveSibling methods, 285

subpath method, 286

toAbsolutePath, toFile methods, 285

path separators, 284

path.separator system property, 240

paths, 284

absolute vs. relative, 284–285

filtering, 289

resolving, 285

taking apart/combining, 286

Paths class, 100

Pattern class

compile method, 298, 300

flags, 300–301

matcher, matches methods, 298

split method, 299

splitAsStream method, 252, 299

pattern variables, 193

PECS (producer extends, consumer super),

206

peek method

of BlockingQueue, 327

of Stream, 255

percent indicator, in string templates, 409

performance, and atomic operations,

330

469Index

Period class, 383–384

ofDays method, 388

@Persistent annotation, 368

PI constant (Math), 16, 69

placeholders, 408–410

platform encoding, 278, 413

plugins, loading, 156–160

plus, plusXXX methods

of Instant, Duration, 381–382

of LocalDate, 55–56, 58, 383–384

of LocalTime, 386

of ZonedDateTime, 388–389

Point class, 138–140

Point2D class (JavaFX), 303

poll method (BlockingQueue), 327–328

pollXXX methods (NavigableSet), 235

pop method (ArrayDeque), 242

POSITIVE_INFINITY value (Double), 9

@PostConstruct annotation, 364, 366

pow method (Math), 15, 71

predefined character classes, 294–295, 297

@PreDestroy annotation, 364, 366

predicate functions, 262

Predicate interface, 109–110, 114

and, or, negate methods, 114

isEqual method, 114–115

test method, 114, 205

Preferences class, 413–415

previous method (ListIterator), 233

previous, previousOrSame methods

(TemporalAdjusters), 385

previousXXXBit methods (BitSet), 241

preVisitDirectory, postVisitDirectory methods

(FileVisitor), 290

primitive types, 7–10

and type parameters, 212

attempting to update parameters of, 62

comparing, 141

converting to strings, 139

functions interfaces for, 115

passed by value, 63

streams of, 265–267

wrapper classes for, 40

printStackTrace method (Throwable), 184

PrintStream class, 5, 139, 281

print method, 5, 28, 187, 280–281

printf method, 28–29, 48, 280–281

println method, 5–6, 27–28, 43, 110,

280–281

PrintWriter class, 280

close method, 179–180

priority queues, 242

private modifier, 2, 76

for enum constructors, 149

Process class, 345–348

destroy, destroyForcibly methods, 348

exitValue method, 348

getErrorStream method, 347

getXXXStream methods, 346

isAlive method, 348

waitFor method, 348

ProcessBuilder class, 345–348

directory method, 346

redirectXXX methods, 346–347

start method, 347

processes, 345–348

building, 345–347

killing, 348

Processor interface, 372

Programmer’s Day, 383

programming languages

dynamically typed, 432

functional, 93

object-oriented, 2

scripting, 424

programs

compiling, running, 3

configuration options for, 238

localizing, 397–415

responsive, 341

testing, 185

properties, 164–165

encoding, 239

loading from file, 239

names of, 164

read-only/write-only, 164

testing for, 205

Properties class, 238–240

.properties extension, 410

property files

encoding, 412

generating, 376

Index470

localizing, 410–412

PropertyDescriptor class, 165

protected modifier, 134–135

Proxy class, 167–168

newProxyInstance method, 167

public modifier, 2, 76

and method overriding, 130

for interface methods, 95–96

push method (ArrayDeque), 242

put method

of BlockingQueue, 327

of FileChannel, 283

of Map, 235–236

of Preferences, 415

putAll method (Map), 236

putIfAbsent method

of ConcurrentHashMap, 326

of Map, 236

putXXX methods (FileChannel), 283

putXXX methods (Preferences), 415

Q
\Q, in regular expressions, 295

Queue interface, 230, 242

synchronizing methods in, 335

using ArrayDeque with, 242

R
\r carriage return, 10, 240

\r, \R, in regular expressions, 294, 297

race conditions, 268, 319–321

Random class, 6

ints, longs, doubles methods, 267

nextInt method, 6, 32

random numbers, 6, 32, 435

streams of, 252, 254, 267

RandomAccess interface, 230

RandomAccessFile class, 282–283

getFilePointer method, 283

length method, 283

seek method, 282–283

RandomNumbers class, 71–72

range method (EnumSet), 241

range, rangeClosed methods (XXXStream), 266

ranges, 244

converting to streams, 268

raw types, 209, 212–213

read method

of InputStream, 275

of InputStreamReader, 279

readAllBytes method (Files), 275, 279

readAllLines method (Files), 279

Reader class, 279

readers, 274

readExternal method (Externalizable), 304

readFields method (ObjectInputStream), 307

readLine function (shell scripts), 440

readLine method

of BufferedReader, 280

of Console, 27

readObject method (ObjectInputStream), 302–304,

306–307

readPassword method (Console), 27

readResolve method (SimpleType), 304–306

readXXX methods (DataInput), 282–283, 304

receiver parameters, 61, 361

redirection syntax, 28

redirectXXX methods (ProcessBuilder), 346–347

reduce method (Stream), 264–266

reduceXXX methods (ConcurrentHashMap), 326

reducing method (Collectors), 264

reductions, 255, 264–266

ReentrantLock class, 331–332

lock, unlock methods, 332

reflection, 160–168

and generic types, 214, 218–221

processing annotations with, 368–371

ReflectiveOperationException, 152

regular expressions, 293–301

finding matches of, 298

flags for, 300–301

groups in, 298–299

relational operators, 18

relativize method (Path), 285

remainderUnsigned method (Integer, Long), 16

remove method

of ArrayDeque, 242

of ArrayList, 40

of BlockingQueue, 327

of List, 229

of Map, 236

remove, removeIf methods (Iterator), 233

471Index

remove, removeNode methods (Preferences), 415

remove, removeXXX methods (Collection), 228

removeIf method (ArrayList), 110

@Repeatable annotation, 365, 368

REPL (“read-eval-print” loop), 429–430

replace method

of Map, 236

of String, 24

replaceAll method

of Collections, 231

of List, 229

of Map, 237

of Matcher, 300

of String, 300

requireNonNull method (Objects), 185

resolve, resolveSibling methods (Path), 285

@Resource annotation, 364, 366

resource bundles, 410–412

resource injections, 366

ResourceBundle class, 190

extending, 412

getBundle method, 411–412

getObject method, 412

getString method, 411

resources, 151–160

loading, 155

managing, 179

@Resources annotation, 364

resume method (Thread, deprecated), 338

retainAll method (Collection), 228

@Retention annotation, 362, 365

return statement, 32, 47, 60

in lambda expressions, 108

not in finally, 181

@return tag (javadoc), 86

return types, covariant, 130, 211

return values

as arrays, 47

missing, 255

providing type of, 47

reverse method (Collections), 43, 232

reversed method (Comparator), 121

reverseOrder method (Comparator), 122

RFC 822, RFC 1123 formats, 391

rlwrap tool, 430

rotate method (Collections), 232

round method (Math), 17

RoundEnvironment interface, 373

roundoff errors, 9

runAfterXXX methods (CompletableFuture),

344–345

Runnable interface, 105–106, 114, 313

run method, 114, 312, 337, 339

using class literals with, 152

runtime

raw types at, 212–213

safety checks at, 210

Runtime class

availableProcessors method, 313

exec method, 345

RuntimeException, 176

S
s formatting symbol (date/time), 393

s, S conversion characters, 29

\s, \S, in regular expressions, 295

safety checks, as runtime, 210

@SafeVarargs annotation, 216, 364–365

Scala programming language

REPL in, 430

type parameters in, 207

Scanner class, 27

hasNext, hasNextXXX, next, nextXXX methods,

27, 279

scheduling applications

and time zones, 382, 387

computing dates for, 385–386

ScriptContext interface, 426

ScriptEngine interface

createBindings method, 425

eval method, 425–427

ScriptEngineFactory interface, 427

ScriptEngineManager class

getEngineXXX methods, 424

visibility of bindings in, 425

scripting engines, 424–425

compiling code in, 428

implementing Java interfaces in, 427

scripting languages, 424

invoking functions in, 426

searchXXX methods (ConcurrentHashMap), 326

security, 77

Index472

@see tag (javadoc), 87–88

seek method (RandomAccessFile), 282

serial numbers, 303

Serializable interface, 301–303

serialization, 301–307

serialVersionUID instance variable, 306

server-side software, 301

ServiceLoader class, 159–160

iterator, load method, 160

ServletException class, 183

Set interface, 230, 328

working with EnumSet, 241

set method

of Array, 166

of ArrayList, 40

of BitSet, 240

of Field, 163

of List, 229

of ListIterator, 233

setAccessible method (AccessibleObject),

162–163

setContextClassLoader method (Thread), 158

setCurrency method (NumberFormat), 404

setDaemon method (Thread), 341

setDecomposition method (Collator), 407

setDefault method (Locale), 401–402

setDefaultUncaughtExceptionHandler method

(Thread), 184

setDoOutput method (URLConnection), 292

setFilter methods (Handler, Logger), 194

setFormatter method (Handler), 194

setLevel method (Logger), 187–188, 191

setOut method (System), 70

setReader method (ScriptContext), 426

setRequestProperty method (URLConnection), 292

sets, 233–235

immutable, 322

empty, 244

threadsafe, 328

unmodifiable views of, 245

setStrength method (Collator), 407

setUncaughtExceptionHandler method (Thread),

337

setUseParentHandlers method (Logger), 191

setWriter method (ScriptContext), 426

setXXX methods (Array), 166

setXXX methods (Field), 162–163

setXXXAssertionStatus methods (ClassLoader),

187

shallow copies, 144–146

shared variables, 318–321

atomic mutations of, 329–331

locking, 331–332

shebang, 440

shell scripts, 437–440

command-line arguments in, 439

environment variables in, 440

executing, 438

generating, 376

string interpolation in, 438–439

shell, redirection syntax of, 28

shift operators, 18–19

Shift-JIS encoding, 277

short circuit evaluation, 18

Short class, 40

MIN_VALUE, MAX_VALUE constants, 7

short indicator, in string templates, 409

short type, 7–8

streams of, 266

type conversions of, 17

short-term persistence, 306

shuffle method (Collections), 43, 232

SimpleFileVisitor class, 290

SimpleJavaFileObject class, 422

@since tag (javadoc), 87

singleton, singletonXXX methods (Collections),

232, 245

singletons, 232, 305

size method

of ArrayList, 40

of Collection, 228

of Map, 237

skip method (Stream), 254

sleep method (Thread), 337, 339

SocketHandler class, 191

sort method

of Arrays, 43, 104–105, 109–110

of Collections, 43, 206–207, 231

of List, 229

sorted maps, 244

immutable empty, 244

unmodifiable views of, 245

473Index

sorted method (Stream), 254–255

sorted sets, 230, 244

immutable empty, 244

traversing, 234

unmodifiable views of, 245

sorted streams, 268

SortedMap interface, 244

SortedSet interface, 230, 234

first, last methods, 234

headSet, subSet, tailSet methods, 234, 244

sorting

array lists, 43

arrays, 43, 103–104

chaining comparators for, 121

changing order of, 120

streams, 254–255

strings, 22–23, 110, 406–408

source code, generating, 373–376

source files

encoding of, 413

reading from memory, 421

space flag (for output), 30

spaces

in regular expressions, 295

removing, 24

split method

of Pattern, 299

of String, 21, 300

splitAsStream method (Pattern), 252, 299

spliterator method (Collection), 229

sqrt method (Math), 15

square root, computing, 258

Stack class, 242

stack trace, 184–185

StackTraceElement class, 184

standard output, 3

StandardCharsets class, 278

StandardJavaFileManager interface, 421–422,

424

start method

of ProcessBuilder, 347

of Thread, 337

startsWith method (String), 24

stateless operations, 267

statements, combining, 37

static constants, 69–70

static imports, 78–79

static initialization, 157

static methods, 47, 71–72

accessing static variables from, 72

importing, 78

in interfaces, 99–100

static modifier, 2, 12, 47, 68–72, 150

static nested classes, 79–80

static variables, 68–69

accessing from static methods, 72

importing, 78

visibility of, 318

stop, suspend methods (Thread, deprecated),

338

Stream interface

collect method, 259–260, 266

concat method, 254

count method, 251, 255

distinct method, 254, 268

empty method, 252

filter method, 251–253, 255

findAny method, 256

findFirst method, 255

flatMap method, 253

forEach, forEachOrdered methods, 259

generate method, 252, 266

iterate method, 252, 255, 259, 266

limit method, 254, 268

map method, 253

mapToInt method, 265

max, min methods, 255

of method, 251–252

peek method, 255

reduce method, 264–266

skip method, 254

sorted method, 254–255

toArray method, 112, 259

unordered method, 268

xxxMatch methods, 256

stream method

of Arrays, 252, 266

of BitSet, 241

of Collection, 229, 250–251

streams, 249–269

collecting elements of, 259–261

computing values from, 264–266

Index474

converting to/from arrays, 252, 259, 268,

324

creating, 251–252

debugging, 255

empty, 252, 255, 264–265

flattening, 253

infinite, 251–252, 254–255

intermediate operations for, 251

noninterference of, 269

of primitive type values, 265–267

of random numbers, 267

ordered, 268

parallel, 250, 256, 259, 261–262, 265,

267–269, 323

processed lazily, 251, 255, 269

reductions of, 255

removing duplicates from, 254

sorting, 254–255

splitting/combining, 254

terminal operation for, 251, 255

transformations of, 252–254, 267

vs. collections, 251

strictfp modifier, 15

StrictMath class, 16

String class, 6, 24

charAt, codePoints, codePointXXX methods,

26

compareTo method, 22–23, 103, 406

compareToIgnoreCase method, 110

contains, endsWith, startsWith methods, 24

equals method, 21–22

equalsIgnoreCase method, 22

final, 133

hash codes, 143

immutable, 24

indexOf, lastIndexOf methods, 24

join method, 20

length method, 6, 26

offsetByCodePoints method, 26

replace method, 24

replaceAll method, 300

split method, 21, 300

substring method, 21

toLowerCase method, 24, 253

toUpperCase method, 24

trim method, 24, 403

string interpolation, in scripts, 438–440

StringBuilder class, 21

strings, 6, 20–26

comparing, 21–23

concatenating, 20–21, 139

converting:

from objects, 138–140

to numbers, 23

empty, 22–23, 139

formatting for output, 29

from byte arrays, 278

normalized, 408

sorting, 22–23, 110, 406–408

splitting, 21, 252

templates for, 408–410

transforming to lowercase, 253

traversing, 26

StringSource class, 421

StringWriter class, 281

strong element (HTML), in documentation

comments, 85

subclasses, 128–129

anonymous, 135–136, 150

calling toString method in, 139

constructors for, 131

initializing instance variables in, 131

methods in, 129

preventing, 133

public, 130

superclass assignments in, 131

subList method (List), 229, 244

subMap method (SortedMap), 244

subpath method (Path), 286

subSet method

of NavigableSet, 235

of SortedSet, 234, 244

substring method (String), 21

subtractExact method (Math), 16

subtraction, 14

accurate, 19

not associative, 265

subtypes, 97

wildcards for, 204

sum method

of LongAdder, 330

of XXXStream, 267

475Index

summarizingXXX methods (Collectors), 260, 264

summaryStatistics method (XXXStream), 267

summingXXX methods (Collectors), 263

super keyword, 102, 129–131, 137, 205–207

superclasses, 128–129

annotating, 359

calling equals method, 141

default methods of, 136–137

in JavaScript, 436

methods of, 129–130

public, 130

supertypes, 97–99

wildcards for, 205–206

Supplier interface, 114

@SuppressWarnings annotation, 32, 212,

364–365, 367

swap method (Collections), 231

Swing GUI toolkit, 107, 342

SwingConstants interface, 99

SwingWorker class (Swing), 342

switch statement, 31–32

using enumerations in, 151

symbolic links, 288–289

synchronized keyword, 332–336

synchronized views, 246

synchronizedXXX methods (Collections), 232

System class

getProperties method, 239

setOut method, 70

system class loader, 156, 158

system classes, enabling/disabling

assertions for, 186

system properties, 239–240

System.err constant, 184, 191, 340, 420

System.in constant, 27

System.out constant, 5–6, 12, 27–29, 43, 48,

70, 110, 187, 280, 420

systemXXX methods (Preferences), 414

T
T, in dates, 390

t, T conversion characters, 29

\t

for character literals, 10

in regular expressions, 294

%t pattern variable, 193

tab, 10

tagging interfaces, 145

tailMap method (SortedMap), 244

tailSet method

of NavigableSet, 235

of SortedSet, 234, 244

take method (BlockingQueue), 327

@Target annotation, 362–363, 365

Task class (JavaFX), 342

tasks, 312–316

cancelling, 315–316

combining results from, 314–316

computationally intensive, 313

coordinating work between, 326–328

defining, 105

executing, 106, 313

groups of, 340

long-running, 341–342

running, 312–314

short-lived, 313

submitting, 315

vs. threads, 313

Temporal interface, 385

TemporalAdjusters class, 385

terminal window, 3–4

test method

of BiPredicate, 114

of Predicate, 114, 205

of XXXPredicate, 115

@Test annotation, 356–357, 361–362

text

input, 279–280

output, 280–281

TextStyle enumeration, 406

thenAccept, thenAcceptBoth, thenCombine methods

(CompletableFuture), 344

thenApply, thenApplyAsync methods

(CompletableFuture), 343–344

thenComparing method (Comparator), 121

thenCompose method (CompletableFuture),

343–344

thenRun method (CompletableFuture), 344

this reference, 61–62

annotating, 361

capturing, 111

in constructors, 322–323

Index476

in lambda expressions, 117

this syntax, with constructors, 65

Thread class

get/setContextClassLoader methods, 158

interrupted method, 338

isInterrupted method, 315, 338

join method, 337

properties, 340–341

resume, stop, suspend methods (deprecated),

338

setDaemon method, 341

setDefaultUncaughtExceptionHandler method,

184

setUncaughtExceptionHandler method, 337

sleep method, 337, 339

start method, 337

ThreadLocal class, 339–340

get, withInitial methods, 340

threads, 312, 337–341

and visibility, 317–319, 334

atomic mutations in, 329–331

creating, 106

groups of, 340

interrupting, 315, 338–339

local variables in, 339–340

locking, 331–332

priorities of, 340

race conditions in, 268, 319–321

running tasks in, 105

starting, 337–338

states of, 340

temporarily inactive, 338

terminating, 313–314

vs. tasks, 313

waiting on conditions, 335

worker, 341–342

throw statement, 175

Throwable class, 175

getStackTrace, printStackTrace methods, 184

in assertions, 186

initCause method, 183

no generic subtypes for, 217

throwing method (Logger), 189–190

throws keyword, 177

type variables in, 217–218

@throws tag (javadoc), 86, 178

time

current, 380

formatting, 390–393, 404–406

measuring, 381

parsing, 393

Time class, 393–394

time indicator, in string templates, 409

time zones, 387–390

Timestamp class, 142, 393–394

timestamps, 391

using instants as, 381

TimeZone class, 394

™ (trademark symbol), 408

toAbsolutePath method (Path), 285

toArray method

of Collection, 229

of Stream, 112, 259

of XXXStream, 267

toByteArray method

of BitSet, 241

of ByteArrayOutputStream, 274–275

toCollection method (Collectors), 259

toConcurrentMap method (Collectors), 261

toFile method (Path), 286

toFormat method (DateTimeFormatter), 392

toGenericString method (Class), 153

toInstant method

of Date, 393

of ZonedDateTime, 387

toIntExact method (Math), 17

toList method (Collectors), 259

toLowerCase method (String), 24, 253

toMap method (Collectors), 260–261

ToolProvider class, 420

toPath method (File), 286

toSet method (Collectors), 259, 263

toString method

calling from subclasses, 139

of Arrays, 43, 140

of BitSet, 241

of Class, 153

of Double, Integer, 23

of Enum, 148

of Modifier, 155

of Object, 138–140

of Point, 138–140

477Index

toUnsignedInt method (Byte), 8

toUpperCase method (String), 24

toXXX methods (Duration), 381

ToXXXBiFunction interfaces, 115

ToXXXFunction interfaces, 115, 212

toXXXOfDay methods

of LocalTime, 386

of ZonedDateTime, 389

toZonedDateTime method (GregorianCalendar),

393–394

transient modifier, 303

TreeMap class, 235, 261

TreeSet class, 234

trim method (String), 24, 403

true value (boolean), 10

try statement, 178–182

for visiting directories, 288

tryLock method (FileChannel), 284

try-with-resources statement, 179–181

closing output streams with, 276

for file locking, 284

type bounds, 202–203, 221

annotating, 360

type erasure, 208–211, 216

clashes after, 216–217

Type interface, 220

type parameters, 103, 200–201

and primitive types, 201, 212

annotating, 358

type variables

and exceptions, 217–218

in static context, 216

no instantiating of, 213–215

wildcards with, 206–207

TypeElement interface, 373

TypeVariable interface, 220

U
\u

for character literals, 9–10, 412–413

in regular expressions, 294

%u pattern variable, 193

UnaryOperator interface, 114

uncaught exception handlers, 337,

340

unchecked exceptions, 176

and generic types, 218

documenting, 178

UncheckedIOException, 279

Unicode, 25–26, 266, 276

escapes in, 239

normalization forms in, 408

replacement character in, 281

unit tests, 355

Unix operating system

bash scripts, 437

path separator, 75, 240

specifying locales in, 402

wildcard in classpath in, 75

unlock method (ReentrantLock), 332

unmodifiableXXX methods (Collections),

232

unordered method (Stream), 268

until method (LocalDate), 383–384

updateAndGet method (AtomicXXX), 329

URL class

final, 133

openConnection method, 292

openStream method, 274

URLClassLoader class, 156

URLConnection class, 292

URLs, reading from, 274, 292

user directory, 285

user interface. See GUI

user preferences, 413–415

user.dir, user.home, user.name system

properties, 239

userXXX methods (Preferences), 414

UTC (coordinated universal time),

388

UTF-8 encoding, 276–277

for source files, 413

modified, 282

UTF-16 encoding, 9, 26, 266, 277

in regular expressions, 294

Util class, 158

V
V formatting symbol (date/time), 393

\v, \V, in regular expressions, 295

Index478

valueOf method

of BitSet, 241

of Enum, 147–148

values method

of Enum, 148

of Map, 237, 244

varargs parameters

corrupted, 365

declaring, 48

variable comments, 86–87

VariableElement interface, 373

variables, 6, 10–13

atomic mutations of, 329–331

declaring, 10–11

defined in interfaces, 99

deprecated, 87

effectively final, 118–119

final, 322

holding object references, 56–58

in lambda expressions, 117–119

initializing, 10–12

local, 36–37

names of, 11

parameter, 62

private, 59, 76

public static final, 99

redefining, 37

scope of, 36, 76

shared, 318–321, 331–332

static final. See constants

static, 68–69, 72, 78

thread-local, 339–340

using an abstract class as type of,

134

visibility of, 317–319, 334

volatile, 318–319

@version tag (javadoc), 85, 89

versioning, 306

views, 244–246

checked, 245

synchronized, 246

unmodifiable, 245

virtual machine, 4

visibility, 317–319

guaranteed with locks, 334

visitFileXXX methods (FileVisitor), 290

void keyword, 2, 47

using class literals with, 152

volatile modifier, 318–319

W
\w, \W, in regular expressions, 295

wait method (Object), 138, 335–337

waitFor method (Process), 348

waiting on a condition, 336

walk method (Files), 288–291

walkFileTree method (Files), 288, 290

warning method (Logger), 188

warnings

for switch statements, 151

suppressing, 212, 216, 365

weak references, 243

weaker access privilege, 130

WeakHashMap class, 243

weakly consistent iterators, 325

WeakReference class, 243

web pages

extracting links from, 342

reading, 341, 343

whenComplete method (CompletableFuture), 344

while statement, 32–34

breaking, 34

continuing, 35

declaring variables for, 36

white space

in regular expressions, 295

removing, 24

wildcards

annotating, 360

capturing, 208

for annotation processors, 372

for types, 204–206

in class path, 75

unbounded, 207

with imported classes, 77–78

with type variables, 206–207

WildcardType interface, 220

Window class, 76

WindowAdapter class, 100

WindowListener interface, 100

479Index

with method (Temporal), 385

withInitial method (ThreadLocal), 340

withLocale method (DateTimeFormatter), 392,

405

withXXX methods

of LocalDate, 383

of LocalTime, 386

of ZonedDateTime, 389

words

in regular expressions, 295

reading from a file, 279

sorting alphabetically, 406–408

working directory, 346

wrapper classes, 40

write method

of Files, 281, 287

of OutputStream, 276

writeExternal method (Externalizable), 304

writeObject method (ObjectOutputStream),

302–304

Writer class, 280–281

write method, 280

writeReplace method, 304–306

writers, 274

writeXXX methods (DataOutput), 282–283,

304

X
x formatting symbol (date/time), 393

x, X conversion characters, 29

\x, in regular expressions, 294

XML descriptors, generating, 376

xor method (BitSet), 241

Y
y formatting symbol (date/time), 392

Year, YearMonth classes, 384

Z
z, Z formatting symbols (date/time), 390,

393

\z, \Z, in regular expressions, 297

ZIP file systems, 74, 291

ZipInputStream, ZipOutputStream classes, 292

zoned time, 382–384, 387–390

ZonedDateTime class, 387–390

and legacy classes, 394

getXXX, isXXX, minus, minusXXX, now, ofInstant,
toXXXOfDay, withXXX methods, 389

of method, 387–389

parse method, 405

plus, plusXXX methods, 388–389

ZoneId class, 387

Index480

	Contents
	Preface
	Acknowledgments
	About the Author
	3 INTERFACES AND LAMBDA EXPRESSIONS
	3.1 Interfaces
	3.1.1 Declaring an Interface
	3.1.2 Implementing an Interface
	3.1.3 Converting to an Interface Type
	3.1.4 Casts and the instanceof Operator
	3.1.5 Extending Interfaces
	3.1.6 Implementing Multiple Interfaces
	3.1.7 Constants

	3.2 Static and Default Methods
	3.2.1 Static Methods
	3.2.2 Default Methods
	3.2.3 Resolving Default Method Conflicts

	3.3 Examples of Interfaces
	3.3.1 The Comparable Interface
	3.3.2 The Comparator Interface
	3.3.3 The Runnable Interface
	3.3.4 User Interface Callbacks

	3.4 Lambda Expressions
	3.4.1 The Syntax of Lambda Expressions
	3.4.2 Functional Interfaces

	3.5 Method and Constructor References
	3.5.1 Method References
	3.5.2 Constructor References

	3.6 Processing Lambda Expressions
	3.6.1 Implementing Deferred Execution
	3.6.2 Choosing a Functional Interface
	3.6.3 Implementing Your Own Functional Interfaces

	3.7 Lambda Expressions and Variable Scope
	3.7.1 Scope of a Lambda Expression
	3.7.2 Accessing Variables from the Enclosing Scope

	3.8 Higher-Order Functions
	3.8.1 Methods that Return Functions
	3.8.2 Methods That Modify Functions
	3.8.3 Comparator Methods

	3.9 Local Inner Classes
	3.9.1 Local Classes
	3.9.2 Anonymous Classes
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

