

Apache Cordova API
Cookbook

This page intentionally left blank

Apache Cordova API
Cookbook

John M. Wargo

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw.

Library of Congress Cataloging-in-Publication Data
Wargo, John M.
 Apache Cordova API cookbook / John M. Wargo.
 pages cm
 Includes index.
 ISBN 978-0-321-99480-6 (pbk. : alk. paper)
 1. Mobile computing-—Computer programs. 2. Application program interfaces (Computer software)
3. Apache Cordova. 4. JavaScript (Computer program language) 5. Smartphones—Programming.
6. Application software—Development. I. Title.
 QA76.59.W3685 2015
 005.2’762--dc23
 2014017378

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-99480-6
ISBN-10: 0-321-99480-9

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, July 2014

To my wife, Anna;
crazy about you!

This page intentionally left blank

Contents

 Foreword xiii

 Preface xv

 Acknowledgments xvii

 About the Author xix

 1 Introduction to Apache Cordova 1

Introduction to Apache Cordova 1

Supported Platforms 5

Coding Cordova Applications 5

Configuring a Cordova Development Environment 6

Building Cordova Applications 6

Anatomy of a Cordova Application 9

Resources 15

Wrap Up 17

 2 Accelerometer 19

Measuring Device Orientation 20

Watching a Device’s Orientation 28

What Can Go Wrong 33

 3 Camera 35

Taking a Picture 36

Configuring Camera Options 44

allowEdit 46

cameraDirection 47

correctOrientation 47

destinationType 48

encodingType 51

mediaType 51

quality 52

saveToPhotoAlbum 52

viii Contentsviii Contents

sourceType 53

targetHeight and targetWidth 57

iOS-Only Capabilities 58

What Can Go Wrong 58

 4 Capture 61

Using the Capture API 62

Configuring Capture Options 66

duration 66

limit 66

Capture in Action 66

Capturing Audio 72

Capturing Images 74

Capturing Video 76

What Can Go Wrong 77

 5 Compass 79

Getting the Device Heading 79

Watching the Device Heading 86

What Can Go Wrong 95

 6 Connection 97

Using the Connection API 97

An Example 99

What Can Go Wrong 103

 7 Contacts 105

Creating a Contact 106

Searching for Contacts 115

Cloning Contacts 124

Removing Contacts 124

What Can Go Wrong 124

 8 Device 127

Using the Device API 127

An Example 128

What Can Go Wrong 133

viii Contents

ixContents ixContents

 9 Events 135

Managing Event Listeners 136

deviceready Event 137

Application Status Events 138

Battery Status Events 141

Button Events 144

Network Status Events 149

What Can Go Wrong 152

 10 File 153

Storage Locations 154

Accessing the Device’s File System 156

Reading Directory Entries 159

Accessing FileEntry and DirectoryEntry
Properties 163

Writing Files 167

Reading Files 170

Deleting Files or Directories 172

Copying Files or Directories 173

Moving Files or Directories 173

Transferring Files 174

File Uploads 175

File Downloads 178

What Can Go Wrong 179

 11 Geolocation 181

Getting a Device’s Current Location 182

Watching a Device’s Location 189

Setting a Watch 190

Canceling a Watch 192

What Can Go Wrong 197

 12 Globalization 201

Example Applications 202

Using the Globalization API 204

Success Callback 205

Error Callback 206

ixContents

x Contentsx Contents

Currency 206

getCurrencyPattern 206

Date 208

getDatePattern 208

getDateNames 209

getFirstDayOfWeek 211

isDayLightSavingsTime 212

dateToString 212

stringToDate 215

Language and Locale 217

getPreferredLanguage 217

getLocaleName 218

Number 218

getNumberPattern 218

numberToString 220

stringToNumber 221

What Can Go Wrong 223

 13 InAppBrowser 225

Example Application 225

Managing an InAppBrowser Window 227

open, show, and hide 227

InAppBrowser in Action 229

InAppBrowser Events 236

Executing Scripts in an InAppBrowser Window 237

Insert CSS 238

What Can Go Wrong 239

 14 Media 241

The Media Object 241

Creating a Media Object 242

Current Position 246

Duration 246

Releasing the Media Object 247

Playing Audio Files 247

play 247

pause 248

xiContents xi

stop 248

seek 248

Set Playback Volume 248

Media Playback in Action 249

Accessing Local and Remote Media Files 253

Implementing Play, Pause, and Stop 255

Updating the Application’s UI 257

Recording Audio Files 259

Start Recording 259

Stop Recording 259

Media Recording in Action 259

What Can Go Wrong 263

 15 Notification 265

Visual Alerts 266

Getting Input 269

Confirm 269

Prompt 272

Audible and Tactile Notifications 275

Beep 275

Vibrate 275

What Can Go Wrong 275

 16 Splashscreen 277

Using the Splashscreen API 277

Using Custom Splash Screen Images 281

What Can Go Wrong 284

 Index 285

This page intentionally left blank

Foreword

In the late summer of 2011 I first received news that Nitobi Software was being acquired by
Adobe Systems to continue our work on the fast-growing, open-source PhoneGap project. The
future was bright, with a happy and growing developer community and a mission bigger than
ourselves making it possible to create native mobile apps using HTML, CSS, and JavaScript. To
ensure the project stayed true to our open source roots we, with Adobe, donated the source
code to the Apache Software Foundation. After some initial thrashing, the project formerly
known as PhoneGap became Apache Cordova.

Apache Cordova thrives today. At the time of this writing, Apache Cordova was installed
roughly 100,000 times in the last 30 days. It has a rather large ecosystem of code, with more
than 50 repositories hosted by Apache and an even larger developer community with more
than 200 native plugins on the official registry. All this size does come with some complexity,
and this book will help you navigate that.

In principle, Apache only recognizes individual contributors to a project. In practice, many
organizations sponsor individuals to collaborate. Adobe employees are joined by Google,
Microsoft, Mozilla, BlackBerry, LG, Intel, IBM, and SAP in this mildly bizarre, neutral ground
of collaboration made possible by Apache. Organizations choose to collaborate and contrib-
ute for a variety of reasons. Sometimes it is to create downstream distributions such as Adobe
PhoneGap or just a set of Cordova plugins like what is found in the SAP Mobile Platform.
However, at Apache only individuals can participate as contributors. This book will help you
understand how everything works so you can consider the opportunity of contributing back
to a large, open-source effort. In any case, by choosing to work with Apache Cordova you are
investing upstream, meaning that your skills investment will be applicable to all the down-
stream distributions aforementioned. This is a subtle benefit of Apache Cordova’s open-source
design.

John Wargo is one of the individuals contributing to Apache Cordova. He’s been tireless,
keeping up with our dev mailing list that pushes over a thousand messages a month. (Which is
nothing compared to our developer community mailing list!) He has meticulously reviewed our
documentation and helped clarify countless parts of the API surface with the devs and the dev
community. He is a stand-up example of a hacker making things better for all of us.

Cordova has grown beyond a simple toolkit for compiling web bits into native bits. The code
has been completely refactored into a “Swiss army knife” for managing applications that target
embedded web views. Understanding the structure and implementation of Cordova-based apps
will make you a better developer, period. The modern developer needs to understand native
platforms and the web platform. Apache Cordova unifies these concepts without hiding the
underlying operating systems we work with. You will be imbued with superpowers to manage

xiv Foreword

the complexity of moving between Android, iOS, and the browser. You will understand how
native interfaces can be created from the humble web view. You will have the tools to partici-
pate with agency on any operating system with any web technology stack you choose.

We have always wanted to give open web standards a fighting chance against native operating
systems. The original goal for the source code now known as Apache Cordova was to cease to
exist. This was not a nihilistic statement but an acknowledgment that all technology depre-
cates. Our goal is to provide an alternative to proprietary client treadmills using HTML, CSS,
and JavaScript as our vehicles. Today, I think these lines are sufficiently blurry. There is no web
versus native; neither won. The future is somewhere in between. Sometimes people call this
“hybrid.” Hybrid is really just another way of saying Apache Cordova.

Have fun hacking, and if these principles seem right to you, consider joining the developer
mailing list and introducing yourself. The Apache Cordova community is very friendly and
always welcomes fellow mobile web hackers.

 —Brian LeRoux

Preface

This is a book about the Apache Cordova APIs. Apache Cordova is a very popular open-source
framework for building cross-platform native mobile applications using HTML5. Developers
code their application content (UI and application logic) using HTML, CSS, and JavaScript,
then that content is packed into native applications targeting multiple popular (and some
not-so-popular) mobile device platforms.

Web applications running on a mobile device don’t typically have access to device-side capabil-
ities such as the camera, address book, compass, and so on. While there are initiatives within
the Internet community to add these capabilities to the mobile browser, they are not imple-
mented consistently across mobile device platforms today. The Cordova APIs described in this
book provide an interface a developer can use to access those device-side capabilities today, as
device manufacturers add those capabilities to their browsers. This book teaches you how to use
those APIs in your Cordova applications.

This book is for mobile developers who have at least some experience with web development
and Apache Cordova. If you’re new to mobile development, note that a lot of the general-
purpose mobile development background information you will need to understand the topics
in this book won’t be found here.

If you’ve not yet worked with Apache Cordova, this book isn’t going to help you set up a
Cordova development environment, understand the ins and outs of the Cordova develop-
ment process and the Cordova CLI, or use the mobile device platform tools to build and test
your applications. You’ll likely want to spend some time with this book’s companion, Apache
Cordova 3 Programming (or its successors), before digging in here.

Inside the Book
What you’ll find herein is complete coverage of each Apache Cordova API. For each API, I describe
what it does, how it behaves, and how to use it in your applications (with code). Each chapter
includes at least one complete example application you can use that exercises every aspect of each
API covered in the chapter. There are more than 30 complete applications described in the book
with source code available on GitHub (see the “Resources” section for the exact location).

The example applications highlighted in the book are built using either Adobe Topcoat
(topcoat.io) or jQuery Mobile (jquerymobile.com). I did this to give the applications a more
professional look. It also allowed me to let those frameworks take care of the applications’
user interface and user interaction activities so the Cordova-related code could be as clear and
distinct as possible.

xvi Preface

What You Won’t Find Here
Well, as with all of my other books, you won’t find any pop culture references anywhere in
the book. The chapter on the Contacts API does include the names of members of the Monty
Python comedy troupe as sample contact names for the example application, but if you don’t
know the Pythons, you likely wouldn’t even notice this.

The book does not include any content in languages other than English, HTML, and JavaScript.
I’m assuming you’re OK with English. As this is a software development book I’m assuming you
will also be OK with HTML and JavaScript.

As this is a book about the Apache Cordova APIs, you won’t find any discussion of web devel-
opment or mobile development topics. Pearson has some excellent books on those topics. Visit
InformIT.com if you are interested.

Resources
I’ve created a web site for the book; it’s located at www.cordovacookbook.com. On the site you
will find information about the book, and as readers let me know of any omissions or errors in
the text, I’ll post the information to the site’s errata area.

The book’s example application source code can be obtained from the book’s GitHub repository
at https://github.com/johnwargo/apache-cordova-api-cookbook-code. I will update the code
there as bugs are reported and fixed.

You can find my personal tech blog at www.johnwargo.com. On this site I publish articles
on topics that interest me. Most often, I write about mobile development topics and will post
updates on Cordova as they come up.

http://www.cordovacookbook.com
http://www.johnwargo.com
https://github.com/johnwargo/apache-cordova-api-cookbook-code

Acknowledgments

Many people helped with the creation of this book; I would like to thank:

Brian LeRoux and the Cordova dev team for making such a great product and for
patiently answering my questions as they came up while I wrote this book.

My colleagues at SAP for continuing to teach me new things about Apache Cordova.

Ashwin Desai for doing such an excellent job on the technical review of the manuscript;
he even corrected my source code comments.

Greg Doench, Chris Zahn, Michelle Housley, and the rest of the team at Addison-Wesley
for helping me create this book.

This page intentionally left blank

About the Author

John M. Wargo has been a professional software developer for the entirety of his professional
career. He got into the mobile space when he accepted a job at Research In Motion (now called
BlackBerry) and became a subject-matter expert on BlackBerry development for a US carrier and
its customers.

Using his experience at RIM he wrote the first book on BlackBerry development (BlackBerry
Development Fundamentals) and from there he was hooked. He is the author of the bestselling
PhoneGap Essentials and Apache Cordova 3 Programming. He also penned the majority of the
articles on mobile development for Mastering Mobile for Notes/Domino, an anthology of articles
from The View, a magazine for IBM Lotus Domino developers.

John is currently a product manager for SAP, working with the SAP Mobile Platform. He is the
product manager for Kapsel, a set of enterprise plugins for Apache Cordova, and the SAP Fiori
Client (a mobile application built using Apache Cordova), available in the Google Play Store
and the Apple App Store.

In his spare time he stays caught up on mobile development trends and tools and thinking
about his next book.

This page intentionally left blank

1
Introduction to

Apache Cordova

This chapter is your introduction to the Apache Cordova framework and Apache Cordova
application development. In the chapter, I describe what Cordova is, how it works, and how
to develop applications using Cordova. It’s clear from many of the support forum posts that
developers who are just getting started with Apache Cordova don’t really “get” what they’re
working with. This chapter should answer many of the initial questions you have related to
Apache Cordova. If you are already familiar with Apache Cordova, you can skip this chapter if
you want and jump right away into the Cordova application programming interfaces (APIs).

Introduction to Apache Cordova
Apache Cordova (http://cordova.apache.org/) is a free, open-source framework for building
cross-platform native applications using HTML5. The creators of Apache Cordova wanted a
simpler way of building cross-platform mobile applications and decided to implement it as
a combination of native and web application technologies. This type of mobile application is
called a Hybrid application.

The initial benefit of Apache Cordova is the native capabilities above and beyond what is
normally supported in the mobile browser. At the time all of this started, the best way to build
a mobile application that worked on multiple mobile devices was to build it using HTML.
Unfortunately, though, for mobile developers, many mobile applications needed to do more
than HTML and web browsers could support. Building a web application that interacted with
the device camera or the local Contacts application simply wasn’t possible. To get around this,
Cordova implements a suite of APIs that extend native device capabilities (such as the camera,
accelerometer, Contacts application, and so on) to a web application running within the native
container. The rest of the book beyond this introductory chapter is all about those APIs.

Apache Cordova consists of the following components:

▪	 Source code for a native application container for each of the supported mobile device
platforms. The container renders the Cordova web application on the device.

http://cordova.apache.org/

2 Chapter 1 Introduction to Apache Cordova

▪	 A set of Core APIs (delivered as plugins) that provide a web application running within
the container access to native device capabilities (and APIs) not normally supported by a
mobile web browser.

▪	 A set of tools used to manage the process of creating application projects, managing
plugin lifecycle, building (using native software development kits—SDKs) native
applications, and testing applications on mobile device simulators and emulators.

To build a Cordova application, you create a web application, package the web application into
the native container, test and debug the application, and then distribute it to users (typically
through an app store). The packaging process is illustrated in Figure 1.1.

Web Application

Native Mobile Application

Webview

HTML
File(s)

JavaScript
File(s)

Other
Content

Other
Content

CSS
File(s)

HTML
File(s)

JavaScript
File(s)

CSS
File(s)

Native
Application

Source
Code Files

Packaging Process

Figure 1.1 Apache Cordova Application Packaging Process

Note
When many developers first learn about this technology, they immediately assume that the web
application is somehow translated into the native language for each supported mobile device
platform—converted into Objective-C for iOS or Java for Android, for example—but that’s not
what’s happening here. There are some mobile application frameworks that take that approach,
but for Cordova, the web application simply runs unmodified within a native application shell.

Within the native Cordova application, the application’s user interface (UI) consists of a single
screen that contains nothing but a single web view that consumes the available screen space on
the device. When the application launches, it loads the web application’s start-up page

3Introduction to Apache Cordova

(typically index.html but easily changed by the developer to something else) into the web view,
then passes control to the web view to allow the user to interact with the web application. As
the user interacts with the application’s content (the web application), links or JavaScript code
within the application can load other content from within the resource files packaged with the
application or can reach out to the network and pull content down from a web or application
server.

About Web Views
A web view is a native application component that is used to render web content (typically
HTML pages) within a native application window or screen. It’s essentially a programmatically
accessible wrapper around the built-in web browser included with the mobile device.

The web application running within the container is just like any other web application that
would run within a mobile web browser. It can open other HTML pages (either locally or from
a web server sitting somewhere on the network), and JavaScript embedded within the applica-
tion’s source files implements needed application logic, hiding or unhiding content as needed
within a page, playing media files, opening new pages, performing calculations, retrieving
content from or sending content to a server. The application’s look-and-feel is determined
by any font settings, lines, spacing, coloring, or shading attributes added directly to HTML
elements or implemented through Cascading Style Sheets (CSS). Most anything a developer can
do in a web application hosted on a server can also be done within a Cordova application.

A typical mobile web browser application does not usually have access to device-side applica-
tions, hardware, and native APIs. For example, the Contacts application is not accessible to
web applications, nor can a web application typically interact with the accelerometer, camera,
microphone, and more or determine the status of the device’s network connection. The typical
native mobile application, on the other hand, will make frequent use of those capabilities. An
interesting mobile application (interesting to prospective application users anyway) likely needs
access to those native device capabilities.

Cordova accommodates that need by providing a suite of JavaScript APIs that a developer can
leverage to enable a web application running within the Cordova container to access device
capabilities outside of the web context. Essentially these APIs are implemented in two parts:
a JavaScript library that exposes the native capabilities to the web application, and the corre-
sponding native code running in the container that implements the native part of the API. This
is implemented essentially as one JavaScript library but with separate native implementations
on each supported mobile device platform.

Beginning with Cordova 3.0, each of the Cordova APIs has been broken out into separate
plugins; you can use the Cordova command-line interface (CLI) or plugin manager (plugman)
to add and remove plugins from your Cordova project. This approach provides the architecture
illustrated in Figure 1.2, an application with discrete code for each plugin and where only the
needed plugins are packaged with the application.

4 Chapter 1 Introduction to Apache Cordova

Native Mobile Application

Mobile Device

Native APIs

Device OS

Webview

Other
Content

HTML
File(s)

JavaScript
File(s)

CSS
File(s)

Plugin 1
Native Interface

Plugin 2
Native Interface

Plugin 3
Native Interface

Plugin 1
JavaScript Interface

Plugin 2
JavaScript Interface

Plugin 3
JavaScript Interface

Figure 1.2 Apache Cordova Native Application Architecture Post-3.0

Cordova currently provides the following APIs:

▪	 Accelerometer

▪	 Camera

▪	 Capture

▪	 Compass

▪	 Connection

▪	 Contacts

▪	 Device

▪	 Events

▪	 File

▪	 Geolocation

▪	 Globalization

▪	 InAppBrowser

5Coding Cordova Applications

▪	 Media

▪	 Notification

▪	 Splashscreen

Each of these APIs is described in detail in Chapters 2 through 16. At least one complete sample
application is provided for each.

Supported Platforms
As of this writing, the Apache Cordova web site lists that it supports Google Android, Samsung
bada, BlackBerry, Apple iOS, Palm WebOS, Symbian, and Microsoft Windows Phone platforms.
The Cordova download contains folders for Android, BlackBerry, Firefox OS, iOS, Windows
Phone 8, Windows 7, and Windows 8. Support for other operating systems is available through
separate downloads.

Support for other mobile device platforms is available but through separate downloads, typi-
cally from GitHub. It appears from the traffic on the Cordova dev lists that support for other
platforms, such as Amazon Fire OS and Ubuntu, is under development as well.

As you can see, the list of supported platforms is broad, but only a few are really popular. For
this book, I cover primarily Android and iOS, plus some others that I find interesting such as
Windows Phone 8 and Firefox OS.

Coding Cordova Applications
As mentioned previously, Cordova applications are built using normal, everyday web technolo-
gies such as HTML, CSS, and JavaScript. Whatever you want your application to do, if you can
make it work using standard web technologies, you can make it work in a Cordova application.
Cordova applications can do more than standard web applications, through the specialized
JavaScript libraries provided with the framework that I discussed earlier.

The Cordova project doesn’t provide any special editor for writing Cordova applications; you
simply need to dig out your web content editor of choice and start coding. To keep things
simple, you could use default tools like Notepad on Microsoft Windows or TextEdit on a
Macintosh. You could even use something more sophisticated such as Adobe Dreamweaver
(www.adobe.com/products/dreamweaver.html) or the Eclipse integrated development environ-
ment (IDE) (www.eclipse.org).

Adobe, however, offers a free, open-source code editor called Brackets (http://brackets.io) that
I’ve been playing around with. It provides a nice, clean interface for coding web applications.
As it’s an Adobe product, I expect that you’ll see Cordova and/or PhoneGap integration capa-
bilities in it before long.

http://www.adobe.com/products/dreamweaver.html
http://www.eclipse.org
http://brackets.io

6 Chapter 1 Introduction to Apache Cordova

For this book, I primarily coded using the open-source Aptana Studio (www.aptana.com), an
Eclipse-based IDE tailored for web development. It’s lighter weight than Eclipse and allowed
me to easily format the project source code for easy importing into this manuscript (using two
spaces instead of tabs everywhere).

Configuring a Cordova Development Environment
Before you can build applications using Apache Cordova, you must set up the appropriate
development environment. The challenge for Cordova developers is that you must install the
native SDKs, the software components the Cordova CLI requires, and finally the Cordova CLI.
There’s a lot to install, and the required components come from a lot of different sources. The
good news is that all of the tools you will need are free and just a download away.

Chapter 3 of Apache Cordova 3 Programming describes the whole installation process in detail;
you will need to refer to the Apache Cordova documentation or the book for the complete
installation details. There are a lot of moving parts to this, and for that reason many people
find the initial setup to be the hardest part of Cordova development.

Building Cordova Applications
Each of the mobile device platforms supported by the Cordova project has its own proprietary
tools for packaging or building native applications. To build a Cordova application for each
supported mobile platform, the application’s web content (the HTML, CSS, JavaScript, and
other files that constitute the application) must be added to an appropriate application project
for each platform and then built using the platform’s proprietary tools. What’s challenging
about this process is that each mobile platform uses completely different tools, and application
projects use different configuration files and most likely a different project folder structure.

Additionally, some of the supported mobile platform development tools will run only on
certain desktop operating systems. For example:

▪	 The Android SDK runs on Linux, Microsoft Windows, and Macintosh OS X.

▪	 The BlackBerry tools (there are several) run on Microsoft Windows and Macintosh OS X.

▪	 The iOS SDK runs only on Macintosh OS X (no surprise there).

▪	 The Windows Phone SDK runs only on Microsoft Windows (no surprise there either).

In the old days of Cordova development, you would use IDE plugins (on Android, iOS, and
Windows Phone), command-line tools (on Android and BlackBerry), or start by copying a
sample application (on bada, Symbian, and webOS) to create a new project. You would start
with one of the supported platforms, write the appropriate web content, then package and
test the application using the selected platform’s SDK. Once you had it all working correctly,
you would copy the web content over to a new project for one of the supported platforms and
repeat the process. There was little consistency in project folder structure, framework JavaScript

http://www.aptana.com

7Building Cordova Applications

files (they had different file names on some platforms and were markedly different for each),
and build process across mobile device platforms.

To make things easier, in later versions of the framework, the Cordova development team
scrapped the IDE plugins and implemented a command-line interface for projects across a
wider range of supported mobile device platforms. You use the command-line tools to create
new projects, manage (add, remove, list, update) plugins, build, and then test applications
using the device emulators and simulators. You can still do all of this by hand if you want to,
but the command-line tools make it much easier.

Now, as this is a book about the Cordova APIs, I’m not going to spend too much time talking
about the CLI and the development process. That particular topic is covered in great detail
(about 200 pages’ worth) in Apache Cordova 3 Programming (www.cordovaprogramming.com),
but you can also find details in the Cordova Command-line Interface guide on the
Cordova documentation site at http://cordova.apache.org/docs/en/3.0.0/guide_cli
_index.md.html#The%20Command-line%20Interface and in the Platform Guides at
http://cordova.apache.org/docs/en/3.0.0/guide_platforms_index.md.html#Platform%20Guides.

If you are building an app for Android and iOS, you would open a terminal window and
execute the following:

cordova create lunch_menu
cd lunch_menu
cordova platform add android ios

At this point, what you’d have is a new Cordova project folder called lunch_menu with a
bunch of subfolders, as shown in Figure 1.3. There’s a platforms folder that contains native
application projects for Android and iOS. Additionally, there’s a folder called www that
contains the application’s core web content files, the content files that will be shared across the
Android and iOS projects (or whatever platforms you want to use for your application).

Figure 1.3 Cordova Application Project Folder Structure

http://www.cordovaprogramming.com
http://cordova.apache.org/docs/en/3.0.0/guide_cli_index.md.html#The%20Command-line%20Interface
http://cordova.apache.org/docs/en/3.0.0/guide_cli_index.md.html#The%20Command-line%20Interface
http://cordova.apache.org/docs/en/3.0.0/guide_platforms_index.md.html#Platform%20Guides

8 Chapter 1 Introduction to Apache Cordova

For your application, you will edit the web content stored in the www folder. When the web
application content in that folder is ready for testing, you will use the CLI to copy the code
into the platforms subfolders shown in the figure.

What I do while working on a Cordova project is keep my web content files open in an HTML
editor like Adobe Brackets (www.brackets.io) or Aptana Studio (www.aptana.com) and then use
the CLI to manage my mobile device platform projects for me. As I edit the files, I add the web
content to the .html file and my application’s code to the application’s .js files; when I’m ready
to test (and debug) the application, I switch over to a terminal window that I keep open and
pointed to the Cordova project’s root folder (the lunch_menu folder I created a while back) and
issue some commands. If I want to switch to the Android IDE and test the Android application,
I issue the following command:

cordova prepare android

Or, if I will be testing and debugging both the Android and iOS versions of the application, I
issue the following command:

cordova prepare android ios

I could just prepare all target operating systems for the project using the following:

cordova prepare

What this command does is copy all of the project files from the www folder into the appropriate
place for each platform project folder as shown in Figure 1.4. In this example, it copies the web
content folder (www) to the Android project’s assets/www folder and the iOS project’s www folder.

Figure 1.4 Copying Web Content to the Platform Projects Folders

http://www.brackets.io
http://www.aptana.com

9Anatomy of a Cordova Application

With the project’s files prepared, you can use the CLI to launch the application in an emulator or
on a physical device for testing. You can also open the appropriate IDE and test/debug the appli-
cation directly in the IDE. You can learn a lot more about the testing and debugging process in
Apache Cordova 3 Programming (www.cordovaprogramming.com), Chapters 6 through 10.

Anatomy of a Cordova Application
Now that you know a little bit about how to create a Cordova application project, it’s time to
show you what makes a Cordova application a Cordova application. In this section, I show
how to create a Cordova web application that leverages one of the Cordova Core APIs.

To begin, I opened a terminal window and navigated to the folder where I wanted to create the
project. Next, I issued the following commands:

cordova create hellocordova1
cd hellocordova1
cordova platform add android ios
cordova plugin add org.apache.cordova.device

This created a hellocordova1 project folder, added the Android and iOS platforms to the
project, and then added the code for the Cordova Device API. Next, I navigated to the project’s
www folder and pasted the code from Listing 1.1 into the project’s existing index.html file.

Listing 1.1 Hello Cordova 1

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="viewport" id="viewport" content="width=device-width,
 height=device-height, initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />
 <script type="text/javascript" charset="utf-8" src="cordova.js">
 </script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady, false);
 }

 function onDeviceReady() {
 var br = "
";
 //Get the appInfo DOM element
 var element = document.getElementById('devInfo');
 //Replace it with specific information about the device
 //running the application
 element.innerHTML = 'Cordova Version: ' + device.cordova + br +

http://www.cordovaprogramming.com

10 Chapter 1 Introduction to Apache Cordova

 'Operating System: ' + device.platform + br +
 'OS Version: ' + device.version + br +
 'Device Model: ' + device.model + br +
 'Universally Unique Identifier: ' + device.uuid;
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <h1>Cordova Information</h1>
 <p>This is an Apache Cordova application that makes calls to the
 Cordova Device API.</p>
 <p id="devInfo">Waiting for Cordova initialization to complete.</p>
 </body>
</html>

The index.html file shown in the listing is like any other HTML page you’ve seen, with some
extra elements that enable it to understand how to interact with the Cordova container. The
content-type setting is a standard HTML setting and should look the same as it would for any
other HTML5 application. Within the <Head> section of the web page are two new entries,
meta tags that describe the content type for the application and viewport settings.

The viewport settings shown in the following code tell the embedded web browser rendering
the content how much of the available screen real estate should be used for the application and
how to scale the content on the screen:

<meta name="viewport" id="viewport" content="width=device-width,
 height=device-height, initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />

In this case, the HTML page is configured to use the maximum height and width of the screen
(through the width=device-width and height=device-height attributes) and to scale the
content at 100% and not allow the user to change that in any way (through the initial-
scale=1, maximum-scale=1, and user-scalable=no attributes).

Note
The viewport and associated attributes are not required. If they are omitted, the browser will
revert to its default behavior, which may (or may not—who knows?) result in the application’s
content not consuming the full screen area available to it or zooming beyond it. Because
there’s not much content in the application, it could, for example, consume only the upper half
of the screen on some devices. You may also find that on some platforms the settings have
no effect—all the more reason to test your Cordova applications on a variety of mobile devices
before release.

11Anatomy of a Cordova Application

There’s also a new script tag in the code that loads the Cordova JavaScript library:

<script type="text/javascript" charset="utf-8" src="cordova.js"></script>

This loads the Cordova API library and makes some Cordova capabilities available to the program.

The JavaScript code in a Cordova application does not have immediate access to any installed
Cordova APIs after the web application has loaded. The native Cordova application container
must complete its initialization process before it can respond to calls JavaScript made using
the Cordova APIs. To accommodate this delay in API availability, a web developer building
Cordova applications must instruct the container to notify the web application when the
Cordova APIs have completed initialization. Any application processing that requires the use of
the APIs should be executed by the application only after it has received notification that the
APIs are available.

In the application, this notification is accomplished through the addition of an onload event
defined in the page’s body section as shown in the following:

<body onload="onBodyLoad()">

Within the onBodyLoad function, the code registers an event listener that instructs the appli-
cation to call the onDeviceReady function when the device is ready, when the Cordova
application container has finished its initialization routines and fired its deviceready event:

document.addEventListener("deviceready", onDeviceReady, false);

In this example application the onDeviceReady function updates the page rendered on the
screen to display all of the available properties exposed by the Cordova Device API (described
in Chapter 8) as shown in the following:

//Replace it with specific information about the device
//running the application
element.innerHTML = 'Cordova Version: ' + device.cordova + br +
 'Operating System: ' + device.platform + br +
 'OS Version: ' + device.version + br +
 'Device Model: ' + device.model + br +
 'Universally Unique Identifier: ' + device.uuid;

To run the application on an Android emulator, open a terminal window, navigate to the
Cordova project folder, and issue the following command:

cordova emulate android

The default Android emulator will launch and display the application as shown in Figure 1.5.

When the application runs on an iOS simulator, it will display a screen similar to what is
shown in Figure 1.6.

12 Chapter 1 Introduction to Apache Cordova

Figure 1.5 Hello Cordova 1 Running on an Android Emulator

Figure 1.6 Hello Cordova 1 Running on an iOS Simulator

One of the common questions I get from people first learning Cordova is “Can I use HTML5
or JavaScript framework X with Cordova?” (substituting the name of their favorite HTML5 or
JavaScript framework—jQuery Mobile, Sencha Touch, Dojo, and so on—into the question). The
answer is unequivocally yes. The Cordova application simply renders whatever web content
you pass to it using the native browser web view exposed by the mobile device OS.

As a side project, to help developers easily build more beautiful mobile applications, Adobe
created Topcoat (www.topcoat.io). Topcoat is a set of CSS files and open-source fonts that can
be used to create fast, themeable, beautiful web sites. In an effort to make the sample applica-
tions highlighted in this book prettier, where appropriate I’m going to use Topcoat to apply
styling to many of the applications.

So, once I downloaded the Topcoat files, I extracted them and copied over the font and CSS
files to my project folder, then updated the application’s HTML to use the Topcoat styling.
You can see an updated listing for the example application, now called Hello Cordova 2, in
Listing 1.2.

http://www.topcoat.io

13Anatomy of a Cordova Application

Listing 1.2 Hello Cordova 2

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="viewport" id="viewport" content="width=device-width,
 height=device-height, initial-scale=1.0, maximum-scale=1.0,
 user-scalable=no;" />
 <link rel="stylesheet" type="text/css"
 href="css/topcoat-mobile-light.min.css">
 <script type="text/javascript" charset="utf-8" src="cordova.js">
 </script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady, false);
 }
 function makeListItem(textStr) {
 return '<li class="topcoat-list__item">' + textStr + '';
 }
 function onDeviceReady() {
 var tmpStr;
 tmpStr = '<ul class="topcoat-list__container">
 <h3 class="topcoat-list__header">Device API Properties</h3>';
 tmpStr+= makeListItem('Cordova Version: ' + device.cordova);
 tmpStr+= makeListItem('Operating System: ' + device.platform);
 tmpStr+= makeListItem('OS Version: ' + device.version);
 tmpStr+= makeListItem('Device Model: ' + device.model);
 tmpStr+= makeListItem('Universally Unique Identifier: ' +
 device.uuid);
 tmpStr+= '';
 //Get the appInfo DOM element
 var element = document.getElementById('devInfo');
 //Replace it with specific information about the device running
 //the application
 element.innerHTML =tmpStr;
 }
 </script>
 </head>
 <body onload="onBodyLoad()">
 <div class="topcoat-navigation-bar">
 <div class="topcoat-navigation-bar__item center full">
 <h1 class="topcoat-navigation-bar__title">Hello Cordova #2</h1>
 </div>
 </div>
 <h1>Cordova Information</h1>

14 Chapter 1 Introduction to Apache Cordova

 <p>This is an Apache Cordova application that makes calls to the
 Cordova Device API.</p>
 <div class="topcoat-list" id="devInfo">
 <h3 class="topcoat-list__header">
 Waiting for Cordova to initialize
 </h3>
 </div>
 </body>
</html>

I added the application’s title to a title bar, assigning class="topcoat-navigation-bar",
class="topcoat-navigation-bar__item center full", and
class="topcoat-navigation-bar__title" to the elements of the header as shown in the
listing. To render the list of Device API properties on the screen, I created an unordered list, with
the appropriate class assignment, then applied class="topcoat-list__item" to each list item.
When the modified application runs on an Android emulator, it displays a screen similar to what
is shown in Figure 1.7.

Figure 1.7 Hello Cordova 2 Running on an Android Emulator

Notice how much better that looks? To prove it works as well on iOS, when the application
runs on an iOS simulator, it displays a screen similar to what is shown in Figure 1.8.

15Resources

Figure 1.8 Hello Cordova 2 Running on an iOS Simulator

Resources
There are many places online where you can find information about how to work with the
Cordova framework. Table 1.1 lists the different web sites where you can find information
about Apache Cordova. Adobe PhoneGap is Adobe’s distribution of Apache Cordova with some
extra capabilities added, so I have included some links to PhoneGap resources as well.

To stay informed about what’s going on with the project, you can sign up for the mailing
lists at http://cordova.apache.org/#mailing-list. If you have some extra time, it is fun to read
through the emails as the development team discusses the implementation of a new feature or
tracks down a bug.

The dev mailing list is used by the developers of the Cordova framework to discuss issues
and make decisions about the Cordova implementation. The commits mailing list is for
tracking commit logs for the Cordova repositories, when new or updated code is added
to a version of the framework. The issues mailing list is for conversations around bug
and feature requests submitted to the Cordova JIRA issue- and bug-tracking system at
http://issues.apache.org/jira/browse/CB.

Caution
Please don’t use the dev list to ask questions about Cordova development; use Google Groups
instead.

http://cordova.apache.org/#mailing-list
http://issues.apache.org/jira/browse/CB

16 Chapter 1 Introduction to Apache Cordova

Table 1.1 Available Resources

Resource Link(s)

Cordova Web Site http://cordova.io or http://cordova.apache.org
(both point to the same site)

Cordova Documentation http://docs.cordova.io

Cordova Wiki http://wiki.cordova.io

Cordova Issue Tracker https://issues.apache.org/jira/browse/CB

Cordova Mailing Lists http://cordova.apache.org/#mailing-list

Cordova Twitter Account http://twitter.com/apachecordova

PhoneGap Web Site http://www.phonegap.com

PhoneGap Wiki http://wiki.phonegap.com

PhoneGap Blog http://www.phonegap.com/blog

PhoneGap Twitter Account https://twitter.com/phonegap

You’ll spend the majority of your time on the Apache Cordova Documentation site that is
shown in Figure 1.9. The site contains a complete reference to all of the Cordova APIs plus
additional guides you’ll need as you work with the framework.

The API reference shown in the figure includes a complete reference for all of the methods,
properties, and events for each of the Cordova APIs. On the API pages you’ll also find sample
source code and additional information you will need to make use of the APIs.

Figure 1.9 Apache Cordova Documentation

http://cordova.io
http://cordova.apache.org
http://docs.cordova.io
http://wiki.cordova.io
https://issues.apache.org/jira/browse/CB
http://cordova.apache.org/#mailing-list
http://twitter.com/apachecordova
http://www.phonegap.com
http://wiki.phonegap.com
http://www.phonegap.com/blog
https://twitter.com/phonegap

17Wrap Up

While you’re looking at the Documentation site, scroll down within either the left or the right
side of the page to see the list of guides shown in Figure 1.10. These guides contain a lot of
useful information a developer needs to work with the framework, including how to create
plugins, using the command-line tools, and, most important, the getting-started guides for each
of the supported mobile device platforms.

Figure 1.10 Cordova Documentation—Guides Section

Wrap Up
So, that’s it—a quick overview of Apache Cordova with a quick development tutorial and
some examples. With the information provided here, you have the background information
you need to work through the remainder of the content in the book. The remainder of the
book is dedicated to detailed instructions on how to leverage each of the Cordova APIs in your
Cordova applications.

This page intentionally left blank

Index

A
Accelerometer API

Geolocation API and, 181

introduction to, 19–20

measuring device orientation in, 20–28

troubleshooting, 33–34

watching device orientation in, 28–33

Access

to device file systems, 156–159

to file/directory properties, 163–166

to media files, 253–255

to network connections, 103

Addresses of contacts, 106–108

Adobe Brackets, 5, 8

Adobe Dreamweaver, 5

Adobe Topcoat. See Topcoat

Albums for photographs, 53–56

Alerts

in Notification API, 265–269, 276

allowEdit, 46

allowInlineMediaPlayback, 228

Anatomy of Cordova applications, 9–15

Android devices

Accelerometer API on, 20, 25, 32–33

battery status events on, 144

building Cordova apps for, 7–9

286 Android devices

Android devices, (continued)

Camera API on, 38–40, 44, 49–58

Capture API on, 67, 72–76

Compass API on, 84–85, 92

Connection API on, 102

Contacts API on, 110, 114, 117, 122

copying web content folders to, 8

core web content files on, 7

Device API on, 129–130

Emulator for, 11–12, 14, 25

Enabling GPS on, 199

Events API on, 140, 144, 148

file details on, 165

file readers on, 171–172

Geolocation API on, 188, 197–199

Globalization API on, 203–204

GPS Disabled Error on, 199

InAppBrowser API on, 225–228,
230–234, 238–239

insertCSS on, 238

Media API on, 243, 249–254, 260

Notification API on, 266, 270, 272–273

operating systems for, 6

persistent storage locations in, 162

Splashscreen API on, 283–284

supported platforms for, 5

Timeout Error messages on, 198

Apache Cordova. See Cordova

Apache Cordova 3 Programming

on command-line interface, 7, 9

on console exposure, 27

API Reference, 16

Apple iOS devices. See iOS devices

Application status events, 135, 138–141

Aptana Studio, 6, 8

Araxis Merge, 123

Audible notifications, 275

Audio files

capture of, 61–62, 72–74

playing, 247–253

recording, 259–262

B
backbutton events, 135, 144

Back-facing cameras, 47

Bacon Ipsum generators, 234

Battery events, 135–137, 141–144

Beep tones, 265–266, 275

Birthdays, 106

BlackBerry devices

accelerometer values on, 20

button events on, 144

Cordova APIs on, 5–6

physical compasses in, 79

_blank, 227, 235

Browser windows, 229–234

Building applications, 6–9

Buttons

in Events API, 135–136, 144–148

in InAppBrowser API, 228

in Media API, 255–257

in Notification API, 270–271

C
Callbacks

in Compass API, 80, 84

in Contacts API, 110, 112–113, 116

error. See error callbacks

failure, 24, 62

287Connection API

in File API, 153

in Globalization API, 205–206

in Media API, 243–246

in Notification API, 267–268

optional, 243, 245

status, 243–245

success. See success callbacks

updateUI, 257

Camera API

allowEdit in, 46

cameraDirection in, 47

Capture API vs., 35, 61, 64–65

configuring options in, 44

correctOrientation in, 47

DATA_URL on, 48–50

destinationType in, 48–51

encodingType in, 51

FILE_URI on, 48–49

geolocation and, 181

introduction to, 35

iOS-only capabilities in, 58

mediaType in, 51

NATIVE_URI on, 48, 50–51

quality in, 52

saveToPhotoAlbum in, 52–53

sourceType in, 53–56

taking photographs with, 36–44

targetHeight/targetWidth in, 57–58

troubleshooting, 58–59

Cameras. See also Camera API

back-facing, 47

in Capture API, 35, 61, 64–65

front-facing, 47

video, 51

Capture API

audio capture in, 61–62, 72–74

Camera vs., 35, 61, 64–65

configuring options in, 66

duration in, 66

image capture in, 74–75

introduction to, 61

limit in, 66

Media API vs., 241, 259

troubleshooting, 77

using, 62–65, 66–72

video capture in, 76

Cascading Style Sheets (CSS)

in Cordova, 3

in InAppBrowser API, 238–239

in Topcoat, 12–14

Cellular connections, 98, 103. See also
Connection API

CFW. See Continuous File Writer

ChildBrowser, 225

clearcache, 228

clearsessioncache, 228

CLIs. See Command-line interfaces

Cloning contacts, 124

close method, 235

closebuttoncaption, 228

code for currencies, 207

Command-line interface (CLI), 3, 6–9

Compass API

Geolocation API and, 181

getting device headings in, 79–86

introduction to, 79

troubleshooting, 95

watching device headings in, 86–95

confirm capabilities, 265–266, 269–271

Connection API

detecting current network type in,
99–103

288 Connection API

Connection API, (continued)

display alerts to users in, 99–103

Events API vs., 149

introduction to, 97

troubleshooting, 103

using, 97–99

Contacts API

cloning contacts in, 124

creating contacts in, 106–114

introduction to, 105

removing contacts in, 124

searching for contacts in. See searching
for contacts

troubleshooting, 124–125

Continuous File Writer (CFW), 169–170

Coordinated Universal Time (UTC), 209

Copying files/directories, 173

Cordova. See also specific APIs

anatomy of applications for, 9–15

building applications for, 6–9

coding applications for, 5–6

cookbook for.
See cordovacookbook.com

development environment
configuration for, 6

introduction to, 1–5, 17

resources for, 15–17

supported platforms in, 5

website on. See cordova.apache.org

webviews in, 3–5

Cordova Domain Whitelist Guide, 255

cordova.apache.org

Accelerometer API documentation on,
20

Camera API documentation on, 35, 45

on command-line interfaces, 7

Cordova Domain Whitelist Guide on,
255

File API documentation on, 169

introduction to, 1

updates on, 15–16

cordovacookbook.com

Contacts code on, 105, 116

File code on, 154

InAppBrowser code on, 226

Media code on, 253

Notification code on, 265

Core APIs, 2

correctOrientation, 47

CRM. See Customer relationship
management

CSS (Cascading Style Sheets). See
Cascading Style Sheets (CSS)

Currency

converting numeric values to strings,
220–221

converting string values to numbers,
221–222

getCurrencyPattern, 206–207

in Globalization API, 201, 203–204

ISO 4217 codes for, 206–207

number settings and, 218

Current positions, 246

Custom images, 281–284

Customer relationship management (CRM),
105

cvaReady, 24, 32, 84

D
DATA_URL, 48–50

Date settings, 202–204, 208–217

dateToString, 212–215

289Event listeners

day, 215

Daylight Savings Time, 209, 212

Days of week, 208, 211

Debug Console, 200

decimal

in converting numeric values to strings,
220–221

in converting string values to numbers,
221–222

in currency settings, 207

in number settings, 218–219

Degree-based watches, 93

Deleting files/directories, 172–173

destinationType, 48–51

Detecting current network type, 99–103

Development environment configuration, 6

Device API

Hello Cordova 1 example of, 11

Hello Cordova 2 example of, 128–132

introduction to, 127

troubleshooting, 133

using, 127–128

deviceready events, 135, 137–138

DirectoryEntry

for copying files/directories, 173

for deleting files/directories, 172–173

for moving files/directories, 173–174

DirectoryReader, 159–160, 163

displayName, 111, 115–116, 120

Documentation site, 16–17

Downloading files, 178–179

Dreamweaver, 5

Dropbox, 53

duration, 66, 246

E
Eclipse, 5–6

Editing images, 46

Email addresses, 106, 108–109, 114

enableHighAccuracy, 182

enableViewportScale, 228, 231–232

encodingType, 51

endcallbutton events, 135, 145

English language, 201

Error callbacks. See also failure callbacks

in Accelerometer API, 24, 26

in Camera API, 40

in Capture API, 64–66, 73

in Compass API, 80, 84, 87

in Contacts API, 112–113

in File API, 157–160

in Geolocation API, 182, 187, 190,
198–199

in Globalization API, 204–206

in InAppBrowser API, 236

in Media API, 243–245, 247, 259

in uploading files, 176–177

Error messages

in Camera API, 51, 58–59

in Contacts API, 112–113

in File API, 158–159, 176–177

in Geolocation API, 198

in InAppBrowser API, 236

in Media API, 243

Escape buttons, 145

Event listeners

and battery status events, 144

button events and, 145–146

in Connection API, 102

in Events API, 135–137

290 Event listeners

Event listeners, (continued)

in InAppBrowser API, 227, 236–238

introduction to, 11

network status events and, 151

Events

application status, 135, 138–141

backbutton, 135, 144

battery, 135–137

deviceready, 135, 137–138

endcallbutton, 135, 145

in FileReader, 171

in FileWriter, 169

in InAppBrowser API, 236–237

menubutton, 136, 144

network, 135

network status, 149–152

offline, 136

online, 136

onload, 11

pause, 136, 138–141

resume, 136, 138–141

searchbutton, 136, 145

startcallbutton, 136, 145

volumedownbutton, 136, 145

volumeupbutton, 136, 145

Events API

application status events in, 138–141

battery status events in, 141–144

button events in, 144–148

Connection API vs., 149

deviceready events in, 137–138

event listeners in, 136–137

introduction to, 135–136

network status events in, 149–152

troubleshooting, 152

Executing scripts, 237–238

EXIF data, 47

F
Failure callbacks, 24, 62. See also error

callbacks

File API

accessing device file systems in, 156–159

accessing file/directory properties in,
163–166

copying files/directories in, 173

deleting files/directories in, 172–173

file downloads in, 178–179

file uploads in, 175–178

introduction to, 153–154

Media API and, 261

moving files/directories in, 173–174

reading directory entries in, 159–162

reading files in, 170–172

storage locations in, 154–156

transferring files in, 174–179

troubleshooting, 179–180

writing files in, 167–170

File formats, 252

File URIs (uniform resource identifiers). See
URIs (uniform resource identifiers)

FileEntry

for copying files/directories, 173

for deleting files/directories, 172–173

for moving files/directories, 173–174

FileReader, 170–172

FileTransfer, 174–178

FileWriter, 167–170

Filter values, 116

Find method, 115, 118, 122

291Globalization API

Firefox OS

Device API on, 130–131

File API on, 180

GPS on, 199–200

Notification API on, 276

as supported platform, 5

First day of week settings, 211–212

Formats

of dates, 208, 213, 215

of files, 252

fraction, 207, 219

Front-facing cameras, 47

fullPath, 163

G
Games

Accelerometer API and, 19–21

Events API and, 135

Media API and, 241

Geographic North Pole, 84

Geolocation API

Accelerometer and, 181

canceling location watches in,
192–197

Compass and, 181

current location of devices in,
182–189

introduction to, 181–182

setting location watches in, 190–192

troubleshooting, 197–200

watching location of devices in, 189

getCurrencyPattern, 201, 203–204,
206–207

getCurrentAcceleration, 21–24, 27

getCurrentHeading, 79–86

getCurrentPosition, 182–183

getDateNames, 209–211

getDatePattern, 208–209

getFile, 163, 167, 170

getFirstDayOfWeek, 211–212

$.getJSON method, 110

getLocaleName in, 218

getNumberPattern, 218–220

getPicture, 36–38, 44–46

getPreferredLanguage, 205, 217

GitHub

Camera code on, 45

Contacts code on, 105, 116

File code on, 154

Globalization code on, 202

InAppBrowser code on, 226

Media code on, 253, 260

Notification code on, 265

Globalization API

currency settings in, 206–207

date settings in, 208–217

dateToString in, 212–215

error callbacks in, 206

example applications in, 202–204

getCurrencyPattern in, 206–207

getDateNames in, 209–211

getDatePattern in, 208–209

getFirstDayOfWeek in, 211–212

getLocaleName in, 218

getNumberPattern in, 218–220

getPreferredLanguage in, 217

introduction to, 201–202

isDayLightSavingsTime in, 212

language settings in, 217

locale settings in, 217–218

292 Globalization API

Globalization API, (continued)

number settings in, 218–223

numberToString in, 220–221

stringToDate in, 215–217

stringToNumber in, 221–223

success callbacks in, 205

troubleshooting, 223

using, 204–205

Google Android. See Android devices

GPS services. See Geolocation API

grouping, 207, 219

Guides for Cordova, 17

H
Hello Cordova 1 example, 9–10

Hello Cordova 2 example, 13–14, 128–132

hidden browser windows, 228–229

hide InAppBrowser windows, 227–229

hour, 215

HTML (HyperText Markup Language)

anchor links in, 227

Brackets for, 8

break tags in, 170

for buttons in File API, 155

in Cordova, 1–4, 12

deviceready events and, 152

in Hello Cordova 1 example, 9–10

image tags in, 42

for InAppBrowser events, 236

index.html files in, 161, 225

jQuery items and, 71

media content in, 228–229

unordered lists in, 120, 160–161

W3C Geolocation API and, 182

http://cordova.apache.org.
See cordova.apache.org

Hybrid applications, 1

HyperText Markup Language (HTML). See
HTML (HyperText Markup Language)

I
IDE. See Integrated development

environment

IM. See Instant Messaging

Images

in Camera API. See Camera API

in Capture API, 61–62, 74–75

of contacts, 107–108

InAppBrowser API

events in, 236–237

example applications in, 225–226

executing scripts in, 237–238

hide windows in, 227–229

inserting CSS in, 238–239

introduction to, 225

open windows in, 227–229

show windows in, 227–229

troubleshooting, 239–240

using, 229–236

windows in, 227–229

Index.html files, 9–10. See also HTML
(HyperText Markup Language)

Inserting CSS (Cascading Style Sheets),
238–239

Instant Messaging (IM) addresses,
107–108

Integrated development environment (IDE),
6–9

International Organization for
Standardization (ISO), 206–207

http://cordova.apache.org

293jQuery Mobile

INVALID_ARGUMENT_ERROR, 113

iOS devices

Accelerometer API on, 20–21, 26–27,
32–33

application status events on, 138

battery status events on, 144

building Cordova apps for, 7–9

button events on, 144

Camera API on, 40–42, 47–51, 55–58

Capture API on, 73–76

Compass API on, 86, 93–94

Contacts API on, 113–114, 123

copying web content folders to, 8

Cordova APIs for, 11

core web content files on, 7

date settings on, 215

Device API on, 131

Events API on, 141, 152

file details on, 166

file downloads on, 178–179

file uploads on, 177–178

Geolocation API on, 187–188

globalization functions on, 202

InAppBrowser API on, 228–229, 231–232

Media API on, 243, 250–252, 262

operating systems for, 6

Simulator for, 11–12, 14–15, 27

Splashscreen API on, 277–282

supported platforms for, 5

iPad

Device API on, 127, 132

globalization functions on, 202

iPhone

accelerometer values on, 20–21

Device API on, 130–131

physical compasses on, 79

isDayLightSavingsTime, 212

isDirectory, 163

isFile, 163

isOffline, 151

isOnline, 151

ISO (International Organization for
Standardization), 206–207

J
JavaScript

in Accelerometer API, 22, 24

in Camera API, 36–38, 49, 51

in Capture API, 67

in Compass API, 81

in Cordova, 2–5, 11–12

FileReader and, 171

in Globalization API, 203, 205, 212–213

in InAppBrowser API, 227, 229, 237–238

in Media API, 246

in Notification API, 266–267, 276

removeEventListener in, 136, 145

in Splashscreen API, 277

JPEG files, 47, 51

jQuery

$ method, 72, 103

for Capture API, 64, 71–72

for Contacts API, 110, 116

for File API, 161

for InAppBrowser API, 237

for network status updates, 151–152

jQuery Mobile

for Contacts API, 110, 116, 119–120

for File API, 155, 161

for Notification API, 276

Topcoat vs., 67

294 jQueryRotate

jQueryRotate, 91

JSON, 110

K
Kapsel Logon plugin, 225

keyboardDisplayRequiresUserAction,
229

L
Landscape mode, 204

Language options, 201, 205, 217

limit, 66

listview, 119–120

Load functions, 236

Locale settings, 217–218

Location. See Geolocation API

Location watches

canceling, 192–197

introduction to, 189

setting, 190–192

M
Magnetic Heading, 85

Magnetic North Pole, 84

Mailing lists, 15–16

Malware, 105

maximumAge, 182

Media API

accessing media files in, 253–255

callback functions in, 243–245

Capture vs., 241, 259

creating Media objects in, 242–246

current positions in, 246

duration in, 246

File API and, 261

file format problems in, 252

file URIs in, 242–243

introduction to, 241

objects in, 241

pause function in, 248, 255–257

play function in, 247, 255–257

playing audio files in, 247–253

recording audio files in, 259–262

releasing Media objects in, 247

seek in, 248

startRecord in, 259

stop functions in, 248, 255–257, 259

troubleshooting, 263

updating UIs in, 257–258

volume in, 248–249

Media-capture plugin, 77

MediaFile objects, 63

mediaPlaybackRequiresUserAction, 229

mediaType, 51

menubutton events, 136, 144

Metadata, 164–165

Microsoft Windows phones. See Windows
Phone devices

millisecond, 215

minute, 215

month, 215

Moving files/directories, 173–174

multiple values, 116–118

N
Names of contacts, 106–107

Names of files, 163

295Photographs

Native mobile applications, 2

NATIVE_URI, 48, 50–51

navigator.contacts.create, 106–107

navigator.contacts.save, 106

navigator.network.connection.type,
97–98, 103

Negative numbers, 219

Network connections. See Connection API

Network events, 135, 149–152

Nexus 7 tablets

Capture API on, 73

cellular coverage on, 198

date settings on, 214, 216–217

Media API on, 249

Nicknames, 107

North Poles, 80

Notification API

audible notifications in, 275

beep tones in, 275

confirm in, 269–271

getting user input in, 269–274

introduction to, 265–266

JavaScript vs. Cordova code in,
267–268

prompt in, 272–274

tactile notifications in, 275

troubleshooting, 275–276

vibrate mode in, 275

visual alerts in, 266–269

Number settings, 218–223

numberToString, 220–221

O
Offline events, 136

onAccelFailure, 21–24, 28

onAccelSuccess, 21–24, 28

onBackButton, 145

Online events, 136

Onload events, 11

open windows, 227–229

Operating systems, 6

Optional error callbacks, 243

Optional status callbacks, 245

Organizations in Contacts API, 107–108

P
pattern

in currency settings, 207

in date settings, 209

in number settings, 219

Pause functions

in Events API, 136, 138–141

in Media API, 248, 255–257

percent

in converting numeric values to strings,
220–221

in converting string values to numbers,
221–223

in number settings, 218

Permissions

for accessing network connections, 103

in Contacts API, 113

in Geolocation API, 198

Persistent storage, 153–155, 161

Phone numbers, 107–108

PhoneGap, 15–16, 57

PhoneGap Essentials, 57

Photographs. See also Camera API

in Capture API, 61–62, 74–75

of contacts, 107–108

296 Photographs

PhotographsI, (continued)

saving, 52–56

selfies, 44

taking, 36–44

Play functions

for audio files, 247–253

buttons for, 255–257

in Media API, 247

PNG files, 51

Positive numbers, 219

presentationstyle, 229

processEntry, 163–164

prompt, 265–266, 272–274

Q
quality, 52

Quirks, 45

R
Radios, 98, 103

Reading directory entries, 159–163

Reading files, 170–172

Rear cameras, 47

Recording audio files, 259–262

Releasing Media objects, 247

removeEventListener, 145

Removing contacts, 124

requestFileSystem, 156–157, 159

Resources, 15–17

Resume events, 136, 138–141

Rotation of screens, 92–93

rounding, 207, 219

S
sandboxSize, 156

SAP Kapsel SDK, 225

SAP Mobile Platform, 225

SAP U15, 225

saveToPhotoAlbum, 52–53

Searchbutton events, 136, 145

Searching for contacts

on different mobile devices, 115, 117,
122–123

displayName for, 111, 115–116, 120

field values in, 115, 122–123

filter values in, 116, 118

find method in, 115, 118, 122

limiting number of contact fields in,
115

listview in, 119–120

multiple values in, 116–118

second, 215

seek, 248

_self, 227, 234, 235

Selfies, 44

show InAppBrowser windows, 227–229

showContact, 115, 120

Siri, 144

Smartphones. See also specific types

application status events on, 138

cameras on. See Camera API

geolocation and, 181–182

in landscape mode, 204

network connections on, 98

physical compasses in, 79

storage on, 154

Source code, 1

sourceType, 53–56

297Topcoat

Splashscreen API

custom images in, 281–284

introduction to, 277

troubleshooting, 284

using, 277–281

Start functions

in InAppBrowser API, 236

for recordings, 259

startcallbutton events, 136, 145

Status callbacks, 245, 250

Status events

application, 135, 138–141

battery, 141–144

network, 149–152

Stop functions

buttons for, 255–257

in InAppBrowser API, 236

in Media API, 248

for recordings, 259

Storage, 153–156, 161–162

Strings

converting numeric values to,
220–221

converting to numbers, 221–222

numberToString for, 220–221

stringToDate for, 215–217

stringToNumber in, 221–223

Success callbacks

in Accelerometer API, 24, 27

in Capture API, 62, 64

in Compass API, 80, 87

in Contacts API, 111, 116

currency settings and, 207, 220

dates and, 209–217

in downloading files, 178

in File API, 157, 160, 163–164

in Geolocation API, 182, 190, 192

in Globalization API, 204–205

in InAppBrowser API, 237–238

language options and, 217

locale names and, 218

in Media API, 242–243, 257

in Notification API, 267–268, 272

number patterns and, 219–223

in reading files, 170

in uploading files, 175–176

in writing files, 168–169

Supported platforms, 5

suppressesIncrementalRendering, 229

symbol, 219

_system, 227

T
Tactile notifications, 275

Taking photographs, 36–44

target parameters, in InAppBrowser, 227,
234–235

targetHeight/targetWidth

introduction to, 45

reducing image file size with, 50

specification of, 57–58

Temporary storage, 153–156, 162

Time-based watches, 86–93

timeout, 182, 198

timezone, 209

Topcoat

CSS and, 12–14, 24

introduction to, 12–14

jQuery Mobile vs., 67

298 Transferring files

Transferring files

in File API, 174–179

file downloads in, 178–179

file uploads in, 175–178

transitionstyle, 229

Troubleshooting

Camera API, 58–59

Capture API, 77

Compass API, 95

Connection API, 103

Contacts API, 124–125

Device API, 133

Events API, 152

File API, 179–180

Geolocation API, 197–200

Globalization API, 223

InAppBrowser API, 239–240

Media API, 263

Notification API, 275–276

Splashscreen API, 284

True Heading, 85

U
UIs. See User interfaces

Unicode Technical Standard #35, 207

Uniform resource identifiers (URIs). See
URIs (uniform resource identifiers)

Uniform resource locators (URLs). See URLs
(uniform resource locators)

updateStatus, 102

updateUI callbacks, 257

Uploading files, 175–178

URIs (uniform resource identifiers)

in Camera API, 35

in configuring camera options, 45

as destination type, 48–51

in file downloads, 178–179

in file uploads, 175

for Media objects, 242–243, 247

in selecting photos, 54

in taking pictures, 38–44

URLs (uniform resource locators)

in Camera API, 40, 48–51

in Contacts API, 107–108

in File API, 171, 175, 178

in InAppBrowser API, 227, 231, 234,
236

U.S. locales, 209–211

User input, 269–274

User interfaces (UIs), 2, 110

UTC. See Coordinated Universal Time

V
Vibrate mode, 265–266

vibration capabilities, 275

Video

Camera API for, 51

Capture API for, 61–62, 76

Visual alerts, 266–269

Voice Recorder, 72–73

Volume

in Events API, 136, 145

in Media API, 248–249

W
W3C (World Wide Web Consortium)

Contacts API by, 105

File API, 153

299year

Geolocation API Specification by, 182

Media Capture API by, 61

Watches

in Accelerometer API, 28–33

in Compass API, 86–95

degree-based, 93

device heading, 86–95

device orientation, 28–33

in Geolocation API, 189–197

location, 189–197

time-based, 86–93

Webviews, 2–5

Whitelists, 227, 255

Wi-Fi network connections, 98–99, 103. See
also Connection API

Windows in InAppBrowser, 227–234

Windows Phone devices

Camera API on, 42–43, 55–58

Compass API on, 85

Device API on, 132

file details on, 166

Geolocation API on, 189, 198

InAppBrowser API on, 233

persistent storage locations in, 162

persistent storage on, 162

Timeout Error messages on, 198

WinMerge, 123

World Wide Web Consortium (W3C). See
W3C (World Wide Web Consortium)

Writing files, 167–170

www.cordovacookbook.com
See cordovacookbook.com

www.cordovaprogramming.com

on command-line interfaces, 7, 9

on console exposure, 27

X
Xcode, 27, 282

Y
year, 215

http://www.cordovacookbook.com
http://www.cordovaprogramming.com

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 Introduction to Apache Cordova
	Introduction to Apache Cordova
	Supported Platforms
	Coding Cordova Applications
	Configuring a Cordova Development Environment
	Building Cordova Applications
	Anatomy of a Cordova Application
	Resources
	Wrap Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

