
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321967602
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321967602
https://plusone.google.com/share?url=http://www.informit.com/title/9780321967602
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321967602
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321967602/Free-Sample-Chapter

Programming in
Objective-C

Sixth Edition

Kochan.indb i 11/12/13 7:43 AM

informit.com/devlibrary

Developer’s
Library

 PHP & MySQL Web Development

Luke Welling & Laura Thomson

ISBN 978-0-321-83389-1

 MySQL

Paul DuBois

ISBN-13: 978-0-321-83387-7

 Linux Kernel Development

Robert Love

ISBN-13: 978-0-672-32946-3

 Python Essential Reference

David Beazley

ISBN-13: 978-0-672-32978-4

 PostgreSQL

Korry Douglas

ISBN-13: 978-0-672-32756-8

 C++ Primer Plus

Stephen Prata

ISBN-13: 978-0321-77640-2

 Developer’s Library books are available in print and in electronic formats at most retail
and online bookstores, as well as by subscription from Safari Books Online at
safari.informit.com

 Developer’s Library
 ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

 Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

 All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

 Key titles include some of the best, most widely acclaimed books within their topic
areas:

Kochan.indb ii 11/12/13 7:43 AM

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Programming in
Objective-C

 Sixth Edition

 Stephen G. Kochan

Kochan.indb iii 11/12/13 7:43 AM

 Programming in Objective-C, Sixth Edition
 Copyright © 2014 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

 ISBN-13: 978-0-321-96760-2

 ISBN-10: 0-321-96760-7

 Library of Congress Control Number: 2013954275

 Printed in the United States of America

 First Printing: December 2013

 Trademarks
 All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

 Warning and Disclaimer
 Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or enti-
ty with respect to any loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

 Acquisitions Editor
Mark Taber

 Managing Editor
Sandra Schroeder

 Project Editor
Mandie Frank

 Indexer s
Erika Millen
Cheryl Lenser

 Proofreader
Dan Knott

 Technical Editor
Michael Trent

 Publishing
Coordinator
Vanessa Evans

 Designer
Chuti Prasertsith

 Compositor
Tricia Bronkella

Kochan.indb iv 11/12/13 7:43 AM

 To Roy and Ve, two people whom I dearly miss.

 To Ken Brown, “It’s just a jump to the left.”

Kochan.indb v 11/12/13 7:43 AM

vi Contents

 Contents at a Glance

 1 Introduction 1

I: The Objective-C Language

 2 Programming in Objective-C 7

 3 Classes, Objects, and Methods 27

 4 Data Types and Expressions 51

 5 Program Looping 71

 6 Making Decisions 93

 7 More on Classes 127

 8 Inheritance 153

 9 Polymorphism, Dynamic Typing, and Dynamic Binding 179

 10 More on Variables and Data Types 197

 11 Categories and Protocols 223

 12 The Preprocessor 237

 13 Underlying C Language Features 251

 II: The Foundation Framework

 14 Introduction to the Foundation Framework 307

 15 Numbers, Strings, and Collections 311

 16 Working with Files 377

 17 Memory Management and Automatic Reference Counting 407

 18 Copying Objects 419

 19 Archiving 431

 III: Cocoa, Cocoa Touch, and the iOS SDK

 20 Introduction to Cocoa and Cocoa Touch 449

 21 Writing iOS Applications 453

Kochan.indb vi 11/12/13 7:43 AM

viiContents

 Appendixes

 A Glossary 485

 B Address Book Example Source Code 493

 Index 499

Kochan.indb vii 11/12/13 7:43 AM

Table of Contents

 1 Introduction 1

What You Will Learn from This Book 2

How This Book Is Organized 3

Support 5

Acknowledgments 5

Preface to the Sixth Edition 6

I: The Objective-C Language

 2 Programming in Objective-C 7

Compiling and Running Programs 7

Using Xcode 8

Using Terminal 16

Explanation of Your First Program 18

Displaying the Values of Variables 22

Summary 25

Exercises 25

 3 Classes, Objects, and Methods 27

What Is an Object, Anyway? 27

Instances and Methods 28

An Objective-C Class for Working with Fractions 30

The @interface Section 33

Choosing Names 34

Class and Instance Methods 35

The @implementation Section 37

The program Section 39

Accessing Instance Variables and Data Encapsulation 45

Summary 49

Exercises 49

 4 Data Types and Expressions 51

Data Types and Constants 51

Type int 51

Type float 52

Kochan.indb viii 11/12/13 7:43 AM

ixContents

Type char 52

Qualifiers: long, long long, short, unsigned, and
signed 53

Type id 54

Arithmetic Expressions 55

Operator Precedence 55

Integer Arithmetic and the Unary Minus Operator 58

The Modulus Operator 60

Integer and Floating-Point Conversions 61

The Type Cast Operator 63

Assignment Operators 64

A Calculator Class 65

Exercises 67

 5 Program Looping 71

The for Statement 72

Keyboard Input 79

Nested for Loops 81

for Loop Variants 83

The while Statement 84

The do Statement 89

The break Statement 91

The continue Statement 91

Summary 91

Exercises 92

 6 Making Decisions 93

The if Statement 93

The if-else Construct 98

Compound Relational Tests 101

Nested if Statements 104

The else if Construct 105

The switch Statement 115

Boolean Variables 118

The Conditional Operator 123

Exercises 125

Kochan.indb ix 11/12/13 7:43 AM

x Contents

 7 More on Classes 127

Separate Interface and Implementation Files 127

Synthesized Accessor Methods 133

Accessing Properties Using the Dot Operator 135

Multiple Arguments to Methods 137

Methods without Argument Names 139

Operations on Fractions 139

Local Variables 143

Method Arguments 144

The static Keyword 144

The self Keyword 148

Allocating and Returning Objects from Methods 149

Extending Class Definitions and the Interface File 151

Exercises 151

 8 Inheritance 153

It All Begins at the Root 153

Finding the Right Method 157

Extension through Inheritance: Adding New Methods 158

A Point Class and Object Allocation 162

The @class Directive 163

Classes Owning Their Objects 167

Overriding Methods 171

Which Method Is Selected? 173

Abstract Classes 176

Exercises 176

 9 Polymorphism, Dynamic Typing, and Dynamic Binding 179

Polymorphism: Same Name, Different Class 179

Dynamic Binding and the id Type 182

Compile Time Versus Runtime Checking 184

The id Data Type and Static Typing 185

Argument and Return Types with Dynamic Typing 186

Asking Questions about Classes 187

Exception Handling Using @try 192

Exercises 195

Kochan.indb x 11/12/13 7:43 AM

xiContents

 10 More on Variables and Data Types 197

Initializing Objects 197

Scope Revisited 200

More on Properties, Synthesized Accessors, and Instance
Variables 201

Global Variables 202

Static Variables 204

Enumerated Data Types 207

The typedef Statement 210

Data Type Conversions 211

Conversion Rules 212

Bit Operators 213

The Bitwise AND Operator 215

The Bitwise Inclusive-OR Operator 216

The Bitwise Exclusive-OR Operator 216

The Ones Complement Operator 217

The Left-Shift Operator 218

The Right-Shift Operator 219

Exercises 220

 11 Categories and Protocols 223

Categories 223

Class Extensions 228

Some Notes about Categories 229

Protocols and Delegation 230

Delegation 233

Informal Protocols 233

Composite Objects 234

Exercises 235

 12 The Preprocessor 237

The #define Statement 237

More Advanced Types of Definitions 239

The #import Statement 244

Kochan.indb xi 11/12/13 7:43 AM

xii Contents

Conditional Compilation 245

The #ifdef, #endif, #else, and #ifndef Statements 245

The #if and #elif Preprocessor Statements 247

The #undef Statement 248

Exercises 249

 13 Underlying C Language Features 251

Arrays 252

Initializing Array Elements 254

Character Arrays 255

Multidimensional Arrays 256

Functions 258

Arguments and Local Variables 259

Returning Function Results 261

Functions, Methods, and Arrays 265

Blocks 266

Structures 270

Initializing Structures 273

Structures within Structures 274

Additional Details about Structures 276

Don’t Forget about Object-Oriented Programming! 277

Pointers 277

Pointers and Structures 281

Pointers, Methods, and Functions 283

Pointers and Arrays 284

Operations on Pointers 294

Pointers and Memory Addresses 296

They’re Not Objects! 297

Miscellaneous Language Features 297

Compound Literals 297

The goto Statement 298

The Null Statement 298

The Comma Operator 299

The sizeof Operator 299

Command-Line Arguments 300

Kochan.indb xii 11/12/13 7:43 AM

xiiiContents

How Things Work 302

Fact 1: Instance Variables Are Stored in Structures 303

Fact 2: An Object Variable Is Really a Pointer 303

Fact 3: Methods Are Functions, and Message Expressions Are Function
Calls 304

Fact 4: The id Type Is a Generic Pointer Type 304

Exercises 304

 II: The Foundation Framework

 14 Introduction to the Foundation Framework 307

Foundation Documentation 307

 15 Numbers, Strings, and Collections 311

Number Objects 311

String Objects 317

More on the NSLog Function 317

The description Method 318

Mutable Versus Immutable Objects 319

Mutable Strings 326

Array Objects 333

Making an Address Book 338

Sorting Arrays 355

Dictionary Objects 362

Enumerating a Dictionary 364

Set Objects 367

NSIndexSet 371

Exercises 373

 16 Working with Files 377

Managing Files and Directories: NSFileManager 378

Working with the NSData Class 383

Working with Directories 384

Enumerating the Contents of a Directory 387

Working with Paths: NSPathUtilities.h 389

Common Methods for Working with Paths 392

Copying Files and Using the NSProcessInfo Class 394

Kochan.indb xiii 11/12/13 7:43 AM

xiv Contents

Basic File Operations: NSFileHandle 398

The NSURL Class 403

The NSBundle Class 404

Exercises 405

 17 Memory Management and Automatic Reference Counting 407

Automatic Garbage Collection 409

Manual Reference Counting 409

Object References and the Autorelease Pool 410

The Event Loop and Memory Allocation 412

Summary of Manual Memory Management Rules 414

Automatic Reference Counting 415

Strong Variables 415

Weak Variables 416

@autoreleasepool Blocks 417

Method Names and Non-ARC Compiled Code 418

 18 Copying Objects 419

The copy and mutableCopy Methods 419

Shallow Versus Deep Copying 422

Implementing the <NSCopying> Protocol 424

Copying Objects in Setter and Getter Methods 427

Exercises 429

 19 Archiving 431

Archiving with XML Property Lists 431

Archiving with NSKeyedArchiver 434

Writing Encoding and Decoding Methods 435

Using NSData to Create Custom Archives 442

Using the Archiver to Copy Objects 446

Exercises 447

Kochan.indb xiv 11/12/13 7:43 AM

xvContents

 III: Cocoa, Cocoa Touch, and the iOS SDK

 20 Introduction to Cocoa and Cocoa Touch 449

Framework Layers 449

Cocoa Touch 450

 21 Writing iOS Applications 453

The iOS SDK 453

Your First iPhone Application 453

Creating a New iPhone Application Project 456

Entering Your Code 460

Designing the Interface 462

An iPhone Fraction Calculator 469

Starting the New Fraction_Calculator Project 471

Defining the View Controller 471

The Fraction Class 477

A Calculator Class That Deals with Fractions 480

Designing the User Interface 482

Summary 483

Exercises 484

 Appendixes

 A Glossary 485

 B Address Book Example Source Code 493

 Index 499

Kochan.indb xv 11/12/13 7:43 AM

 About the Author
 Stephen Kochan is the author and coauthor of several bestselling titles on the C language,
including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994), and Topics in C
Programming (Wiley, 1991), and several UNIX titles, including Exploring the Unix System (Sams,
1992) and Unix Shell Programming (Sams, 2003). He has been programming on Macintosh
computers since the introduction of the first Mac in 1984, and he wrote Programming C for the
Mac as part of the Apple Press Library. In 2003, Kochan wrote Programming in Objective-C (Sams,
2003), and followed that with another Mac-related title, Beginning AppleScript (Wiley, 2004).

 About the Technical Reviewers
 Michael Trent has been programming in Objective-C since 1997—and programming Macs
since well before that. He is a regular contributor to programming websites, a technical
reviewer for numerous books and magazine articles, and an occasional dabbler in Mac OS X
open-source projects. Currently, he is using Objective-C and Apple’s Cocoa frameworks to
build professional video applications for Mac OS X. He holds a Bachelor of Science degree
in computer science and a Bachelor of Arts degree in music from Beloit College of Beloit,
Wisconsin. He lives in Santa Clara, California, with his lovely wife, Angela.

 Wendy Mui is a programmer and software development manager in the San Francisco Bay
Area. After learning Objective-C from the second edition of Steve Kochan’s book, she landed
a job at Bump Technologies, where she put her programming skills to good use working on
the client app and the API/SDK for Bump’s third-party developers. Prior to her iOS experience,
she spent her formative years at Sun and various other tech companies in Silicon Valley and
San Francisco. She got hooked on programming while earning a Bachelor of Arts degree in
mathematics from the University of California Berkeley.

Kochan.indb xvi 11/12/13 7:43 AM

 We Want to Hear from You!
 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write directly to let us know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

 Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

 When you write, please be sure to include this book’s title and author, as well as your name
and phone or email address.

 Email: feedback@developers-library.info

 Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services
 Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Kochan.indb xvii 11/12/13 7:43 AM

http://www.informit.com/register

Kochan.indb xviii 11/12/13 7:43 AM

This page intentionally left blank

 2
 Programming in Objective-C

 In this chapter, we dive right in and show you how to write your first Objective-C program.
You won’t work with objects just yet; that’s the topic of the next chapter. We want you to
understand the steps involved in keying in a program and compiling and running it.

 To begin, let’s pick a rather simple example: a program that displays the phrase “Programming
is fun!” on your screen. Without further ado, Program 2.1 shows an Objective-C program to
accomplish this task.

 Program 2.1

// First program example

 #import <Foundation/Foundation.h>

 int main (int argc, const char * argv[])
 {
 @autoreleasepool {
 NSLog (@"Programming is fun!");
 }
 return 0;
 }

 Compiling and Running Programs
 Before we go into a detailed explanation of this program, we need to cover the steps involved
in compiling and running it. You can both compile and run your program using Xcode, or you
can use the Clang Objective-C compiler in a Terminal window. Let’s go through the sequence
of steps using both methods. Then you can decide how you want to work with your programs
throughout the rest of this book.

Kochan.indb 7 11/12/13 7:43 AM

8 Chapter 2 Programming in Objective-C

 Note
 Xcode is available from the Mac App Store. However, you can also get pre-release versions of
Xcode by becoming a registered Apple developer (no charge for that). Go to http://developer.
apple.com to get the latest version of the Xcode development tools. There you can download
Xcode and the iOS software development kit (SDK) for no charge.

 Using Xcode
 Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac, learning
how to use this powerful tool is worthwhile. We just get you started here. Later we return to
Xcode and take you through the steps involved in developing a graphical application with it.

 Note
 As mentioned, Xcode is a sophisticated tool, and the introduction of Xcode 5 added even more
features. It’s easy to get lost using this tool. If that happens to you, back up a little and try
reading the Xcode User Guide, which you can access from the Xcode Help menu, to get your
bearings.

 Once installed, Xcode is in your Applications folder. Figure 2.1 shows its icon.

 Figure 2.1 Xcode icon

 Start Xcode. (The first time you launch the application, you have to go through some one-time
things like agreeing to the license agreement.) You can then select Create a New Xcode Project
from the startup screen (see Figure 2.2). Alternatively, under the File menu, select New, Project.

 A window appears, as shown in Figure 2.3 .

Kochan.indb 8 11/12/13 7:43 AM

http://developer.apple.com
http://developer.apple.com

9Compiling and Running Programs

 Figure 2.3 Starting a new project: selecting the application type

 Figure 2.2 Starting a new project

Kochan.indb 9 11/12/13 7:43 AM

10 Chapter 2 Programming in Objective-C

 In the left pane, you’ll see a section labeled OS X. Select Application. In the upper-right pane,
select Command Line Tool, as depicted in the previous figure. On the next pane that appears,
you pick your application’s name. Enter prog1 for the product name and type in something
in the Company Identifier and Bundle Identifier fields. The latter field is used for creating iOS
apps, so we don’t need to be too concerned at this point about what’s entered there. Make sure
Foundation is selected for the Type. Your screen should look like Figure 2.4 .

 Figure 2.4 Starting a new project: specifying the product name and type

 Click Next. On the sheet that appears, you can specify the name of the project folder that will
contain the files related to your project. Here, you can also specify where you want that project
folder stored. According to Figure 2.5 , we’re going to store our project on the Desktop in a
folder called prog1.

 Click the Create button to create your new project. Xcode then opens a project window such as
the one shown in Figure 2.6 . Note that your window might look different if you’ve used Xcode
before or have changed any of its options. This figure shows the Utilities pane (the right-most
pane). You can close that pane by deselecting the third icon listed in the View category in the
top-right corner of your Xcode toolbar. Note that the categories are not labeled by default. To
get the labels to appear, right click in the Toolbar and select Icon and Text.

Kochan.indb 10 11/12/13 7:43 AM

11Compiling and Running Programs

 Figure 2.5 Selecting the location and name of the project folder

 Figure 2.6 Xcode prog1 project window

Kochan.indb 11 11/12/13 7:43 AM

12 Chapter 2 Programming in Objective-C

 Now it’s time to type in your first program. Select the file main.m in the left pane. (You might
have to reveal the files under the project name by clicking the disclosure triangle.) Your Xcode
window should now look like Figure 2.7 .

 Figure 2.7 File main.m and the edit window

 Objective-C source files use .m as the last two characters of the filename (known as its exten-
sion). Table 2.1 lists other commonly used filename extensions.

 Table 2.1 Common Filename Extensions

 Extension Meaning

 .c C language source file

 .cc, .cpp C++ language source file

 .h Header file

 .m Objective-C source file

 .mm Objective-C++ source file

 .pl Perl source file

 .o Object (compiled) file

Kochan.indb 12 11/12/13 7:43 AM

13Compiling and Running Programs

 The right pane of your Xcode project window shows the contents of the file called main.m ,
which was automatically created for you as a template file by Xcode and which contains the
following lines:

 //
 // main.m
 // prog1
 //
 // Created by Steve Kochan on 10/16/13.
 // Copyright (c) 2013 ClassroomM. All rights reserved.
 //
 #import <Foundation/Foundation.h>

 int main (int argc, const char * argv[])
 {
 @autoreleasepool {

 // insert code here...
 NSLog (@"Hello World!");
 }
 return 0;

 }

 You can edit your file inside this window. Make changes to the program shown in the edit
window to match Program 2.1 . The lines that start with two slash characters (//) are called
 comments; we talk more about comments shortly.

 Your program in the edit window should now look like this. (Don’t worry if your comments
don’t match.)

 Program 2.1

// First program example

 #import <Foundation/Foundation.h>

 int main (int argc, const char * argv[])
 {
 @autoreleasepool {
 NSLog (@"Programming is fun!");
 }
 return 0;
 }

Kochan.indb 13 11/12/13 7:43 AM

14 Chapter 2 Programming in Objective-C

 Note
 Don’t worry about all the colors shown for your text onscreen. Xcode indicates values, reserved
words, and so on with different colors. This will prove very valuable as you start programming
more, as it can indicate the source of a potential error.

 Now it’s time to compile and run your first program; in Xcode terminology, it’s called building
and running. Before doing that, we need to reveal a pane that will display the results (output)
from our program. You can do this most easily by selecting the middle icon in the “View”
(rightmost) category on the toolbar. When you hover over this icon, it says Hide or Show the
Debug Area. Your window should now look like Figure 2.8 . Note that Xcode normally reveals
the debug area automatically whenever any data is written to it.

 Figure 2.8 Xcode debug area revealed

 Now, if you click the “Play” button located at the top left of the toolbar or select Run from the
Product menu, Xcode goes through the two-step process of first building and then running
your program. The latter occurs only if no errors are discovered in your program.

 Note
 The first time you click the Run button Xcode displays a sheet reading Enable Developer Mode
on the Mac? Click the Enable button and enter your admin password to proceed.

 If you do make mistakes in your program, along the way you’ll see errors denoted as red stop
signs containing exclamation points; these are known as fatal errors, and you can’t run your
program without correcting these. Warnings are depicted by yellow triangles containing excla-
mation points. You can still run your program with them, but in general you should examine

Kochan.indb 14 11/12/13 7:43 AM

15Compiling and Running Programs

and correct them. After you run the program with all the errors removed, the lower-right pane
displays the output from your program and should look similar to Figure 2.9 .

 Figure 2.9 Xcode debug output

 You’re now done with the procedural part of compiling and running your first program with
Xcode (whew!). The following summarizes the steps involved in creating a new program with
Xcode:

 1. Start the Xcode application.

 2. If this is a new project, select File, New, Project... or choose Create a New Xcode Project
from the startup screen.

 3. For the type of application, select Application, Command Line Tool, and click Next.

 4. Select a name for your application and set its Type to Foundation. Fill in the other fields
that appear on the sheet. Click Next.

 5. Select a name for your project folder and a directory to store your project files in. Click
Create.

 6. In the left pane, you will see the file main.m . (You might need to reveal it from inside the
folder that has the product’s name.) Highlight that file. Type your program into the edit
window that appears in the rightmost pane.

 7. On the toolbar, select the middle icon in the upper-right corner to reveal the debug area.
That’s where you’ll see your output.

 8. Build and run your application by clicking the Play button on the toolbar or selecting
Run from the Product menu.

 Note
 Xcode contains a powerful built-in tool known as the static analyzer. It does an analysis of your
code and can find program logic errors. You can use it by selecting Analyze from the Product
menu or from the Play button on the toolbar.

 9. If you get any compiler errors or the output is not what you expected, make your
changes to the program and rerun it.

Kochan.indb 15 11/12/13 7:43 AM

16 Chapter 2 Programming in Objective-C

 Using Terminal
 Some people might want to avoid having to learn Xcode to get started programming with
Objective-C. If you’re used to using the UNIX shell and command-line tools, you might want
to edit, compile, and run your programs using the Terminal application. Here, we examine how
to go about doing that.

 Before attempting to compile you program from the command line, make sure that you have
Xcode’s Command Line Tools installed on your system. Go to Xcode, Preferences, Downloads,
Components from inside Xcode. You’ll see something similar to Figure 2.10 . This figure indi-
cates that the Command Line Tools have not been installed on this system. If they haven’t, an
Install button will be shown, which you can click to install the tools.

 Figure 2.10 Installing the Command Line Tools

 Once the Command Line Tools have been installed, the next step is to start the Terminal
application on your Mac. The Terminal application is located in the Applications folder, stored
under Utilities. Figure 2.11 shows its icon.

 Figure 2.11 Terminal program icon

 Start the Terminal application. You’ll see a window that looks like Figure 2.12 .

Kochan.indb 16 11/12/13 7:43 AM

17Compiling and Running Programs

 Figure 2.12 Terminal window

 You type commands after the $ (or % , depending on how your Terminal application is config-
ured) on each line. If you’re familiar with using UNIX, you’ll find this straightforward.

 First, you need to enter the lines from Program 2.1 into a file. You can begin by creating a
directory in which to store your program examples. Then, you must run a text editor, such as vi
or emacs, to enter your program:

 sh-2.05a$ mkdir Progs Create a directory to store programs in
 sh-2.05a$ cd Progs Change to the new directory
 sh-2.05a$ vi main.m Start up a text editor to enter program

 --

 Note
 In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

 For Objective-C files, you can choose any name you want; just make sure that the last two
characters are .m . This indicates to the compiler that you have an Objective-C program.

 After you’ve entered your program into a file (and we’re not showing the edit commands to
enter and save your text here) and have verified that you have the right tools installed, you
can use the LLVM Clang Objective-C compiler, which is called clang, to compile and link your
program. This is the general format of the clang command:

 clang -fobjc-arc files -o program

Kochan.indb 17 11/12/13 7:43 AM

18 Chapter 2 Programming in Objective-C

 files is the list of files to be compiled. In this example, we have only one such file, and
we’re calling it main.m . program is the name of the file that will contain the executable if the
program compiles without any errors.

 We’ll call the program prog1 ; here, then, is the command line to compile your first Objective-C
program:

 $ clang -fobjc-arc main.m -o prog1 Compile main.m & call it prog1

 $

 The return of the command prompt without any messages means that no errors were found in
the program. Now you can subsequently execute the program by typing the name prog1 at the
command prompt:

 $ prog1 Execute prog1
 sh: prog1: command not found

 $

 This is the result you’ll probably get unless you’ve used Terminal before. The UNIX shell (which
is the application running your program) doesn’t know where prog1 is located (we don’t go
into all the details of this here), so you have two options: One is to precede the name of the
program with the characters ./ so that the shell knows to look in the current directory for the
program to execute. The other is to add the directory in which your programs are stored (or
just simply the current directory) to the shell’s PATH variable. Let’s take the first approach here:

 $. /prog1 Execute prog1
 2012-09-03 18:48:44.210 prog1[7985:10b] Programming is fun!

 $

 Note that writing and debugging Objective-C programs from the Terminal is a valid approach.
However, it’s not a good long-term strategy. If you want to build OS X or iOS applications,
there’s more to just the executable file that needs to be “packaged” into an application bundle.
It’s not easy to do that from the Terminal application, and it’s one of Xcode’s specialties.
Therefore, I suggest you start learning to use Xcode to develop your programs. There is a learn-
ing curve to do this, but the effort will be well worth it in the end.

 Explanation of Your First Program
 Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

 // First program example

 #import <Foundation/Foundation.h>

 int main (int argc, const char * argv[])
 {
 @autoreleasepool {

Kochan.indb 18 11/12/13 7:43 AM

19Explanation of Your First Program

 NSLog (@"Programming is fun!");

 }
 return 0;

 }

 In Objective-C, lowercase and uppercase letters are distinct. Also, Objective-C doesn’t care
where on the line you begin typing—you can begin typing your statement at any position on
the line. You can use this to your advantage in developing programs that are easier to read.

 The first seven lines of the program introduce the concept of the comment. A comment state-
ment is used in a program to document a program and enhance its readability. Comments tell
the reader of the program—whether it’s the programmer or someone else whose responsibility
it is to maintain the program—just what the programmer had in mind when writing a particu-
lar program or a particular sequence of statements.

 You can insert comments into an Objective-C program in two ways. One is by using two
consecutive slash characters (//). The compiler ignores any characters that follow these slashes,
up to the end of the line.

 You can also initiate a comment with the two characters / and * . This marks the beginning
of the comment. These types of comments have to be terminated. To end the comment,
you use the characters * and / , again without any embedded spaces. All characters included
between the opening /* and the closing */ are treated as part of the comment statement and
are ignored by the Objective-C compiler. This form of comment is often used when comments
span many lines of code, as in the following:

 /*
 This file implements a class called Fraction, which
 represents fractional numbers. Methods allow manipulation of
 fractions, such as addition, subtraction, etc.

 For more information, consult the document:
 /usr/docs/classes/Fraction.pdf

 */

 Which style of comment you use is entirely up to you. Just note that you cannot nest the / *
style comments.

 Get into the habit of inserting comment statements in the program as you write it or type it
into the computer, for three good reasons. First, documenting the program while the particular
program logic is still fresh in your mind is much easier than going back and rethinking the
logic after the program has been completed. Second, by inserting comments into the program
at such an early stage of the game, you can reap the benefits of the comments during the debug
phase, when program logic errors are isolated and debugged. Not only can a comment help you
(and others) read through the program, but it can also help point the way to the source of the
logic mistake. Finally, I haven’t yet discovered a programmer who actually enjoys documenting

Kochan.indb 19 11/12/13 7:43 AM

20 Chapter 2 Programming in Objective-C

a program. In fact, after you’ve finished debugging your program, you will probably not relish
the idea of going back to the program to insert comments. Inserting comments while develop-
ing the program makes this sometimes-tedious task a bit easier to handle.

 This next line of Program 2.1 tells the compiler to locate and process a file named
 Foundation.h :

 #import <Foundation/Foundation.h>

 This is a system file—that is, not a file that you created. #import says to import or include the
information from that file into the program, exactly as if the contents of the file were typed
into the program at that point. You imported the file Foundation.h because it has information
about other classes and functions that are used later in the program.

 In Program 2.1 , this line specifies that the name of the program is main :

 int main (int argc, const char * argv[])

 main is a special name that indicates precisely where the program is to begin execution. The
reserved word int that precedes main specifies the type of value main returns, which is an
integer (more about that soon). We ignore what appears between the open and closed paren-
theses for now; these have to do with command-line arguments, a topic we address in Chapter
 13 , “Underlying C Language Features.”

 Now that you have identified main to the system, you are ready to specify precisely what this
routine is to perform. This is done by enclosing all the program statements of the routine within
a pair of curly braces. In the simplest case, a statement is just an expression that is terminated
with a semicolon. The system treats all the program statements included between the braces as
part of the main routine.

 The next line in main reads as follows:

 @autoreleasepool {

 Any program statements between the { and the matching closing } are executed within a
context known an autorelease pool. The autorelease pool is a mechanism that allows the system
to efficiently manage the memory your application uses as it creates new objects. I mention
it in more detail in Chapter 17 , “Memory Management and Automatic Reference Counting.”
Here, we have one statement inside our @autoreleasepool context.

 That statement specifies that a routine named NSLog is to be invoked, or called. The parameter,
or argument, to be passed or handed to the NSLog routine is the following string of characters:

 @"Programming is fun!"

 Here, the @ sign immediately precedes a string of characters enclosed in a pair of double quotes.
Collectively, this is known as a constant NSString object.

Kochan.indb 20 11/12/13 7:43 AM

21Explanation of Your First Program

 Note

 If you have C programming experience, you might be puzzled by the leading @ character. Without
that leading @ character, you are writing a constant C-style string; with it, you are writing an
 NSString string object. More on this topic in Chapter 15 , “Numbers, Strings, and Collections.”

 The NSLog routine is a function that simply displays or logs its argument (or arguments, as you
will see shortly). Before doing so, however, it displays the date and time the routine is executed,
the program name, and some other numbers not described here. Throughout the rest of this
book, we don’t bother to show this text that NSLog inserts before your output.

 You must terminate all program statements in Objective-C with a semicolon (;). This is why a
semicolon appears immediately after the closed parenthesis of the NSLog call.

 The final program statement in main looks like this:

 return 0;

 It says to terminate execution of main and to send back, or return, a status value of 0 . By
convention, 0 means that the program ended normally. Any nonzero value typically means
some problem occurred; for example, perhaps the program couldn’t locate a file that it needed.

 Now that you have finished discussing your first program, let’s modify it to also display the
phrase “And programming in Objective-C is even more fun!” You can do this by simply adding
another call to the NSLog routine, as shown in Program 2.2 . Remember that every Objective-C
program statement must be terminated by a semicolon. Note that we’ve removed the leading
comment lines in all the following program examples.

 Program 2.2

#import <Foundation/Foundation.h>

 int main (int argc, const char * argv[])
 {
 @autoreleasepool {
 NSLog (@"Programming is fun!");
 NSLog (@"Programming in Objective-C is even more fun!");
 }
 return 0;
 }

 If you type in Program 2.2 and then compile and execute it, you can expect the following
output (again, without showing the text that NSLog normally prepends to the output).

Kochan.indb 21 11/12/13 7:43 AM

22 Chapter 2 Programming in Objective-C

 Program 2.2 Output

 Programming is fun!
 Programming in Objective-C is even more fun!

 As you will see from the next program example, you don’t need to make a separate call to the
 NSLog routine for each line of output.

 First, let’s talk about a special two-character sequence. The backslash (\) and the letter n are
known collectively as the newline character. A newline character tells the system to do precisely
what its name implies: go to a new line. Any characters to be printed after the newline charac-
ter then appear on the next line of the display. In fact, the newline character is very similar in
concept to the carriage return key on a typewriter (remember those?).

 Study the program listed in Program 2.3 and try to predict the results before you examine the
output (no cheating, now!).

 Program 2.3

#import <Foundation/Foundation.h>

 int main (int argc, const char *argv[])
 {
 @autoreleasepool {
 NSLog (@"Testing...\n..1\n...2\n....3");
 }
 return 0;
 }

 Program 2.3 Output

 Testing...
 ..1
 ...2
 3

 Displaying the Values of Variables
 Not only can simple phrases be displayed with NSLog , but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to display
the results of adding two numbers, 50 and 25.

Kochan.indb 22 11/12/13 7:43 AM

23Displaying the Values of Variables

 Program 2.4

#import <Foundation/Foundation.h>

 int main (int argc, const char *argv[])
 {
 @autoreleasepool {
 int sum;

 sum = 50 + 25;
 NSLog (@"The sum of 50 and 25 is %i", sum);
 }

 return 0;
 }

 Program 2.4 Output

 The sum of 50 and 25 is 75

 The first program statement inside main after the autorelease pool is set up defines the variable
 sum to be of type int eger. You must define all program variables before you can use them in
a program. The definition of a variable specifies to the Objective-C compiler how the program
should use it. The compiler needs this information to generate the correct instructions to store
and retrieve values into and out of the variable. A variable defined as type int can be used to
hold only integral values—that is, values without decimal places. Examples of integral values
are 3 , 5 , –20 , and 0 . Numbers with decimal places, such as 2.14 , 2.455 , and 27.0 , are known
as floating-point numbers and are real numbers.

 The integer variable sum stores the result of the addition of the two integers 50 and 25. We
have intentionally left a blank line following the definition of this variable to visually separate
the variable declarations of the routine from the program statements; this is strictly a matter of
style. Sometimes adding a single blank line in a program can make the program more readable.

 The program statement reads as it would in most other programming languages:

 sum = 50 + 25;

 The number 50 is added (as indicated by the plus sign) to the number 25 , and the result is
stored (as indicated by the assignment operator, the equals sign) in the variable sum .

 The NSLog routine call in Program 2.4 now has two arguments enclosed within the parenthe-
ses. These arguments are separated by a comma. The first argument to the NSLog routine is
always the character string to be displayed. However, along with the display of the character

Kochan.indb 23 11/12/13 7:43 AM

24 Chapter 2 Programming in Objective-C

string, you often want to have the value of certain program variables displayed as well. In
this case, you want to have the value of the variable sum displayed after these characters are
displayed:

 The sum of 50 and 25 is

 The percent character inside the first argument is a special character recognized by the NSLog
function. The character that immediately follows the percent sign specifies what type of value
is to be displayed at that point. In the previous program, the NSLog routine recognizes the
letter i as signifying that an integer value is to be displayed.

 Whenever the NSLog routine finds the %i characters inside a character string, it automatically
displays the value of the next argument to the routine. Because sum is the next argument to
 NSLog , its value is automatically displayed after “The sum of 50 and 25 is.”

 Now try to predict the output from Program 2.5 .

 Program 2.5

#import <Foundation/Foundation.h>

 int main (int argc, const char *argv[])
 {
 @autoreleasepool {
 int value1, value2, sum;

 value1 = 50;
 value2 = 25;
 sum = value1 + value2;

 NSLog (@"The sum of %i and %i is %i", value1, value2, sum);
 }

 return 0;
 }

 Program 2.5 Output

 The sum of 50 and 25 is 75

 The second program statement inside main defines three variables called value1 , value2, and
 sum , all of type int . This statement could have equivalently been expressed using three sepa-
rate statements, as follows:

 int value1;
 int value2;

 int sum;

Kochan.indb 24 11/12/13 7:43 AM

25Exercises

 After the three variables have been defined, the program assigns the value 50 to the variable
 value1 and then the value 25 to value2 . The sum of these two variables is then computed and
the result assigned to the variable sum .

 The call to the NSLog routine now contains four arguments. Once again, the first argument,
commonly called the format string, describes to the system how the remaining arguments are
to be displayed. The value of value1 displays immediately following the phrase “The sum
of.” Similarly, the values of value2 and sum will print at the points indicated by the next two
occurrences of the %i characters in the format string.

 Summary
 After reading this introductory chapter on developing programs in Objective-C, you should
have a good feel about what is involved in writing a program in Objective-C—and you should
be able to develop a small program on your own. In the next chapter, you begin to examine
some of the intricacies of this powerful and flexible programming language. But first, try your
hand at the exercises that follow, to make sure you understand the concepts presented in this
chapter.

 Exercises

 1. Type in and run the five programs presented in this chapter. Compare the output
produced by each program with the output presented after each program.

 2. Write a program that displays the following text:

 In Objective-C, lowercase letters are significant.
 main is where program execution begins.
 Open and closed braces enclose program statements in a routine.
 All program statements must be terminated by a semicolon.

 3. What output would you expect from the following program?

 #import <Foundation/Foundation.h>
 int main (int argc, const char * argv[])
 {
 @autoreleasepool {
 int i;
 i = 1;
 NSLog (@"Testing...");
 NSLog (@"....%i", i);
 NSLog (@"...%i", i + 1);
 NSLog (@"..%i", i + 2);
 }
 return 0;
 }

Kochan.indb 25 11/12/13 7:43 AM

26 Chapter 2 Programming in Objective-C

 4. Write a program that subtracts the value 15 from 87 and displays the result, together
with an appropriate message.

 5. Identify the syntactic errors in the following program. Then type in and run the
corrected program to make sure you have identified all the mistakes:

 #import <Foundation/Foundation.h>

 int main (int argc, const char *argv[]);
 (
 @autoreleasepool {
 INT sum;
 /* COMPUTE RESULT //
 sum = 25 + 37 - 19
 / DISPLAY RESULTS /
 NSLog (@'The answer is %i' sum);
 }
 return 0;
 }

 6. What output would you expect from the following program?

 #import <Foundation/Foundation.h>

 int main (int argc, const char *argv[])
 {
 @autoreleasepool {
 int answer, result;

 answer = 100;
 result = answer - 10;

 NSLog (@"The result is %i\n", result + 5);
 }
 return 0;
 }

Kochan.indb 26 11/12/13 7:43 AM

Index

Symbols
+ (addition) operator, 54-58

& (address) operator, 278

+= (assignment) operator, 64

= (assignment) operator, 64-65, 74

-= (assignment) operator, 64

* (asterisk), 42

@ (at symbol), 20, 317

& (bitwise AND) operator, 215

| (bitwise OR) operator, 216

^ (bitwise XOR) operator, 216-217

^ (caret), 267

: (colon), 123

, (comma) operator, 299

/* */ comment syntax, 19

// comment syntax, 19

{} (curly braces), 20

-- (decrement) operator, 78, 291-294

/ (division) operator, 54-58

$ (dollar sign), 16

. (dot) operator, 135-136

“ (double quotes), 132

== (equal to) operator, 74

> (greater than) operator, 74

>= (greater than or equal to) operator,
74

++ (increment) operator, 78, 291-294

Kochan.indb 499 11/12/13 7:44 AM

500 * (indirection) operator

* (indirection) operator, 278

<< (left-shift) operator, 218-219

< (less than) operator, 74

<= (less than or equal to) operator, 74

&& (logical AND) operator, 101

! (logical negation) operator, 121

|| (logical OR) operator, 101

- (minus sign), 35

% (modulus) operator, 60-61

* (multiplication) operator, 54-58

!= (not equal to) operator, 74

~ (ones complement) operator, 217-218

(pound sign), 237

? (question mark), 123

>> (right-shift) operator, 219-220

; (semicolon), 84

- (subtraction) operator, 54

~ (tilde), 378

- (unary minus) operator, 58-60

_ (underscore), 34, 201

A
absolute value, calculating, 94

abstract classes, 176, 485

accessing

instance variables, 45-49

properties with dot operator, 135-136

accessor methods

definition of, 485

explained, 48-49

synthesized accessors, 133-135,
201-202, 491

add: method, 139-143, 149-151, 411

addition (+) operator, 54-58

addObject: method, 359, 370

address (&) operator, 278

address book program, 2

custom archives, 442-445

defining, 344-347

encoding/decoding methods,
438-441

fast enumeration, 347-348

@implementation section, 345-346

@implentation section, 495-498

@interface section, 345, 494

lookup: method, 349-351

removeCard: method, 352-355

sortedArrayUsingComparator:
method, 357

sortUsingComparator: method,
358-359

sortUsingSelector: method, 355-359

AddressCard class

defining, 338-341

@implementation section, 339-342

@implentation section, 494-495

@interface section, 338-339, 493

synthesized methods, 341-344

entries

looking up, 349-351

removing, 352-355

sorting, 355-359

fast enumeration, 347-348

overview, 338

source code, 493-498

AddressBook class

custom archives, 442-445

defining, 344-347

encoding/decoding methods, 438-441

Kochan.indb 500 11/12/13 7:44 AM

501arguments

fast enumeration, 347-348

@implementation section, 345-346

@implentation section, 495-498

@interface section, 345, 494

lookup: method, 349-351

removeCard: method, 352-355

sortedArrayUsingComparator: method,
357

sortUsingComparator: method,
358-359

sortUsingSelector: method, 355-359

AddressCard class

defining, 338-341

@implementation section, 339-342

@implentation section, 494-495

@interface section, 338-339, 493

synthesized methods, 341-344

addresses

memory addresses, 296-297

URL addresses, reading files from,
403-404

algorithms, greatest common divisor
(gcd), 86-87

allKeys method, 365

alloc method, 40

allocation

instances, 40

memory, 135-137

objects, 149-151, 162-163

allocF method, 205-206

allocWithZone: method, 425

alternative names, assigning to data
types, 210-211

AND operators

& (bitwise AND), 215

&& (logical AND), 101

anyObject method, 370

appending files, 402-403

appendString: method, 333

AppKit, 307, 485

application bundles, 404-405

Application Kit, 307, 485

Application Services layer, 450

application templates, 457

ARC (Automatic Reference Counting), 41

@autoreleasepool blocks, 417-418

definition of, 486

explained, 415

with non-ARC compiled code, 418

strong variables, 415-416

weak variables, 416-417

archiveRootObject: method, 434

archiving

copying objects with, 446-447

definition of, 431, 485

encoding/decoding methods, 435-442

with NSData, 442-445

with NSKeyedArchiver, 434-435

with XML property lists, 431-433

arguments

argument types, 263-265

command-line arguments, 300-302

function arguments, 259-261

method arguments

declaring, 36-37

local variables, 144

methods without argument names,
139

multiple arguments, 137-143

Kochan.indb 501 11/12/13 7:44 AM

502 arguments method

arguments method, 396

arithmetic operators

binary arithmetic operators, 54-58

integer and floating-point conversions,
61-63

integer arithmetic, 58-60

modulus (%) operator, 60-61

precedence, 54-58

type cast operator, 63-64

unary minus (-) operator, 58-60

array method, 359

arrays

array objects

address book example. See address
book program

defining, 331-337

NSValue class, 359-361

character arrays, 255-256

declaring, 252-254

definition of, 485

initializing, 254-255

limitations, 297

multidimensional arrays, 256-258

NSArray class, 311

passing to methods/functions, 265-266

pointers to, 284-294

increment and decrement opera-
tors, 291-294

pointers to character strings,
289-291

valuesPtr example, 284-288

arrayWithCapacity: method, 359

arrayWithContentsOfFile: method, 407,
433

arrayWithObjects: method, 334, 360

assignment operators, 64-65, 74

asterisk (*), 42, 54-58

at symbol (@), 20, 317

AT&T Bell Laboratories, 1

attributesOfItemAtPath: method, 378

automatic garbage collection, 409

automatic local variables, 261

Automatic Reference Counting (ARC).
See ARC (Automatic Reference
Counting)

automatic variables, 486

autorelease message, 410

autorelease pool, 20, 410-412, 486

@autoreleasepool, 20, 410, 417-418

availableData method, 398

B
backslash (), 22

base 8 (octal) notation, 54

base 16 (hexadecimal) notation, 54

binary arithmetic operators, 54-58

binding, dynamic, 182-184, 487

bit operators

binary, decimal, and hexadecimal
equivalents, 214

bitwise AND (&), 215

bitwise OR (|), 216

bitwise XOR (^), 216-217

left-shift (<<) operator, 218-219

ones complement (~) operator,
217-218

right-shift (>>) operator, 219-220

table of, 213

bitfield, 486

bitwise AND (&) operator, 215

bitwise OR (|) operator, 216

Kochan.indb 502 11/12/13 7:44 AM

503classes

bitwise XOR (^) operator, 216-217

blocks. See also statements

@autoreleasepool blocks, 417-418

definition of, 486, 490

explained, 266-270

BOOL data type, 122-123

Boolean variables, 118-123

braces ({}), 20

break statement, 91

buffers, reading files to/from, 383-384

bundles (application), 404-405

buttons, adding, 466-468

C
C programming language, 1

calculate: method, 144

calculateTriangularNumber method,
259-261

calculator. See fraction calculator

Calculator class, 65-67, 480-482

@implementation section, 481-482

@interface section, 481

capitalizedString method, 332

caret (^), 216-217, 267

case sensitivity, 19, 34

caseInsensitiveCompare: method, 322,
332

@catch blocks, 192-194

categories

best practices, 229

class extensions, 228-229

defining, 223-228

definition of, 486

explained, 223-232

MathOps, 223-228

CGPoint data type, 274

CGRect data type, 274

CGSize data type, 274

changeCurrentDirectoryPath: method,
385

char characters, 317

char data type, 52-53

character arrays, 255-256

character string objects. See string
objects

characterAtIndex: method, 332

child classes, 153-155

clang compiler, 17-18

@class directive, 163-167

class extensions, 228-229

class methods, 29, 35, 486

class objects. See objects

classes

abstract classes, 176, 485

adding to projects, 127-130

AddressBook

custom archives, 442-445

defining, 344-347

encoding/decoding methods,
438-441

fast enumeration, 347-348

@implementation section, 345-346

@implentation section, 495-498

@interface section, 345, 494

lookup: method, 349-351

removeCard: method, 352-355

sortedArrayUsingComparator:
method, 357

sortUsingComparator: method,
358-359

sortUsingSelector: method, 355-359

Kochan.indb 503 11/12/13 7:44 AM

504 classes

AddressCard

defining, 338-341

@implementation section, 339-342

@implentation section, 494-495

@interface section, 338-339, 493

synthesized methods, 341-344

Calculator, 65-67, 480-482

@implementation section, 481-482

@interface section, 481

categories

best practices, 229

class extensions, 228-229

defining, 223-228

definition of, 486

explained, 223-232

child classes, 153-155

class extensions, 228-229

CMAppDelegate, 460

CMViewController, 460-462

Complex, 179-182

composite classes, 486

concrete subclasses, 486

defining

Fraction example, 30-33

@implementation section, 37,
127-133

@interface section, 33-37, 127-133

program section, 39-45

definition of, 486

dynamic binding, 182-184

extending through inheritance

@class directive, 163-167

classes owning their objects,
167-171

explained, 158-162

object allocation, 162-163

FCViewController, 471-477

Fraction, 30-33, 477-480

add: method, 139-143, 149-151,
411

adding to projects, 127-130

allocF method, 205-206

convertToNum method, 95-98

count method, 205-206

data encapsulation, 45-49

@implementation section, 37,
131-132, 141-142, 146-147,
478-480

initWith:over: method, 197-200

instance variables, accessing, 45-49

@interface section, 33-37, 130-131,
141, 146, 477

program section, 39-45

setTo:over: method, 137-139

inheritance, 153-157, 488

instances

allocation, 40

definition of, 488

explained, 28-30

initialization, 40

local variables

explained, 143-144

method arguments, 144

static variables, 144-148

methods. See also specific methods

accessor methods, 48-49, 133-135

arguments, 36-37, 137-143, 144

class methods versus instance
methods, 29, 35

declaring, 35-37

Kochan.indb 504 11/12/13 7:44 AM

505CMViewController class

explained, 28-30

methods without argument names,
139

overriding, 171-175

return values, 36

self keyword, 148-149

syntax, 28-29

MusicCollection, 374-375

naming conventions, 34-35

NSArray, 311

archiving, 431-433

defining, 331-337

methods, 360

NSBundle, 404-405

NSCountedSet, 370

NSData, 383-384, 431-433, 442-445

NSDate, 431-433

NSDictionary

archiving, 431-433

defining, 362-363

enumerating, 364-365

methods, 365

NSFileHandle, 377, 398-403

NSFileManager, 377

directory enumeration, 387-389

directory management, 384-387

file management, 378-383

NSIndexSet, 371-372

NSKeyedArchiver, 434-435

NSMutableArray

defining, 331-337

methods, 359

NSMutableDictionary

defining, 362-363

enumerating, 364-365

methods, 365

NSMutableString, 326-333

NSNumber, 311-317, 431-433

NSProcessInfo, 394-398

NSSet, 367-370

NSString, 317

archiving, 431-433

description method, 318-319

mutable versus immutable objects,
319-326

NSLog function, 317-318

NSURL, 403-404

NSValue, 359-361

objects

allocation, 149-151

returning from methods, 149-151

parent classes, 153-155, 489

Playlist, 374-375

polymorphism, 179-182, 489

properties, accessing with dot opera-
tor, 135-136

Rectangle, 158-171

returning information about, 187-192

root classes, 153

Song, 374-375

Square, 160-162, 234-235

subclasses, 490

superclasses, 491

XYPoint, 162-165

classroomM.com/objective-c, 5

clickDigit: method, 476, 482

closeFile method, 398

clusters, 486

CMAppDelegate class, 460

CMViewController class, 460-462

Kochan.indb 505 11/12/13 7:44 AM

506 Cocoa

Cocoa, 449

definition of, 307, 486

development of, 1

framework layers, 449-450

Cocoa Touch, 307, 450-451, 486

collections

definition of, 486

set, 490

colon (:), 123

comma (,) operator, 299

Command Line Tools, 16

command-line arguments, 300-302

comments, 19-20

compare: method, 315, 322, 332

comparing string objects, 322

compilation, 7-8

conditional compilation, 245-248

with Terminal, 16-18

with Xcode, 8-15

compile time, 184-185, 486

compilers

gcc, 488

LLVM Clang Objective-C compiler,
17-18

Complex class, 179-182

composite classes, 486

composite objects, 234-235

compound literals, 297-298

compound relational tests, 101-104

concrete subclasses, 486

conditional compilation, 245-248

conditional operator, 123-125

conforming, 487

conformsToProtocol: method, 232

constant character strings, 487

constants

defined names, 237-244

definition of, 51

PI, 238-239

TWO_PI, 239-241

containIndex: method, 372

containsObject: method, 360, 369-370

contentsAtPath: method, 378, 384

contentsEqualAtPath: method, 378

contentsOfDirectoryAtPath: method,
377, 387-389

continue statement, 91

conversions (data types)

conversion rules, 211-213

integer and floating-point conversions,
61-63

convertToNum method, 95-98

copy method, 419-421

copying, 419

files

with NSFileHandle class, 399-402

with NSProcessInfo class, 394-398

objects

with archiver, 446-447

copy method, 419-421

deep copying, 422-424, 446-447

mutableCopy method, 419-421

<NSCopying> protocol, 424-426

in setter/getter methods, 427-429

shallow copying, 422-424

copyItemAtPath: method, 378, 385

copyString function, 293-294

copyWithZone: method, 425-426, 428

Core Data, 307

Core Services layer, 449

Kochan.indb 506 11/12/13 7:44 AM

507declaring

count method, 205-206, 360, 365, 372

countForObject: methods, 370

Cox, Brad J., 1

createDirectoryAtPath: method, 385

createFileAtPath: method, 378, 384

curly braces ({}), 20

currentDirectoryPath method, 385

custom archives, 442-445

D
data encapsulation, 45-49, 487

data method, 443

data types

argument types, 263-265

assigning alternative names to,
210-211

BOOL, 122-123

CGPoint, 274

CGRect, 274

CGSize, 274

char, 52-53

conversions

conversion rules, 211-213

integer and floating-point conver-
sions, 61-63

determining size of, 299-300

dynamic typing

argument and return types, 186-187

definition of, 487

explained, 182-184

methods for working with, 187-189

enumerated data types, 207-210

explained, 51

float, 52

id, 54, 304

definition of, 488

dynamic typing and binding and,
182-183, 186-187

static typing and, 185-186

int, 20, 51-52. See also integers

integer and floating-point conversions,
61-63

pointers to, 277-281

qualifiers, 53-51

return types, 263-265

static typing, 185-186, 490

table of, 55

dataWithContentsOfURL: method, 404

date structure

defining, 270-273

initialization, 273-274

debugging

gdb tool, 488

Xcode projects, 14-15

decision-making constructs, 93. See
also loops

Boolean variables, 118-123

conditional operator, 123-125

if statement

compound relational tests, 101-104

else if construct, 105-115

explained, 93-98

if-else construct, 98-101

nested if statements, 104-105

switch statement, 115-118

declaring. See also defining

argument types, 263-265

arrays, 252-254

Kochan.indb 507 11/12/13 7:44 AM

508 declaring

methods, 35

arguments, 36-37

return values, 36

return types, 263-265

strong variables, 415-416

weak variables, 416-417

decodeIntForKey: method, 442

decodeObject: method, 436

decoding methods, writing, 435-442

decrement (--) operator, 78, 291-294

deep copying, 422-424, 446-447

#define statement, 237-244

defined names, 237-244

defining. See also declaring

array objects, 331-337

categories, 223-228

class extensions, 228-229

classes

AddressBook class, 344-347

AddressCard class, 338-341

Fraction class, 30-33

@implementation section, 37,
127-133

@interface section, 33-37, 127-133

program section, 39-45

pointers

to data types, 277-281

to structures, 281-283

protocols, 230-233

string objects, 317-318

structures, 270-276

delegation

definition of, 487

protocols, 233

deleteCharactersInRange: method, 329,
333

deleting files, 379

denominator method, 46-48

description method, 318-319

designated initializers, 487

development of Objective-C, 1-2

dictionary objects

creating, 362-363

enumerating, 364-365

NSDictionary methods, 365

NSMutableDictionary methods, 365

dictionaryWithCapacity: method, 365

dictionaryWithContentsOfFile: method,
433

dictionaryWithContentsOfURL: method,
404

dictionaryWithObjectsAndKeys: method,
364-365

digits of numbers, reversing, 89-90

directives

@autoreleasepool, 20, 410

@catch, 192-194

@class, 163-167

definition of, 487

@finally, 194

@import, 245

@optional, 231

@property, 133

@protocol, 232

@selector, 188-189

@synthesize, 134, 201

@throw, 194

@try, 192-194

Kochan.indb 508 11/12/13 7:44 AM

509fast enumeration

directories. See also files

common iOS directories, 393

enumerating, 387-389

managing with NSFileManager class,
384-387

dispatch tables, creating, 296

displaying variable values, 22-25

distributed objects, 487

division (/) operator, 54-58

do statement, 89-90

documentation for Foundation frame-
work, 307-310

Documents directory, 393

dollar sign ($), 16

dot (.) operator, 135-136

double quotes (“), 132

doubleValue method, 332

downloading

iOS SDK (software development kit),
453

Xcode, 8

Drawing protocol, 231-233

dynamic binding, 182-184, 487

dynamic typing

argument and return types, 186-187

definition of, 487

explained, 182-184

methods for working with, 187-189

E
#elif statement, 245-247

else if construct, 105-115

#else statement, 245-247

Empty Application template, 457

encapsulation, 45-49, 487

encodeIntForKey: method, 442

encodeWithCoder: method, 436-442

encoding methods, writing, 435-442

#endif statement, 245-247

enum keyword, 207

enumerated data types, 207-210

enumerateKeysAndObjectsUsingBlock:
method, 360

enumerateObjectsUsingBlock: method,
360

enumeration

of dictionaries, 364-365

of directories, 387-389

fast enumeration, 347-348

enumeratorAtPath: method, 385-389

environment method, 396

equal to (==) operator, 74

event loop and memory allocation,
135-137

exception handling, 192-194

exchange function, 284

extending classes through inheritance

@class directive, 163-167

classes owning their objects, 167-171

explained, 158-162

object allocation, 162-163

Extensible Markup Language (XML). See
XML (Extensible Markup Language)

extensions (class), 228-229

extern variables. See global variables

F
factory methods. See class methods

factory objects. See objects

fast enumeration, 347-348

Kochan.indb 509 11/12/13 7:44 AM

510 FCViewController class

FCViewController class, 471-477

@implementation section, 473-476

@interface section, 472

Fibonacci numbers, generating, 253-254

fileExistsAtPath: method, 378, 385

fileHandleForReadingAtPath: method,
398

fileHandleForUpdatingAtPath: method,
398

fileHandleForWritingAtPath: method,
398

filename extensions, 12

files

appending, 402-403

application bundles, 404-405

basic file operations with NSFileHandle
class, 377, 398-403

copying

with NSFileHandle class, 399-402

with NSProcessInfo class, 394-398

deleting, 379

directories

common iOS directories, 393

enumerating, 387-389

managing with NSFileManager
class, 384-387

filename extensions, 12

header files, 488

main.m, 13

managing with NSFileManager class,
377-383

moving, 382

paths

basic path operations, 389-392

path utility functions, 393

path utility methods, 392-394

reading to/from buffer, 383-384

removing, 382

system files, 20

Web files, reading with NSURL class,
403-404

xib files, 462

@finally directive, 194

finishEncoding message, 444

first iPhone application

application templates, 457

CMAppDelegate class, 460

CMViewController class, 460-462

interface design, 462-469

button, 466-468

label, 464-465

overview, 453-469

project, creating, 456-459

firstIndex method, 372

float data type, 52, 61-63

floatValue method, 332

fnPtr pointer, 363-365

for statement

execution order, 75

explained, 72-79

infinite loops, 84

keyboard input, 79-83

nested loops, 81-83

syntax, 73-75

variants, 83-84

formal protocols, 487

forums, classroomM.com/objective-c, 5

forwarding, 487

forwardInvocation: method, 189

Foundation framework

address book program. See address
book program

Kochan.indb 510 11/12/13 7:44 AM

511Foundation framework

archiving

copying objects with, 446-447

definition of, 431

encoding/decoding methods,
435-442

with NSData, 442-445

with NSKeyedArchiver, 434-435

with XML property lists, 431-433

array objects

address book example. See address
book program

defining, 331-337

classes

abstract classes, 176

NSArray, 311, 331-337, 360

NSBundle, 404-405

NSCountedSet, 370

NSData, 383-384, 442-445

NSFileHandle, 377, 398-403

NSFileManager, 377-387

NSIndexSet, 371-372

NSKeyedArchiver, 434-435

NSMutableArray, 331-337, 359

NSMutableSet, 367-370

NSMutableString, 326-333

NSNumber, 311-317

NSProcessInfo, 394-398

NSSet, 367-370

NSString, 317-331

NSURL, 403-404

NSValue, 359-361

Cocoa, 449-450

Cocoa Touch, 450-451

copying objects, 419

copy method, 419-421

deep copying, 422-424

mutableCopy method, 419-421

<NSCopying> protocol, 424-426

in setter/getter methods, 427-429

shallow copying, 422-424

definition of, 487

dictionary objects

creating, 362-363

enumerating, 364-365

NSDictionary methods, 365

NSMutableDictionary methods, 365

directories

enumerating, 387-389

managing with NSFileManager
class, 384-387

documentation, 307-310

exercises, 373-375

explained, 307

file paths

basic path operations, 389-392

path utility functions, 393

path utility methods, 392-394

files, 377-378

appending, 402-403

application bundles, 404-405

basic file operations with
NSFileHandle class, 398-403

copying with NSFileHandle class,
399-402

copying with NSProcessInfo class,
394-398

deleting, 379

managing with NSFileManager
class, 378-383

Kochan.indb 511 11/12/13 7:44 AM

512 Foundation framework

moving, 382

removing, 382

Web files, reading with NSURL
class, 403-404

memory management

ARC (Automatic Reference
Counting), 415-418

autorelease pool, 20

explained, 407-408

garbage collection, 409, 488

manual reference counting,
409-415

number objects, 311-317

set objects

NSCountedSet class, 370

NSIndexSet, 371-372

NSMutableSet, 367-370

NSSet, 367-370

string objects

comparing, 322

defining, 317-318

description method, 318-319

explained, 317

immutable strings, 319-326

joining, 321

mutable strings, 326-330

NSLog function, 317-318

NSString methods, 332-331

substrings, 323-326

testing equality of, 322

fraction calculator

Calculator class, 480-482

@implementation section, 481-482

@interface section, 481

creating project, 471

FCViewController class, 471-477

@implementation section, 473-476

@interface section, 472

Fraction class, 477-480

@implementation section, 478-480

@interface section, 477

overview, 469-470

summary, 483-484

user interface design, 482

Fraction class, 30-33, 477-480

add: method, 139-143, 149-151, 411

adding to projects, 127-130

allocF method, 205-206

convertToNum method, 95-98

count method, 205-206

data encapsulation, 45-49

@implementation section, 37,
131-132, 138, 146-147, 478-480

initWith:over: method, 197-200

instance variables, accessing, 45-49

@interface section, 33-37, 130-131,
141, 146, 477

program section, 39-45

setTo:over: method, 137-139

Fraction.h interface file, 130-131

Fraction.m implementation file, 131-132

FractionTest project

Fraction.h interface file, 130-131

Fraction.m implementation file,
131-132

main.m, 127-128

output, 133

framework layers, 449-450

frameworks, 487. See also Foundation
framework

Kochan.indb 512 11/12/13 7:44 AM

513hyphen (-)

FSF (Free Software Foundation), 1

functions. See also methods

arguments, 259-261

pointers, 283-284

copyString, 293-294

definition of, 487

exchange, 284

explained, 258-259

gcd, 261-263

local variables, 259-261

minimum, 265-266

NSFullUserName, 393

NSHomeDirectory, 392-393

NSHomeDirectoryForUser, 393

NSLog, 317-318

NSSearchPathForDirectoriesInDomains,
393

NSTemporaryDirectory, 391-393

NSUserName, 393

passing arrays to, 265-266

pointers to, 295-296

qsort, 296

return values, 261-265

static functions, 490

G
garbage collection, 409, 488

gcc, 488

gcd (greatest common divisor), calculat-
ing, 86-87, 261-263

gcd function, 261-263

gdb, 488

getters

copying objects in, 427-429

definition of, 488

explained, 48-49

synthesizing, 133-135, 201-202

global variables

definition of, 488

scope, 202-204

globallyUniqueString method, 396

GNU General Public License, 1

GNUStep, 1

goto statement, 298

greater than (>) operator, 74

greater than or equal to (>=) operator,
74

greatest common divisor (gcd), calculat-
ing, 86-87, 261-263

H
handling exceptions, 192-194

hasPrefix: methods, 332

hasSuffix: method, 332

header files, 488

help

classroomM.com/objective-c, 5

Foundation framework documenta-
tion, 307-310

Mac OS X reference library, 309

Quick Help panel, 309-310

hexadecimal (base 16) notation, 54

history of Objective-C, 1-2

hostName method, 396

hyphen (-), 35

Kochan.indb 513 11/12/13 7:44 AM

514 id data type

I
id data type, 54, 304

definition of, 488

dynamic typing and binding and,
182-183, 186-187

static typing and, 185-186

#if statement, 245-247

if statement

compound relational tests, 101-104

else if construct, 105-115

explained, 93-98

if-else construct, 98-101

nested if statements, 104-105

#ifdef statement, 245-247

if-else construct, 98-101

#ifndef statement, 245-247

immutable objects

definition of, 488

immutable strings, 319-326

@implementation section, 37

AddressBook class, 345-346, 495-498

AddressCard class, 494-495

Calculator class, 481-482

Complex class, 180

definition of, 488

FCViewController class, 473-476

Fraction class, 127-133, 138, 141-142,
146-147, 478-480

@import directive, 245

#import statement, 244-245

increment (++) operator, 78, 291-294

indexesOfObjectsPassingTest: method,
372

indexesPassingTest: method, 372

indexLessThanIndex: method, 372

indexOfObject: method, 360

indexOfObjectPassingTest: method, 360,
371

indexSet method

indirection (*) operator, 278

infinite loops, 84

informal protocols, 233-234, 488

inheritance

definition of, 488

explained, 153-158

extending classes with, 158-171

init method, 40, 197

overriding, 198

initialization

arrays, 254-255

designated initializers, 487

instances, 40

objects, 197-200

structures, 273-274

initWithCapacity: method, 333, 359,
365, 370

initWithCoder: method, 436-442

initWithContentsOfFile: method, 332

initWithContentsOfURL: method, 332

initWithName: method, 346

initWithObjects: method, 370

initWithObjectsAndKeys: method, 365

initWith:over: method, 197-200

initWithString: method, 332

insertObject:, 359

insertString: method, 333

insertString:atIndex: method, 329

Kochan.indb 514 11/12/13 7:44 AM

515iOS applications

installation, Xcode Command Line Tools,
16

instance methods, 29, 35, 488

instance variables, 38

accessing, 45-49

definition of, 488

scope, 202

storing in structures, 303

instances

allocation, 40

definition of, 488

explained, 28-30

extending classes with

@class directive, 163-167

classes owning their objects,
167-171

explained, 158-162

object allocation, 162-163

initialization, 40

instancesRespondToSelector: method,
187

int data type, 20, 51-52. See also inte-
gers

integers

arithmetic, 58-60

calculating absolute value of, 94

conversions, 61-63

int data type, 20, 51-52

NSInteger, 313

integerValue method, 332

Interface Builder, 488

interface design (first iPhone applica-
tion), 462-469

button, 466-468

label, 464-465

@interface section, 33-37

AddressBook class, 345, 494

AddressCard class, 338-339, 493

Calculator class, 481

class names, 34-35

definition of, 488

FCViewController class, 472

Fraction class, 127-133, 141, 146, 477

method declarations, 35

arguments, 36-37

class methods versus instance
methods, 35

return values, 36

internationalization. See localization

intersect: method, 369

intersectSet: method, 370

intersectsSet: methods, 370

intNumber method, 313

intValue method, 332

iOS applications, 453

application templates, 457

first iPhone application, 453-469

CMAppDelegate class, 460

CMViewController class, 460-462

interface design, 462-469

overview, 453-456

project, creating, 456-459

fraction calculator

Calculator class, 480-482

creating project, 471

FCViewController class, 471-477

Fraction class, 477-480

overview, 469-470

summary, 483-484

user interface design, 482

iOS SDK, 453

Kochan.indb 515 11/12/13 7:44 AM

516 iOS SDK (software development kit)

iOS SDK (software development kit), 2,
453

iPhone applications. See iOS applica-
tions

IS_LOWER_CASE macro, 243

isa variable, 488

isEqual: method, 353

isEqualToNumber: method, 315

isEqualToSet: method, 370

isEqualToString: method, 322, 332

isKindOfClass: method, 187

isMemberOfClass: method, 187

isReadableFileAtPath: method, 378

isSubclassOfClass: method, 187

isSubsetOfSet: method, 370

isWritableFileAtPath: method, 378

J-K
joining character strings, 321

keyed archives, 434-435

keyEnumerator method, 365

keysSortedByValueUsingSelector: meth-
od, 365

keywords

enum, 207

main, 20

self, 148-149

static, 144-148

_ _strong, 416

super, 490

_ _weak, 417

L
labels, adding, 464-465

lastIndex method, 372

lastObject method, 360

lastPathComponent method, 391-392

layers (framework), 449-450

leap years, determining, 102-103

left-shift (<<) operator, 218-219

length method, 332

less than (<) operator, 74

less than or equal to (<=) operator, 74

Library/Caches directory, 393

Library/Preferences directory, 393

linking, 488

LinuxSTEP, 1

list method, 348

literals, compound, 297-298

LLVM Clang Objective-C compiler, 17-18

local variables

definition of, 489

explained, 143-144

function arguments, 259-261

method arguments, 144

static variables, 144-148

localization, 489

logical AND (&&) operator, 101

logical negation (!) operator, 121

logical OR (||) operator, 101

long qualifier, 53

looking up address book entries,
349-351

lookup: method, 349-351, 371-372

loops

break statement, 91

continue statement, 91

do statement, 89-90

explained, 71-72

Kochan.indb 516 11/12/13 7:44 AM

517methodDefinitions (@implementation section)

for statement

execution order, 75

explained, 72-84

infinite loops, 84

keyboard input, 79-83

nested loops, 81-83

syntax, 73-75

variants, 83-84

while statement, 84-89

lowercaseString method, 332

M
M_PI, 239

Mac OS X reference library, 309

macros, 242-244

IS_LOWER_CASE, 243

MakeFract, 243

MAX, 243

SQUARE, 242-243

TO_UPPER, 244

main keyword, 20

mainBundle method, 405

main.m, 13

MakeFract macro, 243

makeObjectsPerform Selector: method,
360

manual memory management rules,
414-415

manual reference counting

autorelease pool, 410-412

event loop and memory allocation,
135-137

explained, 409-410

manual memory management rules,
414-415

Master-Detail application template, 457

MathOps category, defining, 223-228

MAX macro, 243

member: method, 370

memberDeclarations (@implementation
section), 37

memory addresses, pointers to,
296-297

memory management

ARC (Automatic Reference Counting)

@autoreleasepool blocks, 417-418

explained, 415

with non-ARC compiled code, 418

strong variables, 415-416

weak variables, 416-417

autorelease pool, 20

explained, 407-408

garbage collection, 409, 488

manual reference counting

autorelease pool, 410-412

event loop and memory allocation,
135-137

explained, 409-410

manual memory management
rules, 414-415

messages

autorelease, 410

definition of, 489

finishEncoding, 444

message expression, 489

release, 409

retain, 409

methodDefinitions (@implementation
section), 38

Kochan.indb 517 11/12/13 7:44 AM

518 methods

methods. See also functions

accessor methods

definition of, 485

explained, 48-49

synthesized accessors, 133-135,
201-202, 491

add:, 139-143, 149-151, 411

adding to classes

@class directive, 163-167

classes owning their objects,
167-171

explained, 158-162

object allocation, 162-163

addObject:, 359, 370

allKeys, 365

alloc, 40

allocF, 205-206

allocWithZone:, 425

anyObject, 370

appendString:, 333

archiveRootObject:, 434

arguments, 396

local variables, 144

methods without argument names,
139

multiple arguments, 137-143

pointers, 283-284

array, 359

arrayWithCapacity:, 359

arrayWithContentsOfFile:, 407, 433

arrayWithObjects:, 334, 360

attributesOfItemAtPath:, 378

availableData, 398

calculate:, 144

calculateTriangularNumber, 259-261

capitalizedString, 332

caseInsensitiveCompare:, 322, 332

changeCurrentDirectoryPath:, 385

characterAtIndex:, 332

class methods versus instance meth-
ods, 29, 35, 486-488

clickDigit:, 476, 482

closeFile, 398

compare:, 315, 322, 332

conformsToProtocol:, 232

containIndex:, 372

containsObject:, 360, 369-370

contentsAtPath:, 378, 384

contentsEqualAtPath:, 378

contentsOfDirectoryAtPath:, 377,
387-389

convertToNum, 95-98

copy, 419-421

copyItemAtPath:, 378, 385

copyWithZone:, 425-428

count, 205-206, 360, 365, 372

countForObject:, 370

createDirectoryAtPath:, 385

createFileAtPath:, 378, 384

currentDirectoryPath, 385

data, 443

dataWithContentsOfURL:, 404

declaring, 35

arguments, 36-37

return values, 36

decodeIntForKey:, 442

decodeObject:, 436

definition of, 489

deleteCharactersInRange:, 329, 333

description, 318-319

dictionaryWithCapacity:, 365

dictionaryWithContentsOfFile:, 433

Kochan.indb 518 11/12/13 7:44 AM

519methods

dictionaryWithContentsOfURL:, 404

dictionaryWithObjectsAndKeys:,
364-365

doubleValue, 332

encodeIntForKey:, 442

encodeWithCoder:, 436-442

encoding/decoding methods, 435-442

enumerateKeysAndObjectsUsingBlock:,
365

enumerateObjectsUsingBlock:, 360

enumeratorAtPath:, 385-389

environment, 396

explained, 28-30, 304

fileExistsAtPath:, 378, 385

fileHandleForReadingAtPath:, 398

fileHandleForUpdatingAtPath:, 398

fileHandleForWritingAtPath:, 398

firstIndex, 372

floatValue, 332

forwardInvocation:, 189

getters

copying objects in, 427-429

definition of, 488

explained, 48-49

synthesizing, 133-135, 201-202

globallyUniqueString, 396

hasPrefix:, 332

hasSuffix:, 332

hostName, 396

indexesOfObjectsPassingTest:, 372

indexesPassingTest:, 372

indexLessThanIndex:, 372

indexOfObject:, 360

indexOfObjectPassingTest:, 360, 371

indexSet

init, 40, 197

overriding, 198

initWithCapacity:, 333, 359, 365, 370

initWithCoder:, 436-442

initWithContentsOfFile:, 332

initWithContentsOfURL:, 332

initWithName:, 346

initWithObjects:, 370

initWithObjectsAndKeys:, 365

initWith:over:, 197-200

initWithString:, 332

insertObject:, 359

insertString:, 333

insertString:atIndex:, 329

instancesRespondToSelector:, 187

integerValue, 332

intersect:, 369

intersectSet:, 370

intersectsSet:, 370

intNumber, 313

intValue, 332

isEqual:, 353

isEqualToNumber:, 315

isEqualToSet:, 370

isEqualToString:, 322, 332

isKindOfClass:, 187

isMemberOfClass:, 187

isReadableFileAtPath:, 378

isSubclassOfClass:, 187

isSubsetOfSet:, 370

isWritableFileAtPath:, 378

keyEnumerator, 365

keysSortedByValueUsingSelector:, 365

lastIndex, 372

Kochan.indb 519 11/12/13 7:44 AM

520 methods

lastObject, 360

lastPathComponent, 391

length, 332

list, 348

lookup:, 349-351, 371-372

lowercaseString, 332

mainBundle, 405

makeObjectsPerform Selector:, 360

member:, 370

minusSet:, 370

moveItemAtPath:, 378, 385

mutableCopy, 419-421

mutableCopyWithZone:, 425

new, 49

numberWithInt:, 315

numberWithInteger:, 315

objectAtIndex:, 334, 360

objectEnumerator, 365, 370

objectForKey:, 363-365

offsetInFile, 398

operatingSystem, 396

operatingSystemName, 396

operatingSystemVersionString, 396

overriding, 171-175

passing arrays to, 265-266

pathComponents, 392

pathExtension, 391-392

pathsForResourcesOfType:, 405

pathWithComponents:, 392

performSelector:, 187-189

print, 369

processDigit:, 476

processIdentifier, 396

processInfo, 396

processName, 396

rangeOfString:, 325, 329

readDataToEndOfFile, 398

reduce, 143-144

removeAllObjects, 365, 370

removeItemAtPath:, 378, 385

removeObject:, 359, 370

removeObjectAtIndex:, 359

removeObjectForKey:, 365

replaceCharactersInRange:, 333

replaceObject:, 424

replaceObjectAtIndex:, 359

replaceOccurrencesOfString:withString
:options:range:, 330, 333

respondsToSelector:, 187, 189

returning objects from, 149-151

seekToEndOfFile, 398

seekToFileOffset:, 398

self keyword, 148-149

set::, 139

setAttributesOfItemAtPath:, 378

setDenominator:, 39, 41

setEmail:, 340

setName:, 340

setName:andEmail:, 343

setNumerator:, 39-41

setNumerator:andDenominator: meth-
od, 137

setObject:, 365

setProcessName:, 396

setString:, 330, 333

setters

copying objects in, 427-429

definition of, 490

Kochan.indb 520 11/12/13 7:44 AM

521myFraction variable

explained, 48-49

synthesizing, 133-135, 201-202

setTo:over:, 137-139

setWithCapacity:, 370

setWithObjects:, 369-370

sortedArrayUsing Selector:, 360

sortedArrayUsingComparator:, 357,
360

sortUsingComparator:, 358-359

sortUsingSelector:, 355-359

string, 332

stringByAppendingPathComponent:,
391-392

stringByAppendingPathExtension:, 392

stringByAppendingString:, 321

stringByDeletingLastPathComponent,
392

stringByDeletingPathExtension, 392

stringByExpandingTildeInPath, 392

stringByResolvingSymlinksInPath, 392

stringByStandardizingPath, 392

stringWithCapacity:, 333

stringWithContentsOfFile:, 332, 433

stringWithContentsOfURL:, 332

stringWithFormat:, 319, 332

stringWithString:, 329, 332, 424

substringFromIndex:, 325, 332

substringToIndex:, 325, 332

substringWithRange:, 325, 332

syntax, 28-29

truncateFileAtOffset:, 398

unarchiveObjectWithFile:, 435

union:, 369

unionSet:, 370

uppercaseString, 332

URLWithString:, 403

UTF8String, 332

writeData:, 398

writeToFile:, 360

writeToFile:atomically:, 431-432

minimum function, 265-266

minus sign (-), 35, 54, 58-60

minusSet: method, 370

modules, 311, 489

modulus (%) operator, 60-61

moveItemAtPath: method, 378, 385

moving files, 382

multidimensional arrays, 256-258

multiple arguments to methods,
137-143, 139

multiplication (*) operator, 54-58

MusicCollection class, 374-375

mutable objects

definition of, 489

NSMutableArray class

defining, 331-337

methods, 359

NSMutableDictionary class

defining, 362-363

enumerating, 364-365

methods, 365

NSMutableSet class, 367-370

NSMutableString class, 326-333

mutableCopy method, 419-421

mutableCopyWithZone: method, 425

myFraction variable, 39

Kochan.indb 521 11/12/13 7:44 AM

522 \n (newline character)

N
\n (newline character), 22

names

assigning to data types, 210-211

class names, 34-35

defined names, 237-244

native applications, 2

nested for loops, 81-83

nested if statements, 104-105

new method, 49

newline character, 22

NeXT Software, 1

NEXTSTEP, 1

nib files, 462

nil objects, 489

not equal to (!=) operator, 74

notification, 489

NSArray class, 311

archiving, 431-433

defining, 331-337

methods, 360

NSBundle class, 404-405

NSCopying protocol, 230-231

<NSCopying> protocol, 424-426

NSCountedSet class, 370

NSData class, 383-384, 431-433,
442-445

NSDate class, archiving, 431-433

NSDictionary class

archiving, 431-433

defining, 362-363

enumerating, 364-365

methods, 365

NSFileHandle class, 377, 398-403

NSFileManager class, 377

directory enumeration, 387-389

directory management, 384-387

management, 378-383

NSFullUserName function, 393

NSHomeDirectory function, 392-393

NSHomeDirectoryForUser function, 393

NSIndexSet class, 371-372

NSInteger, 313

NSKeyedArchiver class, 434-435

NSLog routine, 317-318

displaying text with, 21-22

displaying variable values with, 22-25

NSMutableArray class

defining, 331-337

methods, 359

NSMutableDictionary class

defining, 362-363

enumerating, 364-365

methods, 365

NSMutableSet class, 367-370

NSMutableString class, 326--331

NSNumber class, 311-317, 431-433

NSObject, 489

NSPathUtilities.h, 389-392

NSProcessInfo class, 394-398

NSSearchPathForDirectoriesInDomains
function, 393

NSSet class, 367-370

NSString class

archiving, 431-433

description method, 318-319

explained, 317

Kochan.indb 522 11/12/13 7:44 AM

523objects

mutable versus immutable objects,
319-326

NSLog function, 317-318

NSTemporaryDirectory function,
391-393

NSURL class, 403-404

NSUserName function, 393

NSValue class, 359-361

null character, 489

null pointers, 489

null statement, 298-299

numbers

determining whether even or odd,
93-98

Fibonacci numbers, generating,
253-254

integers

arithmetic, 58-60

calculating absolute value of, 94

conversions, 61-63

int data type, 20, 51-52

integer and floating-point conver-
sions, 61-63

number objects, 311-317

prime numbers, generating, 119-123

reversing digits of, 89-90

triangular numbers, generating,
259-261

numberWithInt: method, 315

numberWithInteger: method, 315

numerator method, 46-48, 71-82

O
object variables, 303

objectAtIndex: method, 334, 360

objectEnumerator method, 365, 370

objectForKey: method, 363-365

object-oriented programming, 489

objects

allocation, 149-151, 162-163

archiving

copying objects with, 446-447

definition of, 431, 485

encoding/decoding methods,
435-442

with NSData, 442-445

with NSKeyedArchiver, 434-435

with XML property lists, 431-433

array objects

address book example. See address
book program

defining, 331-337

class objects, 486

composite objects, 234-235

copying, 419

with archiver, 446-447

copy method, 419-421

deep copying, 422-424, 446-447

mutableCopy method, 419-421

<NSCopying> protocol, 424-426

in setter/getter methods, 427-429

shallow copying, 422-424

definition of, 486, 489

dictionary objects

creating, 362-363

enumerating, 364-365

NSDictionary methods, 365

NSMutableDictionary methods, 365

distributed objects, 487

explained, 27-28

Kochan.indb 523 11/12/13 7:44 AM

524 objects

immutable objects

definition of, 488

immutable strings, 319-326

initialization, 197-200

mutable objects, 326-330, 489

nil objects, 489

NSObject, 489

number objects, 311-317

returning from methods, 149-151

root objects, 490

set objects

NSCountedSet class, 370

NSIndexSet, 371-372

NSMutableSet, 367-370

NSSet, 367-370

string objects

comparing, 322

defining, 317-318

description method, 318-319

explained, 317

immutable strings, 319-326

joining, 321

mutable strings, 326-330

NSLog function, 317-318

NSMutableString methods, 333-331

NSString methods, 332-331

substrings, 323-326

testing equality of, 322

octal (base 8) notation, 54

offsetInFile method, 398

ones complement (~) operator, 217-218

OOP (object-oriented programming), 489

OpenGL Game application template,
457

OPENSTEP, 1

operatingSystem method, 396

operatingSystemName method, 396

operatingSystemVersionString method,
396

operators

address (&), 278

binary arithmetic operators, 54-58

integer and floating-point conver-
sions, 61-63

modulus (%) operator, 60-61

type cast operator, 63-64

unary minus (-) operator, 58-60

assignment operators, 64-65, 74

bit operators

binary, decimal, and hexadecimal
equivalents, 214

bitwise AND (&), 215

bitwise OR (|), 216

bitwise XOR (^), 216-217

left-shift (<<) operator, 218-219

ones complement (~) operator,
217-218

right-shift (>>) operator, 219-220

table of, 213

comma (,), 299

conditional operator, 123-125

decrement (--), 78, 291-294

dot (.), 135-136

increment (++), 78, 291-294

indirection (*), 278

logical AND (&&), 101

logical negation (!), 121

logical OR (||), 101

relational operators, 74-75

sizeof, 299-300

@optional directive, 231

Kochan.indb 524 11/12/13 7:44 AM

525“Programming is fun!” sample program

OR operator (|), 216

OS X, 1

overriding methods, 171-175, 198

P
Page-Based Application template, 457

parent classes, 153-155, 489

pathComponents method, 392

pathExtension method, 391-392

paths

basic path operations, 389-392

path utility functions, 393

path utility methods, 392-394

pathsForResourcesOfType: method, 405

pathWithComponents: method, 392

performSelector: method, 187-189

PI constant, 238-239

Playlist class, 374-375

plists. See property lists

plus sign (+), 54-58

pointers

to arrays, 284-294

increment and decrement opera-
tors, 291-294

pointers to character strings,
289-291

valuesPtr example, 284-288

to character strings, 289-291

to data types, 277-281

definition of, 489

to functions, 295-296

and memory addresses, 296-297

object variables as, 303

operations, 294-295

passing to methods/functions, 283-284

to structures, 281-283

polymorphism, 179-182, 489

pound sign (#), 237

precedence

arithmetic operators, 54-58

relational operators, 74

preprocessor

conditional compilation, 245-248

definition of, 489

explained, 237

statements

#define, 237-244

#elif, 245-247

#else, 245-247

#endif, 245-247

#if, 245-247

#ifdef, 245-247

#ifndef, 245-247

#import, 244-245

#undef, 245-247

prime numbers, generating, 119-123

print method, 38, 41, 369

procedural programming languages,
490

processDigit: method, 476

processIdentifier method, 396

processInfo method, 396

processName method, 396

“Programming is fun!” sample program

code listings, 7, 18-22

compiling and running, 7-8

with Terminal, 16-18

with Xcode, 8-15

explained, 18-22

Kochan.indb 525 11/12/13 7:44 AM

526 programs, compiling and running

programs, compiling and running, 7-8.
See also iOS applications

with Terminal, 16-18

with Xcode, 8-15

projects (Xcode). See also iOS applica-
tions

adding classes to, 127-130

application templates, 457

creating, 15

debugging, 14-15

filename extensions, 12

first iPhone application

CMAppDelegate class, 460

CMViewController class, 460-462

creating project, 456-459

interface design, 462-469

overview, 453-456

fraction calculator

Calculator class, 480-482

creating project, 471

FCViewController class, 471-477

Fraction class, 477-480

overview, 469-470

summary, 483-484

user interface design, 482

FractionTest

Fraction.h interface file, 130-131

Fraction.m implementation file,
131-132

main.m, 127-128

output, 133

main.m, 13

project window, 10-11

running, 14

starting, 8-11

properties

accessing with dot operator, 135-136

property declarations, 490

property lists. See property lists

property declarations, 490

@property directive, 133

property lists

archiving with, 431-433

definition of, 490

@protocol directive, 232

protocols

defining, 230-233

definition of, 490

delegation, 233

explained, 230

formal protocols, 487

informal protocols, 233-234, 488

NSCopying, 230-231

<NSCopying> protocol, 424-426

Q
qsort function, 296

qualifiers, 53-51

long, 53

short, 54

unsigned, 54

question mark (?), 123

Quick Help pane, 309-310

R
rangeOfString: method, 329

readDataToEndOfFile method, 398

reading files to buffer, 383-384

receivers, 490

Kochan.indb 526 11/12/13 7:44 AM

527@selector directive

Rectangle class, 158-171

reduce method, 143-144

reference counting

ARC (Automatic Reference Counting)

@autoreleasepool blocks, 417-418

explained, 415

with non-ARC compiled code, 418

strong variables, 415-416

weak variables, 416-417

manual reference counting

autorelease pool, 410-412

event loop and memory allocation,
135-137

explained, 409-410

manual memory management
rules, 414-415

relational operators, 74-75

release message, 409

removeAllObjects method, 365, 370

removeCard: method, 352-355

removeItemAtPath: method, 378, 385

removeObject: method, 359, 370

removeObjectAtIndex: method, 359

removeObjectForKey: method, 365

removing

address book entries, 352-355

files from directories, 382

replaceCharactersInRange: method, 333

replaceObject: method, 424

replaceObjectAtIndex: method, 359

replaceOccurrencesOfString:withString:
options:range: method, 330, 333

reserved words. See keywords; state-
ments

respondsToSelector: method, 187-189

retain count, 490. See also reference
counting

retain message, 409

return types, declaring, 263-265

return values

function return values, 261-265

method return values, 36

returning objects from methods,
149-151

reversing digits of numbers, 89-90

right-shift (>>) operator, 219-220

Ritchie, Dennis, 1

root classes, 153

root objects, 490

routines

NSLog

displaying text with, 21-22

displaying variable values with,
22-25

scanf, 79-83

running programs, 7-8

with Terminal, 16-18

with Xcode, 8-15

runtime, 184-185, 490

S
scanf routine, 79-83

scope

global variables, 202-204

instance variables, 202

static variables, 204-206

SDK (software development kit). See
software development kit (SDK)

seekToEndOfFile method, 398

seekToFileOffset: method, 398

@selector directive, 188-189

Kochan.indb 527 11/12/13 7:44 AM

528 selectors

selectors, 490

self keyword, 148-149

self variable, 490

semicolon (;), 84

set collection, 490

set:: method, 139

set objects

NSCountedSet class, 370

NSIndexSet, 371-372

NSMutableSet, 367-370

NSSet, 367-370

setAttributesOfItemAtPath: method, 378

setDenominator: method, 39-41

setEmail: method, 340

setName: method, 340

setName:andEmail:, 343

setNumerator: method, 39-41

setNumerator:andDenominator: method,
137

setObject: method, 365

setProcessName: method, 396

setString: method, 330, 333

setters

copying objects in, 427-429

definition of, 490

explained, 48-49

synthesizing, 133-135, 201-202

setTo:over: method, 137-139

setWithCapacity: method, 370

setWithObjects: method, 369-370

shallow copying, 422-424

short qualifier, 54

sign function, implementing, 106-107

Single View Application template, 457

size of data types, determining, 299-300

sizeof operator, 299-300

slash (/), 54-58

software development kit (SDK), 2, 453

Song class, 374-375

sortedArrayUsing Selector: method, 360

sortedArrayUsingComparator: method,
357, 360

sorting address book entries, 355-359

sortUsingComparator: method, 358-359

sortUsingSelector: method, 355-359

SpriteKit Game template, 457

Square class, 160-162, 234-235

SQUARE macro, 242-243

starting Xcode projects, 8-11

statement blocks. See blocks

statements

break, 91

continue, 91

definition of, 490

do, 89-90

execution order, 75

explained, 72-79

infinite loops, 84

keyboard input, 79-83

nested loops, 81-83

syntax, 73-75

variants, 83-84

goto, 298

if

compound relational tests, 101-104

else if construct, 105-115

explained, 93-98

if-else construct, 98-101

nested if statements, 104-105

Kochan.indb 528 11/12/13 7:44 AM

529structures

null, 298-299

preprocessor statements

#define, 237-244

#elif, 245-247

#else, 245-247

#endif, 245-247

#if, 245-247

#ifdef, 245-247

#ifndef, 245-247

#import, 244-245

#undef, 245-247

switch, 115-118

typedef, 210-211, 274

while, 84-89

static analyzer (Xcode), 15

static functions, 490

static keyword, 144-148

static local variables, 261

static typing, 185-186, 490

static variables, 144-148

definition of, 490

scope, 204-206

storyboard files, 462

string method, 332

string objects

character strings, 486

comparing, 322

constant character strings, 487

defining, 317-318

definition of, 486

description method, 318-319

explained, 317

immutable strings, 319-326

joining, 321

limitations, 297

mutable strings, 326-330

NSLog function, 317-318

NSMutableString methods, 331-333

NSString methods, 331-332

pointers to, 289-291

substrings, 323-326

testing equality of, 322

stringByAppendingPathComponent:
method, 391-392

stringByAppendingPathExtension:
method, 392

stringByAppendingString: method, 321

stringByDeletingLastPathComponent
method, 392

stringByDeletingPathExtension method,
392

stringByExpandingTildeInPath method,
392

stringByResolvingSymlinksInPath meth-
od, 392

stringByStandardizingPath method, 392

stringWithCapacity: method, 333

stringWithContentsOfFile: method, 332,
433

stringWithContentsOfURL: method, 332

stringWithFormat: method, 319, 332

stringWithString: method, 329, 332, 424

_ _strong keyword, 416

strong variables, 415-416

structures

date

defining, 270-273

initialization, 273-274

defining, 270-276

definition of, 490

initialization, 273-274

instance variables stored in, 303

Kochan.indb 529 11/12/13 7:44 AM

530 structures

limitations, 297

pointers to, 281-283

structures within structures, 274-276

subclasses, 153-155

concrete subclasses, 486

definition of, 490

substringFromIndex: method, 325, 332

substrings, 323-326

substringToIndex: method, 325, 332

substringWithRange: method, 325, 332

subtraction (-) operator, 54

super keyword, 490

superclasses, 153-155, 491

support

classroomM.com/objective-c, 5

Foundation framework documenta-
tion, 307-310

Mac OS X reference library, 309

Quick Help panel, 309-310

switch statement, 115-118

@synthesize directive, 134, 201

synthesized accessors, 133-135,
201-202, 341-344, 491

system files, 20

T
Tabbed Application template, 457

tables, dispatch tables, 296

templates, application templates, 457

Terminal, compiling programs with,
16-18

text, displaying with NSLog routine,
21-22

@throw directive, 194

tilde (~), 217-218, 378

tmp directory, 393

TO_UPPER macro, 244

triangular numbers

calculating, 71-82

generating, 259-261

triangularNumber program, 71-72

truncateFileAtOffset: method, 398

@try blocks, 192-194

TWO_PI constant, 239-241

two-dimensional arrays, 256-258

type cast operator, 63-64

typedef statement, 210-211, 274

types. See data types

U
UIKit, 491

unarchiveObjectWithFile: method, 435

unary minus (-) operator, 58-60

#undef statement, 245-247

underscore (_), 34, 201

unichar characters, 317

Unicode characters, 491

union: method, 369

unions, 491

unionSet: method, 370

unsigned qualifier, 54

uppercaseString method, 332

URL addresses, reading files from,
403-404

URLWithString: method, 403

UTF8String method, 332

Utility Application template, 457

Kochan.indb 530 11/12/13 7:44 AM

531Xcode

V
values

displaying, 22-25

return values

function return values, 261-265

method return values, 36

valuesPtr pointer, 284-288

variables

automatic variables, 486

Boolean variables, 118-123

global variables

definition of, 488

scope, 202-204

instance variables, 38

accessing, 45-49

definition of, 488

scope, 202

storing in structures, 303

isa, 488

local variables

definition of, 489

explained, 143-144

in functions, 259-261

method arguments, 144

static variables, 144-148

myFraction, 39

object variables, 303

scope

global variables, 202-204

instance variables, 202

static variables, 204-206

self, 490

static variables

definition of, 490

scope, 204-206

strong variables, 415-416

values, displaying, 22-25

weak variables, 416-417

W
_ _weak keyword, 417

weak variables, 416-417

web files, reading with NSURL class,
403-404

web-based applications, 2

while statement, 84-89

writeData: method, 398

writeToFile: method, 360

writeToFile:atomically: method, 431-432

writing files from buffer, 383-384

X-Y-Z
Xcode, 8-15

Command Line Tools, 16

definition of, 491

downloading, 8

projects

adding classes to, 127-130

creating, 15

debugging, 14-15

filename extensions, 12

FractionTest, 127-133

main.m, 13

project window, 10-11

Kochan.indb 531 11/12/13 7:44 AM

532 Xcode

running, 14

starting, 8-11

static analyzer, 15

xib files, 462

XML (Extensible Markup Language)

definition of, 491

XML property lists, archiving with,
431-433

XYPoint class, 162-165

Kochan.indb 532 11/12/13 7:44 AM

	Table of Contents
	2 Programming in Objective-C
	Compiling and Running Programs
	Explanation of Your First Program
	Displaying the Values of Variables
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

