
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321967190
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321967190
https://plusone.google.com/share?url=http://www.informit.com/title/9780321967190
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321967190
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321967190/Free-Sample-Chapter

 iOS Auto Layout
Demystified

The Addison-Wesley Mobile Programming Series is a collection of digital-only
programming guides that explore key mobile programming features and topics

in-depth. The sample code in each title is downloadable and can be used in your
own projects. Each topic is covered in as much detail as possible with plenty of
visual examples, tips, and step-by-step instructions. When you complete one of
these titles, you’ll have all the information and code you will need to build that
feature into your own mobile application.

Visit informit.com/mobile for a complete list of available publications.

Addison-Wesley Mobile Programming Series

Make sure to connect with us!
informit.com/socialconnect

 iOS Auto Layout
Demystified

 Second Edition

 Erica Sadun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Editor-in-Chief

Mark Taub

 Senior Acquisitions Editor

Trina MacDonald

 Senior Development Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Senior Project Editor

Betsy Gratner

 Copy Editor

Kitty Wilson

 Indexer

 Joy Dean Lee

 Proofreader

 Anne Goebel

 Technical Reviewers

Mike Shields
 Ashley Ward

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013948434

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-
3290.

 AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV,
Aqua, Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode,
Finder, FireWire, iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod
touch, iTunes, the iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch,
Objective-C, Quartz, QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight,
and Xcode are trademarks of Apple, Inc., registered in the United States and other
countries. OpenGL and the logo are registered trademarks of Silicon Graphics, Inc.
The YouTube logo is a trademark of Google, Inc. Intel, Intel Core, and Xeon are
trademarks of Intel Corp. in the United States and other countries.

 ISBN-13: 978-0-321-96719-0
 ISBN-10: 0-321-96719-4

 Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.

 First printing: October 2013

❖

 Hop. Hop. THOOM.

❖

Table of Contents

 Preface xiii

 1 Introducing Auto Layout 1

Origins 1

Saying “Yes” to Auto Layout 2

Geometric Relationships 3

Content-Driven Layout 5

Prioritized Rules 6

Inspection and Modularization 6

Incremental Adoption 6

Constraints 7

Satisfiability 7

Sufficiency 8

Constraint Attributes 11

About Those Missing Views 12

Underconstrained Missing Views 13

Missing Views with Inconsistent Rules 14

Tracking Missing Views 14

Ambiguous Layout 15

Exercising Ambiguity 16

Visualizing Constraints 17

Intrinsic Content Size 18

Compression Resistance and Content Hugging 20

Image Embellishments 22

Alignment Rectangles 22

Visualizing Alignment Rectangles 24

Alignment Insets 24

Declaring Alignment Rectangles 26

Implementing Alignment Rectangles 27

Exercises 29

Conclusions 30

Contents vii

 2 Constraints 31

Constraint Types 31

Priorities 33

Conflicting Priorities 33

Enumerated Priorities 34

Content Size Constraints 36

Intrinsic Content Size 36

Content Hugging 36

Compression Resistance 38

Setting Content Size Constraints in Code 39

Setting Content Size Constraints in IB 40

Building Layout Constraints 41

The Layout Constraint Class 42

Constraint Math 42

First and Second Items 43

Creating Layout Constraints 44

Building NSLayoutConstraint Instances 45

Unary Constraints 45

Zero-Item Constraints Are Illegal 46

View Items 47

Constraints, Hierarchies, and Bounds Systems 48

Installing Constraints 50

Removing Constraints 52

Comparing Constraints 54

Matching Constraints 55

Laws of Layout Constraints 57

Exercises 59

Conclusions 59

 3 Interface Builder Layout 61

Designing in IB 61

Disabling Auto Layout 62

Opting Out of Auto Layout in Code 63

Combining Autosizing with Auto Layout 64

Basic Layout and Auto-Generated Constraints 64

Inferred Constraints 64

Ambiguity Resolution Constraints 67

Size Constraints 69

viii Contentsviii Contents

A Guided Tour of IB Elements 69

Constraint Listings 76

Xcode Labels 78

Adding Xcode Identities 79

Adding Constraints 80

Dragging 81

Pinning and Aligning 83

Previewing Layouts 85

Inspecting Constraints 88

View Size Inspector 90

Frame and Layout Rectangles 91

Other Size Inspector Items 92

The Resolution Menu 92

Updating Frames and Constraints 92

Adding and Resetting Constraints 93

Clearing Constraints 93

Constraints/Resizing Pop-Up Menu 93

Descendants 94

Siblings and Ancestors 95

The Missing Views Problem 95

Balancing Requests 97

Hybrid Layout 100

Building a Nib File for Testing 100

Adding the Nib File in Code 101

Advantages of Hybrid Layout 102

Removing IB-Generated Constraints 104

Exercises 105

Conclusions 108

 4 Visual Formats 109

Introducing Visual Format Constraints 109

Options 111

Alignment 112

Skipping Options 113

Variable Bindings 113

The Problem with Indirection 113

Indirection Workaround 114

ixContents

Metrics 115

Real-World Metrics 115

Format String Structure 116

Orientation 116

Retrieving Constraints by Axis 117

View Names 117

Superviews 118

Connections 118

Empty Connections 118

Standard Spacers 119

Numeric Spacers 120

Referencing the Superview 120

Spacing from the Superview 122

Flexible Spaces 122

Parentheses 123

Negative Numbers 124

Priorities 124

Multiple Views 125

View Sizes 126

Format String Components 128

Getting It Wrong 130

NSLog and Visual Formats 131

Constraining to a Superview 132

View Stretching 133

Constraining Size 134

Building Rows or Columns 135

Matching Sizes 136

Why You Cannot Distribute Views 137

How to Pseudo-Distribute Views (Part 1: Equal
Centers) 138

Pseudo-Distributing Views (Part 2: Spacer Views) 140

Exercises 143

Conclusions 143

x Contentsx Contents

 5 Debugging Constraints 145

Xcode Feedback 145

Development Feedback 145

Compiler Feedback 146

Runtime 146

Reading Console Logs 147

Autosizing Issues Example 147

Solution: Switch Off Autosizing Translation 148

Auto Layout Conflicts Example 149

Solution: Adjusting Priorities 150

The Nuclear Approach 150

The Balance Approach 151

Tracing Ambiguity 151

Examining Constraint Logs 152

Alignment Constraint Example 152

Standard Spacers Example 153

Equation-Based Constraint Example 153

Complex Equation Example 154

Multiplier and Constant Example 155

A Note About Layout Math 155

Constraint Equation Strings 156

Adding Names 159

Using Nametags 160

Naming Views 161

Describing Views 161

Unexpected Padding Example 164

The Hugged Image Example 165

View Centering Example 166

Retrieving Referencing Constraints 167

Descent Reports 169

Ambiguity Example 170

Expanding on Console Dumps Example 172

Visualizing Constraints 173

Automating Visualization 174

Launch Arguments 175

xiContents

Internationalization 177

Doubled Strings (iOS/OS X) 177

Flipped Interfaces (OS X) 178

Flipped Interfaces (iOS) 179

Profiling Cocoa Layout 181

Auto Layout Rules of Debugging 183

Exercises 183

Conclusions 184

 6 Building with Auto Layout 185

Basic Principles of Auto Layout 185

Layout Libraries 186

Building Libraries 187

Planning Interfaces 190

Building for Modularity 191

Updating Constraints 194

Calling Updates and Animating Changes 195

Animating Constraint Changes on OS X 196

Fading Changes 197

Designing for Edge Conditions 198

Building a View Drawer 200

Building the Drawer Layout 203

Managing Layout for Dragged Views 206

Dragged Views 207

Window Boundaries 208

Exercises 211

Conclusions 211

 7 Layout Solutions 213

Table Cells 213

Auto Layout and Multiple-Height Table Cells 216

Preserving Image Aspect 217

Accordion Sizing 220

Scroll Views 221

Scroll Views and Pure Auto Layout 222

Hybrid Solution 222

Building a Paged Image Scroll View 223

xii Contentsxii Contents

Centering View Groups 226

Custom Multipliers and Random Positions 228

Building Grids 231

Making Room for the Keyboard 233

Inserting Views at Runtime 236

Adding iOS Frame and Constraint Overlays 237

Motion Effects, Dynamic Text, and Containers 238

Exercises 238

Conclusions 238

 A Answers to Exercises 241

Chapter 1 241

Chapter 2 242

Chapter 3 243

Chapter 4 245

Chapter 5 247

Chapter 6 248

Chapter 7 249

 Index 251

 Preface

 Auto Layout reimagines the way developers create user interfaces. It creates a flexible and
powerful system that describes how views and their content relate to each other and to
the windows and superviews they occupy. In contrast with older design approaches, this
technology offers incredible control over layout, with a wider range of customization than
frames, springs, and struts allow. Somewhat maligned by exasperated developers, Auto Layout
has gained a reputation for difficulty and frustration, particularly when used through Interface
Builder (IB).

 That’s why this book exists. You’re about to discover Auto Layout mastery by example, with
plenty of explanations and tips. Instead of struggling with class documentation, you’ll learn
in simple steps how the system works and why it’s far more powerful than you first imagined.
You’ll read about common design scenarios and discover best practices that make Auto Layout
a pleasure rather than a chore to use.

 You’ll explore many of the strengths of Auto Layout as well. It’s a technology that has a lot
going for it:

 ■ Auto Layout is declarative. You express the interface behavior without worrying about
 how those rules get implemented. Just describe the layout; let Auto Layout calculate the
frames.

 ■ Auto Layout is descriptive and relational. You describe how items relate to each other
onscreen. Forget about sizes and positions. What matters is the relationships.

 ■ Auto Layout is centralized. Whether in IB or a layout section in your own code, Auto
Layout rules tend to migrate to a single nexus, making it easier to inspect and debug.

 ■ Auto Layout is dynamic. Your interface updates as needed to respond to user- and
application-sourced changes.

 ■ Auto Layout is localizable. Conquer the world with Auto Layout. It’s built to adapt to
varying word and phrase lengths while maintaining interface integrity.

 ■ Auto Layout is expressive. You can describe many more relationships than you could in
the older springs-and-struts system. Go beyond “hug this edge” or “resize along this axis”
and express the way a view relates to other views, not just its superview.

 ■ Auto Layout is incremental. Adopt it on your own timescale. Add it to just parts of your
apps and parts of your interfaces, or jump in feet first for a full Auto Layout experience.
Auto Layout offers backward compatibility, enabling you to build your interfaces using
all springs-and-struts, all constraints, or a bit of both.

 This book aims to be inspirational. I’ve tried to show examples of nonobvious ways to use Auto
Layout to build interactive elements, animations, and other features beyond what you might
normally encounter in IB. These chapters provide a launch pad for Auto Layout work and
introduce unfamiliar features that expand your design possibilities.

xiv Preface

 As the title suggests, this book is primarily targeted at iOS developers. I have included OS X
coverage where possible. So, if you’re an OS X developer, you’re not left out completely in the
cold. I live primarily in the iOS world. Please keep that in mind as you read.

 Auto Layout has made a profound difference in my day-to-day development. I wrote this book
hoping it will do the same for you. It’s my intention that you walk away from this book with a
solid grounding in Auto Layout. And, if I’m lucky, the book will provide you with a “Eureka!”
moment or two to lead you forward.

 —Erica Sadun, July 2013

 How This Book Is Organized

 This book offers practical Auto Layout tutorials and how-tos. Here’s a rundown of what you’ll
find in this book’s chapters:

 ■ Chapter 1 , “Introducing Auto Layout” —Ready to get started? This chapter explains the
basic concepts that lie behind Auto Layout. You’ll read about why you should be using
Auto Layout in your apps and why it’s essentially a constraint satisfaction system.

 ■ Chapter 2 , “Constraints” —With Auto Layout, you build interfaces by declaring rules
about views. Each layout rule you add creates a requirement about how part of the
interface should be laid out. These rules are ranked based on a numeric priority that
you supply to the system, and Auto Layout builds your interface’s visual presentation
accordingly. This chapter introduces constraints and the rules of layout, and it explains
why your rules must be unambiguous and satisfiable.

 ■ Chapter 3 , “Interface Builder Layout” —Working with constraint-based design in
Interface Builder can sometimes be a frustrating experience for developers new to Auto
Layout. Fully updated for iOS 7 and Xcode 5, this chapter teaches you the tricks you
need for making IB create exactly the interface you want.

 ■ Chapter 4 , “Visual Formats” —This chapter explores what visual constraints look like,
how you build them, and how to use them in your projects. You’ll read how metrics
dictionaries and constraint options extend visual formats for more flexibility. And you’ll
see numerous examples that demonstrate these formats and explore the results they
create.

 ■ Chapter 5 , “Debugging Constraints” —Constraints can be maddeningly opaque. The
code and interface files you create them with don’t lend themselves to easy perusal. It
takes only a few “helpful” Xcode log messages to make some developers start tearing out
their hair. This chapter is dedicated to shining light on the lowly constraint and helping
you debug your work.

 ■ Chapter 6 , “Building with Auto Layout” —Designing for Auto Layout changes the way
you build interfaces. It’s a descriptive system that steps away from exact metrics such
as frames and centers. You focus on expressing relationships between views, describing

xvPreface

how items follow one another onscreen. You uncover the natural relationships in your
design and detail them through constraint-based rules. This chapter introduces the
expressiveness of Auto Layout design, spotlighting its underlying philosophy and offering
examples that showcase its features.

 ■ Chapter 7 , “Layout Solutions” —The chapters leading up to this one focus on know-
how and philosophy. This chapter introduces solutions. You’ll read about a variety of
real-world challenges and how Auto Layout provides practical answers for day-to-day
development work. The topics are grab bag, showcasing requests developers commonly
ask about.

 ■ Appendix A , “Answers to Exercises” — This appendix provides the answers to all the
chapter-ending exercises.

 About the Sample Code

 This book follows the trend I started in my iOS Developer’s Cookbook series. This book’s iOS
sample code always starts off from a single main.m file, where you’ll find the heart of the
application powering the example. This is not how people normally develop iOS or Cocoa
applications or how they should be developing them, but it provides a great way of presenting
a single big idea. It’s hard to tell a story when readers must search through many files and try
to find out what is relevant and what is not. Offering a single launching point concentrates the
story, allowing access to an idea in a single chunk.

 The presentation in this book does not produce code in a standard day-to-day best-practices
approach. Instead, it offers concise solutions that you can incorporate into your work as
needed. For the most part, the examples for this book use a single application identifier: com.
sadun.helloworld. This avoids clogging up your iOS devices with dozens of examples at once.
Each example replaces the preceding one, ensuring that your home screen remains relatively
uncluttered. If you want to install several examples simultaneously, you can simply edit the
identifier, adding a unique suffix, such as com.sadun.helloworld.table-edits.

 You can also edit the custom display name to make the apps visually distinct. Your iOS Team
Provisioning Profile matches every application identifier, including com.sadun.helloworld. This
allows you to install compiled code to devices without having to change the identifier; just
make sure to update your signing identity in each project’s build settings.

 There is a smattering of OS X code in this book as well. This is not an OS X–centered book
(as you can guess from the title), but I’ve covered OS X topics where it makes sense to do so.
I spend the majority of my time in iOS, so please forgive any OS X faux pas I make along the
way and do drop me notes to help me correct whatever I’ve gotten wrong.

xvi Preface

 Getting the Sample Code

 You’ll find the source code for this book at http://github.com/erica/Auto-Layout-Demystified
on the open-source GitHub hosting site. There, you’ll find a chapter-by-chapter collection of
source code that provides working examples of the material covered in this book.

 As explained later, you can get the sample code either by using git directly or by clicking
GitHub’s download button. It was at the right center of the page when I wrote this book. It
enables you to retrieve the entire repository as a ZIP archive or tarball.

 Getting Git

 You can download this book’s source code by using the git version control system. An OS
X implementation of git is available at http://code.google.com/p/git-osx-installer . OS X git
implementations include both command-line and GUI solutions, so hunt around for the
version that best suits your development needs.

 Getting GitHub

 GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public
repositories. It provides both free hosting for public projects and paid options for private
projects. With a custom Web interface that includes wiki hosting, issue tracking, and an
emphasis on social networking of project developers, it’s a great place to find new code or
collaborate on existing libraries. You can sign up for a free account at the GitHub Web site,
which then allows you to copy and modify this repository or create your own open-source iOS
projects to share with others.

 Contribute!

 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. You can pitch in by suggesting bug fixes and corrections
and by expanding the code that’s on offer. GitHub allows you to fork repositories and grow
them with your own tweaks and features and then share them back to the main repository. If
you come up with a new idea or approach, let me know. My team and I are happy to include
great suggestions both at the repository and in the next edition of this book.

 Contacting the Author

 If you have any comments or questions about this book, please drop me an e-mail message at
 erica@ericasadun.com or stop by the GitHub repository and contact me there.

http://github.com
http://github.com/erica/Auto-Layout-Demystified
http://code.google.com/p/git-osx-installer

xviiPreface

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone or e-mail address. I will carefully review your comments and share them with the author
and editors who worked on the book.

 E-mail: trina.macdonald@pearson.com

 Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

 Acknowledgments

 No book is the work of one person. I want to thank my team who made this possible. The
lovely Trina MacDonald gave me the green light on this title, thus ultimately providing the
opportunity you now have to read it. Chris Zahn is my wonderful development editor, and
Olivia Basegio makes everything work even when things go wrong.

 I send my thanks to the entire Addison-Wesley/Pearson production team, specifically Kristy
Hart, Betsy Gratner, Kitty Wilson, Nonie Ratcliff, and Chuti Prasertsith.

 Thanks go as well to Neil Salkind, my agent for many years, and Stacey Czarnowski, my new
Neil; to Rich Wardwell, my technical editor on the first edition, and Mike Shields and Ashley
Ward, my tech editors on the second; and to my colleagues, both present and former, at TUAW
and the other blogs I’ve worked at.

 I am deeply indebted to the wide community of iOS developers who supported me in IRC and
who helped by reading drafts of this book and offering feedback. Particular thanks go to
Oliver Drobnik, Aaron Basil (of Ethervision), Harsh Trivedi, Alfonso Urdaneta, Michael
Prenez-Isbell, Alex Hertzog, Neil Taylor, Maurice Sharp, Mike Greiner, Rod Strougo, Chris
Samuels, Hamish Allan, Jeremy Tregunna, Lutz Bendlin, Diederik Hoogenboom, Matt Yohe,
Mahipal Raythattha, Neil Ticktin, Robert Jen, Greg Hartstein, Jonathan Thompson,
Ajay Gautam, Shane Zatezalo, Wil Macaulay, Douglas Drumond, Bill DeMuro, Evan Stone,
Alex Mault, David Smith, Duncan Champney, Jeremy Sinclair, August Joki, Mike Vosseller,
Remy “psy” Demarest, Joshua Weinburg, Emanuele Vulcano, and Charles Choi. Their
techniques, suggestions, and feedback helped make this book possible. If I have overlooked
anyone who contributed to this effort, please accept my apologies for the oversight.

 Special thanks also go to my husband and kids. You are wonderful.

 About the Author

 Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and Web design, including the widely popular
 The Core iOS 6 Developer’s Cookbook , fourth edition. She currently blogs at TUAW.com and has
blogged in the past at O’Reilly’s Mac Devcenter, Lifehacker, and Ars Technica. In addition to
being the author of dozens of iOS-native applications, Erica holds a Ph.D. in computer science
from Georgia Tech’s Graphics, Visualization and Usability Center. A geek, a programmer,
and an author, she’s never met a gadget she didn’t love. When not writing, she and her geek
husband parent three geeks-in-training, who regard their parents with restrained bemusement
when they’re not busy rewiring the house or plotting global domination.

This page intentionally left blank

 1
 Introducing Auto Layout

 Auto Layout re-imagines the way developers create user interfaces. It provides a flexible and power-
ful system that describes how views and their content relate to each other and to the superviews they
occupy. In contrast to older design approaches, this technology offers incredible control over layout, with
a wider range of customization than you can get with frames, springs, and struts.

 Auto Layout has garnered both a loyal user base and fanatical detractors. Its reputation for diffi-
culty and frustration, particularly when used through Interface Builder (IB), are occasionally merited.
Although Xcode 5 vastly improves that situation (by doing away with several baffling and alienating
features), this is a technology that continues to evolve toward full maturity.

 Auto Layout is a fantastic tool. It does things that earlier technologies could never dream of. From edge
case handling to creation of reciprocal relationships between views, Auto Layout introduces immense
power. What’s more, Auto Layout is compatible with many of Apple’s most exciting application
programming interfaces (APIs), including animations, motion effects, and sprites.

 That’s why this book exists. You’re about to learn Auto Layout mastery by example, with plenty of
explanations and tips. Instead of struggling with class documentation, you’ll read, in simple steps, how
the system works, how to tweak it to make it work better, and why Auto Layout is far more powerful
than many developers realize. You’ll discover common design scenarios and discover best practices that
make Auto Layout a pleasure rather than a chore to use.

 Origins

 Auto Layout first debuted on iOS in 2012, as part of the iOS 6 release. It also appeared about
a year earlier in OS X 10.7 Lion. Intended to replace the older springs-and-struts-based
Autosizing, Auto Layout is a new system that builds relationships between views, specifying
how views relate to their superviews and to each other.

 Auto Layout is based on the Cassowary constraint-solving toolkit. Cassowary was developed
at the University of Washington by Greg J. Badros and Alan Borning to address user interface

2 Chapter 1 Introducing Auto Layout

layout challenges. Here’s what the Cassowary SourceForge project page (http://sourceforge.net/
p/cassowary/wiki/Home/) says about it:

 Cassowary is an incremental constraint solving toolkit that efficiently solves systems of
linear equalities and inequalities. Constraints may be either requirements or preferences.
Re-solving the system happens rapidly, supporting UI applications.

 Cassowary was developed around an important interface phenomenon: that inequality and
equality relationships occur naturally in user interfaces. Cassowary developed a rule-based
system that enabled developers to describe these relationships between views. These relation-
ships were described through constraints. Constraints are rules that describe how one view’s
layout is limited with respect to another. For example, a view might occupy only the left half
of the screen, or two views might always need to be aligned at their bottoms.

 Cassowary offers an automatic solver that transforms its system of constraint-based layout rules
(essentially a set of simultaneous linear equations, if you’re a math geek) into view geometries
that express those rules. Cassowary’s constraint system is powerful and nuanced. Since its
debut, Cassowary has been ported to JavaScript, .NET/Java, Python, Smalltalk, C++, and, via
Auto Layout, to Cocoa and Cocoa Touch.

 In iOS and OS X, the constraint-powered Auto Layout efficiently arranges the views in your
interface. You provide rules, whether through IB or through code, and the Auto Layout system
transforms those rules into view frames.

 Saying “Yes” to Auto Layout

 There are many reasons developers want to say “No” to Auto Layout. Maybe it’s too new, too
strange, or requires a bit of work to update interfaces. But you should say “Yes.” Auto Layout
revolutionizes view layout with something wonderful, fresh, and new. Apple’s layout features
make your life easier and your interfaces more consistent, and they add resolution-independent
placement for free. You get all this, regardless of device geometry, orientation, and window
size.

 Auto Layout works by creating relationships between onscreen objects. It specifies the way the
runtime system automatically arranges your views. The outcome is a set of robust rules that
adapt to screen and window geometry. With Auto Layout, you describe constraints that specify
how views relate to one another, and you set view properties that describe a view’s relationship
to its content. With Auto Layout, you can make requests such as the following:

 ■ Match one view’s size to another view’s size so that they always remain the same width.

 ■ Center a view (or even a group of views) in a superview, no matter how much the
superview reshapes.

 ■ Align the bottoms of several views while laying out a row of items.

 ■ Offset a pair of items by some constant distance (for example, adding a standard 8-point
padding space between views).

http://sourceforge.net/p/cassowary/wiki/Home
http://sourceforge.net/p/cassowary/wiki/Home

3Saying “Yes” to Auto Layout

 ■ Tie the bottom of one view to another view’s top so that when you move one, you move
them both.

 ■ Prevent an image view from shrinking to the point where the image cannot be fully seen
at its natural size. (That is, don’t compress or clip the view’s content.)

 ■ Keep a button from showing too much padding around its text.

 The first five items in this list describe constraints that define view geometry and layout, estab-
lishing visual relationships between views. The last two items relate a view to the content it
presents. When working with Auto Layout, you negotiate both these kinds of tasks.

 Here are some of the strengths that Auto Layout brings to your development.

 Geometric Relationships

 Auto Layout excels at building relationships. Figure 1-1 shows a custom iOS control built
entirely with Auto Layout. This picker enables users to select a color. Each pencil consists of a
fixed-size tip view placed directly above a stretchable bottom view. As users make selections,
items move up and down together to indicate their current choice. Auto Layout constraints
ensure that each tip stays exactly on top of its base, that each “pencil” is sized to match its
fellows, and that the paired tip and base items are laid out in a bottom-aligned row.

 Figure 1-1 This pencil-picker custom control was built entirely with Auto Layout.

 This particular pencil picker is built programmatically; that is, a data source supplies the
number of pencils and the art for each tip. By describing the relationships between the items,
Auto Layout simplifies the process of extending this control. You need only say “place each
new item to the right, match its width to the existing pencils, and align its bottom” to grow
this picker from 10 items to 11, 12, or more. Best of all, constraint changes can be animated.
The pencil tip animates up and down as the base reshapes to new constraint offsets.

 The following code shows how these items were laid out in my project:

 // This sample extensively uses custom macros to minimize the
 // repetition and wordiness of this code, while giving a sense of the
 // design choices and layout vocabulary offered by Auto Layout.
 // Read more about similar custom macros in Chapter 6.

4 Chapter 1 Introducing Auto Layout

 - (void) layoutPicker
 {
 for (int i = 0; i < segmentCount; i++)
 {
 // Add base
 UIImageView *base = [[UIImageView alloc] initWithImage:baseArt];
 base.tag = i + 1;
 [self addSubview:base];
 PREPCONSTRAINTS(base);

 // Load tip
 UIImageView *tip = [[UIImageView alloc] initWithImage:segmentArt[@(i)]];
 tip.tag = i + 1001;
 [self addSubview:tip];
 PREPCONSTRAINTS(tip);

 // Constrain tips on top of base
 CONSTRAIN_VIEWS(@"V:[tip][base]|", tip, base);

 // Left align tip and base
 ALIGN_LEFT(tip, base);

 // Tips and base have same width so
 // match the tip width to the base width
 MATCH_WIDTH(tip, base);
 }

 // Set up leftmost base
 UIView *view1 = [self viewWithTag:1];
 ALIGN_LEFT(view1, 0);

 // Line up the bases
 for (int i = 2; i <= segmentCount; i++)
 {
 // Each base to the right of the previous one
 UIView *view1 = [self viewWithTag:i-1];
 UIView *view2 = [self viewWithTag:i];
 CONSTRAIN_VIEWS(@"H:[view1][view2]", view1, view2);
 }

 for (int i = 1; i <= segmentCount; i++)
 {
 // Create base height constraint so the
 // base's height (the pencil without the tip) is
 // fixed to the value of baseHeight
 UIImageView *base = (UIImageView *)[self viewWithTag:i];
 baseHeight = base.image.size.height;

5Saying “Yes” to Auto Layout

 CONSTRAIN_HEIGHT(base, baseHeight);

 // Create tip size constraints fixing the
 // tip's width and height to these values
 UIImageView *tip = (UIImageView *)[self viewWithTag:i + 1000];
 CONSTRAIN_WIDTH(tip, targetWidth);
 CONSTRAIN_HEIGHT(tip, targetHeight);
 }
 }

 Content-Driven Layout

 Auto Layout is content driven. That is, it considers a view’s content during layout. For example,
imagine a resizable content view with several subviews, like the one shown in Figure 1-2 .
Suppose that you want to be able to resize this view but don’t want to clip any subview content
while doing so. Auto Layout helps you express these desires and rank them so that the system
makes sure not to clip when resizing.

 Figure 1-2 shows a small OS X application whose primary window protects the content of its
two subviews. (Throughout this book, I try to add a few OS X examples where possible. Auto
Layout is virtually identical on iOS and OS X.) These subviews include a label whose content is
the string Label and a resizable button whose content is, similarly, the string Button . The left
side of the figure shows the original content view as the application launches; the right side
shows the same window after it’s been resized to its minimum extent.

 Figure 1-2 Auto Layout can ensure that the stretchable button shown in the original view (left)
won’t clip while resizing. The window cannot resize any smaller than the small view (right) because
doing so would cause either the label or button to clip.

 At the right of Figure 1-2 , you see the smallest possible version of this view. Because its Auto
Layout rules resist clipping (these rules are called compression resistance), the window cannot
resize any further. The only way to allow it to shrink beyond this size is to demote or remove
one or both of its “do not clip” subview rules. A similar rule, called content hugging , allows a
view to resist padding and stretching, keeping the frame of each view close to the natural size
of the content it presents.

 Keep content in mind and adapt your rules as your views change the data they present. For
example, if you were switching from one language to another, you might need the width of
each label and button to adapt to different word lengths. For example, localizing English text
to Spanish or Portuguese might cause a 20%–25% expansion in word size. Localizing to Hebrew
or Arabic can shrink English text by a third.

6 Chapter 1 Introducing Auto Layout

 Prioritized Rules

 With prioritized rules, Auto Layout weighs the importance of layout choices and adapts to chal-
lenging edge conditions and special cases. Rule balancing is an important part of Auto Layout
design work. You not only specify the layout qualities of each view but also prioritize them.
When rules come into conflict—and they do quite regularly—the system uses your rankings to
select the most important layout qualities to preserve.

 In the example of Figure 1-2 , the integrity of the label and of the button contents have priority
over any request for a smaller window. This forces a natural minimum on the window size and
prevents the window from resizing any further than that.

 Inspection and Modularization

 One of the great things about Auto Layout is how well it can be centralized and inspected. This
is, however, a benefit only if you create your layouts in code. While you can browse constraints
in IB, and even visualize them with the proper tools, recovering the intent of each layout choice
is an intractable issue.

 In code, you can compartmentalize your rules to common methods (such as loadView and
 updateViewConstraints) and freely annotate them. Code trades off review against visualiza-
tion. You can inspect your layouts with ease to ensure that your logic is properly expressed.
You cannot preview those rules, however, except by running the application.

 You can easily modularize constraints. Once you’ve built a routine that centers a view in its
superview, you can re-use that routine indefinitely. By building a library of common constraint
requests (for example, “align this view to the bottom” or “create a row of these views with
center-Y alignment”), you cause your layout code to refine over time in both real-world read-
ability and overall reliability. You can see this modularization in the code example that accom-
panies Figure 1-1 .

 Incremental Adoption

 Auto Layout is backward compatible. Interfaces and nib files built using older Autosizing tech-
nology still work in Auto Layout. You are welcome to mix and match autoresizing views with
constraint-based layout. For example, you can load a nib whose subviews are laid out using
struts and springs and allow that view, in turn, to operate as a first-class member of the Auto
Layout world. The key is encapsulation.

 As long as rules do not directly conflict (for example, you can’t say “stretch using Autosizing”
 and “stretch using Auto Layout” at the same time on a single view), you can reuse complex
views you have already established in your projects. You can, for example, load Autosizing nibs
and seamlessly place them into your Auto Layout scenes.

7Constraints

 Constraints

 Now that you’ve read about the why of Auto Layout, this section introduces the what . Here’s
the basic vocabulary you need to start talking about this technology.

 Constraints, as you learned earlier, are rules that allow you to describe view layout. They limit
how things relate to each other and specify how they can be laid out. With constraints, you
can say “these items are always lined up in a horizontal row” or “this item resizes itself to
match the height of that item.” Constraints provide a layout language that you add to views to
describe geometric relationships.

 The constraints you work with belong to the NSLayoutConstraint class. This Objective-C class
specifies relationships between view attributes, such as heights, widths, positions, and centers.
What’s more, constraints are not limited to equalities. They can describe views using greater-
than-or-equal and less-than-or-equal relations so that you can say that one view must be at
least as big as or no bigger than another. Auto Layout development is built around creating and
adjusting these relationship rules in a way that fully defines your interfaces.

 Together, an interface’s constraints describe the ways views can be laid out to dynamically fit
any screen or window geometry. In Cocoa and Cocoa Touch, a well-defined interface layout
consists of constraints that are satisfiable and sufficient.

 Note

 Each individual constraint refers to either one or two views. Constraints relate one view’s attri-
butes either to itself or to another view.

 Satisfiability

 Cocoa/Cocoa Touch takes charge of meeting layout demands through its constraint satisfaction
system. The rules must make sense both individually and as a whole. That is, a rule must be
created in a valid manner, and it also must play a role in the greater whole. In logic systems,
this is called satisfiability , or validity. A view cannot be both to the left and to the right of
another view. So, the key challenge when working with constraints is to ensure that the rules
are rigorously consistent.

 Any views you lay out in IB can be guaranteed to be satisfiable, as IB offers a system that
optionally checks and validates your layouts. It can even fix conflicting constraints. This is not
true in code. You can easily build views and tell them to be exactly 360 points wide and 140
points wide at the same time. This can be mildly amusing if you’re trying to make things fail,
but it is more often utterly frustrating when you’re trying to make things work, which is what
most developers spend their time doing.

 When rules fail, they fail loudly. At compile time, Xcode issues warnings for conflicting IB
constraints and other IB-based layout issues. At runtime, the Xcode console provides verbose
updates whenever the solver hits a rough patch. That output explains what might have gone
wrong and offers debugging assistance.

8 Chapter 1 Introducing Auto Layout

 In some cases, your code will raise exceptions. Your app terminates if you haven’t implemented
handlers. In other cases (such as the example that follows), Auto Layout keeps your app
running by deleting conflicting constraint rules for you. This produces interfaces that can be
somewhat unexpected.

 Regardless of the situation, it’s up to you to start debugging your code and your IB layouts
to try to track down why things have broken and the source of the conflicting rules. This is
never fun.

 Consider the following console output, which refers to the view I mentioned that attempts to
be both 360 points and 140 points wide at the same time:

 Note

 The boldface in this code is mine. I’ve used it to highlight the sizes for each constraint, plus
the reason for the error. In this example, both rules have the same priority and are inconsistent
with each other.

 2013-01-14 09:02:48.590 HelloWorld[69291:c07]
 Unable to simultaneously satisfy constraints .
 Probably at least one of the constraints in the following list is one you
 don't want. Try this: (1) look at each constraint and try to figure out which
 you don't expect; (2) find the code that added the unwanted constraint or
 constraints and fix it.
 (Note: If you're seeing NSAutoresizingMaskLayoutConstraints that you don't
 understand, refer to the documentation for the UIView property
 translatesAutoresizingMaskIntoConstraints)
 (
 "<NSLayoutConstraint:0x7147d40 H:[TestView:0x7147c50(360)]>",
 "<NSLayoutConstraint:0x7147e70 H:[TestView:0x7147c50(140)]>"
)

 Will attempt to recover by breaking constraint
 <NSLayoutConstraint:0x7147d40 H:[TestView:0x7147c50(360)]>

 Break on objc_exception_throw to catch this in the debugger.
 The methods in the UIConstraintBasedLayoutDebugging category on
 UIView listed in <UIKit/UIView.h> may also be helpful.

 This unsatisfiable conflict cannot be resolved except by breaking one of the constraints, which
the Auto Layout system does. It arbitrarily discards one of the two size requests (in this case,
the 360 size) and logs the results.

 Sufficiency

 Another key challenge is making sure that your rules are specific enough. An underconstrained
interface (one that is insufficient or ambiguous) creates random results when faced with many

9Constraints

possible layout solutions (see the top portion of Figure 1-3). You might request that one view
lies to the right of the other, but unless you tell the system otherwise, you might end up with
the left view at the top of the screen and the right view at the bottom. That one rule doesn’t
say anything about vertical orientation.

 Figure 1-3 Odd layout positions (top) are the hallmark of an underconstrained layout. Although
these particular views are constrained to show up onscreen, their near-random layout indicates
insufficient rules describing their positions. By default, views might not show up at all, especially
when they are underconstrained. Chapter 4 , “Visual Formats,” discusses fallback rules, which
ensure that views are both visibly sized and onscreen. A sufficient layout (bottom) provides layout
rules for each of its views.

 A sufficient set of constraints fully expresses a view’s layout, as in the bottom portion of Figure
 1-3 . In this case, each view has a well-defined size and position.

 Sufficiency does not mean “hard coded.” In the layout shown at the bottom of Figure 1-3 ,
none of these positions are specified exactly. The Auto Layout rules say to place the views in a

10 Chapter 1 Introducing Auto Layout

horizontal row, center-aligned vertically to each other. The first view is pinned off of the super-
view’s left-center. These constraints are sufficient because every view’s position can be deter-
mined from its relationships to other views.

 A sufficient, or unambiguous , layout has at least two geometric rules per axis, or a minimum of
four rules in all. For example, a view might have an origin and a size—as you would use with
frames—to specify where it is and how big it is. But you can express much more with Auto
Layout. The following sufficient rule examples define a view’s position and extent along one
axis, as illustrated in Figure 1-4 :

 ■ You could pin the horizontal edges (A) of a view to exact positions in its superview.
(The two properties defined in this example are the view’s minimum X and maximum X
positions.)

 ■ You could match the width of one view to another subview (B) and then center it
horizontally to its superview (width and center X).

 ■ You could declare a view’s width to match its intrinsic content, such as the length of text
drawn on it (C), and then pin its right (trailing) edge to the left (leading) edge of another
view (width and maximum X).

 ■ You could pin the top and bottom of a view to the superview (D) so that the view
stretches vertically along with its superview (minimum Y and maximum Y).

 ■ You could specify a view’s vertical center and its maximum extent (E) and let Auto
Layout calculate the height from that offset (center Y and maximum Y).

 ■ You could specify a view’s height and its offset from the top of the view (F) and then
hang the view off the top of the superview (minimum Y and height.).

 Figure 1-4 Sufficient layout requires at least two rules per axis.

11Constraint Attributes

 Each of these rules provides enough information along one axis to avoid ambiguity. That’s
because each one represents a specific declaration about how the view fits into the overall
layout.

 When rules fail, they lack this exactness. For example, if you supply only the width, where
should the system place the item along the X-axis? At the left? Or the right? Somewhere in the
middle? Or maybe entirely offscreen? Or if you only specify a Y position, how tall should the
view be? 50 points? 50,000 points? 0 points? Missing information leads to ambiguous layouts.

 You often encounter ambiguity when working with inequalities, as in the top image in Figure
 1-3 . The rules for these views say to stay within the bounds of the superview—but where? If
their minimum X value is greater than or equal to their superview’s minimum X value, what
should that X value be? The rules are insufficient, and the layout is therefore ambiguous.

 Constraint Attributes

 Constraints use a limited geometric vocabulary. Attributes are the “nouns” of the constraint
system, describing positions within a view’s alignment rectangle. Relations are “verbs,” specify-
ing how the attributes compare to each other.

 The attribute nouns (see Figure 1-5) speak to physical geometry. Constraints offer the following
view attribute vocabulary:

 ■ Left, right, top, and bottom — The edges of a view’s alignment rectangle on the left (A in
 Figure 1-5), right (B), top (C), and bottom (D) of the view. These correspond to a view’s
minimum X, maximum X, minimum Y, and maximum Y values. (The coordinate system
used by UIKit and Auto Layout has its origin at the top-left.)

 ■ Leading and trailing — The leading and trailing edges of the view’s alignment rectangle.
In left-to-right (English-like) systems, these correspond to “left” (leading, A) and “right”
(trailing, B). In right-to-left linguistic environments like Arabic or Hebrew, these roles
flip; right is leading (B), and left is trailing (A).

 Tip

 When internationalizing your applications, always prefer leading and trailing over left and right.
This allows your interfaces to flip properly when using right-to-left languages, like Arabic and
Hebrew.

 ■ Width and height — The width (E) and height (F) of the view’s alignment rectangle.

 ■ CenterX and CenterY — The X-axis (H) and Y-axis (G) centers of the view’s alignment
rectangle.

 ■ Baseline — The alignment rectangle’s baseline (I), typically a fixed offset above its bottom
attribute.

12 Chapter 1 Introducing Auto Layout

 Figure 1-5 Attributes specify geometric elements of a view.

 Relations compare values. Constraint math is limited to three relations: setting equality or
setting lower and upper bounds for comparison. You can use the following layout relations:

 ■ NSLayoutRelationLessThanOrEqual —For less-than-or-equal inequality

 ■ NSLayoutRelationEqual —For equality

 ■ NSLayoutRelationGreaterThanOrEqual —For greater-than-or-equal-to inequality

 You might not think that these three relations would give you much to work with. However,
these three relations cover all the ground needed for user interface layout. They offer ways to
set specific values and apply maximum and minimum limits.

 About Those Missing Views

 It’s common for developers new to Auto Layout to “lose” views. They discover that views they
have added end up offscreen or that they have a zero size due to constraints. (Incidentally,
Auto Layout works with positive sizes, zero or larger. You cannot create views with negative
widths or heights.) The missing views problem catches many devs. This problem happens with
both underconstrained views and views with inconsistent rules.

 In this section, you’ll see a little bit of constraint code, even before you’ve read about the
details of the constraint class and how instances work. Please bear with me. I’ve added high-
lights to help explain ambiguous and underconstrained scenarios to make a point. If you
work with Auto Layout, you should be aware of these situations before you start using the
technology.

13About Those Missing Views

 Underconstrained Missing Views

 Underconstrained views don’t give Auto Layout enough information to build from, so it
often defaults to a size of zero. Consider the following example. This code creates a new view,
prepares it for Auto Layout, and then adds two sets of constraints, which I’ve highlighted in
boldface:

 // Create a new view and add it into the Auto Layout system
 // This view goes missing despite the initWithFrame: size
 UIView *view = [[UIView alloc]
 initWithFrame:CGRectMake(0.0f, 0.0f, 30.0f, 30.0f)];
 [self.view addSubview:view];
 view.translatesAutoresizingMaskIntoConstraints = NO;

 // Add two sets of rules, pinning the view and setting height
 [self.view addConstraints:[NSLayoutConstraint
 constraintsWithVisualFormat:@" V:|[view(==80)] " // 80 height
 options:0 metrics:nil
 views:NSDictionaryOfVariableBindings(view)]];
 [self.view addConstraints:[NSLayoutConstraint
 constraintsWithVisualFormat:@" H:|[view] "
 options:0 metrics:nil
 views:NSDictionaryOfVariableBindings(view)]];

 The first set of constraints pins the view to the top of its superview and sets the height to 80.
The second set pins the view to the superview’s leading edge. (This is the left side in the United
States, with English’s left-to-right writing system.) I deliberately did not specify a width. The
view’s size is, therefore, underconstrained.

 You might expect Auto Layout to default to the initial frame size, which was set to 30 by 30
points. It does not. When this snippet sets translatesAutoresizingMaskIntoConstraints
to NO , that initialization is essentially thrown away. As the view appears onscreen, the ambigu-
ous rules passed to Auto Layout result in a width that falls to zero, creating a view that’s not
visible:

 2013-01-14 10:47:40.460 HelloWorld[73891:c07]
 <UIView: 0x884dfc0; frame = (0 0; 0 80) ; layer = <CALayer: 0x884e020>>

 Note

 When adding and removing constraints at runtime, order matters. Auto Layout validates its
rules at each step. When updating constraints—such as when a device reorients—remove
invalid constraints first before adding new rules to avoid raising exceptions.

14 Chapter 1 Introducing Auto Layout

 Missing Views with Inconsistent Rules

 Inconsistent rules may also produce views that are missing in action. For example, imagine
a pair of rules that say “View A is three times the width of View B” and “View B is twice the
width of View A.” The following code snippets implement these rules. I’ve boldfaced the parts
of the code that tell the rule story:

 NSLayoutConstraint *constraint;
 constraint = [NSLayoutConstraint
 constraintWithItem: viewA
 attribute:NSLayoutAttribute Width
 relatedBy:NSLayoutRelation Equal
 toItem: viewB
 attribute:NSLayoutAttribute Width
 multiplier: 3.0f constant:0.0f];
 [self.view addConstraint:constraint];

 constraint = [NSLayoutConstraint
 constraintWithItem: viewA
 attribute:NSLayoutAttribute Width
 relatedBy:NSLayoutRelation Equal
 toItem: viewB
 attribute:NSLayoutAttribute Width
 multiplier: 2.0f constant:0.0f];
 [self.view addConstraint:constraint];

 Surprisingly, these two rules are neither unsatisfiable nor ambiguous, even though common
sense suggests otherwise. That’s because both rules are satisfied when View A and View B have
zero width. At zero, View A’s width can be three times the width of View B, and View B twice
the width of View A:

 0 = 0 * 3 and 0 = 0 * 2

 When this code is run and the rules are applied, the views present the zero-width frames
expected from this scenario:

 2013-01-14 11:02:38.005 HelloWorld[74460:c07]
 <TestView: 0x8b30910; frame = (320 454; 0 50) ; layer = <CALayer: 0x8b309d0>>
 2013-01-14 11:02:38.006 HelloWorld[74460:c07]
 <TestView: 0x8b32570; frame = (320 436; 0 68) ; layer = <CALayer: 0x8b32450>>

 Tracking Missing Views

 You can track down “missing” views with the debugger by inspecting their geometry after you
expect them to appear (for example, in viewDidAppear: and awakeFromNib). You may want
to add NSAssert statements about their expected size and positions. Some will be, as discussed,
zero sized.

15Ambiguous Layout

 The following view, for example, had a zero-sized frame because it was underconstrained in the
Auto Layout system:

 2013-01-09 14:31:41.869 HelloWorld[29921:c07] View: <UIView: 0x71bb390;
 frame = (30 430; 0 0) ; layer = <CALayer: 0x71bb3f0>>

 Other views may simply be offscreen because you haven’t told Auto Layout that the views must
appear onscreen. For example, this view had a positive size (20 points by 20 points), but its
frame with its (–20, –20) origin lay outside its view controller’s presentation:

 2013-01-09 14:33:37.546 HelloWorld[29975:c07] View: <UIView: 0x7125f70;
 frame = (-20 -20; 20 20) ; layer = <CALayer: 0x7125fd0>>

 In other cases, you might load a view from a storyboard or nib file and see only part of it
onscreen, or it may occupy the entire screen at once. These are hallmarks of an underlying
Auto Layout issue.

 Ambiguous Layout

 During development, you can test whether a view’s constraints are sufficient by calling
 hasAmbiguousLayout . This returns a Boolean value of YES for a view that could have
occupied a different frame or NO for a view whose constraints are fully specified.

 These results are view specific. For example, imagine a fully constrained view whose child is
underconstrained. The view itself does not have ambiguous layout, even though its child does.
You can and should test the layout individually for each view in your hierarchy, as follows:

 @implementation VIEW_CLASS (AmbiguityTests)
 // Debug only. Do not ship with this code
 - (void) testAmbiguity
 {
 NSLog(@"<%@:0x%0x>: %@",
 self.class.description, (int)self,
 self.hasAmbiguousLayout ? @"Ambiguous" : @"Unambiguous");

 for (VIEW_CLASS *view in self.subviews)
 [view testAmbiguity];
 }
 @end

 Note

 In this code snippet, and throughout this book, VIEW_CLASS is defined as either UIView or
 NSView , depending on the deployment system.

16 Chapter 1 Introducing Auto Layout

 This code descends through a view hierarchy and lists the results for each level. Here’s what
a simple layout with two subviews returned for the underconstrained layout code originally
shown in Figure 1-3 (top):

 HelloWorld[76351:c07] <UIView:0x715a9a0>: Unambiguous
 HelloWorld[76351:c07] <TestView:0x715add0>: Ambiguous
 HelloWorld[76351:c07] <TestView:0x715c9e0>: Ambiguous

 The superview does not express ambiguous layout, but its child views do.

 You can run tests for ambiguous layout as soon as you like—in loadView or wherever you set
up new views and add constraints. It’s generally a good first step to take any time you’re adding
new views to your system as well. It ensures that your constraints really are as fully specified as
you think they are.

 Use these tests during development but do not ship them in App Store code. They help you
check your layouts as you incrementally build interfaces.

 Exercising Ambiguity

 Apple offers a curious tool in the form of its exerciseAmbiguityInLayout view method.
This method automatically tweaks view frames that express ambiguous layouts. This is a view
method (UIView and NSView) that checks for ambiguous layout and attempts to randomly
change a view’s frame.

 Figure 1-6 shows this call in action. Here, you see an OS X window with three undercon-
strained subviews. Their positions have not been set programmatically, so they end up wher-
ever Auto Layout places them. In this example, after you exercise ambiguity (see Figure 1-6 ,
right), the light-colored view, initially at the bottom right, moves to the bottom left.

 Figure 1-6 Exercising ambiguity allows you to change view frames to other legal values that are
allowed under your current set of Auto Layout constraints.

17Ambiguous Layout

 This tells you that (1) this is one of the affected underconstrained views and (2) you can see
some of the range that might apply to this view due to its lack of positioning constraints.

 Exercising ambiguity is a blunt and limited weapon. In this example, some views are
unchanged, even though they also had ambiguous layout. You shouldn’t rely on exercising
ambiguity to exhaustively find issues in your project, although it can be a useful tool for the
right audience. Exercising ambiguity won’t cure cancer or create world peace, but it has helped
me out of a (rare) pickle or two.

 Visualizing Constraints

 The purple outline that surrounds the window in Figure 1-6 is an OS X–only feature. On OS X,
you can visualize constraints by calling visualizeConstraints: on any NSWindow instance.
You pass it an array of constraint instances that you want to view.

 Here is a simple way to exhaustively grab the constraints from a view and all its subviews, by
using simple class extension:

 @implementation VIEW_CLASS (GeneralConstraintSupport)
 // Return all constraints from self and subviews
 - (NSArray *) allConstraints
 {
 NSMutableArray *array = [NSMutableArray array];
 [array addObjectsFromArray:self.constraints];
 for (VIEW_CLASS *view in self.subviews)
 [array addObjectsFromArray:[view allConstraints]];
 return array;
 }
 @end

 Note

 Apple can and does regularly extend classes. When creating categories for production code,
do not use obvious names (like allConstraints) that may conflict with Apple’s own develop-
ment. Adding custom prefixes, typically company or personal initials, guards your code against
conflicts with potential future updates. This book does not follow this advice in the interest of
making the code more readable.

 The purple backdrop that appears tells you whether the window’s layout is ambiguous. It tests
from the window down its view hierarchy, all the way to its leaves. If it finds any ambiguity, it
makes the Exercise Ambiguity button available, which means you don’t have to call the option
from your own code.

 This visualization option also shows you the constraints you passed as clickable blue lines,
helping you locate those constraints in a live application. You can click any item to log it to
the Xcode debugging console.

18 Chapter 1 Introducing Auto Layout

 Tip

 All these methods—testing for ambiguous layout, exercising layout ambiguity, and visualizing
constraints—are meant for development builds only. Don’t ship production code that calls
them.

 Intrinsic Content Size

 With Auto Layout, a view’s content plays as important a role in its layout as its constraints.
This is expressed through each view’s intrinsicContentSize , which describes the minimum
space needed to express the full view content without squeezing or clipping that data. It derives
from the natural properties of the content that each view presents.

 For an image view, for example, the intrinsic content size corresponds to the size of the image
it presents. A larger image requires a larger intrinsic content size. Consider the following
code snippet. It loads an iOS 7 standard Icon.png image into an image view and reports the
view’s intrinsic content size. As you’d expect, this size is 60 by 60 points, the size of the image
supplied to the view (see Figure 1-7 , top):

 UIImageView *iv = [[UIImageView alloc]
 initWithImage:[UIImage imageNamed:@"Icon-60.png"]];

 NSLog(@"%@", NSStringFromCGSize(iv.intrinsicContentSize));

 For a button, the intrinsic content size varies with its title (see the button images in Figure 1-7).
As a title grows or shrinks, the button’s intrinsic content size adjusts to match. This snippet
creates a button and assigns it a pair of titles, and it reports the intrinsic content size after each
assignment:

 UIButton *button =
 [UIButton buttonWithType:UIButtonTypeSystem];

 // Longer title, Figure 1-7, middle image
 [button setTitle:@"Hello World" forState:UIControlStateNormal];
 NSLog(@"%@: %@", [button titleForState:UIControlStateNormal],
 NSStringFromCGSize(button.intrinsicContentSize));

 // Shorter title, Figure 1-7, bottom image
 [button setTitle:@"On" forState:UIControlStateNormal];
 NSLog(@"%@: %@", [button titleForState:UIControlStateNormal],
 NSStringFromCGSize(button.intrinsicContentSize));

 When run, this snippet outputs the following sizes:

 2013-07-02 12:16:46.576 HelloWorld[69749:a0b] Hello World: {78, 30}
 2013-07-02 12:16:46.577 HelloWorld[69749:a0b] On: {30, 30}

19Intrinsic Content Size

 The Hello World version of the button expresses a wider intrinsic content size than the On
version, and both use the same height. These values can vary further as you customize a font
face and font size and title text.

 A view’s intrinsic size allows Auto Layout to best match a view’s frame to its natural content.
Earlier, you read that unambiguous layout generally requires setting two attributes in each axis.
When a view has an intrinsic content size, that size accounts for one of the two attributes. You
can, for example, place a text-based control or an image view in the center of its superview,
and its layout will not be ambiguous. The intrinsic content size plus the location combine for a
fully specified placement.

 When you change a view’s intrinsic contents, you need to call invalidateIntrinsicContent
Size to let Auto Layout know to recalculate at its next layout pass.

 Figure 1-7 A view’s intrinsic content size is the natural size that its contents occupy.

20 Chapter 1 Introducing Auto Layout

 Compression Resistance and Content Hugging

 As the name suggests, compression resistance refers to the way a view protects its content. A view
with a high compression resistance fights against shrinking. It won’t allow that content to
clip. Consider the buttons on the toolbar in Figure 1-8 . Both screenshots show an application
responding to a constraint that wants to set that button width to 40 points.

 Figure 1-8 Compression resistance describes how a view attempts to maintain its minimum
intrinsic content size. The button at the top of this figure has a high compression resistance.

 In Figure 1-8 , the top version of the button uses a high compression resistance priority value,
and the bottom version uses a low value. As you can see, the higher priority ensures that the
top button succeeds in preserving its intrinsic content. The resistance of the bottom button is
too low. The resizing succeeds, and the button compresses, clipping the text.

 The bottom button’s “don’t clip” request (that is, the compression resistance priority) is still
there, but it’s not important enough to prevent the “please set the width to 40” constraint from
resizing the view to the button’s detriment. Auto Layout often comes across two conflicting
requests. When only one of those requests can win, it satisfies the one with the higher priority.

 You specify a view’s compression resistance through IB’s Size Inspector (which you open by
selecting View > Utilities > Show Size Inspector > View > Content Compression Resistance

21Compression Resistance and Content Hugging

Priority), as shown in Figure 1-9 , or by setting a value in code. Set the value separately for each
axis, horizontal and vertical. Values may range from 1 (lowest priority) to 1,000 (required prior-
ity), and the default is 750:

 [button setContentCompressionResistancePriority:500
 forAxis:UILayoutConstraintAxisHorizontal];

 Figure 1-9 Adjust a view’s Content Compression Resistance Priority and Content Hugging Priority
settings in IB’s Size Inspector or through code. Although these numbers are presented as a scale
of positive integers in IB, they’re actually typed as floats: typedef float UILayoutPriority
(iOS) and NSLayoutPriority (OS X). The new Intrinsic Size pop-up enables you to override sizes
for placeholder items, so you can test your layout with varied configurations. Compression resis-
tance defaults to 750.

 In IB, this is also where you set a view’s content hugging priority. This refers to the way a view
prefers to avoid extra padding around its core content (as shown here) or stretching of that
core content (as with an image view that uses a scaled content mode). The buttons in Figure
 1-10 are being told to stretch. The button at the top has a high content hugging priority, so it
resists that stretching. It hugs to the content (in this case, the words Application Button). The
button at the bottom has a lower content hugging priority, and the request to stretch wins out.
The button pads its contents and produces the wide result you see.

 As with compression resistance, you set a view’s hugging priority in IB’s Size Inspector (refer to
 Figure 1-9) or in code, like this:

 [button setContentHuggingPriority:501
 forAxis:UILayoutConstraintAxisHorizontal]

 Content hugging defaults to 250.

22 Chapter 1 Introducing Auto Layout

 Image Embellishments

 When you include embellishments in your pictures such as shadows, sparkles, badges, and
other items that extend beyond the image’s core content, an image’s natural size may no
longer reflect the way you want Auto Layout to handle layout. In Auto Layout, constraints
determine view size and placement, using a geometric element called an alignment rectangle .
The UIKit API calls help you control that placement.

 Alignment Rectangles

 As developers create complex views, they may introduce visual ornamentation such as shadows,
exterior highlights, reflections, and engraving lines. As they do, these features are often drawn
onto image art rather than being added through layers or subviews. Unlike frames, a view’s
alignment rectangle should be limited to a core visual element. Its size should remain unaf-
fected as new items are drawn onto the view. Consider the left side of Figure 1-11 . It shows a
view drawn with a shadow and a badge. When laying out this view, you want Auto Layout to
focus on aligning just the core element—the blue rectangle—and not the ornamentation.

 Figure 1-10 Content hugging describes a view’s desire to match its frame to the natural size of
its content. A strong hugging priority limits the view from growing much larger than the content it
presents. A weak priority may allow a view to stretch and isolate its content among a sea of pad-
ding. Because of iOS 7’s borderless buttons, I’ve added a light background tint to the button to
highlight extents.

23Image Embellishments

 Figure 1-11 A view’s alignment rectangle (center) refers strictly to the core visual element to be
aligned, without embellishments.

 The center image in Figure 1-11 highlights the view’s alignment rectangle. This rectangle
excludes all ornamentation, such as the drop shadow and badge. It’s the part of the view you
want Auto Layout to consider when it does its work. Contrast this with the rectangle shown in
the right image. This version includes all the visual ornamentation, extending the view’s frame
beyond the area that should be considered for alignment.

 The right-hand rectangle in Figure 1-11 encompasses all the view’s visual elements. It encom-
passes the shadow and badge. These ornaments could potentially throw off a view’s alignment
features (for example, its center, bottom, and right) if they were considered during layout.

 By working with alignment rectangles instead of frames, Auto Layout ensures that key informa-
tion like a view’s edges and center are properly considered during layout. In Figure 1-12 , the
adorned view is perfectly aligned on the background grid. Its badge and shadow are not consid-
ered during placement.

 Figure 1-12 Auto Layout only considers this view’s alignment rectangle when laying it out as
centered in its superview. The shadow and badge don’t affect its placement.

24 Chapter 1 Introducing Auto Layout

 Visualizing Alignment Rectangles

 Both iOS and OS X enable you to overlay views with their alignment rectangles in
your running application. You set a simple launch argument from your app’s scheme:
 UIViewShowAlignmentRects for iOS and NSViewShowAlignmentRects for OS X. Set the
argument value to YES and make sure to prefix it with a dash, as shown in Figure 1-13 .

 When the app runs, rectangles show over each view. The resulting rectangles are light and can
be difficult to see. You will need to look closely at times.

 Figure 1-13 Set launch arguments in the scheme editor.

 Alignment Insets

 Drawn art often contains hard-coded embellishments such as highlights, shadows, and so forth.
These items take up little memory and run efficiently. Because of the low overhead, many
developers predraw effects to art assets. Figure 1-14 demonstrates a typical problem encoun-
tered when using image-based ornamentation with Auto Layout. The left image shows a basic
image view, whose art I created in Photoshop. I used a standard drop shadow effect. When
added to the image view, the 20-point by 20-point area I left for the shadow throws off the
view’s alignment rectangle, causing it to appear slightly too high and left.

 In its default implementation, the image view has no idea that the image contains ornamental
elements. You have to tell it how to adjust its intrinsic content so that the alignment rectangle
considers just that core material.

 To accommodate the shadow, you load and then rebuild the image. This is a two-step process.
First, you load the image as you normally would (for example, with imageNamed:). Then you
call imageWithAlignmentRectInsets: on that image to produce a new version that supports
the specified insets. The following snippet accommodates a 20-point shadow by insetting the
alignment rect on the bottom and right:

 UIImage *image = [[UIImage imageNamed:@"Shadowed.png"]
 imageWithAlignmentRectInsets:UIEdgeInsetsMake(0, 0, 20, 20)];
 UIImageView *imageView = [[UIImageView alloc] initWithImage:image];

25Image Embellishments

 Insets define offsets from the top, left, bottom, and right of some rectangles. You use them to
describe how far to move in (using positive values) or out (using negative values) from rect-
angle edges. These insets ensure that the alignment rectangle is correct, even when there are
drawn embellishments placed within the image. The fields are defined as follows:

 typedef struct {
 CGFloat top, left, bottom, right;
 } UIEdgeInsets;

 After specifying the alignment rect insets, the updated version now properly aligns, as you
see on the right in Figure 1-14 . I logged the pertinent details so that you can compare the view
details. Here’s what the view frame looks like (it shows the full 200×200 image size), the intrin-
sic content size built from the image’s alignment insets (180×180), and the resulting alignment
rectangle used to center the image view’s frame:

 HelloWorld[53122:c07] Frame: {{70, 162}, {200, 200}}
 HelloWorld[53122:c07] Intrinsic Content Size: {180, 180}
 HelloWorld[53122:c07] Alignment Rect: {{70, 162}, {180, 180}}

 Figure 1-14 Adjust your images to account for alignment when using Auto Layout. At the left,
the image view was created with an unadjusted image. It displays slightly too far left and up, which
you can see by looking at the points where the circle crosses the background grid. I added lines
over the image on the left to emphasize where the centering should have occurred. The image on
the right shows the adjusted image view. It centers exactly onto its parent view.

26 Chapter 1 Introducing Auto Layout

 It’s a bit of a pain to construct these insets by hand, especially if you may later update your
graphics. When you know the alignment rect and the overall image bounds, you can, instead,
automatically calculate the edge insets you need to pass to this method. Listing 1-1 defines a
simple inset builder. It determines how far the alignment rectangle lies from each edge of the
parent rectangle, and it returns a UIEdgeInset structure that represents those values. Use this
function to build insets from the intrinsic geometry of your core visuals.

 Listing 1-1 Building Edge Insets from Alignment Rectangles

 UIEdgeInsets BuildInsets(
 CGRect alignmentRect, CGRect imageBounds)
 {
 // Ensure alignment rect is fully within source
 CGRect targetRect =
 CGRectIntersection(alignmentRect, imageBounds);

 // Calculate insets
 UIEdgeInsets insets;
 insets.left = CGRectGetMinX(targetRect) –
 CGRectGetMinX(imageBounds);
 insets.right = CGRectGetMaxX(imageBounds) –
 CGRectGetMaxX(targetRect);
 insets.top = CGRectGetMinY(targetRect) –
 CGRectGetMinY(imageBounds);
 insets.bottom = CGRectGetMaxY(imageBounds) –
 CGRectGetMaxY(targetRect);

 return insets;
 }

 Declaring Alignment Rectangles

 Cocoa and Cocoa Touch offer several additional ways to report alignment geometry.
You may implement alignmentRectForFrame: , frameForAlignmentRect: ,
 baselineOffsetFromBottom , and alignmentRectInsets . These methods allow
your views to declare and translate alignment rectangles from code.

 For the most part, thankfully, you can ignore alignment rectangles and insets. Things just, for
the most part, work. The edge cases you encounter usually happen when Auto Layout comes
into conflict with transforms (and other circumstances when the actual frame doesn’t match
the visual frame, as with buttons).

 A few notes on these items:

 ■ alignmentRectForFrame: and frameForAlignmentRect: must always be mathematical
inverses of each other.

27Image Embellishments

 ■ Most custom views only need to override alignmentRectInsets to report content
location within their frame.

 ■ baselineOffsetFromBottom is available only for NSView and refers to the distance
between the bottom of a view’s alignment rectangle and the view’s content baseline,
such as that used for laying out text. This is important when you want to align views
to text baselines and not to the lowest point reached by typographic descenders, like j
and q.

 Here’s some information about alignmentRectForFrame: and frameForAlignmentRect:
from the UIView.h documentation:

 These two methods should be inverses of each other. UIKit will call both as part of layout
computation. They may be overridden to provide arbitrary transforms between frame
and alignment rect, though the two methods must be inverses of each other. However,
the default implementation uses alignmentRectInsets, so just override that if it’s
applicable. It’s easier to get right.

 A view that displayed an image with some ornament would typically override these,
because the ornamental part of an image would scale up with the size of the frame. Set
the NSUserDefault UIViewShowAlignmentRects to YES to see alignment rects drawn.

 NSLayoutConstraint.h on OS X adds the following comment:

 If you do override these, be sure to account for the top of your frame being either minY
or maxY depending on the superview’s flippedness.

 You can see this flippedness adjustment made in Listing 1-2 , in the next section.

 Implementing Alignment Rectangles

 Listing 1-2 provides a trivial example of code-based alignment geometry. This OS X app builds
a fixed-size view and draws a shadowed rounded rectangle into it. When USE_ALIGNMENT_
RECTS is set to 1 , its alignmentRectForFrame: and frameForAlignmentRect: methods
convert to and from frames and alignment rect s. As Figure 1-15 shows, these reporting
methods allow the view to display with proper alignment.

 Listing 1-2 Using Code-Based Alignment Frames

 @interface CustomView : NSView
 @end

 @implementation CustomView
 - (void) drawRect:(NSRect)dirtyRect
 {
 NSBezierPath *path;

28 Chapter 1 Introducing Auto Layout

 // Calculate offset from frame for 170x170 art
 CGFloat dx = (self.frame.size.width - 170) / 2.0f;
 CGFloat dy = (self.frame.size.height - 170);

 // Draw a shadow
 NSRect rect = NSMakeRect(8 + dx, -8 + dy, 160, 160);
 path = [NSBezierPath
 bezierPathWithRoundedRect:rect xRadius:32 yRadius:32];
 [[[NSColor blackColor] colorWithAlphaComponent:0.3f] set];
 [path fill];

 // Draw fixed-size shape with outline
 rect.origin = CGPointMake(dx, dy);
 path = [NSBezierPath
 bezierPathWithRoundedRect:rect xRadius:32 yRadius:32];
 [[NSColor blackColor] set];
 path.lineWidth = 6;
 [path stroke];
 [ORANGE_COLOR set];
 [path fill];
 }

 - (NSSize)intrinsicContentSize
 {
 // Fixed content size - base + frame
 return NSMakeSize(170, 170);
 }

 #define USE_ALIGNMENT_RECTS 1
 #if USE_ALIGNMENT_RECTS
 - (NSRect)frameForAlignmentRect:(NSRect)alignmentRect
 {
 // 1 + 10 / 160 = 1.0625
 NSRect rect = (NSRect){.origin = alignmentRect.origin};
 rect.size.width = alignmentRect.size.width * 1.06250;
 rect.size.height = alignmentRect.size.height * 1.06250;
 return rect;
 }

 - (NSRect)alignmentRectForFrame:(NSRect)frame
 {
 // Account for vertical flippage
 CGFloat dy = (frame.size.height – 170.0) / 2.0;
 rect.origin = CGPointMake(frame.origin.x, frame.origin.y + dy);

 rect.size.width = frame.size.width * (160.0 / 170.0);
 rect.size.height = frame.size.height * (160.0 / 170.0);

29Exercises

 return rect;
 }
 #endif
 @end

 Figure 1-15 Implementing intrinsic content size and frame/alignment rect conversion methods
ensures that your view will align and display correctly (as shown on the left) rather than be mis-
aligned and possibly clipped (as shown on the right).

 Exercises

 After reading this chapter, test your knowledge with these exercises:

 1. A label is constrained with 8-point offsets from its superview’s leading and trailing edges.
It is 22 points high. Is this label’s layout ambiguous? If so, how can you remove the
ambiguity?

 2. You create a system-style button and assign it the title Continue. The button’s center
is constrained to a point (150, 150) from its superview’s top and leading edges. Is this
view’s layout ambiguous? If so, how can you remove the ambiguity?

 3. In viewWillAppear: you create a new test view and add it to your view controller:

 UIView *testView = [[UIView alloc]
 initWithFrame:CGRectMake(50, 50, 100, 30)];
 view.backgroundColor = [UIColor blueColor];
 [self.view addSubview:view];
 view.translatesAutoresizingMaskIntoConstraints = NO;

 After these lines, you add constraints that center the test view within its superview. What
size will the view be when the app runs? Why?

 4. A 54-by-54-point image consists of a 50-by-50-point square, with a drop shadow offset 4
points to the right and 4 points down. (a) Show code that assigns alignment insets to this
image. (b) When the image is added to an image view and center-aligned to its superview
on both axes, what geometric point within the image lies at the center of the superview?

30 Chapter 1 Introducing Auto Layout

 5. You add a button to your view and constrain it to stretch from side to side at a priority of
500. Will it stretch? Why or why not?

 Conclusions

 This chapter introduces the core concepts that underpin Auto Layout, Cocoa’s declarative
constraint-based descriptive layout system. You have learned that Auto Layout focuses on the
relationships between views and between views and their content—instead of on their frames.
A logical priority-based framework drives Auto Layout. You have discovered that its rules must
be satisfiable, consistent, and sufficient. Here are a few final thoughts to take away from this
chapter:

 ■ Constraints are fun and powerful. They provide elegant solutions to common layout
situations.

 ■ Don’t be afraid to mix and match Auto Layout and Autosizing. As long as rules do not
conflict, you can port existing layouts to the new Auto Layout world.

 ■ Auto Layout is more than just constraints. Its content-protecting features provide a key
component that helps specify what to show—and not just where to show it. For example,
compression resistance and content hugging adapt graphical user interfaces (GUIs)
during internationalization, allowing you to easily accommodate differing label sizes
when languages change.

 ■ Auto Layout is essentially a linear equation solver that attempts to find a satisfiable
geometric expression of its rules. When its equations produce too many solutions, you
end up with underconstrained ambiguous layout. When its equations cannot produce
any solution, you know that constraints are in conflict.

This page intentionally left blank

Index

 A
 accordion-style constraints, 220 - 221

 addImageView: method, 218

 addView: method, 203

 alignment

 constraint debugging, 152 - 153

 frames, 26 - 28

 geometry in Cocoa/Cocoa Touch, 26

 image embellishments

 insets, 24 - 26

 rectangles, 22 - 24 , 26 - 29

 imageWithAlignmentRectInsets:
method, 24

 layout constraints, 71 , 81 , 83 - 85

 NSViewShowAlignmentRects
class, 24 , 176

 UIViewShowAlignmentRects
class, 24 , 27 , 176

 visual format constraints

 flush, 129

 masks, 111

 perpendicular to format, 112

 skipping options, 113

 vertical or horizontal, 116 - 117 , 130

 alignmentRectForFrame: method, 26 - 27

252 alignmentRectInsets method

 alignmentRectInsets method, 26 - 27

 ambiguity

 exerciseAmbiguityInLayout view
method, 16

 hasAmbiguousLayout property, 15

 layout constraints, 15 - 16

 resolution of, 67 - 68 , 71

 tracing ambiguity, 151 - 152

 problems, 151 - 152 , 170 - 172

 tracing, 170 - 172

 ancestorSharedWithView: method, 48

 AppleTextDirection class, 176 , 178

 Application Button, 21

 Assistant Editor, 75

 Attributes Inspector

 Is Initial View Controller, 70

 Placeholder, 104

 Simulated Metrics

 Orientation, 70

 Orientation/Landscape or
Portrait, 97

 using, 88 - 90

 Auto Layout

 accordion-style constraints, 220 - 221

 and Autosizing, combining with, 64

 building interfaces

 advantages, 62

 basic principles, 185 - 186

 dragging views, 206 - 208

 planning and rules, 190 - 191

 disabling, 62 - 63

 edge conditions design

 control for locking/unlocking,
 198 - 200

 view drawer, 200 - 206

 grids, 231 - 233

 hybrid layouts, 100 - 104

 iOS 7

 containers, 238

 dynamic text, 238

 motion effects, 238

 keyboards, 233 - 236

 layout libraries

 advantages, 189 - 190

 of functions, 188 - 189

 guidelines for building, 190

 of macro definitions, 187 - 188

 of methods, 189

 solving redundancy and density,
 186 - 187

 modular designs, 191 - 194

 opting out of in code, 64 - 65

 origins, 1 - 2

 reasons for using, 2 - 3

 backward compatibility, 6

 content-driven layout, 5

 geometric relationships, 3 - 5

 incremental adoption, 6

 inspection and modularization, 6

 prioritized rules, 6

 scroll views

 hybrid layout, 222 - 223

 overview, 221

 with paged image, 223 - 226

 pure Auto Layout, 222

 table cells

 constraint-based, 213

 guidelines for using, 213 - 216

 multiple-height, 216 - 217

253constraint debugging

 views

 centering groups, 226 - 228

 dragging, 206 - 208

 image aspect preservation, 217 - 219

 inserting at runtime, 236 - 238

 positioning randomly with
constraints, 228 - 230

 positioning with custom
multipliers, 228

 window boundaries

 constraints limiting size, 209

 constraints preventing view
clipping, 209

 draggable views overruling sizing,
 209 - 210

 view placement within, 208 - 209

 AutoLayoutScrollView class, 222 - 223

 autoresizingMask property, 63

 Autosizing, 6

 and Auto Layout

 combining with, 64

 constraint-based feature, 61

 opting to participate in, 64 - 65

 debugging constraints, 147 - 149

 hybrid layouts, 100 - 104

 struts and springs, 61

 B
 Badros, Greg J., 2

 baselineOffsetFromBottom

method, 26- 27

 Borning, Alan, 2

 bounds systems, 48

 C
 Cassowary

 basis for Auto Layout, 2

 rule-based system, 2

 SourceForge project page, 2

 Cocoa/Cocoa Touch

 alignment geometry, 26

 constraints

 satisfiability, 7 - 8

 sufficiency, 8 - 11

 Layout profiling tool, 181 - 183

 console logs, 147

 alignment, 152 - 153

 autosizing issues/solutions, 147 - 149

 equation-based constraints, 153 - 154

 multiplier and constants in
constraints, 155

 rule conflicts/solutions, 149 - 151

 standard spacers, 153

 tracing ambiguity, 151 - 152

 constraint debugging

 ambiguity problems, 170 - 172

 tracing ambiguity, 151 - 152

 Cocoa Layout profiling tool, 181 - 183

 console logs, 147

 alignment, 152 - 153

 autosizing issues/solutions,
 147 - 149

 equation-based constraints,
 153 - 154

 multiplier and constants in
constraints, 155

 rule conflicts/solutions, 149 - 151

 standard spacers, 153

 tracing ambiguity, 151 - 152

254 constraint debugging

 content layout math, 155 - 156

 descent reports, 169 - 170

 equation strings, 156 - 159

 internationalization, 177

 doubled strings, 177 - 178

 flipped interfaces, 178 - 181

 nametags

 for objects, 159 - 161

 for views, 161

 rules, 183

 views, 172 - 173

 describing, 161 - 164

 hugged images, 165 - 166

 padding, 164 - 165

 referencing, 167 - 169

 visualizing constraints, 173 - 174

 Xcode feedback, 145

 compiler, 146

 development, 145 - 146

 launch arguments, 175 - 177

 runtime, 147

 constraints. See layout constraints;

visual format constraints

 constraintsAffectingLayoutForAxis:

view method, 117

 constraintsAffectingLayoutForOrientation:

view method, 117

 Content Compression Resistance Priority

setting, 20 - 21 , 74 , 96 , 99

 Content Hugging Priority setting, 21 , 74

 contentSize property, 221 - 223 , 225

 contentView property, 223 , 226

 D
 debugging constraints

 ambiguity problems, 170 - 172

 tracing ambiguity, 151 - 152

 Cocoa Layout profiling tool, 181 - 183

 console logs, 147

 alignment, 152 - 153

 autosizing issues/solutions,
 147 - 149

 equation-based constraints,
 153 - 154

 multiplier and constants in
constraints, 155

 rule conflicts/solutions, 149 - 151

 standard spacers, 153

 tracing ambiguity, 151 - 152

 content layout math, 155 - 156

 descent reports, 169 - 170

 equation strings, 156 - 159

 internationalization, 177

 doubled strings, 177 - 178

 flipped interfaces, 178 - 181

 nametags

 for objects, 159 - 161

 for views, 161

 rules, 183

 views, 172 - 173

 describing, 161 - 164

 hugged images, 165 - 166

 padding, 164 - 165

 referencing, 167 - 169

 visualizing constraints, 173 - 174

255IB (Interface Builder)

 firstItem/secondItem properties, 42

 frames

 frameForAlignmentRect: method,
 26 - 28

 resolving issues, 92

 updating, 92 , 96

 G-H
 grids, 231 - 233

 Hepting, Steven, 233

 hierarchies of views, 24 - 26

 descent reports, 169 - 170

 hybrid layouts, 32

 advantages, 102

 Auto Layout, 100 - 104

 scroll views, 222 - 223

 nib files for testing, 100

 nib files in code, 101

 I-J
 IB (Interface Builder)

 Assistant Editor, 75

 Attributes Inspector

 Is Initial View Controller, 70

 Placeholder, 104

 Simulated Metrics/Orientation, 70

 Simulated Metrics/Orientation/
Landscape or Portrait, 97

 Autosizing

 combining with Auto Layout, 64

 versus constraint-based Auto
Layout, 61

 opting out in code, 63 - 64

 Xcode feedback, 145

 compiler, 146

 development, 145 - 146

 launch arguments, 175 - 177

 runtime, 147

 descent reports, 169 - 170

 E
 edge conditions design

 control for locking/unlocking,
 198 - 200

 view drawer, 200 - 206

 Editor

 Align, 80 , 83 - 85

 Canvas

 Show Bound Rectangles, 91

 Show Involved Views for Selected
Constraint, 82

 Show Layout Rectangles, 91

 Pin, 80 , 83 - 85

 Horizontal Spacing, 96 , 98

 Resolve Auto Layout Issues

 Add Missing Constraints, 72 , 93

 Clear Constraints, 93

 Reset to Suggested Constraints,
 72-73 , 93

 Update Constraints, 72 , 92

 Exercise Ambiguity button, 17

 F
 File Inspector, disabling Use

Autolayout box, 62

 firstAttribute/secondAttribute

properties, 42

256 IB (Interface Builder)

 Size Inspector, 21

 Content Compression Resistance
Priority setting, 20 - 21 , 74 , 96 , 99

 Content Hugging Priority setting,
 21 , 74

 list of constraints per view,
74 , 82 - 83

 options when Auto Layout is
enabled, 63

 view sizes, 90

 Top and Bottom Layout Guide
proxies, 70

 Identity Inspector, 97

 User Defined Runtime Attributes, 161

 image embellishments

 alignment insets, 24 - 26

 alignment rectangles, 22 - 23

 declaring, 26 - 27

 implementing, 27 - 29

 visualizing, 24

 imageWithAlignmentRectInsets:

method, 24

 install method, 135

 installToView: method, 233 - 236

 Interface Builder. See IB

 internationalization, 177

 doubled strings, 177 - 178

 flipped interfaces, 178 - 181

 intrinsicContentSize method, 18

 isEqualToLayoutConstraint: method, 54

 Issue Navigator, 146

 Issue Stepper, 71 , 145

 browse constraints, 6

 components, 70-76

 Constraints listings, 76 - 78

 Editor

 Align, 80 , 83 - 85

 Canvas/Show Bound Rectangles, 91

 Canvas/Show Involved Views for
Selected Constraint, 82

 Canvas/Show Layout
Rectangles, 91

 Pin, 80 , 83 - 85

 Pin/Horizontal Spacing, 96 , 98

 Resolve Auto Layout Issues/Add
Missing Constraints, 72 , 93

 Resolve Auto Layout Issues/Clear
Constraints, 93

 Resolve Auto Layout Issues/Reset to
Suggested Constraints, 72-7 3, 93

 Resolve Auto Layout Issues/Update
Constraints, 73 , 92

 File Inspector, disabling Use
Autolayout box, 62

 Identity Inspector, 97

 User Defined Runtime
Attributes, 161

 Issue Navigator, 146

 Issue Stepper, 71 , 145

 layouts, validating and checking, 7

 modular interface design, 191 - 193

 overview, 61 - 62

 Preview, 86 - 88

 preview panes, 72

 Root View Controller, 97

 satisfiability, 7

257layout constraints

 content size, 31 , 36

 compression resistance, 38

 content compression, 92 , 96 , 99

 content hugging, 36 - 37 , 92

 in IB, 39

 intrinsic, 36 , 74

 in UIKit and AppKit, 39 - 40

 cycles, 57

 editing, 74

 exercising, 16 - 17

 first and second items, 43 - 44

 horizontal or vertical

 center in container, 81 , 88

 centers, 81

 spacing, 81 , 96

 inferred, 65 - 67 , 104

 inspecting

 constraints, 88 - 90

 view sizes, 90 - 92

 installing, 50 - 51

 self-installing, 51 - 52

 iOS 7 view dynamics, 57

 laws, 57 - 59

 layout support, 31

 leading and trailing, 11

 left and right, 11

 edges, 81

 libraries of common requests, 6

 matching, 55 - 56 , 70 , 236 - 237

 math, 41 - 43

 methods of creating, 44

 motion effects, 58

 pinning, 70 , 83 - 85

 placeholders, 104 - 105

 K-L
 keyboards, 233 - 236

 layout constraints, 31 , 33 . See also views;

visual format constraints

 accordion-style, 220 - 221

 adding

 with Add Missing Constraints, 93

 by dragging, 81 - 83

 list of requests, 81

 by pinning and aligning, 83 - 85

 adding/removing at runtime, 13

 alignment, 70 , 81 , 83 - 85

 alignment insets, 24 - 26

 alignment rectangles, 22 - 23

 declaring, 26 - 27

 implementing, 27 - 29

 inspecting, 91

 visualizing, 24

 ambiguous, 15 - 16

 resolution of, 67 - 68 , 70

 tracing ambiguity, 151 - 152

 attributes, 41

 invalid pairings, 58 - 59

 autosizing, 31

 balancing touches, 200

 baseline, 11 , 81

 basics, 7

 bounding rectangles, 91

 bounds systems, 48 , 58

 browsing, 6

 Cassowary, 2

 centerX and centerY, 11

 clearing, 93

 comparing, 54

258 layout constraints

 layout relations

 NSLayoutRelationEqual, 12

 NSLayoutRelationGreaterThan-
OrEqual, 12

 NSLayoutRelationLessThanOrEqual,
 12

 libraries

 constraint requests, 6

 layouts

 advantages, 189 - 190

 of functions, 188 - 189

 guidelines for building, 190

 of macro definitions, 187 - 188

 of methods, 189

 solving redundancy and density,
 186 - 187

 loadView method, 6 , 16 , 222

 M
 missing views, 95 - 97

 with inconsistent rules, 14

 tracking, 14 - 15

 underconstrained, 13

 modular interface design, 191 - 194

 moveToPosition: method, 207

 multiplier/constant properties, 42

 N-O
 nametags

 for objects, 159 - 161

 for views, 161

 NSAutoresizingMaskLayoutConstraint

class, 31

 hybrid systems, 32

 priorities, 33 , 57

 adjustments, 35 , 150 - 151

 conflicting priorities, 33 - 34

 enumerated priorities, 34 - 35

 prototyping, 31

 rank of requests, 33

 redundancy, 57

 relations, 41 , 57

 debugging, 157 - 159

 removing, 52 - 54

 resetting, with Reset to Suggested
Constraints, 93

 rules conflicts, 149 , 183

 runtime failures, 58

 sizing/resizing, 69 -70 , 93 - 94

 descendants, 94

 siblings and ancestors, 95

 spacing, 70

 top and bottom, 11

 edges, 81

 transforms, 57

 unary, 20 - 22

 updating, 92

 animating updates, 196

 fading changes, 197

 updateConstraints method,
 194 - 195

 updateViewConstraints method,
 194 - 197

 visualizing, 17 , 173 - 174

 width or height, 11 , 81

 equally, 81

 negative values unusable, 12

 Xcode identities, 79 - 80

 Xcode labels, 78 - 79

 zero-item, 21 - 22

259setNeedsUpdateConstraints method

 NSLayoutPriority class, 21

 NSLocalizedString() method, 177

 NSLog class, 131 - 132

 NSShowAllViews class, 176

 NSUserInterfaceItemIdentification

protocol, 159

 NSView class, 15 - 16

 NSViewShowAlignmentRects

class, 24 , 176

 NSWindow class, 17

 P-Q
 Preview, 86 - 88

 preview panes, 76

 priority property, 42

 private classes, 31 - 32

 R
 refersToView: method, 167

 relation property, 42

 removeConstraint: and removeConstraints:

methods, 52 - 54

 removeView: method, 203

 Root View Controller, 97

 S
 scroll views

 hybrid layout, 222 - 223

 overview, 221

 with paged image, 223 - 226

 pure Auto Layout, 222

 setNeedsUpdateConstraints method, 195 ,

 202 - 203 , 214

 NSConstraintBasedLayoutEngageNon-

Lazily class, 176

 NSConstraintBasedLayoutLogUnsatisfiable

class, 177

 NSConstraintBasedLayoutPlaySoundOn-

Unsatisfiable class, 176

 NSConstraintBasedLayoutPlaySoundWhen-

Engaged class, 176

 NSConstraintBasedLayoutVisualize-

MutuallyExclusiveConstraints class, 176

 NSContentSizeLayoutConstraint class, 31

 images and controls, 32

 NSDictionaryOfVariableBindings()

macro, 113

 NSDoubleLocalizedStrings class, 176

 NSForceRightToLeftWritingDirections

class, 176 , 178

 NSIBPrototypingLayoutConstraint

class, 31

 NSLayoutConstraint class, 7 , 31

 collections of arrays, 50

 commonly used, 32

 creating, 44 - 45

 instances, 45

 properties

 comparing, 54

 firstAttribute/secondAttribute, 42 ,
 47 , 54

 firstItem/secondItem, 42 , 48 , 54

 matching, 55 - 56

 multiplier/constant, 42 , 54

 priority, 42 , 54

 relation, 42 , 54

 returning view-specific properties,
 47 - 48

 unary constraints, 45 - 46

 zero-item constraints, 46

260 Size Inspector

 switchLabelText: method, 98 - 99

 systemLayoutSizeFittingSize: method, 216

 T
 table cells

 constraint-based, 213

 guidelines for using, 213 - 216

 multiple-height, 216 - 217

 toggleVisualLayoutHints method, 238

 Top and Bottom Layout Guide proxies, 70

 typedef float UILayoutPriority, 21

 U
 UIConstraintBasedLayoutEngageNonLazily

class, 176

 UIConstraintBasedLayoutLogUnsatisfiable

class, 177

 UIConstraintBasedLayoutPlaySoundOn-

Unsatisfiable class, 176

 UIConstraintBasedLayoutPlaySoundWhen-

Engaged class, 176

 UIConstraintBasedLayoutVisualize-

MutuallyExclusiveConstraints class, 177

 UIEdgeInset class, 26

 UIGestureRecognizerStateBegan

class, 207

 UIGestureRecognizerStateEnded

class, 207

 UIImageView class, 165

 UIKit, enumerated priorities, 34 - 35

 UILayoutGuide objects, properties, bottom

LayoutGuide, 32

 UILayoutSupport protocol, 130

 Size Inspector, 21

 Content Compression Resistance
Priority setting, 20 - 21 , 70 , 96 , 99

 Content Hugging Priority
setting, 21 , 70

 list of constraints per view, 70 , 82 - 83

 options when Auto Layout is
enabled, 63

 view sizes, 90

 spacers/spacing, 70

 fixed spacers, 129

 flexible spacers, 122 - 123 , 129

 horizontal or vertical, 81 , 96 , 98

 numeric spacers, 120 - 121

 pseudo-distributing, spacer views,
 140 - 143

 standard spacers, 119 , 153

 superviews, spacing from, 122

 leading and trailing, 81

 top and bottom, 81

 springs in Autosizing, 61

 stringValue method, 156

 struts in Autosizing, 61

 superviews, 118 , 129

 bindings dictionary, 118

 centering views to, 166 - 167

 constraining views to, 132 - 133

 inset from, 130

 custom, 130

 referencing, 120 , 167 - 169

 referencingConstraintsInSuperviews:
method, 167

 spacing from, 122

 leading and trailing, 81

 top and bottom, 81

 stretching views to, 133 - 134

 updating constraints, 194

261views

 baseline, 41

 bounds systems, 48

 centering, groups, 226 - 228

 centerX/centerY, 41

 content

 compression resistance, 20 - 21

 content hugging, 21

 intrinsic size, 18 - 19

 debugging, 172 - 173

 describing, 161 - 164

 dragging, 206 - 208

 draggable views overruling sizing,
 209 - 210

 hugged images, 165 - 166

 image aspect preservation, 217 - 219

 inserting at runtime, 236 - 238

 leading/trailing edges, 41

 left, right, top, or bottom, 41

 missing, 95 - 97

 with inconsistent rules, 14

 tracking, 14 - 15

 multiple view widths, 220 - 221

 multipliers, 41

 custom, 228

 padding, 164 - 165

 placeholders, 41

 positioning

 with custom multipliers, 228

 randomly with constraints,
 228 - 230

 referencing, 167 - 169

 relations of equalities/inequalities, 41

 stretching to superviews, 133 - 134

 width/height, 41

 UILayoutSupportConstraint class, 31 - 32

 properties

 bottomLayoutGuide, 32

 topLayoutGuide, 32 - 33

 UIScrollView class, 221 - 223

 UITableViewCell subclass, 214

 UIView class, 15 - 16

 UIViewContentModeScaleAspectFit

class, 219

 UIViewContentModeScaleToFill class,

 217 , 219

 UIViewController class, 97

 UIViewShowAlignmentRects class,

 24 , 27 , 176

 unsigned integers, constraint priorities, 33

 updateConstraints method, 194 - 195 ,

 202 - 206 , 224 - 226

 updateViewConstraints method, 6 ,

 194 - 197

 V
 VIEW_CLASS constant, 15 , 47 - 48

 ViewController class, 97

 viewDidAppear: method, 66 , 68- 69 ,

 132 , 238

 viewDidLoad method, 222

 views . See also layout constraints; visual

format constraints

 adding/relinquishing management
of, 202 - 203

 additive constants, 41

 alignment insets, 24 - 26

 alignment rectangles, 22 - 23

 declaring, 26 - 27

 implementing, 27 - 29

 visualizing, 24

 visual format constraints

 alignment masks, 111

 flush, 129

 perpendicular to format, 112

 skipping options, 113

 vertical or horizontal, 116 - 117 , 130

 Apple preferences, 111

 bindings dictionary, 113 - 115

 views, 130

 connections

 empty, 118

 fixed spacers, 129

 flexible spacers, 122 - 123 , 129

 negative numbers, 124

 numeric spacers, 120 - 121

 parentheses, 123 - 124

 priorities, 124 - 125 , 130

 standard spacers, 119 , 153

 direction masks, 111

 examples, 110 - 111

 format string components, 128 - 130

 common errors, 129 - 131

 format string structure, 116

 versus manually built constraints, 111

 metrics, 129

 metrics dictionary, 115

 real-world metrics, 115 - 116

 NSLayoutConstraint class, 109

 orientation, 116 - 117

 relations, 129

 variable bindings, 113

 indirection problems, 113 - 114

 indirection workarounds, 114 - 115

 view names, 117 - 118 , 161

 view sizes, 126 - 127

 constraining, 134 - 135

 matching, 136 - 137

 views, 130

 building rows or columns, 135 - 136

 distributing, 137

 pseudo-distributing, equal centers,
 138 - 139

 pseudo-distributing, spacer views,
 140 - 143

 width/height

 fixed, 129

 match with another view, 129

 minimum and maximum, 129

 visualizeConstraints method, 17

 W-X-Y-Z
 window boundaries

 constraints limiting size, 209

 constraints preventing view
clipping, 209

 draggable views overruling sizing,
 209 - 210

 view placement within, 208 - 209

 Xcode 5

 advantages, 62

 constraints

 conflicting, 7 , 96

 identities, 79 - 80

 labels, 78 - 79

 disadvantages, 44

 feedback, 145

 compiler, 146

 development, 145 - 146

 launch arguments, 175 - 177

 runtime, 147

 new top and bottom layout guides, 67

262 visual format constraints

	Table of Contents
	Preface
	1 Introducing Auto Layout
	Origins
	Saying “Yes” to Auto Layout
	Geometric Relationships
	Content-Driven Layout
	Prioritized Rules
	Inspection and Modularization
	Incremental Adoption

	Constraints
	Satisfiability
	Sufficiency

	Constraint Attributes
	About Those Missing Views
	Underconstrained Missing Views
	Missing Views with Inconsistent Rules
	Tracking Missing Views

	Ambiguous Layout
	Exercising Ambiguity
	Visualizing Constraints

	Intrinsic Content Size
	Compression Resistance and Content Hugging
	Image Embellishments
	Alignment Rectangles
	Visualizing Alignment Rectangles
	Alignment Insets
	Declaring Alignment Rectangles
	Implementing Alignment Rectangles

	Exercises
	Conclusions

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I-J
	K-L
	M
	N-O
	P-Q
	R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

