A PRACTICAL GUIDETO A
GRAPHICS PROGRAMMING

REAL-TIME
3D RENDERING
with

DIRECTX and HLSL

Paul VARCHOLIK

FREE SAMPLE CHAPTER

¥ 9 8 @ @

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321962720
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321962720
https://plusone.google.com/share?url=http://www.informit.com/title/9780321962720
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321962720
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321962720/Free-Sample-Chapter

Praise for
Real-Time 3D Rendering
with DirectX and HLSL

“l designed and taught the technical curriculum at UCF’s FIEA graduate program and was never
satisfied with textbooks available for graphics programming. | wish | had Paul Varcholik’s book
then; it would make the list now.”

—Michael Gourlay, Principal Development Lead, Microsoft

“Modern 3D rendering is a surprisingly deep topic; one that spans several different areas. Many
books only focus on one specific aspect of rendering, such as shaders, but leave other aspects
with little or no discussion. Real-Time 3D Rendering with DirectX and HLSL takes the approach of
giving you a full understanding of what a modern rendering application consists of, from one
end of the pipeline to the other.”

—Joel Martinez, Software Engineer, Xamarin

“This practical book will take you on a journey of developing a modern 3D rendering engine
through step-by-step code examples. | highly recommend this well-written book for anyone
who wants to learn the necessary graphics techniques involved in developing a 3D rendering
engine using the latest Direct3D.”

—Budirijanto Purnomo, GPU Developer Tools Lead, Advanced Micro Devices, Inc.

“A great tour of the modern DirectX landscape, with a heavy emphasis on authoring HLSL
shaders for common game rendering techniques for C++ developers.”

—Chuck Walbourn, Senior Design Engineer, Microsoft

This page intentionally left blank

Real-Time 3D Rendering
with
DirectX” and HLSL

The Addison-Wesley

Design and Development Series

WSING [AVASCRIFT AND HTMLy v A PLATFORM: AGNOSTIC APPROACH W EPLOUNG T unum.\ HONAL PRINCIPLES BENIND oy A PRACTICAL GUIDE TO GRAPHICS s
TO DEVELOP GAMES GOOD GAME Of PROGRAMMING
m‘m%
PO
HE PR GAToRY ‘\‘r ! $ Sl
L
E ooK 3 a\QUF .
ZDEV 0r® g PS“% REAL-TIME
3D RENDERING
0 with
DIRECTX and HLSL
" Anna ANTHROPY
BURCHARD Sariay MADHAY Naomi CLARK #aul VARCHOLIK
vvAddison-Wesley

Visit informit.com/series/gamedesign for a complete list of available publications.

Essential References for Game Designers and Developers

hese practical guides, written by distinguished professors and industry gurus,

cover basic tenets of game design and development using a straightforward,
common-sense approach. The books encourage readers to try things on their own
and think for themselves, making it easier for anyone to learn how to design and
develop digital games for both computers and mobile devices.

You ~N
0éa v e

Make sure to connect with us!
informit.com/socialconnect

INfOrMIT.COM |~ Addison-Wesley | Safari

the trusted technology learning source

ALWAYS LEARNING PEARSON

Real-Time 3D Rendering
with
DirectX” and HLSL

A Practical Guide to Graphics Programming

Paul Varcholik

vvAddison-Wesley

Upper Saddle River, NJ « Boston e Indianapolis « San Francisco
New York o Toronto e Montreal « London ¢ Munich « Paris « Madrid
Capetown e« Sydney o Tokyo e Singapore « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014933263

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to

use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

DirectX, Direct3D, MS-DOS, MSDN, Visual Studio, Windows, Windows Phone, Windows
Vista, Xbox, and Xbox 360 are registered trademarks of Microsoft Corporation in the
United States and/or other countries.

NVIDIA, GeForce, Nsight, and FX Composer are registered trademarks of NVIDIA
Corporation in the United States and/or other countries.

Autodesk, Maya and 3ds Max are registered trademarks of Autodesk, Inc. in the United
States and/or other countries.

Rendermonkey is a trademark of Advanced Micro Devices, Inc.

OpenGL is a registered trademark of Silicon Graphics, Inc. in the United States and/or other
countries worldwide.

StarCraft and Blizzard Entertainment are trademarks or registered trademarks of Blizzard
Entertainment, Inc. in the United States and/or other countries.

COLLADA is a trademark of the Khronos Group Inc.

Photoshop is a registered trademark of Adobe Systems Incorporated in the United States
and/or other countries.

Steam is a registered trademark of Valve Corporation.
Terragen is a trademark of Planetside Software.

Unreal Development Kit and UDK are trademarks or registered trademarks of Epic Games,
Inc. in the United States and elswhere.

Unity Software is a copyright of Unity Technologies.
All other trademarks are the property of their respective owners.

ISBN-13: 978-0-321-96272-0
ISBN-10: 0-321-96272-9

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.

First printing: April 2014

Editor-in-Chief
Mark Taub

Executive Editor
Laura Lewin

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Senior Project Editor
Lori Lyons

Copy Editor
Krista Hansing Editorial
Services, Inc.

Indexer
Tim Wright

Proofreader
Debbie Williams

Technical Reviewers
Michael Gourlay

Joel Martinez
Budirijanto Purnomo

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

Partl

Part il
10
1
12
13
14
15
16

17

Contents-at-a-Glance

Introduction 1
An Introductionto3DRendering. 5
Introducing DirectX 7
A3D/MathPrimer. 23
ToolsoftheTrade. 43
Shader AuthoringwithHLSL. 57
Hello, Shaders!. 59
Texture Mapping 73
LightingModels. 91
Additional LightingModels 15
GleamingtheCube. oL 141
Normal Mapping and Displacement Mapping 169
RenderingwithDirectX 183
Project Setup and Window Initialization 185
Direct3D Initialization 205
Supporting Systems 233
Cameras. 269
Hello,Rendering! 283
Models 315
Materials 341

viii

CONTENTS-AT-A-GLANCE

Part IV
18
19
20
21

22

Intermediate-Level Rendering Topics 389
Post-Processing 391
Shadow Mapping. 435
Skeletal Animation. 469
Geometry and Tessellation Shaders 497
Additional Topics in Modern Rendering 529

Contents

Partl

Partll

4

Introduction 1
An Introductionto3DRendering. 5
Introducing DirectX 7
ABitofHistory. 8
The Direct3D 11 Graphics Pipeline 9
Summary 21
A3D/MathPrimer. 23
Vectors 24
Matrices. 27
Transformations. 31
DirectXMath 35
Summary . ..o 41
ToolsoftheTrade. 43
Microsoft Visual Studio 44
NVIDIAFX Composer 47
Visual Studio Graphics Debugger. 53
Graphics Debugging Alternatives 55
Summary 56
Exercises 56
Shader AuthoringwithHLSL. 57
Hello,Shaders!. 59
Your FirstShader 60
Hello, Structs! 68
Summary . ..o 70

Exercises 71

CONTENTS

Texture Mapping 73
An Introduction to Texture Mapping 74
A Texture Mapping Effect. 75
Texture Filtering. 81
Texture AddressingModes. 86
Summary 89
Exercises 89
LightingModels. 91
AmbientLighting. 92
Diffuse Lighting. 97
Specular Highlights 105
Summary 114
Exercises 114
Additional LightingModels 115
PointLights 16
Spotlights. 124
MultipleLights 130
Summary 139
Exercises 139
GleamingtheCube. 141
TextureCubes 142
Skyboxes 145
Environment Mapping 149
Fog. . .. 154
ColorBlending 159
Summary 167

CONTENTS Xi
9 Normal Mapping and Displacement Mapping 169
NormalMapping 170
Displacement Mapping 178
Summary 181
Exercises 181
Partlll RenderingwithDirectX 183
10 Project Setup and Window Initialization 185
ANewBeginning. Lo 186
ProjectSetup 186
TheGameloop. 195
Window Initialization oo o oL 199
Summary . .. 204
Exercise 204
11 Direct3D Initialization 205
Initializing Direct3D 206
Putting It All Together. 219
Summary . .. 232
Exercise L 232
12 SupportingSystems 233
Game Components 234
Devicelnput. 248
Software Services. 265
Summary 268
Exercises 268
13 Cameras. 269
ABase CameraComponent 270
AFirst-PersonCamera. 277
Summary . ..o 281

Exercise 281

xii CONTENTS
14 Hello,Rendering! 283
Your First Full Rendering Application 284
AnindexedCube L. 306
Summary . ..o 314
Exercises 314
15 Models 315
Motivation 316
Model FileFormats. 316
The Content Pipeline 317
The Open Asset ImportLibrary 317
What'sinaModel? 318
Meshes 320
Model Materials. 321
Assetloading 323
A Model RenderingDemo oL 331
Texture Mapping L 334
Summary 340
Exercises 340
16 Materials 341
Motivation 342
TheEffectClass 342
The TechniqueClass 347
ThePassClass 348
ThevariableClass 350
TheMaterialClass 352
A Basic Effect Materialo oL 357
A SkyboxMaterial 364
Summary 369

Exercises 370

CONTENTS xiii

17 Lights 371
Motivation 372
LightDataTypes 372

A Diffuse Lighting Material. 373

A Diffuse LightingDemo 377
APointLightDemo 383
ASpotlightDemo. o 386
Summary 387
Exercises 387
PartlV Intermediate-Level Rendering Topics. 389
18 Post-Processing. oL 391
RenderTargets 392

A Full-Screen Quad Component 396
ColorFiltering 401
GaussianBlurring.o oo 410
Bloom 419
Distortion Mapping 425
Summary . ..o 433
Exercises 433

19 Shadow Mapping. 435
Motivation 436
Projective Texture Mapping 436
Shadow Mapping. L 456
Summary 466
Exercises 467

20 Skeletal Animation. L 469
Hierarchical Transformations 470
Skinning. 472

Importing Animated Models. 476

Xiv CONTENTS
AnimationRendering L 489
Summary . ..o 496
Exercises 496
21 Geometry and Tessellation Shaders 497
Motivation: Geometry Shaders 498
Processing Primitives 498
APointSpriteShader 499
Primitive IDs 507
Motivation: Tessellation Shaders 508
The Hull ShaderStage. 510
The TessellationStage. 512
The Domain ShaderStage 514
A Basic TessellationDemo 518
Displacing Tessellated Vertices 520
DynamicLevelsof Detail 524
Summary 527
Exercises 528
22 Additional Topics in Modern Rendering 529
Rendering Optimization 530
Deferred Shading. L. 543
Global lllumination. 544
ComputeShaders. 545
Data-Driven Engine Architecture. 550
The End of the Beginning. 553
Exercises 553

ACKNOWLEDGMENTS

I would like to thank the many people who helped make this book possible. First, to the
wonderful team at Pearson, especially Laura Lewin, Olivia Basegio, and Songlin Qiu. You have
made this a truly enjoyable experience.

Next, to my technical reviewers, Joel Martinez, Dr. Michael Gourlay, and Budi Purnomo, for your
time and expert advice. Your insights have made this book so much better. A special thanks to
Michael Gourlay, who contributed the code for the Runtime Type Information (RTTI) and
Factory discussions.

| would also like to thank my students and colleagues at the Florida Interactive Entertainment
Academy, especially Nick Zuccarello, Brian Salisbury, and Brian Maricle, who contributed 3D
models and textures.

Finally, to my wife Janette, who not only provided a seemingly infinite supply of encourage-
ment and patience, but also contributed more than a few of the illustrations.

ABOUT THE AUTHOR

Dr. Paul Varcholik is a programming instructor at the Florida Interactive Entertainment
Academy (FIEA), a graduate degree program in game development at the University of Central
Florida. Before coming to FIEA, Paul was a lead software engineer at Electronic Arts, where he
worked on video game titles including Madden NFL Football and Superman Returns. Paul is a
20-year veteran of the software industry and has been teaching college courses on software
and game development since 1998. Paul has written extensively on topics including robotics,
3D user interaction, and multitouch interfaces. He is also the author of OpenGL Essentials
LiveLessons, a video series on graphics development using OpenGL.

INTRODUCTION

Graphics programming is the magic behind video
games, film, and scientific simulation. Every
explosion, dust particle, and lens flare you see on

a computer screen is processed through a graphics
card. In addition, because modern operating
systems use the graphics processing unit (GPU) to
draw their content, every pixel you see is rendered
through the GPU and through software developed
by a graphics programmer. It’s a broad topic,

but one that has traditionally been the province

of a select few. Even to experienced software
developers, rendering is often considered a dark
art, full of complex mathematics and esoteric tools.
Furthermore, the rapid pace of advancement makes
modern graphics programming a moving target,

and establishing a foothold can be difficult.

INTRODUCTION

That's where this book comes in. In these pages, you'll find an introduction to real-time 3D
rendering. I've presented this material in a straightforward and practical way, but it doesn’t

shy away from more complex topics. Indeed, this book takes you far beyond drawing simple
objects to the screen and introduces intermediate and advanced subjects in modern rendering.
It is my sincere wish that you find the material in this book approachable, applicable, and up-to-
date with modern graphics techniques.

Intended Audience

This book is intended for experienced software engineers new to graphics programming. The
text often uses terminology from the video game industry, but you need not be a game devel-
oper to make use of this book. Indeed, the topic of modern rendering reaches well beyond
video games and is becoming ever more pervasive in a variety of software-related fields.
Regardless of the specific type of software you develop, if you are interested in learning about
modern rendering, this book is for you.

This text also assists existing graphics programmers who are new to DirectX or who are familiar
with an older version of the library. We cover DirectX, and the library has seen major changes
over the last few years. This book also applies to students, hobbyists, and technical artists inter-
ested in real-time rendering.

If you are new to programming, not specifically graphics programming, this book might not be
what you're looking for. In particular, Part lll, “Rendering with DirectX,” develops a C++ render-
ing engine and expects a familiarity with that language.

Why This Book?

Several excellent books on the market explore graphics programming. However, most of these
texts focus on only one area: either shader programming or the rendering API (such as DirectX
or OpenGL). Mention of the other topic, the other side of the same coin, is often given short
shrift—perhaps just a chapter or two.

Modern rendering doesn’t exist without shaders, but shaders aren’t executed without an
underlying graphics application. | know of few books that incorporate both topics in a thor-
ough, integrated fashion, nor one that balances introductory material with intermediate and
advanced topics. A sticking point with many books is that they are either so novice that they
leave the reader wanting or so advanced that even experienced software engineers have
trouble absorbing the material.

You can also find a number of good books on general-purpose game or engine programming.
These texts often include material on graphics programming or approaches to organizing 3D
models and materials. But these books often have such a broad scope that rendering gets lost
in the pages.

HOW THIS BOOK IS ORGANIZED

The approaches I've mentioned are all valid, and, again, you can find many wonderful books on

the market. Yet I'm seeing a gap where an experienced developer who wants to tackle graphics

programming is missing a text that offers a full, focused treatment of rendering from both the
CPU and GPU sides of the topic. This book aims to fill this gap.

How This Book Is Organized

This book is organized into four parts:

Part I, “An Introduction to 3D Rendering,” provides an introduction to graphics program-
ming. It includes a discussion about the history of DirectX up to version 11.1 (the version
we're using in this book) and looks at the Direct3D graphics pipeline. Chapter 2 includes a
primer on 3D math, along with a detailed look at the DirectX Math API. If you are already
familiar with linear algebra and 3D mathematics, you might consider skipping or skimming
Chapter 2. However, | encourage you to read the section on DirectX Math (Microsoft’s latest
revision of an impressive SIMD-friendly math library focused on graphics-related mathe-
matics). Part | ends with an exploration of best-of-breed tools for authoring and debugging
shaders and graphics applications.

Part I, “Shader Authoring with HLSL,” is all about shaders and programming using the
High-Level Shader Language (HLSL). This section begins with the most introductory vertex
and pixel shaders and a discussion of semantics and annotations. Chapter 5 examines
texture mapping and texture filtering and wrapping modes. Chapter 6 introduces basic
lighting models, including ambient lighting, diffuse (Lambert) lighting, and specular high-
lighting. Chapter 7 details point lights, spot lights, and multiple lights. In Chapter 8, you
write shaders involving cube maps, including shaders for skyboxes and environment map-
ping. Part Il concludes with a potpourri of shaders for fog, color blending, normal mapping,
and displacement mapping.

In Part I, “Rendering with DirectX,” we discuss the application side of the house.
Throughout this section, you develop a C++ rendering engine and incorporate the shad-
ers you authored in Part Il. Chapters 10-14 introduce the core components of the engine:
the game loop, time, components, and Windows and DirectX initialization. We also cover
mouse and keyboard input, cameras, and text rendering. In Chapter 15, you dive into the
topic of 3D models: asset loading and model rendering. And in Chapter 16, you develop a
flexible effect and material system to integrate your shaders. Part lll ends with a chapter on
CPU-side structures for directional, point, and spot lights.

Part IV, “Intermediate-Level Rendering Topics,” raises the bar a bit and moves to
intermediate-level rendering topics. The section begins with a discussion of post-process-
ing techniques (effects typically applied to the entire scene after its initial rendering). This
includes shaders for color filtering, Gaussian blurring, bloom, and distortion mapping. In
Chapter 19, you implement systems for projective texture mapping and shadow mapping.
Then in Chapter 20, you develop a skeletal animation system for importing and rendering
animated models. Chapter 21 details geometry and tessellation shaders; you implement a

INTRODUCTION

point sprite shader and explore hardware tessellation, a powerful addition to the DirectX
11 graphics pipeline. The book ends with a survey of additional topics in modern render-
ing, including rendering optimization, deferred rendering, global illumination, compute

shaders, and data-driven engine architecture.

Prerequisites

This book has no expectation that you are already a game or graphics developer, nor does it
expect you to be fluent in 3D mathematics. It simply requires you to be interested in graphics
programming and already be familiar with the C++ programming language. If you are an expe-
rienced programmer but you are coming from a different language, you may have no trouble
with the material in Parts Ill and IV. However, there is no concerted effort to discuss C++ syntax.

Furthermore, all code samples are provided for the Microsoft Windows operating system
and are packaged for Visual Studio 2012 or 2013. These samples require a graphics card that
supports (at least) Shader Model 4. Some of the samples (particularly the demonstrations on
compute shaders and tessellation) require a graphics card that supports Shader Model 5.

Companion Website

This book has a companion website at http://www.varcholik.org/. There you'll find all code
samples and errata, along with a forum for questions and discussion about the book.

Conventions in This Book

This book uses a number of conventions for source code, notes, and warnings.

note

When something needs additional explanation, it is called out in a “note” that
looks like this.

warning

WARNINGS LOOKLIKE THIS A “warning” points out something that might not
be obvious and could cause problems if you did not know about it.

When code appears inside the text, it looks like this.

You will also find exercises at the end of Chapters 3-22 (all but the first two chapters). These
exercises reinforce the material discussed in the text and encourage you to experiment.

http://www.varcholik.org/

This page intentionally left blank

CHAPTER 4

ELLO, SHADERS!

In this chapter, you write your first shaders. We
introduce HLSL syntax, the FX file format, data
structures, and more. By the end of this chapter,
you'll have a base from which to launch the rest of

your exploration into graphics programming.

60

CHAPTER 4 HELLO, SHADERS!

Your First Shader

You might recognize the canonical programming example “Hello, World!” as a first program
written in a new language and whose output is this simple line of text. We follow this time-
honored tradition with the shader equivalent “Hello, Shaders!"—this time, your output is an
object rendered in a solid color.

To begin, launch NVIDIA FX Composer and create a new project. Open the Assets panel, right-
click on the Materials icon, and choose Add Material from New Effect. Then choose HLSL FX
from the Add Effect dialog box (see Figure 4.1).

In the next dialog box, select the Empty template and name your effect HelloShaders.fx (see
Figure 4.2).

Effect Wizard

Add Effect
Add & new effect to the project.

Profiles to Creste:

[T) Emoty Effect

[~ [#+ Effectfrom File

W € HLSLFX

[T £5 COLLADA FX Common
[T &} COLLADAFXCg

™ Cg CaFX

< Back Next > Finish

Figure 4.1 NVIDIA FX Composer Add Effect dialog box.

Effect Wizard

Select HLSL FX Template
The imported template will be saved with the specified filename and location

@0.00“

Bﬁnﬂ burnp Gooch Gnnch bL.n'np

@ ® @ 6 O

Lambert Lambert bump Phong F‘hmg bump Post glow
reflect

Name: [HelloShaders fx |
Location: [C:\Your\Project\Path | [

[Cancel |[<Back |[WNest> | Finish

Figure 4.2 NVIDIA FX Composer Select HLSL FX Template dialog box.

YOUR FIRST SHADER

Click Finish in the final dialog box of the Effect Wizard to complete the process. If all went well,
you should see your HelloShaders . £x file displayed in the Editor panel and associated
HelloShaders and HelloShaders Material objects listed in the Assets panel. Notice that
the Empty effect template isn't empty after all—NVIDIA FX Composer has stubbed out a bit of
code for you. This code is actually close to what you want in your first shader, but it's written
for DirectX 9, so delete this code and replace it with the contents of Listing 4.1. Then we walk
through this code step by step.

Listing 4.1 HelloShaders.fx

cbuffer CBufferPerObject

{

float4x4 WorldViewProjection : WORLDVIEWPROJECTION;

RasterizerState DisableCulling

{

CullMode = NONE;

}i

float4 vertex shader (float3 objectPosition : POSITION) : SV Position
return mul (float4 (objectPosition, 1), WorldvViewProjection) ;

1

float4 pixel_shader() : SV_Target

{

return float4(1, 0, 0, 1);

techniquel0 mainlO0

{
pass po0
{
SetVertexShader (CompileShader (vs_4 0, vertex shader()));
SetGeometryShader (NULL) ;
SetPixelShader (CompileShader (ps_4_0, pixel_ shader()));

SetRasterizerState (DisableCulling) ;

62

CHAPTER 4 HELLO, SHADERS!

Effect Files

Direct3D pipeline stages can be programmed through separately compiled shaders. For
instance, you can house a vertex shader in one file (commonly with the extension .hls1)and
a pixel shader in a different file. Under this configuration, each file must contain exactly one
shader. By contrast, HLSL Effect files enable you to combine multiple shaders, support func-
tions, and render states into a single file. This is the file format we use throughout this text, and
Listing 4.1 uses it.

Constant Buffers

At the top of your Hel1loShaders . £x file, you find a block of code starting with cbuffer.

This denotes a constant buffer, whose purpose is to organize one or more shader constants. A
shader constant is input the CPU sends to a shader, which remains constant for all the primitives
processed by a single draw call. Put another way, cbuf fers hold variables, “constant variables.”
They're constant from the perspective of the GPU while processing the primitives of a draw call
yet variable from the perspective of the CPU from one draw call to the next.

Inyour HelloShaders. £x file, you have just one cbuf fer containing only one shader
constant, WorldviewProjection, of type £loat4x4. This is a C-style variable declaration

in which the data type is a 4x4 matrix of single-precision floating-point values. This particular
variable (WorldviewProjection) represents the concatenated World-View-Projection matrix
specific to each object. Recall from Chapter 2, “A 3D/Math Primer,” that this matrix transforms
your vertices from object space, to world space, to view space, to homogeneous space, in a
single transformation. You could pass the World, View, and Projection matrices into the effect
separately and then perform three different transforms to produce the same result. But unless
you have a specific reason to do so, sending less data as input and performing fewer shader
instructions is the better option.

Note the text WORLDVIEWPROJECTION following the colon in the variable declaration. This is
known as a semantic and is a hint to the CPU-side application about the intended use of the
variable. Semantics relieve the application developer from a priori knowledge of the names

of shader constants. In this example, you could have named your £1oat4x4 variable wvp

or WorldvViewProj without any impact to the CPU side because it can access the variable
through the WORLDVIEWPROJECTION semantic instead of through its name. A variety of com-
mon semantics exist, all of which are optional for shader constants. However, in the context of
NVIDIA FX Composer, the WORLDVIEWPROJECTION semantic is not optional; it must be associ-
ated with a shader constant for your effect to receive updates to the concatenated WVP matrix
each frame.

YOUR FIRST SHADER

63

WHAT’S IN A NAME?

In your HelloShaders effect, you named your constant buffer cBuf ferPerObject.
Although the name itself isn’t magical, it does hint at the intended update frequency for
the shader constants contained within the cbuffer. A PerObject buffer indicates that
the CPU should update the data within that buffer for each object associated with the
effect.

In contrast, a cbuf fer named CBuf ferPerFrame implies that the data within the buf-
fer can be updated just once per frame, allowing multiple objects to be rendered with
the same shared shader constants.

You organize cbuf fers in this way for more efficient updates. When the CPU modifies
any of the shader constants in a cbuf fer, it has to update the entire cbuf fer. There-
fore, it's best to group shader constants according to their update frequency.

Render States

Shaders can’t define the behaviors of the nonprogrammable stages of the Direct3D pipeline,
but you can customize them through render state objects. For example, the rasterizer stage
is customized through a RasterizerState object. A variety of rasterizer state options exist,
although | defer them to future chapters. For now, note the RasterizerState object
DisableCulling (see Listing 4.2).

Listing 4.2 RasterizerState declaration from HelloShaders. fx

RasterizerState DisableCulling

{

CullMode = NONE;

}i

We briefly discussed vertex winding order and backface culling in Chapter 3, “Tools of the
Trade.” By default, DirectX considers vertices presented counter-clockwise (with respect to the
camera) to be back-facing and does not draw them. However, the default models included with
NVIDIA FX Composer (the Sphere, Teapot, Torus, and Plane) are wound in the opposite direc-
tion. Without modifying or disabling the culling mode, Direct3D would cull what we would con-
sider front-facing triangles. Therefore, for your work within NVIDIA FX Composer, just disable
culling by specifying Cul1Mode = NONE.

64

CHAPTER 4 HELLO, SHADERS!

note

The culling issue is present within NVIDIA FX Composer because it supports
both DirectX and OpenGL rendering APIs. These libraries disagree on the default
winding order for front-facing triangles, and NVIDIA FX Composer opted for the
OpenGL default.

The Vertex Shader

The next HelloShaders code to analyze is the vertex shader, reproduced in Listing 4.3.

Listing 4.3 The vertex shader from HelloShaders. fx

float4 vertex shader (float3 objectPosition : POSITION) : SV_Position

{

return mul (float4 (objectPosition, 1), WorldviewProjection) ;

}

This code resembles a C-style function, but with some key differences. First, note the work the
vertex shader is accomplishing. Each vertex comes into the shader in object space, and the
WorldViewProjection matrix transforms it into homogeneous clip space. In general, this is
the least amount of work a vertex shader performs.

The input into your vertex shader is a £ loat 3, an HLSL data type for storing three single-
precision floating-point values—it’s named objectPosition to denote its coordinate space.
Notice the POSITION semantic associated with the objectPosition parameter. It indicates
that the variable is holding a vertex position. This is conceptually similar to the semantics used
for shader constants, to convey the intended use of the parameter. However, semantics are

also used to link shader inputs and outputs between shader stages (for example, between

the input-assembler stage and the vertex shader stage) and are therefore required for such
variables. At a minimum, the vertex shader must accept a variable with the POSITION semantic
and must return a variable with the SV_Position semantic.

note

Semantics with the prefix SV_ are system-value semantics and were introduced
in Direct3D 10. These semantics designate a specific meaning to the pipeline. For
example, SV_Position indicates that the associated output will contain a trans-
formed vertex position for use in the rasterizer stage.

While other, non-system-value semantics exist, including a set of standard seman-
tics, these are generic and are not explicitly interpreted by the pipeline.

YOUR FIRST SHADER

65

Within the body of your vertex shader, you're calling the HLSL intrinsic function mul. This
performs a matrix multiplication between the two arguments. If the first argument is a vector,
it's treated as a row vector (with a row-major matrix as the second argument). Conversely, if the
first argument is a matrix, it’s treated as a column major matrix, with a column-vector as the
second argument. We use row-major matrices for most of our transformations, so we use the

formmul (vector, matrix).

Notice that, for the first argument of the mul function, you are constructing a £ Loat4 out of
the objectPosition (a f1oat3)and the number 1. This is required because the number of
columns in the vector must match the number of rows in the matrix. Because the vector you're
transforming is a position, you hard-code the fourth float (the w member) to 1. Had the vector
represented a direction, the w component would be set to 0.

The Pixel Shader

As with the vertex shader, the Hel1loShader pixel shader is just one line of code (see
Listing 4.4).

Listing 4.4 The pixel shader from HelloShaders. fx

float4 pixel_shader() : SV_Target

{

return float4(1, 0, 0, 1);

}

The return value of this shaderis a £1oat4 and is assigned the SV_Target semantic. This
indicates that the output will be stored in the render target bound to the output-merger stage.
Typically, that render target is a texture that is mapped to the screen and is known as the back
buffer. This name comes from a technique called double buffering, in which two buffers are
employed to reduce tearing, and other artifacts, produced when pixels from two (or more)
frames are displayed simultaneously. Instead, all output is rendered to a back buffer while the
actual video device displays a front buffer. When rendering is complete, the two buffers are
swapped so that the newly rendered frame displays. Swapping is commonly done to coincide
with the refresh cycle of the monitor—again, to avoid artifacts.

The output of your pixel shader is a 32-bit color, with 8-bit channels for Red, Green, Blue, and
Alpha (RGBA). All values are supplied in floating-point format, where the range [0.0, 1.0] maps to
integer range [0, 255]. In this example, you're supplying the value 1 to the red channel, meaning
that every pixel rendered will be solid red. You are not employing color blending, so the alpha
channel has no impact. If you were using color blending, an alpha value of 1 would indicate a
fully opaque pixel. We discuss color blending in more detail in Chapter 8, “Gleaming the Cube.”

66

CHAPTER 4 HELLO, SHADERS!

note

Your HelloShaders pixel shader accepts no apparent input parameters, but
don't let this confuse you. The homogeneous clip space position of the pixel is
being passed to the pixel shader from the rasterizer stage. However, this happens
behind the scenes and is not explicitly declared as input into the pixel shader.

In the next chapter, you see how additional parameters are passed into the pixel
shader.

Techniques

The last section of the Hel1loShaders effect is the technique that brings the pieces together
(see Listing 4.5).

Listing 4.5 The technique from HelloShaders. fx

techniquel0 mainl0

{
pass po0
{
SetVertexShader (CompileShader (vs_4 0, vertex shader()));
SetGeometryShader (NULL) ;
SetPixelShader (CompileShader (ps_4 0, pixel shader()));

SetRasterizerState (DisableCulling) ;

A technique implements a specific rendering sequence through a set of effect passes. Each
pass sets render states and associates your shaders with their corresponding pipeline stages. In
the HelloShaders example, you have just one technique (hamed main10) with just one pass
(named p0). However, effects can contain any number of techniques, and each technique can
contain any number of passes. For now, all your techniques contain a single pass. We discuss
techniques with multiple passes in Part IV, “Intermediate-Level Rendering Topics.”

Note the keyword techniquel0 in this example. This keyword denotes a Direct3D 10 tech-
nique, versus DirectX 9 techniques, which have no version suffix. Direct3D 11 techniques
use the keyword techniquel1. Unfortunately, the current version of NVIDIA FX Composer

YOUR FIRST SHADER

does not support Direct3D 11. But you won't be using any Direct3D 11-specific features at the
beginning of your exploration of shader authoring, so this isn't a show stopper. We start using
Direct3D 11 techniques in Part Ill, “Rendering with DirectX.”

Also notice the arguments vs_4_0andps_4_0 within the SetVertexShader and Set -
PixelShader statements. These values identify the shader profiles to use when compiling
the shaders specified in the second arguments of the CompileShader calls. Shader profiles
are analogous to shader models, which define the capabilities of the graphics system that are
required to support the corresponding shaders. As of this writing, there have been five major
(and several minor) shader model revisions; the latest is shader model 5. Each shader model
has extended the functionality of the previous revision in a variety of ways. Generally, however,
the potential sophistication of shaders has increased with each new shader model. Direct3D 10
introduced shader model 4, which we use for all Direct3D 10 techniques. Shader model 5 was
introduced with Direct3D 11, and we use that shader model for all Direct3D 11 techniques.

Hello, Shaders! Output

You're now ready to visualize the output of the Hel1loShaders effect. To do so, you first need
to build your effect through the Build, Rebuild All or Build, Compile HelloShaders.fx menu
commands. Alternately, you can use the shortcut keys F6 (Rebuild All) or Ctrl+F7 (Compile
Selected Effect). Be sure you do this after any changes you make to your code.

Next, ensure that you are using the Direct3D 10 rendering API by choosing it from the drop-
down menu in the main toolbar (it's the right-most toolbar item, and it likely defaults to
Direct3D 9). Now open the Render panel within NVIDIA FX Composer. Its default placement is
in the lower-right corner. Create a sphere in the Render panel by choosing Create, Sphere
from the main menu or by clicking the Sphere icon in the toolbar. Finally, drag and drop your
HelloShaders Material from either the Materials panel or the Assets panel onto the
sphere in the Render panel. You should see an image similar to Figure 4.3.

This might be a bit anti-climactic, given the effort to get here, but you've actually accomplished
quite a lot! Take a few minutes to experiment with the output of this shader. Modify the RGB
channels within the pixel shader to get a feel for what's happening.

68

CHAPTER 4 HELLO, SHADERS!

Render B

Bt CEE heed L HE L

Figure 4.3 HellShaders. fx applied to a sphere in the NVIDIA FX Composer Render panel.

Hello, Structs!

In this section, you rewrite your Hel1loShaders effect to use C-style structs. Data structures
provide a way to supply multiple shader inputs and outputs with a bit more organization than
as individual parameters.

To start, create a new effect and material in NVIDIA FX Composer. You can do this through the
Add Effect Wizard, as you did at the beginning of this chapter, or you can copy HelloShad-
ers.fxtoanewfile, HelloStructs. £x. | like the second option because you'll often reuse
your shader code, building upon the previous material. With a copied HelloStructs. £x file,
you add it to NVIDIA FX Composer by right-clicking the Materials section of the Assets panel
and choosing Add Material from File. Find and select your HelloStructs. £x file, and you'll
see newly created HelloStructs and HelloStructs_Material objectsin the Assets
panel.

Listing 4.6 contains a full listing of the HelloStructs. £x effect.

HELLO, STRUCTS

Listing 4.6 HelloStructs.fx

cbuffer CBufferPerObject

{

float4x4 WorldViewProjection : WORLDVIEWPROJECTION;

RasterizerState DisableCulling

{

CullMode = NONE;

}i

struct VS_INPUT

{

float4 ObjectPosition: POSITION;

}i

struct VS_OUTPUT

{

float4 Position: SV_Position;

i

VS_OUTPUT vertex shader (VS_INPUT IN)

{

VS_OUTPUT OUT = (VS_OUTPUT)O0;
OUT.Position = mul (IN.ObjectPosition, WorldvViewProjection) ;

return OUT;

float4 pixel_shader (VS_OUTPUT IN) : SV_Target

{

return float4 (1, 0, 0, 1);

techniquel0 mainlO0

{
pass pO0
{
SetVertexShader (CompileShader (vs_4 0, vertex shader()));
SetGeometryShader (NULL) ;
SetPixelShader (CompileShader (ps_4 0, pixel shader()));

SetRasterizerState (DisableCulling) ;

70

CHAPTER 4 HELLO, SHADERS!

The differences between HelloShaders. fx and HelloStructs. £x are minor but sig-
nificant because they establish the conventions we use throughout this text. First, note what
has not changed. The CBuf ferPerObject and DisableCulling objects are the same, as
are the main10 technique and its pass. The body of the pixel shader hasn’t changed, either.
What'’s new are the two structs named VS_INPUT and VS_OUTPUT. These names identify the
structures as vertex shader inputs and outputs, respectively. Notice that the VS_INPUT struct
has the same ObjectPosition input variable as the HelloShaders vertex shader. The only
difference is that the variable is declared as a £1oat4 instead of a £1oat3. This removes the
need to append the value 1 to the w component of the vector. Additionally, the vertex shader
now returns a VS_OUTPUT instance instead of a £1oat4, and the SV_Position semanticis no
longer associated directly to the return value because it's attached instead to the Position
member of the VS_OUTPUT struct. That Position member replaces the previously unnamed
return value of the vertex shader from the HelloShaders effect.

Next, examine the body of your updated vertex shader. Notice that you're declaring and return-
ing a VS_OUTPUT instance, and in C-programming fashion, you access the Position member
of the instance through the dot operator. Also notice that the ObjectPosition member of
the VS_INPUT parameter IN is used for the mul invocation. In addition, you're using a C-style
cast to initialize the members of the OUT variable to zero. Although this is not strictly necessary,
it is a good programming practice.

Finally, observe that the input parameter for the pixel shader is the output data type from the
vertex shader. You're not using any members of the input in this example, but you will do so
in future shaders. The point of this reorganization is that now you can add shader inputs and
outputs without modifying the signature of your vertex and pixel shaders. The output of
HelloStructs should be identical to that of Hel1loShaders, in Figure 4.3.

Summary

In this chapter, you wrote your first HLSL shaders! You learned a bit about the FX file format,
constant buffers, and render states. You also began to explore HLSL syntax, including vector
and matrix data types (such as £1oat3, float4, and £loat4x4) and user-defined structs. And
you put all this together within NVIDIA FX Composer to produce your first rendered output. The
work you've accomplished in this chapter serves as a foundation for the rest of the shaders in
Part I, “Shader Authoring with HLSL.”

EXERCISES

71

Exercises

1.

Change the values of the RGB channels in the Hel1oShaders or HelloStructs pixel
shader, and observe the results.

Modify the DisableCulling rasterizer state object by setting Cul1Mode = FRONT and
then BACK, and observe the results.

Now that you have a couple effects, get comfortable working within NVIDIA FX Composer.
Create Teapot, Torus, and Plane objects, and assign them either the Hel1oShaders or
HelloStructs materials. Notice how all objects that are assigned the same material are
impacted when you change and recompile the associated effect.

This page intentionally left blank

This page intentionally left blank

INDEX

Numerics

3D cube, rendering, 306-313
3D models
asset loading
loading meshes, 325-328
loading model materials, 328-331
loading models, 323-325
content pipeline, 317
Open Asset Import Library, 317-318
meshes, 318-321
model file formats, 316-317
model materials, 321-323

A

AABBs (axis-aligned bounding boxes), 531
Add Effect dialog box (FX Composer), 60
adding vectors, 25
additive blending, 159-161
addressing modes, 86-88
border address mode, 838
clamp address mode, 87-88
mirror address mode, 87
wrap address mode, 86
AdjustWindowRect() function, 202
alpha blending, 159-161
ambient lighting, 92-96
AmbientColor shader constant, 94-95
incrementing/decrementing intensity of,
381-382
pixel shader, 95

AmbientColor shader constant, 94-95
AmbientLighting.fx, 92-94
animated models
bind pose, retrieving, 491
importing, 476-489
skeletal animation, rendering, 489-495
AnimationPlayer class, 489-491
anisotropic filtering, 83
annotations, HLSL, 77-78
APIs
Direct3D, 9
DirectX, 7
Open Asset Import Library, 317-318
OpenGL, 9
applications
FX Composer
Assets panel, 49
effects, 49
materials, 49
Render panel, 51-52
Textures panel, 52
“Hello, Rendering”, 284-306
Effects 11 library, 288-293
input layout, creating, 293-297
rendering a triangle, 297-304
rotating the triangle, 305-306
TriangleDemo class, 286-287
NVIDIA FX Composer, 47-52
Visual Studio, 44-46
Visual Studio Graphics Debugger, 53-55
ApplyRotation() method, 276

556

ASSET LOADING

asset loading
loading meshes, 325-328
loading model materials, 328-331
loading models, 323-325

Assets panel (FX Composer), 49

audience for this book, 2

authoring file formats, 316

AutoDesk Maya, 52

automatic binding, 105

B

backface culling, 15
basic effect materials, 357-364
basic material demo, 361-364
BasicEffect shader, 342
material, creating, 357-361
bias, calculating, 465-466
billboarding, 499-502
bind pose, 491
bitmaps, 18
blend factor options, 160-159
blend operation options, 159
BlendState objects, 159
Blinn-Phong, 111-114
BlinnPhongintrinsics.fx, 113-114
BlinnPhonglntrinsics.fx, 113-114
bloom, 419-424
glow maps, creating, 420-424
Bloom.fx file, 421-422
blurring, Gaussian blurring, 410-418
bones, skinning, 472-476
border address mode, 88
brightness, Lambert’s cosine law, 97
BVHs (bounding volume hierarchies), 530

C

calculating
bias, 465-466
linear interpolation, 489
vector length, 26
Camera class, 270-276
CenterWindow() method, 203
changing coordinate systems, 34-35
checking for multisampling support, 208-210
clamp address mode, 87-88
classes
AnimationPlayer class, 489-491
DepthMap class, 451-452
DiffuseLightingDemo class, 377-378
DiffuseLightingMaterial class, 375-377
Effect class, 342-346
FullScreenQuad class, 396-401
FullScreenRenderTarget class, 392-395
Game class, header file, 200-201
GameClock, 197
GameComponent class, 235-237
GaussianBlur class, 413-418
Material class, 352-357
Mesh class, 320-321
Model class, 319-320
ModelMaterial, 322-323
Pass class, 348-349
ProxyModel class, 378
ServiceContainer class, 266-267
Skybox class, 366-368
SpriteBatch class, 243-247
SpriteFont class, 243-247
Technique class, 347-348
TextureModelDemo, 335-339
TriangleDemo class, 286-287
Variable class, 350-352

DEBUGGING

557

color blending, 159-167
additive blending, 159-161
alpha blending, 159-161
blend factor options, 160-159
blend operation options, 159
BlendState objects, 159
common settings, 159
multiplicative blending, 159-161
TransparencyMapping.fx, 161-165
color filtering
color inverse filter, 405-406
demo, 403-405
generic color filter, 408-410
grayscale shader, 401-403
sepia filter, 407
color inverse filters, 405-406
ColorFilteringGame::Draw() method, 404
ColorFilteringGame:UpdateColorFilter
Material() method, 404
column-major order, 30
comments, HLSL, 77
common color blending settings, 159
Common.fxh, 130-138
companion website for this book, 4
comparing Blinn-Phong and Phong
models, 114
compute shaders, 545-549
threads, 545
concatenating matrices, 33-34
constant buffers, 62
constant hull shaders, 511-512
constants, AmbientColor shader
constant, 94-95
content pipeline, 317
Open Asset Import Library, 317-318
control point patch lists, 16
control points, 510

coordinate systems, changing, 34-35
CPU (central processing unit), 9
creating
depth maps, 446-452
game components, 234
glow maps, 420-424
HelloShaders effect, 60-67
constant buffers, 62
effect files, 62
output, 67
render states, 63-64
techniques, 66-67
vertex shader, 64-65
material for BasicEffect shader, 357-361
rendering engine project, 187
skybox material, 364-366
specialized Game class, 228-230
texture cubes, 142-144
texture mapping effect, 75-81
output, 81
cross product, 27
cube maps. See texture cubes
culling, disabling, 63
customizing RTTI, 237-239
cylindrical billboarding, 499-502

D

D3DX (Direct3D Extension) library, 46
data-driven engine architecture, 550-552
data structures, rewriting HelloShaders effect
for C-style structs, 68-70

data types, light data types, 372-373
DDS (DirectDraw Surface), 46
debugging

graphics, 55

shaders, 54-55

558

DECREMENTING AMBIENT LIGHT INTENSITY

decrementing ambient light intensity,
381-382
deferred shading, 543-544
demos
3D cube, rendering, 306-313
color filtering, 403-405
diffuse lighting, 377-383
Gaussian blurring, 416-418
geometry shader demo, 504-506
material demo, 361-364
model rendering demo, 331-333
point lights, 383-386
spotlights, 386
tessellation, 518-520
texture mapping, 334-339
depth maps, 435, 436-437
creating, 446-452
occlusion testing, 453-456
depth testing, 20
DepthMap class, 451-452
deserialization, 317
device input
keyboard input, 249-258
mouse input, 258-264
diffuse lighting, 97-105
demo, 377-383
directional lights, 97-101
Lambert’s cosine law, 97
material, 373-377
pixel shader, 102-103
vertex shader, 102
DiffuseLightingDemo class, 377-378
DiffuseLighting.fx, 98-101
DiffuseLightingMaterial class, 375-377
Direct3D, 7,9
2D texture, 216-217
initializing
associating views to output-merger
stage, 218
checking for multisampling support,
208-210

creating a depth-stencil view, 215-218
creating a render target view, 214-215
creating the device context, 206-208
creating the swap chain, 210-214
setting the viewport, 219
magnification, 82-83
Direct3D Graphics Pipeline
domain-shader stage, 514-518
geometry shader stage, 18
hull-shader stage, 510-512
input-assembler stage, 10-16
index buffers, 11
primitives, 13-14
vertex buffers, 10-11
output-merger stage, 19-20
pixel shader stage, 19
rasterizer stage, 18-19
tessellation stage, 512
tessellation stages, 16-18
vertex shader stage, 16
Directlnput library
keyboard input, 249-258
mouse input, 258-264
directional lights, 97-101
intensity, 105
rotating, 382-383
directory structure, rendering engine
project, 186
DirectX, 7
history, 8-9
DirectX'11,8
DirectX 8, 8
DirectX 9, 8
OpenGL, 9
texture coordinates, 74
DirectX Texture Tool, 143
DirectXMath, 35-40
matrices, 39-40

ENVIRONMENTMAPPING.FX

559

vectors
calling conventions, 37
initialization functions, 37
loading and storing, 36
operators, 38
DirectXTK (DirectX Tool Kit), 46
disabling culling, 63
displacement mapping, 178-181
displacing tessellated vertices, 520-523
distortion mapping, 425-431
full-screen distortion shader, 425-426
masking distortion shader, 427-431
DLLs, Open Asset Import Library, 317-318
domain-shader stage (Direct3D Graphics
Pipeline), 514-518
dot product, 26-27
Draw() method, 379-380
draw order, effect on alpha-blended objects,
166-167
drawable game components, 239-240
dynamic environment mapping, 153-154
dynamic tessellation effect, 524-527

E

Effect class, 342-346
effects, 49
ambient lighting effect, 92-94
output, 95-96
Blinn-Phong, 111-114
pixel shaders, 112
bloom effect, 420-424
diffuse lighting
material, 373-377
diffuse lighting effect
output, 103-105
pixel shader, 102-103
preamble, 101-102
vertex shader, 102

displacement mapping effect, 179-181
dynamic tessellation effect, 524-527
environment mapping
preamble, 151-152
vertex shader, 152
environment mapping effect
output, 153
fog effect, 154-157
output, 157
pixel shader, 157
preamble, 157
vertex shader, 157
multiple point lights effect, 132-138
output, 138
pixel shader, 136-137
vertex shader, 136-137
normal mapping effect, 173-177
preamble, 176
Phong effect, 106-111
preamble, 109
PointLight.fx
output, 121-123
preamble, 120
skybox effect
output, 147-148
pixel shader, 147
preamble, 147
vertex shader, 147
Spotlight.fx, 125-129
texture mapping effect, creating, 75-81
transparency mapping effect, 165-166
Effects 11 library, 46, 288-293
environment mapping, 149-154
dynamic environment mapping, 153-154
EnvironmentMapping.fx, 149-151

560

FEATURE LEVELS (DIRECT3D)

F

feature levels (Direct3D), 207-208
file formats
3D models, 316-317
texture file formats, 46
final project settings, rendering engine
project, 192-193
first-person camera, implementing, 277-281
fog effect, 154-157
output, 157
pixel shader, 157
preamble, 157
forward rendering, 543
frame rate component, 242-243
full-screen distortion shaders, 425-426
FullScreenQuad class, 396-401
FullScreenRenderTarget class, 392-395
functions
AdjustWindowRect(), 202
lit(), 113
reflect(), 152
WinMain(), 194
WinMain(), updating for RenderingGame
class, 230-232
FX Composer, 47-52
Add Effect dialog box, 60
Assets panel, 49
effects, 49
materials, 49
Render panel, 51-52
Select HLSL FX Template dialog box, 60
Textures panel, 52

G

Game class
header file, 200-201
ServiceContainer member, adding,
267-268

specialized Game class, creating, 228-230
updating for Direct3D initialization,
220-228
game components
creating, 234
drawable game components, 239-240
frame rate component, 242-243
Game class support for, 240-248
RTTI, customizing, 237-239
SpriteBatch class, 243-247
SpriteFont class, 243-247
game engine file formats, 316
game loop, 195-199
initialization, 199
time-related information, 196-199
GameClock.cpp file, 198-199
Game project
final project settings, 192-193
linking libraries, 190-191
Program.cpp file, adding, 193-194
Game.cpp file, 222-227
GameClock class, 197
GameClock.cpp file, 198-199
GameComponent class, 235-237
Game:iInitialization() method, 196
Game::InitializeWindow() method, 201-202
Game::Run() method, 203-204
gaming consoles
XBox, 8
XBox 360, 8
Gaussian blurring, 410-418
demo, 416-418
sample offsets and weights, initializing,
415-416
GaussianBlur class, 413-418
general-purpose Game class, updating for
Direct3D initialization, 220-228
generic color filters, 408-410
geometry shader stage (Direct3D Graphics
Pipeline), 18

INITIALIZING

561

geometry shaders, 498
demo, 504-506
graphics pipeline, hull-shader stage,
510-512
point sprite shaders, 499-506
primitive IDs, 507
processing primitives, 498-499
global illumination, 544-545
glow maps, creating, 420-424
GPU (graphics processing unit), 1,9
GPU PerfStudio 2, 55
GPU skinning, 472
graphics, debugging, 55
graphics cards, 8
grayscale filter, 401-403

H

hardware instancing, 535-542
header file, Game class, 200-201
“Hello, Rendering” application, 284-306
Effects 11 library, 288-293
input layout, creating, 293-297
rendering a triangle, 297-304
rotating the triangle, 305-306
TriangleDemo class, 286-287
HelloShaders effect
constant buffers, 62
creating, 60-67
effect files, 62
output, 67
pixel shader, 65
render states, 63-64
rewriting for C-style structs, 68-70
techniques, 66-67
vertex shader, 64-65
Hello, structs, 68-70
hierarchical transformations, 470
history of DirectX, 8-9
DirectX 11, 8
DirectX 8, 8

DirectX 9, 8
HLSL, 8
OpenGL, 9
programmable shaders, 8
HLSL (High-Level Shading Language), 8
annotations, 77-78
comments, 77
HLSL, texture objects, 78-79
preprocessor commands, 77
texture mapping
samplers, 78-79
texture coordinates, 79-81
homogeneous coordinates, 31
hull-shader stage (graphics pipeline),
510-512

IDE (integrated development
environment), 44
identity matrix, 31
implementing a first-person camera, 277-281
importing animated models, 476-489
include directories, rendering engine project,
189-190
incrementing ambient light intensity,
381-382
index buffers, 11
3D cube, rendering, 306-313
indirect lighting, 544
initializing
Direct3D
associating views to output-merger
stage, 218
checking for multisampling support,
208-210
creating a render target view, 214-215
creating the device context, 206-208
creating the swap chain, 210-214
setting the viewport, 219

562

INITIALIZING

game loop, 199
Gaussian blurring sample offsets and
weights, 415-416
windows, 199-201
input layout, creating for “Hello Rendering”
application, 293-297
input-assembler stage (Direct3D Graphics
Pipeline), 10-16
index buffers, 11
primitives, 13-14
vertex buffers, 10-11
prerequisites, 4
intensity
of ambient lights, incrementing/
decrementing, 381-382
of directional lights, changing, 105
interchange file formats, 316
interpolation, linear interpolation, 82-83

J-K

keyboard input, 249-258
keyframes, 483-486

L

Lambert’s cosine law, 97
left-handed coordinate systems, 24-25

Library project, final project settings, 192-193

light data types, 372-373
lighting, SH lighting, 544
lighting models
ambient lighting, 92-96
diffuse lighting, 97-105
demo, 377-383
material, 373-377
directional lights, 97-101
global illumination, 544-545

multiple lights, 130-138
point lights, 116-123
demo, 383-386
manipulating, 385-386
specular highlights, 105-114
Blinn-Phong, 111-114
Phong reflection model, 105-111
spotlights, 124-129
linear interpolation, calculating, 489
linking libraries, rendering engine
project, 190-191
lit() function, 113
loading
model materials, 328-331
models, 323-325
vectors, 36
LODs (levels of detail), 17-18, 524

M

magnification, 82-83
anisotropic filtering, 83
linear interpolation, 82-83
point filtering, 82
manipulating point lights, 385-386
manual binding, 105
masking distortion shaders, 427-431
Material class, 352-357
materials, 49, 342
basic effect materials, 357-364
diffuse lighting material, 373-377
demo, 377-383
Effect class, 342-346
Material class, 352-357
Pass class, 348-349
skybox material, creating, 364-366
Technique class, 347-348
Variable class, 350-352

OCTREES

563

matrices, 27-31
column-major order, 30
concatenation, 33-34
DirectXMath, 39-40
identity matrix, 31
multiplication, 28
row-major order, 30
subtracting, 28
transposing, 29
meshes, 318-321
loading, 325-328
skinning, 472-476
methods
ApplyRotation(), 276
CenterWindow(), 203
ColorFilteringGame::Draw(), 404
ColorFilteringGame:UpdateColorFilter
Material(), 404
Draw(), 379-380
Gamez:Initialization(), 196
Game:lnitializeWindow(), 201-202
Game::Run(), 203-204
Reset() method, 275
Sample(), 79
SetBlurAmount(), 415
SetMaterial(), 397
UpdateGameTime(), 196
UpdateProjectionMatrix(), 276
UpdateViewMatrix(), 276
Microsoft Visual Studio. See Visual Studio
minification, 83
mipmaps, 84-85
mirror address mode, 87
Model class, 319-320, 323-325
model file formats, 316
model materials, 321-323
loading, 328-331
model rendering demo, 331-333
ModelMaterial class, 322-323
mouse input, 258-264

MRTs (multiple render targets), 543
MSAA (Multisample Anti-Aliasing), 208
multiple lights, 130-138
MultiplePointLights.fx, 132-138
multiple point lights effect
output, 138
techniques, 137
MultiplePointLights.fx, 132-138
preamble, 136
multiplicative blending, 159-161
multiplying matrices, 28

N

normal mapping, 170-177
displacement mapping, 178-181
tangent space, 171-173

NormalMapping.fx, 173-177

normals, 102

Nsight Visual Studio Edition, 55

nvDXT command-line tool, 142

NVIDIA
FX Composer, 47-52

Add Effect dialog box, 60
Select HLSL FX Template dialog box, 60
Nsight Visual Studio Edition, 55

o

OBBs (oriented bounding boxes), 531
object sorting, 532
object space, 34
occlusion, 444-445
SSAO, 544
occlusion culling, 532
occlusion testing, 453-456
octrees, 531

564

OPEN ASSET IMPORT LIBRARY

Open Asset Import Library, 317-318
animated models, importing, 476-489
asset loading, 323-325

loading meshes, 325-328
loading model materials, 328-331

OpenGL, 9

optimizing rendering speed
hardware instancing, 535-542
object sorting, 532
occlusion culling, 532
shader optimization, 533-535
view frustum culling, 530-531

Orbit camera (FX Composer), 52

output
ambient lighting effect, 95-96
diffuse lighting effect, 103-105
displacement mapping effect, 180-181
environment mapping effect, 153
fog effect, 157
HelloShaders effect, 67
multiple point lights effect, 138
normal mapping effect, 177
Phong effect, 111
PointLight.fx, 121-123
skybox effect, 147-148
Spotlight.fx, 129
transparency mapping effect, 165-166

output-merger stage (Direct3D Graphics

Pipeline), 19-20

P

Pass class, 348-349

patches, 510

percentage closer filtering, 460-465
peter panning, 466

Phong reflection model, 105-111

Phong.fx, 106-111
output, 111
preamble, 109
PIX, 52
pixel shader stage (Direct3D Graphics
Pipeline), 19
pixel shaders
ambient lighting pixel shader, 95
Blinn-Phong effect, 112
diffuse lighting pixel shader, 102-103
environment mapping effect, 152
fog effect, 157
multiple point lights effect, 136-137
normal mapping effect, 177
Phong effect, 109-111
point light pixel shader, 120
skybox effect, 147
spotlight pixel shader, 129
pixels
blurring images, 411
minification, 83
point filtering, 82
point lights, 116-123
demo, 383-386
manipulating, 385-386
point lists, 13
point sprite shaders, 499-506
PointLight.fx, 116-123
output, 121-123
preamble, 120
portal rendering, 532
post-processing, 391
bloom, 419-424
color filtering
color inverse filter, 405-406
demo, 403-405
generic color filter, 408-410
grayscale shader, 401-403
sepia filter, 407

RESET() METHOD

565

distortion mapping, 425-431
full-screen distortion shader, 425-426
masking distortion shader, 427-431

full-screen quad component, 396-401

Gaussian blurring, 410-418

render targets, 392-396

shadow mapping, 435

preamble

diffuse lighting effect, 101-102

displacement mapping effect, 180

environment mapping effect, 151-152

fog effect, 157

MultiplePointLights.fx, 136

normal mapping effect, 176

Phong effect, 109

PointLight.fx, 120

skybox effect, 147

Spotlight.fx, 129

preprocessor commands, HLSL, 77
primitive IDs, 507
primitives, 13-14
adjacency data, 15
geometry shaders, 498-499
processors, CPU, 9
Program.cpp file, adding to Game
project, 193-194
programmable shaders, 8
project build order, rendering engine project,
188-189
project setup (rendering engine)
directory structure, 186
projection space, 35
projective texture mapping, 436-456

occlusion, 444-445

projective texture coordinates, 438-439

projective texture-mapping shader,

439-442
reverse projection, 443-444
ProxyModel class, 378
PVS (potentially visible set) rendering, 532

Q-R

quadtrees, 531
quaternions, 486
rasterizer stage (Direct3D Graphics
Pipeline), 18-19
reflect() function, 152
reflection
Blinn-Phong, 111-114
Phong reflection model, 105-111
reflection mapping, 149-154
Render panel (FX Composer), 51-52
render states, 63-64
render target views, 396
render targets, 392-396
rendering, 1
forward rendering, 543
optimizing
hardware instancing, 535-542
object sorting, 532
occlusion culling, 532
shader optimization, 533-535
view frustum culling, 530-531
shaders, 2
rendering engine
application startup, 193-194
data driven engine architecture, 550-552
final project settings, 192-193
Game class, header file, 200-201
game loop, 195-199
initialization, 199
time-related information, 196-199
Game project, linking libraries, 190-191
include directories, 189-190
project build order, 188-189
project creation, 187
project setup, directory structure, 186
RenderMonkey, 48
Reset() method, 275

566

RETRIEVING SKINNED MODEL'S BIND POSE

retrieving skinned model’s bind
pose, 491-492

reverse projection, 443-444

rewriting HelloShaders effect for C-style
structs, 68-70

rigging, 470

right-handed coordinate systems, 24-25

rotating directional lights, 382-383

rotation matrix, 33

row-major order, 30

RTTI (Runtime Type Information),
customizing, 237-239

S

Sample() method, 79

samplers, 78-79

SamplerState filtering options

(TextureMapping.fx), 85

sampling

Gaussian blurring sample offsets and
weights, initializing, 415-416

percentage closer filtering, 460-465
texture cubes, 144

scalars, 24

scaling transformations, 31-32

scenes, post-processing, 391
full-screen quad component, 396-401
render targets, 392-396

Select HLSL FX Template dialog box (FX

Composer), 60

semantics, 62

sepia filters, 407

serialization, 317

ServiceContainer class, 266-267
adding to Game class, 267-268

SetBlurAmount() method, 415

SetMaterial() method, 397

SH (spherical harmonic) lighting, 544
shaders, 2, 59
authoring tools, 48
BasicEffect shader, 342
material, creating, 357-361
compute shaders, 545-549
threads, 545
constants, 62
AmbientColor shader constant, 94-95
debugging, 54-55
deferred shading, 543-544
full-screen distortion shader, 425-426
Gaussian blurring shader, 411-413
geometry shaders, 18
demo, 504-506
point sprite shaders, 499-506
primitive IDs, 507
processing primitives, 498
grayscale shader, 401-403
HelloShaders effect
constant buffers, 62
effect files, 62
output, 67
render states, 63-64
rewriting for C-style structs, 68-70
techniques, 66-67
vertex shader, 64-65
masking distortion shader, 427-431
optimizing, 533-535
pixel shaders, 19
ambient lighting pixel shader, 95
Blinn-Phong effect, 112
diffuse lighting pixel shader, 102-103
environment mapping effect, 152
fog effect, 157
multiple point lights effect, 136-137
normal mapping effect, 177
Phong effect, 109-111

SWAP CHAIN, CREATING

567

point light pixel shader, 120
skybox effect, 147
spotlight pixel shader, 129
programmable shaders, 8
projective texture-mapping shader,
439-442
shadow-mapping shader, 456-459
tessellation shaders, 507-509
vertex shader
diffuse lighting vertex shader, 102
displacement mapping effect, 180
environment mapping effect, 152
fog effect, 157
multiple point lights effect, 136-137
normal mapping effect, 177
Phong effect, 109
point light vertex shader, 120
spotlight vertex shader, 129
vertex shader stage (Direct3D Graphics
Pipeline), 16
vertex shaders, skybox effect, 147
shadow acne, 456
shadow mapping, 435- 436, 456-466
depth maps
creating, 446-452
occlusion testing, 453-456
percentage closer filtering, 460-465
projective texture mapping, 436-456
occlusion, 444-445
projective texture coordinates, 438-439
projective texture-mapping shader,
439-442
reverse projection, 443-444
slope-scaled depth biasing, 465-466
shadow-mapping shaders, 456-459
Silicon Graphics Inc., 9

skeletal animation, 469
animated models, importing, 476-489
animation rendering, 489-495
bind pose, retrieving, 491
hierarchical transformations, 470
skinning, 472-476
skinning, 472-476
Skybox class, 366-368
skybox effect, output, 147-148
skyboxes, 145-148
material, creating, 364-366
Skybox.fx, 145-147
slope-scaled depth biasing, 456, 465-466
bias, calculating, 465-466
software services, 265-268
ServiceContainer class, 266-267
specialized Game class, creating, 228-230
specular highlights, 105-114
Blinn-Phong, 111-114
Phong reflection model, 105-111
spherical billboarding, 499-502
Spotlight.fx
output, 129
preamble, 129
spotlights, 124-129
demo, 386
SpriteBatch class, 243-247
SpriteFont class, 243-247
SSAO (screen-space ambient occlusion), 544
stencil testing, 20
storing vectors, 36
subtracting
matrices, 28
vectors, 25
surface normals, 102
normal mapping, 170-177
swap chain, creating, 210-214

568 TANGENT SPACE

T

tangent space, 171-173
Technique class, 347-348
techniques
HelloShaders effect, 66-67
multiple point lights effect, 137
tessellation
demo, 518-520
displacing tessellated vertices, 520-523
dynamic levels of detail, 524-527
tessellation shaders, 507-509
tessellation stages (Direct3D Graphics
Pipeline), 16-18, 512
texels, minification, 83
text file formats, 316
texture coordinates, 79-81
addressing modes, 86-88
border address mode, 88
clamp address mode, 87-88
mirror address mode, 87
wrap address mode, 86
texture cubes, 142-144
creating, 142-144
environment mapping, 149-154
sampling, 144
skyboxes, 145-148
texture file formats, 46
texture filtering, 81-85
magnification
anisotropic filtering, 83
linear interpolation, 82-83
point filtering, 82
minification, 83
mipmaps, 84-85
SamplerState filtering options
(TextureMapping.fx), 85
texture mapping, 74-75, 334-339
DirectX texture coordinates, 74
effect, creating, 75-81

output, 81
projective texture mapping, 436-456
samplers, 78-79
texture coordinates, 79-81
addressing modes, 86-88
TextureMapping.fx, SamplerState filtering
options, 85
TextureModelDemo class, 335-339
Textures panel (FX Composer), 52
TGA (Targa), 46
threads, 545
time-related information
game loop, 196-199
GameClock.cpp file, 198-199
transformations
hierarchical transformations, 470
homogeneous coordinates, 31
quaternions, 486
rotating, 33
scaling, 31-32
translating, 32-33
translating transformations, 32-33
transparency mapping effect, 165-166
TransparencyMapping.fx, 161-165
transposing matrices, 29
triangle, rendering for “Hello, Rendering”
application, 297-304
triangle list, 14
TriangleDemo class, 286-287

U

UAVs (unordered access views), 547
UDK (Unreal Development Kit), 550
Unity game engine, 550
UpdateGameTime() method, 196
UpdateProjectionMatrix() method, 276
UpdateViewMatrix() method, 276
updating WinMain() function for
RenderingGame class, 230-232

Z-CULLING

569

\"

Variable class, 350-352
vectors, 24-27
adding and subtracting, 25
coordinate systems, 24-25
cross product, 27
DirectXMath, 36
dot product, 26-27
length of, 26
tangent space, 171-173
vertex buffers, 10-11
vertex shader stage (Direct3D Graphics
Pipeline), 16
vertex shaders, 64-65
diffuse lighting vertex shader, 102
displacement mapping effect, 180
environment mapping effect, 152
fog effect, 157
multiple point lights effect, 136-137
normal mapping effect, 177
Phong effect, 109
point light vertex shader, 120
skybox effect, 147
spotlight vertex shader, 129
vertices
displacing, 178
displacing tessellated vertices, 520-523
meshes, 320-321
point sprite shaders, 499-506
view frustum, 270, 530
view space, 34
viewports, 219
views
associating to output-merger stage, 218
render target views, 396
UAVs, 547
Visual Studio, 44-46
Visual Studio Graphics Debugger, 53-55

w

websites, companion website for this book, 4
WIC (Windows Imaging Components), 46
windows, initializing, 199-201
Windows 7, 8
Windows SDK, 44-45
Windows Vista, 8
WinMain() function, 194
updating for RenderingGame class,
230-232
world space, 34
wrap address mode, 86

X-Y-Z

XBox, 8
XBox 360, 8
XML, 550-551
z-culling, 532

	Contents
	Introduction
	4 Hello, Shaders!
	Your First Shader
	Hello, Structs!
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

