
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321961808
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321961808
https://plusone.google.com/share?url=http://www.informit.com/title/9780321961808
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321961808
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321961808/Free-Sample-Chapter

 Learning AV
Foundation

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Learning AV
Foundation

A Hands-on Guide to
Mastering the AV Foundation

Framework

 Bob McCune

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor

Trina MacDonald

 Development
Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Project Editor

Elaine Wiley

 Copy Editor

Barbara Hacha

 Senior Indexer

Cheryl Lenser

 Proofreader

Katherine Matejka

 Technical
Reviewers

Chris Adamson
 Ryder Mackay
Jon Steinmetz

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Senior Compositor

Gloria Schurick

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014944245

 Copyright © 2015 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-96180-8
 ISBN-10: 0-321-96180-3

 Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

 First printing: October 2014

❖

 I dedicate this book to my loving wife, Linda,
who supports me in all my crazy endeavors.

❖

Contents

 Preface xiii

Part I AV Foundation Essentials 1

 1 Getting Started with AV Foundation 3

What Is AV Foundation? 3

Where Does AV Foundation Fit? 4

Decomposing AV Foundation 6

Understanding Digital Media 7

Digital Media Compression 13

Container Formats 18

Hello AV Foundation 19

Summary 23

Challenge 24

 2 Playing and Recording Audio 25

Mac and iOS Audio Environments 25

Understanding Audio Sessions 26

Audio Playback with AVAudioPlayer 28

Building an Audio Looper 30

Configuring the Audio Session 34

Handling Interruptions 36

Responding to Route Changes 40

Audio Recording with AVAudioRecorder 42

Building a Voice Memo App 45

Enabling Audio Metering 52

Summary 57

 3 Working with Assets and Metadata 59

Understanding Assets 59

Creating an Asset 60

Asynchronous Loading 63

Media Metadata 65

Working with Metadata 70

Building the MetaManager App 76

Saving Metadata 98

Summary 101

Challenge 101

 4 Playing Video 103

Playback Overview 103

Playback Recipe 107

Working with Time 109

Building a Video Player 110

Time Observation 118

Creating a Visual Scrubber 124

Showing Subtitles 129

Airplay 133

Summary 136

Challenge 136

 5 Using AV Kit 137

AV Kit for iOS 137

AV Kit for Mac OS X 140

First Steps 140

Control Styles 144

Going Further 147

Working with Chapters 151

Enabling Trimming 157

Exporting 159

Movie Modernization 161

Summary 165

Challenge 166

Part II Media Capture 167

 6 Capturing Media 169

Capture Overview 169

Simple Recipe 174

Building a Camera App 175

Summary 208

Challenge 208

viiContents

viii Contentsviii Contents

 7 Using Advanced Capture Features 209

Video Zooming 209

Face Detection 216

Machine-Readable Code Detection 228

Using High Frame Rate Capture 241

Processing Video 247

Understanding CMSampleBuffer 249

Summary 257

Challenge 258

 8 Reading and Writing Media 259

Overview 259

Building an Audio Waveform View 265

Advanced Capture Recording 276

Summary 293

Challenge 293

Part III Media Creation and Editing 295

 9 Composing and Editing Media 297

Composing Media 297

Working with Time 300

Basic Recipe 303

Introducing 15 Seconds 307

Building a Composition 311

Exporting the Composition 316

Summary 321

Challenge 322

ixContents ix

 10 Mixing Audio 323

Mixing Audio 323

Mixing Audio in the 15 Seconds App 327

Summary 333

Challenge 333

 11 Building Video Transitions 335

Overview 335

Conceptual Steps 337

15 Seconds: Adding Video Transitions 348

Summary 360

Challenge 360

 12 Layering Animated Content 361

Using Core Animation 361

Using Core Animation with AV Foundation 363

15 Seconds: Adding Animated Titles 367

Preparing the Composition 378

Summary 383

Challenge 384

Contents

Foreword

 Yeah, we knew QuickTime’s goose was cooked.

 It had served us well for two decades, but that’s the problem. Apple’s essential media
framework was a product of the late 1980s. By the mid 2000s, it had accumulated plenty of
cruft: old programming practices, dependencies on system APIs that had fallen out of favor,
and features that didn’t stand the test of time (wired sprites, anyone?). Heck, it preferred
big-endian numeric values, because that’s what the Motorola 68000 series CPUs used. That’s
right, QuickTime had already made two CPU transitions: from 680x0 to PowerPC, and then
again to Intel x86.

 And QuickTime’s evolution in the first decade of the new century was hard to make sense
of. Apple built a Java wrapper around QuickTime, then updated it again and left out half the
features. They did the same incomplete job in Objective-C and called it QTKit. And then there
was a Windows version of QuickTime that stopped getting meaningful updates, and nobody at
Apple would tell us why.

 Usually with Apple, that means they’re up to something.

 What they were up to was the iPhone, of course. But the first SDK we got for iPhone shipped
with a minimum of media support: a full-screen video player that took over your application
and the low-level Core Audio library. There was an obvious, enormous hole in the media
software stack for what Apple insisted was “the best iPod we’ve ever made.” Yet we knew they
couldn’t port QuickTime over to the iPhone, considering they were already walking away from
it on the desktop.

 Oh yeah, they were up to something.

 Bits and pieces of new media functionality on iPhone popped up here and there over the
next few years: a “Media Player” framework to let us query and play the music library songs,
and some Objective-C wrappers around Core Audio’s Audio Queue, so that playing from or
recording to a file was no longer a 200-line exercise in drudgery. These latter classes were
curiously assigned to a new framework—“AV Foundation”—which seemed a misnomer in the
iPhone OS 3 era, when it was all “A” and no “V.”

 In retrospect, we really should have known they were up to something.

 Then, in 2010, Apple was finally ready to show us what they’d been up to all this time. Apple’s
Meriko Borogove stood up at the WWDC “Graphics State of the Union,” showed off iMovie for
iPhone, and said that everything Apple used to make this video editor was now available to iOS
developers. AV Foundation, formerly consisting of those odd little Core Audio wrappers, was
now 40 classes of audio-video processing power. Capture, editing, playback, and export—pretty
much everything we ever actually did with QuickTime (sorry, wired sprites)—were all present
and accounted for.

 And now they fit in your pocket or purse.

xiForeword

 Relieved of 1990s legacies, the new classes were products of genuinely modern thinking. On
iOS, they were among the first to make use of Objective-C blocks to handle asynchronous
concerns like lengthy media export, practices that now seem like second nature to iOS
developers. Back on the Mac, a few of us looked enviously to iOS, given that our choices now
consisted of 32-bit-only QuickTime with all its archaic bits or the bowdlerized QTKit. It was
hardly surprising in OS X 10.7 (“Lion”) when AV Foundation made its debut on the Mac, or in
OS X 10.9 (“Mavericks”) when QuickTime was formally deprecated in favor of AV Foundation.

 Don’t assume from this story that it’s all rainbows and puppies for us, though. Media
development is still a tricky business. We deal with huge amounts of data, razor-thin timing
windows for real-time processing, and high user expectations when our stuff is literally the
only thing they’re looking at.

 There’s also a lot of material to understand: the sciences of acoustics and vision, solid
programming practices, and the fact that AV Foundation brings in references to other
frameworks, like Core Media, Core Video, Core Image, Core Audio, Media Player (on iOS),
Video Toolbox (on OS X), and more. It’s also not always easy to intuit an API where all the
class names seem to have been created with those “poetry” refrigerator magnets, swapping
around the terms “AV,” “Composition,” “Instruction,” “Video,” “Layer,” and “Mutable”
to create at least a dozen of the actual class names (we should award a prize to whoever
can find the most). It doesn’t really make sense that an AVMutableComposition and an
AVMutableVideoComposition aren’t formally related to each other at all.

 Add to this the usual challenges of mastering Apple frameworks: the unstated assumptions, the
offhand mentions of other frameworks and libraries, and the references to sample code from a
WWDC session three years ago that may no longer be available. And don’t bother bookmarking
anything; Apple reorganizes their developer website at least once a year, breaking all the
external links.

 Honestly, we have needed a proper book on AV Foundation for as long as it’s been a
public API.

 The book you’re reading now is the product of trial-and-error, digging through documentation
and header files, scouring forums, and banging stuff off the compiler, the simulator, and the
device until it works. It brings together the knowledge of many sources, and the expertise and
experience of many developers, into a handy package. Many of us who’ve been leaning on AV
Foundation for the past few years, pushing past the easy examples and figuring out what it’s
really capable of, have been happy to see Bob McCune take up the torch here, to enlighten
AV Foundation developers with a singular guide to mastering this wide-reaching framework.
Bob’s been working on this for well over a year, exasperated like all of us when a search for
information turns up one’s own forum posts and blogs and not much else.

 On Twitter, Bob and I joked that one session of our back-and-forth tweets could itself double
the Google hit count for a term like AVVideoCompositionLayerInstruction, inasmuch as
such long-winded class names can even fit in a tweet. At one point, we joked that hashtag
#avfoundation turned up about as much useful information as a nonsense hashtag like
#sidewaysbondagecake. We need more of this information out there where people can see it,
and Bob’s done a terrific job here.

xii Foreword

 It’s great to see this long, long project finally come to fruition. With more developers
empowered to get the most out of AV Foundation, we may see a new surge of great audio and
video applications on Apple platforms over the next few years. In 1990, we had postage-stamp
sized videos with a tiny set of blotchy colors. Today, we shoot HD video on iPhones and send it
to our 50" TVs over AirPlay without a second thought.

 It’s a fine time to join the ranks of AV Foundation developers. We can’t wait to see what you
do with your app when you’re done with this book.

 —Chris Adamson

 Author of Learning Core Audio (Addison-Wesley Professional, 2012) and QuickTime for Java: A
Developer’s Notebook (O’Reilly Media, 2005)

 August 2014

Preface

 It’s been inspiring to see the digital media revolution that’s been underway over the past few
years. The introduction of the iPhone and the rise of mobile computing in general, along with
the availability of high-speed networks, has forever changed the way we create, consume, and
share digital media. Watching a video is no longer a passive activity relegated to our living
rooms. Today, video is active and available on-demand everywhere we go. The ability to
capture high-resolution, stylized photos isn’t limited to professional photographers with high-
end cameras and software, but is at the fingertips of everyone with an iOS device. Filmmakers
and musicians who formerly could see their vision realized only in a professional studio can
now do so on their laptops and mobile devices. The digital media revolution is underway, but
it’s really just getting started, and the technology at the heart of this revolution on iOS and
OS X is AV Foundation.

 I have been very happy to have the opportunity to write this book, because I believe it is one
that is long overdue. AV Foundation powers so many of the top applications on the App Store,
but it’s a framework that is not well understood by the community at large. Learning to use
AV Foundation can be challenging. It’s a large and advanced framework with a broad set of
features and capabilities. The AV Foundation Programming Guide, although improved over the
past year, is still lacking and really just scratches the surface. Apple provides a number of useful
sample projects on the ADC, but for the newcomer it’s often like being thrown into the deep
end of the pool before you’ve learned to swim.

 My goal in writing this book is to help make the framework approachable and understandable.
This book is not intended to be a definitive reference guide covering every aspect of the
framework, but instead focuses on the most relevant parts of the framework to lay the
foundation that will empower you to be fully comfortable with the concepts, features, and
conventions used throughout. It does so by walking you step-by-step through a variety of
real-world sample applications ranging from a simple voice memo app to a full-featured
video editor similar to iMovie for iOS. It’s important to me that you gain a solid grasp of the
concepts, and that you also finish the book with a clear understanding of how to use AV
Foundation in real-world applications.

 Learning AV Foundation is the book I wish I had a few years ago, and I hope it will provide you
with the understanding and inspiration to build amazing media applications for iOS and OS X!

 —Bob McCune, August 2014

 Audience for This Book

 The target audience for this book is the experienced Mac or iOS developer who is interested in
learning to build digital media applications. It assumes no prior experience with AV Foundation
or experience developing media applications, but it does assume you have experience with the
frameworks, patterns, and concepts common to developing for Apple’s platforms. Specifically,
you should be familiar with the following:

xiv Preface

 ■ C and Objective-C: The framework is reliant on a number of advanced language and
Cocoa features, such as Grand Central Dispatch (GCD), Blocks, and Key-value Observing.
You don’t need to be a GCD expert, but you should have an understanding of
dispatch semantics and the basics of dispatch queues. AV Foundation is an Objective-C
framework, but you will commonly work with the framework’s supporting C libraries,
especially in advanced scenarios, so you should have a working understanding of basic C
concepts.

 ■ Core Animation (optional): AV Foundation is largely a nonvisual framework, but does
have some dependencies on Core Animation for rendering video content. It is helpful,
but not required, to have a working knowledge of the Core Animation framework.

 ■ Drawing/Rendering Frameworks (optional): Advanced use cases will often integrate
with drawing and rendering frameworks, such as Quartz, Core Image, and Open GL or
OpenGL ES. The book explains how to integrate with these technologies, but doesn’t
assume an understanding of how to use these frameworks.

 How This Book Is Organized

 AV Foundation is a large framework with a broad set of features and capabilities. To help divide
the framework into groups of related functionality, the book is organized into three main parts:
AV Foundation Essentials, Media Capture, and Media Creation and Editing. The first section
covers the foundational aspects of the framework and a number of topics that are common to
most AV Foundation applications. In Media Capture we cover the details of working with the
capture APIs to build still and video capture apps. Finally, Media Creation and Editing provides
an in-depth look at the capabilities the framework provides to create and edit media.

 Here’s an overview of what you’ll find in the book’s chapters:

 ■ Chapter 1 , “Getting Started with AV Foundation” —This chapter will help you take
your first steps with AV Foundation. It deconstructs the framework to help you gain a
better understanding of its features and capabilities. This chapter also provides a high-
level overview of the media domain itself and covers topics such as digital sampling and
media compression. An understanding of these topics will be helpful throughout the
book.

 ■ Chapter 2 , “Playing and Recording Audio” —AV Foundation’s classes for playing and
recording audio are some of its most widely used features. In this chapter we discuss how
to use the framework’s audio classes, and you’ll put them into action building an audio
looper and voice memo applications. We also cover how to use audio sessions to help
you provide a polished audio user experience to your apps.

 ■ Chapter 3 , “Working with Assets and Metadata” —Much of the framework is built
around the notion of assets. An asset represents a media resource, such as a QuickTime
movie or an MP3 audio file. You learn to use assets and how to use the framework’s
metadata features by building a metadata editing application.

xvPreface

 ■ Chapter 4 , “Playing Video” —Playing video is one of the most essential tasks AV
Foundation performs. It’s a primary or supporting use case in many media apps. You
gain a detailed understanding of how to use the framework’s playback features to build a
custom video player with full transport controls, subtitle display, and Airplay support.

 ■ Chapter 5 , “Using AV Kit” —AV Kit is a new framework introduced in Mac OS X 10.9
and now in iOS 8. It enables you to quickly build AV Foundation video players with user
interfaces matching QuickTime Player on OS X and the Videos app on iOS. This can be a
great option if you want to build players maintaining fidelity with the native operating
system while retaining the full power of working directly with AV Foundation’s video
APIs covered in Chapter 4 .

 ■ Chapter 6 , “Capturing Media” —This chapter provides an introduction to the
framework’s audio and video capture features. You learn to use these features to control
the built-in camera hardware available on iOS devices and modern Macs. This is one
of the most widely used areas of the framework, and it can help you build powerful,
modern camera capture applications.

 ■ Chapter 7 , “Using Advanced Capture Features” —This chapter covers a variety of
advanced capture topics. You learn to use metadata capture to perform barcode scanning
and face detection. You learn to use the advanced zooming capabilities provided by the
framework. You also learn to enable high frame rate capture, which is great for adding
slow motion effects to your videos. We also discuss how to integrate with OpenGL
ES to process the video samples captured by the camera, which opens up a world of
possibilities.

 ■ Chapter 8 , “Reading and Writing Media” —AV Foundation provides a lot of high-level
functionality, but the framework never hides the lower-level details from you when you
need it. In this chapter we discuss the framework’s low-level reading and writing facilities
that can enable you to process the media in any way you want. We discuss how to read
audio samples from an asset and render them as an audio waveform. We also look at
applying real-time video effects using the camera capture APIs.

 ■ Chapter 9 , “Composing and Editing Media” —In this chapter, we begin our
exploration of the framework’s media editing features. This is one of the most powerful
features of the framework, and it enables you to create new media by composing and
editing media from a variety of sources. You begin building the book’s most advanced
application, 15 Seconds, which is a video editor similar to an application such as iMovie
for iOS.

 ■ Chapter 10 , “Mixing Audio” —An important part of building media compositions is
learning how to mix multiple audio tracks. You learn how to use mixing techniques such
as audio fades and ducking that will help you add polish to your audio presentation.

 ■ Chapter 11 , “Building Video Transitions” —Video transitions are commonly used to
indicate a change in location or storyline, and AV Foundation provides robust support
for applying video transitions to your compositions. In this chapter, you learn to use the
framework’s video composition to control the compositing of multiple video tracks in
your composition. You’ll put these features into action to add dissolve, push, and wipe
transitions to the 15 Seconds app.

xvi Preface

 ■ Chapter 12 , “Layering Animated Content” —This chapter discusses how to add titles,
lower thirds, and other animated overlay effects using the Core Animation framework.
You’ll see how to use Core Animation to build animation sequences that seamlessly
synchronize with your video playback. We also discuss how to incorporate these same
effects in your final exported videos.

 About the Sample Code

 A considerable amount of time was spent developing the book’s sample applications. A big
part of learning AV Foundation is gaining an understanding of how it can be used to build
real-world applications. To that end, the book includes a large collection of real-world sample
projects that you’ll develop throughout the course of this book. These projects can be used as a
reference or could even be customized and used as the basis for your own applications. Some of
the projects are silly (Hello AVF), some are serious (15 Seconds), but all of them illustrate how
to use one or more areas of the framework’s functionality and will be fun for you to build.

 AV Foundation is largely the same across both OS X and iOS, so all the sample projects,
although written for one platform or the other, are intended to be accessible to developers on
both platforms. The sample applications already have their user interfaces and supporting code
created, and the code is factored in such a way that you can focus on just the AV Foundation
implementation. This makes the sample apps accessible to you regardless of your platform
experience, and I think you’ll find it works well from an OO-design standpoint as it helps you
develop more reusable, testable code.

 The sample projects can be found on my company’s Github site available here:
https://github.com/tapharmonic/Learning-AV-Foundation

 Contacting the Author

 You can contact Bob at his website, http://bobmccune.com , or you can find him on Twitter
(@bobmccune).

https://github.com/tapharmonic/Learning-AV-Foundation
http://bobmccune.com

Acknowledgments

 I would like to thank my mother and father for all their love and support. Whatever I have
to give today is because of what they first gave to me. I want to thank my loving wife, Linda,
and amazing children, Michael and Kayla. This book would not have been possible without
all of their patience and support. Thanks to Trina MacDonald at Pearson Education for her
help in making this book possible and patiently guiding me through the process. Thanks to
Chris Zahn, Olivia Basegio, Elaine Wiley, and all of the other people at Pearson involved in the
development of this title. A special thanks goes to my technical editors, Chris Adamson, Jon
Steinmetz, and Ryder Mackay. I greatly appreciated your insight and feedback, and a special
shout out goes to Chris for always writing his comments in Comic Sans to make sure I’d make
the corrections quickly. Finally, I’d like to thank Apple and its amazing community of Mac and
iOS developers. I’ve been writing software for almost twenty years and have never had as much
fun as I am having right now.

About the Author

 Bob McCune is an iOS developer and instructor from Minnesota. He started developing for
the Mac in 2007 and then switched to iOS when the first iPhone SDK was released in 2008. He
is the owner of TapHarmonic, LLC, a small iOS consulting and training company based out of
MN. Bob also founded the MN chapter of CocoaHeads in the spring of 2008 and remains the
group leader to this day. Bob and his wife, Linda, have two amazing children who are who
are growing up faster than he would like. He is incredibly blessed to have such a loving and
supportive family.

This page intentionally left blank

 1
 Getting Started with AV

Foundation

 Apple has long been a driving force in the world of digital media. In 1991 it introduced
 QuickTime, which for the first time brought digital audio and video to the masses. The
QuickTime architecture would revolutionize digital multimedia for the next two decades,
having significant impacts on the education, gaming, and entertainment industries. In 2001
Apple introduced the world to iTunes and the iPod, fundamentally changing the way we listen
to music. The iTunes Store, introduced two years later, upended the music industry and has
since become the centerpiece of Apple’s ever-expanding digital media ecosystem. 2007 brought
us the introduction of the iPhone, and a few short years later, the iPad. These events ushered
in a whole new era of computing and forever changed the way we create, consume, and share
media.

 The world of digital media is no longer known only to the technical set. Today, digital media
is simple, essential, pervasive, and empowering. Apps such as Instagram make it easy to take
beautiful, artistic still images and share them with the world. Video chat applications from
 Skype to TangoMe bring together friends and family wherever they may be. Streaming video
provided by YouTube and Netflix is never more than an LTE or Wi-Fi signal away. And tools
like Final Cut Pro X and iMovie for the iPad put the power of video editing in the hands of
power users and novices alike.

 The digital media revolution is here, but we’re just getting started. Learning to use AV
Foundation is the key to building the next generation of media applications for Mac OS X
and iOS, and this book serves as your guide. It offers an essential overview of the framework,
providing you the insight and understanding needed to master the framework. So, let’s get
started!

 What Is AV Foundation?

 AV Foundation is Apple’s advanced Objective-C framework for working with time-based media
on OS X and iOS. It offers a broad and powerful feature set providing you with the tools
needed to build modern media applications on Apple’s platforms. AV Foundation was built

4 Chapter 1 Getting Started with AV Foundation

from the beginning with today’s hardware and applications in mind. It is designed to be deeply
multithreaded. It takes full advantage of multicore hardware and makes heavy use of blocks
and Grand Central Dispatch (GCD) to offload computationally expensive processes to back-
ground threads. It automatically provides hardware-accelerated operations ensuring the best
possible performance on a wide range of devices. It is designed to be highly power efficient to
meet the needs of devices such as the iPhone and iPad. Additionally, it was written to be 64-bit
native from the beginning, taking full advantage of 64-bit hardware where available.

 Where Does AV Foundation Fit?

 One of the first steps to learning AV Foundation is to get a clear understanding of where it fits
within Apple’s overall media landscape. Mac OS X and iOS provide developers with a number
of high-level and low-level frameworks for working with timed media. Figure 1.1 shows how
AV Foundation fits into the overall picture.

 Figure 1.1 Mac OS X and iOS media environment

 Both platforms offer a number of high-level solutions for working with media. On iOS, the
 UIKit framework makes it easy to incorporate basic still image and video capture into your
applications. Both Mac OS X and iOS can make use of the HTML5 <audio> and <video> tags
inside either a WebView or UIWebView to play audio and video content. Both platforms
additionally provide the AVKit framework, which simplifies building modern video playback

5Where Does AV Foundation Fit?

applications. All these solutions are convenient and easy to use and should be considered when
adding media functionality into your applications. However, although these solutions are
convenient, they often lack the flexibility and control needed by more advanced applications.

 At the other end of the spectrum are several lower-level frameworks that provide supporting
functionality used by all the higher-level solutions. Most of these are low-level, procedural
C-based frameworks that are incredibly powerful and performant, but are complex to learn and
use and require a strong understanding of how media is processed at a hardware level. Let’s
look at some of the key supporting frameworks and the functionality each provides.

 ■ Core Audio

 Core Audio handles all audio processing on OS X and iOS. Core Audio is a suite of
frameworks providing interfaces for the recording, playback, and processing of audio and
MIDI content. Core Audio provides both higher-level interfaces, such as those provided
by the Audio Queue Services framework, which can be used for basic audio playback and
recording needs. It also provides very low-level interfaces, specifically Audio Units, which
provide complete control over the audio signal and enable you to build sophisticated
audio processing features like those used by tools such as Apple’s Logic Pro X and Avid’s
Pro Tools. For an excellent overview of this topic, I highly recommend reading Learning
Core Audio by Chris Adamson and Kevin Avila (2012, Boston: Addison-Wesley).

 ■ Core Video

 Core Video provides a pipeline model for digital video on OS X and iOS. It provides
image buffer and buffer-pool support to its counterpart, Core Media, providing it an
interface for accessing the individual frames in a digital video. It simplifies working with
this data by translating between pixel formats and managing video synchronization
concerns.

 ■ Core Media

 Core Media is part of the low-level media pipeline used by AV Foundation. It provides
the low-level data types and interfaces needed for working with audio samples and video
frames. Core Media additionally provides the timing model used by AV Foundation
based around the CMTime data type. CMTime , and its associated data types, are used when
working with time-based operations in AV Foundation.

 ■ Core Animation

 Core Animation is the compositing and animation framework provided on OS X and iOS.
The behavior it provides is essential to the beautiful, fluid animations seen on Apple’s
platforms. It offers a simple, declarative programming model providing an Objective-C
wrapper over functionality enabled by OpenGL and OpenGL ES. Using Core Animation,
AV Foundation provides hardware-accelerated rendering of video content in both
playback and video capture scenarios. AV Foundation additionally makes use of Core
Animation, enabling you to add animated titling and image effects in video editing and
playback scenarios.

6 Chapter 1 Getting Started with AV Foundation

 Sitting between the high-level and low-level frameworks is AV Foundation. The positioning of
AV Foundation within the overall media landscape is significant. It offers much of the power
and performance of the lower-level frameworks, but in a much simpler Objective-C interface. It
can work seamlessly with higher-level frameworks, such as Media Player and the Assets Library,
making use of the services they provide, and at the same time it can interact directly with Core
Media and Core Audio when more advanced needs arise. Additionally, because AV Foundation
sits below the UIKit and AppKit layers, it also means you have a single media framework to use
on both platforms. There is only one framework to learn, providing you the opportunity to
port not only your code, but also your knowledge and experience to either platform.

 Decomposing AV Foundation

 One of the biggest early challenges in learning to use AV Foundation is making sense of the
large number of classes the framework provides. The framework contains more than 100
classes, a large collection of protocols, and a variety of functions and constants you’ll use as
well. This can certainly seem a bit overwhelming the first time it is encountered, but when you
decompose the framework into its functional units it becomes much more understandable.
Let’s look at the key areas of functionality it provides.

 Audio Playback and Recording

 If you look back at Figure 1.1 , you’ll see a small box in the upper-right corner of the AV
Foundation box labeled Audio-Only Classes. Some of the earliest functionality provided by
AV Foundation relates to audio. AVAudioPlayer and AVAudioRecorder provide easy ways of
incorporating audio playback and recording into your applications. These aren’t the only ways
of playing and recording audio in AV Foundation, but they are the easiest to learn and provide
some powerful features.

 Media Inspection

 AV Foundation provides the capability to inspect the media you are using. You can inspect
media assets to determine their suitability for a particular task, such as whether they can
be used for playback or if they can be edited or exported. You can retrieve technical attri-
butes about the media, such as its duration, its creation date, or its preferred playback
volume. Additionally, the framework provides powerful metadata support based around the
 AVMetadataItem class. This enables you to read and write descriptive metadata about the
media, such as album and artist information.

 Video Playback

 One of the more common uses of AV Foundation is to provide video playback. This is often a
primary or secondary use case in many media applications. The framework enables you to play
video assets from either a local file or a remote stream, and control the playback and display of
the video content. The central classes in this area are the AVPlayer and AVPlayerItem classes

7Understanding Digital Media

that enable you to control the playback of an asset, as well as incorporate more advanced
features, such as subtitles and chapter information. Or you can access alternate audio and video
tracks.

 Media Capture

 These days, almost all Macs and all iOS devices include built-in cameras. These are high quality
devices that can be used for capturing both still and video images. AV Foundation provides a
rich set of APIs, giving you fine-grained control of the capabilities of these devices. The central
class in capture scenarios is AVCaptureSession , which is the central hub of activity for routing
camera device output to movie and image files as well as media streams. This has always been
a robust area of functionality within AV Foundation and has been significantly enhanced again
in the most recent release of the framework.

 Media Editing

 AV Foundation also provides very strong support for media composition and editing. It enables
you to create applications that can compose multiple tracks of audio and video together, trim
and edit individual media clips, modify audio parameters over time, and add animated title
and transition effects. Tools such as Final Cut Pro X and iMovie for the Mac and iPad are prime
examples of the kind of applications that can be built using this functionality.

 Media Processing

 Although much can be accomplished in AV Foundation without getting too deeply into the
bits and bytes of the media, at times you need to get access to this level of detail. Fortunately,
when you need to perform more advanced media processing, you can do so using the
 AVAssetReader and AVAssetWriter classes. These classes provide direct access to the video
frames and audio samples, so you can perform any kind of advanced processing you require.

 Understanding Digital Media

 These days it’s easy to take digital media for granted. We buy songs and albums from iTunes,
stream movies and TV shows from Netflix and Hulu, and share digital photos by email, text,
and on the Web. Using digital media has become second nature for most of us, but have you
ever given much thought to how that media became digital in the first place? We clearly live in
a digital age, but we still inhabit an analog world. Every sight that we see and every sound that
we hear is delivered to us as an analog signal. The inner structures of our eyes and ears convert
these signals into electrical impulses that our brains perceive as sight and sound. Signals in the
real world are continuous , constantly varying in frequency and intensity, whereas signals in the
digital world are discrete , having a state of either 1 or 0. In order to translate an analog signal
into a form that we can store and transmit digitally, we use an analog-to-digital conversion
process called sampling .

8 Chapter 1 Getting Started with AV Foundation

 Digital Media Sampling

 There are two primary types of sampling used when digitizing media. The first is called temporal
sampling, which enables us to capture variations in a signal over time. For instance, when you
record a voice memo on your iPhone, the continuous variations in the pitch and volume of
your voice are being captured over the duration of your recording. The second type of sampling
is called spatial sampling and is used when digitizing photographs or other visual media. Spatial
sampling involves capturing the luminance (light) and chrominance (color) in an image at
some degree of resolution in order to create the resulting digital image’s pixel data. When digi-
tizing video, both forms of sampling are used because a video signal varies both spatially and
temporally.

 Fortunately, you don’t need to have a deep understanding of the complex digital signal
processing involved in these sampling processes, because it is handled by the hardware compo-
nents that perform the analog-to-digital conversion. However, failing to have a basic under-
standing of these processes and the storage formats of the digital media they produce will limit
your ability to utilize some of AV Foundation’s more advanced and interesting capabilities. To
get a general understanding of the sampling process, let’s take a look at the steps involved in
sampling audio.

 Understanding Audio Sampling

 When you hear the sound of someone’s voice, the honking of a horn, or the strum of a
guitar, what you are really hearing are vibrations transmitted through sound waves over some
medium. For instance, when you strum a G chord on a guitar, as the guitar pick strikes the
strings, it causes each string to vibrate at a certain frequency and amplitude. The speed or
frequency at which the string vibrates back and forth determines its pitch, with low notes
producing low, slow-modulating frequencies and high notes producing high, fast-modulating
frequencies. The amplitude measures the relative magnitude of the frequency, which roughly
correlates to the volume you hear. On a stringed instrument such as a guitar, you can actu-
ally see both the frequency and amplitude attributes of the signal when you pluck the string.
This vibration causes the surrounding air molecules to move, which in turn push against their
neighboring molecules, which push against their neighbors, and so on, continuously transmit-
ting the energy from the initial vibration outward in all directions. As these waves reach your
ear, they cause your eardrum to vibrate at the same frequency and amplitude. These vibra-
tions are transmitted to the cochlea in your inner ear, where they are converted into electrical
impulses sent to your brain, causing you to think, “I’m hearing a G chord!”

 When we record a voice, an acoustic instrument such as a piano or a guitar, or capture other
environmental sounds, we use a microphone. A microphone is a transducer that translates
mechanical energy (a sound wave) into electrical energy (voltage). A variety of different micro-
phone types are in use, but I’ll discuss this in terms of one called a dynamic microphone. Figure
 1.2 shows a high-level view of the internals of a dynamic microphone.

9Understanding Digital Media

Voice Coil

Diaphragm

Magnet

 Figure 1.2 Internal view of a dynamic microphone

 Contained inside the head case, which is the part you speak into, is a thin membrane called
a diaphragm. The diaphragm is connected to a coil of wire wrapped around a magnet. When
you speak into the microphone, the diaphragm vibrates in relationship to the sound waves it
senses. This in turn vibrates the coil of wire, causing a current to be generated relative to the
frequency and amplitude of the input signal. Using an oscilloscope, we can see the oscillations
of this current, as shown in Figure 1.3 .

 Figure 1.3 Audio signal voltage

 Returning to the topic of sampling, how do we convert this continuous signal into its discrete
form? Let’s drill in a bit further into the essential element in an audio signal. Using a tone
generator, I created two different tones producing the sine waves shown in Figure 1.4 .

10 Chapter 1 Getting Started with AV Foundation

0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0

A
m

pl
itu

de

Time (Seconds)

A
m

pl
itu

de

Time (Seconds)

 Figure 1.4 Sine waves at 1Hz (left) and 5Hz (right)

 We’re interested in two aspects of this signal. The first is the amplitude , which indicates the
magnitude of the voltage or relative strength of the signal. This can be represented on a variety
of scales, but is commonly normalized to a range of –1.0f to 1.0f. The other interesting aspect
of this signal is its frequency . The frequency of the signal is measured in hertz (Hz), which indi-
cates how many complete cycles occur in the period of one second. The image on the left in
 Figure 1.4 shows an audio signal cycling at 1Hz and the one on the right shows a 5Hz signal.
Humans have an audible frequency range of 20Hz–20kHz (20,000 Hz), so both signals would be
inaudible, but they make for easier illustration.

 Note

 Although human hearing has an audible frequency range of 20Hz to 20kHz, that range really
represents theoretical boundaries. Few people can hear frequencies in the outer bounds of that
range, because hearing declines if you’re exposed to loud environments, and it declines rapidly
as you age. If you’ve ever been to a rock concert, I can assure you that the upper part of that
range is gone.

 To provide some frame of reference for the sound of various frequencies, the lowest key on a
piano, A0, produces a frequency of 27.5Hz and C8, the highest key, produces a frequency of
approximately 4.1kHz.

 Digitizing audio involves a method of encoding called linear pulse-code modulation , more
commonly referred to as Linear PCM or LPCM. This process samples or measures the ampli-
tude of an audio signal at a fixed, periodic rate called the sampling rate . Figure 1.5 shows taking
seven samples of this signal over the period of 1 second and the resulting digital representation
of the signal.

11Understanding Digital Media

A
m

pl
itu

de

A
m

pl
itu

de

 Figure 1.5 Low sampling rate

 Clearly, at a low sampling rate the digital version of this signal bears little resemblance to
the original. Playing this digital audio would result in little more than clicks and pops. The
problem with the sampling shown in Figure 1.5 is that it isn’t sampling frequently enough to
accurately capture the signal. Let’s try this again in Figure 1.6 , but this time we’ll increase the
sampling rate.

A
m

pl
itu

de

A
m

pl
itu

de

 Figure 1.6 Higher sampling rate

 This is certainly an improvement, but still not a very accurate representation of the signal.
However, what you can surmise from this example is if you continue to increase the frequency
of the sample rate, we should be able to produce a digital representation that fairly accurately
mirrors the original source. Given the limitations of hardware, we may not be able to produce
an exact replica, but is there a sample rate that can produce a digital representation that is
good enough? The answer is yes, and it’s called the Nyquist rate . Harry Nyquist was an engineer

12 Chapter 1 Getting Started with AV Foundation

working for Bell Labs in the 1930s who discovered that to accurately capture a particular
frequency, you need to sample at a rate of at least twice the rate of the highest frequency. For
instance, if the highest frequency in the audio material you wanted to capture is 10kHz, you
need a sample rate of at least 20kHz to provide an accurate digital representation. CD-quality
audio uses a sampling rate of 44.1kHz, which means that it can capture a maximum frequency
of 22.05kHz, which is just above 20kHz upper bound of human hearing. A sampling rate of
44.1kHz may not capture the complete frequency range contained in the source material,
meaning your dog may be upset by the recording because it doesn’t capture the nuances of the
Abbey Road sessions, but for us human beings, it sounds pristine.

 In addition to the sampling rate, another important aspect of digital audio sampling is how
accurately we can capture each audio sample. The amplitude is measured on a linear scale,
hence the term Linear PCM. The number of bits used to store the sample value defines the
number of discrete steps available on this linear scale and is referred to as the audio’s bit depth .
Assigning too few bits results in considerable rounding or quantizing of each sample, leading
to noise and distortion in the digital audio signal. Using a bit depth of 8 would provide 256
discrete levels of quantization. This may be sufficient for some audio material, but it isn’t high
enough for most audio content. CD-quality audio has a bit depth of 16, resulting in 65,536
discrete levels, and in professional audio recording environments bit depths of 24 or higher
are used.

 When we digitize a signal, we are left with its raw , uncompressed digital representation. This is
the media’s purest digital form, but it requires significant storage space. For instance, a 44.1kHz,
16-bit LPCM audio file takes about 10MB per stereo minute. To digitize a 12-song album with
the average song length of 5 minutes would take approximately 600MB of storage. Even with
the vast amounts of storage and bandwidth we have today, that is still pretty large. We can
see that uncompressed digital audio requires significant amounts of storage, but what about
uncompressed video? Let’s take a look at the elements of a digital video to see if we can deter-
mine the amount of storage space it requires.

 Video is composed of a sequence of images called frames . Each frame captures a scene for a
point in time within the video’s timeline. To create the illusion of motion, we need to see a
certain number of frames played in fast succession. The number of frames displayed in one
second is called video’s frame rate and is measured in frames per second (FPS). Some of the most
common frame rates are 24FPS, 25FPS, and 30FPS.

 To understand the storage requirements for uncompressed video content, we first need to deter-
mine how big each individual frame would be. A variety of common video sizes exist, but these
days they usually have an aspect ratio of 16:9, meaning there are 16 horizontal pixels for every
9 vertical pixels. The two most common sizes of this aspect ratio are 1280 × 720 and 1920 ×
1080. What about the pixels themselves? If we were to represent each pixel in the RGB color
space using 8 bits, that means we’d have 8 bits for red, 8 bits for green, and 8 bits for blue,
or 24 bits. With all the inputs gathered, let’s perform some calculations. Table 1.1 shows the
storage requirements for uncompressed video at 30FPS at the two most common resolutions.

13Digital Media Compression

 Table 1.1 Uncompressed Video Storage Requirements

 Color Resolution Frame Rate MB/sec GB/hour

 24-bit 1280 × 720 30FPS 79MB/sec 278GB/hr

 24-bit 1920 × 1080 30FPS 178MB/sec 625GB/hr

 Houston, we have a problem. Clearly, as a storage and transmission format, this would be
untenable. A decade from now these sizes may seem trivial, but today this isn’t feasible for
most uses. Because this isn’t a reasonable way to store and transfer video in most cases, we
need to find way to reduce this size. This brings us to the topic of compression.

 Digital Media Compression

 To reduce the size of digital media we need to use compression. Virtually all the media we
consume is compressed to various degrees. Whether it’s video on TV, a Blu-ray disc, streamed
over the web, or purchased from the iTunes Store, we’re dealing with compressed formats.
Compressing digital media can result in greatly reduced file sizes, but often with little or no
perceivable degradation in quality.

 Chroma Subsampling

 Video data is typically encoded using a color model called Y'C b C r ,—which is commonly
referred to as YUV. The term YUV is technically incorrect, but YUV probably rolls off the
tongue better than Y-Prime-C-B-C-R. Most software developers are more familiar with the RGB
color model, where every pixel is composed of some value of red, green, and blue. Y'C b C r , or
YUV, instead separates a pixel’s luma channel Y (brightness) from its chroma (color) channels
UV. Figure 1.7 illustrates the effect of separating an image’s luma and chroma channels.

 Figure 1.7 Original image on the left. Luma (Y) in the center. Chroma (UV) on the right.

14 Chapter 1 Getting Started with AV Foundation

 You can see that all the detail of the image is preserved in the luma channel, leaving us with a
grayscale image, whereas in the combined chroma channels almost all the detail is lost. Because
our eyes are far more sensitive to brightness than they are to color, clever engineers over the
years realized we can reduce the amount of color information stored for each pixel while still
preserving the quality of the image. The process used to reduce the color data is called chroma
subsampling .

 Whenever you see camera specifications or other video hardware or software referring to
numbers such as 4:4:4, 4:2:2, or 4:2:0, these values refer to the chroma subsampling it uses.
These values express a ratio of luminance to chrominance in the form J:a:b where

 ■ J: is the number of pixels contained within some reference block (usually 4).

 ■ a: is number of chrominance pixels that are stored for every J pixels in the first row.

 ■ b: is the number of additional pixels that are stored for every J pixels in the second row.

 To preserve the quality of the image, every pixel needs to have its own luma value, but it does
not need to have its own chroma value. Figure 1.8 shows the common subsampling ratios and
the effects of each.

4:4:4

4:2:2

4:2:0

 Figure 1.8 Common chroma subsampling ratios

15Digital Media Compression

 In all forms, full luminance is preserved across all pixels, and in 4:4:4 full color information is
preserved as well. In 4:2:2, color information is averaged across every two pixels horizontally,
resulting in a 2:1 luma-to-chroma ratio. In 4:2:0, color information is averaged both horizon-
tally and vertically, resulting in a 4:1 luma-to-chroma ratio.

 Chroma subsampling typically happens at the point of acquisition. Some professional cameras
capture at 4:4:4, but more commonly they do so at 4:2:2. Consumer-oriented cameras, such as
the one found on the iPhone, capture at 4:2:0. A high-quality image can be captured even at
significant levels of subsampling, as is evidenced by the quality of video that can be shot on
the iPhone. The loss of color becomes more problematic when performing chroma keying or
color correction in the post-production process. As the chroma information is averaged across
multiple pixels, noise and other artifacts can enter into the image.

 Codec Compression

 Most audio and video is compressed with the use of a codec, which is short for encoder/
decoder. A codec is used to encode audio or video data using advanced compression algorithms
to greatly reduce the size needed to store or deliver digital media. The codec is also used to
decode the media from its compressed state into one suitable for playback or editing.

 Codecs can be either lossless or lossy . A lossless codec compresses the media in a way that it
can be perfectly reconstructed upon decompression, making it ideal for editing and production
uses, as well as for archiving purposes. We use this type of compression frequently when using
utilities like zip or gzip. A lossy codec, as the name suggests, loses data as part of the compres-
sion process. Codecs employing this form of compression use advanced algorithms based on
human perception. For instance, although we can theoretically hear frequencies between 20Hz
and 20kHz, we are particularly sensitive to frequencies between 1kHz and 5kHz. Our sensitivity
to the frequencies begins to taper off as we get above or below this range. Using this knowl-
edge, an audio codec can employ filtering techniques to reduce or eliminate certain frequencies
in an audio file. This is just one example of the many approaches used, but the goal of lossy
codecs is to use psycho-acoustic or psycho-visual models to reduce redundancies in the media
in a way that will result in little or no perceivable degradation in quality.

 Let’s look at the codec support provided by AV Foundation.

 Video Codecs

 AV Foundation supports a fairly limited set of codecs. It supports only those that Apple consid-
ers to be the most relevant for today’s media. When it comes to video, that primarily boils
down to H.264 and Apple ProRes. Let’s begin by looking at H.264 video.

 H.264

 When it comes to encoding your video for delivery, I’ll paraphrase Henry Ford by saying AV
Foundation supports any video codec you want as long as it’s H.264. Fortunately, the industry
has coalesced around this codec as well. It is widely used in consumer video cameras and is the

16 Chapter 1 Getting Started with AV Foundation

dominant format used for video streaming on the Web. All the video downloaded from the
iTunes Store is encoded using this codec as well. The H.264 specification is part of the larger
MPEG–4 part 14 specification defined by the Motion Picture Experts Group (MPEG). H.264
builds on the earlier MPEG–1 and MPEG–2 standards, but provides greatly improved image
quality at lower bit rates, making it ideal for streaming and for use on mobile devices and video
cameras.

 H.264, along with other forms on MPEG compression, reduces the size of video content in two
ways:

 ■ Spatially: This compresses the individual video frames and is referred to as intraframe
compression.

 ■ Temporally: Compresses redundancies across groups of video frames. This is called
 interframe compression.

 Intraframe compression works by eliminating redundancies in color and texture contained
within the individual video frames, thereby reducing their size but with minimal loss in picture
quality. This form of compression works similarly to that of JPEG compression. It too is a lossy
compression algorithm, but can be used to produce very high-quality photographic images at a
fraction of the size of the original image. The frames created through this process are referred to
as I-frames .

 With interframe compression, frames are grouped together into a Group of Pictures (GOP).
Within this GOP certain temporal redundancies exist that can be eliminated. If you think
about a typical scene in video, there are certain elements in motion, such as a car driving by
or a person walking down the street, but the background environment is often fixed. The fixed
background represents a temporal redundancy that could be eliminated through compression.

 There are three types of frames that are stored within a GOP, as shown in Figure 1.9 .

PBBPBI B

 Figure 1.9 Group of Pictures

17Digital Media Compression

 ■ I-frames: These are the standalone or key frames and contain all the data needed to
create the complete image. Every GOP has exactly one I-frame. Because it is a standalone
frame, it is the largest in size but is fastest to decompress.

 ■ P-frames: P-frames, or predicted frames, are encoded from a “predicted” picture based on
the closest I-frame or P-frame. P-frames can reference the data in the closest preceding
P-frame or the group’s I-frame. You’ll often see these referred to as reference frames, as
their neighboring P-frames and B-frames can refer to them.

 ■ B-frames: B-frames, or bidirectional frames, are encoded based on frame information that
comes before and after them. They require little space, but take longer to decompress
because they are reliant on their surrounding frames.

 H.264 additionally supports encoding profiles, which determine the algorithms employed
during the encoding process. There are three top-level profiles defined:

 ■ Baseline: This profile is commonly used when encoding media for mobile devices.
It provides the least efficient compression, thereby resulting in larger file sizes, but is
also the least computationally intensive because it doesn’t support B-frames. If you’re
targeting older iOS devices, such as the iPhone 3GS, you should use the baseline profile.

 ■ Main: This profile is more computationally intensive than baseline, because a greater
number of its available algorithms are used, but it results in higher compression ratios.

 ■ High: The high profile will result in the highest quality compression being used, but
is the most intensive of the three because the full arsenal of encoding techniques and
algorithms are used.

 Apple ProRes

 AV Foundation supports two flavors of the Apple ProRes codec. Apple ProRes is considered an
intermediate or mezzanine codec, because it’s intended for professional editing and produc-
tion workflows. Apple ProRes codecs are frame-independent, meaning only I-frames are used,
making it more suitable for editing. They additionally use variable bit rate encoding that varies
the number of bits used to encode each frame based on the complexity of the scene.

 ProRes is a lossy codec, but of the highest quality. Apple ProRes 422 uses 4:2:2 chroma subsam-
pling and a 10-bit sample depth. Apple ProRes 4444 uses 4:4:4 chroma subsampling, with the
final 4 indicating it supports a lossless alpha channel and up to a 12-bit sample depth.

 The ProRes codecs are available only on OS X. If you’re developing only for iOS, H.264 is the
only game in town. Apple does, however, provide one variation to typical H.264 encoding that
can be used when capturing for editing purposes—called iFrame. This is an I-frame-only variant
producing H.264 video more suitable for editing environments. This format is supported within
AV Foundation and is additionally supported by a variety of camera manufacturers, such as
Canon, Panasonic, and Nikon.

18 Chapter 1 Getting Started with AV Foundation

 Note

 In addition to H.264 and Apple ProRes, AV Foundation supports a number of camera device
codecs, such as MPEG–1, MPEG–2, MPEG–4, H.263, and DV, enabling you to import content
from a variety of video cameras.

 Audio Codecs

 AV Foundation supports all the audio codecs supported by the Core Audio framework, meaning
it has broad support for a variety for formats. However, when you’re not using linear PCM
audio, the one you will most frequently use is AAC.

 AAC

 Advanced Audio Coding (AAC) is the audio counterpart to H.264 and is the dominant format
used for audio streaming and downloads. It greatly improves upon MP3, providing higher
sound quality at lower bit rates, which makes it ideal for distribution on the Web. Additionally,
AAC doesn’t have the licensing and patent restrictions that have long plagued MP3.

 Note

 AV Foundation and Core Audio provide support for decoding MP3 data, but they do not provide
the capability of encoding it.

 Container Formats

 If you’re like most people, you’re likely to find a variety of media files on your computer. You’ll
find files with extensions such as .mov , .m4v , .mpg , and .m4a . Although we commonly refer to
these types as file formats, the correct definition is they are container formats.

 A container format is considered a metafile format. From a high level you can think of a
container format as a directory containing one or more types of media along with metadata
describing its contents. A QuickTime file, for instance, can contain a variety of media types,
including video, audio, subtitles, and chapter information, and contains metadata describing
the details of each piece of media it holds.

 Each format has a specification that determines the structure of the file. The structure defines
not only the technical aspects of the media it contains, such as the media’s duration, encoding,
and timing information, but also commonly defines descriptive metadata, such as a movie’s
title or an song’s artist information. This metadata can be presented in tools such as iTunes or
the iOS Music app, and AV Foundation provides the classes to read and write this type of data
in your applications as well.

19Hello AV Foundation

 You’ll use two primary container formats when working with AV Foundation:

 ■ QuickTime: QuickTime is Apple’s proprietary format defined as part of the larger
QuickTime architecture. This is an extremely robust and highly specified format that is
widely used in both professional and consumer settings. Apple describes this format in
great detail in a QuickTime File Format Specification document that you can find on the
Apple Developer Connection site. I recommend that all AV Foundation developers read
at least the introductory sections of this document because it provides valuable insight
that will benefit you when developing media applications.

 ■ MPEG–4: The MPEG-4 Part 14 specification defines the MPEG-4 (MP4) container format.
This is an industry standard format derived directly from the QuickTime specification, so
the two are very similar in structure and capabilities. The official file extension defined
for an MP4 container is .mp4 but a variety of variant extensions are in use, particularly
within Apple’s ecosystem. These variant file extensions still use the same basic MP4
container format, but are often used to distinguish the particular media type, as is the
case with an m4a audio file, or can additionally indicate the use of extensions to the base
MP4 container, as is the case with m4v video files.

 Hello AV Foundation

 Now that you have a high-level understanding of AV Foundation and some deeper insight into
the details of digital media, let’s wrap up this chapter by having a little fun.

 Mac OS X has long had the NSSpeechSynthesizer class, making it easy to add text-to-speech
features in Cocoa applications. You can add similar functionality to your iOS apps using AV
Foundation’s AVSpeechSynthesizer class. This class is used to speak one or more utterances ,
which are instances of a class called AVSpeechUtterance . If you wanted to speak the phrase
“Hello World!” you could do so as follows:

 AVSpeechSynthesizer *synthesizer = [[AVSpeechSynthesizer alloc] init];
 AVSpeechUtterance *utterance =
 [[AVSpeechUtterance alloc] initWithString:@"Hello World!"];
 [synthesizer speakUtterance:utterance];

 If you ran this code, you would hear the phrase “Hello World!” being spoken in the default
voice for your locale. Let’s put this functionality into action by building a simple app that will
carry on a conversation with AV Foundation.

 All the projects you’ll build throughout this book have a “starter” and “final” version in the
book’s sample code repository. The final version is the completed project and is ready to
build and run. The starter version has the user interface and supporting classes completed and
contains stubbed versions of the classes you’ll be developing. Additionally, most of the sample
projects have the code factored in a way to isolate the AV Foundation code from the rest of
the application. This will make it easy for us to stay focused on AV Foundation without getting
bogged down in the user interface details; it also makes the sample apps accessible to you
whether your primary experience is in OS X or iOS.

20 Chapter 1 Getting Started with AV Foundation

 In the book’s sample code repository, you’ll find a starter project in the Chapter 1 directory
called HelloAVF_Starter . Figure 1.10 shows this app in action.

 Figure 1.10 Hello AV Foundation!

 In the project you’ll find a class called THSpeechController . This is the class in which you’ll
develop the application’s text-to-speech functionality. Listing 1.1 shows the interface for this
class.

 Listing 1.1 THSpeechController.h

 #import <AVFoundation/AVFoundation.h>

 @interface THSpeechController : NSObject

 @property (strong, nonatomic, readonly) AVSpeechSynthesizer *synthesizer;

 + (instancetype)speechController;

 - (void)beginConversation;

 @end

21Hello AV Foundation

 This class has a simple interface with just a couple points to note. The header begins with an
import of <AVFoundation/AVFoundation.h> , which is the umbrella header for the framework.
This will be a common fixture in all the code you write throughout the course of this book.
The key method in this class is beginConversation , which will kick off the text-to-speech
functionality you’ll be building in a minute and put the app into action. Let’s switch over to
the class implementation (see Listing 1.2).

 Listing 1.2 THSpeechController.m

 #import "THSpeechController.h"
 #import <AVFoundation/AVFoundation.h>

 @interface THSpeechController ()
 @property (strong, nonatomic) AVSpeechSynthesizer *synthesizer; // 1
 @property (strong, nonatomic) NSArray *voices;
 @property (strong, nonatomic) NSArray *speechStrings;
 @end

 @implementation THSpeechController

 + (instancetype)speechController {
 return [[self alloc] init];
 }

 - (id)init {
 self = [super init];
 if (self) {
 _synthesizer = [[AVSpeechSynthesizer alloc] init]; // 2

 _voices = @[[AVSpeechSynthesisVoice voiceWithLanguage:@"en-US"], // 3
 [AVSpeechSynthesisVoice voiceWithLanguage:@"en-GB"]];

 _speechStrings = [self buildSpeechStrings];
 }
 return self;
 }

 - (NSArray *)buildSpeechStrings { // 4
 return @[@"Hello AV Foundation. How are you?",
 @"I'm well! Thanks for asking.",
 @"Are you excited about the book?",
 @"Very! I have always felt so misunderstood",
 @"What's your favorite feature?",
 @"Oh, they're all my babies. I couldn't possibly choose.",
 @"It was great to speak with you!",
 @"The pleasure was all mine! Have fun!"];

22 Chapter 1 Getting Started with AV Foundation

 }

 - (void)beginConversation {

 }

 @end

 1. Define the class’s required properties in the class extension, redefining the synthesizer
property that was defined in the header so that it’s read/write. Additionally, define
properties for the voices and speech strings that will be used in the conversation.

 2. Create a new instance of AVSpeechSynthesizer . This is the object performing
the text-to-speech conversion. It acts as a queue for one or more instances of
 AVSpeechUtterance and provides you with the interface to control and monitor the
progress of the ongoing speech.

 3. Create an NSArray containing two instances of AVSpeechSynthesisVoice . Voice
support is currently very limited. You don’t have the ability to specify named voices like
you can on the Mac. Instead, each language/locale has one predefined voice. In this case,
speaker #1 will use the U.S. English voice and speaker #2 will use the British English
voice. You can get a complete listing of supported voices by calling the speechVoices
class method on AVSpeechSynthesisVoice .

 4. Create an array of strings defining the back and forth of the contrived conversation.

 With the basic set up of the class complete, let’s move on and discuss the implementation of
the beginConversation method, as shown in Listing 1.3 .

 Listing 1.3 Implementing the beginConversation Method

 - (void)beginConversation {
 for (NSUInteger i = 0; i < self.speechStrings.count; i++) {
 AVSpeechUtterance *utterance = // 1
 [[AVSpeechUtterance alloc] initWithString:self.speechStrings[i]];
 utterance.voice = self.voices[i % 2]; // 2
 utterance.rate = 0.4f; // 3
 utterance.pitchMultiplier = 0.8f; // 4
 utterance.postUtteranceDelay = 0.1f; // 5
 [self.synthesizer speakUtterance:utterance]; // 6
 }
 }

23Summary

 1. Loop through the collection of speech strings, and for each you’ll create a new instance
of AVSpeechUtterance , passing the string to its initWithString: initializer.

 2. Toggle back and forth between the two voices you defined previously. Even iterations
will speak in the U.S. voice and odd iterations will speak in the British voice.

 3. Specify the rate at which this utterance will be spoken. I’m setting this to a value of
 0.4 to slow it down slightly from its default. I should point out the documentation
states the allowed rate is between AVSpeechUtteranceMinimumSpeechRate and
 AVSpeechUtteranceMaximumSpeechRate . These currently have values of 0.0 and 1.0 ,
respectively. However, because these are constants, it’s possible their values could change
in a future iOS release. If you’re modifying the rate property, it may be safer to calculate
the rate as a percentage of the min and max range.

 4. Specify the pitchMultiplier for the utterance. This changes the pitch of the voice
as it speaks this particular utterance. The allowed values for the pitchMultiplier are
between 0.5 (low pitch) and 2.0 (high pitch).

 5. Specify a postUtteranceDelay of 0.1f . This causes the speech synthesizer to pause
slightly before speaking the next utterance. You can similarly set a preUtteranceDelay .

 Run the application and listen to the conversation. It’s Hello World done AV Foundation-style!

 Experiment with the various AVSpeechUtterance settings to get an understanding of how they
work. Audition some of the other available voices. Create an instance of AVSpeechUtterance
with the entire text of War and Peace and sit back and relax.

 Note

The final versions of iOS 8 and Xcode 6 were released as this book was being finalized.
Please see the Xcode 6 and iOS 8 Notes.pdf file in the source code repository for additional
information on running the sample projects under Xcode 6 and iOS 8.

 Summary

 This chapter provided you with an introduction to the AV Foundation framework. You should
now have a better understanding of where it fits into Apple’s media environment and the capa-
bilities it provides. You also now have a better understanding of the digital media domain itself.
Although AV Foundation enables you to build some powerful applications without getting too
deeply involved in the details of the media, you’ll definitely find that the more you understand
about the domain, the easier it is to build the applications you desire. AV Foundation is the
future of media on Mac OS X and iOS, and this book provides a hands-on guide showing you
how to successfully use the framework to build the next generation of media applications.

24 Chapter 1 Getting Started with AV Foundation

 Challenge

 Open AV Foundation’s API documentation in either Xcode’s documentation browser or on
the Apple Developer Connection site. Take some time to browse through the documentation
and get a sense for how the classes are logically related and for the naming conventions used
throughout the framework. Doing so will begin to give you a sense of the breadth of capabili-
ties provided by the framework and will better familiarize you with the patterns and conven-
tions used throughout.

Symbols
1D barcodes, 229-230

2D barcodes, 230-231

15 Seconds app

animated titles, 367-378

data model, 368

fade in/fade out animation,
372-373

image animation methods, 375-378

THTitleItem, 369-372

title image animation, 373-375

mixing audio, 327-333

buildAudioMixWithTrack: method,
331-332

Settings menu—audio controls, 333

THAudioMixComposition, 327-328

THCompositionBuilder, 328-331

THVolumeAutomation, 331

transition effects, 357

video transitions, 337

AVVideoComposition, 336

AVVideoCompositionLayer-
Instruction, 337

buildCompositionTracks method,
351-353

buildVideoComposition: method,
353-355

push transitions, 357-359

THCompositionBuilder, 349-351

THTransitionComposition, 348-349

transitionInstructionsInVideo-
Composition: method, 355-356

wipe transitions, 359-360

A
AAC (Advanced Audio Coding), 18

addAnimation:forKey: method, 373

Index

386 addBoundaryTimeObserverForTimes method

addBoundaryTimeObserverForTimes

method, 119

Adding Export Properties (listing), 159

Adding the Fade In and Out Animation

(listing), 372

adding time, 301

Adding Zoom State Observers (listing),

214

addItemEndObserverForPlayerItem

method, 121

addMetadataItem: Implementation

(listing), 83

addPeriodicTimeObserverForInterval

method, 119

addPlayerItemTimeObserver method, 119

adjustRate Method Implementation

(listing), 33

Adopting AVCaptureFileOutputRecording-

Delegate (listing), 206

Adopting AVCaptureMetadataOutput-

ObjectsDelegate (listing), 219

Advanced Audio Coding (AAC), 18

AirPlay video playback, 133-135

ALAsset, 61

ALAssetOrientation, 202

ALAssetRepresentation, 61

ALAssetsLibrary, 199

alwaysDiscardsLateVideoFrames, 280

Ambient audio session category, 26

amplitude, 8, 10

analog versus digital, 7

analog-to-digital conversion. See sampling

animated titles

data model, 368

fade in/fade out animation, 372-373

image animation methods, 375-378

THOverlayComposition interface, 378

THTitleItem, 369-372

title image animation, 373-375

animation, 361

animated titles, 367-378

data model, 368

fade in/fade out animation,
372-373

image animation methods,
375-378

THOverlayComposition interface,
378

THTitleItem, 369-372

title image animation, 373-375

Core Animation, 5, 105

animation objects, 362

AVVideoCompositionCore-
AnimationTool, 366-367

in export, 381-383

keyframe animation, 362

layer objects, 362

overview, 361-363

playback, 364-366, 380-381

timing model, 363-364

preparing composition

building video layers, 379

THOverlayComposition, 378

animation objects, 362

Apple ProRes, 17-18

Applying a Dissolve Transition (listing),

357

artwork conversion (MetaManager app

project), 86-87

aspect ratio, 12

assets, 59-60

asynchronous loading, 63-65

building compositions, 303

387AVAsset

creating, 60-63

iOS AssetsLibrary framework, 61

iOS iPod Library, 62

Mac OS X iTunesLibrary
framework, 62-63

queue management, 104

tracks, 60

AssetsLibrary framework, 61, 199-202

asynchronous loading of asset properties,

63-65

Atom Inspector, 66

atoms (QuickTime), 66

audio. See also media

capturing. See capturing media

Core Audio, 5

looping, 29, 30-34

configuring audio sessions, 34-36

handling interruptions, 36-42

responding to route changes, 40-42

Mac OS X versus iOS environments,
25-26

metering, 29, 52-57

mixing

15 Seconds app, 327-333

automated volume changes,
324-327

AVAudioMix, 324

AVAudioMixInputParameters, 324

AVMutableAudioMixInput-
Parameters, 325-326

buildAudioMixWithTrack: method,
331-332

overview, 323-324

Settings menu—audio controls,
333

THAudioMixComposition, 327-328

THCompositionBuilder, 328-331

THVolumeAutomation, 331

playback, 6, 28-30

recording, 6, 42-45

sampling, 8-13

storage requirements, 12

timescales, 301

audio channels, 44

audio codecs, 18

Audio Ducking switch, 333

audio format (AVAudioRecorder), 43-44

Audio Processing audio session

category, 27

Audio Queue Services, 28

audio samples

reading, 266-270

readAudioSamplesFromAsset:,
268-270

THSampleDataProvider, 267

reducing, 271-273

rendering, 273

drawRect: method, 275-276

setAsset: method, 274

THWaveformView, 273

audio sessions, 26-28

categories, 26-27

configuring, 27-28, 34-36, 46-52

notifications, 37

audio waveform view, building

overview, 265-266

reading audio samples, 266-270

reducing audio samples, 271-273

rendering audio samples, 273

automated volume changes, 324-327

AVAsset, 59-60, 107

asynchronous loading, 63-65

AVComposition compared, 299

building compositions, 303

388 AVAsset

creating assets, 60-63

iOS AssetsLibrary framework, 61

iOS iPod Library, 62

Mac OS X iTunesLibrary
framework, 62-63

finding metadata, 72

retrieving metadata, 70-72

saving metadata, 98-100

AVAssetExportPresetPassthrough

preset, 100

AVAssetExportSession, 98-100,
159-161, 328

AVAssetImageGenerator, 124-129

AVAssetImageGeneratorCompletion-

Handler, 128

AVAssetReader, 7

example, 262-265

explained, 260-261

illustration, 260

AVAssetReaderTrackOutput, 270

AVAssetTrack, 60, 261, 327

finding metadata, 72

retrieving metadata, 70-72

AVAssetWriter, 7, 284-287

example, 262-265

explained, 261-262

graph, 284-287

illustration, 260

AVAssetWriterInput objects, 261

AVAssetWriterInputGroup, 261

AVAssetWriterInputPixelBufferAdaptor,

261, 286

AVAssetWriterPixelBufferAdaptor, 289

AVAsynchronousKeyValueLoading

protocol, 64

AVAudioMix

15 Seconds app, 327-333

automated volume changes, 324-327

illustration, 324

AVAudioMixInputParameters, 324, 327

AVAudioPlayer, 6, 28-30

audio looping, 30-34

audio sessions, configuring, 34-36

controlling playback, 29-30

creating, 28-29

handling interruptions, 36-42

responding to route changes, 40-42

AVAudioRecorder, 6, 42-45

controlling recording, 44

creating, 43-44

Voice Memo project, 45-52

configuring audio sessions, 46-52

enabling audio metering, 52-57

implementation, 47-52

AVAudioSession, 28, 35

AVAudioSessionInterruptionType, 38

AVAudioSessionRouteChangeNotification,

40

AVCaptureAudioDataOutput, 171,
248, 280

AVCaptureConnection, 172, 197, 209

AVCaptureDevice, 170-171

cameras

configuring, 189-190

switching, 186-189

creating categories, 243

flash and torch modes, adjusting,
195-197

focus and exposure, adjusting,
190-195

video zooming, 209-216

AVCaptureDeviceFormat, 242

389AVMetadataItem

AVCompositionTrack, 299-300

AVCompositionTrackSegment, 299-300,
339

averagePowerForChannel method, 53

AVErrorApplicationIsNotAuthorized-

ToUseDevice, 185

AVFormatIDKey, 43-44

AV Foundation

described, 3-4

functionality in, 6-7

position in Mac OS X/iOS media
environment, 4-6

AVFrameRateRange, 245

AV Kit, 4, 137

control styles, 144-147

for iOS, 137-139

KitTime Player project, 140-144

chapters, 151-157

enabling trimming, 157-159

exporting trimmed video, 159-161

metadata, 150-151

playback stack setup, 147-151

for Mac OS X, 140

AVLayerVideoGravityResize, 106, 173

AVLayerVideoGravityResizeAspect,

105, 172

AVLayerVideoGravityResizeAspectFill,

106, 173

AVMediaSelectionGroup, 129-133, 261

AVMediaSelectionOption, 129-133, 261

AVMetadataFaceObject, 216

AVMetadataItem, 6, 71

artwork conversion, 86-87

comment conversion, 87-88

data conversion, 84-86

disc data conversion, 91-93

finding metadata, 72

AVCaptureDeviceInput, 171, 183,

185-186

AVCaptureDevice+THAdditions (listing),

247

AVCaptureExposureMode, 191

AVCaptureExposureModeAutoExpose, 191

AVCaptureExposureModeContinuousAuto-

Exposure, 191

AVCaptureExposureModeLocked, 194

AVCaptureFileOutputRecordingDelegate,

205

AVCaptureFocusModeAutoFocus, 191

AVCaptureFocusModeLocked, 191

AVCaptureMetadataOutput, 216, 218

AVCaptureMetadataOutputObjects-

Delegate, 218-219

AVCaptureMovieFileOutput, 171, 184,
202-208

AVCaptureOutput, 171, 197

AVCaptureScreenInput, 169

AVCaptureSession, 7, 170

configuring capture sessions,
181-184, 187

creating capture controller, 179-181

starting/stopping capture session,
184-185

AVCaptureStillImageOutput, 171, 183,
197-199, 209

AVCaptureVideoDataOutput, 171,
247-248, 268

CubeKamera project, 252-257

sample code, 249-250

AVCaptureVideoDataOutputSampleBuffer-

Delegate, 248

AVCaptureVideoOrientation, 199

AVCaptureVideoPreviewLayer, 172-173,
176-179, 209

AVComposition, 298-300. See also

FifteenSeconds project

390 AVMetadataItem

AVPlayerView, 140

control styles, 144-147

KitTime Player project, 140-144

chapters, 151-157

enabling trimming, 157-159

exporting trimmed video, 159-161

metadata, 150-151

playback stack setup, 147-151

AVPlayerViewController, 138-139

AVPlayerViewControlsStyleFloating, 145

AVPlayerViewControlsStyleInline, 145

AVPlayerViewControlsStyleMinimal, 145

AVPlayerViewControlsStyleNone, 146

AVQueuePlayer, 104

AVSampleRateKey, 44

AVSpeechSynthesizer, 19

AVSpeechUtterance, 19

AVSpeechUtteranceMaximumSpeechRate,

23

AVSpeechUtteranceMinimumSpeechRate,

23

AVSynchronizedLayer, 364-366

AVTimedMetadataGroup, 151-157

AVURLAsset, 60, 303

AVVideoCapturePreviewLayer, 361

AVVideoCodecJPEG, 197

AVVideoComposition, 336, 347

building, 346-347

configuring, 346-347

AVVideoCompositionCoreAnimationTool,

366-367, 381-382

AVVideoCompositionInstruction, 336

AVVideoCompositionLayerInstruction, 337

Aztec codes, 230

genre data conversion, 93-96

MetaManager app project, 81-98

retrieving key/value pairs, 73-75

track data conversion, 88-91

AVMetadataItem keyString Category

Method (listing), 73

AVMetadataMachineReadableCodeObject,

234

AVMetadataObject, 216

AVMutableAudioMix, 324, 326, 332

AVMutableAudioMixInputParameters,

324-326

AVMutableComposition, 299

AVMutableCompositionTrack, 299

AVMutableMetadataItem, 86

AVMutableVideoComposition, 346

AVMutableVideoCompositionInstruction,

346

AVMutableVideoCompositionLayer-

Instruction, 346

AVNumberOfChannelsKey, 44

AVPlayer, 6

AirPlay functionality, 133-135

boundary time observation, 119-120

periodic time observation, 118-119

video playback, 104

AVPlayerItem, 6, 107, 242, 324

item end observation, 121-122

loading properties, 116

status property, 108

AVPlayerItemStatus, 108

AVPlayerItemTrack, 107

AVPlayerLayer, 105-106, 361

implementation, 111

showing subtitles, 129-133

391capture recording

calculations

pass-through and transition time
ranges, 341-344

on time, 301

camera controllers

session outputs, configuring, 278-280

THCameraController interface, 278

camera device codecs, 18

Camera Roll, writing to, 199-202

Camera Setup (barcode scanning)

(listing), 232

Camera Support Methods (listing), 186

cameras. See also capturing media;
Kamera project

configuring, 189-190

iPhone as, 169

switching, 186-189

capture device coordinates versus screen

coordinates, 178-179

captureDevicePointOfInterestForPoint

method, 179

Capture Output Delegate (listing), 280

captureOutput:didDropSampleBuffer:from

Connection method, 248

captureOutput:didOutputSampleBuffer:

fromConnection method, 248, 280

capture recording

AVAssetWriter graph, 284-287

capture output delegate, 280-281

overview, 276-277

sample buffer processing, 287-289

session outputs, configuring, 278-280

stopWriting method, 289-290

THCameraController interface, 278

THMovieWriter

example, 290-292

interface, 281-282

life-cycle methods, 282-285

B
barcode scanning, 228-241

baseline encoding profile, 17

beginConversation Method (listing), 22

beginExport method (listing), 317

B-frames, 17

bidirectional frames, 17

bit depth, 12

boundary time observation, 119-120

boxes (MPEG-4), 68

Buck, Erik, 254

buffers, processing sample buffers,

287-289

buildAudioMixWithTrack: method,

331-332

buildComposition method, 351

buildCompositionTracks method, 351-353

building

AVVideoComposition, 346-347

composition and layer instructions,
344-346

video layers, 379

Building the Audio Mix (listing), 331-332

Building the Layers (code detection)

(listing), 237

Building the Track Contents (listing), 315

Building the Video Layers (listing), 379

buildVideoComposition: method, 353-355

C
CAAnimation, 362

CABasicAnimation, 362-363, 376

CAF (Core Audio Format), 49

CAKeyFrameAnimation, 362, 373

CALayer, 111, 362-363

392 capture sessions

privacy requirements, 185-186

starting/stopping capture session,
184-185

switching cameras, 186-189

writing to Assets Library, 199-202

machine-readable code detection,
228-241

processing video, 247-248

sample code, 174

video zooming, 209-216

Capturing Still Images (listing), 198

CAShapeLayer, 238

categories

audio sessions, 26-27

creating on AVCaptureDevice, 243

CATransform3D, 222

CD-quality audio

bit depth, 12

sampling rate, 12

CGAffineTransform, 358

CGContextDrawPath, 276

CGMutablePathRef, 276

CGPathAddLineToPoint, 276

CGPathRelease, 276

changing volume automatically, 324-327

chapters (KitTime Player project),

151-157

chaptersForAsset method (listing), 152

chroma subsampling, 13-15

CIDetector, 216

CIFaceFeature, 216

classes

capturing media, 170

composition classes, 298

CMAttachment, 251-252

CMAudioFormatDescription, 250

capture sessions, 170

configuring, 181-184, 187

creating capture controller, 179-181

starting/stopping, 184-185

Capturing a Still Image (listing), 200

capturing media, 7

AVCaptureConnection, 172

AVCaptureDevice, 170-171

AVCaptureDeviceInput, 171

AVCaptureOutput, 171

AVCaptureSession, 170

AVCaptureVideoPreviewLayer,
172-173

classes, 170

CMSampleBuffer, 249-257

format descriptions, 250

metadata attachments, 251-252

sample code, 249-250

timing information, 251

CubeKamera project, 252-257

face detection, 216-228

high frame rate video, 241-247

iOS versus Mac OS X, 169

Kamera project, 175-208

adjusting flash and torch modes,
195-197

adjusting focus and exposure,
190-195

capturing still images, 197-199

capturing videos, 202-208

configuring cameras, 189-190

configuring capture session,
181-184

creating capture controller,
179-181

creating preview view, 176-179

393compression

codecs

audio codecs, 18

converting legacy codecs, 161-165

lossless versus lossy, 15

video codecs, 15-18

CodeKamera project, 231-241

color models, YUV, 13

comment conversion (MetaManager app

project), 87-88

common key space, 71

composing media, 297-300

building compositions, 303-307

exporting compositions, 316-321

FifteenSeconds project, 307-310

building composition, 311-316

view controllers, 308-310

compositions, 298-300

building, 303-307

classes, 298

exporting, 316-321

FifteenSeconds project, 307-310

building composition, 311-316

view controllers, 308-310

instructions, building, 344-346

preparing

building video layers, 379

Core Animation in export, 381-383

Core Animation in playback,
380-381

THOverlayComposition interface,
378

saving, 299

compression, 13-18

chroma subsampling, 13-15

codecs

lossless versus lossy, 15

video codecs, 15-18

CMBlockBuffer, 268, 270

CMBlockBufferCopyDataBytes function,

270

CMBlockBufferGetDataLength function,

270

CMFormatDescription, 250

CMFormatDescriptionRef, 245

CMSampleBuffer, 197, 249-257, 268

format descriptions, 250

metadata attachments, 251-252

sample code, 249-250

timing information, 251

CMSampleBufferGetAudioBufferList-

WithRetainedBlockBuffer function, 268

CMSampleBufferGetDataBuffer function,

268, 270

CMSampleBufferGetImageBuffer function,

268, 280

CMSampleBufferInvalidate function, 270

CMSampleBuffer objects, 261

CMTime, 5, 109-110, 300-301, 343

CMTimeAdd, 301

CMTimeFlags, 300

CMTimeGetSeconds function, 373

CMTimeMake function, 109-110, 300

CMTimeRange, 302-303, 343

CMTimeRangeFromTimeToTime, 302

CMTimeRangeMake, 302

CMTimeScale, 300

CMTimeShow function, 300

CMTimeSubtract, 301

CMTimeValue, 300

CMVideoFormatDescription, 250

Code 39 barcodes, 229

Code 93 barcodes, 229

Code 128 barcodes, 229

394 conceptual steps for video transitions

Core Animation, 5, 105, 222

animated titles, 367-378

data model, 368

fade in/fade out animation,
372-373

image animation methods,
375-378

THTitleItem, 369-372

title image animation, 373-375

animation objects, 362

AVVideoCompositionCoreAnimation-
Tool, 366-367

in export, 381-383

keyframe animation, 362

layer objects, 362

overview, 361-363

in playback, 380-381

playback with AVSynchronizedLayer,
364-366

preparing composition

building video layers, 379

THOverlayComposition, 378

timing model, 363-364

Core Audio, 5

Core Audio Format (CAF), 49

Core Image framework, 216

Core Media, 5, 109, 156, 302-303

Core Media framework

CMSampleBuffer, 249-257

format descriptions, 250

metadata attachments, 251-252

sample code, 249-250

timing information, 251

CMTime, 300-301

Core Video, 5

conceptual steps for video transitions,

337

building and configuring AVVideo-
Composition, 346-347

building composition and layer
instructions, 344-346

calculating pass-through and
transition time ranges, 341-344

defining overlapping regions, 340-341

staggering video layout, 338-340

concurrent dispatch queues, 119

configuring

audio sessions, 27-28, 34-36, 46-52

AVVideoComposition, 346-347

cameras, 189-190

capture sessions, 187

session outputs, 278-280

Configuring the Capture Output (listing),

253

Configuring the Session Outputs (listing),

233, 278-279

connections, capturing media, 172, 197

container formats, 18-19

control styles, 144-147

converting

artwork, 86-87

comments, 87-88

data, 84-86

disc data, 91-93

genre data, 93-96

legacy codecs, 161-165

track data, 88-91

coordinates, screen versus capture device,

178-179

copyCGImageAtTime method, 124

395Extracting the Transition Instructions (listing)

drawRect: method, 275-276

dynamic microphones, 8-9

dynamic playback controls, 139

E
EAGLContext, 252

EAN-8 barcodes, 229

EAN-13 barcodes, 229

ease in/ease out curves, 376

editing media, 7. See also composing

media

effects, transition

dissolve transitions, 357

push transitions, 357-359

wipe transitions, 359-360

enabling

subtitles, 133

trimming, 157-159

Enabling High Frame Rate Capture

(listing), 246

Enabling Trimming (listing), 157

Enabling Zoom Ramping (listing), 213

encoding profiles, 17

Exif (exchangeable image file format)

tags, 251

expectsMediaDataInRealTime property

(AVAssetWriterInput), 262

exporting

with AVVideoCompositionCore-
AnimationTool, 366-367

compositions, 316-321

Core Animation in, 381-383

trimmed video, 159-161

Exporting a Composition (listing), 317

exposure, adjusting, 190-195

Extracting the Transition Instructions

(listing), 355-356

corners Property (listing), 239

Creating OpenGL ES Textures (listing),

256

Creating the Action Menu (listing), 153

Creating the OpenGLESTextureCache

(listing), 255

CubeKamera project, 252-257

customizing menus, 153

cuts, 335

CVImageBufferRef, 268

CVOpenGLESTextureCache, 254

CVPixelBuffer, 249, 261, 289

D
data conversion (MetaManager app

project), 84-86

Data Matrix codes, 231

defining overlapping regions, 340-341

Determining High FPS Support (listing),

244

Determining the Interruption Type

(listing), 38

Determining the Notification Reason

(listing), 41

devices, capturing media, 170-171. See
also cameras

privacy requirements, 185-186

digital versus analog, 7

digital camera, iPhone as, 169. See
also cameras; capturing media; Kamera

project

digital media. See also media

compression, 13-18

sampling, 8-13

disc data conversion (MetaManager app

project), 91-93

dissolve transitions, 357

396 face detection

frameDuration property, 347

frame rate, 12

frames, 12

frequency, 8, 10

fromDestTransform, 358

ftyp atom, 66

G–H
generateCGImagesAsynchronouslyFor-

Times method, 124

generateThumbnails Implementation

(listing), 126

generateThumbnails method invocation

(listing), 125

genre data conversion (MetaManager app

project), 93-96

GOP (Group of Pictures), 16

gravity values (video), 105

H.264 video codec, 15-17

Handling Interruption Began (listing), 39

Handling Interruption Ended (listing), 39

Handling Subtitle Selection (listing), 132

Handling the Export Completion (listing),

320

headers in video files, 202

Hello AV Foundation project, 19-23

high encoding profile, 17

High Frame Rate Capture Category

(listing), 243

high frame rate video capture, 241-247

human hearing frequency range, 10

I
ID3v2 tags, 70

ID3v2.2 tags, 70

identifiers, retrieving metadata, 75

F
face detection, 216-228

FaceKamera project, 216-228

fade in/fade out animation, 372-373

Fade In & Out toggle switch, 333

FifteenSeconds project, 307-310

building composition, 311-316

exporting composition, 316-321

view controllers, 308-310

file extensions, MPEG-4 media, 69

file formats. See container formats

file types, audio format compatibility, 44

filterChanged: method, 284

filteredSamplesForSize: method, 271

Final Cut Pro X, 3

final versions of projects, 19

Finding Chapters (listing), 154

finding metadata, 72

Finishing the Writing Session (listing), 289

finishing writing sessions, 289-290

finishWritingWithCompletionHandler:

method, 265, 290

Flash and Torch Methods (listing), 196

flash mode, adjusting, 195-197

Floating control style, 145

floating-point value, time as, 109

focus, adjusting, 190-195

format descriptions, processing video,

250

formats for metadata

MP3, 69-70

MPEG-4, 68-69

QuickTime, 66-68

format-specific metadata, 71

formattedCurrentTime method, 51

397iTunes Store

interframe compression, 16

Interleaved 2 of 5 barcodes, 230

interleaving, 261

interruptions, handling, 36-42

intraframe compression, 16

Invoking generateThumbnails method

(listing), 125

iOS

AssetsLibrary framework, 61

audio environment, 25-26

audio looper project. See projects,
audio looper

audio sessions, 26-28

categories, 26-27

configuring, 27-28

notifications, 37

AV Kit framework, 137-139

capturing media, Mac OS X versus,
169

iPod Library, 62

media environment, AV Foundation
position in, 4-6

iOS Core Animation (Lockwood), 222, 363

iPad, 3

iPhone, 3, 169

iPod, 3

iPod Library, 62

item end observation, 121-122

Item End Observation (listing), 121

ITF 14 barcodes, 230

iTunes, 3

iTunesLibrary framework, 62-63

iTunes Store, 3

identityTransform, 359

iFrame, 17

I-frames, 16-17

Image Animation Methods (listing),

375-376

Image Generation (listing), 125

images

animation methods, 375-378

title image animation, 373-375

iMovie, 3

Implementing chaptersForAsset: (listing),

152

Implementing previousChapter: and

nextChapter: (listing), 156

Implementing startExporting: (listing), 160

Implementing the buildCompositionTracks

Method (listing), 351-352

Implementing the buildVideoComposition

Method (listing), 353-354

Implementing the drawRect: Method

(listing), 275-276

Implementing the setAsset: Method

(listing), 274

Implementing the setupView Method

(listing), 222

Implementing titleForAsset: (listing), 150

Info.plist file, 36

Inline control style, 145

input/output

capturing media, 171

responding to route changes, 40-42

inspecting media, 6

Instagram, 3

instructions property

AVMutableVideoComposition, 346

AVVideoComposition, 347

398 Kamera project

L
layer instructions, building, 344-346

layer objects, 362

layering animation, 361

animated titles, 367-378

data model, 368

fade in/fade out animation,
372-373

image animation methods,
375-378

THTitleItem, 369-372

title image animation, 373-375

Core Animation

animation objects, 362

AVVideoCompositionCore-
AnimationTool, 366-367

in export, 381-383

keyframe animation, 362

layer objects, 362

overview, 361-363

in playback, 380-381

playback with AVSynchronized-
Layer, 364-366

timing model, 363-364

preparing composition

building video layers, 379

THOverlayComposition, 378

Learning OpenGL ES for iOS (Buck), 254

legacy codecs, converting, 161-165

levels method, 55

linear pulse-code modulation (LPCM), 10

listings

Action Menu, 153

addMetadataItem: Implementation,
83

Animating the Title Image, 373-375

Audio Mix, 331-332

J–K
Kamera project, 175-208

capture controller, creating, 179-181

capturing

still images, 197-199

videos, 202-208

configuring

cameras, 189-190

capture session, 181-184

flash and torch modes, adjusting,
195-197

focus and exposure, adjusting,
190-195

preview view, creating, 176-179

privacy requirements, 185-186

starting/stopping capture session,
184-185

switching cameras, 186-189

writing to Assets Library, 199-202

kAudioFormatLinearPCM, 270

kCMTimeZero, 265

keyboard shortcuts, video playback

controls, 147

keyframe animation, 362

key frames, 17

key spaces, 71

keyString category method, 73

Key-Value Observing (KVO), 52, 108

key/value pairs, retrieving, 73-75, 81-84

KitTime Player project, 140-144

chapters, 151-157

converting legacy codecs, 161-165

enabling trimming, 157-159

exporting trimmed video, 159-161

metadata, 150-151

playback stack setup, 147-151

KVO (Key-Value Observing), 52, 108

399listings

Image Animation Methods, 375-376

Image Generation, 125

Interruption Notifications, 37

Interruption Type, 38

Item End Observation, 121

Layer Building (code detection), 237

loadMediaOptions, 131-132

MainViewController Time Polling, 52

metadataItems method, 96

Monitoring the Export Progress, 319

Movie Modernization Preparation,
162

Notification Reason, 41

observeValueForKeyPath method
modification, 154

OpenGL ES Textures, 256

OpenGLESTextureCache, 255

Periodic Time Observations, 119

Playback Stack, 148

prepareWithCompletionHandler:
Implementation, 79

previousChapter: and nextChapter:,
156

Private THQualityOfService Class, 243

Reading the Asset’s Audio Samples,
268-270

Resetting Focus and Exposure, 194

Route Change Notifications, 40

Running the Modernization, 163

Sample Buffer Processing, 287-288

Scrubbing Methods, 123

Session Outputs Configuration, 233,
278-279

setAsset: Method, 274

setupSession: Method, 181

setupView Method implementation,
222

AVAssetWriter Graph, 284-286

AVCaptureDevice+THAdditions, 247

AVCaptureFileOutputRecording-
Delegate, 206

AVCaptureMetadataOutputObjects-
Delegate, 219

AVMetadataItem keyString Category
Method, 73

beginConversation Method, 22

buildCompositionTracks Method,
351-352

buildVideoComposition Method,
353-354

Camera Setup (barcode scanning), 232

Camera Support Methods, 186

Capture Output Delegate, 280

Capturing Still Images, 198, 200

Capture Output Configuration, 253

chaptersForAsset method
implementation, 152

Core Animation in Export, 381-382

Core Animation in Playback, 380

corners Property, 239

Dissolve Transitions, 357

drawRect: Method, 275-276

Export Completion, 320

Export Properties, 159

Exporting a Composition, 317

Extracting the Transition Instructions,
355-356

Fade In and Out Animation, 372

Finding Chapters, 154

Finishing the Writing Session, 289

Flash and Torch Methods, 196

generateThumbnails method, 125-126

Handling Interruptions, 39

High FPS Support, 244

High Frame Rate Capture, 243, 246

400 listings

THMetadata, 82

THMetadataConverter, 85

THMetadataItem, 81

THMeterTable, 53

THMovieWriter

interface, 281

life-cycle methods, 282-284

usage, 290-292

THOverlayComposition, 378

THPlayerController

adjustRate method, 33

class extension, 113

implementation, 115

initialization, 31

interface, 30, 113

play method, 32

stop method, 33

volume and panning methods, 34

THPlayerControllerDelegate, 38

THPlayerView, 111

THPreviewView, 177, 220, 234

THRecorderController

class extension, 48

formattedCurrentTime method, 51

init Method, 48

interface, 47

levels method, 55

meter table setup, 54

playback method, 51

save method, 50

transport methods, 49

THSampleDataFilter, 271

THSampleDataProvider, 267-268

THSpeechController.h, 20

THSpeechController.m, 21

THTitleItem, 369-371

THTrackMetadataConverter, 89

startExporting method implementa-
tion, 160

Starting and Stopping the Capture
Session, 184

status Property observation, 117

Stop Playback on Headphone
Unplug, 42

Subtitle Selection, 132

Switching Cameras, 188

Tap-to-Expose Methods, 192

Tap-to-Focus Implementation, 190

THAppDelegate Audio Session Setup,
35, 46

THArtworkMetadataConverter
Implementation, 86

THAudioMixComposition, 327-328

THAudioMixCompositionBuilder,
329-331

THBasicComposition, 311

THBasicCompositionBuilder, 313

THCameraController

implementation, 212, 217

interface, 180, 211, 217, 231, 252,
278

THCommentMetadataConverter, 87

THComposition, 311

THCompositionBuilder, 313

THCompositionExporter, 317

THDefaultMetadataConverter, 85

THDiscMetadataConverter, 91

THDocument, 143

THGenreMetadataConverter, 94

THMainViewController Metering
Methods, 56

THMediaItem

implementation, 78

interface, 77

saveWithCompletionHandler:
Implementation, 99

401media

M
.m4a file extension, 69

.m4b file extension, 69

.m4p file extension, 69

.m4v file extension, 69

machine-readable code detection,

228-241

Mac OS X

audio environment, 25-26

AV Kit framework, 140

capturing media, iOS versus, 169

iTunesLibrary framework, 62-63

media environment, AV Foundation
position in, 4-6

main encoding profile, 17

MainViewController Time Polling

(listing), 52

makeExportable method, 328, 349

makeFadeInFadeOutAnimation, 373

makePlayable method, 328, 349, 380

managed audio environment (iOS), 26

mdat atom, 66

media. See also audio; video

analog versus digital, 7

audio waveform view, building

overview, 265-266

reading audio samples, 266-270

reducing audio samples, 271-273

rendering audio samples, 273

capture recording

AVAssetWriter graph, 284-287

capture output delegate, 280-281

overview, 276-277

sample buffer processing, 287-289

session outputs, configuring,
278-280

stopWriting method, 289-290

THTransitionComposition, 348-349

THTransitionCompositionBuilder,
350-351

THTransport.h, 114

THWaveformView Interface, 273

titleForAsset method implementation,
150

Track Contents, 315

Transforming Metadata, 223, 236

Transport Delegate Callbacks, 122

Trimming, 157

validateUserInterfaceItem: method
implementation, 158

Video Layers, 379

Video Recording Transport Methods,
203

Visualizing Roll and Yaw, 226

Visualizing the Detected Faces, 224

Writing the Captured Video, 206

Zoom Ramping, 213

Zoom State Observers, 214

loadAudioSamplesFromAsset:completion-

Block: class method, 267

loading properties in AVPlayerItem, 116

loadMediaOptions Implementation

(listing), 132

loadMediaOptions Set Up (listing), 131

locked exposure mode, 193

Lockwood, Nick, 222, 363

looping audio, 29-34

configuring audio sessions, 34-36

handling interruptions, 36-42

responding to route changes, 40-42

lossless codecs, 15

lossy codecs, 15

LPCM (linear pulse-code modulation), 10

luma channel, 13

402 media

reading, 259

AVAssetReader, 260-261

basic example, 262-265

resetting, 77

writing

AVAssetWriter class, 260-262

basic example, 262-265

interleaving, 261

overview, 259

media environment, AV Foundation

position in, 4-6

MediaPlayer framework, 62, 135, 137

menus, customizing, 153

metadata, 65

attachments, processing video,
251-252

finding, 72

formats

MP3, 69-70

MPEG-4, 68-69

QuickTime, 66-68

headers in video files, 202

KitTime Player project, 150-151

MetaManager app, 76

artwork conversion, 86-87

comment conversion, 87-88

data conversion, 84-86

disc data conversion, 91-93

genre data conversion, 93-96

saving metadata, 98-100

THMediaItem interface, 77-81

THMetadata class, 81-84, 96-98

track data conversion, 88-91

retrieving, 70-72

key/value pairs, 73-75

timed metadata, 151-157

transforming, 223, 236

THCameraController interface, 278

THMovieWriter example, 290-292

THMovieWriter interface, 281-282

THMovieWriter life-cycle methods,
282-285

capturing, 7

AVCaptureConnection, 172

AVCaptureDevice, 170-171

AVCaptureDeviceInput, 171

AVCaptureOutput, 171

AVCaptureSession, 170

AVCaptureVideoPreviewLayer,
172-173

classes, 170

CMSampleBuffer, 249-257

CubeKamera project, 252-257

face detection, 216-228

high frame rate video, 241-247

iOS versus Mac OS X, 169

Kamera project, 175-208

machine-readable code detection,
228-241

processing video, 247-248

sample code, 174

video zooming, 209-216

composing, 297-300

building compositions, 303-307

exporting compositions, 316-321

FifteenSeconds project, 307-316

container formats, 18-19

editing, 7. See also composing media

inspecting, 6

metadata, 65

MP3 format, 69-70

MPEG-4 format, 68-69

QuickTime format, 66-68

processing, 7

403NSTimeInterval

Movie Modernization Preparation

(listing), 162

movies. See video

MP3

data, 18

metadata format, 69-70

.mp4 file extension, 69

MPEG-4

container format, 19

metadata format, 68-69

MPEG compression, 16

MPMediaPropertyPredicate, 62

MPMoviePlayerController, 137

MPMoviePlayerViewController, 137

MPVolumeView, 135

multiple properties of assets,

asynchronous loading, 65

Multi-Route audio session category, 27

mutable AVMetadataItems, 86

N
named voices, 22

Netflix, 3

nextChapter method (listing), 156

nondestructive, defined, 297

None control style, 146

nonlinear, defined, 297

notifications

audio sessions, 37

of route changes, 40

NSAttributedString, 371

NSDictionary, 270, 286

NSMenu, 153

NSPredicate, 63

NSSpeechSynthesizer, 19

NSTimeInterval, 51, 300

metadataItems method (listing), 96

MetaManager app project, 76

artwork conversion, 86-87

comment conversion, 87-88

data conversion, 84-86

disc data conversion, 91-93

genre data conversion, 93-96

saving metadata, 98-100

THMediaItem interface, 77-81

THMetadata class, 81-84, 96-98

track data conversion, 88-91

metering audio, 29, 52-57

microphones, dynamic, 8-9

Minimal control style, 145

mixing audio

15 Seconds app, 327-333

buildAudioMixWithTrack: method,
331-332

Settings menu—audio controls,
333

THAudioMixComposition, 327-328

THCompositionBuilder, 328-331

THVolumeAutomation, 331

automated volume changes, 324-327

AVAudioMix, illustration, 324

AVAudioMixInputParameters, 324

AVMutableAudioMixInputParameters,
325-326

overview, 323-324

modes for audio session categories, 27

Modifying observeValueForKeyPath:

(listing), 154

monitorExportProgress method (listing),

319

Monitoring the Export Progress (listing),

319

moov atom, 66

404 NSTimer

playback

audio, 6, 28-30

with AVSynchronizedLayer, 364-366

Core Animation in, 380-381

video, 6

AirPlay functionality, 133-135

AV Kit. See AV Kit

AVPlayer, 104

AVPlayerItem, 107

AVPlayerLayer, 105-106

boundary time observation,
119-120

classes, 104

creating video controller, 113-116

creating video view, 111-113

creating visual scrubber, 124-129

item end observation, 121-122

keyboard shortcuts, 147

observing status changes, 117-118

periodic time observation, 118-119

sample code, 107-109

showing subtitles, 129-133

transport delegate callbacks,
122-124

Video Player project, 110-118

Playback audio session category, 27

playback method, 51

playback rate, controlling in audio

player, 29

playback stack setup, 147-151

play method, 29

play Method Implementation (listing), 32

pointForCaptureDevicePointOfInterest

method, 179

predicted frames, 17

prepareToPlay method, 29

prepareToRecord method, 43

NSTimer, 52

Nyquist rate, 11

O
Observer pattern, 108

observeValueForKeyPath method (listing),

154

observing

item end, 121-122

status changes, 108, 117-118

time

boundary time observation,
119-120

periodic time observation, 118-119

Observing the status Property (listing),

117

OpenGLESTextureCache (listing), 255

OpenGL ES Textures (listing), 256

OpenGL ES video processing, 252-257

options for audio session categories, 27

output. See input/output

overlapping regions, defining, 340-341

P
panning, controlling in audio player, 29

Panning Method (listing), 34

pass-through time ranges, calculating,

341-344

pause method, 29

PDF-417 codes, 231

peakPowerForChannel method, 53

periodic time observation, 118-119

Periodic Time Observations (listing), 119

P-frames, 17

photos, capturing, 197-199

Play and Record audio session

category, 27

405projects

Kamera, 175-208

adjusting flash and torch modes,
195-197

adjusting focus and exposure,
190-195

capturing still images, 197-199

capturing videos, 202-208

configuring cameras, 189-190

configuring capture session,
181-184

creating capture controller,
179-181

creating preview view, 176-179

privacy requirements, 185-186

starting/stopping capture session,
184-185

switching cameras, 186-189

writing to Assets Library, 199-202

KitTime Player, 140-144

chapters, 151-157

converting legacy codecs, 161-165

enabling trimming, 157-159

exporting trimmed video, 159-161

metadata, 150-151

playback stack setup, 147-151

MetaManager app, 76

artwork conversion, 86-87

comment conversion, 87-88

data conversion, 84-86

disc data conversion, 91-93

genre data conversion, 93-96

saving metadata, 98-100

THMediaItem interface, 77-81

THMetadata class, 81-84, 96-98

track data conversion, 88-91

SlowKamera, 242-247

starter versus final versions, 19

prepareWithCompletionHandler:

Implementation (listing), 79

preparing composition

building video layers, 379

Core Animation

in export, 381-383

in playback, 380-381

THOverlayComposition interface, 378

previews, capturing media, 172-173,

176-179

previousChapter method (listing), 156

privacy requirements, capturing media,

185-186

Private THQualityOfService Class (listing),

243

processing

media, 7

sample buffers, 287-289

video, 247-248

CMSampleBuffer, 249-257

CubeKamera project, 252-257

Processing the Sample Buffers (listing),

287-288

processSampleBuffer: method, 287-288

projects

audio looper, 30-34

configuring audio sessions, 34-36

handling interruptions, 36-42

responding to route changes, 40-42

CodeKamera, 231-241

CubeKamera, 252-257

FaceKamera, 216-228

FifteenSeconds, 307-310

building composition, 311-316

exporting composition, 316-321

view controllers, 308-310

Hello AV Foundation, 19-23

406 projects

reducing audio samples, 271-273

rendering audio samples, 273

AVAssetReader class

explained, 260-261

illustration, 260

basic example, 262-265

capture recording

AVAssetWriter graph, 284-287

capture output delegate, 280-281

overview, 276-277

sample buffer processing, 287-289

session outputs, configuring,
278-280

stopWriting method, 289-290

THCameraController interface, 278

THMovieWriter example, 290-292

THMovieWriter interface, 281-282

THMovieWriter life-cycle methods,
282-285

Reading the Asset’s Audio Samples

(listing), 268-270

readyForMoreMediaData property

(AVAssetWriterInput), 261-262

Record audio session category, 27

recording audio, 6, 42-45

reducing audio samples, 271-273

reference frames, 17

Register for Route Change Notifications

(listing), 40

Registering for Interruption Notifications

(listing), 37

rendering

audio samples, 273

drawRect: method, 275-276

setAsset: method, 274

THWaveformView, 273

contexts, 252

Video Player, 110-118

creating video controller, 113-116

creating video view, 111-113

observing status changes, 117-118

Voice Memo, 45-52

configuring audio sessions, 46-52

enabling audio metering, 52-57

implementation, 47-52

properties

of assets, asynchronous loading, 63-65

loading in AVPlayerItem, 116

ProRes, 17-18

protocol for THPlayerControllerDelegate

(listing), 38

pull model, 264

push transitions, 357-359

Q–R
QR codes, 230

QTKit, 162-165

QTMovieModernizer, 162-165

Quartz, 57

queue management of assets, 104

QuickTime, 3, 19. See also video

metadata format, 66-68

QTMovieModernizer, 162-165

readAudioSamplesFromAsset: method,

268-270

reading media, 259

audio samples, 266-270

readAudioSamplesFromAsset:,
268-270

THSampleDataProvider, 267

audio waveform view, building

overview, 265-266

reading audio samples, 266-270

407startReading method

Scrubbing Methods (listing), 123

serial dispatch queues, 119

serial queues, 254

session outputs, configuring, 278-280

setAsset: method, 274

Settings menu (audio controls), 333

Setting Up the AVAssetWriter Graph

(listing), 284-286

Setting up the Playback Stack (listing),

148

setupSession: Method (listing), 181

setupView Method implementation

(listing), 222

setVolume:atTime: method, 325-326

setVolumeRampFromStartVolume:

toEndVolume:timeRange: method,

325-326

Skype, 3

SlowKamera project, 242-247

slow motion with high frame rate video

capture, 241-247

smooth focus mode, 205

Solo Ambient audio session category,

26, 34

sound. See audio

spatial sampling, 8

speech synthesizer project (Hello AV

Foundation), 19-23

staggering video layout, 338-340

starter versions of projects, 19

startExporting method implementation

(listing), 160

starting

capture sessions, 184-185

video recording, 203

Starting and Stopping the Capture

Session (listing), 184

startReading method, 263

renderScale property, 347

renderSize property

AVMutableVideoComposition, 346

AVVideoComposition, 347

requestMediaDataWhenReadyOnQueue:

usingBlock: method, 262

resetFocusAndExposureModes method

(listing), 194

Resetting Focus and Exposure (listing),

194

resetting media, 77

retrieving metadata, 70-72

key/value pairs, 73-75, 81-84

MetaManager app project, 77-81

roll angle, 216, 226

route changes, responding to, 40-42

route picker for AirPlay, 134-135

Running the Modernization (listing), 163

S
sample buffers, processing, 287-289

sampling, 7-8

audio sampling, 8-13

spatial sampling, 8

temporal sampling, 8

sampling rate, 10-13, 44

save method, 50

saveWithCompletionHandler:

Implementation (listing), 99

saving

compositions, 299

metadata, 98-100

scanning barcodes, 228-241

screen versus capture device coordinates,

178-179

scrubbers, creating visual scrubber,

124-129

408 startSessionAtSourceTime: method

THAudioMixComposition

implementation, 327-328

interface, 327

THAudioMixCompositionBuilder

implementation, 329-331

interface, 329

THBasicComposition, 311

THBasicCompositionBuilder, 313

THCameraController

implementation, 212, 217

interface, 180, 211, 217, 231, 252, 278

THCommentMetadataConverter

Implementation (listing), 87

THComposition Protocol (listing), 311

THCompositionBuilder, 328-331, 349-351

THCompositionBuilder Protocol (listing),

313

THCompositionExporter Interface (listing),

317

THDefaultMetadataConverter

Implementation (listing), 85

THDiscMetadataConverter Implementation

(listing), 91

THDocument Implementation (listing),

143

THFilterSelectionChangedNotification, 284

THGenreMetadataConverter

Implementation (listing), 94

THMainViewController Metering Methods

(listing), 56

THMediaItem, 77-81, 368

implementation, 78

interface, 77

saveWithCompletionHandler:
implementation, 99

THMetadata

implementation, 82

MetaManager app project, 81-84,
96-98

startSessionAtSourceTime: method,

265, 288

startSession method, 184

startWriting method, 263

status changes, observing, 108, 117-118

status Property (listing), 117

still images, capturing, 197-199

stop method, 29

stop Method Implementation (listing), 33

stopping

capture sessions, 184-185

video recording, 203

Stop Playback on Headphone Unplug

(listing), 42

stopSession method, 184

stopWriting method, 289-290

storage requirements

audio, 12

video, 13

subtitles

enabling, 133

showing, 129-133

subtracting time, 301

switching cameras, 186-189

Switching Cameras (listing), 188

T
TangoMe, 3

Tap-to-Expose Methods (listing), 192

Tap-to-Focus Implementation (listing), 190

temporal sampling, 8

TH720pVideoRect, 371

THAppDelegate Audio Session Setup

(listing), 35, 46

THArtworkMetadataConverter

Implementation (listing), 86

409timing model for Core Animation

THSampleDataProvider, 267-268

implementation, 267-268

interface, 267

THSpeechController.h (listing), 20

THSpeechController.m (listing), 21

THTimelineItem, 368, 373

THTitleItem, 368-372

building layers, 369-371

interface, 369

THTrackMetadataConverter

Implementation (listing), 89

THTransitionComposition

implementation, 348-349

interface, 348

THTransitionCompositionBuilder

implementation, 350-351

interface, 350

THTransport.h (listing), 114

THVolumeAutomation, 331

THWaveformView, 273

time

CMTime, 109-110, 300-301

CMTimeRange, 302-303

as floating-point value, 109

observing

boundary time observation,
119-120

periodic time observation, 118-119

time display in audio recorder, 51

time ranges

pass-through time ranges, calculating,
341-344

transition time ranges, calculating,
341-344

timed metadata, 151-157

timing information, processing video, 251

timing model for Core Animation,

363-364

THMetadataConverter Interface Template

(listing), 85

THMetadataConverter Protocol (listing), 85

THMetadataItem Interface (listing), 81

THMeterTable Implementation (listing), 53

THMovieWriter

example, 290-292

interface, 281-282

life-cycle methods, 282-285

THOverlayComposition, 380

interface, 378

THPlayerController

adjustRate method
implementation, 33

class extension, 113

implementation, 115

initialization, 31

interface, 30, 113

play method implementation, 32

stop method implementation, 33

volume and panning methods, 34

THPlayerView, 111

THPreviewView, 177, 220, 234

THQualityOfService Class (listing), 243

THRecorderController

class extension, 48

formattedCurrentTime method, 51

init method, 48

interface, 47

levels method, 55

meter table setup, 54

playback method, 51

save method, 50

transport methods, 49

THSampleDataFilter, 271-273, 276

implementation, 271-272

interface, 271

410 titleForAsset method (listing)

UIView, 111, 113

UIViewController, 113, 138

UIWebView framework, 4

unretained references, 268

UPC-E barcodes, 229

URLs, creating assets, 60

user data (QuickTime), 67

Using Core Animation in Export (listing),

381-382

Using Core Animation in Playback

(listing), 380

Using the THMovieWriter (listing),

290-292

utterances, 19

V
validateUserInterfaceItem: method

implementation (listing), 158

video. See also media

capturing in Kamera project, 202-208.
See also capturing media

chroma subsampling, 13-15

Core Video, 5

frames, 12

high frame rate video, 241-247

playback, 6

AirPlay functionality, 133-135

AV Kit. See AV Kit

AVPlayer, 104

AVPlayerItem, 107

AVPlayerLayer, 105-106

boundary time observation,
119-120

classes, 104

creating video controller, 113-116

creating video view, 111-113

creating visual scrubber, 124-129

titleForAsset method (listing), 150

title image animation, 373-375

titles, animated, 367-378

data model, 368

fade in/fade out animation, 372-373

image animation methods, 375-378

THTitleItem, 369-372

title image animation, 373-375

torch mode, adjusting, 195-197

toStartTransform, 358

track contents, building, 315

track data conversion, 88-91

tracks of assets, 60

transducers, 8

transformation matrix, 222

Transforming Metadata (listing), 223, 236

transitionDuration, 340

transition effects, dissolve transitions,

357

transition instructions, extracting,

355-356

transitionInstructionsInVideoComposition:

method, 355-356

transition time ranges, calculating,

341-344

transitions. See video transitions

transport delegate callbacks, 122-124

Transport Delegate Callbacks (listing),

122

transport methods, 49

trimming

enabling, 157-159

exporting trimmed video, 159-161

U
UIKit framework, 4

UISlider, 377

411Volume Method (listing)

AVVideoComposition, 336

AVVideoCompositionInstruction, 336

AVVideoCompositionLayer-
Instruction, 337

conceptual steps, 337

building and configuring AVVideo-
Composition, 346-347

building composition and layer
instructions, 344-346

calculating pass-through and
transition time ranges, 341-344

defining overlapping regions,
340-341

staggering video layout, 338-340

overview, 335

push transitions, 357-359

videoCompositionWithProperties-
OfAsset: method, 347-348

wipe transitions, 359-360

videoCompositionWithPropertiesOfAsset:

method, 347-348

videoGravity property, 105

videoScaleAndCropFactor property, 209

videoSupportedFrameRateRanges

property, 242

videoZoomFactor property, 209-216

view controllers, 308-310

Visualizing Roll and Yaw (listing), 226

Visualizing the Detected Faces (listing),

224

visual scrubber, creating, 124-129

Voice Memo project, 45-52

configuring audio sessions, 46-52

enabling audio metering, 52-57

implementation, 47-52

volume

automated volume changes, 324-327

controlling in audio player, 29

Volume Method (listing), 34

item end observation, 121-122

keyboard shortcuts, 147

observing status changes, 117-118

periodic time observation, 118-119

sample code, 107-109

showing subtitles, 129-133

transport delegate callbacks,
122-124

Video Player project, 110-118

processing, 247-248

CMSampleBuffer, 249-257

CubeKamera project, 252-257

storage requirements, 13

timescales, 301

zooming, 209-216

video codecs, 15-18

video controllers, creating, 113-116

video gravities, 172

video gravity values, 105

video layers, building, 379

video layout, staggering, 338-340

Video Player project, 110-118

creating video controller, 113-116

creating video view, 111-113

observing status changes, 117-118

Video Recording Transport Methods

(listing), 203

video stabilization, 205

video transitions

15 Seconds app

buildCompositionTracks method,
351-353

buildVideoComposition: method,
353-355

THCompositionBuilder, 349-351

THTransitionComposition, 348-349

transitionInstructionsInVideo-
Composition: method, 355-356

412 WebView framework

stopWriting method, 289-290

THCameraController interface, 278

THMovieWriter, 290-292

THMovieWriter interface, 281-282

THMovieWriter life-cycle methods,
282-285

interleaving, 261

writing sessions, finishing, 289-290

Writing the Captured Video (listing), 206

writing to Assets Library framework,

199-202

X–Y–Z
yaw angle, 216, 226

Y'C
b
C

r
 color model, 13

YouTube, 3

YUV color model, 13

zooming video, 209-216

W
WebView framework, 4

wipe transitions, 359-360

writing media, 259

audio waveform view, building

overview, 265-266

reading audio samples, 266-270

reducing audio samples, 271-273

rendering audio samples, 273

AVAssetWriter class

explained, 261-262

illustration, 260

basic example, 262-265

capture recording

AVAssetWriter graph, 284-287

capture output delegate, 280-281

overview, 276-277

sample buffer processing, 287-289

session outputs, configuring,
278-280

	Contents
	Preface
	1 Getting Started with AV Foundation
	What Is AV Foundation?
	Where Does AV Foundation Fit?
	Decomposing AV Foundation
	Understanding Digital Media
	Digital Media Compression
	Container Formats
	Hello AV Foundation
	Summary
	Challenge

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

