
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321957726
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321957726
https://plusone.google.com/share?url=http://www.informit.com/title/9780321957726
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321957726
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321957726/Free-Sample-Chapter

Learning 2D Game
Development

with Unity®

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning 2D Game
Development

with Unity®

A Hands-On Guide
to Game Creation

Matthew Johnson

James A. Henley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Johnson, Matthew (Computer programmer)
 Learning 2D game development with Unity : a hands-on guide to game creation / Matthew Johnson,
James A. Henley.
 pages cm
 Includes index.
 ISBN 978-0-321-95772-6 (pbk. : alk. paper)—ISBN 0-321-95772-5 (pbk. : alk. paper)
 1. Computer games—Programming. 2. Unity (electronic resource) I. Henley, James A. II. Title.
 QA76.76.C672J64 2015
 794.8'1526—dc23
 2014037406

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

Unity, Unity Free, Unity Pro, and the Unity Web Player are registered trademarks of Unity Technologies.

Adobe®, Flash®, and Photoshop® are registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. THIS PRODUCT IS NOT ENDORSED OR
SPONSORED BY ADOBE SYSTEMS INCORPORATED, PUBLISHER OF Adobe® Flash® and Photoshop®.

The Kenney logo and the Made with Kenney Logo belong to Kenney.nl, Netherlands, used with
permission.

Mac® is a trademark of Apple Inc., registered in the U.S. and other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

DirectX, Direct3D, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

ISBN-13: 978-0-321-95772-6
ISBN-10: 0-321-95772-5
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2014

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Senior Production
Editor
Kesel Wilson

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Melissa Panagos

Technical Reviewers
Reshat Hasankolli, II
Sheetanshu Sinha

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Shepherd, Inc.

v

First and foremost, a big thanks to my friends and family
 for supporting me throughout this process. You pushed me

to start this book and then begged me to finish it!

To my late father, who taught me to inspire
and entertain others with my talent and

wild imagination: I am forever your biggest fan.

Last, to the love of my life and best friend, Jessica:
without you this book would have been just

more dust in the wind of my ideas. Thank you for
all of your guidance and wisdom, and for believing

that I could accomplish this. I love you always and forever.
—Matthew Johnson

For my wonderful wife, who brought me tea
whenever I locked myself in my office to write

and tolerated being temporarily widowed by this book.
—James A. Henley

v

This page intentionally left blank

Contents at a Glance vii

Contents at a Glance

 Preface xix

 Acknowledgments xxv

 About the Authors xxvii

 Introduction 1

 1 Setting Up the Unity Development Environment 9

 2 Understanding Asset Creation 27

 3 Creating 2D Sprites 41

 4 Building the Game World 53

 5 The Basics of Movement and Player Control 71

 6 Adding Animations to Our Scene 95

 7 Setting Up Player Physics and Colliders 119

 8 Creating and Applying Gameplay Systems 135

 9 Creating Hazards and Crafting Difficulty 159

 10 Creating the Menus and Interface Elements 193

 11 Applying Effects to the GameObjects 215

 12 Organization and Optimization 247

 13 Bringing It All Together 269

 14 UGUI 291

 Appendix: JavaScript Code Samples 301

 Index 323

This page intentionally left blank

Contents ix

Contents

 Preface xix

 Acknowledgments xxv

 About the Authors xxvii

 Introduction 1

Introduction to Unity 1

Downloading and Installing Unity 1

Project Wizard 4

Open Project Tab 4

Create New Project Tab 5

Packages 5

Setting Our Project 6

Project Structure 6

Folder Organization 7

File Naming Conventions 7

 1 Setting Up the Unity Development Environment 9

Welcome Screen 9

The Unity Interface 10

Menus 10

Toolbar 19

Hierarchy 20

Inspector 20

Project Browser 21

Scene View 23

Game View 24

Summary 25

Exercises 25

 2 Understanding Asset Creation 27

File Formats 27

3D Formats 27

2D Formats 28

x Contents

Importing Our Assets 28

Importing from Inside Unity 28

Importing Premade Assets from the File Browser 29

Creating New Assets 29

Importing Packages 31

Unity Packages 31

Custom Packages 31

GameObjects 33

Our First GameObject 33

Creating a GameObject 34

Components 36

Creating a Component 37

Assign a Component 37

Prefabs 38

Summary 39

Exercises 39

 3 Creating 2D Sprites 41

Working in 2D 41

2D Behaviors 41

2D Workspace 42

Building Our Sprites 43

Import Settings 43

Pixels To Units 45

Sprite Editor 45

Sprite Packing 48

Packing Tag 48

Sprite Packer 48

Additional Sprite Packing Resources 49

Summary 50

Exercises 50

 4 Building the Game World 53

Level Design 101 53

Setting the Scene 53

Creating a Roadmap 54

Adding Details 55

Contents xi

Getting around Our Scene 56

Scene Gizmo 56

Perspective versus Isometric 57

Camera Controls 57

Manipulating Objects in Unity 59

Transform Tools 59

Z-Depth 61

Settings 62

Our First Level 64

Positioning GameObjects Manually 64

Using the Snap Settings to Position GameObjects 64

Using Grid Snapping to Position GameObjects 64

Efficient Level Design 66

Adding Sorting Elements 67

Continuing On 69

Summary 69

Exercises 70

 5 The Basics of Movement and Player Control 71

Coding in Unity3D 71

The Three Languages 71

Choosing the “Right” Language 72

Making the Player Go 72

Different Ways of Handling Movement 72

Creating and Hooking Up Our PlayerController 74

Setting Up a Basic Follow-Cam 83

Introducing the Input Manager 83

Error Handling and Debugging 85

Handling Exceptions 85

Try-Catch-Finally—Gracefully Handling Exceptions 87

Debug.Log() Is Your Friend 89

Using Breakpoints to Halt Code Execution 90

Summary 93

Exercises 94

xii Contents

 6 Adding Animations to Our Scene 95

Some Rules for Animation 95

Animation Principles 95

2D versus 3D Animation 96

Transform versus Frame Animation 97

Scripted Animations 98

Imported Animations 98

Creating Animations 99

Animation Component 100

Animation Clip 100

Animation Window 101

Animation Events 107

Animation States 108

Animator Controller 108

Animator Component 109

Animator Window 110

Editing the Player Controller 112

Working with the State Machine 115

Transitions 115

Any State 115

Blend Trees 116

Summary 116

Exercises 117

 7 Setting Up Player Physics and Colliders 119

Understanding Physics 119

Mass 119

Gravity 120

Force 120

2D versus 3D 120

6DoF 120

Z-Depth 121

Rotations 121

Physics 2D Settings 122

General Physics Settings 122

Layer Collision Matrix 123

Rigidbodies 124

Contents xiii

Colliders 125

Circle Collider 126

Box Collider 126

Edge Collider 126

Polygon Collider 126

Physics Materials 128

Constraints 129

Summary 134

Exercise 134

 8 Creating and Applying Gameplay Systems 135

Trigger Volumes in Unity 135

Trigger2D Functions 135

Adding Trigger Components to GameObjects 136

Creating Checkpoints 136

Scripting the Checkpoint Component 137

Sizing and Placing Our Checkpoint Trigger 138

Using Checkpoints with Respawn 140

Preparing the Pit Trigger Volume 140

Scripting the Pit Trigger Component 140

Creating Collectibles 144

Preparing the Floating Coin Prefabs for Collection 145

Scripting the CoinPickup Component 145

Preparing the Popped Coin Prefabs for Collection 147

Preparing the Coin Box Prefabs 147

Scripting the Coin Box Component 150

Scripting the CoinSpawner Component 152

Hooking It All Together 153

A Touch of Polish 154

Tracking the Player’s Stats 155

Summary 157

Exercises 158

 9 Creating Hazards and Crafting Difficulty 159

Creating Your First Enemy 159

Preparing the Slime Enemy GameObject 159

Inheritance and the EnemyController Component 161

xiv Contents

Scripting the Enemy Slime Component 162

Adding Walls to the Level 164

Handling Collision with Other Slimes 165

Adding Animation to the Slime 166

Dealing Damage 167

Scripting Damage into the PlayerStats
Component 167

Creating the Damage Trigger 168

Passing through the Player’s Space 170

Adding Damage to the Pits 172

Adding Temporary Immunity Post-Damage 172

Visually Representing Immunity, the Classical
Way 175

Handling Player Death 177

Expanding on Platforming 178

Preparing the Moving Platform Prefab 179

Scripting the Flight Points Component 180

Creating Your Second Enemy 182

Preparing the Fly Enemy GameObject 183

Adding Animation to the Fly 184

Scripting the FlyController Component 185

Adjusting the FlightPoints Script 185

Maintaining Your Enemy Arrangements 187

Preparing the Spawn Trigger 188

Scripting the Spawn Trigger Component 189

A Few Words on Challenge 190

Summary 191

Exercises 191

 10 Creating the Menus and Interface Elements 193

UI Design 193

Diegetic 194

Non-diegetic 194

Meta 194

Spatial 194

Unity Native GUI 194

GUI Style 195

GUI Skin 195

Contents xv

GUI Controls 195

Compound Controls 197

GUI Class 197

GUI Layouts 197

GUI Text 198

GUI Texture 198

Creating a Splash Screen 198

Title Screen 200

Game Over Screen 201

Game Win Screen 202

HUD 204

Creating the Visuals 204

Creating the Scripts 206

Summary 212

Exercise 213

 11 Applying Effects to the GameObjects 215

Introducing the Shuriken Particle System 215

Terms to Know 215

Creating a Particle System 216

Modules and Properties of a Particle System 217

Base Particle System Properties 217

Other Particle System Modules 218

Particle System Curves 219

Adding Particle Effects to the Game 220

Creating a Particle Effect for Coin Boxes 220

Hooking Up the Coin Box Particle Effect 223

Creating a Particle Effect for Damage 223

Calling the Damage Particle System from Code 225

Having a Little Particle Fun 227

Unity’s Audio System 227

The Audio Source Component 228

The Audio Listener Component 230

The Audio Reverb Zone Component 230

Adding Sound to the Player 231

Adding Footsteps to the Walk Cycle 231

xvi Contents

Adding Sound to the Jump Event 233

Adding Sound to the Damage Event 234

Adding Sound to the Collectible System 236

Applying Sound to the Coin Box 236

Applying Sound to Coin Collection 237

Applying Some Extra Polish 238

Cleaning Up the Camera 238

Cleaning Up Player Death 241

Summary 246

Exercises 246

 12 Organization and Optimization 247

Organizing Assets 247

Organizing Our Prefabs 248

Labels 249

Hierarchy 250

Organizing Scripts and Code 253

Organizing the Script Files 253

Organizing the Code 254

Optimizations 261

Prefabs 262

Physics 262

Draw Calls 264

Triangle Count 265

Batching 266

Rendering Statistics Window 266

Summary 267

Exercises 268

 13 Bringing It All Together 269

Tying the Levels Together 269

Preparing the Victory Trigger Prefab 269

Creating the Victory Trigger Script 272

Retrieving the Coin Value 274

Hooking Up the Intro Screens 275

Win or Lose: Getting Back into the Action 277

Recovering from Game Over 278

Starting Over from a Win 279

Contents xvii

Building and Deploying the Game 281

Web Player’s Build Settings 282

PC, Mac, and Linux Standalone Build Settings 282

Cross-Platform Player Settings 283

Web Player’s Player Settings 283

The Right Settings for the Job 284

Building the Game for the Web Player 285

Deploying the Game to the Web 285

Post-Deployment 286

Moving Forward 286

Polish Considerations 286

Monetization 287

Final Words 290

 14 UGUI 291

UGUI Components 291

Creating Our Example Interface 293

Canvas Component 293

Rect Transform 296

UI Rect Tool 298

Adding the Mask 299

The Event System and Event Triggers 299

Summary 300

 Appendix: JavaScript Code Samples 301

Player Scripts 301

Collectible Scripts 307

Enemy Scripts 309

Game System Scripts 310

GUI Scripts 314

Hazard Scripts 320

System Scripts 322

 Index 323

This page intentionally left blank

Preface

Why Write This Book?
Since there are hundreds of books on game design and quite a few about using the
Unity game engine, you might be asking, “Why even write another book on Unity?”
We wanted to write a book about game development with a 2D approach, using an
engine that is most widely known for being 3D. There are a bunch of Unity books
covering 3D mesh and building game worlds, and fancy game mechanics, but there is
really not much in the way of anything about a 2D platformer.

Another goal was to show a simplistic and inexpensive approach to creating your
own game. Creating games is tough enough with the amount of time and effort you
have to put into it, and rising costs are something no indie developer wants to deal
with. Every element of this book uses free software and assets to build the game!

Last, we wanted to write our book around a small game project. Using simple
approaches to scripting and asset creation, we wanted to create a game that even some-
one new to Unity and game development could easily pick up and tackle. Every aspect
of the project is covered in the book with clear explanations, examples, and images!

Who Is This Book For?
This book is for those who want to learn more about the process of creating a game
and all of the different parts that are involved, from having an initial idea, planning and
designing, to the final steps of building and deploying the game to share with others.

This book is also for those who are new to Unity and the new 2D tools that have
recently been integrated. We will touch on creating sprites and sprite atlases, applying
2D physics, and adding game scripts, audio, and animations. Almost every aspect of
Unity is touched on and explained in detail.

Why Did We Choose to Use Unity?
The core of any game development is the game engine. It needs to handle all of the
rules, tasks, and mathematics thrown at it. It also needs to be able to grow and evolve
with new technology and the needs of the consumers playing the games.

While it’s possible to develop your own game engine, starting with a well-structured
foundation allows you to focus on creating your game content and letting the game
engine do the dirty work. There are a dozen great game engines that are capable of
this, but Unity excels where others have failed.

Prefacexx

Having started out as a great 3D game engine, Unity has blossomed into an end-all
development tool for creating games that you can then push to just about every plat-
form available. As time went on, the need for more 2D game tools became obvious,
and Unity jumped onboard, creating some of the most intuitive and easy-to-use 2D
tools available.

Another reason is how accessible Unity is. While the Pro version has some really
great additional features, they are tailored more to teams or people looking to really
fine-tune every aspect of their game. We will cover a few of the Pro features, but the
free version will work great for us.

What Will You Need?
So what will you need to develop your game? After you have purchased this book, and
assuming you have a computer to work on, there is nothing else to buy. All of the assets
we will use to create our game are accessible to anyone and readily available on the
Internet, the obvious being the Unity engine, which is easily downloadable from their
Web site (we cover this in the Introduction).

For the game sprites we were lucky enough to get assets from a great game artist,
Kenney Vleugels. We are including these with the ancillaries for this book, but check
out all of the amazing resources and game assets on his Web site, www.kenney.nl.
He continually adds more and more assets and will even create specific assets at your
request.

Last, all of the scripts for our game will be created within the chapters. We will be
providing the final scripts along with the project files, but we recommend you follow
along and create them for yourself. Having a good grasp of even simple scripting will
take you a long way toward creating a game that is truly unique and completely yours.

Register your book at informit.com/title/9780321957726 to access assets,
code listings, and video tutorials on the companion website.

How Much Scripting Is Involved?
While we don’t dig down into the trenches of writing complex code behaviors, we do
cover a lot of the basics and create quite a few scripts throughout this book. Learning a
little programming can go a long way in any profession but is highly recommended for
game design. Even tests and debugging are helpful and require just a very basic level of
scripting knowledge.

How Is the Book Organized?
Our goal for this book was to have those reading it start from the beginning and work
their way through it until the very end. Readers can build upon what they learned in
previous chapters and continually come back to elements they have already built. With

http://www.kenney.nl

Preface xxi

these building blocks, we hope that at the end, you will have the confidence and skill
to either continue building on the example project or start your own game design.

However, we know this is not the case. There will be those who have an under-
standing of the game development process and are looking for a game authoring engine
upon which to build their idea and designs. So we have broken each chapter down into
individual lessons. That way those who are looking to learn about a specific mechanic
or process can easily jump ahead.

We encourage even those with a general understanding of Unity to read through all
of the chapters, as we cover many elements of the Unity engine, both old and new. We
have provided notes, tips, and figures throughout to help reinforce or reiterate a spe-
cific lesson, so look for these as well.

Here is a summary of each chapter:

nn Chapter 1, “Setting Up the Unity Development Environment”

This chapter will familiarize readers with the Unity interface, provide them
with an understanding of a Project’s hierarchy, and begin to build the initial
Project for the game that will be created throughout this book.

nn Chapter 2, “Understanding Asset Creation”

In this chapter readers will start to build the foundation of the game by
importing the assets we will use for the game Project. They will get an
understanding of how the Unity engine uses GameObjects on which everything
in Unity is built. This chapter will break down how Components are the nuts
and bolts of a GameObject and how to utilize them to build upon each other for
complex behaviors. Last, this chapter will touch upon using third-party assets
and packages and how to bring them into our game environment.

nn Chapter 3, “Creating 2D Sprites”

In this chapter we will dive into the new tools and features added for building
2D gameplay. We will discuss the sprite editor, as well as some Pro-only
features and how we can work around them.

nn Chapter 4, “Building the Game World”

In this chapter we will take all of the existing prefabricated GameObjects
and start building the world our player will live in. We will learn to use the
Transform tools to place our GameObjects, and we will learn about sorting
our sprites for layering and depth. Finally, we will go over grouping sprites
and the parent-child relationship, and how keeping these organized and named
correctly will keep our Scene View and Hierarchy easy to manage.

nn Chapter 5, “The Basics of Movement and Player Control”

This chapter will teach a basic understanding of creating scripts and functions
to drive input and control the physical behaviors of our GameObjects. We will
discuss the basic scripts for controlling user input and building upon these for all
the necessary mechanics of our game. We will brief ly discuss the Unity native

Prefacexxii

programming languages and the pros and cons of each. This chapter will also
discuss error handling and basic debugging of scripts.

nn Chapter 6, “Adding Animations to Our Scene”

This chapter will go into setting up and creating the animations for the
GameObjects and sprites. It will discuss creating animations with base
transform versus frame animations and the benefits of both methods. We will
then discuss creating 2D sprite behaviors with the Animator State Machine.
Here we will begin to create the mechanics for the characters for our game.

nn Chapter 7, “Setting Up Player Physics and Colliders”

This chapter will discuss adding physics for both 2D and 3D GameObjects. It
will discuss setting up GameObject collision and knowing which one is best to
maintain game performance. We will also discuss setting up the forces for our
GameObjects and creating dynamic physics.

nn Chapter 8, “Creating and Applying Gameplay Systems”

This chapter will discuss the creation of key gameplay elements such as picking
up collectibles, checkpoints, and respawning. Readers will be taught about
Unity’s trigger system and the code methods that it uses. We will also include
some design theory related to these systems.

nn Chapter 9, “Creating Hazards and Crafting Difficulty”

This chapter will discuss the creation of some basic enemy types and the
underlying code that makes them work. We will add damage scripting and
teach the player how to hook enemies into spawning logic. This chapter will
also touch on some of the design theory related to difficulty and tuning.

nn Chapter 10, “Creating the Menus and Interface Elements”

In this chapter we will create the basic menus for getting into and out of our
game as well as the game interface elements that will make up the on-screen
player information and statistics. We will discuss basic input for menu selections
and game screens.

nn Chapter 11, “Applying Effects to the GameObjects”

This chapter will guide the reader in adding the final polish to the game
assets by adding animations, effects, and audio Components. It will discuss an
overview of the Unity particle system, adding audio listeners and effects to our
non-character gameplay elements.

nn Chapter 12, “Organization and Optimization”

We will go over final tips and recommendations for game optimizations and
compressions for deploying to the various platforms. We will also look into
some final organization tips for file handling and future revisions.

Preface xxiii

nn Chapter 13, “Bringing It All Together”

In this chapter we will wrap things up. We will package up our game and
discuss publishing the game with the Unity Web Player and other platforms.
This chapter will brief ly detail best practices for monetizing a game and advice
for a successful published game. We will then look at publishing the game to
the Web.

nn Chapter 14, “UGUI”

Chapter 14 is a bonus chapter for the upcoming UGUI system in Unity 4.6. We
will take an in-depth look into setting up a new UGUI interface and getting
acquainted with the Components and new Rect Transform Component.

Conventions Used in This Book
The book uses a few conventions for explaining best practices and for sharing useful
information that is relevant to learning Unity.

nn Figures

Figures are used to explain a process or approach that needs a visual example
to clarify the information. These are used throughout the chapters as assets and
levels are generated to show the game design process taking shape.

nn Notes

Notes are used to share additional information with the reader that does not fit
exactly into the context but should be explained along with it.

nn Tips

Tips are used to share workf lows or information not generally known that can
help with a specific task or problem.

nn Warnings

Warnings are used to signify caveats about established rules or situations in
which the game may behave in unexpected ways. These will help you sidestep
some of the potential pitfalls of the game development process.

nn Code listings

Code listings are used throughout the book and are the bread and butter of
the game development process. Code listings contain elements of a script
or the entire script that the reader can copy and use or use as a guide when
approaching a specific function. Later chapters use code listings to update
gameplay to add additional mechanics and features that help polish the
gameplay.

Prefacexxiv

nn Exercises

At the end of almost every chapter are exercises for readers to complete. These
are based on the content of that chapter. After reading the chapter, they should
have gained a solid understanding of the information and should be able to use
it to complete more gameplay elements. The exercises are built to be easily
completed yet require a little bit of discovery and trial and error.

Supplementary Materials
The project development covered within this book will help you build a fully realized
game Project, complete with all of the sprites, audio, and script assets that we show.
The objective is to help you learn how to create all of these from scratch, but we do
understand that you might get stuck or confused about specific processes.

For this reason, we have provided a Web site to grant you access to the entire con-
tents of the Project we will make throughout the book. All of the Scenes, packages,
assets, and scripts will be available to you to follow along with, or to reference in case
you need a little extra help.

We have provided a series of video learning modules for you to watch and to fol-
low along with as well. These are designed to show the UnityProject coming together,
with audio commentary that explains our methods and approach to the game design.
The videos recapitulate the book’s contents, but sometimes a visual explanation is
warranted.

Register your book at informit.com/title/9780321957726 to access assets,
code listings, and video tutorials on the companion website.

Acknowledgments

Matthew Johnson
Thank you to Laura Lewin for taking a chance on me, and for not f lying to Florida to
strangle me. I know the urge was there and was warranted.

Thank you to Olivia Basegio for all of your support and guidance. You truly made
this experience enjoyable and as pain-free as you could.

Thank you to Songlin, Reshat, and Sheetanshu, whose wisdom truly made this
book that much better. Your suggestions and feedback always seemed to be spot-on.

Thank you to Kenny Vleugels for your great artwork and for making it easy to
access it. You are a godsend to game developers everywhere.

Last, to my colleague and friend James Henley: a thousand times over, thank you.
Thank you for all of your insight, humor, and hard work. Most importantly, thank you
for your understanding and patience in helping me see this book through. Without you
stepping in to take the helm, it would never have seen the light of day.

James A. Henley
Foremost, I would like to offer my sincerest thanks to K2, without whom I would not
have become the kind of developer that I am today. Years of design theory discussions,
feedback, and soundboarding have been integral to my growth as a developer.

I would like to express my great appreciation to the publisher, who provided me
with both the opportunity and the means to share some of my knowledge and experi-
ence. In particular, I’d like to thank Laura and Olivia for taking the time to answer
my questions, no matter how mundane, as well as Songlin, Reshat, and Sheetanshu for
their hard work as editors and the many excellent suggestions they made.

I would also like to thank my stream regulars for sticking by me despite the many
interrupted or canceled casts this book caused.

Finally, I wish to thank you, the reader, for having the courage to pursue the dream
that is game development.

Thank you all.

This page intentionally left blank

About the Authors

Matthew Johnson is a principal 3D artist at Firebrand Games in Merritt Island,
Florida. He graduated with a BFA from the International Academy of Design, where
he trained in computer animation before going on to study animation at Animation
Mentor.

Matthew has been in game development for the past seven years working on more
than a dozen AAA racing games, such as NASCAR, Hot Wheels, and the Need for
Speed series. He has helped publish titles on almost every platform, including PC,
Wii U, iOS, Android, and Steam.

In his spare time Matthew enjoys spending time with his wife and two kids and,
when he finds time, pursuing his love for photography.

James A. Henley is an experienced game developer who has worked on several major
titles and franchises, including Mass Effect, Dragon Age, Star Wars, and Skylanders,
over the past decade. He originally entered the industry via the Neverwinter Nights
modding community, where he was able to indulge his desires to craft content, tell sto-
ries, and write code all at the same time. He turned that love into a job opportunity at
BioWare, where he spent three years with the Edmonton studio and five more with the
Austin studio in a variety of design roles before brief ly working for Activision.

Currently, James is working as an independent developer on [TITLE REDACTED]
and is actively live streaming to share his love of games and game design in an inter-
active fashion. He may or may not also be a mad scientist. Analysis has proven
inconclusive.

This page intentionally left blank

Introduction

Welcome to the exciting world of Unity and game development! We hope you are
reading this because you want to learn what we have found to be an exciting and
rewarding career with indie game development.

Between the two of us, we have over a decade of game development experience
and hope to share our insights with you. Both of us have a strong passion for video
games and immersing ourselves in hundreds of different worlds and stories. While
game development can take a lot of time and effort, seeing someone else play your
creation is well worth it! Imagine an idea you have for a new game that you would
love to create. Now imagine creating it and then being able to share it with millions
of others. Exactly!

We have created this learning guide to get you up to speed quickly with Unity to
create your very own platform game from start to finish. This guide may not cover
every little detail of Unity as we are focused on a 2D development platform, but we
feel that after reading this you can go on to create your own game and dig deeper into
Unity, building on what you learn here.

Introduction to Unity
Let’s go over the steps needed to get Unity up and running on your machine. We will
then take a look at creating a workf low for organizing your files and recommended
steps to avoid problems further along in development. Finally, we will describe the
basics of the Unity interface, file menus, and navigation. By the end, we hope you will
have a grasp of the Unity user interface and some solid principles for creating your
Projects. So let’s get started!

Downloading and Installing Unity
Before we dive headfirst into the game development aspects of this book, we need to
get our Unity environment up and running. You can download the latest Unity release
at their Web site: http://unity3d.com/unity/download. While writing this book, we
used version 4.5.1. You may end up with a newer version depending on when you
bought the book, but as long as it is 4.5.0 or above, you will be able to follow along.

http://unity3d.com/unity/download

Introduction2

While on the Unity download page, take a look at the System Requirements as well
as the License Comparisons pages. The System Requirements page lists the general
requirements for Windows or OS X–based machines, along with those requirements
needed to publish to the various development environments. If you have a fairly recent
Operating System such as Microsoft Windows 7/8 or Apple OS X 10.5 (Leopard) or
newer, you will be fine.

The License Comparisons page gives you a full rundown of the features available
with the free versus paid versions of Unity, as well as the add-ons to Unity Pro for
building your game to their respective platforms. Unity Pro comes with a host of added
features that make game creation and debugging a lot easier and even more exciting.

Note
While there are a few Unity Pro features we could benefit from in our game development, you
will not need them to follow along in this guide. We will, however, mention a few of these in later
chapters just to discuss their advantages for those with access to Unity Pro.

Component Installs
Once you have downloaded and begun the installation, Unity will pause and prompt
you with the Choose Components screen (see Figure I.1). The items listed here are
additional resources and add-ons that you may wish to install along with the Unity

Figure I.1 Unity Choose Components screen

Introduction to Unity 3

engine. We recommend installing all of them as they will be helpful in your journey
developing Unity Projects and games.

Example Project
Angry Bots is a feature-rich Unity Project developed by the minds at Unity Technolo-
gies. While it is a fun and immersive game experience, it is of greater significance as a
tool for developing your own games. All of the assets are easily viewable in the engine
as well as the scripts, Components, and animations. While the features and scope of
Angry Bots are beyond what we cover in this guide, we highly recommend looking it
over, especially if you are designing any type of 3D game experience.

Note
The Unity Asset Store also carries a bunch of old and new example Projects like this. There are
quite a few built by the Unity Technologies team. There is a very good “2D platformer” Project
available from them that we highly recommend checking out. We will discuss more about the
Unity Asset Store and downloading Projects, packages, and assets in Chapter 2, “Understand-
ing Asset Creation.”

Unity Development Web Player
The Unity Development Web Player will be a vital part of our game development
workf low. The Web Player allows you to quickly see what your published game will
look and run like on your computer hardware. In later chapters we will see it in action.
The Web Player will also be used to publish our game to HTML code for playing
through a Web browser such as Firefox or Chrome. This is useful for allowing others
to run and test your game from their computers or devices and to get valuable feed-
back. As we wrap up things in Chapter 13, “Bringing It All Together,” we will go over
building for HTML and packaging your game for the Web Player.

MonoDevelop
While we can get so far with our game assets and animations, it’s the core mechan-
ics and gameplay events that create the true experience for the gamer. You can have a
hero and a villain character with combat animations, but without gameplay scripts, you
won’t be able to move them or have them interact. We can do all of this and more by
making a few simple scripts. MonoDevelop is the IDE that allows you to build those
runtime events and scripts for Unity. It is by far the most important of the add-ons you
can install. If you are fairly new to scripting and Unity, this is a must for creating your
game. We will go into MonoDevelop in a lot more depth as we go along, but for now
just continue by hitting Next.

Once everything has installed, open Unity by clicking the Unity icon on your desk-
top. From here you will be given a Unity Activation screen. Click the Register button
and finish the registration authorization. Once this is done, you should get a screen for
the Project Wizard.

Introduction4

Note
By registering you will be given the option of a 30-day evaluation of Unity Pro and access to the
Unity mailing list for upcoming news and updates. Again, we will not have to worry about any of
the added Pro features here, but after finishing this guide, if you wish to dive deeper into them,
you will be able to update to either the 30-day evaluation or the full version by purchasing
Unity Pro.

Project Wizard
The final step (before we see all of the beauty that is the Unity Editor!) is to create our
Project. A good way to understand a Project is to think of it as being like building a
house. Without having the right pieces such as the walls, doors, and a roof, and if it’s
not constructed in an organized and methodical manner, things could get unorganized,
messy, and come falling down. A Project in Unity can be viewed in the same way: we
want to keep it as simple and easy to comprehend as we can for both us and others who
are on our team.

Open Project Tab
There are two tabs in the Project Wizard, the first being the Open Project tab (see
Figure I.2). Here we can choose an existing Project if we have one. You will use only
one Project for each game you are creating. With the house scenario we described, the
Project is your house and you really only need one, right? For now we do not have a
preexisting Project, so just click over to the Create New Project tab.

Figure I.2 The Project Wizard—Open Project tab

Project Wizard 5

Figure I.3 The Project Wizard—Create New Project tab

Tip
We personally like to create a sandbox Project, a second Project that we use for testing game-
play scripts. We also use it to test assets so that we won’t have to scrap them if we don’t need
them in our game Project. By importing and then deleting assets in your Project, you can acci-
dentally leave unused assets, or more importantly remove assets or code, that can break your
game. Again, keeping our Project clean and clutter-free is vital.

Create New Project Tab
On this tab we will set up the Project that we will use for the duration of this guide
and our game. Under Project Location, select the path and name for your Project. By
default Unity will name your Project “NewUnityProject” without you entering any-
thing. To follow along we have named our Project “LearningUnity” (see Figure I.3).
We have also set up the preference defaults for 2D as we will be building a 2D platform
game. You can switch the Unity preferences between 2D and 3D, but Unity will open
with a few features defaulted to a 2D setup like this.

Packages
Below the Project Location is a list of packages that come preinstalled with Unity.
Packages are collections of assets and GameObjects from a Unity Project that get
bundled and exported. You can then take them into other Projects and use them there.
This can be very useful for reusing scripts and certain elements rather than having to
remake them.

Introduction6

Some of these do require a Unity Pro license, but most of them are available in the free
version. These packages are very helpful when you’re starting out and can get you up
and running quickly for testing simple gameplay ideas and mechanics. While we will
not be using any of these to start, note that they are here and available to use in your
Projects. We will revisit these packages in Chapter 2, “Understanding Asset Creation.”

Setting Our Project
One of the most important skills you can have in game development is an understand-
ing of asset management and Project structure. In Chapter 2, “Understanding Asset
Creation,” we will go more into the asset management side, but here we will cover the
Project structure side.

Project Structure
Project structure refers to the hierarchy of files that are used in a Project, how they are
named, and their ordered layering. Having a firm grasp of how you keep your Hierar-
chy organized and named will help you from the beginning of a Project through to the
final build so that your game runs at its optimal frame rate. It also allows you to know
what is needed in your deliverable game so that there are no unwanted files or folders
that could bloat your game. Chapter 12, “Organization and Optimization,” will go
deeper into optimizing your game for best results, but understand early on that there
will be limits on the file size of your game that you cannot exceed. Each device and
publisher is different, and you must follow their guidelines when publishing your game.

The best way to understand the Project structure is the house analogy we made
earlier. The staple of a house is its name. Some call it “home” or “pad.” The point is,
the name is the base, just as our Project base should have a name. When we started in
the New Project window, we named it “LearningUnity.” This is the name we will use
throughout, and it best describes what the Project is about.

Your Unity Project is an extension of your Windows Explorer or Finder on Mac.
Just as you can create folders, move files in and out, and rearrange things, you can do
the same with your Unity Project. Anything you add into your Project will almost
instantly be updated and appear in your Explorer Project path and vice versa. This is so
important to remember; as we mentioned earlier, adding and deleting files can produce
some unintentional consequences.

Note
While it may seem simple to rename or delete a file, remember that Unity has underlying data
connections to the files and there may be unintended results.

Setting Our Project 7

Folder Organization
When you first build your Unity Project, you will see that it comes with some pre-
made folders: Assets, Library, Project Setting, and a Temp folder. The Library, Project
Setting, and Temp folders all contain files related to Unity and creating assets for your
game. Stay clear of these and most certainly do not delete them.

As we build our Project, we will be creating an abundance of assets, such as models,
sprites, scripts, and Materials. Keeping these assets in a neat and organized manner will
simply make things easier as your Project continues to grow. At this point we have yet
to import anything, but here is an example template for a folder structured for Unity:

Assets/
 Materials/
 Meshes/
 Actors/
 GoodGuy
 BadGuy_A
 BadGuy_B
 Props/
 GarbageCan_Clean
 GarbageCan_Dirty
 Plugins/
 Prefabs/
 Actors/
 GoodGuy
 BadGuy_A
 BadGuy_B
 Scenes/
 Chapter_1/
 Scripts/

File Naming Conventions
Another valuable tool to have in your workf low toolbox is an understanding of how
to use namespaces. Namespaces (not the scripting ones) are a means of keeping your
file names simple and short and easy to read and understand at a later point in time.
Not only can it become difficult for you and others to find a file if there is no struc-
ture, but it can be just as frustrating if the files do not have a clear and concise naming
convention.

For example, what if we lazily named two scripts “script_1” and “script_2”? It may
be easy to remember just these two, but imagine having dozens, or several hundred, of
them. We’re pretty sure that if we went to bed for the night and then reopened Unity

Introduction8

the next day, we would most likely forget what these two scripts contained, let alone
a hundred or so of them! Having a concise naming convention in your work can help
you stay focused and organized. It works just as well in 2D and 3D packages.

We have compiled a list of some of the best practices to use when dealing with
namespaces inside of Unity:

1. Start with the most descriptive word, followed by an underscore. An asset named
alienShip.png is not bad; however, char_enemy_alienShip.png is much clearer.

2. Folders take up very little hard drive space. Use as many as you need, for exam-
ple, Assets/_meshes/_characters/_enemy/alienShip.fbx.

3. Try to use namespaces for linked assets. If you use alienShip.fbx for your mesh,
try to use alienShip.cs for the script and alienShip_death.anim for its death ani-
mation. Folder management will keep them organized.

4. While we will cover asset labels more in Chapter 2, “Understanding Asset Cre-
ation,” they are definitely worth mentioning here. As a sort of internal file sys-
tem, this simple tool will make locating assets quick and painless.

Note
While these recommended guidelines work for some, they may not feel right to you. Use your
best judgment when setting up your Project and when naming your files. The best advice is hav-
ing a plan in place from the start. As the Project grows and more files are added, understand-
ing your workflow will be key.

From here on we will dive into Unity and game design to start creating our 2D
platform game. We have a long road ahead of us, but as they say, “It’s all about the
journey and not the destination.” So let’s move on to Chapter 1, “Setting Up the Unity
Development Environment,” and get a look at what the power of Unity can do.

Tip
Take a look through the Unity documentation and learning resources provided on their Web
site. Unity provides a bunch of their own learning videos, follow-along tutorials, and tips, and
the Unity Community and Forum pages are just as valuable.

The Unity Manual is one of your greatest assets when creating games, so remember you
always have this available to you as well. You can access the Unity Manual, along with links to
their Community, Forum, and Answers pages, from the Help menu inside of Unity. Here are the
links to the Internet Web pages for all of this information:

nn Unity Documentation: http://unity3d.com/learn/documentation
nn Unity Tutorials: http://unity3d.com/learn/tutorials/modules
nn Unity Forums: http://forum.unity3d.com/
nn Unity Answers: http://answers.unity3d.com/

http://unity3d.com/learn/documentation
http://unity3d.com/learn/tutorials/modules
http://forum.unity3d.com/
http://answers.unity3d.com/

This page intentionally left blank

4
Building the Game World

In this chapter we will begin building the game world in which our main character
will move around. We will need to discuss level design and planning the game design.
We will explain how having a solid idea in place will keep you from designing without
reason and wasting a lot of time “winging it.”

We will then look at Unity’s Transform tools and the differences between working
in 2D and 3D. We will go over the Hierarchy window and how we can use grouping
and parent-child relationships to keep things organized and easy to use. Last, we will
look at a few other settings to help us more easily build our Scene. By the end, we will
have a full level for our character to explore. So with that, let’s get to it!

Level Design 101
Having at least a basic understanding of level design theory, and some knowledge of its
rules and principles, will go a long way when you’re creating your game environments.
Becoming a great level designer takes a lot of practice and patience, and professional
level designers have years of experience. By no means are we even remotely in the same
ballpark as them, but we do know a few basic rules that will help us create something
that can be fun and entertaining to play.

Setting the Scene
One of the best things to have when putting anything together is a detailed set of
instructions. Most times they list the tools you will need to do the job and describe step
by step where to begin and how to get all the way through to the final piece. Creating
a fun and challenging game level is no different. You will need to know what enemies
to encounter, which items to collect, and what puzzles to complete. Having a “road-
map” of sorts that lists all of these things will go a long way toward helping you achieve
your design.

We have a few things in place to help us; we know that we are creating a 2D-side
platform game, and we already have the game sprites we will use to build our levels.

Chapter 4  Building the Game World54

But there are still a few questions we should ask ourselves before we jump into Unity
and start throwing down sprites:

nn What is the end goal? What are we trying to achieve other than going from point
A to point B?

nn Will this level be easy or hard to complete? Are the puzzles in it fairly easy or
complex to solve?

nn Where in the overall game does this level take place? Where are we in the time-
line of the story?

nn Does this level take place in the daytime or nighttime? What are the weather
conditions? Is it bright sunshine or overcast and snowing?

nn How has our hero progressed to this point in the game? Do they have new weap-
ons, skills, or upgrades?

nn What are some challenges or experiences the user has encountered prior to this
point in the game that we may be able to build upon in this new level?

Answering these questions first will help us set some rules and standards, so that we
are designing the level we feel will give the user a fun and enjoyable experience.

Creating a Roadmap
Once we have all of the answers to these questions, we can create our level. We suggest
putting pen to paper, as they say, to rough out an idea of what it should look like first,
before jumping into Unity. This will help us understand things like the distance over a
gap, or where to place that hidden gem the player has to find.

We have gone ahead and created that roadmap (Figure 4.1), mapping out the con-
f licts, puzzles, and behaviors we will create. We will try to explain the theory behind
the layout and how we answered those earlier questions. Again, our ways of level
design may not be the best or the most effective, but we took what we know and
applied it here.

The main objective of our game is getting our hero through the level to enter the
door to the castle. Original idea, right? In doing so, the player has completed the puzzle
and can move on to the next challenge. But there are some gameplay mechanics we
will be adding along the way to make it slightly more challenging.

Figure 4.1  Sketched level design

Level Design 101 55

When planning this, our approach was that this would be the first level encountered
in the game. That will make it fairly easy for us to map out the details and complex-
ity since this is just a demo for learning the technique. The level will take place in the
daytime, it will be fairly simple to solve, and it is designed with the idea that the user
has played these types of games before.

A few additions are needed to make this design unique. We tried to use the tools
and assets given to us to make something a little different, and we think they work
well. We are using some art that has already been created to make this a little easier for
us. Now let’s take a look at a few rules of level design we might want to take into con-
sideration before f leshing out our level.

Note
Usually all game design, mechanics, and encounters have been solved before asset creation, 
so you or the art team is making only the art that is needed. Working out all of the design 
ahead of time will eliminate changes, roadblocks, and issues down the road. Everything should 
have been planned in advance.

nn Players should start out by simply learning the mechanics of moving our hero left
and right, along with performing some basic jumping. The first few game screens
will be free of enemies to allow players to practice these moves.

nn The first obstacle our players will encounter is designed to test their learning
curve without any serious repercussions. We want them to succeed, but should
they fail, the hero will not lose health or die.

nn Our first contact with an enemy is a slow one that weakens our hero only
slightly. Its purpose is to set up an encounter so that players learn how they will
interact with enemies later on.

nn There will be a few simple puzzles for the player to solve. They will use colors to
help guide the player toward the solution, for instance, “Find a blue key to open a
blue lock.”

nn Players will know they have succeeded once the castle door opens. To present
this, the last puzzle will be placed within viewing distance of the door so that
players can see this transition.

Adding Details
Now that we have the basic design and gameplay elements laid out, we can look for
ways to liven up the world. It should be noted that this step comes well after the level
has been completely designed. All significant changes should be addressed and the level
should be signed off. Making things “look pretty” can wait till the end; otherwise you
might end up with something that looks great but plays terribly. As the saying goes, it’s
“icing on the cake.” Let’s make sure the cake is good first.

Chapter 4  Building the Game World56

Details can have a role in the overall feel and layout of a game and can affect game-
play just like anything else. But didn’t we just say that adding details should come
after the level design is done? What we mean is that the initial questions have been
answered, and we have set the tone and the way we want the level to play out.

A good example of adding details that help the gameplay might be a dirt path to
lead the player. Another example might be a waterfall to guide the player downward.
Think of ways you can add subtle details to guide the player. We want the levels to be
somewhat challenging but also enjoyable, and we want to give the player enough help
to actually solve them.

Getting around Our Scene
Up to this point we haven’t used the Scene View much for our Project. We did a lot
of the legwork: bringing in our assets, building our sprite sheets, and creating our
GameObjects. But now we really need to get in and get dirty (so to speak). We should
first get comfortable with moving around in the environment. Although we are
not dealing much with the concept of 3D depth, we should know how to view our
GameObjects and Scene in both 2D and 3D space. Let’s get familiar with Scene naviga-
tion and object manipulation by creating a test Scene where we can move around:

1. Start by creating a new Scene.

2. In the Scene View control bar, toggle the workspace from 2D to 3D.

3. Create a Cube GameObject by going to the GameObject menu . Create Other
and selecting Cube.

4. Reset the Cube’s Transform values all to 0. With the Cube selected, in the
Inspector, right-click the gear icon to the right of the Transform Component and
select Reset.

Tip
If you lose focus of a GameObject, or wish to center your view on a particular GameObject, you 
can reset the camera by selecting the object and tapping the F key. This will center the cam-
era’s focus point to that of the selected object. Note that this needs to be done with the mouse 
pointer over the Scene View.

Scene Gizmo
To begin, it helps to know how 3D space works. Take a look at the little colored Gizmo
in the top right corner of the Scene View. This is the Scene Gizmo (Figure 4.2).

In 3D space, there are three different axes that determine the direction you are fac-
ing or the direction in which an object is moving. The red (X-axis), green (Y-axis),
and blue (Z-axis) axes on the Scene Gizmo help clarify this. An easier way to under-
stand this concept is that the X-axis runs left to right, the Y-axis runs up and down,

Getting around Our Scene 57

and the Z-axis moves front (near) to back (far). We will get a better understanding of
this in just a bit when we move our cube around in 3D space.

Perspective versus Isometric
Our Main Camera works in perspective view. This means that we can see our cube
object in our Scene with multiple converging angles (perspective viewpoints). Most
likely if you haven’t moved your view around, you will see two sides of the cube run-
ning off into a two-point perspective view.

Isometric view refers to the camera having equal projection of all three axes. This
makes your Scene appear as though it has very little depth. We will see more of this
isometric relation when we start laying down our objects using a 2D orthographic
mode for the camera. Figure 4.3 shows an example of perspective and isometric cam-
eras. Notice how the objects on the left appear to have depth and foreshortening, while
the objects on the right appear f lat and almost as though they exist on the same plane.

Camera Controls
There are a few different methods for getting around in 3D space inside Unity. If you
come from any type of 3D background or have played a third-person-style game, you
will easily grasp this concept.

Figure 4.2  The Scene Gizmo

Figure 4.3  A perspective camera (left) and an isometric camera (right)

Chapter 4  Building the Game World58

Arrow Keys
One method of moving around in the Scene View is using the arrow keys on your key-
board. If you are at all familiar with moving around in a third-person game, the arrow
keys work the same way: up and down to move you forward and back, and left or right
to pan the camera sideways.

WASD Movement
This is the movement that exactly replicates most PC-style games. While the arrow
keys method is very similar, this one uses the W, A, S, and D keys for movement while
using the mouse to direct the camera for that movement. To enable the WASD keys,
you must first hold down the right mouse button.

Mouse Shortcut
The mouse movement is the most efficient method as you can still easily move about in
the Scene but also keep the Transform tools for manipulating the GameObjects. While
this method is most effective with a three-button mouse, you can use a two-button (no
scroll wheel) or even a one-button mouse (most common for Macs or trackpad users).
Table 4.1 gives shortcuts to help clarify this.

Hand Tool
Another method is to use the Hand tool (Figure 4.4). You can access it by tapping the
Q key on the keyboard. In this mode, you are able to control the camera movements
simply by using the mouse.

By holding down the Alt or Ctrl keys, you can orbit or zoom the camera respec-
tively. Also, holding down Shift while using these will increase how fast the camera
orbits and zooms.

Table 4.1  Mouse Movement for One, Two, or Three Button Mouse

Action One Button Two Button Three Button

Move Alt1Ctrl(Cmd) 
and click-drag

Alt1Ctrl(Cmd) and 
click-drag

Alt and middle click-drag

Orbit Alt and click-drag Alt and click-drag Alt and click-drag

Zoom Alt and right 
click-drag

Alt and right click-drag or use 
the Scroll wheel

Figure 4.4  Transform tools with the Hand tool selected

Manipulating Objects in Unity 59

Manipulating Objects in Unity
We now have a level that we have f leshed out using paper and pen, and we can start to
bring these ideas into Unity. But before we do that, let’s check a few settings in Unity
and make sure we are prepared to replicate our paper level design in the editor. Making
sure we can “copy” things from our design to Unity in an almost one-to-one fashion
will save us a lot of time and frustration.

Let’s start by opening our 2D_Platform_Game Project. We have gone ahead and
updated all of the sprites and made Prefabs for all of the GameObjects we will be
using in our game. Go ahead and grab the Project files for Chapter 4 if you want to
follow along.

Transform Tools
In order for us to lay down our GameObjects, we need to know how to move them
around in Unity. We need to be able to position, rotate, and scale our objects and place
them exactly where we need them. We also need to know the key differences between
working in 2D and 3D and how we can still attain depth in our game.

Translate
You will mostly make use of the Translate tool when positioning your GameObject. In
Figure 4.5 you can see the X-, Y-, and Z-axes just like the Scene Gizmo has. In fact,
in 3D mode, you will see that the Translate Gizmo and Scene Gizmo match. This is
because in world space we will move along these axes.

The Translate button can be found next to the Hand tool in the Transform toolbar.
See Figure 4.4 if you do not remember this. You can also access the Translate tool by
tapping the W hotkey on the keyboard.

Simply left-click and drag on one of the colored arrows, and your object will move
along that axis. Moving along the direction the arrow points will move the object in a
positive direction, and negative in the opposite.

Figure 4.5  Default Translate tool display

Chapter 4  Building the Game World60

Note
The red, green, and blue colors are used to tell us what direction that axis is facing. Red indi-
cates the direction for the X-axis. Green is used for up and down or the Y-axis. Blue is for the 
Z-axis.

Rotate
Tapping the E key will bring up the Rotate tool. This will let you rotate the object
along its pivot point. The colored circles again indicate the axes, but the object will
rotate around an axis. This tool is very handy for setting an object at a certain angle.
Figure 4.6 shows the Rotate Gizmo.

Scale
The last tool is the Scale tool (Figure 4.7). Scale means to increase or decrease the size
of an object in relation to its actual size. Using the axis handles will scale the object
only in that one axis. This can be handy if you want to adjust the appearance of an
object, such as making a cube into a rectangle or a sphere into an ellipse.

Figure 4.6  Default Rotation tool display

Figure 4.7  Default Scale tool display

Manipulating Objects in Unity 61

Note
Clicking on an individual axis will affect only the object in that axis. Affecting all axes at once is 
different for each tool. To translate in all three axes, hold Shift and then left-click and drag from 
the center of the Translate Gizmo. For rotation, select anywhere inside the white circle, but not 
on a colored circle. With scale you simply left-click and drag within the white cube of the Scale 
Gizmo.

Z-Depth
Positioning our objects with the Translate tool will help us set up our level and accu-
rately position objects in the Scene. But in a 2D setup this will only help us to place
them along the X-axis (horizontal) and Y-axis (vertical). This will work for most
everything, but we will want to have some depth to our levels. We want to have some
dimension and balance to our world so it doesn’t appear f lat. Sprites like clouds moving
behind our player and allowing the player to walk in front of hills will help add a touch
of realism, even though it is 2D.

In a 2D game using Unity, we can still control the Z-depth using the selected
sprite’s Sorting Layer and Order in Layer attributes. These can be found on the Sprite
Renderer of your Sprite GameObject. Figure 4.8 shows an example of this on our
Player GameObject.

Sorting Layer
The most effective way we have of sorting our sprites is by using Sorting Layers. Sort-
ing Layers work very similarly to 2D editing package layers. You separate elements
into layers, and then place those layers above or behind one another to determine what
draws in front of the next. The only difference with Unity is that it draws from bot-
tom to top, with the top being drawn first, and then the next layer down over that. See
Figure 4.9 for the Sorting Layers we will set up.

Figure 4.8  Sprite Renderer Component of our Player GameObject

Chapter 4  Building the Game World62

Note
Sorting Layers are under the Tags & Layers Manager. We discussed where to find these back in 
Chapter 1, “Setting Up the Unity Development Environment,” but as a quick reminder, they are 
to the right along the toolbar. Choose the drop-down arrow and select Edit Layers to customize 
these.

Let’s add a couple of Sorting Layers for the Player GameObject and Scene elements
we will be adding:

1. With the Tags & Layers Manager open, click the drop-down to reveal the default
Sorting Layer.

2. Click the 1 icon to add a new layer. Rename this “Foreground.”

3. By default Unity will create new layers below the selected one. Left-click and
drag over the Layer 1 text and move this above the Layer 0 slot.

4. Create the remaining three layers for Character, Midground, and Background.

Order in Layer
Another way of layering sprites is with the Order in Layer attribute in the Sprite Ren-
derer. While we could make a bunch of Sorting Layers for each of our sprites, this can
be tedious, very hard to work with, and costly for our game. You may have a sprite
sheet that consists of elements that you wish to have sort with one another, but you
need the entire sheet to sort with other elements. For this we use Order in Layer.

The only difference from a visual standpoint is that Order in Layer sorts based on
a value. The higher the value, the later the sprite will draw, with higher values above
everything else. You may also find as you create the game that you need to assign a
sprite lower than 0. You can use negative values if needed.

Settings
We covered the Pixels To Units measurements for our sprites back in Chapter 3, “Cre-
ating 2D Sprites.” This ensures that the size of all of our game elements is comparable

Figure 4.9  Tags & Layers window—Sorting Layers

Manipulating Objects in Unity 63

to that of our player, so that all of the GameObjects will be in scale with one another.
Once we have our worlds built, enemies placed, and props added, this will make sense,
but first we have to build these things.

Another benefit of setting the Pixels to Units size is that it will uniformly align all of
the tile sprites, allowing us to easily snap the ends of one tile to the next.

Grid
The grid in our Scene View will help us “snap” pieces of our levels together easily.
When we set the Pixels To Units size for the tile sprites (70), it made them equal to
their actual dimensions (70 pixels by 70 pixels). This means our tile will fit exactly into
a 1 3 1 Unity grid. Now we can easily “snap” one piece to the next.

Snap Settings
The Snap Settings (Figure 4.10) work in relation to the grid units. Snap Settings allow
you to position, rotate, and scale your objects with precise measurements. This tool will
become invaluable when we start building our level.

nn Move X (Y and Z): The number of units the object will move when using
snapping

nn Scale: The percentage an object will scale in size
nn Rotation: The degree of rotation the object will make

While we do not have to adjust the Snap Settings, it is helpful to know where to
locate them. They can be found under the Edit menu (Edit . Snap Settings).

Tip
By holding the Ctrl key and then left-clicking and dragging the tiles, you can easily snap them to 
each other with precision. This is one method that helps you build your game levels quickly. We 
also set the pivot point of each sprite to its bottom left, making snapping painless.

Figure 4.10  Snap Settings with default values

Chapter 4  Building the Game World64

Our First Level
Taking what we have learned from this chapter and our level design concept, let’s start
building our first level! Find the Chapter 4 project files for the book, and open up the
First_Level Scene file. The Project has all of the sprites we will need set up as Prefab
objects.

Positioning GameObjects Manually
From the Project window, go to Assets . _prefabs and select the grassMid Prefab. Left-
click and drag, then drop this into the Scene View or Hierarchy to add our first piece.
Let’s adjust the placement by setting the Prefab’s Transforms. With the Prefab selected,
go to its Transform Component in the Inspector and reset its Position values (the X-,
Y-, and Z-values) to 0, 0, and 0 respectively. We have placed our fist sprite! Figure 4.11
shows the Prefab with the correct placement.

Using the Snap Settings to Position GameObjects
We can also use the Snap Settings tool described previously in this chapter. This will
snap the GameObject with precise values. From the Project Browser, pull in another
Prefab asset to make our current ground a little more solid:

1. Find the grassCenter Prefab and drag it into the Scene View, trying to roughly
place it below the grassMid Prefab.

2. Open the Snap Settings window by going to Edit . Snap Settings.

3. With the values for Move X, Move Y, and Move Z all set to 1, click the Snap All
Axes button.

4. The grassCenter Prefab should now be snapped below the grassMid Prefab and
sitting in world space at 0, 21, 0 in X, Y, and Z respectively.

Using Grid Snapping to Position GameObjects
Last, we can precisely position a GameObject by using the grid snap option. This takes
the pivot point of the sprite as the position from which it snaps to place it exactly where
you intend. You can do this with multiple selected tile sprites as well.

1. Select both the grassMid and grassCenter GameObjects.

2. Duplicate the GameObjects by tapping Ctrl 1 D. Notice that you now have two
of each object in the Hierarchy window.

3. Select one of the grassMid and one of the grassCenter Prefabs from the Hierarchy
window.

Our First Level 65

Figure 4.11  Inspector window with grassMid Prefab Component

Chapter 4  Building the Game World66

4. Hold Ctrl and left-click and drag the tiles one snapped unit to the right in the
Scene View. You will now have four sprites to make up the first part of our
ground-f loor tiles.

5. Continue duplicating and positioning these from left to right, until you have a
complete ground surface.

6. You should have something that resembles Figure 4.12.

Note
Most often when you duplicate an object a second time, it will spawn from the original 
GameObject instead of the current one. It is best to deselect and then select the new  
GameObject before duplicating again. You could also duplicate the number of times you  
need and then select them individually.

Efficient Level Design
Now that we have the initial ground for our first screen, we will want to duplicate it
for the next screen. While it did not take a lot of time to create the first ten, having a
quicker solution would make things easier on our level designer! We could simply select

Figure 4.12  Scene View with our initial GameObjects laid out

Our First Level 67

all 20 grassMid and grassCenter GameObjects, duplicate them, and position them; let’s
see if we can find a more efficient way:

1. Create an empty GameObject by going to GameObject . Create Empty.

2. Double-click on the name or right-click and select Rename. Let’s rename our
GameObject “Screen1.”

3. Reset the Screen1 GameObject by resetting its Transform values. Remember
the gear icon to the right of the Transform text? Click the drop-down and select
Reset.

4. Select all of the grass Prefabs up to this point in the Hierarchy.

5. In the Hierarchy window, left-click and drag them to the Screen1 GameObject
and release. They will now be parented under Screen1.

6. With the Screen1 GameObject selected, go to Edit . Duplicate to create another
instance of the tiles we have already placed. Rename this new one “Screen2.”

7. Using our grid snapping technique, move the Screen2 group to the right 10 units.
The Transform values for Screen2 should be 10, 0, 0 in X, Y, and Z.

Note
Another useful way to make sure your tiles are aligned is with the Snap Settings. Marquee (left-
click and drag) a section of tiles or select them in the Hierarchy window. With the tiles selected, 
open the Snap Settings and click the Snap All Axes button. This will ensure that any tiles are 
snapped exactly to the absolute grid values. This is a very good technique for cleaning up tiles 
whose Transforms may have moved slightly. 

Adding Sorting Elements
We covered Sorting Layers earlier in the chapter. Now let’s set up a couple of instances
of them and see how we can add some simple depth and details to our level. Learning
how to do this early will help when you have finished the level design and want to add
details, and it may give you ideas for adding your own variations.

We will first add a fence GameObject to the foreground so that our Player
GameObject will walk behind it. Then we will add water and a ledge. With the ledge
sorted to be in front of the water, it will appear as though there is some depth in our
Scene. These details will go a long way toward giving the game life.

1. Select the fence Prefab from the _prefabs folder. Place this roughly at the end of
the first screen, just above the ground.

2. Duplicate this and move it to the right, into the second screen. Make two more
copies of this, placing them to the right.

3. Use the Snap All Axes tip from earlier to make sure these are lined up correctly.
Your Scene should resemble Figure 4.13.

Chapter 4  Building the Game World68

4. Make sure to place the first fence Prefab we added to our Scene under the
Screen1 parent GameObject. Place the last three under the Screen2 version. This
keeps our Hierarchy clean, and we will be able to find elements later on much
more easily.

Last, we need to make sure we set the sorting for these, so our Player GameObject
will walk behind them. We could do this on a per-object level, but that would take
more time as well as make things less consistent. Doing this to the master Prefab in the
_prefabs folder will instantly update any of these we have added to our Scene.

Select the fence Prefab in the _prefabs folder and look at its properties in the Inspec-
tor. Select the drop-down for the Sorting Layer and change it from Default to Fore-
ground. Now our fence tiles will sort in front of our Player GameObject.

Now let’s add the ledge and water. For this we will sort our sprites going back into
the Scene. To make our Scene look slightly more realistic, we will change the end of
our ground pieces to a ledge and add water:

1. Remove the last grassMid and grassCenter GameObjects from Screen2 by select-
ing them in the Scene View or Hierarchy and hitting the Delete key.

2. From the _prefabs folder again, select the grassCliffRight Prefab and drag it into
the Scene View. Place this roughly at the end of the tiles for Screen2.

3. Select the liquidWater Prefab and place it directly below the ledge sprite.

4. Last, select the liquidWaterTop_mid Prefab and place it directly over the grass-
CliffRight GameObject.

5. Let’s set the Sorting Layer for the water so it draws behind the ledge sprite.
Again, let’s do this in the Prefab so that any instance of the water will automati-
cally sort correctly. Select the water Prefabs and in the Inspector, set the sorting
to be Background.

Figure 4.13  Scene View with the newly placed fence GameObjects

Summary 69

6. Finally, we need to make sure the GameObjects are positioned precisely. Select
the grassCliffRight and the two water GameObjects and hit the Snap All Axes
button again.

7. Your Scene should resemble Figure 4.14. We have gone ahead and added a few
additional sprites for Screen3, including an island and a bridge, as well as finished
out the water. Remember to use your Sorting Layer and Order in Layer attri-
butes to set the priority of the sprites. See the First_Level_Final Scene file if you
get stuck.

Continuing On
Now that we have a basic understanding of adding Prefabs to our tiles, positioning and
snapping them, and sorting our sprites, we can continue. We leave you here to carry on
and finish the rest of the level design. You are free to use the design we laid out at the
beginning of the chapter or to make your own. Most of what we will be adding in the
next few chapters can be done with any variation of the design, but we will show you a
few select GameObjects and enemies we have chosen.

Feel free to finish this one and keep this chapter handy should you need to review
any information. We have also included the final level completely laid out in the
Project files for this chapter. This Unity Scene file is in the Chapter 4_projectFiles .
_scenes folder and is named First_Level_Final. If you run into any roadblocks, check
the Inspector and Hierarchy windows.

Summary
In this chapter we learned a great deal of information on designing the first part of our
level. We had a brief overview of level design and reviewed a few simple principles to
make our level slightly more enjoyable.

Figure 4.14  Our ledge and water GameObjects placed

Chapter 4  Building the Game World70

After this we dug into Unity and using the Scene View and camera controls to navi-
gate our Scene. Using a variety of methods, you should now be able to easily move
around to view and place your GameObjects in world space.

We went into great detail on the Unity Transforms and Transform Components.
This is how we will position, rotate, and scale the elements of our game. We went into
2D projections and Z-depth and how we will use sorting and ordering to added depth
and priority to our sprites in the game.

Finally, we started building our first level, adding Prefabs, and setting up sorting and
some organization for our Scene. We set a few attributes in the master Prefab and saw
how this will directly update all instances in our Scene. From here you are left to carry
on and finish the design of your level.

In Chapter 6, “Adding Animations to Our Scene,” we will start bringing our char-
acters and Scene elements to life. We will learn how to add a series of complex behav-
iors and how we can make things move realistically in a short amount of time and with
little effort. With that, let’s get moving!

Exercises
1. Finish up the Scene, adding elements such as grass, clouds, and props. Remem-

ber to set the position with the Snap Settings tool, and set the priorities for the
sprites.

2. Set the Sorting Layers in the master Prefabs themselves in the _prefabs folder.
This will ensure that all instances we add to our Scene carry them over.

3. Let’s add some simple collision for our ground GameObjects. Select grassMid and
grassCliffRight in the _prefabs folder.

4. In the Inspector, click the Add Component button and select Physics 2D . Box
Collider. This will add a Collider Component for our ground sprites that our
Player GameObject will then be able to interact with.

5. The colliders are added, but centered to the pivot of our GameObjects. We need
to have the collision cover the bounds of the sprite. Make sure that grassMid and
grassCliffRight are still selected from the _prefabs folder.

6. Under the Box Collider Component, find the attribute for Center and set its val-
ues in X and Y to 0.5. This will move the collision to center exactly around our
sprites.

7. Don’t forget to save your Scene!

Index

Numbers
2D

2D animation vs., 96–97
2D physics vs., 120–121
Audio Source component properties, 230
file formats, 28
Scene View toggle, 24
sprites. See Sprites, 2D

3D
3D animation vs., 96–97
3D physics vs., 120–121
Audio Source component properties,

229–230
Canvas Component controlling GUI

display, 294–296
file formats, 27–28
rendering 2D spriten, 98
Scene Gizmo in, 56–57
Scene View toggle, 24
transform animation in, 97
Unity engine default as, 41

3ds Max file format, 27–28
6DoF (six degrees of freedom), 120–121
16 bits format, 45

A
A1 routine Components, 162
About Unity command, Help menu, 18
Add command, Component menu, 16
Add Component button, 37–38
Add Current button, Build Settings, 282
Add Curve button, Animation window, 102,

105–106
Add Event button, Animation Events, 102, 107
Add Keyframe Target, Animation window, 102
Add-ons, component installs, 2–3

Adobe Flash, sprite packing, 50
Adobe Photoshop, sprite packing, 49
Air control, character movement, 73–74
Align View to Selected command,

GameObject menu, 16
Align with View command, GameObject

menu, 16
Anchors

UGUI Rect Transform, 297–298
UI Rect Tool, 299

Angry Bots example project, 3
.anim format, 99
Animation Clips, 100–101
Animation Component, 97, 99–100
Animation Events, 107
Animation Layer, 111
Animation State Machine, 108, 115–116
Animation tree, Animator window, 110
Animation window

creating Animation Events, 107
creating animations inside Unity, 101
creating player walk animation, 105–106
editing Animation Clips, 100–101
Graph Editor, 102–103

Animations
2D vs. 3D, 96–97
bump, 154–155
Fly enemy, 184–185
imported, 98–99
overview of, 95
preparing victory trigger prefab, 270
principles of, 95–96
scripted, 98
Slime enemy, 165–166
transform vs. frame, 97–98
viewing number in scene, 267

Index324

Animations, creating
with Animation Component, 100
with Animation State Machine, 108,

115–116
with Animation window, 101–104
with Animator Component, 109
with Animator Controller, 108–109
with Animator Window, 110–112
assigning Animation Clip, 100–101
assigning Animation Events, 107–108
with Dope Sheet, 104–105
with Graph Editor, 102–104
overview of, 99
player’s idle and walk, 105–107
review exercises, 117
updating PlayerController to view,

112–115
Animator Component

adding temporary immunity post-
damage, 174

creating bump animation, 154
creating VictoryTrigger script, 274
editing PlayerController, 112
overview of, 109

Animator Controller
adding animation to Slime enemy,

165–166
creating bump animation, 154–155
editing in Animator window, 110–112
overview of, 108
for player character, 109
viewing animation in real-time,

105–106
Animator window, 110–112, 115–116
Anticipation, in animation, 95
Any State, animations, 115–116
API Compatibility Level, Web Player Player

Settings, 283
Appeal, in animation, 95
Application.LoadLevel() function,

SplashScreenDelayed script, 277
Apply Changes to Prefab, GameObject, 15
Apply Root Motion, Animator

Component, 109
Arcs, in animation, 96

Arrays
scripting CoinSpawner Component,

152–154
scripting HUD, 208
scripting PitTrigger Component, 143

Arrow keys, camera movement, 58
Aspect drop-down, Game View, 24
Assets

batching for optimization, 266
file naming conventions, 7–8
folder organization of, 7, 247–248
using as Components in game, 36–39
using labels to earmark individual, 249

Assets, creating
2D file formats, 28
3D file formats, 27–28
from Assets menu, 29–30
components, 36–39
GameObjects, 33–36
importing from inside Unity, 28–29
importing packages, 31–33
importing premade, 29
overview of, 27
review exercises, 39

Assets menu, 13–14, 29–30
Attach to Process window, breakpoints,

91–92
Audio command, Component menu, 16
Audio effects

adding footsteps to walk cycle, 231–233
adding to collectible system, 236–238
adding to damage event, 234–236
adding to jump event, 233–234
recording audio at runtime, 228
Unity’s audio system, 227–231

Audio Listener Component
defined, 37, 227
overview of, 230

Audio Reverb Zone Component, 227,
230–231

Audio Source Component
2D sound settings, 230
3D sound settings, 229–230
adding footsteps to walk cycle,

231–233

Index 325

adding sound to collectible system,
237–238

adding sound to damage event, 235
adding sound to jump event, 234
defined, 228
properties, 228–229

Audio toggle, Scene View, 24
audioSource property, 232
Authors, about this book’s, xxvii
Automatic Layout, 197
Automatic Slicing, 46–47
Avatar, Animator Component, 109
Awake() function

adding footsteps to walk cycle, 231–232
CameraFollow script, 239–240
editing PlayerController script, 112

Axes
2D vs. 3D animation, 96–97
2D vs. 3D physics, 120–121
CameraFollow script, 241
creating bump animation, 154–155
navigating with Scene Gizmo, 56–57
particle system curves, 219–220
positioning GameObject with Transform

tools, 59–61
sizing Checkpoint trigger, 138–139
X. See X-axis
Y. See Y-axis
Z. See Z-axis, in 3D

B
Background image, UI, 294–295
Batching

optimization with, 266
viewing draw cells reduced due to, 267
Web Player Player Settings, 283

Behaviors
2D, 41–42
particle system properties, 217–218
unexpected, 91

Best practices, file naming conventions, 8
Blend Trees, animation, 116
Block_Bump animation, 155
Boo, supported by Unity3D, 71–72
Bounciness, Physics 2D Materials, 128–129

Box Collider 2D
adding walls to level, 164
defined, 126
preparing Slime enemy GameObject, 160
preparing spawn trigger, 188
preparing victory trigger prefab, 270

Break Prefab Instance, GameObject menu, 15
Breakpoints, in code execution, 90–91
Bringing it all together

building and deploying. See Building and
deploying game

hooking up Intro screens, 275–277
levels. See Levels, tying together
monetization, 287–290
polishing considerations, 286–287
recovering from Game Over, 278–279
starting over from win, 279–281
summary, 290

Build & Run command, File menu, 12
Build and Run button, Build Settings, 282
Build button, Build Settings, 282
Build Settings window

buttons in, 281–282
cleaning up player death, 244
cross-platform players, 283
deploying game to Web, 285
in File menu, 11
hooking up Intro screens, 275–277
PC, Mac, and Linux, 282–283
post-deployment, 286
preparing victory trigger Prefab, 271
Web Player Build Settings, 282
Web Player Player Settings, 283–285

Building and deploying game
building game for Web player, 285
cross-platform Player Settings, 283
deploying game to Web, 285
overview of, 281–282
PC, Mac, and Linux standalone Build

Settings, 282–283
post-deployment, 286
right settings for the job, 284–285
Web player’s Build Settings, 282
Web player’s Player Settings, 283–284

Bump animation, 154–155

Index326

Buttons, GUI
defined, 195
Game Over screen, 201–202
Game Win screen, 202–203

Buttons, UGUI, 291

C
C# programming language, 71–72
Camera

arrow keys, 58
cleaning up, 238–241
controls, 57–58
creating GameObject, 33–34
defined, 37
Hand tool, 58
managing Scene with multiple, 204
mouse shortcut, 58
perspective vs. isometric view, 57
resetting focus point to selected object, 56
setting up basic follow-cam, 83
WASD movement, 58

CameraFollow script
cleaning up camera, 238–241
JavaScript sample code for, 311–312

Canvas Component, UGUI
defined, 292
example interface, 293
overview of, 293–294
in Rect Transform, 296
in Render mode, 294–296

Cascading Style Sheet (CSS), native GUI, 195
Catch block, error handling, 87–89, 138
Center on Children command, GameObject

menu, 15
Center tool, Transform Gizmo Toggles, 19
Challenge, levels of, 190–191
Character acceleration, 72
Check for Updates command, Help menu, 18
Checkpoints

creating, 136–140
as critical path material, 140
polishing game, 286
using with respawn, 140–144

CheckpointTrigger script
JavaScript sample code for, 312
scripting Checkpoint Component,

137–138

CheckXMargin() function, CameraFollow
script, 240

CheckYMargin() function, CameraFollow
script, 240

Choose Components screen, installing Unity,
2–3

Circle Collider 2D
creating damage trigger, 169
creating for GameObject, 126–127
defined, 126
preparing Fly enemy GameObject, 183
preparing Slime enemy GameObject, 160

Classes, GUI, 197
cleaning up camera, 238–241
Clear Parent command, GameObject menu,

15, 21–23
Code

calling damage particle system from,
225–227

error handling. See Error handling and
debugging

methods of shorthand, 82
in Unity3D, 71–72

Code, organization of
optimizing, 254
shorthand code, 261
using concise functions, 261
using constants, 256–261
using regions, 254–256

Code samples, JavaScript
collectible scripts, 307–309
enemy scripts, 309–310
game system scripts, 310–314
GUI scripts, 314–320
hazard scripts, 320–321
overview of, 301
player scripts, 301–307
system scripts, 322

Coin box
adding sound to, 236–237
bump animation for, 154–155
defined, 144
hooking up particle effect, 223
particle effect for, 220–222
preparing prefabs for collection, 147–150

Coin value
defined, 144

Index 327

for finished coin prefabs, 146
retrieving, 274–275

CoinBox script
JavaScript sample code for, 307–308
overview of, 150–151

CoinCounter script
creating, 206–207
hooking up to Player GameObject, 210–212
JavaScript sample code for, 314–315

CoinPickup script
adding sound to coin collection, 237–238
JavaScript sample code for, 308
overview of, 145–146
tracking player stats, 156–157

CoinPop() function, Coinbox script, 151
Coins. See Collectibles
coinsCollected variable

creating VictoryTrigger script, 273
PlayerStats script, 156, 168, 211, 304
retrieving coin value, 274–275

CoinSpawner Component, 152–154
CoinSpawner script

creating, 152–153
disabling coin box prefab, 148
JavaScript sample code for, 308–309

CollectCoin() function, 156–157
Collectibles

adding sound to, 236–238
adding touch of polish to, 154–155
coin box prefabs, 147–150
CoinBox script, 150–151
CoinPickup script, 145–146
CoinSpawner script, 152–153
f loating coin prefabs, 145
hooking it all together, 153–154
overview of, 144–145
popped coin prefabs, 147
script samples for, 307–309
tracking player stats, 155–157

Colliders
adding triggers to GameObjects, 136
creating checkpoints, 136–140
handling collision with other Slimes,

165–166
Physics 2D, 125–128
reducing triangle count with, 266
Trigger2D functions raised by, 135–136

Collision Detection, optimizing Rigidbody
attributes, 263

Collision module, particle system, 219
Color by Speed module, particle system, 218
Color Over Lifetime module, particle system,

218, 224
Compatibility, Web Player Player

Settings, 283
Component menu, 16
Components

adding to GameObject, 37
assigning, 37–39
creating GameObject, 33–34
overview of, 36–37
persisting data between Scenes/game

sessions, 157
UGUI, 291–293

Compound Controls, GUI, 197
Compressed format, 44
Console

filtering contents of, 89
using Debug.Log()and spamming, 90

Constants
naming conventions for, 258
overview of, 256
using shorthand code, 261

Constants script
creating, 256–258
JavaScript sample code for, 322
preparing victory trigger prefab, 270–272
updating PlayerController script, 258–261

Constraints, Physics 2D, 129–134
ContactDamage script, 169–170, 320
Containers, organizing Hierarchy into,

249–252
Control bars, 23–24
Controls, GUI, 195–197
Conventions, used in this book, xxiii–xxiv
Copy/paste, importing premade assets, 29
Coroutines, 175, 200
Create command

Assets menu, 13
GameObjects, 23

Create Empty command, GameObject menu,
15, 34–35

Create Other command, GameObject
menu, 15

Index328

Critical paths, 140
Cross-platform Build Settings, 283
CSS (Cascading Style Sheet), native GUI, 195
Culling Mode, Animator Component, 109
Curves, particle system, 219–221

D
Damage, dealing

adding sound to event, 234–236
adding temporary immunity post-damage,

172–175
calling particle system from code, 225–227
creating damage trigger, 168–170
creating particle effect for, 223–225
handling player death, 177–178
overview of, 167
passing through player space, 170–171
to the pits, 172
representing immunity, 175–177
updating PlayerStats script, 167–168

damage property, ContactDamage, 170
Data, persisting between Scenes/game

sessions, 157
Day 1 DLC, monetization purchase

model, 288
Death, player

cleaning up, 241–245
handling, 177–178

deathTimeElapsed variable, cleaning up
player death, 243

Debugging. See Error handling and
debugging

Debug.Log() function, 89–90
Debug.LogError() function, 88, 90–91
Default Behavior Mode, 2D workspace, 42
delay property, VictoryTrigger script,

273–274
Delete command

Assets menu, 14
Edit menu, 12
keyframes, 103–104

Deployment of game to Web, 285–286
Details, adding in level design, 55–56
Development environment setup

overview of, 9
Unity interface for. See Unity interface
Welcome screen, 9–10

Diegetic user interfaces, 194
Difficulty. See Hazards and difficulty
Direct3D, Web Player Player Settings, 283
directionAB property, FlightPoints, 180–182
Discrete tile movement, 72
Distance Joint 2D constraint, 130
DLC (downloadable content), 287–288
Document Editor, MonoDevelop, 75–76
Document Outline panel, MonoDevelop, 76
Documentation, Unity, 8
Dope Sheet, animating, 104–105
Downloadable content (DLC), 288
Downloading Unity, 1–2
Drag and drop

adding Component to GameObject, 37
adding Rigidbody to give character, 124
existing Prefabs, 38–39

Draw calls
optimizing, 264–265
viewing number to process before

batching, 267
Draw mode, Scene View, 23
Duplicate command, Edit menu

defined, 12
duplicating GameObjects, 64–66
efficient level design, 66–67

Duration property, particle system
defined, 217
particle effect for coin boxes, 220
particle effect for damage, 224

Dynamic Batching, 283
Dynamics, creating, 130–134

E
Edge Collider, 126
Edit menu, 12–13
Editing

Animator Controller, 110–112
particles, 216
PlayerController, 112–115
tangents, 103–104

Effects
adding footsteps to walk cycle, 231–233
adding sound to collectible system,

236–238
adding sound to damage event, 234–236
adding sound to jump event, 233–234

Index 329

cleaning up camera, 238–241
cleaning up player death, 241–245
overview of, 215
particle. See Shuriken Particle System
review exercises, 245
Unity’s audio system and, 227–231

Effects command, Component menu, 16
Effects drop-down, Scene View, 24
Emission module, particle system, 218,

221, 224
Enemies

creating more types of, 286
JavaScript sample codes for, 309–310
maintaining arrangements, 187–189

Enemy, creating first. See also Damage,
dealing

adding animation to Slime, 166–167
adding wall to level, 164–165
EnemyController script and inheritance,

161–162
EnemySlime script, 162–164
handling collision with other Slimes,

165–166
overview of, 159
preparing Slime enemy GameObject,

159–161
Enemy, creating second

adding animation to enemyFly, 184–185
adjusting FlightPoints script, 185–187
FlyController script, 185
overview of, 182–183
preparing enemyFly GameObject,

183–184
EnemyController script, 161–162, 309
enemyFly. See Enemy, creating second
EnemySlime Component, 165–166
EnemySlime script, 162–164, 309–310
Error handling and debugging

2D sprite animations, 101
halting code execution with breakpoints,

90–93
handling exceptions, 85–86
overview of, 85
using Debug.Log(), 89–90
using Try-Catch-Finally, 87–89
your own code, 138

Event System, UGUI, 293

Events
adding sound to damage, 234–236
adding sound to jump, 233–234
player walk animation, 232–233
trigger, 135–136

Exaggeration, in animation, 96
Examples

JavaScript code. See JavaScript code
samples

projects, 3
Exception handling. See Error handling and

debugging
Export Package command, Assets menu, 14
External Forces module, particle system, 219

F
F2P (Free to Play), monetization purchase

model, 287–289
Facing, handling player, 79–80
FBX file format

3D, 27–28
importing animations, 99

File browser, importing premade assets
from, 29

File menu, 11–12
Files

2D format, 28
3D formats, 27–28
audio formats, 227
naming conventions, 7–8
organizing scripts via filename, 253–254
setting project structure, 6

Filtering Console contents, 89
Finally block, handling exceptions, 87–89
Find command, Edit menu, 13
Find References in Scene command, Assets

menu, 14
First Streamed Level, Web Player Player

Settings, 283
Fixed Layout, 197–198
Fixed Timestep, Time Manager, 263
FixedUpdate() function

adding Try-Catch-Finally to, 87–88
for animation, 113–115
for basic jumping, 80–82
for basic lateral movement, 79
CameraFollow script, 240

Index330

FixedUpdate() function (continued)
defined, 77
EnemySlime Component script, 164
FlightPoints script, 180–182, 186
setting player facing, 79–80
Time Manager handling, 262

Flare Layer Component, 37
f lickerDuration property, PlayerStats,

176–177
f lickerTime property, PlayerStats, 176
FlightPoints script

adjusting for Fly enemy, 185–186
JavaScript sample code for, 312–313
moving platforms at set speed, 180–182

Flip() function
EnemyController script, 161–162
EnemySlime script, 165
FlightPoints script, 186
FlyController script, 185
setting player facing, 80

Floating coins, 144–145
FlyController script, 185, 310
Flying enemy. See Enemy, creating second
Fly_Move animation, 184–185
Folders

organizing assets into, 247–248
organizing for project, 7
organizing prefabs into, 248–249
organizing script files into, 253–254

Follow-cam, setting up, 83
Follow-through action, animation, 96
Footsteps, sound of player, 231–233
footstepSounds property, 232
Force

physics and, 120
Rigidbody behavior as, 124

Force Over Lifetime module, particle
system, 218

Formats
2D file, 28
2D sprite, 44–45
3D file, 27–28
audio, 227

FPS (frames per second), viewing, 267
Frame animation

overview of, 97
using transform animation with, 97

Frame, Animation window, 102
Frame Selected command, Edit menu, 12
Free to Play (F2P), monetization purchase

model, 287–289
Friction attribute, Physics 2D Materials,

128–129
Full air control system, 73

G
Game Over screen

creating, 201–202
recovering from Game Over, 278–279

Game system scripts
CameraFollow, 311–312
CheckpointTrigger, 312
FlightPoints, 312–313
overview of, 310
SpawnTrigger, 313
VictoryTrigger, 313–314

Game View
animation in, 107
overview of, 24–25
Render mode displaying GUI in, 294–296
Render Statistics window in, 266
toolbar controls, 20

Game Win screen
creating, 202–203
starting over from win, 279–280

Game world, building
Grid Settings, 63
level design theory, 53–56
objects with Pixels to Units, 62–63
objects with Transform tools, 59–61
objects with Z-depth, 61–62
overview of, 53
review exercises, 69–70
Scene navigation, 56–58
Snap Settings, 63–64

Game world, building first level
continuing on, 69
efficient level design, 66–67
positioning GameObjects, 64–66
sorting elements, 67–69

GameObject menu, 15–16, 34–37
GameObjects

adding trigger Components to, 136
Components as “guts” of, 36–39

Index 331

creating, 34–37
creating HUD scripts, 206–211
creating HUD visuals, 204–205
creating in Scene View, 23
creating particle system, 216–217
Inspector giving detailed description of, 20
losing focus of/centering view on, 56
parenting with Hierarchy, 20
UGUI, 291–293
understanding, 33–34

gameObjects property, spawnTrigger, 189
GameOverScript script

GameOver screen, 201–202
JavaScript sample code for, 316
recovering from Game Over, 278–279

Gameplay systems
adding triggers to GameObjects, 136
creating checkpoints, 136–140
creating collectibles. See Collectibles
overview of, 135
review exercises, 158
tracking player stats, 155–157
triggers and, 135–136
using checkpoints with respawn, 140–144

GameWinScript script
Game Win screen, 203
JavaScript sample code for, 317
starting over from win, 280

GetNearestActiveCheckpoint()
function, 143–144

Gizmos drop-down, Scene View, 56–57
Gizmos toggle

Game View, 25
Scene View, 24

GPU Skinning, Web Player Player Settings,
283

Graph Editor, 102–104
Graphics Emulation command, Edit

menu, 13
Gravity

adding Rigidbody for interaction with,
124–125

physics and, 120
Gravity Multiplier property, particle system

coin boxes, 220
damage, 224
defined, 218

Grid Slicing, Sprite Editor, 47–48
Grid snapping

positioning GameObjects, 64–66
setting Pixels to Units for tile sprites, 63

groundCheck property, PlayerController,
77–78, 81

groundCheckRadius property,
PlayerController, 77

groundLayers property, PlayerController,
77–78

GUI
Layer Component, 37
UGUI. See UGUI (Unity GUI)

GUI scripts
CoinCounter, 314–315
GameOverScript, 316
GameWinScript, 317
GUIGame, 318–319
overview of, 314
SplashScreenDelayed, 319
TitleScreenScript, 319–320

GUIGame script, 209–210, 318–319

H
Hand tool, 19, 58
Hazards and difficulty

creating first enemy. See Enemy, creating
first

creating second enemy, 182–187
dealing damage to player. See Damage,

dealing
expanding on platforming, 178–182
handling player death, 177–178
JavaScript code samples for, 320–321
maintaining enemy arrangements,

187–190
more types of hazards, 286
review exercises, 191
understanding challenge, 190–191

Heads-up display. See HUD (heads-up
display)

Health, player
carrying forward from level to level, 286
creating HUD script to update, 208–211
hooking up to Player GameObject,

210–212
representing with heart icon, 205

Index332

Heart GUI setup
HUD visuals for player health, 204–205
updating player health in real time,

208–211
Heart icon, for player health, 205
Help menu, 17–19
Henley, James A., xxv
Hierarchy

creating GameObject, 33–35
efficient level design, 67
Hierarchy list, 20
organization of, 250–252
positioning GameObjects with Snap

Settings, 64–66
setting project structure, 6

Hinge Joint 2D constraint, 130–134
Horizontal Scroll Bar. GUI, 196
Horizontal Slider, GUI, 196
HUD (heads-up display)

creating scripts, 206–211
creating visuals, 204–205
defined, 204

I
Idle state, player’s, 115–116
#if UNITY_STANDALONE tag, recovering

from Game Over, 279
Image Component, UGUI

adding mini-map graphic, 295–296
creating background image, 294–295
defined, 292
sizing with UI Rect Tool, 298–299

Immunity
adding temporary player, 172–175
visually representing, 175–177

ImmunityDuration property, PlayerStats,
173–174

immunityTime property, PlayerStats, 173–174
Import New Asset command, Assets menu,

14, 28–29
Import Package command, Assets menu, 14
Importing

2D sprites, 43–45
animations, 98–99
assets from inside Unity, 28–29
packages for asset creation, 31–33
premade assets from file browser, 29

Inherent Velocity property, particle
systems, 218

Inheritance
EnemyController script, 161
EnemySlime script, 162

Input Manager, 83–85
InputField Component, UGUI, 292
Inspector

building 2D sprites, 43
creating GameObject, 33–35
hiding public variables in, 77
overview of, 20–21
viewing animation in, 107

Installation
component installs, 2–3
downloading Unity for, 1–2

Interface elements. See UGUI (Unity GUI);
UI (user interface)

Interpolate, optimizing Rigidbody
attributes, 263

Intro screens, hooking up, 275–276
Introduction to Unity

component installs, 2–3
downloading and installing, 1–2
example project, 3
file naming conventions, 7–8
folder organization, 7
MonoDevelop, 3–4
overview of, 1
project structure, 6
Project Wizard, 4–6
Unity Development Web Player, 3

Is Trigger attribute, colliders, 125–126
isDead variable, player death, 243
isFacingRight property

EnemyController, 162
PlayerController, 77
PlayHitReaction() function, 226

isImmune property, PlayerStats, 173–174
Isometric view, camera, 57
isTrigger property, f loating coin

Prefabs, 145
isTriggered property

CheckPointTrigger script, 137–138, 312
PitTrigger script, 142, 321
SpawnTrigger script, 189, 313
VictoryTrigger script, 272–274, 313–314

Index 333

J
JavaScript code samples

collectible scripts, 307–309
enemy scripts, 309–310
game system scripts, 310–314
GUI scripts, 314–320
hazard scripts, 320–321
overview of, 301
player scripts, 301–307
system scripts, 322

JavaScript, supported by Unity3D, 71–72
Johnson, Matthew, xxv
Jumping

adding sound to player, 233–234
air control systems for, 72–73
implementing basic, 80–82
JumpForce property and, 77–78

K
Keyed frames, Graph Editor, 102–103
Keyframes

adding animation to Fly enemy, 184
animation using, 102
recorded for current animation, 105

L
Labels

asset naming conventions, 8
GUI, 195
organization of, 249

Lateral movement, implementing, 79
Layer Collision Matrix box

overview of, 123–124
passing through player’s space, 171
in Physics 2D Settings, 122

Layers and Layout drop-downs, toolbar, 20
Layers, toolbar, 20
Layout drop-down window, 17, 20
Layouts, GUI, 197–198
Level design

adding details, 55–56
adding timers, 286
carrying health forward from level to

level, 286
creating roadmap, 54–55
efficient, 66–67

overview of, 53
rules of, 55
setting scene, 53–54

Levels, tying together
creating victory trigger script, 272–274
overview of, 269
preparing victory trigger prefab, 269–272
retrieving coin value, 274–275

Licenses
installing Unity and, 2
managing in Help, 18
platforms requiring, 282

Lighting toggle, Scene View, 24
Limit Velocity Over Lifetime module,

particle system, 218
Linked assets, namespaces for, 8
Linux, standalone Build Settings, 282–283
Local tool, Transform Gizmo Toggles, 20
Lock View to Selected command, Edit

menu, 12
Looping property, particle system

coin boxes, 220
damage, 224
defined, 217

Losing game
creating Game Over screen,

201–202
recovering from, 278–279

M
Mac, standalone Build Settings, 282–283
Main Camera

cleaning up, 238–239
Components, 36–37
as first Game Object, 33–34
follow-cam setup, 83
perspective vs. isometric view, 57
properties shown in Inspector, 21–22
title screen with, 200
TrackPlayer() function and, 241
UGUI Render mode settings for, 294

Make Parent command, GameObject, 15
Manage License command, Help menu, 18
Manual Slicing, Sprite Editor, 45–46
Map graphics, 295–296
Mask Component, UGUI, 299
Mask GameObject, UGUI, 296, 298–299

Index334

Mass
adding Rigidbody for character, 124–125
physics and, 119–120

Massively multiplayer online role-playing
game (MMORPG) subscriptions, 287

Material attribute, Colliders, 125
Materials

Physics 2D, 128–129
reducing draw cells for optimization,

264–265
Max Particles property, particle system

coin boxes, 221
damage, 224
defined, 218

Maximize on Play, Game View, 25
Maximum Allowed Timestep, Time

Manager, 263
maxSpeed property

EnemyController, 162
PlayerController, 77–78
using breakpoints, 93

Maya 3D file format, 27–28
Menus

Assets menu, 13–14
Component menu, 16
Edit menu, 12–13
File menu, 11–12
Game Over screen, 201–202
Game Win screen, 202–203
GameObject menu, 15–16
Help menu, 17–19
title screen, 200–201
Unity interface, 10–11
Window menu, 17

Mesh command, Component menu, 16
Mesh data, Web Player Player Settings, 283
Meta user interfaces, 194
Miscellaneous command, Component menu, 16
MMORPG (massively multiplayer online

role-playing game) subscriptions, 287
Modules

music tracker, 228
particle system, 218–219

Monetization
choosing right strategy, 288–290
common purchase models, 287
overview of, 287

MonoDevelop-Unity IDE
developing and running scripts with, 3,

75–76
initial script setup, 76–77
lateral movement, 79
properties, 77–79

Mouse shortcut, camera movement, 58
Move to View command, GameObject

menu, 15
Move X (Y and Z), Snap Settings, 63–64
Movement

air control and, 72
basic follow-cam, 83
character acceleration and, 72
coding in Unity3D, 71–72
creating/hooking up PlayerController,

74–75
discrete vs. smooth tile, 72
error handling tools. See Error handling

and debugging
filling in properties, 77–79
initial script setup, 76–77
Input Manager for, 83–85
jumping, 80–82
lateral, 79
MonoDevelop-Unity IDE, 75–76
overview of, 71
player’s facing, 79–80

Moving platforms
Fly enemy GameObject, 183–184
Prefab for, 179–180
between two points at set speed, 180–182

N
Namespaces

file naming conventions, 7–8
searching for file in Project Browser,

21–23
Naming conventions

constants, 258
files, 7–8
new projects, 5
organizing assets into folders, 247–248
organizing script files, 253–254

native GUI
Controls, 195–197
overview of, 194–195

Index 335

Skin, 195
Style, 195

Navigation command, Component menu, 16
Navigation, Scene, 56–58
Nested GameObjects, 179–180
Network Emulation command, Edit menu, 13
New Project command, File menu, 11
New Scene command, File menu, 11
Nodal tree workf low, Animator window, 110
Non-diegetic user interfaces, 194

O
OBJ 3D file format, 27–28
Object manipulation

grid settings, 63
Pixels to Units settings, 62–63
positioning GameObjects, 64–66
Snap Settings, 63
Transform tools, 59–61
Z-depth, 61–62

OnGUI() function
GameOverScript script, 279
GUI layouts, 197–198

OnGUI system. See UGUI (Unity GUI)
Online references

Audio Reverb Zone Component
properties, 230–231

coroutines, 175
documentation and learning resources, 8
downloading Unity, 1
persisting data between Scenes/game

sessions, 157
PlayerPrefs class, 274
supplementary materials, xxiv
Unity Asset Store, 72

OnTriggerEnter2D() function
Coinbox script, 151
CoinPickup script, 145–146
ContactDamage script, 170
defined, 135
EnemySlime script, 164, 165
PitTrigger script, 143, 245
SpawnTrigger script, 190
VictoryTrigger script, 273–274

OnTriggerExit2D() function, 136
OnTriggerStay2D() function, 136
Open command, Assets menu, 13

Open Project command, File menu, 11
Open Project tab, Project Wizard, 4
Open Scene command, File menu, 11
Optimizations

batching, 266
draw calls, 264–265
overview of, 247, 261–262
physics, 262–263
Prefabs, 262
Rendering Statistics window, 266–267
summary exercises, 268
triangle count, 265–266

Optimize Mesh Data, Web Player Player
Settings, 283

Order in Layer attribute, 62, 264
Organization

assets, 247–248
code, 254–261
Hierarchy, 250–252
Labels, 249
overview of, 247
Prefabs, 248–249
script files, 253–254

Overlapping action, animation, 96

P
Pack setting, Sprite Packer, 48
Packages

defined, 31
importing, 31–33
overview of, 5

Packing Policy setting, Sprite Packer, 49
Packing Tag, 48–49
Panel Component, UGUI, 291
Parameters, assigning via animations, 111–112
Parenting, GameObjects with Hierarchy, 20
Particle effects. See also Shuriken Particle

System
coin boxes, 220–222
damage, 223–227
defined, 216
using fewest number of, 227

Particle system
creating, 216–217
curves, 219–220
defined, 215
modules and properties of, 217–219

Index336

Particle System Component
creating particle effect for damage,

223–225
creating particle system, 216–217
dragging sprite onto GameObject, 222

Particles, defined, 215
Pause command, Edit menu, 13
Pay once, purchase model, 287–289
Pay to win, purchase model, 287–289
PCs, standalone Build Settings, 282–283
Performance. See Optimizations
Perspective view, camera, 57
Physics

2D Settings, 122–124
2D vs. 3D, 120–121
adding constraints, 129–134
Collider types, 125–128
creating Materials, 128–129
force, 120
gravity, 120
mass, 119–120
optimizing, 262–263
Physics 2D Settings, 122–124
review exercise, 134
Rigidbodies, 124–125
understanding, 119

Physics 2D command, 16
Physics command, 16
Physics2D check, FixedUpdate(), 81
Pit Prefab, 172
PitTrigger script

cleaning up player death, 245
JavaScript sample code for, 320–321
using checkpoints with respawn,

142–144
Pivot tool, Transform Gizmo Toggles, 19
Pivot values, UGUI Rect Transform, 298
Pixel Perfect, UGUI Render Mode, 294
Pixels to Units value, 45, 62–63
Platform GameObjects, Flight Points script,

180–182
platformMoving Prefab, 179–180
Platforms

building and deploying game, 281–282
PC, Mac, and Linux standalone Build

Settings, 282–283
Web Player Build Settings, 282

Play command
Animation window, 101
Edit menu, 13

Play on Awake property
adding sound to coin box, 236–237
particle system, 218, 221, 224

PlayClipAtPoint() function, coin
collection, 238

PlayDamageAudio() function, damage
event, 235

Player Idle clip, and walk animation, 105–106
Player scripts, JavaScript code samples

PlayerController script, 301–304
PlayerStats script, 304–307

Player Settings button, Build Settings, 281
PlayerController script

adding basic jumping, 80–82
adding breakpoints, 90–93
adding Debug.Log, 89–90
adding footsteps to walk cycle, 231–233
adding lateral movement, 79
adding sound to damage event, 234–236
adding sound to jump event, 233–234
calling damage particle system from code,

226–227
creating and hooking up, 74–75
editing, 112–115
handling exceptions, 86
handling player’s facing, 79–80
initial setup, 76–77
JavaScript sample code for, 301–304
properties, 77–79

PlayerIsDead() function
adding sound to damage event, 236
cleaning up player death, 242–243
handling player death, 177

PlayerPrefs class
more information on, 274
recovering from Game Over, 279
retrieving player’s coin value from,

274–275
VictoryTrigger script, 271, 273–274

PlayerStats script
calling damage particle system from code,

225–227
cleaning up player death, 242–243
dealing damage, 167–170

Index 337

handling immunity, 172–177
handling player death, 177–178
hooking up HUD display to, 211–212
JavaScript code sample, 304–307
retrieving player’s coin value, 274–275
sound for damage event, 235–236
tracking player stats, 155–157

PlayFootstepAudio() function, 232
PlayHitReaction() function

damage particle system, 226
player death, 177
PlayerStats, 174
sound for damage event, 236
temporary immunity, 174

playHitReaction property,
ContactDamage, 170

PlayJumpAudio() function, 234
Polishing finished games, 286–287
Polygon Collider, 126
Polygon mesh, 98
Polygon triangles, optimization, 264–265
Popped coin Prefabs, 147
Post-deployment, 286
Prefabs

adding collision to, 128
adding sorting elements to, 67–69
attaching physics Materials to, 129
coin box, 147–150
Coinbox script, 150–151
CoinPickup script, 146
f loating coin, 145
Fly enemy, 187
level design and, 66–67
optimization of, 262
organization of, 248–249
overview of, 38–39
platformMoving, 179–180
popped coin, 147
positioning GameObjects, 64–66
saving checkpoints or pits as, 144
victory trigger, 269–272

Preferences command, Edit menu, 13
Preferences, switching between 2D/3D, 5
Premade assets

creating new assets, 29–30
importing from file browser, 29
importing packages, 31–33

Presentation, Web Player Player Settings, 283
Preset window, anchor, 298
Previous/Next Keyframe, Animation

window, 101
Prewarm property, particle system, 217
Project Browser

adding Animator Controller from, 108
building 2D sprites, 43
list of labels in, 249

Project Location, 5
Project Settings command

in Edit menu, 13
setting Project workspace to 2D, 41–42
Time Manager, 262–263

Project Wizard, 4–6
Projects

creating with Project Wizard, 4–6
file naming conventions, 7–8
folder organization, 7
structure of, 6

Properties
Animation Component, 100
Audio Reverb Zone Component,

230–231
Audio Source Component, 228–230
CameraFollow script, 240
ContactDamage, 170
EnemyController, 162
FlightPoints script, 180–182
Input Manager, 83–84
particle system, 217–219
PlayerController, 77–79
PlayerStats, 174, 176

Public variables, 77
Purchase models, monetization, 287–290

R
RawImage Component, UGUI, 292
Realism, and character acceleration, 72
Receives Events, UGUI Render Mode, 294
Record, Animation window, 101
Rect Transform, UGUI, 296–298
Reduced air control system, 72
Reference Manual command, Help menu, 18
Refresh command, Assets menu, 14
Regions, code, 254–256
Registration authorization, 3–4

Index338

Reimport All command, Assets menu, 14
Reimport command, Assets menu, 14
Release Notes command, Help menu, 19
Render Mode

Scene View, 23
UGUI, 294–296

Render Settings command, Edit menu, 13
Renderer module, particle systems, 219,

222, 225
Rendering command, Component menu, 16
Rendering path, Web Player Player Settings, 283
Rendering Statistics window, 266–267
Repack setting, Sprite Packer, 48
Repeat Button, GUI, 195
Report a Bug command, Help menu, 19
Resolution

building 2D sprites, 44–45
Web Player Player Settings, 283

Respawn
for more forgiving replay, 137
sizing/placing checkpoint trigger for,

139–140
Rigidbodies

adding constraints, 129–134
optimizing physics, 263
Physics 2D and, 124–125
preparing Slime enemy GameObject, 160

Roadmaps, level design, 54–55
Rotation

2D vs. 3D physics, 121
with Rotate tool, 19, 59–60
Snap Settings tools, 63

Rotation by Speed module, 219
Rotation Over Lifetime module, 219, 225

S
Sample, Animation window, 102
Sandbox Projects, testing gameplay scripts, 5
Save Project command, File menu, 11
Save Scene As command, File menu, 11
Save Scene command, File menu, 11
Save Search, Project Browser, 23
Scale tool

positioning GameObject with, 60–61
Snap Settings, 63
as Transform tool, 19
UI Rect Tool as, 298–299

Scene Gizmo, 56–57
Scene View

building 2D sprites, 43
building navigation in game world, 56–58
creating 2D workspace, 43
creating GameObject in, 33–35
interface view, 23–24
particle system animating in, 216–217
Pixels to Units size for tile sprites in, 63
viewing animation in, 107

Scenes in Build list, Build Settings, 275–277
sceneToLoad property, VictoryTrigger script,

273–274
Score, carrying forward after winning

game, 286
Screen Space Camera, UGUI Render

Mode, 294
Screen Space Overlay, UGUI Render

Mode, 294
Screen Space, UGUI Rect Transform,

296–297
Screen, viewing resolution/memory

usage, 267
Scripted animation, 98
Scripting Define Symbols, Web Player Player

Settings, 283
Scripting languages, Unity3D, 71–72
Scripting Reference command, Help

menu, 18
Scripts. See also GUI scripts; JavaScript code

samples
building with MonoDevelop, 3, 74–75
CheckpointTrigger, 137–138, 312
CoinBox, 150–151, 307–308
CoinCounter, 206–207, 211–212, 314–315
CoinPickup. See CoinPickup script
CoinSpawner, 148, 152–153, 308–309
ContactDamage, 169–170, 320
EnemyController, 161–162, 309
EnemySlime, 162–164, 309–310
FlightPoints, 180–182, 185–186, 312–313
FlyController, 185, 310
GameOverScript, 201–202, 279
GameWinScript, 202–203, 279–280
organizing files for, 253–254
PitTrigger, 140–144, 245, 320–321
PlayerStats. See PlayerStats script

Index 339

reusing via packages, 5
SpawnTrigger, 189–190, 313
SplashScreenDelayed, 199–200,

276–277, 319
testing gameplay, 5
TitleScreenScript, 200–201, 277, 319–320
VictoryTrigger, 272–274, 313–314

Scroll View, GUI, 197
Scrollbar Component, UGUI, 292
Search bar, Project Browser, 21–23
Secondary action, animation, 96
Select All command, Edit menu, 13
Select Dependencies command, Assets

menu, 14
Select Sprite window, 37–38
Selection command, Edit menu, 13
Selection Grid, GUI, 196
Shadow casters, viewing total number of, 267
Shape Module, particle system, 218, 221, 224
Shorthand code

learning for game development, 261
methods of, 82

shouldChangeFacing property,
FlightPoints, 186

Show in Explorer command, Assets menu, 13
Shuriken Particle System

coin box particle effect, 220–222
coin box particle effect hookup, 223
creating particle system, 216–217
curves, 219–220
damage particle effect, 223–225
damage particle system from code,

225–227
defined, 215
modules of, 218–219
properties of, 217–218
splash screen, 198–200
terms to know, 215–216

Simulation Space property, particle system,
218, 221, 224

Six degrees of freedom (6DoF), 120–121
Size by Speed module, 218
Size Over Lifetime module, particle system,

218, 221, 225
Sizing

Checkpoint trigger, 138–139
hiding Sprite Renderer Component, 161

Sketched level design, of roadmap, 54–55
Skin, GUI, 195
Skinned GameObjects, 267
Skinning, Web Player Player Settings, 283
Sleeping Mode, optimizing Rigidbody, 263
Slider Component, UGUI, 292
Slider Joint 2D constraint, 130
Slime enemy

adding animation to, 166–167
adding wall to level, 164–165
creating damage. See Damage, dealing
EnemySlime Component script, 162–164
handling collision with other Slimes,

165–166
inheritance and EnemyController script,

160–162
maintaining enemy arrangements,

187–189
preparing GameObject, 159–160

Slow in and slow out, animation, 96
Smooth tile movement, 72
Snap Settings

aligning tiles, 67
Edit menu, 13
manipulating objects, 63
positioning GameObjects, 64

Solid drawing, animation, 96
Solution Explorer, MonoDevelop, 75–76
Sorting Layers

building first level, 67–69
controlling Z-depth, 61–62
defined, 42
optimizing, 264
Order in Layer attribute vs., 62

Spatial user interfaces, 194
Spawn

adding animation to controller, 155
CoinSpawner script, 148, 152–153,

308–309
hooking it all together, 153–154
preparing spawn trigger, 188
spawning vs., 188
SpawnTrigger script, 189–190, 313
using checkpoints with, 140–144

SpawnCoin() function, 153
Speed, moving platforms at set, 180–182
speed property, FlightPoints, 180–182

Index340

Splash screen
creating, 198–200
hooking up Intro screens, 275–277

SplashScreenDelayed script
creating splash screen, 199–200
hooking up Intro screens, 276–277
JavaScript sample code for, 319

Spring Joint 2D constraint, 130
Sprite Editor

Automatic Slicing, 46–47
Grid Slicing, 47–48
Manual Slicing, 45–46
slicing sprites with, 45

Sprite Packing, 48–50
Sprite Renderer Component

adding walls to level, 164
coin box Prefabs, 147–148
Fly enemy GameObject, 183–184
hiding sizing handles, 161
moving platform Prefab, 179
of Player GameObject, 61
representing immunity, 176–177
Slime enemy GameObject, 159
victory trigger Prefab, 270

SpriteFlicker() function, 175–177
spriteRenderer property, PlayerStats, 176–177
Sprites, 2D

2D behaviors and, 41–42
2D workspace and, 42–43
building, 43
debugging animations, 101
frame animation with, 97–98
Import Settings, 43–45
overview of, 41
Pixels to Units value, 45
reducing draw cells for optimization, 264
review exercises, 50
Sprite Editor, 45–48
Sprite Packing, 48–50

Squash and stretch, animation, 96
Staging, animation, 96
Standalone Input script, UGUI Event

System, 299
Star sprite, 222
Start Color property, particle system,

218, 220
Start Delay property, particle system, 218

Start() function
CoinSpawner script, 152–153
editing PlayerController, 112
retrieving coin value, 275
visually representing immunity, 175–176

Start Lifetime property, particle system, 218,
220, 224

Start Rotation property, particle system,
218, 224

Start Size property, particle system, 218,
220, 224

Start Speed property, particle system, 218,
220, 224

State Collider, 263
State machines, 108
Static Batching, 283
Stats, Game View, 25
Step command, Edit menu, 13
Straight-ahead action, animation, 96
Structure, project, 6
Styles, GUI, 195
Sub Emitters module, particle system, 219
Subfolders, for script files, 253
Subscription, purchase model

choosing right monetization strategy,
288–289

cross-platform Player Settings, 283
defined, 287

Supplementary materials, xxiv
Switch Platform button, Build Settings, 281
Sync MonoDevelop Project command, Assets

menu, 14
System requirements, installing Unity, 2
System scripts, JavaScript code samples, 322

T
Tags, 35
Tags & Layers

creating GameObject, 35–36
passing through player’s space, 170–171
Sorting Layers in, 62

TakeDamage() function
adding temporary immunity, 174
cleaning up player death, 243–244
handling player death, 177
scripting damage into PlayerStats, 167–168

Tangent Edit Box, 103–104

Index 341

Tangents, Graph Editor, 103–104
Template, example folder organization, 7
Temporary immunity

adding to player, 172–175
visually representing, 175–177

Testing, Gameplay scripts, 5
Text Component, UGUI, 292
Text field, GUI, 195
Text, GUI, 198
Texture Packer, 49
Texture Sheet Animation module, 219
Texture Type property, coin box, 222
Textures

GUI, 198
importing setting for 2D sprites, 44
viewing number of, 267

this keyword, in scripts, 146
Tile sprites, 48
Time Manager, 262–263
Time Scale, 262–263
Time.DeltaTime, 173–176
timeElapsed property, VictoryTrigger

script, 273
Timers, adding to levels, 286
Timing, in animation, 96
Title screen

creating, 200–201
hooking up Intro screens, 275–277

TitleScreenScript script
hooking up Intro screens, 277
JavaScript sample code for, 319–320
overview of, 200–201

Toggle Component, UGUI, 292
Toggle Control, GUI, 196
Toolbar

GUI, 196
overview of, 19–20

Touch Input script, UGUI Event System, 299
Tracker modules, music, 228
TrackPlayer() function, CameraFollow

script, 241
Transform animation, 97
Transform Component, 33–34, 37–38
Transform Gizmo toggles, 19–20
Transform tools

controlling camera with Hand tool, 58
manipulating objects with, 59–60

toolbar, 19
with UI Rect Tool, 298–299

Transitions, animation, 115–116
Translate tool, 19, 59–60
Triangle count, optimizing, 265–266
Triangles, viewing number of Scene, 267
Trigger events, colliders, 125–126
triggerDamage GameObject

adding temporary immunity post-damage,
172–175

creating damage, 168–170
passing through player’s space, 171
preparing Fly enemy GameObject, 183

Triggers
adding to GameObjects, 136
checkpoint, 137–140
creating collectibles. See Collectibles
function of, 135
nesting GameObjects with, 171
spawn, 188–190
Trigger2D functions, 135–136
using checkpoints with respawn, 140–144

triggerSpawn GameObject, 188–190
triggerVictory GameObject

creating script, 272–274
preparing Prefab, 269–272

Truecolor format, 45
Try-Catch-Finally statement, 87–89, 138

U
UGUI (Unity GUI)

adding mask, 299
Canvas Component, 293
components, 291–293
creating example interface, 293
event system and event triggers, 299–300
overview of, 291
Rect Transform, 296–298
Render Mode, 294–296
UI Rect tool, 298–299

UI Rect tool, UGUI, 298–299
UI (user interface). See also UGUI (Unity

GUI)
design types, 193–194
Game Over screen, 201–202
Game Win screen, 202–203
HUD scripts, 206–211

Index342

UI (user interface) (continued)
HUD visuals, 204–205
splash screen, 198–200
title screen, 200–201
Unity native GUI, 194–198

Unexpected behaviors, 91
Unhandled exceptions, 87
Unity Activation screen, 3
Unity Answers command, Help menu, 18
Unity Asset Store, 3, 72
Unity Development Web Player, 3
Unity Feedback command, Help menu, 18
Unity GUI. See UGUI (Unity GUI)
Unity interface

Assets menu, 13–14
Component menu, 16
Edit menu, 12–13
File menu, 11–12
Game View, 24–25
GameObject menu, 15–16
Help menu, 17–19
Hierarchy list, 20
Inspector, 20–21
menus, 10–11
overview of, 10
Project Browser, 21–23
review exercises, 25–26
Scene View, 23–24
toolbar, 19–20
Window menu, 17

Unity Manual command, Help menu, 18
Unity Manuals, 8, 17
Unity Pro

30-day evaluation of, 4
defined, 2
some packages requiring, 6

UnityScript, 72
Update() function

adding Debug.Log to, 89–90
adding sound to jump event, 234
adding temporary immunity, 174
cleaning up player death, 243
defined, 77
editing PlayerController, 112–113
hooking up title screen, 277
implementing basic jumping, 82

VictoryTrigger script, 274
visually representing immunity, 177

Update Mode, Animator Component, 109
Updates, checking for Unity, 18

V
Values, tweaking Rigidbody, 125
VBO (vertex buffer object), 267
Vector math, 144, 150–151
Vector3, Coinbox script, 151
Velocity Over Lifetime module, 218
Vertical Slider, GUI, 196
Vertices, viewing total number of Scene, 267
VictoryTrigger

adding effects to, 286
preparing Prefab, 269–272

VictoryTrigger script, 272–274, 313–314
View Atlas setting, Sprite Packer, 48
Views

Game View, 24–25
Project Browser, 21–23
Scene View, 23–24

Vleugels, Kenny, 32
Volume, preparing trigger, 140
VRAM usage, Render Statistics window, 267

W
Walk animation, 105–106
WASD keys, controlling camera

movement, 58
waypointA property, 180–184
waypointB property, 180–184
Web Player

Build Settings, 282
building game for, 285
deploying game to Web, 285
Player Settings, 283–284
post-deployment, 286
using right settings, 284–285

Welcome screen
accessing in Help menu, 17–18
setting up development environment,

9–10
Wheel Joint 2D constraint, 130
Window, GUI, 197
Window menu, 17

Index 343

Windows Explorer files, Project Browser
extension of, 21

Winning game
carrying player’s score forward after, 286
creating Game Win screen, 202–203
starting over from, 279–280

Workspace, setting to 2D, 42
World Space, UGUI, 294, 297
World tool, Transform Gizmo Toggles, 20

X
X-axis. See also Axes

creating 2D workspace, 42–43
working in 3D, 41

Y
Y-axis. See also Axes

creating 2D workspace, 42–43
working in 3D, 41

Z
Z-axis, in 3D, 41. See also Axes
Z-depth

2D vs. 3D physics, 121
controlling, 61–62
working in 2D, 41

Zero air control system, 73

	Contents
	Preface
	Acknowledgments
	About the Authors
	Introduction
	Introduction to Unity
	Downloading and Installing Unity

	Project Wizard
	Open Project Tab
	Create New Project Tab
	Packages

	Setting Our Project
	Project Structure
	Folder Organization
	File Naming Conventions

	4 Building the Game World
	Level Design 101
	Setting the Scene
	Creating a Roadmap
	Adding Details

	Getting around Our Scene
	Scene Gizmo
	Perspective versus Isometric
	Camera Controls

	Manipulating Objects in Unity
	Transform Tools
	Z-Depth
	Settings

	Our First Level
	Positioning GameObjects Manually
	Using the Snap Settings to Position GameObjects
	Using Grid Snapping to Position GameObjects
	Efficient Level Design
	Adding Sorting Elements

	Continuing On
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

