
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321957368
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321957368
https://plusone.google.com/share?url=http://www.informit.com/title/9780321957368
ttp://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321957368
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321957368/Free-Sample-Chapter

iOS Drawing

Practical UIKit Solutions

Erica Sadun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Apache Cordova 3
Programming

John M. Wargo

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

The Addison-Wesley Mobile Programming Series is a collection of digital-only
programming guides that explore key mobile programming features and topics

in-depth. The sample code in each title is downloadable and can be used in your
own projects. Each topic is covered in as much detail as possible with plenty of
visual examples, tips, and step-by-step instructions. When you complete one of
these titles, you’ll have all the information and code you will need to build that
feature into your own mobile application.

Visit informit.com/mobile for a complete list of available publications.

Addison-Wesley Mobile Programming Series

Make sure to connect with us!
informit.com/socialconnect

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.Visit us on
the Web: informit.com/aw

Copyright © 2014 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

Apache Cordova website, PhoneGap, and PhoneGap Build screenshots © Adobe Systems
Incorporated. All rights reserved. Adobe, PhoneGap, and PhoneGap Build is/are either [a]
registered trademark[s] or trademark[s] of Adobe Systems Incorporated in the United States
and/or other countries.

ISBN-13: 978-0-321-95736-8
ISBN-10: 0-321-95736-9

First released, December 2013

The Addison-Wesley Mobile Programming Series is a collection of digital-only
programming guides that explore key mobile programming features and topics

in-depth. The sample code in each title is downloadable and can be used in your
own projects. Each topic is covered in as much detail as possible with plenty of
visual examples, tips, and step-by-step instructions. When you complete one of
these titles, you’ll have all the information and code you will need to build that
feature into your own mobile application.

Visit informit.com/mobile for a complete list of available publications.

Addison-Wesley Mobile Programming Series

Make sure to connect with us!
informit.com/socialconnect

To my wife, Anna.

This work exists because of your outstanding support.

To my children,

who were relatively patient as I worked on yet another book.

Contents v

Contents

FOREWORD .. x
PREFACE .. xi
ACKNOWLEDGMENTS .. xiv

11.. THE WHAT, HOW, WHY, AND MORE OF APACHE CORDOVA 1
Introduction to Apache Cordova ... 1
What Is Adobe PhoneGap? .. 7
PhoneGap History .. 7
Cordova Going Forward ... 8
Supported Platforms ... 9
Cordova License ... 9
Working with Cordova ... 10

Designing for the Container .. 10
Coding Cordova Applications .. 11
Building Cordova Applications .. 12

Cordova Plugins ... 14
Putting Cordova to Best Use .. 14
Getting Support ... 15
Resources ... 16
Hybrid Application Frameworks .. 18
Wrap-Up ... 19

22.. INSTALLING THE CORDOVA AND PHONEGAP FRAMEWORKS 20
Installing Apache Cordova .. 20
Ant-Based Command-Line Interface .. 25
Installing Adobe PhoneGap .. 25
Wrap-Up ... 27

33.. INSTALLING THE CORDOVA COMMAND-LINE INTERFACE 28
Installing the CLI ... 28

Android Development Tools .. 29
BlackBerry Development Tools ... 33
iOS Development Tools .. 34
Windows Phone Development Tools .. 38

vi Contents

CLI Installation .. 39
Wrap-Up ... 41

44.. USING THE CORDOVA COMMAND-LINE INTERFACE 42
About the CLI .. 42
Troubleshooting the CLI ... 43
CLI Command Summary .. 43
Using the CLI .. 44

Creating a Cordova Project ... 44
Platform Management ... 48

Adding Platforms ... 48
Listing Platforms .. 50
Removing Platforms .. 51

Plugin Management .. 52
Adding Plugins ... 52
Listing Plugins .. 53
Removing Plugins .. 53

Build Management .. 54
Prepare .. 54
Compile .. 54
Build ... 55

Running Cordova Applications .. 55
Emulate .. 55
Run .. 56
Serve ... 56

Wrap-Up ... 58
55.. ANATOMY OF A CORDOVA APPLICATION .. 59

Hello World! .. 59
Cordova Initialization .. 60
Leveraging Cordova APIs ... 64
Enhancing the User Interface of a Cordova Application 66
The Generated Web Application Files .. 71
Wrap-Up ... 75

66.. THE MECHANICS OF CORDOVA DEVELOPMENT 76
Cordova Development Issues ... 76

Dealing with API Inconsistency ... 76
Application Graphics ... 78

Developing Cordova Applications ... 78
Working with a Single Mobile Device Platform 78
Working with Multiple Mobile Device Platforms 80

Testing Cordova Applications ... 82
Run a Cordova Application on a Device Simulator 82
Run a Cordova Application on a Physical Device 83

Leveraging Cordova Debugging Capabilities 84
Using Alert() .. 84

Contents vii

Writing to the Console ... 85
Debugging and Testing Using External Tools 88

Debugging Applications with Weinre ... 88
Testing Applications Using the Ripple Emulator 93

Wrap-Up ... 95
77.. ANDROID DEVELOPMENT WITH CORDOVA .. 96

Working with the Android Development Tools 96
Using the ADT IDE ... 97

Dealing with ADT IDE Memory Problems 97
Editing Cordova Application Content Files 98
Importing the Cordova Project .. 99
Running Your Cordova Application .. 103
ADT Debugging Tools .. 104

Debugging Outside of the ADT IDE ... 106
Grabbing a Screenshot .. 107
Debugging on a Physical Device ... 108
Wrap-Up .. 111

88.. BLACKBERRY 10 DEVELOPMENT WITH CORDOVA 112
Configuring Your Environment for BlackBerry Development 112
Configuring a BlackBerry Cordova Project .. 114
Defining BlackBerry 10 Targets ... 116

Defining a BlackBerry 10 Simulator Target 117
Defining a BlackBerry 10 Device Target .. 118

Debugging on a Device Simulator ... 120
Using the BlackBerry Simulator Controller 124
Using the BlackBerry Web Inspector ... 125

Debugging on a Physical Device ... 129
Wrap-Up .. 129

99.. IOS DEVELOPMENT WITH CORDOVA ... 130
Working with Xcode ... 130
Debugging iOS Applications .. 131
Debugging on a Physical Device ... 132
Using the Safari Web Inspector ... 132
Wrap-Up .. 138

1100.. WINDOWS PHONE 8 DEVELOPMENT WITH CORDOVA 139
Getting Started with Windows Phone Development 139
Configuring a Windows 8 Device for Application Testing 140
Running a Cordova Application Using Visual Studio 142
Wrap-Up .. 148

1111.. USING PHONEGAP BUILD ... 149
What Is PhoneGap Build? ... 149

Quick Prototyping ... 151

viii Contents

Collaboration .. 151
Content Refresh through Hydration ... 151

Using PhoneGap Build .. 152
A Quick Example .. 153
Deploying PhoneGap Build Applications .. 157
Configuring a PhoneGap Build Application 160

Wrap-Up .. 162
1122.. WORKING WITH THE CORDOVA APIS ... 163

The Cordova Core APIs ... 163
Working with the API Cordova Documentation 164
Setting Application Permissions .. 165
Cordova Objects .. 168

Connection Type .. 168
Device .. 169

Alerting the User .. 170
Hardware Notifications ... 170

Beep .. 170
Vibrate ... 171

Visual Notifications ... 171
Alert ... 171
Confirm .. 172
Prompt ... 173

Cordova Events ... 175
Hardware APIs ... 176

Accelerometer .. 177
Compass .. 179
Geolocation .. 181
Camera .. 182
Capturing Media Files .. 187

Globalization .. 188
Working with the Contacts Application .. 193
Playing/Recording Media Files .. 197
InAppBrowser .. 199

Loading Content ... 199
Browser Window Events .. 201
Execute Scripts .. 202
Insert CSS .. 204

Splash Screen ... 205
Wrap-Up .. 205

1133.. CREATING CORDOVA PLUGINS ... 206
Anatomy of a Cordova Plugin .. 206
Creating a Simple Plugin ... 207
Creating a Native Plugin .. 211

Creating the Android Plugin ... 213

Contents ix

Creating the iOS Plugin .. 221
Deploying Plugins .. 228
Wrap-Up .. 228

1144.. BUILDING A CORDOVA APPLICATION .. 229
About the Application ... 229
Creating the Application ... 230
Using Merges ... 239
Testing the Application .. 240
Wrap-Up .. 242

1155.. EXTENDING CORDOVA TO THE ENTERPRISE 243
Mobile Application Development Platforms 243
SAP Mobile Platform .. 244
Kapsel .. 246

Registration, Authentication, and Single Sign-on 246
Application Updates ... 246
Offline Access and Data Protection ... 247
Push Notifications .. 247
Remote Problem Analysis .. 248

Wrap-Up .. 248

x Foreword

Foreword

It has been roughly twenty-five years now since the mobile technology era began. Can it be just a
coincidence that it is almost exactly the same amount of time that I have known John Wargo, the author
of this book? In 1988, the mobile technology landscape consisted of mobile phones the size of a carry-
on suitcase and personal organizers that looked like glorified financial calculators. Wireless networks
and widespread access to resources like the Internet were distant dreams. Unless you were a science
fiction writer, it would have been hard to imagine the connected world that we take for granted today. If
you knew John Wargo as I do, though, it would not have been very far-fetched at all to predict that he
would turn out to be the author of four books.

Looking ahead another twenty-five years, I imagine it’s safe to say that our ability to accurately predict
the advance of technology will continue to fall short. Powerful development tools like Cordova and the
combined creativity of millions of application developers around the world virtually guarantee that we
won’t be able to guess what indispensable capabilities will appear on our mobile devices tomorrow or
the next day. Will tomorrow’s devices interface directly to our human nervous systems? Will they
assemble themselves from organic compounds and heal themselves if they become damaged? Who
knows.

Whatever the future of mobile technology holds for us, as long as there is a means to program or
control it in some way, I hope that John will put together a collection of words to point others in the
right direction.

—David M. Via
AT&T

Preface xi

Preface

This is a book about programming cross-platform mobile applications using Apache Cordova 3 (with
some coverage of PhoneGap 3 as well). In Apache Cordova 3, the Cordova development team made
some dramatic changes in the framework, and this book is what you need to understand what Cordova 3
is all about. The book can be considered as a sequel to my PhoneGap Essentials, updated for
Cordova 3.

This is a book about Cordova 3. This book is targeted at mobile developers who want to learn about
Cordova 3. If you’re brand new to Cordova, then this book is just what you need to get started. If
you’re experienced with an older version of Cordova, this book will show you in detail how to use all
of the new stuff that’s in Cordova 3. You will, however, need to have at least some experience with
mobile development to benefit from this book. The target audience could be existing web developers
who want to get into mobile development, but much of the needed native mobile development
background just isn’t in here.

What you’ll find in the book:

• Lots of detailed information about Apache Cordova: what it does and how it works

• Lots of examples and code

What you won’t find in this book:

• Mobile web development and mobile development topics; this book is about Apache Cordova, not
mobile development

• Expressions or phrases in languages other than English (I hate it when authors include phrases in
Latin or French)

• Obscure references to pop-culture topics (although there is an overt reference to Douglas Adams’s
Hitchhiker’s Guide to the Galaxy and one obscure reference to “Monty Python”)

• Pictures of my children or my pets

This book is not a book for experienced Cordova 3 developers—if you consider yourself an
experienced Cordova 3 developer, then you probably should not buy this book.

xii Preface

Herein I tried to provide complete coverage of Cordova 3; covering enough detail that readers will
leave with a complete understanding of what Cordova is, what it does, how it works, and how to use it
for their mobile application projects. There’s a whole lot more to Cordova; many advance topics and
more detailed coverage of the Cordova APIs can be found in the Cordova documentation and maybe in
some future book I’ll write.

Cordova as a Moving Target
One of the challenges in writing a book about open source projects is that if the project is well staffed
and busy, the project gets regular updates. In Cordova’s case, it’s one of the fastest moving open source
projects on the planet, so with their monthly updates and yearly major release, it is definitely a moving
target.

I’ve worked very hard to structure and craft this book so that it can survive the rapid pace of the project,
but only time will tell. You may find that something I’ve written here has changed and the book doesn’t
align with reality. There’s nothing I can do about this except to stay on top of it and post updates to the
book’s website (described shortly) when I find that something has changed enough that it breaks part of
the book.

A Comment on Source Code
One of the things you’ll notice as you look at the source code included in the book is that I’ve paid
special attention to the formatting of the code so that it can be easily read and understood. Rather than
allowing the source code to wrap wherever necessary to fit the printed page, I’ve forced line breaks in
the code in order to structure it in a way that should benefit the reader. Because of this, as you copy the
source code over into your Cordova applications, you will likely find some extra line breaks that affect
the functionality of the code. Sorry.

Resources
I’ve created a website for the book at www.cordovaprogramming.com, shown in Figure P1, where I
will post updates, errata, and the answers to questions I’ve received from readers.

http://www.cordovaprogramming.com

Preface xiii

Figure P.1 Apache Cordova 3 Programming Web Site

Additionally, I’ve posted much of the book’s sample code to my GitHub account located at
https://github.com/johnwargo. At a minimum, I’ll post all of the complete applications up there—
potentially adding code snippets if readers ask for them.

Please feel free to use the contact form on the book’s website to provide feedback and/or suggestions
for the next release.

https://github.com/johnwargo

xiv Acknowledgments

Acknowledgments

I want to thank the following people for their help with this effort:

• The Cordova development team for answering every one of my silly questions as I prepared the
manuscript

• Brian LeRoux from Adobe for his support

• Fil Maj and Hardeep Shoker from Adobe for reviewing and providing feedback on the Cordova
CLI and PhoneGap Build chapters

• Brent Thornton, Bryan Higgins, Ken Wallis, and Jeffrey Heifetz from BlackBerry for helping me
with the BlackBerry content

• Raman Sethi and the SAP Kapsel development team for teaching me all sorts of stuff I didn’t
know about Cordova

• My colleague Marcus Pridham for pointing out what was wrong with my Android plugin code and
showing me how to create the iOS version of the plugin

• My colleague Istvan Nagy for showing me a better way to tell what’s going on with a Cordova
application when it fails (described in Chapter 14)

• Colleagues Damien Murphy, Scott Dillon, and Andrew Lunde for their review of the manuscript

• My managers and other colleagues at SAP for supporting me throughout this process

• Greg Doench and the staff at Addison-Wesley/Pearson Education for helping me write yet another
book; may this one not be my last.

76 Chapter 6: The Mechanics of Cordova Development

6
The Mechanics of

Cordova Development

Each of the mobile platforms supported by Cordova has a process and tools you can use to test and, in
the unlikely event your code has bugs, debug Cordova applications. In general, you can load a
Cordova application into a device simulator or emulator, provided as part of the mobile platform’s
SDK, or you can load an application onto a physical device. There are also third-party solutions you
can use to test your Cordova applications within a desktop browser interface.

Some processes and capabilities apply across all supported mobile device platforms. In this chapter, I
address the mechanics of Apache Cordova development. I begin the chapter by addressing some of the
issues a Cordova developer must deal with, then cover the development process and some of the tools
you can use to test and debug your Cordova applications.

CCoorrddoovvaa DDeevveellooppmmeenntt IIssssuueess
Before we start discussing how to develop Cordova applications, let’s address some of the issues that
you will face as you work with the framework. The Cordova project is supported by developers from
all over the world, developers who may have experience with only one or a small number of mobile
platforms, developers who have a strong opinion about how something should be done. The problem
is that when you take development projects written by different people and try to collect them into a
single framework, you will likely bump up against some inconsistencies. Add the fact that every
mobile platform supported by Cordova is different and has different ways of doing things, and you
have a difficult task to make everything work cleanly and seamlessly.

In the predecessor to this book, I used this section of the chapter to highlight all of the issues I’d
encountered while learning (at the time) PhoneGap and later writing the book. Back then, there were a
bunch of issues, and they created some interesting problems for developers. The good news is that over
time, the Cordova development team has done an amazing job in eliminating most of them. All that’s
left are two, and they’re not that complicated.

DDeeaalliinngg wwiitthh AAPPII IInnccoonnssiisstteennccyy
Figure 6.1 shows the supported feature matrix from the PhoneGap website (the Cordova team doesn’t
seem to publish a matrix); you can find the page at http://phonegap.com/about/feature/. As you can
see, the table is pretty complete; there are some gaps, but it’s more full than empty. If a particular
feature you want to use in your application is supported only on some mobile platforms, then you’ll

http://phonegap.com/about/feature/

Chapter 6: The Mechanics of Cordova Development 77

have to make special accommodation within your application for platforms that do not support the
particular API.

FFiigguurree 66..11 Cordova-Supported Feature Matrix

 CCaauuttiioonn
Keep in mind that the table is not updated as often as the API is, so you may want to validate through
the API documentation or through actual testing of an API whether or not it works on a platform where
there’s an X in Figure 6.1.

If your application uses an API that isn’t supported on all of the mobile devices that your application
will target, then your application’s code can use the Device API discussed in Chapter 5. Your
application should use device.platform and, as necessary, device.version to determine which
platform and OS the application is running on and disable any unsupported feature if the application is
running on a device that doesn’t support the API. Another option is to simply wrap the call to a
particular API with a JavaScript try/catch block and deal directly with any failures that occur.

78 Chapter 6: The Mechanics of Cordova Development

AApppplliiccaattiioonn GGrraapphhiiccss
Each mobile platform and, often, different versions of a particular device OS have different
requirements for application icons and splash screens. Developers building Cordova applications for
multiple device platforms must be prepared to create a suite of graphics for their application that
addresses the specific requirements for each target device platform and/or device OS. For application
icons, the PhoneGap project maintains a wiki page listing the icon requirements for the different
supported operating systems here: https://github.com/phonegap/phonegap/wiki/App-Icon-Sizes.

Additionally, for some devices on some carriers (older BlackBerry devices, for example), mobile
carriers apply a specific theme to the OS to help distinguish themselves in the market. Any application
icon designed for one of these devices will need to accommodate, as best as possible, rendering
pleasantly within different themes. Fortunately, with the merges capabilities described later in this
chapter, you have the ability to easily merge the appropriate graphics files (and other content as needed)
into your project depending on which mobile platform you are building for.

DDeevveellooppiinngg CCoorrddoovvaa AApppplliiccaattiioonnss
Now it’s time to start working through the process of how to create Cordova applications. In this
section I describe the process for coding a Cordova application. In later sections, I show you how to
test and debug applications.

WWoorrkkiinngg wwiitthh aa SSiinnggllee MMoobbiillee DDeevviiccee PPllaattffoorrmm
It’s possible that some developers will work with only a single mobile platform. If you are such a
developer, all you have to do is open up a terminal window and issue the following commands (which
are described in Chapter 4, “Using the Cordova Command-Line Interface”):
cordova create app_name

cd app_name

cordova platform add platform_name

cordova prepare platform_name

 WWaarrnniinngg
This isn’t necessarily the right way to do single-platform development, as I’ll describe later—I’m
just trying to describe a potential process here.

In this example, app_name refers to the name of the application you are creating and platform_name
refers to the mobile device platform you will be working with. So, if you were creating a BlackBerry
application called lunch_menu, you would issue the following commands:
cordova create lunch_menu

cd lunch_menu

cordova platform add blackberry

cordova prepare blackberry

You can also specify more information about your application by using the following:
cordova create lunch_menu com.cordovaprogramming.lunchmenu "Lunch Menu"

cd lunch_menu

https://github.com/phonegap/phonegap/wiki/App-Icon-Sizes

Chapter 6: The Mechanics of Cordova Development 79

cordova platform add blackberry

cordova prepare blackberry

At this point, the command-line interface (CLI) would create the Cordova project folder shown in
Figure 6.2, and all you need to do at this point is open your code editor of choice and start coding and
testing your new Cordova application.

FFiigguurree 66..22 Cordova Application Project Folder Structure: BlackBerry Application

The BlackBerry platform project folder contains a copy of the web application files you need to work
with.

 NNoottee
If you later decide to add additional mobile device platforms to your project, you need to
manually copy the application’s web content files from the BlackBerry project’s www folder,
highlighted in Figure 6.2, over to the www folder within the overall Cordova (not BlackBerry)
project shown in the figure. The content that follows describes how multiplatform Cordova
projects differ and why this is important.

80 Chapter 6: The Mechanics of Cordova Development

WWoorrkkiinngg wwiitthh MMuullttiippllee MMoobbiillee DDeevviiccee PPllaattffoorrmmss
Because Cordova is all about cross-platform mobile development, you’re probably going to want to
target multiple mobile device platforms. In that case, if you were building an app for Android and
iOS, for example, you would open a terminal window and do something like the following:
cordova create lunch_menu

cd lunch_menu

cordova platform add android ios

At this point, you’d have a new Cordova project structure with projects for both Android and iOS, as
shown in Figure 6.3. As discussed in Chapter 4, there’s a separate folder called www contains the
application’s core web content files, the content files that are shared across both the Android and iOS
projects.

FFiigguurree 66..33 Cordova Application Project Folder Structure

In this scenario, you will work with the web content stored in the www folder, shown at the bottom of
the folder structure in Figure 6.3. When you have the web application content in that folder ready for
testing, you use the CLI to copy the code into the platforms sub-folders (android and ios), shown in the
figure.

What I do while working on a Cordova project is keep my web content files open in an HTML editor
such as Adobe Brackets (www.brackets.io) or Aptana Studio (www.aptana.com), then use the CLI to
manage my mobile device platform projects for me. As I edit the files, I add the web content to the
.html file and my application’s code to the application’s .js files. When I’m ready to test (and debug)
the applications, I switch over to a terminal window that I keep open and pointed to the Cordova
project’s root folder (the lunch_menu folder I created a while back) and issue some commands. If I
want to switch to the Android IDE and test the Android application, I issue the following command:
cordova prepare android

http://www.brackets.io
http://www.aptana.com

Chapter 6: The Mechanics of Cordova Development 81

Or, if I will be testing and debugging both the Android and iOS versions of the application, I issue the
following command:
cordova prepare android ios

What this command does is copy all of the project files from the www folder into the appropriate folder
for each specified mobile platform project, as shown in Figure 6.4. In this example, it copies the content
files to the Android project’s assets/www folder and the iOS project’s www folder. The contents of the
config.xml file should be applied to the platform-specific config.xml file located in the target directory.

FFiigguurree 66..44 Copying Web Content to the Platform Projects Folders

Now, any self-respecting mobile web project may have some icons, screen graphics, CSS, and/or
JavaScript files that are unique to each target platform. Since each mobile device has its own theme and
icon requirements, it’s likely that at a minimum of those will be required. In older versions of Cordova,
you had to manage all of that manually; with the CLI, that’s all taken care of for you.

Notice the merges folder shown in Figure 6.3; Cordova uses that folder structure to provide you with a
place to store the web application resources that are unique to each target platform. When you issue the
Cordova prepare commands shown earlier, the CLI copies the custom content for each of the
platforms into the appropriate web content folder for each platform’s project folder, as shown in
Figure 6.5.

82 Chapter 6: The Mechanics of Cordova Development

FFiigguurree 66..55 Copying Web Content and Platform-Specific Content to the Platform Projects Folders

As shown in the figure, custom content for the Android platform stored in the merges\android folder is
copied into the Android platform project’s assets\www folder. Custom content for iOS applications is
copied from merges\ios to the iOS project’s www folder.

With all of the application’s content copied into the appropriate project folders, you open the
appropriate IDE (Eclipse for Android and Xcode for iOS) and begin the testing process. For
information on how to import the Cordova projects to each IDE and use the platform’s debugging tools,
refer to Chapters 7 through 10.

TTeessttiinngg CCoorrddoovvaa AApppplliiccaattiioonnss
You can also skip the IDEs entirely and test the applications directly from the command line; I show
you how in the following sections.

RRuunn aa CCoorrddoovvaa AApppplliiccaattiioonn oonn aa DDeevviiccee SSiimmuullaattoorr
Most mobile device manufacturers provide a software program that emulates or simulates a mobile
device. This allows developers to easily test their mobile applications when they don’t have a
physical device. Performance isn’t usually the same, but it looks and acts like a real device much as it
can. In some cases, what’s provided is generic and simply mimics the capabilities of the specific OS
version, while for other mobile platforms it might mimic specific devices. Either way, there’s a
software-only solution available that developers can use to test Cordova applications in an almost

Chapter 6: The Mechanics of Cordova Development 83

real-world scenario (I’ll explain “almost real-world” in the following section). Google, for example,
provides Android emulators, and Apple and BlackBerry provide simulators of their devices.

 SSiimmuullaattoorr vvss.. EEmmuullaattoorr
There is a technical difference between the two that I’m not going to get into here. In order to
make things simpler for me (and you), I’m going to dispense with calling out whether I’m
referring to an emulator or simulator for the remainder of the book and simply refer to either as
simulators. If you see that word going forward, know that I mean either emulator or simulator.

To run a Cordova application using a device simulator, you would use the following command:
cordova emulate device_platform

Replace the value for device_platform with the name of the mobile device platform you wish to
emulate (android, blackberry10, ios, wp8, and so on). For example, to run the application on a
BlackBerry 10 simulator, you would issue the following command:
cordova emulate blackberry10

In this example, the CLI will prepare the files, build the application using the platform’s command-line
tools, then launch the appropriate simulator and run the application. You saw examples of the device
simulators and emulators in the screenshots found in Chapter 5, “Anatomy of a Cordova Application.”

RRuunn aa CCoorrddoovvaa AApppplliiccaattiioonn oonn aa PPhhyyssiiccaall DDeevviiccee
Before you deploy your application to mobile users, you should perform final testing on a physical
device. As good as these options are, there is always something that doesn’t work quite right on a
simulator. To test an application on a physical device, connect the device to your development system
using a USB cable, then issue the following command:
cordova run device_platform

For example, to run the application on an Android device, issue the following command:
cordova run android

Behind the scenes, the CLI will execute the prepare command described earlier, then call the
particular platform’s command-line tools to package the application and deploy it to the device that is
connected to the system. Within seconds (or as much as a few minutes in the case of some platforms),
the application will appear on the device’s screen.

 WWaarrnniinngg
For many mobile device platforms, applications will not run on physical devices without first
being registered with the manufacturer (Windows Phone 8) or signed by an appropriate signing
authority (BlackBerry 10, iOS). I’m deliberately omitting the details of this process from this
chapter, as it differs across the different supported mobile device platforms and would add some
bulk to this manuscript. I cover this topic a little bit in the chapters that deal with each mobile
device platform separately (Chapters 7 through 10).

Before testing Cordova applications on a physical device, make sure you have followed the
manufacturer’s instructions for configuring the appropriate environment to do so.

84 Chapter 6: The Mechanics of Cordova Development

LLeevveerraaggiinngg CCoorrddoovvaa DDeebbuuggggiinngg CCaappaabbiilliittiieess
As you test your Cordova applications, you’re likely to run into issues that you must resolve. The
purpose of this section is to highlight some of the debugging capabilities that are available to you
outside of an IDE.

UUssiinngg Alert()
One of the simplest, and most annoying, ways to debug a Cordova application is to use the JavaScript
alert() function to let you know what part of the code you’re running or to quickly display the
contents of a variable. I’ve always called this approach the “poor man’s debugger,” but it works quite
well for certain types of application debugging tasks. If you see an event that’s not firing within your
application or some variable that’s not being set or read correctly, you can simply insert an alert()
that displays a relevant message and use that to see what’s going on.

As I started working with PhoneGap and PhoneGap Build, I noticed that there were many times when
the deviceready event wasn’t firing in my applications. I would write my application and start testing
it only to find that none of the PhoneGap APIs were working. In some cases, it was because the
PhoneGap Build service wasn’t packaging the phonegap.js file with the application (that’s what
happens when you use a beta product). In other cases, it was simply because I had some stupid typo in
the application that I couldn’t see.

 WWaarrnniinngg
Cordova fails silently when it encounters a JavaScript error, so if you have a typo in your code,
the code will simply not run.

What I started doing in my then PhoneGap, now Cordova, applications was to add a call to alert() in
the onBodyLoad and onDeviceReady functions of all of my applications during development. In
Chapter 5, I provided a listing for the HelloWorld3 application, but the real HelloWorld3 application
code is shown in Listing 6.1. In this version of the application, you can see the calls to alert in the
onBodyLoad and onDeviceReady. Once I was certain that the application worked correctly, I would
remove the alerts.

Listing 6.1 The “Real” HelloWorld3 application

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width;" />
 <script type="text/javascript" charset="utf-8"
 src="Cordova.js"></script>
 <script type="text/javascript" charset="utf-8">
 function onBodyLoad() {
 alert("onBodyLoad!");
 document.addEventListener("deviceready", onDeviceReady,

Chapter 6: The Mechanics of Cordova Development 85

 false);
 }
 function onDeviceReady() {
 alert("onDeviceReady!");
 br = "
";
 //Get the appInfo DOM element
 var element = document.getElementById("appInfo");
 //Replace it with specific information about the device
 //running the application
 element.innerHTML = 'Cordova Version: ' +
 device.cordova + br +
 'Platform: ' + device.platform + br +
 'Model: ' + device.model + br +
 'OS Version: ' + device.version;
 }
 </script>

 </head>
 <body onload="onBodyLoad()">
 <h1>HelloWorld3</h1>
 <p>This is a Cordova application that makes calls to the
 Cordova APIs.</p>
 <p id="appInfo">Waiting for Cordova Initialization to
 complete</p>
 </body>
</html>

When I was writing all of the sample applications for PhoneGap Essentials, I even go as far as to put an
alert at the beginning of every function in the application. As I learned how and when each event fired,
I used the alerts to help me tell what was going on. Now, there are easier ways to do that, which I show
you in the next section, but this was just a simple approach to help me as I got started with each API.

 WWaarrnniinngg
Those of you who know a little bit about the Cordova APIs might be asking, Why did he use
alert() rather than the Cordova navigator.notification.alert() function?

Well, in the onBodyLoad() function, it is highly likely that cordova.js hasn’t loaded yet, so I can’t
be sure that the Cordova navigator.notification.alert()will even be available. I could
have used navigator.notification.alert() in the onDeviceReady() function because
the only time that function runs is when the Cordova deviceready event has fired, but for some
reason I just kept the two alerts consistent.

WWrriittiinngg ttoo tthhee CCoonnssoollee
The problem with using the approach described in the previous section is that when you fill your
buggy code with alerts, you’re constantly interrupting the application flow to dismiss the alerts as
they come up. For a simple problem, this approach works pretty well, but when debugging more
troublesome errors, you need an approach that allows you to let the application run then analyze what

86 Chapter 6: The Mechanics of Cordova Development

is happening in real time or after the application or a process within the application has completed,
without interrupting the application. Cordova applications can do this through the JavaScript console
object implemented by the WebKit browser-rendering engine.

Using the console object, developers can write messages to the browser’s console that can be viewed
outside of the running program through capabilities provided by the native SDKs or device simulators.
The console object has scope at the window level, so it’s essentially a global object accessible by any
JavaScript code within the application. WebKit supports several options; the most common ones used
are listed here:

▪ console.log("message");

▪ console.warn("message");

▪ console.error("message");

Beginning with Cordova 3.0, the console has been removed from the core Cordova APIs and is instead
available as a plugin. To add console capabilities to your Cordova project, you must open a terminal
window, navigate to the project folder, and issue the following command:
cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-plugin-console.git

Now, let’s take a look at a sample application that illustrates the use of this feature, as shown in Listing
6.2

Listing 6.2 Example Application That Writes to the Console

<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width,
 height=device-height, initial-scale=1.0,
 maximum-scale=1.0, user-scalable=no;" />
 <meta http-equiv="Content-type" content="text/html;
 charset=utf-8">
 <script type="text/javascript" charset="utf-8"
 src="cordova.js"></script>

 <script type="text/javascript" charset="utf-8">

 function onBodyLoad() {
 document.addEventListener("deviceready", onDeviceReady,
 false);
 }
 function onDeviceReady() {
 //Just writing some console messages
 console.warn("This is a warning message!");
 console.log("This is a log message!");
 console.error("And this is an error message!");
 }

 </script>
 </head>
 <body onload="onBodyLoad()">

Chapter 6: The Mechanics of Cordova Development 87

 <h1>Debug Example</h1>
 <p>Look at the console to see the messages the application
 has outputted</p>
 </body>
</html>

As you can see from the code, all the application has to do is call the appropriate method and pass in the
text of the message that is supposed to be written to the console.

Figure 6.6 shows the messages highlighted in the Xcode console window. This window is accessible
while the program is running on an iOS simulator, so you can debug applications in real time.

FFiigguurree 66..66 Cordova iOS Application Output Log in Xcode

On some platforms, the console will display log, warning, or error messages differently, making it
easier for developers to identify a warning versus an error message. To illustrate this, Figure 6.7 shows
the contents of the Android LogCat (described in Chapter 7, “Android Development with Cordova”).
Notice that the different console message types are color coded, making it easier for you to spot a
particular type of message.

FFiigguurree 66..77 Cordova Android Application LogCat Output in Eclipse

88 Chapter 6: The Mechanics of Cordova Development

Remember I mentioned in the previous section that the JavaScript code in a Cordova application fails
silently? Well, you can also wrap the code in a try/catch block so your application will at least have the
chance to write its error to the console, as shown in the following example:
try {

 console.log("Validating the meaning of life");

 someBogusFunction("42");

} catch (e) {

 console.error("Hmmm, not sure why this happened here: " +

 e.message);

}

Notice that in Figure 6.7, the Android LogCat shows you the line number where the console message
was generated. This helps you identify information about where the application is failing. You could
also use an alert here, but that’s slightly less elegant.

DDeebbuuggggiinngg aanndd TTeessttiinngg UUssiinngg EExxtteerrnnaall TToooollss
There’s a very active partner community supporting Cordova with additional tools for Cordova
developers. In this section, I introduce a couple of the more popular tools that help developers test
and debug Cordova applications. This is by no means a complete list of options; refer to the
PhoneGap Tools page (http://phonegap.com/tool) for information on additional tools that might be
available. Some built-in debugging tools are also available with several of the mobile SDKs. These
tools are covered in the individual chapters for each mobile OS (Chapters 7 through 10).

DDeebbuuggggiinngg AApppplliiccaattiioonnss wwiitthh WWeeiinnrree
Web Inspector Remote (weinre) is a community-built remote debugger for web pages. It was donated
to the PhoneGap project and is currently implemented as part of the PhoneGap Build service. You
can find the download files and instructions at http://people.apache.org/~pmuellr/weinre/docs/latest.

For Cordova development, it allows you to remotely debug a web application running in a Cordova
container on a physical device or a device simulator. Weinre consists of a debug server, debug client,
and debug target. The debug server runs on Macintosh or Windows, and the debug client runs in any
compatible desktop browser.

To configure weinre, you need to perform a series of steps. The process begins with the server
installation. Weinre is Node.js-based, and since we already have Node installed for the Cordova CLI,
you can install the server using the following command:
npm install –g weinre

Unfortunately, on Macintosh weinre may not like your security configuration, so even though it’s not
recommended, you may have to install weinre using sudo using the following command:
sudo npm install –g weinre

After the installation completes, you should see a message similar to the following:
weinre@2.0.0-pre-HH0SN197 /usr/local/lib/node_modules/weinre

├── underscore@1.3.3

├── coffee-script@1.3.3

├── nopt@1.0.10 (abbrev@1.0.4)

└── express@2.5.11 (qs@0.4.2, mime@1.2.4, mkdirp@0.3.0, connect@1.9.2)

http://phonegap.com/tool
http://people.apache.org/~pmuellr/weinre/docs/latest

Chapter 6: The Mechanics of Cordova Development 89

With the installation completed, you can start weinre by issuing the following command in the terminal
window:
weinre

When the server starts, it will indicate that it is running by displaying a message in the terminal window
similar to the following:
2013-06-22T17:00:50.564Z weinre: starting server at http://localhost:8080

 NNoottee

There are some command-line options you can pass to the weinre server at startup. I chose not
to cover them here, but you can find detailed information on the weinre website at
http://people.apache.org/~pmuellr/weinre/docs/latest/Running.html.

With the weinre server started, you use a browser-based client application to interact with the server
and Cordova client application. Open your browser of choice (I recommend using Safari or Chrome)
and point it to the URL shown on the server console when the weinre server started. For my
development environment, I simply use:
http://localhost:8080

The browser will connect to the weinre server and open the weinre debug client, which will display a
page similar to the one shown in Figure 6.8.

FFiigguurree 66..88 Weinre Debug Client Startup Page

With the server and client running, you can now connect a Cordova application to the debug server by
adding the following script tag to body section of the Cordova application’s index.html file:
<script src="http://debug_server:8080/target/target-script-min.js"></script>

http://people.apache.org/~pmuellr/weinre/docs/latest/Running.html

90 Chapter 6: The Mechanics of Cordova Development

You need to replace the debug_server portion of the URL with the correct host name or IP address for
the debug server (the system running the weinre server). This makes the application into a weinre debug
target and provides the Cordova application with the code needed to upload information to the weinre
server as the application runs.

When using weinre with a device simulator, you can usually point the Cordova application to the local
weinre server instance using
<script src="http://localhost:8080/target/target-script-min.js"></script>

The Android emulator, however, does not have the ability to connect to host-side resources using
localhost, so for the Android emulator you must use the host address http://10.0.2.2, as shown in the
following example:
<script src="http://10.0.2.2:8080/target/target-script-min.js"></script>

When using weinre to debug a Cordova application running on a physical device, the device must be
able to connect to your debug server. That means that the device must be able to “see” the server on the
local network (most likely over a Wi-Fi connection), or the system running the weinre server must have
a public facing IP address. Using a server host name of localhost will not work on a physical device;
you must use an actual host name or IP address that is visible to the device.

 WWaarrnniinngg

Be sure to remove the weinre script tag from your Cordova application before releasing it into
production. The application will likely hang if attempting to connect to debug server that isn’t
available.

After you have added the script tag to the Cordova application’s index.html file, run the application in
the simulator or on a device. Nothing special will appear on the device screen—you can’t tell that the
weinre debug client is running. However, if you switch to the browser running the weinre debug client
and click the first link, shown in Figure 6.8 (the one labeled “debug client user interface”), you will
initially see a page similar to the one shown in Figure 6.9.

FFiigguurree 66..99 Weinre Debug Client

Chapter 6: The Mechanics of Cordova Development 91

In this example, the figure is indicating that no targets have connected yet, but as soon as I start my
Cordova application, as long as it can connect to the weinre server, the debug client page will update
and display the content shown in Figure 6.10.

FFiigguurree 66..1100 Weinre Debug Client with an Application Connected

The debug client provides the means to view and optionally manipulate many of the page elements and
other aspects of your application’s web content.

At this point, the different buttons across the top of the debug client are available to provide you with
information about the debug target. For example, in Figure 6.11 you see the contents of the Elements
page; it shows you the current HTML5 content running within the debug target.

FFiigguurree 66..1111 Weinre Debug Client Resources Area

92 Chapter 6: The Mechanics of Cordova Development

One of the cool features of weinre is that as you highlight the different code sections shown in Figure
6.11, weinre will highlight the corresponding content within the web application. So, for the
HelloWorld3 application shown in Figure 6.11, highlighting the paragraph tag <p id=
"appInfo">_</p> reveals, in the debug target, the section of the page shown in Figure 6.12. In this
example, I kept the content of the paragraph tag collapsed in the debug client. You can click the black
triangle to the left of the <p> element to see the complete HTML content.

FFiigguurree 66..1122 Weinre Target Highlighting HTML Content

Chapter 6: The Mechanics of Cordova Development 93

Using the debug client, you can access the following content areas:

▪ Elements: The HTML, CSS, and JavaScript code for the application

▪ Resources: Local resources used by the application, such as databases, local storage, and
session storage

▪ Network: Information about requests made using the XMLHTTPRequests (XHR)

▪ Timeline: Events that occur within the target application

▪ Console: Information written to the console using the console object described earlier in the
chapter

The available documentation for Weinre is pretty light, but since the project’s capabilities are based on
the Google Chrome Developer Tools, you can find additional information on the Google Code website
at http://code.google.com/chrome/devtools/docs/overview.html.

TTeessttiinngg AApppplliiccaattiioonnss UUssiinngg tthhee RRiippppllee EEmmuullaattoorr
The Ripple Emulator is a tool you can use to help with the initial testing of your Cordova application.
Ripple is a browser-based emulator that can be used to emulate several different systems. Originally
created by Tiny Hippos, which was then acquired by Research In Motion (now called BlackBerry),
Ripple is now an incubator project at Apache. The problem with Ripple is that it’s been in beta for a
very long time (almost two years by my counting), and the emulator is way behind on its Cordova
support (supporting Cordova 2.0 when Cordova 2.8 was just released). Because of those limitations, I
don’t go into too much detail about how Ripple works.

Ripple emulates the execution of the Cordova APIs within the browser container. You can use Ripple
for quick testing of Cordova application features and UI during development, then switch to
packaging/building Cordova applications and testing them on actual devices or device simulators for
more thorough testing. Ripple is not designed to replace testing on real devices or simulators.

Since Ripple was a BlackBerry project for a while, it has a lot of features that help BlackBerry
developers. You can, for example, test your BlackBerry WebWorks applications using Ripple, then
package them into WebWorks applications directly from the browser. You can learn more about
Ripple’s capabilities at
https://developer.blackberry.com/html5/documentation/getting_started_with_ripple_1866966_11.html.

The emulator installs as a Google Chrome plugin, so you will need to install Chrome from
www.google.com/chrome before you begin. Because Ripple is an incubator project and may become a
full Apache project at any time, any URL I give you now may be invalid by the time you read this. So,
to install Ripple, you should point your browser to http://emulate.phonagep.com. Follow the links on
that page to download and install Ripple in your instance of the Chrome browser.

Once you have Ripple installed, you must enable file access for Ripple. In Chrome, open the settings
page, then select the Extensions section. In the list of plugins that appears, enable the “Allow access to
file URLs” option, shown in Figure 6.13.

https://developer.blackberry.com/html5/documentation/getting_started_with_ripple_1866966_11.html
http://www.google.com/chrome
http://code.google.com/chrome/devtools/docs/overview.html
http://emulate.phonagep.com

94 Chapter 6: The Mechanics of Cordova Development

FFiigguurree 66..1133 Enabling Ripple File Access in the Chrome

Once the browser is configured, open your application’s index.html file in the browser. You can press
Ctrl-O on Windows or Command-O on Macintosh to open the File Open dialog. Once the page has
loaded, you need to enable Ripple for the selected page. To do this, click the Ripple icon to the right of
the browser’s address bar to open a window allowing you to enable Ripple for the loaded page. You can
also append ?enableripple=true to the end of any URL to enable Ripple emulation for that page.

With Ripple enabled, the browser will display a page that prompts you to identify which type of
emulation you wish to enable, as shown in Figure 6.14. As you can see, Ripple can emulate Apache
Cordova plus several other platforms and frameworks. Click the Cordova 2.0 button to continue.

FFiigguurree 66..1144 Ripple Emulation Platform Selection Page

At this point, Ripple will display a page with the content from the index.html file rendered within the
boundaries of a simulated smartphone screen, as shown in Figure 6.15. Wrapped around the simulated
smartphone are properties panes that can be used to configure options and status for the simulated
smartphone, such as simulated device screen resolution, accelerometer, network, geolocation, and more.

Chapter 6: The Mechanics of Cordova Development 95

FFiigguurree 66..1155 Ripple Emulator Running a Cordova Application

You can click on each of the tabs to expand the options for the tab and make changes to the simulated
device’s configuration. At this point, you would simply click around within the simulated smartphone
screen and interact with the options presented within your application. When you find a problem or a
change you want to make within the Cordova application, simply return to your HTML editor, make the
necessary changes, write the changes to disk, then reload the page in the Chrome browser to continue
with testing.

WWrraapp--UUpp
Hopefully by now, you have an inkling of how to build and debug Cordova applications. In the four
chapters that follow, I show you how to use the platform-specific development tools and debugging
capabilities.

	CONTENTS
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	6. THE MECHANICS OF CORDOVA DEVELOPMENT
	Cordova Development Issues
	Dealing with API Inconsistency
	Application Graphics

	Developing Cordova Applications
	Working with a Single Mobile Device Platform
	Working with Multiple Mobile Device Platforms

	Testing Cordova Applications
	Run a Cordova Application on a Device Simulator
	Run a Cordova Application on a Physical Device

	Leveraging Cordova Debugging Capabilities
	Using Alert()
	Writing to the Console

	Debugging and Testing Using External Tools
	Debugging Applications with Weinre
	Testing Applications Using the Ripple Emulator

	Wrap-Up

