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 Preface  

 I wrote this book to help developers discover Force.com as a viable, even superior tool for 
building business applications.  

 I’m always surprised at how many developers I meet who aren’t aware of Force.com as a 
platform. They know of Salesforce, but only that it’s a CRM. Even those who have heard of 
Force.com are amazed when I describe what Appirio and other companies are building with it. 
“I didn’t know you could do that with Force.com” is a common reaction, even to the simplest 
of things such as creating custom database tables.  

 Since the second edition of this book, Salesforce has delivered more than six major releases. 
This third edition refocuses the book on custom application development and away from 
“clicks not code”-style, configuration-driven features. It contains updates throughout to cover 
new capabilities such as Developer Console, JSON support, Streaming and Tooling APIs, REST 
integration, and support for MVC frameworks like AngularJS in Visualforce. It also features a 
new chapter:  Chapter   8   , “Mobile User Interfaces.”  

 Although there are more cloud-based application development platforms than ever before, 
Force.com continues to offer unique and outstanding value for business applications. With its 
core strength in customer data management, deep set of thoughtfully integrated features, and 
support for open standards, Force.com can save you significant time and effort throughout the 
software development lifecycle.  

  Key Features of This Book  

 This book covers areas of Force.com relevant to developing applications in a corporate 
environment. It takes a hands-on approach, providing code examples and encouraging 
experimentation. It includes sections on the Force.com database, Apex programming language, 
Visualforce user interface technology, integration to other systems, and supporting features 
such as workflow and analytics. SFA, CRM, customer support, and other prebuilt applications 
from Salesforce are not discussed, but general Force.com platform skills are helpful for working 
in these areas as well. The book does not cover cloud computing in general terms. It also avoids 
comparing Force.com with other technologies, platforms, or languages. Emphasis  is placed on 
understanding Force.com on its own unique terms rather than as a database, application server, 
or cloud computing platform.  



 Although Force.com is a commercial service sold by Salesforce, all the material in this book 
was developed using a free Force.com Developer Edition account. Additionally, every feature 
described in this book is available in the free edition.  

 Throughout the text, you will see sidebar boxes labeled Note, Tip, or Caution. Notes explain 
interesting or important points that can help you understand key concepts and techniques. 
Tips are little pieces of information that will help you in real-world situations, and often offer 
shortcuts to make a task easier or faster. Cautions provide information about detrimental 
performance issues or dangerous errors. Pay careful attention to Cautions.   

  Target Audience for This Book  

 This book is intended for application developers who use Java, Ruby, or other high-level 
languages to build Web and rich client applications for end users. It assumes knowledge 
of relational database design and queries, Web application development using HTML and 
JavaScript, and exposure to Web services.   

  Code Examples for This Book  

 The code listings in this book are available on Github:  http://goo.gl/fjRqMX . They are also 
available as a Force.com IDE project, also freely available on Github:  https://github.com/
jmouel/dev-with-force-3e .   

http://goo.gl/fjRqMX
https://github.com/jmouel/dev-with-force-3e
https://github.com/jmouel/dev-with-force-3e
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message.  
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  4 
 Business Logic  

    Business logic in Force.com is developed in Apex, a programming language designed for the Force.com 
platform. Through Apex code, many platform features, such as the database and user interface, can be 
customized to meet the needs of individual users and companies.  

 This chapter introduces Apex as a language for writing business logic, specifically where it interacts 
with the Force.com database. It uses a combination of explanatory text and code snippets to introduce 
concepts and encourage experimentation. This approach assumes you’re already experienced in some 
other high-level, object-oriented programming language and would like to see for yourself how Apex is 
different.  

 The chapter consists of the following sections:  

    ■    Introduction to Apex—    Learn basic facts about Apex and how it differs from other 
programming languages.   

   ■    Introducing the Force.com IDE—    Take a brief tour of the Force.com IDE, a user interface for 
developing, debugging, and testing Apex code.   

   ■    Apex language basics—    Learn the building blocks of the Apex language, such as data types and 
loops.   

   ■    Database integration in Apex—    Incorporate the Force.com database into your Apex programs 
through queries, statements that modify data, and code executed automatically when data is 
changed.   

   ■    Debugging Apex using Developer Console—    With Developer Console, you can directly inspect 
the state of your Apex code as it runs.   

   ■    Unit tests in Apex—    Write tests for your code and run them in Developer Console.   

   ■    Sample application—    Walk through the implementation of a data validation rule for the 
Services Manager sample application.    

  Note 

 The code listings in this chapter are available in a GitHub Gist at  http://goo.gl/evtet .    

http://goo.gl/evtet
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     Introduction to Apex  

 Apex is a stored procedure-like language that runs entirely on the Force.com platform. It 
provides object-oriented features and tight integration with the Force.com database. It’s mainly 
used in custom user interfaces and in triggers, code that is executed when data is changed in 
the database.  

 Apex is not a general-purpose programming language like Java or C. Its scope is limited to 
business and consumer applications that operate on relational data and can benefit from the 
feature set of the surrounding Force.com platform.  

 Apex programs exist in a multitenant environment. The computing infrastructure used to 
execute Apex is operated by Salesforce and shared among many developers or tenants of the 
system. As a result, unlike general-purpose programming languages you are familiar with, the 
execution of Apex programs is closely controlled to maintain a consistently high quality of 
service for all tenants.  

 This control is accomplished through governor limits, rules that Force.com places on programs 
to keep them operating within their allotted share of system resources. Governor limits are 
placed on database operations, memory and bandwidth usage, and lines of code executed. 
Some governor limits vary based on the type of licensing agreement you have in place with 
Salesforce or the context that the code is running in, and others are fixed for all users and use 
cases.  

  Note 

 The most prevalent governor limits are discussed throughout this book, but it is not a complete 
treatment of the subject. The authoritative guide to governor limits is the  Force.com Apex Code 
Developer’s Guide,  available at  http://developer.force.com . Educate yourself on governor limits 
early in the development process. This education will alter the way you architect your Apex code 
and prevent costly surprises. Additionally, test all of your Apex code with production-like data 
volumes. This helps to expose governor-related issues prior to a production deployment.   

 Here are a few important facts about Apex:  

    ■    It includes integrated testing features.     Code coverage is monitored and must reach 75% 
or greater to be deployed into a production environment.   

   ■    It is automatically upgraded.     Salesforce executes all of its customers’ unit tests to verify 
that they pass before deploying a major release of the Force.com platform. Your code is 
always running on the latest version of Force.com and can take advantage of any and all 
new functionality without the hassle and risks of a traditional software upgrade process.   

   ■    There is no offline runtime environment for Force.com.     You can edit your code on 
your desktop computer, but it must be sent to Force.com for execution.   

   ■    Apex is the only language that runs on the Force.com platform.     You can integrate 
Apex with programs running outside of Force.com using HTTP-based techniques such 
as REST.   

http://developer.force.com
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   ■    The Force.com database is the only database integrated into the Apex language.     
Other databases can be integrated through Web services or other technology using HTTP.    

 The two primary choices for developing Apex code are the Web-based App Builder Tools and 
the Force.com IDE, provided as a stand-alone application as well as a plug-in to the standard 
Eclipse IDE. The Force.com IDE is the more powerful and developer-friendly of the two, so it is 
used throughout this book.   

  Introducing the Force.com IDE  

 The Force.com IDE is an extension to the standard Eclipse development tool for building, 
managing, and deploying projects on the Force.com platform. This section covers installation 
and gives a brief walk-through of the Force.com IDE components used throughout this book.  

  Installation  

 The Force.com IDE is distributed in two forms: a stand-alone application and a plug-in to the 
Eclipse IDE. If Force.com is your primary development language or you are not an existing 
Eclipse IDE user, the stand-alone version is a good choice. The plug-in version of the Force.com 
IDE requires Eclipse, which you can find at www.eclipse.org. Only specific versions of Eclipse 
are supported by the Force.com IDE. If you are already using Eclipse but it’s an unsupported 
version, keep your existing Eclipse version and install the supported version just for use with 
the Force.com IDE. Multiple versions of Eclipse can  coexist peacefully on a single computer.  

 Visit  http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse  to learn how to install 
the stand-alone and plug-in versions of the Force.com IDE.   

  Force.com Perspective  

 A perspective is a concept used by Eclipse to describe a collection of user interface components. 
For example, Eclipse has built-in perspectives called Java and Java Debug. By installing the 
Force.com IDE, you’ve added a perspective called Force.com.  Figure   4.1    shows the Force.com 
perspective, indicated in the upper-right corner.   

 If you do not see the Force.com perspective, click the menu option Window, Open Perspective, 
Other; select Force.com from the Open Perspective dialog; and click the OK button. The Open 
Perspective dialog is shown in  Figure   4.2   .   

 The Force.com perspective includes several user interface panels, called Views. You can see two 
of them at the bottom of  Figure   4.1   : Execute Anonymous and Apex Test Runner. It also adds a 
new type of project called the Force.com Project, which is shown in the left-side Navigator tab. 
The first step to using the Force.com IDE is to create a Force.com Project.   

http://www.eclipse.org
http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse
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 Figure 4.1   Force.com perspective        

 Figure 4.2   Open Perspective dialog        
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  Force.com Projects  

 A Force.com Project allows you to read and write code, user interfaces, and other metadata 
objects within a Force.com organization from your local computer. Although this metadata is 
edited locally, it must be deployed to the Force.com service to run. Deployment to Force.com 
occurs automatically every time you make a modification to an object in a Force.com Project 
and save the changes. The contents of a Force.com Project are visible in the Navigator or 
Package Explorer Views.  

  Note 

 Force.com does not provide its own integrated source control system, but Force.com Projects 
can be integrated into your company’s source control system through the built-in Team features 
of Eclipse. Refer to the Eclipse documentation for more information.    

  Problems View  

 The Force.com IDE leverages the standard Eclipse View called Problems to display compilation 
errors. When you save changes to an object in a Force.com Project, it is sent over the network 
to the Force.com service for compilation. If compilation fails, Force.com-specific errors are 
added to the Problems View. In most cases, you can double-click a problem row to navigate to 
the offending line of code.   

  Schema Explorer  

 The Schema Explorer allows direct interaction with the Force.com database. Use it to inspect 
objects and fields and to execute database queries and preview their results. To open the 
Schema Explorer, double-click the object named salesforce.schema in any Force.com Project. 
In  Figure   4.3   , the Schema Explorer is open and displaying the fields in the Project object in 
its right panel. In its left panel, a query has been executed and has returned a list of Contact 
records.    

  Apex Test Runner View  

 All business logic written in Force.com must be accompanied by unit tests to deploy it to a 
production environment. Apex Test Runner View is a user interface to run unit tests and view 
test results, including statistics on code performance and test coverage. If the Apex Test Runner 
is not already visible on the bottom of your screen, go to the Window menu and select Show 
View, Apex Test Runner.   



104 Chapter 4 Business Logic

  Execute Anonymous View  

 The Execute Anonymous View provides an interactive, immediate way to execute arbitrary 
blocks of Apex code. Unless noted otherwise, you can execute all the code snippets in this 
chapter directly from the Force.com IDE using the Execute Anonymous View.  

 To try the Execute Anonymous View, first create a new Force.com Project. Go to the File menu 
and select File, New Force.com Project. Enter a project name; enter your Force.com username, 
password, and security token; and click the Next button. If you receive an error on this step, 
double-check your username, password, and security token. Also make sure you’re provid-
ing the credentials for a Developer Edition organization, given that other types of organiza-
tions might not have access to the Force.com API. Select the metadata components Apex and 
Visualforce; then click the Finish button to create the project.  

 After you’ve created a project for your Development Edition organization, the Execute 
Anonymous View should be visible in the lower-right half of the screen. If not, go to the 
Window menu and select Show View, Execute Anonymous. In the Source to Execute text 
box, enter the code given in  Listing   4.1   . If the text box is not visible, resize your Execute 
Anonymous View until it’s tall enough to see it. If the text box is disabled, double-click the 
Execute Anonymous tab to maximize and enable it. After you’ve entered the code, click the 
Execute Anonymous button to run it.  

 Figure 4.3   Force.com IDE Schema Explorer        
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  Listing 4.1   Hello World  

 String helloWorld(String name) {
    return 'Hello, ' + name;
  }
  System.debug(helloWorld('Apex'));   

 This sample code defines a function called  helloWorld  that accepts a single  String  parameter. 
It then invokes it with the name  Apex  and displays the results,  Hello Apex , to the debug log.    

  Apex Language Basics  

 This section describes the building blocks of the Apex language. The building blocks are vari-
ables, operators, arrays and collections, and control logic. Basic knowledge of the syntax and 
operation of Apex is valuable for almost any custom development task in Force.com, including 
triggers, custom user interfaces, and integration with external systems. The section concludes 
with an introduction to Apex governor limits. Knowledge of governor limits is a critical part of 
writing business logic that scales from Developer Edition organizations to production organiza-
tions with real-world data volumes.  

  Variables  

 This subsection covers variable declaration, data types, constants and enums, and type conver-
sions. It also provides detail on rounding numbers and converting dates to and from strings, 
common tasks in business applications.  

  Variable Declaration  

 Apex is a strongly typed language. All variables must be declared before they’re referenced. At 
minimum, a variable declaration consists of the data type followed by the variable name. For 
example,  Listing   4.2    is a valid statement.  

  Listing 4.2   Variable Declaration  

 Integer i;   

 The variable  i  is declared to be an Integer. Apex does not require variables to be initialized 
before use, but doing so is good practice. The variable  i  initially contains a null value.  

 Variable names cannot start with numbers or symbols, cannot contain two or more consecu-
tive underscore characters, and must not conflict with Apex reserved words. These are special 
keywords used by the Apex language itself. The list of reserved words is available in the  
Force.com Apex Code Developer’s Guide .  
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 Variable names are not case sensitive. Try defining two variables with the same name, one in 
uppercase and one in lowercase, to prove this, as in  Listing   4.3   . If you try to execute this code, 
you will receive a compilation error citing a duplicate variable.  

  Listing 4.3   Case Insensitivity of Variable Names  

 Integer i;
  String I;    

  Data Types  

 In Apex, all data types are objects. There is no concept of a primitive type such as an  int  in 
Java.  Table   4.1    lists Apex’s standard atomic data types. These types contain a single value at a 
time or a null value.  

  Table 4.1   Standard Atomic Data Types  

  Data Type     Valid Values   

 String   Zero or more Unicode characters.  

 Boolean   True or false.  

 Date   Date only; no time information is included.  

 Datetime   Date and time value.  

 Time   Time only; no date information is included.  

 Integer   32-bit signed whole number (–2,147,483,648 to 2,147,483,647).  

 Long   64-bit signed whole number (–2  63   to 2  63  –1).  

 Decimal   Signed number with whole ( m,  Integer) and fractional components ( n ), 
expressed as  m . n . Total length of number, including sign and decimal point, 
cannot exceed 19 characters.  

 Double   64-bit signed number with a decimal point (–2  63   to 2  63  –1).  

 Blob   Binary data.  

 ID   ID is a variation of the String type to store the unique identifiers for Force.com 
database records. ID values are restricted to 18 characters. Values are checked 
at compile and runtime, and a  StringException  is thrown if they do not 
conform.  

 Object   Object is the generic type. Variables defined as Object are essentially type-
less and can receive any value. Typeless code is vulnerable to runtime errors 
because it is invisible to the compiler’s type checking functionality.  
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  Constants and Enums  

 A constant is a variable that cannot be modified after it has been initialized. It is declared using 
the  final  keyword and can be initialized only in constructors, in initializers, or in the declara-
tion itself.  

 An enum is a set of identifiers.  Listing   4.4    provides an example of a constant as well as an 
enum. The constant is an Integer type; the enum is named  MyConstants  and contains three 
members. The variable  x  is initialized to the first member, and its data type is the enum itself, 
which can be thought of as a user-defined data type.  

  Listing 4.4   Defining an Integer Constant and an Enum  

 final Integer MAGIC_NUMBER = 42;
  Enum MyConstants { One, Two, Three }
  MyConstants x = MyConstants.One;   

 After it has been declared, an enum can be referenced in Apex code like any built-in data 
type. It can also be converted into an Integer from its zero-indexed position using its  ordinal  
method or into a String using its  name  method.   

  Converting Data Types  

 The two ways to convert one data type to another are implicit and through conversion 
methods. Implicit conversion means that no method calls or special notation is required to 
convert one type into another. Conversion methods are functions that explicitly convert a 
value from one type to another type.  

 Implicit conversion is supported for numeric types and String types. For numbers, the rule is 
this: Integer � Long � Double � Decimal. Conversions can move from left to right without 
casting, as  Listing   4.5    demonstrates.  

  Listing 4.5   Implicit Conversion of Numeric Types  

 Integer i = 123;
  Long l = i;
  Double d = l;
  Decimal dec = d;   

 For Strings, ID and String are interchangeable, as shown in  Listing   4.6   . If conversion is 
attempted from String to ID but the String is not a valid ID, a  System.StringException  is 
thrown.  
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  Listing 4.6   Converting between ID and String  

 String s = 'a0I80000003hazV';
  ID id = s;
  String s2 = id;   

 When implicit conversion is not available for a pair of types, you must use a conversion 
method. Data type objects contain a static conversion method called  valueOf . Most conver-
sions can be handled through this method.  Listing   4.7    is a series of statements that convert a 
string into the various numeric types.  

  Listing 4.7   Type Conversion Methods  

 String s = '1234';
  Integer i = Integer.valueOf(s);
  Double d = Double.valueOf(s);
  Long l = Long.valueOf(s);
  Decimal dec = Decimal.valueOf(s);   

 When a type conversion method fails, it throws a  TypeException . For example, when the code 
in  Listing   4.8    executes, it results in an error:  System.TypeException: Invalid integer: 
1234.56 .  

  Listing 4.8   Type Conversion Error  

 String s = '1234.56';
  Integer i = Integer.valueOf(s);    

  Rounding Numbers  

 Rounding occurs when the fractional component of a Decimal or Double is dropped ( round ), 
or when a Decimal is divided ( divide ) or its scale (number of decimal places) reduced 
( setScale ). Apex has a set of rounding behaviors called rounding modes that apply in all three 
of these situations. By default, the rounding mode is  HALF_EVEN , which rounds to the nearest 
neighbor, or to the even neighbor if equidistant. For example, 0.5 rounds to 0, and 0.6 to 1. For 
the complete list of rounding modes, refer to the  Force.com Apex Code Developer’s Guide  at  www.
salesforce.com/us/developer/docs/apexcode/index.htm .  

  Listing   4.9    demonstrates the three operations that can cause rounding.  

  Listing 4.9   Three Rounding Operations  

 Decimal d = 123.456;
  Long rounded = d.round(RoundingMode.HALF_EVEN);
  Decimal divided = d.divide(3, 3, RoundingMode.HALF_EVEN);
  Decimal reducedScale = d.setScale(2, RoundingMode.HALF_EVEN);    

http://www.salesforce.com/us/developer/docs/apexcode/index.htm
http://www.salesforce.com/us/developer/docs/apexcode/index.htm
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  Converting Strings to Dates  

 Strings can be converted to Date and Datetime types using the  valueOf  conversion methods, 
but the string values you’re converting from must be in a specific format. For Date, the format 
is  YYYY-MM-DD ; for Datetime,  YYYY-MM-DD HH:MM:SS , regardless of the locale setting of the 
user. Time does not have a  valueOf  method, but you can create one with its  newInstance  
method, providing hours, minutes, seconds, and milliseconds.  Listing   4.10    shows the creation 
of all three types.  

  Listing 4.10   Creating Date, Datetime, and Time  

 Date d = Date.valueOf('2015-12-31');
  Datetime dt = Datetime.valueOf('2015-12-31 02:30:00');
  Time t = Time.newInstance(2,30,0,0);    

  Converting Dates to Strings  

 Dates can be converted to strings through the  String.valueOf  method. This applies a default 
format to the date values. If you want control over the format, Datetime has a  format  method 
that accepts a Date pattern. This pattern follows the  SimpleDateFormat  pattern found in the 
Java API, which is documented at the following URL:  http://download.oracle.com/javase/1.4.2/
docs/api/java/text/SimpleDateFormat.html . For example, the code in  Listing   4.11    outputs  Thu 
Dec 31, 2020 .  

  Listing 4.11   Formatting a Datetime  

 Datetime dt = Datetime.valueOf('2020-12-31 00:00:00');
  System.debug(dt.format('E MMM dd, yyyy'));     

  Operators  

 Apex supports the standard set of operators found in most languages. Each operator is listed in 
 Table   4.2    along with its valid data types, precedence if mathematical, and a brief description. In 
an expression with two operators, the operator with lower precedence is evaluated first.  

  Table 4.2   Operators, Their Data Types, and Precedence  

  Operators     Operands     Precedence     Description   

  =    Any compatible types   9   Assignment  

  +, -    Date, Datetime, Time   4   Add or subtract days on Date, Datetime, 
milliseconds on Time, argument must be 
Integer or Long  

  +    String   N/A   String concatenation  

http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
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  Operators     Operands     Precedence     Description   

  +, -, *, /    Integer, Long, Double, 
Decimal  

 4   Numeric add, subtract, multiply, divide  

  !    Boolean   2   Logical negation  

  -    Integer, Long, Double, 
Decimal  

 2   Arithmetic negation  

  ++, --    Integer, Long, Double, 
Decimal  

 1   Unary increment, decrement  

  &, |, ^    Integer, Long, Boolean   10   Bitwise  AND ,  OR ,  XOR   

  <<, >>, >>>    Integer, Long   10   Signed shift left, signed shift right, 
unsigned shift right  

  ==, <, >, 
<=, >=, !=   

 Any compatible types   5 (<, >, <=, 
>=), 6 (==, !=)  

 Not case sensitive, locale-sensitive com-
parisons: equality, less than, greater than, 
less than or equal to, greater than or 
equal to, not equal to  

  &&, ||    Boolean   7 (&&), 8 (||)    AND ,  OR , with short-circuiting behavior 
(second argument is not evaluated if first 
argument is sufficient to determine result)  

  ===, !==    Map, List, Set, Enum, 
SObject  

 N/A   Exact equality, exact inequality  

  ()    Any   1   Group an expression and increase its pre-
cedence  

  ? :    Boolean   N/A   Shortcut for  if/then/else  expression  

 Operators not included in  Table   4.2    are the assignment variations of date, string, and numeric 
( += ,  -= ,  *= ,  /= ) and bitwise ( |= ,  &= ,  ̂ = ,  <<= ,  >>= ,  >>>= ) arithmetic. For example,  x = x + 3  
assigns  x  to itself plus 3, but so does  x += 3 .   

  Arrays and Collections  

 Arrays and collections are a family of data types that contain a sequence of values. It includes 
Lists and Arrays, Sets, and Maps. This subsection covers each of the three types and describes 
how to create them and perform some basic operations. Each collection type is different, but 
there are four methods you can invoke on all of them:  

    1.     clear —    Removes all elements from the collection   

   2.     clone —    Returns a copy of the collection   

   3.     isEmpty —    Returns  false  if the collection has elements,  true  if empty   

   4.     size —    Returns the number of elements in the collection as an Integer    
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  Lists and Arrays  

 Lists and Arrays contain an ordered sequence of values, all the same type. Duplicate values 
are allowed. Unlike Lists, the length of an Array is fixed when you initialize it. Lists have a 
dynamic length that is adjusted as you add and remove elements.  

 To declare a List variable, use the  List  keyword followed by the data type of its values in angle 
brackets. Because Lists and Arrays are containers for other values, they must be initialized 
before values can be added to them. The  new  keyword creates an instance of the List.  Listing 
  4.12    declares a variable called  stringList  that contains Strings, initializes it, and adds a value.  

  Listing 4.12   Creating a List  

 List<String> stringList = new List<String>();
  stringList.add('Hello');   

 To create an Array, specify a variable name, data type, and length.  Listing   4.13    creates an Array 
of Strings named  stringArray , initializes it to accommodate five elements, and then assigns a 
value to its first element.  

  Listing 4.13   Creating an Array  

 String[] stringArray = new String[5];
  stringArray[0] = 'Hello';   

 Multidimensional Arrays are not supported. But you can create a two-dimensional List object 
by nesting a List within another List. In  Listing   4.14   ,  list2  is defined as a List containing Lists 
of Strings. A String List called  childList  is initialized, populated with a value, and added to 
 list2 .  

  Listing 4.14   Nested List Usage  

 List<List<String>> list2 = new List<List<String>>();
  List<String> childList = new List<String>();
  childList.add('value');
  list2.add(childList);   

 Arrays and Lists have interchangeable behavior and syntax in Apex, as demonstrated in  Listing 
  4.15   . Lists can be initialized using an Array initializer, and its elements accessed using the 
square-bracket notation. Arrays can be initialized using the List constructor, and accessed using 
the List getters and setters. But for the sake of code clarity, picking one usage style and stick-
ing with it is a good idea. In this book, List is the standard because it better reflects the object-
oriented nature of these collection types.  
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  Listing 4.15   Mixed Array and List Syntax  

 List<Integer> intList = new Integer[3];
  intList[0] = 123;
  intList.add(456);
  Integer[] intArray = new List<Integer>();
  intArray.add(456);
  intArray.set(0, 123);   

 Arrays and Lists preserve the order in which elements are inserted. They can also be sorted in 
ascending order using the  sort  method of the List object. For custom sorting behavior, you 
can implement the  Comparable  interface on the classes in your list. This interface allows you 
to examine two objects and let Force.com know if the objects are equal or if one occurs before 
the other.   

  Sets  

 The Set is another collection type. Like a List, a Set can store only one type of element at a 
time. But Sets do not allow duplicate values and do not preserve insertion order. Sets are initial-
ized like Lists. In  Listing   4.16   , a set named  stringSet  is created, and two values are added.  

  Listing 4.16   Basic Set Usage  

 Set<String> stringSet = new Set<String>();
  stringSet.add('abc');
  stringSet.add('def');
  System.debug(stringSet.contains('abc'));   

 The final statement in  Listing   4.16    outputs  true , illustrating one of the most valuable features 
of the Set collection type: its  contains  method. To test whether a particular String exists in an 
Array or a List, every element of the List must be retrieved and checked. With a Set, this test 
can be done more efficiently thanks to the  contains  method.   

  Maps  

 The Map type stores pairs of keys and values and does not preserve their insertion order. It 
maintains the relationship between key and value, functioning as a lookup table. Given a key 
stored in a Map, you can retrieve its corresponding value.  

 Maps are initialized with a key data type and value data type.  Listing   4.17    initializes a new 
Map called  myMap  to store Integer keys and String values. It inserts a single value using the  put  
method and then retrieves it using the  get  method. The last line of code prints  abc  because 
that is the value associated with the key  123 .  
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  Listing 4.17   Basic Map Usage  

 Map<Integer, String> myMap = new Map<Integer, String>();
  myMap.put(123, 'abc');
  System.debug(myMap.get(123));   

 Other useful methods of Maps include  containsKey  (returns  true  if the given key exists in the 
Map),  remove  (returns and removes an element by key),  keySet  (returns a Set of all keys), and 
 values  (returns an Array of all values).    

  Control Logic  

 This subsection describes how to control the flow of Apex code execution. It covers conditional 
statements, loops, exception statements, recursion, and asynchronous execution.  

  Conditional Statements  

 Conditional statements evaluate a Boolean condition and execute one code block if true, 
another if false.  Listing   4.18    provides an example, defining a function that prints  true  if an 
Integer argument is greater than 100,  false  otherwise.  

  Listing 4.18   Conditional Statement Usage  

 void testValue(Integer value) {
     if (value > 100) {
      System.debug('true');
    } else {
      System.debug('false');
    }
  }
  testValue(99);
  testValue(101);   

 In addition to this simple  if ,  else  structure, you can chain multiple conditional statements 
together using  else if .  

  Note 

 In conditional code blocks that contain a single statement, the curly braces around them 
can be omitted. This is true of all the control logic types in Apex. For example,  if (a > 0) 
return 1 / a; else return a;  is a valid statement.    
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  Loops  

 Loops in Apex behave consistently with other high-level languages.  Table   4.3    lists the loop 
statements available in Apex.  

  Table 4.3   Types of Loops  

  Name     Syntax     Description   

 Do-While Loop    do { code_block } 
while (condition);   

 Executes code block as long as Boolean condition 
is  true . Evaluates  condition  after running code 
block, executing the code block at least once.  

 While Loop    while (condition) { 
code_block; }   

 Executes code block as long as Boolean condi-
tion is  true . Evaluates  condition  before running 
code block, so code block might not be executed 
at all.  

 Traditional For 
Loop  

  for (init; exit 
condition; increment) 

{ code_block; }   

 Executes  init  statement once. Loops on the fol-
lowing steps: exit loop if Boolean  exit condi-
tion  evaluates to  false , executes code block, 
executes  increment  statement.  

 List/Set Iteration 
For Loop  

  for (var : list/set) 
{ code_block }   

 For every element of the list or set, assigns  var  to 
the current element and executes the code block. 
Cannot modify the collection while iterating.  

 The keywords  break  and  continue  can be used to further control the loops. To immediately 
exit a loop at any point in its execution, use  break  in the code block. To abort a cycle of loop 
execution in the middle of a code block and move to the next cycle, use  continue .   

  Exception Statements  

 Exceptions are classes used to signal a problem at runtime. They abort the normal flow of code 
execution, bubbling upward until explicitly handled by some other code, carrying with them 
information about the cause of the problem.  

 Apex allows custom exception classes to be defined that are meaningful to your programs. 
It also provides system exception classes corresponding to areas of the Force.com platform. 
Some common system exceptions are  DmlException  (issues with changes to the database), 
 NullPointerException  (attempt to dereference a null value),  QueryException  (issues with 
database queries), and  TypeException  (issues converting data types).  

 The two ways to use exceptions in your code are to raise an exception with the  throw  keyword 
and handle an exception with the  try ,  catch , and  finally  keywords:  

    1.    Raise an exception—    When your code cannot proceed due to a problem with its input 
or other issue, you can raise an exception. An exception stops execution of the code 
and provides information about the problem to its callers. Only custom exceptions, 
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classes that are subclasses of Force.com’s  Exception  class, can be raised. The names of 
all custom exception classes must end with the word  Exception . Construct an instance of 
your exception class using an optional message or another exception as the preceding 
cause and provide it as an argument to the  throw  keyword.   

   2.    Handle an exception—    An exception handler in Apex is a code block defined to expect 
and take action on one or more named exception classes. It consists of a  try  code block, 
zero or more  catch  code blocks, and optionally a  finally  code block. The  try  code 
block is executed first. If an exception is raised, Apex looks for a  catch  code block that 
matches the exception class. If it’s found, execution skips to the relevant  catch . If not, 
the exception is bubbled upward to the caller. After the code in the  try  completes, 
successfully or not, the  finally  code block is executed.    

  Listing   4.19    demonstrates both forms of exception statements. It inserts a Timecard record 
within a  try  block, using a  catch  block to handle a database exception ( DmlException ). The 
code to handle the database exception itself raises an exception, a custom exception class called 
 MyException . It ends by printing a final message in the  finally  block.  

  Listing 4.19   Sample Exception Statements  

 class MyException extends Exception {}
  Timecard__c timecard = new Timecard__c();
  try {
    insert timecard;
  } catch (DMLException e) {
    throw new MyException('Could not create Timecard record: ' + e);
  } finally {
    System.debug('Exiting timecard creation code');
  }    

  Recursion  

 Apex supports the use of recursion in code. The maximum stack depth is not documented, so 
experiment with your own code before committing to a recursive algorithm. For example, the 
code in  Listing   4.20    fails with  System.Exception: Maximum stack depth reached: 1001 .  

  Listing 4.20   Recursion with Unsupported Depth  

 Integer counter = 0;
  void recursive() {
    if (counter < 500) {
      counter++;
      recursive();
    }
  }
  recursive();    
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  Asynchronous Execution  

 Code in Apex normally is executed synchronously. From the user’s point of view, there is a 
single thread of execution that must complete before another can begin. But Apex also supports 
an asynchronous mode of execution called future methods. Code entering a future method 
completes immediately, but the body of the method isn’t executed until later, at a time deter-
mined by the Force.com platform.  

 The code in  Listing   4.21    declares a future method called  asyncMethod  with a single parameter: 
a list of strings. It might use these strings to query records via SOQL and perform DML opera-
tions on them.  

  Listing 4.21   Future Method Declaration  

 @future
  public static void asyncMethod(List<String> idsToProcess) {
    // code block
  }   

 Future methods typically are used to perform expensive tasks that are not time-critical. A 
regular synchronous method can begin some work and invoke a future method to finish it. The 
future method starts fresh with respect to governor limits.  

 Future methods have many limitations, as follows:  

    ■   You cannot invoke more than ten future methods in a single scope of execution. There is 
no guarantee of when these methods will be executed by Force.com or in what order.   

   ■   Future methods cannot call other future methods.   

   ■   Future method signatures are always static and return void. They cannot use custom 
classes or database objects as parameters—only primitive types such as String and Integer 
and collections of primitive types.   

   ■   You cannot test future methods like ordinary methods. To write testable code that 
includes future methods, keep your future methods limited to a single line of code that 
invokes a normal method to perform the actual work. Then in your test case, call the 
normal method so that you can verify its behavior.   

   ■   Force.com limits your usage of future methods in a 24-hour period to 250,000 or 200 per 
licensed user, whichever is greater. This limit is shared with Batch and Scheduled Apex.    

  Note 

 Batch Apex is an additional feature for asynchronous execution. It provides much greater con-
trol than future methods and supports processing of millions of records. Batch Apex is covered 
in  Chapter   9   , “Batch Processing.”     
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  Object-Oriented Apex  

 Apex is an object-oriented language. This subsection describes Apex in terms of five standard 
characteristics of object-oriented languages, summarized here:  

    ■    Encapsulation—    Encapsulation combines the behavior and internal state of a program 
into a single logical unit.   

   ■    Information hiding—    To minimize tight coupling between units of a program, 
information hiding limits external visibility into the behavior and state of a unit.   

   ■    Modularity—    The goal of modularity is to establish clear boundaries between 
components of a program.   

   ■    Inheritance—    Inheritance allows one unit of code to define its behavior in terms of 
another.   

   ■    Polymorphism—    Polymorphism is the capability to interact with multiple units of code 
interchangeably without special cases for each.    

 These principles of object-oriented programming help you learn the Apex syntax and behaviors 
from a language-neutral point of reference.  

  Encapsulation  

 Encapsulation describes the bundling of a program’s behavior and state into a single definition, 
usually aligned with some real-world concept. In Apex that definition is a class.  

 When a class is defined, it becomes a new data type in Apex. Classes contain variables, 
methods, properties, constructors, initializers, and inner classes. These components are summa-
rized in the following list, and their usage is demonstrated in  Listing   4.22   :  

    ■    Variables—    Variables hold the state of an object instance or class. By default, variables 
declared inside a class are scoped to individual object instances and are called member 
variables. Every instance of an object gets its own member variables and can read and 
write their values independently without interfering with the values stored in other 
object instances. There are also class variables, also known as static variables. They are 
declared using the  static  keyword. Static variables are shared across all instances of the 
object.   

   ■    Methods—    Methods define the verbs in a class, the actions to be taken. By default, 
they operate within the context of individual object instances, able to access all visible 
member variables. Methods can also be static, operating on the class itself. Static methods 
have access to static variables but never member variables.   

   ■    Properties—    A property is a shortened form of a method that provides access to a static 
or instance variable. An even shorter form is called an automatic property. These are 
properties with no code body. When no code is present, the logic is implied. Getters 
return their value; setters set their value.   
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   ■    Constructors—    A constructor is a special method executed when a class is instantiated. 
Constructors are declared much like methods, but share their name with the class name, 
and have no return type declaration.   

   ■    Initializers—    An initializer contains code that runs before any other code in the class.   

   ■    Inner classes—    An inner class is a class defined within another class.    

  Listing 4.22   Class Definition  

 class MyClass {
    static Integer count; /* Class variable */
    Integer cost; /* Member variable */
    MyClass(String c) { /* Constructor */ }
    void doSomething() { /* Method */ }
    Integer unitCost { get { return cost; } set { this.cost = value; } }
    Integer q { get; set; }
    { /* Initializer */ }
    class MyInnerClass { /* Inner class */ }
  }   

  Tip 

 Code listings containing static variables or inner class declarations cannot be tested in the 
Execute Anonymous View of the Force.com IDE. Create a stand-alone class and then invoke it 
from the Execute Anonymous view. To create a stand-alone class in the Force.com IDE, select 
your Force.com Project and then select New, Apex Class from the File menu.    

  Information Hiding  

 Class definitions include notation to limit the visibility of their constituent parts to other code. 
This information-hiding notation protects a class from being used in unanticipated and invalid 
ways and simplifies maintenance by making dependencies explicit. In Apex, information 
hiding is accomplished with access modifiers. There are two places to use access modifiers: on 
classes, and on methods and variables:  

    ■    Classes—    An access modifier of  public  makes a class visible to the entire application 
namespace, but not outside it. A  global  class is visible to Apex code running in every 
application namespace.   

   ■    Methods and variables—    If designated  private , a method or variable is visible only 
within its defining class. This is the default behavior. An access modifier of  protected  
is visible to the defining class and subclasses,  public  is visible to any Apex code in the 
same application namespace but not accessible to other namespaces, and  global  can be 
used by any Apex code running anywhere in the organization, in any namespace.     
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  Modularity  

 Apex supports interfaces, which are skeletal class definitions containing a list of methods with 
no implementation. A class built from an interface is said to implement that interface, which 
requires that its method names and the data types of its argument lists be identical to those 
specified in the interface.  

 The proper use of interfaces can result in modular programs with clear logical boundaries 
between components, making them easier to understand and maintain.   

  Inheritance  

 Apex supports single inheritance. It allows a class to extend one other class and implement 
many interfaces. Interfaces can also extend one other interface. A class extending from another 
class is referred to as its subclass.  

 For a class to be extended, it must explicitly allow it by using the  virtual  or  abstract  
keyword in its declaration. Without one of these keywords, a class is final and cannot be 
subclassed. This is not true of interfaces because they are implicitly virtual.  

 By default, a subclass inherits all the functionality of its parent class. All the methods defined 
in the parent class are also valid on the subclass without any additional code. This behavior can 
be selectively overridden if the parent class permits. Overriding a method is a two-step process:  

    1.   The parent class must specify the  virtual  or  abstract  keywords on the methods to be 
overridden.   

   2.   In the subclass, the  override  keyword is used on the virtual or abstract methods to 
declare that it’s replacing the implementation of its parent.    

 After it’s overridden, a subclass can do more than replace the parent implementation. Using the 
 super  keyword, the subclass can invoke a method in its parent class, incorporating its func-
tionality and potentially contributing its own.   

  Polymorphism  

 An object that inherits a class or implements an interface can always be referred to in Apex 
by its parent class or interface. References in variable, property, and method declarations treat 
the derived objects identically to objects they are derived from, even though they are different 
types.  

 This polymorphic characteristic of object types can help you write concise code. It works with 
the hierarchy of object types to enable broad, general statements of program behavior, behav-
ior applying to many object types at once, while preserving the option to specify behavior per 
object type.  

 One example of using polymorphic behavior is method overloading, in which a single method 
name is declared with multiple argument lists. Consumers of the method simply invoke it by 
name, and Apex finds the correct implementation at runtime based on the object types.    



120 Chapter 4 Business Logic

  Understanding Governor Limits  

 Governor limits are imposed on your running Apex code based on the type of resource 
consumed. When a governor limit is encountered, your code is immediately terminated 
with an exception indicating the type of limit reached. Examples of resource types are heap 
(memory used during execution) and SOQL queries.  

  Table   4.4    lists a few of the most important governor limits. Additional governor limits are 
introduced later in the book.  

  Table 4.4   Subset of Governor Limits  

  Resource Type     Governor Limit   

 Heap   6MB  

 Apex code   1,000,000 lines of code executed, 3MB code size  

 Database   50,000 records retrieved via SOQL  

  Note 

 Namespaces are used to separate and isolate Apex code and database objects developed by 
different vendors so that they can coexist and interoperate in a single Force.com organization. 
Governor limits are applied independently to each namespace. For example, if you install a 
package from Force.com AppExchange, the resources consumed by code running inside that 
package do not count against the limits applied to your code.     

  Database Integration in Apex  

 In Apex, the Force.com database is already integrated into the language and runtime environ-
ment. There are no object-relational mapping tools or database connection pools to configure. 
Your Apex code is automatically aware of your database, including all of its objects and fields 
and the security rules protecting them.  

 This section examines the five ways the database is exposed in Apex code, which are summa-
rized here:  

    1.    Database records as objects—    Database objects are directly represented in Apex as classes. 
These classes are implicitly imported into your code, so you’re always developing from 
the latest database schema.   

   2.    Database queries—    SOQL is a concise expression of the records to be queried and 
returned to your programs.   

   3.    Persisting database records—    Apex has a built-in Data Manipulation Language (DML), 
providing verbs that create, update, or delete one or more records in the database.   
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   4.    Database triggers—    Triggers are code that register interest in a specific action or actions 
on a database object, such as an insert or delete on the Account object. When this action 
occurs, the trigger code is executed and can inhibit or enhance the behavior of the 
database action.   

   5.    Database security in Apex—    Normally, Apex code runs in a privileged mode, granting it 
full access to all the data in the system. Alternatively, you can configure it to run under 
the same restrictions imposed on the current user, including object and record-level 
sharing rules.    

  Database Records as Objects  

 All database objects, standard and custom, are available as first-class members of the Apex 
language, automatically and transparently. This eliminates the mind-numbing, error-prone 
work of importing, mapping, and translating between relational and program data structures, 
chores commonly required in general-purpose programming languages. In Apex, references to 
database objects are verified at compile time. This reduces the possibility of runtime surprises 
caused by field or object mismatches.  Listing   4.23    shows an example of creating a record in the 
Contact object and setting its first name field.  

  Listing 4.23   Creating a Record  

 Contact contact = new Contact();
  contact.FirstName = 'Larry';   

 Database relationships are also exposed in Apex. The  __r  syntax refers to a relationship field, 
a field that contains a reference to another object or list of objects.  Listing   4.24    builds on the 
previous listing, creating an Assignment record and associating it with the Contact record.  

  Listing 4.24   Creating a Record with Relationship  

 Assignment__c assignment = new Assignment__c();
  assignment.Contact__r = contact;   

 The Force.com IDE’s Schema Explorer can take the mystery out of relationship fields like 
 Contact__r . It displays the correct syntax for referring to fields and relationships, based on 
the actual schema of the database object. Its Schema list on the right side displays all objects, 
custom and standard. Drilling into an object, the  Fields  folder lists all fields in the object and 
their types. A reference type indicates that a field is the child object in a Lookup relationship. 
Expand these fields to reveal their parent object’s type and name. For example, in the Project 
custom object,  Account__r  is the foreign key  to the Account object. This is demonstrated in 
 Figure   4.4   .  
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 Figure 4.4   Viewing relationships in Schema Explorer         

 Data integrity is protected in Apex at compile and runtime using object metadata. For example, 
 Name  is defined as a read-only field in Contact, so the code in  Listing   4.25    cannot be compiled.  

  Listing 4.25   Attempted Assignment to Read-Only Field  

 Contact c = new Contact();
  c.Name = 'Larry';   

 After a database object is referenced in Apex code, that object cannot be deleted or edited in a 
way that invalidates the code. This protects your code from changes to the database schema. 
Impacted code must be commented out before the database objects are modified.   

  Database Queries  

 You’ve seen how data structures in Apex are implicitly defined by the objects in your data-
base. Force.com provides two query languages to populate these objects with data: Salesforce 
Object Query Language (SOQL) and Salesforce Object Search Language (SOSL). SOSL, addressed 
in  Chapter   5   , “Advanced Business Logic,” provides unstructured, full-text search across many 
objects from a single query.  
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 The focus of this section is SOQL because it is the workhorse of typical business applications. 
This section includes subsections on the basics of SOQL, filtering and sorting, how to query 
related objects, and how to use SOQL from Apex code.  

 As you read this section, you can experiment with the sample SOQL queries using the Force.
com IDE’s Schema Explorer. In the Navigator or Package Explorer View, expand the node for 
your Force.com Project and double-click salesforce.schema. Enter a query in the text box in the 
upper-left corner and click the Run Me button. The results appear in the table below the query. 
In  Figure   4.5   , a query has been executed against the Project object, returning four records. Note 
that many of the queries rely on objects from the Services Manager sample application rather 
than standard Force.com objects.  

 

 Figure 4.5   Running SOQL queries in Schema Explorer         

  Note 

 This book does not cover every feature and nuance of SOQL. For the complete specification, 
visit  http://developer.force.com  and download the latest Force.com SOQL and SOSL Reference.   

  SOQL Basics  

 Despite being one letter away from SQL and borrowing some of its syntax, SOQL is completely 
different and much easier to understand on its own terms. Just as Apex is not a general-purpose 

http://developer.force.com
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programming language like Java, SOQL is not a general-purpose database query language like 
SQL. SOQL is specifically designed and optimized for the Force.com database.  

 A SOQL statement is centered on a single database object, specifying one or more fields to 
retrieve from it. The fields to select are separated by commas.  Listing   4.26    is a simple SOQL 
statement that returns a list of Account records with Id and Name fields populated. SOQL is 
not case sensitive. SOQL keywords are shown throughout the book in uppercase and metadata 
objects in title case for readability only.  

  Listing 4.26   Simple SOQL Statement  

 SELECT Id, Name
    FROM Account    

  Filtering Records  

 SOQL supports filter conditions to reduce the number of records returned. A filter condition 
consists of a field name to filter, an operator, and a literal value.  

 Valid operators are  >  (greater than),  <  (less than),  >=  (greater than or equal to),  <=  (less than or 
equal to),  =  (equal to),  !=  (not equal to),  IN  and  NOT IN  (matches a list of literal values, and 
supports semi-joins and anti-joins), and  INCLUDES  and  EXCLUDES  (match against multi-select 
picklist values). On String fields, the  LIKE  operator is also available, which applies a pattern 
to filter records. The pattern uses the  %  wildcard to match zero or more characters,  _  to match 
one character, and the  \  character to escape the  %  and _ wildcards, treating them as regular 
characters.  

 Multiple filters are combined in a single SOQL statement using the Boolean operators  AND  and 
 OR  and grouped with parentheses.  Listing   4.27    returns the names of accounts with a type of 
direct customer, a modification date sometime during the current year, and more than $100 
million in annual revenue.  

  Listing 4.27   SOQL Statement with Filter Conditions  

 SELECT Name
    FROM Account
    WHERE AnnualRevenue > 100000000
    AND Type = 'Customer - Direct'
    AND LastModifiedDate = THIS_YEAR   

 Notice the way literal values are specified. Single quotation marks must be used around String 
literals but never with other data types.  THIS_YEAR  is a built-in relative time function. The 
values of relative time functions vary based on when the query is executed. Other relative time 
functions are  YESTERDAY ,  TODAY ,  TOMORROW ,  LAST_WEEK ,  THIS_WEEK ,  NEXT_WEEK , and so forth.  

 Absolute dates and times can also be specified without single quotation marks. 
Dates must use the  YYYY-MM-DD  format. Datetimes can be  YYYY-MM-DDThh:mm:ssZ , 
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 YYYY-MM-DDThh:mm:ss+hh:mm , or  YYYY-MM-DDThh:mm:ss-hh:mm , indicating the positive or 
negative offset from Coordinated Universal Time (UTC).  

 In addition to filter conditions, SOQL supports the  LIMIT  keyword. It sets an absolute upper 
bound on the number of records that can be returned from the query. It can be used in 
conjunction with all the other SOQL features. For example, the SOQL statement in  Listing   4.28    
returns up to ten Account records modified today.  

  Listing 4.28   SOQL Statement with Record Limit  

 SELECT Name, Type
    FROM Account
    WHERE LastModifiedDate = TODAY
    LIMIT 10    

  Sorting Query Results  

 Results of a query can be sorted by up to 32 fields in ascending ( ASC , the default) or descend-
ing ( DESC ) order. Sorting is not case sensitive, and nulls appear first unless otherwise specified 
( NULLS LAST ). Multi-select picklists, long text areas, and reference type fields cannot be used as 
sort fields. The SOQL query in  Listing   4.29    returns records first in ascending order by  Type  and 
then in descending order by  LastModifiedDate .  

  Listing 4.29   SOQL Statement with Sort Fields  

 SELECT Name, Type, AnnualRevenue
    FROM Account
    ORDER BY Type, LastModifiedDate DESC    

  Querying Multiple Objects  

 The result of a SOQL query can be a simple list of records containing rows and columns or hier-
archies of records containing data from multiple, related objects. Relationships between objects 
are navigated implicitly from the database structure. This eliminates the work of writing accu-
rate, efficient join conditions common to development on traditional SQL databases.  

 The two ways to navigate object relationships in SOQL are child-to-parent and parent-to-child. 
 Listing   4.30    is an example of a child-to-parent query, returning the name, city, and Force.com 
username creating its contact of all resources with a mailing address in the state of California. 
It selects and filters fields of the Project object, the parent object of Account. It also selects the 
 Name  field from the User object, a parent two levels removed from Project via the Account’s 
 CreatedBy  field.  
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  Listing 4.30   SOQL with Child-to-Parent Relationship  

 SELECT Name, Account__r.Name, Account__r.CreatedBy.Name
    FROM Project__c
    WHERE Account__r.BillingState = 'CA'   

  Caution 

 The results of child-to-parent relationship queries are not completely rendered in the Force.
com IDE. You can double-click a row and column to view fields from a parent record, but this is 
limited to direct parents only. Fields from parent-of-parent objects, such as the  Contact__r.
CreatedBy  relationship in  Listing   4.29   , are omitted from the results. This is a limitation not of 
SOQL, but of the Force.com IDE.   

 At most, five levels of parent objects can be referenced in a single child-to-parent query, and 
the query cannot reference more than 25 relationships in total.  

 The second form of relationship query is the parent-to-child query.  Listing   4.31    provides an 
example. The parent object is Resource, and the child is Timecard. The query selects from every 
Contact its Id, Name, and a list of hours from its Timecards in the current month.  

  Listing 4.31   SOQL with Parent-to-Child Relationship  

 SELECT Id, Name,
    (SELECT Total_Hours__c
      FROM Timecards__r
      WHERE Week_Ending__c = THIS_MONTH)
    FROM Contact   

 A parent-to-child query cannot reference more than 20 child objects. Double-clicking the 
parent record in the results table brings up the child records for viewing in the Force.com IDE.   

  Using SOQL in Apex  

 Like database objects, SOQL queries are an integrated part of the Apex language. They are 
developed in-line with your code and verified at compile time against your database schema.  

  Listing   4.32    is an example of a SOQL query used in Apex. It retrieves a list of Project records for 
this year and loops over them, summing their billable hours in the variable  totalHours . Note 
the usage of the variable named  statuses  directly in the SOQL query, preceded by a colon. 
This is known as a  bind variable . Bind variables can appear on the right side of a  WHERE  clause, 
as the value of an  IN  or  NOT IN  clause, and in the  LIMIT  clause.  
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  Listing 4.32   SOQL Query in Apex  

 Decimal totalHours = 0;
  List<String> statuses = new String[] { 'Green', 'Yellow' };
  List<Project__c> projects = [ SELECT Billable_Hours__c
    FROM Project__c
    WHERE Start_Date__c = THIS_YEAR and Status__c IN :statuses ];
  for (Project__c project : projects) {
    totalHours += project.Billable_Hours__c;
  }
  System.debug(totalHours);   

 This code relies on a List to store the results of the SOQL query. This means the entire SOQL 
query result must fit within the heap size available to the program. A better syntax for looping 
over SOQL records is a variation of the List/Set Iteration For Loop called a SOQL For Loop. The 
code in  Listing   4.33    is a rewrite of  Listing   4.32    using the SOQL For Loop. This allows it to run 
when the Project object contains up to 50,000 records for this year without consuming 50,000 
records’ worth of heap space at one time.  

  Listing 4.33   SOQL Query in Apex Using SOQL For Loop  

 Decimal totalHours = 0;
  for (Project__c project : [ SELECT Billable_Hours__c
    FROM Project__c
    WHERE Start_Date__c = THIS_YEAR ]) {
    totalHours += project.Billable_Hours__c;
  }
  System.debug(totalHours);   

 An additional form of the SOQL For Loop is designed for use with Data Manipulation Language 
(DML). Consider how the code in  Listing   4.32    could be adapted to modify Project records 
returned from the SOQL query rather than simply summing them. With the existing code, one 
Project record would be modified for each loop iteration, an inefficient approach and a quick 
way to run afoul of the governor limits. But if you change the type of variable in the For Loop 
to a list of Project records, Force.com provides up to 200 records per loop iteration. This allows 
you to modify  a whole list of records in a single operation.  

  Note 

 Looping through a list of records to calculate the sum of a field is provided as an example of 
using SOQL with Apex. It is not an optimal way to perform calculations on groups of records 
in the database.  Chapter   5    introduces aggregate queries, which enable calculations to be 
returned directly from a SOQL query, without Apex.   
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 Any valid SOQL statement can be executed in Apex code, including relationship queries. The 
result of a child-to-parent query is returned in a List of objects whose types match the child 
object. Where fields from a parent object are included in the query, they are available as nested 
variables in Apex code. For example, running the query in  Listing   4.30    within a block of Apex 
code returns a  List<Project__c> . If this List is assigned to a variable named  projects , the 
first Account record’s billing state is accessible by  projects[0].Account__r.BillingState .  

 Parent-to-child queries are returned in a List of objects, their type matching the parent object. 
Each record of the parent object includes a nested List of child objects. Using  Listing   4.31    as 
an example, if  results  contains the  List<Contact>  returned by the query,  results[0].
Timecards__r[0].Total_Hours__c  accesses a field in the first Contact’s first Timecard child 
record.  

  Note 

 Usage of SOQL in Apex is subject to governor limits. For example, you are limited to a total of 
100 SOQL queries, or 300 including parent-to-child queries. The cumulative maximum number 
of records returned by all SOQL queries, including parent-to-child, is 50,000.     

  Persisting Database Records  

 Changes to database records in Force.com are saved using Data Manipulation Language (DML) 
operations. DML operations allow you to modify records one at a time, or more efficiently 
in batches of multiple records. The five major DML operation types are listed next. Each is 
discussed in more detail later in this subsection.  

    ■     Insert —    Creates new records.   

   ■     Update —    Updates the values in existing records, identified by Force.com unique identifier 
( Id ) field or a custom field designated as an external identifier.   

   ■     Upsert —    If records with the same unique identifier or external identifier exist, this 
updates their values. Otherwise, it inserts them.   

   ■     Delete —    Moves records into the Recycle Bin.   

   ■     Undelete —    Restores records from the Recycle Bin.    

 DML operations can be included in Apex code in one of two ways: DML statements and data-
base methods. Beyond the syntax, they differ in how errors are handled. If any one record in 
a DML statement fails, all records fail and are rolled back. Database methods allow for partial 
success. This chapter uses DML statements exclusively.  Chapter   5    provides information on data-
base methods.  
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  Note 

 Usage of DML in Apex is subject to governor limits. For example, you are limited to a total of 
150 DML operations. The cumulative maximum number of records modified by all DML opera-
tions is 10,000.   

  Insert  

 The  Insert  statement adds up to 200 records of a single object type to the database. When all 
records succeed, they contain their new unique identifiers. If any record fails, a  DmlException  
is raised and the database is returned to its state prior to the  Insert  statement. For example, 
the code in  Listing   4.34    inserts a Contact record and uses it as the parent of a new Resource 
record.  

  Listing 4.34   Inserting a Record  

 try {
    Contact c = new Contact(FirstName = 'Justin', LastName = 'Case',
      Hourly_Cost_Rate__c = 75, Region__c = 'West');
    insert c;
  } catch (DmlException e) {
    System.debug(LoggingLevel.ERROR, e.getMessage());
  }    

  Update  

  Update  saves up to 200 existing records of a single object type. Existing records are identified 
by unique identifier ( Id ).  Listing   4.35    illustrates the usage of the  Update  statement by creating 
a Resource record for Doug and updating it. Refresh the Resources tab in the native user inter-
face to see the new record.  

  Listing 4.35   Updating Records  

 Contact doug = new Contact(FirstName = 'Doug', LastName = 'Hole');
  insert doug;
  doug.Hourly_Cost_Rate__c = 100;
  doug.Home_Office__c = 'London';
  update doug;    

  Upsert  

  Upsert  combines the behavior of the  Insert  and  Update  operations on up to 200 records of 
the same object type. First, it attempts to locate a matching record using its unique identifier 
or external identifier. If one is found, the statement acts as an  Update . If not, it behaves as an 
 Insert .  
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 The syntax of the  Upsert  statement is identical to  Update  and  Insert , but adds a second, 
optional argument for specifying an external identifier. If an external identifier is not provided, 
the record’s unique identifier is used. The code in  Listing   4.36    upserts a record in the Contact 
object using the field  Resource_ID__c  (created in  Chapter   11   , “Advanced Integration”) as 
an external identifier. If a Contact record with a  Resource_ID__c  value of  1001  exists, it is 
updated. If not, it is created.  

  Listing 4.36   Upserting a Record  

 Contact c = new Contact(Resource_ID__c = 1001,
    FirstName = 'Terry', LastName = 'Bull');
  upsert c Resource_ID__c;    

  Delete and Undelete  

  Delete  and  Undelete  statements move up to 200 records of the same object type to and from 
the Recycle Bin, respectively.  Listing   4.37    shows an example of the  Delete  statement. A new 
Resource record named Terry is added and then deleted.  

  Listing 4.37   Deleting Records  

 Contact terry = new Contact(FirstName = 'Terry', LastName = 'Bull');
  insert terry;
  delete terry;   

  Listing   4.38    builds on  Listing   4.37    to undelete the Terry record. Concatenate the listings in the 
Execute Anonymous view to test. The database is queried to prove the existence of the unde-
leted record. Try running the code a second time with the  undelete  statement commented out 
to see that it is working as intended.  

  Listing 4.38   Undeleting Records  

 undelete terry;
  Contact terry2 = [ SELECT Id, Name
    FROM Contact WHERE Name LIKE 'Terry%' LIMIT 1 ];
  System.debug(terry2.Name + ' exists');
  delete terry;     

  Database Triggers  

 Triggers are Apex code working in concert with the Force.com database engine, automatically 
invoked by Force.com when database records are modified. Trigger code can perform any neces-
sary processing on the modified data before or after Force.com completes its own work. The 
following list describes scenarios commonly implemented with triggers:  
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    ■   A validation rule is required that is too complex to define on the database object using 
formula expressions.   

   ■   Two objects must be kept synchronized. When a record in one object is updated, a trigger 
updates the corresponding record in the other.   

   ■   Records of an object must be augmented with values from another object, a complex 
calculation, or external data via a Web service call.    

 This subsection covers the essentials of trigger development, including definition, batch 
processing, and error handling.  

  Definition  

 A trigger definition consists of four parts:  

    1.   A unique trigger name to differentiate it from other triggers. Multiple triggers can be 
defined on the same database object.   

   2.   The name of the database object on which to create the trigger. You can create triggers 
on standard and custom objects.   

   3.   A comma-separated list of one or more trigger events that cause the trigger code to be 
executed. An event is specified using two keywords. The first keyword is either  before  or 
 after , indicating that the trigger is to be executed before or after the database operation 
is saved. The second keyword is the DML operation:  insert ,  update ,  delete , or 
 undelete . For example, the trigger event  before update  means that the trigger is fired 
before a record is updated. Note that  before undelete  is an invalid trigger event.   

   4.   The block of Apex code to execute when the trigger event occurs. The code typically 
loops over the list of records in the transaction and performs some action based on 
their contents. For  insert  and  update  triggers, the list of records in the transaction 
is provided in the variable  Trigger.new . In a  before  trigger, these records can be 
modified. In  update ,  delete , and  undelete  triggers,  Trigger.old  contains a read-only 
list of the original versions of the records. Also available to your trigger code is a set of 
Boolean variables indicating the event type that fired the trigger. They are useful when 
your trigger is defined  on multiple events yet requires separate behavior for each. These 
variables are  Trigger.isBefore ,  Trigger.isAfter ,  Trigger.isInsert ,  Trigger.
isUpdate ,  Trigger.isDelete , and  Trigger.isUndelete .    

  Listing   4.39    is an example of a trigger named  validateTimecard . It is triggered before inserts 
and updates to the Timecard custom object. It doesn’t do anything yet because its code block is 
empty.  

  Listing 4.39   Trigger Definition  

 trigger validateTimecard on Timecard__c(before insert, before update) {
    // code block
  }   
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 Triggers cannot be created in the Execute Anonymous view. Create them in the Force.com IDE 
by selecting File, New, Apex Trigger. To test triggers, use the native user interface to manu-
ally modify a relevant record, or write a unit test and invoke it from the Apex Test Runner or 
Execute Anonymous view.  

  Tip 

 A best practice for organizing trigger logic is to place it in an Apex class rather than the body of 
the trigger itself. This does not change anything about the behavior of the trigger or its governor 
limits, but encourages code reuse and makes the trigger easier to test.    

  Batch Processing in Triggers  

 Manual testing in the native user interface and simplistic unit tests can lull you into the false 
belief that triggers operate on a single record at a time. Not to be confused with Batch Apex, 
triggers can always be invoked with a list of records and should be optimized accordingly. 
Many ways exist to get a batch of records into the Force.com database, including the Data 
Loader and custom user interfaces. The surest way to a production issue with governor limits is 
to write a trigger that operates inefficiently when given a batch of records. The process of hard-
ening a  trigger to accept a batch of records is commonly called  bulkifying  the trigger.  

 Batches can be up to 200 records. When writing your trigger code, look at the resources 
consumed as you loop over  Trigger.new  or  Trigger.old . Study the governor limits and make 
sure your code splits its work into batches, doing as little work as possible in the loop. For 
example, if you have some additional data to query, build a set of IDs from the trigger’s records 
and query them once. Do not execute a SOQL statement for each loop iteration. If you need to 
run a DML statement, don’t put that in the loop either. Create a List of objects and  execute a 
single DML statement on the entire List.  Listing   4.40    shows an example of looping over a batch 
of Contact records (in the variable  contacts ) to produce a list of Assignment records to insert.  

  Listing 4.40   Batching DML Operations  

 List<Assignment__c> toInsert = new List<Assignment__c>();
  for (Contact contact : contacts) {
    toInsert.add(new Assignment__c(
      Contact__r = contact));
  }
  insert toInsert;    

  Error Handling  

 Errors are handled in triggers with  try ,  catch  blocks, consistent with other Apex code. But 
uncaught errors within a trigger differ from other Apex code in how they can impact execution 
of the larger database transaction the trigger participates in.  
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 A common use of errors in triggers is for validation. Strings describing validation errors can 
be added to individual records or fields using the  addError  method. Force.com continues to 
process the batch, collecting any additional errors, and then rolls back the transaction and 
returns the errors to the initiator of the transaction.  

  Note 

 Additional error-handling behavior is available for transactions initiated outside of Force.com; 
for example, through the SOAP API. Records can fail individually without rolling back the entire 
transaction. This is discussed in  Chapter   10   , “Integration with Force.com.”   

 If an uncaught exception is encountered in a trigger, whether thrown by the system or the 
trigger code itself, the batch of records is immediately aborted, and all changes are rolled back.    

  Database Security in Apex  

 Outside of Anonymous blocks, Apex always runs in a privileged, system context. This gives it 
access to read and write all data. It does not honor object-, field-, and record-level privileges of 
the user invoking the code. This works well for triggers, which operate at a low level and need 
full access to data.  

 Where full access is not appropriate, Apex provides the  with sharing  keyword. For example, 
custom user interfaces often require that access to data is limited by the privileges of the 
current user. Using  with sharing , the sharing rules applying to the current user are evaluated 
against the data requested by queries and updated in DML operations. This option is discussed 
in detail in  Chapter   6   , “User Interfaces.”    

  Debugging Apex Using Developer Console  

 Because Apex code cannot be executed on your local machine, debugging Apex requires some 
different tools and techniques than traditional software development. This section describes 
how to debug your code using two features of the Force.com’s Developer Console. Developer 
Console allows you to set checkpoints to capture a snapshot of the state of your program. It 
also records execution logs when users perform actions in your application, allowing you to 
step through the logic and resources consumed.  

  Checkpoints  

 Checkpoints allow you to freeze variables at a specific point of execution in your program 
and examine them later. The point in the code at which the checkpoint is captured is called a 
checkpoint location. It is similar to a breakpoint in a standard development environment.  

 To work with checkpoints, open Developer Console and click the Checkpoints tab. To set a 
checkpoint location, locate the code using the Tests or Repository tab and click to the left of 
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the desired line. In  Figure   4.6   , a checkpoint location has been set at line 10, indicated by the 
dot to the left of the line number.  

 

 Figure 4.6   Setting a heap dump location         

 When code is executed at a checkpoint location, a checkpoint is generated. It can be viewed 
by double-clicking on a row in the Checkpoints tab, as shown in  Figure   4.7   . A checkpoint has 
been selected in the Checkpoints tab at the bottom, and its details shown in the top panel. 
The Symbols tab lists the program’s variables and their values at the point in time of the 
checkpoint.    

  Execution Logs  

 Testing or debugging code from a user’s point of view, directly from the native user interface, 
is often necessary. With the Developer Console pop-up window open, you can continue using 
Force.com in the main browser window. Actions you perform in the application result in 
execution log entries. Click the Logs tab in Developer Console to examine them.  

 In  Figure   4.8   , the user’s action has resulted in a log entry, shown in the top table, which is 
selected and opened by double-clicking it. The top and middle of the screen display the raw 
execution log on the right panel, and an analysis in the left panels. The Stack Tree, Execution 
Overview, and Execution Stack provide different views of the Force.com resources consumed 
and their impact on response time.  
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 Figure 4.8   Examining the execution log           

 Figure 4.7   Examining a heap dump        
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  Unit Tests in Apex  

 Testing Apex code consists of writing and executing unit tests. Unit tests are special methods 
written to exercise the functionality of your code. The goal of testing is to write unit tests that 
execute as many lines as possible of the target code. The number of lines of code executed 
during a test is called  test coverage  and is expressed as a percentage of the total lines of code. 
Unit tests also typically perform some pretest preparation, such as creating sample data, and 
posttest verification of results.  

  Test Methods  

 Test methods are static Apex code methods, annotated with  @isTest . They are written within 
an outer class, also annotated with  @isTest . Tests are subject to the same governor limits as all 
Apex code, but every test method is completely independent for the purposes of limit tracking, 
not cumulative. Also, test classes are not counted against the code size limit for a Force.com 
organization.  

 A test is considered successful if its method is executed without encountering an uncaught 
exception. A common testing pattern is to make a series of assertions about the target code’s 
state using the built-in method  System.assert . The argument of  assert  is a Boolean expres-
sion. If it evaluates to  true , the program continues; otherwise, a  System.Exception  is thrown 
and causes the test to fail.  

  Listing   4.41    shows a simple test method. It asserts two statements. The second is false, so the 
test always fails.  

  Listing 4.41   Test Method  

 @isTest static void negativeTest() {
    Integer i = 2 + 2;
    System.assert(i == 4);
    System.assert(i / 2 == 1);
  }   

 Rather than adding two numbers together, most unit tests perform substantial operations in 
one or more other classes. Sometimes it’s necessary to examine the contents of a private vari-
able or invoke a protected method from a test. Rather than relaxing the access modifiers of the 
code to make them visible to tests, annotate the code you are testing with  @TestVisible . This 
annotation provides your test code with privileged access but otherwise preserves the access 
modifiers in your code.   

  Test Data  

 With the exception of users and profiles, tests do not have access to the data in the Force.com 
database. You can annotate a class or method with  @isTest(SeeAllData=true)  to make the 
organization’s data visible to tests, but this is not a best practice. The recommended approach 
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is for tests to create their own temporary test data. All database modifications occurring during 
execution of a test method are automatically rolled back after the method is completed. Create 
your own test data in a setup phase before your tests are executed, and limit your assertions to 
that test data.   

  Running Tests  

 All tests are automatically executed when migrating code to a production environment, even 
unchanged and existing tests not included in the migration. Tests can and should be executed 
manually throughout the development process. Three ways to run tests are described in the 
following list:  

    1.   The Force.com native user interface includes a test runner. In the App Setup area, click 
Develop, Apex Classes, and then click the Run All Tests button.   

   2.   In the Force.com IDE, right-click an Apex class containing test methods and select Force.
com, Run Tests.   

   3.   From Developer Console, click the Tests tab and the New Run button. Select the tests to 
include, and click the Run button. Alternatively, right-click on the Classes folder 
in Eclipse and select Force.com, Run Tests to execute all tests in your organization.  
Figure   4.9    shows Developer Console after running a test.    

 

 Figure 4.9   Viewing test results in Developer Console           
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  Sample Application: Validating Timecards  

 This section applies Apex, SOQL, DML, and triggers to ensure that timecards entered into the 
Services Manager sample application have a valid assignment. An  assignment  is a record indi-
cating that a resource is staffed on a project for a certain time period. A consultant can enter 
a timecard only for a project and time period he or she is authorized to work. Triggers are one 
way to enforce this rule.  

 The following subsections cover the process of configuring the Force.com IDE for Apex devel-
opment, creating the trigger code to implement the timecard validation rule, and writing and 
running unit tests.  

  Force.com IDE Setup  

 Begin by creating the Force.com IDE Project for the Services Manager sample application, if you 
have not already done so. Select the menu option File, New, Force.com Project. Enter a project 
name, username, password, and security token of your Development Edition organization 
and click the Next button and then the Finish button. The Force.com IDE connects to Force.
com, downloads the metadata in your organization to your local machine, and displays a new 
project node in your Navigator view.   

  Creating the Trigger  

  Listing   4.42    defines the trigger to validate timecards. It illustrates a best practice for trigger 
development: Keep the trigger’s code block as small as possible. Place code in a separate class 
for easier maintenance and to encourage code reuse. Use naming conventions to indicate 
that the code is invoked from a trigger, such as the  Manager  suffix on the class name and the 
 handle  prefix on the method name.  

  Listing 4.42   Trigger  validateTimecard   

 trigger validateTimecard on Timecard__c(before insert, before update) {
    TimecardManager.handleTimecardChange(Trigger.old, Trigger.new);
  }   

 To create this trigger, select File, New, Apex Trigger. Enter the trigger name, select the object 
( Timecard__c ), enable the two trigger operations ( before insert ,  before update ), and click 
the Finish button. This creates the trigger declaration and adds it to your project. It is now 
ready to be filled with the Apex code in  Listing   4.42   . If you save the trigger now, it will fail 
with a compilation error. This is because the dependent class,  TimecardManager , has not yet 
been defined.  

 Continue on to creating the class. Select File, New, Apex Class to reveal the New Apex Class 
Wizard. Enter the class name ( TimecardManager ), leave the other fields (Version and Template) 
set to their defaults, and click the Finish button.  
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  Listing   4.43    is the  TimecardManager  class. It performs the work of validating the timecard on 
behalf of the trigger. First, it builds a Set of resource Ids referenced in the incoming set of time-
cards. It uses this Set to query the Assignment object. For each timecard, the assignment List is 
looped over to look for a match on the time period specified in the timecard. If none is found, 
an error is added to the offending timecard. This error is ultimately reported to the user or 
program initiating the timecard transaction.  

  Listing 4.43    TimecardManager  Class  

 public with sharing class TimecardManager {
    public class TimecardException extends Exception {}
    public static void handleTimecardChange(List<Timecard__c> oldTimecards,
      List<Timecard__c> newTimecards) {
      Set<ID> contactIds = new Set<ID>();
      for (Timecard__c timecard : newTimecards) {
        contactIds.add(timecard.Contact__c);
      }
      List<Assignment__c> assignments = [ select Id, Start_Date__c,
        End_Date__c, Contact__c from Assignment__c
        where Contact__c in :contactIds ];
      if (assignments.size() == 0) {
        throw new TimecardException('No assignments');
      }
      Boolean hasAssignment;
      for (Timecard__c timecard : newTimecards) {
        hasAssignment = false;
        for (Assignment__c assignment : assignments) {
          if (assignment.Contact__c == timecard.Contact__c &&
            timecard.Week_Ending__c - 6 >= assignment.Start_Date__c &&
            timecard.Week_Ending__c <= assignment.End_Date__c) {
              hasAssignment = true;
              break;
          }
        }
        if (!hasAssignment) {
           timecard.addError('No assignment for contact ' +
            timecard.Contact__c + ', week ending ' +
            timecard.Week_Ending__c);
        }
      }
    }
  }    
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  Unit Testing  

 Now that the trigger is developed, you must test it. During development, taking note of the 
code paths and thinking about how they are best covered by unit tests is a good idea. An even 
better idea is to write the unit tests as you develop.  

 To create unit tests for the timecard validation code using the Force.com IDE, follow the same 
procedure as that for creating an ordinary Apex class. An optional variation on this process is to 
select the Test Class template from the Create New Apex Class Wizard. This generates skeleton 
code for a class containing only test methods.  

  Listing   4.44    contains unit tests for the  TimecardManager  class. Before each unit test, test data 
is inserted in a static initializer. The tests cover a simple positive case, a negative case in which 
no assignments exist for the timecard, a second negative case in which no valid assignments 
exist for the time period in a timecard, and a batch insert of timecards. The code demonstrates 
a best practice of placing all unit tests for a class in a separate test class with an intuitive, 
consistent naming convention. In our example, the  TimecardManager  class has a test class 
named  TestTimecardManager , the class name prefaced  by the word  Test.   

  Listing 4.44   Unit Tests for  TimecardManager  Class  

 @isTest
  private class TestTimecardManager {
    private static ID contactId, projectId;
  
    static {
      Contact contact = new Contact(FirstName = 'Nobody', LastName = 'Special');
      insert contact;
      contactId = contact.Id;
      Project__c project = new Project__c(Name = 'Proj1');
      insert project;
      projectId = project.Id;
    }
  
    @isTest static void positiveTest() {
      Date weekEnding = Date.valueOf('2015-04-11');
      insert new Assignment__c(Project__c = projectId,
        Start_Date__c =  weekEnding - 6, End_Date__c = weekEnding,
        Contact__c = contactId);
      insert new Timecard__c(Project__c = projectId,
        Week_Ending__c = weekEnding, Contact__c = contactId);
    }
  
    @isTest static void testNoAssignments() {
      Timecard__c timecard = new Timecard__c(Project__c = projectId,
        Week_Ending__c = Date.valueOf('2015-04-11'),
        Contact__c = contactId);
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      try {
        insert timecard;
      } catch  (DmlException e) {
        System.assert(e.getMessage().indexOf('No assignments') > 0);
        return;
      }
      System.assert(false);
    }
  
    @isTest static void testNoValidAssignments() {
      Date weekEnding = Date.valueOf('2015-04-04');
      insert new Assignment__c(Project__c = projectId,
        Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
        Contact__c = contactId);
      try {
        insert new Timecard__c(Project__c = projectId,
        Week_Ending__c = Date.today(), Contact__c = contactId);
      } catch (DmlException e) {
        System.assert(e.getMessage().indexOf('No assignment for contact') > 0);
        return;
      }
      System.assert(false);
    }
  
    @isTest static void testBatch() {
      Date weekEnding = Date.valueOf('2015-04-11');
      insert new Assignment__c(Project__c = projectId,
        Start_Date__c =  weekEnding - 6, End_Date__c = weekEnding,
        Contact__c = contactId);
      List<Timecard__c> timecards = new List<Timecard__c>();
      for (Integer i=0; i<200; i++) {
         timecards.add(new Timecard__c(Project__c = projectId,
          Week_Ending__c = weekEnding, Contact__c = contactId));
      }
      insert timecards;
    }
  }   

 After saving the code in the unit test class, run it by right-clicking in the editor and selecting 
Force.com, Run Tests. After a few seconds, you should see the Apex Test Runner view with a 
green check box indicating that all tests passed, as shown in  Figure   4.10   . Expand the results 
node to see 100% test coverage of the  TimecardManager , and scroll through the debug log to 
examine performance information and resource consumption for each of the tests.  
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 Figure 4.10   Viewing test results            

     Summary  

 This chapter is arguably the most important chapter in the book. It describes core Apex 
concepts and syntax that form the basis of all subsequent chapters. Absorb this chapter, 
augmenting it with the information available through the developer.force.com Web site and 
community, and you will be well prepared to write your own Force.com applications.  

 Before moving on, take a few minutes to review these major areas:  

    ■   Apex is the only language that runs inside the Force.com platform and is tightly 
integrated with the Force.com database. Apex is strongly typed and includes object-
oriented features.   

   ■   The Force.com database is queried using SOQL and SOSL, and its records are modified 
using DML. All three languages can be embedded directly inside Apex code.   

   ■   Resources consumed by Apex programs are tightly controlled by the Force.com platform 
through governor limits. Limits vary based on the type of resource consumed. Learn the 
relevant governor limits as early as possible in your development process. This ensures 
that you write efficient code that scales up to production data volumes.       
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  procedural,   82  
  restrictions,   163  
  Services Manager application,   87 - 88  
  sharing reasons,   82  

  rules,   82 ,  92 - 93  
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   size  

  collections,   109  
  query batches,   324  
  static resources,   241   

   size method (collections),   109   
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   Staffing Coordinator profile  
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   testNoContactForUser method,   231   
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   tables.     See  objects  

   tabs  

  creating,   41 ,  63 ,  215  
  page,   210   

   targetObjectIds unique identifiers  

  email templates,   169  
  MassEmailMessage object,   170   
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  Follow Team button,   385  
  mobile timecard entry page,   279  

  Services Manager security,   94 - 98  
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  Staffing Coordinator profile,   96 - 97  
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  record retrieval,   309 ,  324   

   unit tests  
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  test data,   137  
  test methods,   136  
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  custom, creating.    See  Visualforce 
  designer contributions,   12  
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  authentication  
  Bulk API,   345 - 346  
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  Streaming API example,   343  
  timed events,   237  
  Tooling API example,   359 - 360  
  viewing from native user interface 

buttons,   213  
  viewing in Salesforce Classic,   271  

  performance, tuning,   217 - 218  
  public access.    See  sites 
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