
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321949165
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321949165
https://plusone.google.com/share?url=http://www.informit.com/title/9780321949165
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321949165
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321949165/Free-Sample-Chapter

 Praise for Development with the Force.com Platform ,

Third Edition

 “The third edition of Development with the Force.com Platform is a must-read for anyone building
enterprise applications in the cloud. Whether you’re a CEO or a code ninja, Jason’s insight into the
Force.com platform is priceless. Why waste time learning from your own mistakes when you can
learn from a master.”

— Howard Brown , CEO and Founder, RingDNA

 “I absolutely love this book. Jason has organized and written it in a simplified manner which
makes the concepts easy to grasp for all audiences. I recommend it for any developer, consultant, or
manager new to or currently working with the Force.com platform.”

— Stephanie Buchenberger , Salesforce.com Delivery Manager, Appirio

 “Solid evolution of an already well-written book! The layout, format and content make it a great
tutorial for developers new to Apex as well as an informative and thorough reference for the most
experienced architect. Very up to date to the platform with practical examples that will undoubtedly
be used again and again.”

 —Tom Hedgecoth , Vice President, Global Consulting – sakonent

 “This is still the best, most comprehensive book on the Force.com platform written. If you are new
to Force.com, then this is the place to start. If you’re an experienced developer, then this is the book
you’ll return to, over and over again. It’s an essential companion for all Force.com developers.”

 —Kevin Ott , Senior Director, Engineering, Cisco Systems

 “Jason touches on all the core elements of Force.com with a balanced blend of configuration and
code. If you’re new to the platform, this book will save you countless hours as you come up to
speed—and if you’re a seasoned expert you probably already own it. In either case, consider it
required reading.”

 —Adam Purkiss , Principal Architect, MondayCall Solutions, and Organizer of the Bay Area Salesforce
Developer User Group

 “As a Salesforce system administrator and business analyst making the transition to Force.com
developer, this book helps me daily. It’s at the perfect level to cut through the vast amount of
information available for developing on Force.com on the one hand, and get to the details needed to
make my programs work on the other. I keep this book open perpetually, and it’s the first place I go
when I get stuck. The sample coding is strong and very reusable; it’s the #1 tool in my box. I’d highly
recommend Development with the Force.com Platform to anyone making the transition from Salesforce
system administrator or business analyst to developer.”

 —Gene Teglovic , PSA Consultant, Financialforce.com

This page intentionally left blank

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Development with
the Force.com

Platform
Building Business

Applications in the Cloud
Third Edition

 Jason Ouellette

 Editor-in-Chief

Mark Taub

 Executive Editor

Laura Lewin

 Development Editor

Songlin Qiu

 Managing Editor

Kristy Hart

 Project Editor

Andy Beaster

 Copy Editor

Karen Annett

 Indexer

Heather McNeill

 Proofreader

Chuck Hutchinson

 Technical Reviewers

Adam Purkiss
 Gene Teglovic

 Publishing Coordinator

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 Library of Congress Control Number: 2013950238

 Visit us on the Web: informit.com/aw

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 Screenshots © 2014 Salesforce.com, Inc. All rights reserved.

 ISBN-13: 978-0-321-94916-5
 ISBN-10: 0-321-94916-1

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: December 2013

❖

 For Landon

❖

 Contents at a Glance

 1 Introducing Force.com 1

 2 Database Essentials 21

 3 Database Security 71

 4 Business Logic 99

 5 Advanced Business Logic 143

 6 User Interfaces 185

 7 Advanced User Interfaces 233

 8 Mobile User Interfaces 263

 9 Batch Processing 281

 10 Integration with Force.com 301

 11 Advanced Integration 339

 12 Social Applications 369

 Index 387

 Table of Contents

 1 Introducing Force.com 1

Force.com in the Cloud Computing Landscape 1

Platform as a Service (PaaS) 2

Force.com as a Platform 4

Force.com Services 7

Inside a Force.com Project 9

Project Selection 9

Team Selection 11

Lifecycle 12

Tools and Resources 15

Sample Application: Services Manager 17

Background 17

User Roles 18

Development Plan 19

Summary 19

 2 Database Essentials 21

Overview of Force.com’s Database 21

Objects 22

Fields 23

Relationships 25

Query Language 26

Data Integration 29

Working with Custom Objects 32

Force.com Developer Edition 32

Tools for Custom Objects 33

Object Creation 35

Field Creation 38

Entering and Browsing Data 41

Additional Database Features 43

Sample Application: Data Model 49

Data Model Design Goals 49

Data Model Specification 50

viii Contentsviii Contents

Implementing the Data Model 58

Importing Data 64

Summary 69

 3 Database Security 71

Overview of Database Security 71

Object-Level Security 74

Profiles 74

Permission Sets 76

Field-Level Security 77

Record-Level Security 79

Record Ownership 79

User Groups 80

Sharing Model 80

Sample Application: Securing Data 84

Designing the Security Model 85

Implementing the Security Model 88

Testing the Security Model 94

Summary 98

 4 Business Logic 99

Introduction to Apex 100

Introducing the Force.com IDE 101

Installation 101

Force.com Perspective 101

Force.com Projects 103

Problems View 103

Schema Explorer 103

Apex Test Runner View 103

Execute Anonymous View 104

Apex Language Basics 105

Variables 105

Operators 109

Arrays and Collections 110

Control Logic 113

Object-Oriented Apex 117

Understanding Governor Limits 120

ixContents ixContents

Database Integration in Apex 120

Database Records as Objects 121

Database Queries 122

Persisting Database Records 128

Database Triggers 130

Database Security in Apex 133

Debugging Apex Using Developer Console 133

Checkpoints 133

Execution Logs 134

Unit Tests in Apex 136

Test Methods 136

Test Data 136

Running Tests 137

Sample Application: Validating Timecards 138

Force.com IDE Setup 138

Creating the Trigger 138

Unit Testing 140

Summary 142

 5 Advanced Business Logic 143

Aggregate SOQL Queries 144

Aggregate Functions 144

Grouping Records 145

Grouping Records with Subtotals 146

Additional SOQL Features 148

Inner Join and Outer Join 148

Semi-Join and Anti-Join 150

Multi-Select Picklists 154

Salesforce Object Search Language (SOSL) 154

SOSL Basics 155

SOSL in Apex 155

Transaction Processing 156

Data Manipulation Language (DML) Database
Methods 157

Savepoints 159

Record Locking 161

x Contentsx Contents

Apex Managed Sharing 162

Sharing Objects 162

Creating Sharing Rules in Apex 163

Sending and Receiving Email 168

Sending Email 168

Receiving Email 172

Dynamic Apex 174

Dynamic Database Queries 175

Schema Metadata 177

Dynamic Instance Creation 179

Custom Settings in Apex 180

Sample Application: Adding Email Notifications 181

Summary 183

 6 User Interfaces 185

Introduction to Visualforce 186

Overview of Visualforce 186

Getting Started with Visualforce 188

Visualforce Controllers 191

Standard Controllers 191

Custom Controllers 193

Controller Extensions 197

View Components 198

View Component Basics 198

Data Components 200

Action Components 203

Primitive Components 204

Force.com-Styled Components 205

Force.com User Interface Components 208

Visualforce and the Native User Interface 209

Standard Pages 210

Standard Buttons 213

Page Layouts 213

Custom Buttons and Links 215

Custom Tabs 215

xiContents xiContents

Visualforce in Production 215

Debugging and Tuning 215

Security 218

Error Handling 220

Governor Limits 221

Unit Tests 222

Sample Application: Skills Matrix 222

Basic Implementation 224

Full Implementation 224

Implementation Walk-Through 225

Summary 232

 7 Advanced User Interfaces 233

Asynchronous Actions 233

Partial Page Refresh 234

Action as JavaScript Function 235

Action as Timed Event 237

Action as JavaScript Event 237

Indicating Action Status 238

Modular Visualforce 240

Static Resources 241

Inclusion 242

Composition 242

Custom Visualforce Components 244

Dynamic Visualforce 246

Dynamic Field References 246

Component Generation 248

Single-Page Applications in Force.com 250

JavaScript Remoting 250

Force.com with AngularJS 251

Introduction to Force.com Sites 254

Enabling and Creating a Site 254

Security Configuration 255

Adding Pages to a Site 256

Authenticating Users 257

Sample Application: Enhanced Skills Matrix 258

Summary 262

xii Contentsxii Contents

 8 Mobile User Interfaces 263

Overview of Salesforce Mobile Technology 263

Salesforce Applications 264

Custom Applications 265

Getting Started with Mobile Web Applications 267

Frameworks 268

Data Access 269

Deployment 270

Sample Application: Mobile Timecard Entry 272

Summary 279

 9 Batch Processing 281

Introduction to Batch Apex 282

Batch Apex Concepts 282

Understanding the Batchable Interface 283

Applications of Batch Apex 284

Getting Started with Batch Apex 285

Developing a Batch Apex Class 285

Working with Batch Apex Jobs 286

Using Stateful Batch Apex 289

Using an Iterable Batch Scope 290

Limits of Batch Apex 292

Testing Batch Apex 293

Scheduling Batch Apex 293

Developing Schedulable Code 293

Scheduling Batch Apex Jobs 294

Sample Application: Missing Timecard Report 296

Creating the Custom Object 297

Developing the Batch Apex Class 298

Testing the Missing Timecard Feature 299

Summary 300

 10 Integration with Force.com 301

Apex Callouts 301

Calling RESTful Services from Apex 302

Calling SOAP Services from Apex 304

Calling into Force.com Using REST 306

xiiiContents xiiiContents

Getting Started with Force.com REST API 306

Force.com REST API Walk-Through 308

Creating Custom Apex REST Web Services 312

Calling into Force.com Using SOAP 314

Understanding Force.com SOAP API 314

Using the Enterprise API 322

Creating Custom Apex SOAP Web Services 326

Sample Application: Anonymous Benchmarking 329

Visualforce Page Design 330

Visualforce Controller Design 331

Integrating the SOAP Web Service 333

Sample Implementation 335

Summary 338

 11 Advanced Integration 339

Introduction to the Force.com Streaming API 340

Overview 340

Getting Started with Force.com Streaming API 341

Working with the Force.com Bulk API 344

Overview 345

Importing Records 346

Exporting Records 347

Getting Started with Force.com Canvas 349

Overview 349

Getting Started with Force.com Canvas 350

Introduction to the Force.com Tooling API 354

Overview 355

Getting Started with Force.com Tooling API 355

Understanding the Force.com Metadata API 360

Overview 360

Getting Started with the Metadata API 361

Sample Application: Database Integration 363

Integration Scenario 363

Implementation Strategy 363

Sample Implementation 364

Summary 366

xiv Contentsxiv Contents

 12 Social Applications 369

Overview of the Chatter Data Model 370

Chatter Posts 370

Chatter Comments 374

Feed-Tracked Changes 376

Followed Records 376

Using Chatter in Apex 378

Introduction to the Chatter REST API 379

Working with Chatter Visualforce Components 380

Sample Application: Follow Project Team 382

Summary 386

 Index 387

 Acknowledgments

 There are many people to thank for this book.

 ■ Laura Lewin: Laura is an Executive Editor at Pearson. She’s the person I email when
I’m late on a chapter to apologize and offer unique excuses. No matter how friendly her
response, which is always extremely friendly, the exchange helps pressure and shame me
into working harder to meet the deadlines.

 ■ Adam Purkiss, Gene Teglovic: The technical reviewers for this edition have really
impressed me with what they caught in the draft. They verified all of the code listings
and made countless suggestions for improvement throughout.

 ■ Songlin Qiu: Songlin is a Development Editor at Pearson. There are no figure/listing
numbering, styling, grammatical, or consistency problems that go unnoticed when she’s
on the job.

 ■ Olivia Basegio: Olivia is an Editorial Assistant at Pearson. She’s a big part of making the
publishing process fairly painless.

 ■ Kavindra Patel, Nick Tran: These two work at Salesforce.com and have been longtime
supporters of the book, especially this third edition. I can’t thank them enough.

 ■ Jay Gauthier: Jay is the VP of R&D at Software AG. His detailed feedback on the second
edition of this book drove some of the improvements found in this edition.

 ■ Gretchen, Mark, Tom, and Nate: Writing this book made me true to my panda name,
so +1,000 for your associated pain and suffering. Now that it’s done, I need a new name,
like Well-Tempered Panda.

 ■ Tracey: Thank you for supporting me as always, checking on me to see if I’m still alive in
my writing chair, and making “rocket fuel” (iced coffee), which lost its kick somewhere
around Chapter 6 .

 About the Author

 Jason Ouellette is a SaaS entrepreneur and independent technology consultant with 17 years
of experience in the enterprise software industry, including 9 years of hands-on work with
Salesforce.com. He is currently CTO and Co-Founder of SocialPandas, a SaaS product company
focused on converting social data into actionable intelligence for salespeople. In his prior role
as Chief Architect of Appirio, a leading Salesforce.com consultancy, he led the development
of popular Salesforce AppExchange applications such as Cloud Sync, Cloud Factor, and
Professional Services Enterprise. He was recognized by Salesforce as a Force.com MVP in
2011–2013, and Force.com Developer Hero in 2009. He has a B.S. in Information and Decision
Systems from Carnegie Mellon University.

 Preface

 I wrote this book to help developers discover Force.com as a viable, even superior tool for
building business applications.

 I’m always surprised at how many developers I meet who aren’t aware of Force.com as a
platform. They know of Salesforce, but only that it’s a CRM. Even those who have heard of
Force.com are amazed when I describe what Appirio and other companies are building with it.
“I didn’t know you could do that with Force.com” is a common reaction, even to the simplest
of things such as creating custom database tables.

 Since the second edition of this book, Salesforce has delivered more than six major releases.
This third edition refocuses the book on custom application development and away from
“clicks not code”-style, configuration-driven features. It contains updates throughout to cover
new capabilities such as Developer Console, JSON support, Streaming and Tooling APIs, REST
integration, and support for MVC frameworks like AngularJS in Visualforce. It also features a
new chapter: Chapter 8 , “Mobile User Interfaces.”

 Although there are more cloud-based application development platforms than ever before,
Force.com continues to offer unique and outstanding value for business applications. With its
core strength in customer data management, deep set of thoughtfully integrated features, and
support for open standards, Force.com can save you significant time and effort throughout the
software development lifecycle.

 Key Features of This Book

 This book covers areas of Force.com relevant to developing applications in a corporate
environment. It takes a hands-on approach, providing code examples and encouraging
experimentation. It includes sections on the Force.com database, Apex programming language,
Visualforce user interface technology, integration to other systems, and supporting features
such as workflow and analytics. SFA, CRM, customer support, and other prebuilt applications
from Salesforce are not discussed, but general Force.com platform skills are helpful for working
in these areas as well. The book does not cover cloud computing in general terms. It also avoids
comparing Force.com with other technologies, platforms, or languages. Emphasis is placed on
understanding Force.com on its own unique terms rather than as a database, application server,
or cloud computing platform.

 Although Force.com is a commercial service sold by Salesforce, all the material in this book
was developed using a free Force.com Developer Edition account. Additionally, every feature
described in this book is available in the free edition.

 Throughout the text, you will see sidebar boxes labeled Note, Tip, or Caution. Notes explain
interesting or important points that can help you understand key concepts and techniques.
Tips are little pieces of information that will help you in real-world situations, and often offer
shortcuts to make a task easier or faster. Cautions provide information about detrimental
performance issues or dangerous errors. Pay careful attention to Cautions.

 Target Audience for This Book

 This book is intended for application developers who use Java, Ruby, or other high-level
languages to build Web and rich client applications for end users. It assumes knowledge
of relational database design and queries, Web application development using HTML and
JavaScript, and exposure to Web services.

 Code Examples for This Book

 The code listings in this book are available on Github: http://goo.gl/fjRqMX . They are also
available as a Force.com IDE project, also freely available on Github: https://github.com/
jmouel/dev-with-force-3e .

http://goo.gl/fjRqMX
https://github.com/jmouel/dev-with-force-3e
https://github.com/jmouel/dev-with-force-3e

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone number or email address. I will carefully review your comments and share them with
the author and editors who worked on the book.

 Email: laura.lewin@pearson.com

 Mail: Laura Lewin
Executive Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

 4
 Business Logic

 Business logic in Force.com is developed in Apex, a programming language designed for the Force.com
platform. Through Apex code, many platform features, such as the database and user interface, can be
customized to meet the needs of individual users and companies.

 This chapter introduces Apex as a language for writing business logic, specifically where it interacts
with the Force.com database. It uses a combination of explanatory text and code snippets to introduce
concepts and encourage experimentation. This approach assumes you’re already experienced in some
other high-level, object-oriented programming language and would like to see for yourself how Apex is
different.

 The chapter consists of the following sections:

 ■ Introduction to Apex— Learn basic facts about Apex and how it differs from other
programming languages.

 ■ Introducing the Force.com IDE— Take a brief tour of the Force.com IDE, a user interface for
developing, debugging, and testing Apex code.

 ■ Apex language basics— Learn the building blocks of the Apex language, such as data types and
loops.

 ■ Database integration in Apex— Incorporate the Force.com database into your Apex programs
through queries, statements that modify data, and code executed automatically when data is
changed.

 ■ Debugging Apex using Developer Console— With Developer Console, you can directly inspect
the state of your Apex code as it runs.

 ■ Unit tests in Apex— Write tests for your code and run them in Developer Console.

 ■ Sample application— Walk through the implementation of a data validation rule for the
Services Manager sample application.

 Note

 The code listings in this chapter are available in a GitHub Gist at http://goo.gl/evtet .

http://goo.gl/evtet

100 Chapter 4 Business Logic

 Introduction to Apex

 Apex is a stored procedure-like language that runs entirely on the Force.com platform. It
provides object-oriented features and tight integration with the Force.com database. It’s mainly
used in custom user interfaces and in triggers, code that is executed when data is changed in
the database.

 Apex is not a general-purpose programming language like Java or C. Its scope is limited to
business and consumer applications that operate on relational data and can benefit from the
feature set of the surrounding Force.com platform.

 Apex programs exist in a multitenant environment. The computing infrastructure used to
execute Apex is operated by Salesforce and shared among many developers or tenants of the
system. As a result, unlike general-purpose programming languages you are familiar with, the
execution of Apex programs is closely controlled to maintain a consistently high quality of
service for all tenants.

 This control is accomplished through governor limits, rules that Force.com places on programs
to keep them operating within their allotted share of system resources. Governor limits are
placed on database operations, memory and bandwidth usage, and lines of code executed.
Some governor limits vary based on the type of licensing agreement you have in place with
Salesforce or the context that the code is running in, and others are fixed for all users and use
cases.

 Note

 The most prevalent governor limits are discussed throughout this book, but it is not a complete
treatment of the subject. The authoritative guide to governor limits is the Force.com Apex Code
Developer’s Guide, available at http://developer.force.com . Educate yourself on governor limits
early in the development process. This education will alter the way you architect your Apex code
and prevent costly surprises. Additionally, test all of your Apex code with production-like data
volumes. This helps to expose governor-related issues prior to a production deployment.

 Here are a few important facts about Apex:

 ■ It includes integrated testing features. Code coverage is monitored and must reach 75%
or greater to be deployed into a production environment.

 ■ It is automatically upgraded. Salesforce executes all of its customers’ unit tests to verify
that they pass before deploying a major release of the Force.com platform. Your code is
always running on the latest version of Force.com and can take advantage of any and all
new functionality without the hassle and risks of a traditional software upgrade process.

 ■ There is no offline runtime environment for Force.com. You can edit your code on
your desktop computer, but it must be sent to Force.com for execution.

 ■ Apex is the only language that runs on the Force.com platform. You can integrate
Apex with programs running outside of Force.com using HTTP-based techniques such
as REST.

http://developer.force.com

101Introducing the Force.com IDE

 ■ The Force.com database is the only database integrated into the Apex language.
Other databases can be integrated through Web services or other technology using HTTP.

 The two primary choices for developing Apex code are the Web-based App Builder Tools and
the Force.com IDE, provided as a stand-alone application as well as a plug-in to the standard
Eclipse IDE. The Force.com IDE is the more powerful and developer-friendly of the two, so it is
used throughout this book.

 Introducing the Force.com IDE

 The Force.com IDE is an extension to the standard Eclipse development tool for building,
managing, and deploying projects on the Force.com platform. This section covers installation
and gives a brief walk-through of the Force.com IDE components used throughout this book.

 Installation

 The Force.com IDE is distributed in two forms: a stand-alone application and a plug-in to the
Eclipse IDE. If Force.com is your primary development language or you are not an existing
Eclipse IDE user, the stand-alone version is a good choice. The plug-in version of the Force.com
IDE requires Eclipse, which you can find at www.eclipse.org. Only specific versions of Eclipse
are supported by the Force.com IDE. If you are already using Eclipse but it’s an unsupported
version, keep your existing Eclipse version and install the supported version just for use with
the Force.com IDE. Multiple versions of Eclipse can coexist peacefully on a single computer.

 Visit http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse to learn how to install
the stand-alone and plug-in versions of the Force.com IDE.

 Force.com Perspective

 A perspective is a concept used by Eclipse to describe a collection of user interface components.
For example, Eclipse has built-in perspectives called Java and Java Debug. By installing the
Force.com IDE, you’ve added a perspective called Force.com. Figure 4.1 shows the Force.com
perspective, indicated in the upper-right corner.

 If you do not see the Force.com perspective, click the menu option Window, Open Perspective,
Other; select Force.com from the Open Perspective dialog; and click the OK button. The Open
Perspective dialog is shown in Figure 4.2 .

 The Force.com perspective includes several user interface panels, called Views. You can see two
of them at the bottom of Figure 4.1 : Execute Anonymous and Apex Test Runner. It also adds a
new type of project called the Force.com Project, which is shown in the left-side Navigator tab.
The first step to using the Force.com IDE is to create a Force.com Project.

http://www.eclipse.org
http://wiki.developerforce.com/index.php/Apex_Toolkit_for_Eclipse

102 Chapter 4 Business Logic

 Figure 4.1 Force.com perspective

 Figure 4.2 Open Perspective dialog

103Introducing the Force.com IDE

 Force.com Projects

 A Force.com Project allows you to read and write code, user interfaces, and other metadata
objects within a Force.com organization from your local computer. Although this metadata is
edited locally, it must be deployed to the Force.com service to run. Deployment to Force.com
occurs automatically every time you make a modification to an object in a Force.com Project
and save the changes. The contents of a Force.com Project are visible in the Navigator or
Package Explorer Views.

 Note

 Force.com does not provide its own integrated source control system, but Force.com Projects
can be integrated into your company’s source control system through the built-in Team features
of Eclipse. Refer to the Eclipse documentation for more information.

 Problems View

 The Force.com IDE leverages the standard Eclipse View called Problems to display compilation
errors. When you save changes to an object in a Force.com Project, it is sent over the network
to the Force.com service for compilation. If compilation fails, Force.com-specific errors are
added to the Problems View. In most cases, you can double-click a problem row to navigate to
the offending line of code.

 Schema Explorer

 The Schema Explorer allows direct interaction with the Force.com database. Use it to inspect
objects and fields and to execute database queries and preview their results. To open the
Schema Explorer, double-click the object named salesforce.schema in any Force.com Project.
In Figure 4.3 , the Schema Explorer is open and displaying the fields in the Project object in
its right panel. In its left panel, a query has been executed and has returned a list of Contact
records.

 Apex Test Runner View

 All business logic written in Force.com must be accompanied by unit tests to deploy it to a
production environment. Apex Test Runner View is a user interface to run unit tests and view
test results, including statistics on code performance and test coverage. If the Apex Test Runner
is not already visible on the bottom of your screen, go to the Window menu and select Show
View, Apex Test Runner.

104 Chapter 4 Business Logic

 Execute Anonymous View

 The Execute Anonymous View provides an interactive, immediate way to execute arbitrary
blocks of Apex code. Unless noted otherwise, you can execute all the code snippets in this
chapter directly from the Force.com IDE using the Execute Anonymous View.

 To try the Execute Anonymous View, first create a new Force.com Project. Go to the File menu
and select File, New Force.com Project. Enter a project name; enter your Force.com username,
password, and security token; and click the Next button. If you receive an error on this step,
double-check your username, password, and security token. Also make sure you’re provid-
ing the credentials for a Developer Edition organization, given that other types of organiza-
tions might not have access to the Force.com API. Select the metadata components Apex and
Visualforce; then click the Finish button to create the project.

 After you’ve created a project for your Development Edition organization, the Execute
Anonymous View should be visible in the lower-right half of the screen. If not, go to the
Window menu and select Show View, Execute Anonymous. In the Source to Execute text
box, enter the code given in Listing 4.1 . If the text box is not visible, resize your Execute
Anonymous View until it’s tall enough to see it. If the text box is disabled, double-click the
Execute Anonymous tab to maximize and enable it. After you’ve entered the code, click the
Execute Anonymous button to run it.

 Figure 4.3 Force.com IDE Schema Explorer

105Apex Language Basics

 Listing 4.1 Hello World

 String helloWorld(String name) {
 return 'Hello, ' + name;
 }
 System.debug(helloWorld('Apex'));

 This sample code defines a function called helloWorld that accepts a single String parameter.
It then invokes it with the name Apex and displays the results, Hello Apex , to the debug log.

 Apex Language Basics

 This section describes the building blocks of the Apex language. The building blocks are vari-
ables, operators, arrays and collections, and control logic. Basic knowledge of the syntax and
operation of Apex is valuable for almost any custom development task in Force.com, including
triggers, custom user interfaces, and integration with external systems. The section concludes
with an introduction to Apex governor limits. Knowledge of governor limits is a critical part of
writing business logic that scales from Developer Edition organizations to production organiza-
tions with real-world data volumes.

 Variables

 This subsection covers variable declaration, data types, constants and enums, and type conver-
sions. It also provides detail on rounding numbers and converting dates to and from strings,
common tasks in business applications.

 Variable Declaration

 Apex is a strongly typed language. All variables must be declared before they’re referenced. At
minimum, a variable declaration consists of the data type followed by the variable name. For
example, Listing 4.2 is a valid statement.

 Listing 4.2 Variable Declaration

 Integer i;

 The variable i is declared to be an Integer. Apex does not require variables to be initialized
before use, but doing so is good practice. The variable i initially contains a null value.

 Variable names cannot start with numbers or symbols, cannot contain two or more consecu-
tive underscore characters, and must not conflict with Apex reserved words. These are special
keywords used by the Apex language itself. The list of reserved words is available in the
Force.com Apex Code Developer’s Guide .

106 Chapter 4 Business Logic

 Variable names are not case sensitive. Try defining two variables with the same name, one in
uppercase and one in lowercase, to prove this, as in Listing 4.3 . If you try to execute this code,
you will receive a compilation error citing a duplicate variable.

 Listing 4.3 Case Insensitivity of Variable Names

 Integer i;
 String I;

 Data Types

 In Apex, all data types are objects. There is no concept of a primitive type such as an int in
Java. Table 4.1 lists Apex’s standard atomic data types. These types contain a single value at a
time or a null value.

 Table 4.1 Standard Atomic Data Types

 Data Type Valid Values

 String Zero or more Unicode characters.

 Boolean True or false.

 Date Date only; no time information is included.

 Datetime Date and time value.

 Time Time only; no date information is included.

 Integer 32-bit signed whole number (–2,147,483,648 to 2,147,483,647).

 Long 64-bit signed whole number (–2 63 to 2 63 –1).

 Decimal Signed number with whole (m, Integer) and fractional components (n),
expressed as m . n . Total length of number, including sign and decimal point,
cannot exceed 19 characters.

 Double 64-bit signed number with a decimal point (–2 63 to 2 63 –1).

 Blob Binary data.

 ID ID is a variation of the String type to store the unique identifiers for Force.com
database records. ID values are restricted to 18 characters. Values are checked
at compile and runtime, and a StringException is thrown if they do not
conform.

 Object Object is the generic type. Variables defined as Object are essentially type-
less and can receive any value. Typeless code is vulnerable to runtime errors
because it is invisible to the compiler’s type checking functionality.

107Apex Language Basics

 Constants and Enums

 A constant is a variable that cannot be modified after it has been initialized. It is declared using
the final keyword and can be initialized only in constructors, in initializers, or in the declara-
tion itself.

 An enum is a set of identifiers. Listing 4.4 provides an example of a constant as well as an
enum. The constant is an Integer type; the enum is named MyConstants and contains three
members. The variable x is initialized to the first member, and its data type is the enum itself,
which can be thought of as a user-defined data type.

 Listing 4.4 Defining an Integer Constant and an Enum

 final Integer MAGIC_NUMBER = 42;
 Enum MyConstants { One, Two, Three }
 MyConstants x = MyConstants.One;

 After it has been declared, an enum can be referenced in Apex code like any built-in data
type. It can also be converted into an Integer from its zero-indexed position using its ordinal
method or into a String using its name method.

 Converting Data Types

 The two ways to convert one data type to another are implicit and through conversion
methods. Implicit conversion means that no method calls or special notation is required to
convert one type into another. Conversion methods are functions that explicitly convert a
value from one type to another type.

 Implicit conversion is supported for numeric types and String types. For numbers, the rule is
this: Integer � Long � Double � Decimal. Conversions can move from left to right without
casting, as Listing 4.5 demonstrates.

 Listing 4.5 Implicit Conversion of Numeric Types

 Integer i = 123;
 Long l = i;
 Double d = l;
 Decimal dec = d;

 For Strings, ID and String are interchangeable, as shown in Listing 4.6 . If conversion is
attempted from String to ID but the String is not a valid ID, a System.StringException is
thrown.

108 Chapter 4 Business Logic

 Listing 4.6 Converting between ID and String

 String s = 'a0I80000003hazV';
 ID id = s;
 String s2 = id;

 When implicit conversion is not available for a pair of types, you must use a conversion
method. Data type objects contain a static conversion method called valueOf . Most conver-
sions can be handled through this method. Listing 4.7 is a series of statements that convert a
string into the various numeric types.

 Listing 4.7 Type Conversion Methods

 String s = '1234';
 Integer i = Integer.valueOf(s);
 Double d = Double.valueOf(s);
 Long l = Long.valueOf(s);
 Decimal dec = Decimal.valueOf(s);

 When a type conversion method fails, it throws a TypeException . For example, when the code
in Listing 4.8 executes, it results in an error: System.TypeException: Invalid integer:
1234.56 .

 Listing 4.8 Type Conversion Error

 String s = '1234.56';
 Integer i = Integer.valueOf(s);

 Rounding Numbers

 Rounding occurs when the fractional component of a Decimal or Double is dropped (round),
or when a Decimal is divided (divide) or its scale (number of decimal places) reduced
(setScale). Apex has a set of rounding behaviors called rounding modes that apply in all three
of these situations. By default, the rounding mode is HALF_EVEN , which rounds to the nearest
neighbor, or to the even neighbor if equidistant. For example, 0.5 rounds to 0, and 0.6 to 1. For
the complete list of rounding modes, refer to the Force.com Apex Code Developer’s Guide at www.
salesforce.com/us/developer/docs/apexcode/index.htm .

 Listing 4.9 demonstrates the three operations that can cause rounding.

 Listing 4.9 Three Rounding Operations

 Decimal d = 123.456;
 Long rounded = d.round(RoundingMode.HALF_EVEN);
 Decimal divided = d.divide(3, 3, RoundingMode.HALF_EVEN);
 Decimal reducedScale = d.setScale(2, RoundingMode.HALF_EVEN);

http://www.salesforce.com/us/developer/docs/apexcode/index.htm
http://www.salesforce.com/us/developer/docs/apexcode/index.htm

109Apex Language Basics

 Converting Strings to Dates

 Strings can be converted to Date and Datetime types using the valueOf conversion methods,
but the string values you’re converting from must be in a specific format. For Date, the format
is YYYY-MM-DD ; for Datetime, YYYY-MM-DD HH:MM:SS , regardless of the locale setting of the
user. Time does not have a valueOf method, but you can create one with its newInstance
method, providing hours, minutes, seconds, and milliseconds. Listing 4.10 shows the creation
of all three types.

 Listing 4.10 Creating Date, Datetime, and Time

 Date d = Date.valueOf('2015-12-31');
 Datetime dt = Datetime.valueOf('2015-12-31 02:30:00');
 Time t = Time.newInstance(2,30,0,0);

 Converting Dates to Strings

 Dates can be converted to strings through the String.valueOf method. This applies a default
format to the date values. If you want control over the format, Datetime has a format method
that accepts a Date pattern. This pattern follows the SimpleDateFormat pattern found in the
Java API, which is documented at the following URL: http://download.oracle.com/javase/1.4.2/
docs/api/java/text/SimpleDateFormat.html . For example, the code in Listing 4.11 outputs Thu
Dec 31, 2020 .

 Listing 4.11 Formatting a Datetime

 Datetime dt = Datetime.valueOf('2020-12-31 00:00:00');
 System.debug(dt.format('E MMM dd, yyyy'));

 Operators

 Apex supports the standard set of operators found in most languages. Each operator is listed in
 Table 4.2 along with its valid data types, precedence if mathematical, and a brief description. In
an expression with two operators, the operator with lower precedence is evaluated first.

 Table 4.2 Operators, Their Data Types, and Precedence

 Operators Operands Precedence Description

 = Any compatible types 9 Assignment

 +, - Date, Datetime, Time 4 Add or subtract days on Date, Datetime,
milliseconds on Time, argument must be
Integer or Long

 + String N/A String concatenation

http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/1.4.2/docs/api/java/text/SimpleDateFormat.html

110 Chapter 4 Business Logic

 Operators Operands Precedence Description

 +, -, *, / Integer, Long, Double,
Decimal

 4 Numeric add, subtract, multiply, divide

 ! Boolean 2 Logical negation

 - Integer, Long, Double,
Decimal

 2 Arithmetic negation

 ++, -- Integer, Long, Double,
Decimal

 1 Unary increment, decrement

 &, |, ^ Integer, Long, Boolean 10 Bitwise AND , OR , XOR

 <<, >>, >>> Integer, Long 10 Signed shift left, signed shift right,
unsigned shift right

 ==, <, >,
<=, >=, !=

 Any compatible types 5 (<, >, <=,
>=), 6 (==, !=)

 Not case sensitive, locale-sensitive com-
parisons: equality, less than, greater than,
less than or equal to, greater than or
equal to, not equal to

 &&, || Boolean 7 (&&), 8 (||) AND , OR , with short-circuiting behavior
(second argument is not evaluated if first
argument is sufficient to determine result)

 ===, !== Map, List, Set, Enum,
SObject

 N/A Exact equality, exact inequality

 () Any 1 Group an expression and increase its pre-
cedence

 ? : Boolean N/A Shortcut for if/then/else expression

 Operators not included in Table 4.2 are the assignment variations of date, string, and numeric
(+= , -= , *= , /=) and bitwise (|= , &= , ̂ = , <<= , >>= , >>>=) arithmetic. For example, x = x + 3
assigns x to itself plus 3, but so does x += 3 .

 Arrays and Collections

 Arrays and collections are a family of data types that contain a sequence of values. It includes
Lists and Arrays, Sets, and Maps. This subsection covers each of the three types and describes
how to create them and perform some basic operations. Each collection type is different, but
there are four methods you can invoke on all of them:

 1. clear — Removes all elements from the collection

 2. clone — Returns a copy of the collection

 3. isEmpty — Returns false if the collection has elements, true if empty

 4. size — Returns the number of elements in the collection as an Integer

111Apex Language Basics

 Lists and Arrays

 Lists and Arrays contain an ordered sequence of values, all the same type. Duplicate values
are allowed. Unlike Lists, the length of an Array is fixed when you initialize it. Lists have a
dynamic length that is adjusted as you add and remove elements.

 To declare a List variable, use the List keyword followed by the data type of its values in angle
brackets. Because Lists and Arrays are containers for other values, they must be initialized
before values can be added to them. The new keyword creates an instance of the List. Listing
 4.12 declares a variable called stringList that contains Strings, initializes it, and adds a value.

 Listing 4.12 Creating a List

 List<String> stringList = new List<String>();
 stringList.add('Hello');

 To create an Array, specify a variable name, data type, and length. Listing 4.13 creates an Array
of Strings named stringArray , initializes it to accommodate five elements, and then assigns a
value to its first element.

 Listing 4.13 Creating an Array

 String[] stringArray = new String[5];
 stringArray[0] = 'Hello';

 Multidimensional Arrays are not supported. But you can create a two-dimensional List object
by nesting a List within another List. In Listing 4.14 , list2 is defined as a List containing Lists
of Strings. A String List called childList is initialized, populated with a value, and added to
 list2 .

 Listing 4.14 Nested List Usage

 List<List<String>> list2 = new List<List<String>>();
 List<String> childList = new List<String>();
 childList.add('value');
 list2.add(childList);

 Arrays and Lists have interchangeable behavior and syntax in Apex, as demonstrated in Listing
 4.15 . Lists can be initialized using an Array initializer, and its elements accessed using the
square-bracket notation. Arrays can be initialized using the List constructor, and accessed using
the List getters and setters. But for the sake of code clarity, picking one usage style and stick-
ing with it is a good idea. In this book, List is the standard because it better reflects the object-
oriented nature of these collection types.

112 Chapter 4 Business Logic

 Listing 4.15 Mixed Array and List Syntax

 List<Integer> intList = new Integer[3];
 intList[0] = 123;
 intList.add(456);
 Integer[] intArray = new List<Integer>();
 intArray.add(456);
 intArray.set(0, 123);

 Arrays and Lists preserve the order in which elements are inserted. They can also be sorted in
ascending order using the sort method of the List object. For custom sorting behavior, you
can implement the Comparable interface on the classes in your list. This interface allows you
to examine two objects and let Force.com know if the objects are equal or if one occurs before
the other.

 Sets

 The Set is another collection type. Like a List, a Set can store only one type of element at a
time. But Sets do not allow duplicate values and do not preserve insertion order. Sets are initial-
ized like Lists. In Listing 4.16 , a set named stringSet is created, and two values are added.

 Listing 4.16 Basic Set Usage

 Set<String> stringSet = new Set<String>();
 stringSet.add('abc');
 stringSet.add('def');
 System.debug(stringSet.contains('abc'));

 The final statement in Listing 4.16 outputs true , illustrating one of the most valuable features
of the Set collection type: its contains method. To test whether a particular String exists in an
Array or a List, every element of the List must be retrieved and checked. With a Set, this test
can be done more efficiently thanks to the contains method.

 Maps

 The Map type stores pairs of keys and values and does not preserve their insertion order. It
maintains the relationship between key and value, functioning as a lookup table. Given a key
stored in a Map, you can retrieve its corresponding value.

 Maps are initialized with a key data type and value data type. Listing 4.17 initializes a new
Map called myMap to store Integer keys and String values. It inserts a single value using the put
method and then retrieves it using the get method. The last line of code prints abc because
that is the value associated with the key 123 .

113Apex Language Basics

 Listing 4.17 Basic Map Usage

 Map<Integer, String> myMap = new Map<Integer, String>();
 myMap.put(123, 'abc');
 System.debug(myMap.get(123));

 Other useful methods of Maps include containsKey (returns true if the given key exists in the
Map), remove (returns and removes an element by key), keySet (returns a Set of all keys), and
 values (returns an Array of all values).

 Control Logic

 This subsection describes how to control the flow of Apex code execution. It covers conditional
statements, loops, exception statements, recursion, and asynchronous execution.

 Conditional Statements

 Conditional statements evaluate a Boolean condition and execute one code block if true,
another if false. Listing 4.18 provides an example, defining a function that prints true if an
Integer argument is greater than 100, false otherwise.

 Listing 4.18 Conditional Statement Usage

 void testValue(Integer value) {
 if (value > 100) {
 System.debug('true');
 } else {
 System.debug('false');
 }
 }
 testValue(99);
 testValue(101);

 In addition to this simple if , else structure, you can chain multiple conditional statements
together using else if .

 Note

 In conditional code blocks that contain a single statement, the curly braces around them
can be omitted. This is true of all the control logic types in Apex. For example, if (a > 0)
return 1 / a; else return a; is a valid statement.

114 Chapter 4 Business Logic

 Loops

 Loops in Apex behave consistently with other high-level languages. Table 4.3 lists the loop
statements available in Apex.

 Table 4.3 Types of Loops

 Name Syntax Description

 Do-While Loop do { code_block }
while (condition);

 Executes code block as long as Boolean condition
is true . Evaluates condition after running code
block, executing the code block at least once.

 While Loop while (condition) {
code_block; }

 Executes code block as long as Boolean condi-
tion is true . Evaluates condition before running
code block, so code block might not be executed
at all.

 Traditional For
Loop

 for (init; exit
condition; increment)

{ code_block; }

 Executes init statement once. Loops on the fol-
lowing steps: exit loop if Boolean exit condi-
tion evaluates to false , executes code block,
executes increment statement.

 List/Set Iteration
For Loop

 for (var : list/set)
{ code_block }

 For every element of the list or set, assigns var to
the current element and executes the code block.
Cannot modify the collection while iterating.

 The keywords break and continue can be used to further control the loops. To immediately
exit a loop at any point in its execution, use break in the code block. To abort a cycle of loop
execution in the middle of a code block and move to the next cycle, use continue .

 Exception Statements

 Exceptions are classes used to signal a problem at runtime. They abort the normal flow of code
execution, bubbling upward until explicitly handled by some other code, carrying with them
information about the cause of the problem.

 Apex allows custom exception classes to be defined that are meaningful to your programs.
It also provides system exception classes corresponding to areas of the Force.com platform.
Some common system exceptions are DmlException (issues with changes to the database),
 NullPointerException (attempt to dereference a null value), QueryException (issues with
database queries), and TypeException (issues converting data types).

 The two ways to use exceptions in your code are to raise an exception with the throw keyword
and handle an exception with the try , catch , and finally keywords:

 1. Raise an exception— When your code cannot proceed due to a problem with its input
or other issue, you can raise an exception. An exception stops execution of the code
and provides information about the problem to its callers. Only custom exceptions,

115Apex Language Basics

classes that are subclasses of Force.com’s Exception class, can be raised. The names of
all custom exception classes must end with the word Exception . Construct an instance of
your exception class using an optional message or another exception as the preceding
cause and provide it as an argument to the throw keyword.

 2. Handle an exception— An exception handler in Apex is a code block defined to expect
and take action on one or more named exception classes. It consists of a try code block,
zero or more catch code blocks, and optionally a finally code block. The try code
block is executed first. If an exception is raised, Apex looks for a catch code block that
matches the exception class. If it’s found, execution skips to the relevant catch . If not,
the exception is bubbled upward to the caller. After the code in the try completes,
successfully or not, the finally code block is executed.

 Listing 4.19 demonstrates both forms of exception statements. It inserts a Timecard record
within a try block, using a catch block to handle a database exception (DmlException). The
code to handle the database exception itself raises an exception, a custom exception class called
 MyException . It ends by printing a final message in the finally block.

 Listing 4.19 Sample Exception Statements

 class MyException extends Exception {}
 Timecard__c timecard = new Timecard__c();
 try {
 insert timecard;
 } catch (DMLException e) {
 throw new MyException('Could not create Timecard record: ' + e);
 } finally {
 System.debug('Exiting timecard creation code');
 }

 Recursion

 Apex supports the use of recursion in code. The maximum stack depth is not documented, so
experiment with your own code before committing to a recursive algorithm. For example, the
code in Listing 4.20 fails with System.Exception: Maximum stack depth reached: 1001 .

 Listing 4.20 Recursion with Unsupported Depth

 Integer counter = 0;
 void recursive() {
 if (counter < 500) {
 counter++;
 recursive();
 }
 }
 recursive();

116 Chapter 4 Business Logic

 Asynchronous Execution

 Code in Apex normally is executed synchronously. From the user’s point of view, there is a
single thread of execution that must complete before another can begin. But Apex also supports
an asynchronous mode of execution called future methods. Code entering a future method
completes immediately, but the body of the method isn’t executed until later, at a time deter-
mined by the Force.com platform.

 The code in Listing 4.21 declares a future method called asyncMethod with a single parameter:
a list of strings. It might use these strings to query records via SOQL and perform DML opera-
tions on them.

 Listing 4.21 Future Method Declaration

 @future
 public static void asyncMethod(List<String> idsToProcess) {
 // code block
 }

 Future methods typically are used to perform expensive tasks that are not time-critical. A
regular synchronous method can begin some work and invoke a future method to finish it. The
future method starts fresh with respect to governor limits.

 Future methods have many limitations, as follows:

 ■ You cannot invoke more than ten future methods in a single scope of execution. There is
no guarantee of when these methods will be executed by Force.com or in what order.

 ■ Future methods cannot call other future methods.

 ■ Future method signatures are always static and return void. They cannot use custom
classes or database objects as parameters—only primitive types such as String and Integer
and collections of primitive types.

 ■ You cannot test future methods like ordinary methods. To write testable code that
includes future methods, keep your future methods limited to a single line of code that
invokes a normal method to perform the actual work. Then in your test case, call the
normal method so that you can verify its behavior.

 ■ Force.com limits your usage of future methods in a 24-hour period to 250,000 or 200 per
licensed user, whichever is greater. This limit is shared with Batch and Scheduled Apex.

 Note

 Batch Apex is an additional feature for asynchronous execution. It provides much greater con-
trol than future methods and supports processing of millions of records. Batch Apex is covered
in Chapter 9 , “Batch Processing.”

117Apex Language Basics

 Object-Oriented Apex

 Apex is an object-oriented language. This subsection describes Apex in terms of five standard
characteristics of object-oriented languages, summarized here:

 ■ Encapsulation— Encapsulation combines the behavior and internal state of a program
into a single logical unit.

 ■ Information hiding— To minimize tight coupling between units of a program,
information hiding limits external visibility into the behavior and state of a unit.

 ■ Modularity— The goal of modularity is to establish clear boundaries between
components of a program.

 ■ Inheritance— Inheritance allows one unit of code to define its behavior in terms of
another.

 ■ Polymorphism— Polymorphism is the capability to interact with multiple units of code
interchangeably without special cases for each.

 These principles of object-oriented programming help you learn the Apex syntax and behaviors
from a language-neutral point of reference.

 Encapsulation

 Encapsulation describes the bundling of a program’s behavior and state into a single definition,
usually aligned with some real-world concept. In Apex that definition is a class.

 When a class is defined, it becomes a new data type in Apex. Classes contain variables,
methods, properties, constructors, initializers, and inner classes. These components are summa-
rized in the following list, and their usage is demonstrated in Listing 4.22 :

 ■ Variables— Variables hold the state of an object instance or class. By default, variables
declared inside a class are scoped to individual object instances and are called member
variables. Every instance of an object gets its own member variables and can read and
write their values independently without interfering with the values stored in other
object instances. There are also class variables, also known as static variables. They are
declared using the static keyword. Static variables are shared across all instances of the
object.

 ■ Methods— Methods define the verbs in a class, the actions to be taken. By default,
they operate within the context of individual object instances, able to access all visible
member variables. Methods can also be static, operating on the class itself. Static methods
have access to static variables but never member variables.

 ■ Properties— A property is a shortened form of a method that provides access to a static
or instance variable. An even shorter form is called an automatic property. These are
properties with no code body. When no code is present, the logic is implied. Getters
return their value; setters set their value.

118 Chapter 4 Business Logic

 ■ Constructors— A constructor is a special method executed when a class is instantiated.
Constructors are declared much like methods, but share their name with the class name,
and have no return type declaration.

 ■ Initializers— An initializer contains code that runs before any other code in the class.

 ■ Inner classes— An inner class is a class defined within another class.

 Listing 4.22 Class Definition

 class MyClass {
 static Integer count; /* Class variable */
 Integer cost; /* Member variable */
 MyClass(String c) { /* Constructor */ }
 void doSomething() { /* Method */ }
 Integer unitCost { get { return cost; } set { this.cost = value; } }
 Integer q { get; set; }
 { /* Initializer */ }
 class MyInnerClass { /* Inner class */ }
 }

 Tip

 Code listings containing static variables or inner class declarations cannot be tested in the
Execute Anonymous View of the Force.com IDE. Create a stand-alone class and then invoke it
from the Execute Anonymous view. To create a stand-alone class in the Force.com IDE, select
your Force.com Project and then select New, Apex Class from the File menu.

 Information Hiding

 Class definitions include notation to limit the visibility of their constituent parts to other code.
This information-hiding notation protects a class from being used in unanticipated and invalid
ways and simplifies maintenance by making dependencies explicit. In Apex, information
hiding is accomplished with access modifiers. There are two places to use access modifiers: on
classes, and on methods and variables:

 ■ Classes— An access modifier of public makes a class visible to the entire application
namespace, but not outside it. A global class is visible to Apex code running in every
application namespace.

 ■ Methods and variables— If designated private , a method or variable is visible only
within its defining class. This is the default behavior. An access modifier of protected
is visible to the defining class and subclasses, public is visible to any Apex code in the
same application namespace but not accessible to other namespaces, and global can be
used by any Apex code running anywhere in the organization, in any namespace.

119Apex Language Basics

 Modularity

 Apex supports interfaces, which are skeletal class definitions containing a list of methods with
no implementation. A class built from an interface is said to implement that interface, which
requires that its method names and the data types of its argument lists be identical to those
specified in the interface.

 The proper use of interfaces can result in modular programs with clear logical boundaries
between components, making them easier to understand and maintain.

 Inheritance

 Apex supports single inheritance. It allows a class to extend one other class and implement
many interfaces. Interfaces can also extend one other interface. A class extending from another
class is referred to as its subclass.

 For a class to be extended, it must explicitly allow it by using the virtual or abstract
keyword in its declaration. Without one of these keywords, a class is final and cannot be
subclassed. This is not true of interfaces because they are implicitly virtual.

 By default, a subclass inherits all the functionality of its parent class. All the methods defined
in the parent class are also valid on the subclass without any additional code. This behavior can
be selectively overridden if the parent class permits. Overriding a method is a two-step process:

 1. The parent class must specify the virtual or abstract keywords on the methods to be
overridden.

 2. In the subclass, the override keyword is used on the virtual or abstract methods to
declare that it’s replacing the implementation of its parent.

 After it’s overridden, a subclass can do more than replace the parent implementation. Using the
 super keyword, the subclass can invoke a method in its parent class, incorporating its func-
tionality and potentially contributing its own.

 Polymorphism

 An object that inherits a class or implements an interface can always be referred to in Apex
by its parent class or interface. References in variable, property, and method declarations treat
the derived objects identically to objects they are derived from, even though they are different
types.

 This polymorphic characteristic of object types can help you write concise code. It works with
the hierarchy of object types to enable broad, general statements of program behavior, behav-
ior applying to many object types at once, while preserving the option to specify behavior per
object type.

 One example of using polymorphic behavior is method overloading, in which a single method
name is declared with multiple argument lists. Consumers of the method simply invoke it by
name, and Apex finds the correct implementation at runtime based on the object types.

120 Chapter 4 Business Logic

 Understanding Governor Limits

 Governor limits are imposed on your running Apex code based on the type of resource
consumed. When a governor limit is encountered, your code is immediately terminated
with an exception indicating the type of limit reached. Examples of resource types are heap
(memory used during execution) and SOQL queries.

 Table 4.4 lists a few of the most important governor limits. Additional governor limits are
introduced later in the book.

 Table 4.4 Subset of Governor Limits

 Resource Type Governor Limit

 Heap 6MB

 Apex code 1,000,000 lines of code executed, 3MB code size

 Database 50,000 records retrieved via SOQL

 Note

 Namespaces are used to separate and isolate Apex code and database objects developed by
different vendors so that they can coexist and interoperate in a single Force.com organization.
Governor limits are applied independently to each namespace. For example, if you install a
package from Force.com AppExchange, the resources consumed by code running inside that
package do not count against the limits applied to your code.

 Database Integration in Apex

 In Apex, the Force.com database is already integrated into the language and runtime environ-
ment. There are no object-relational mapping tools or database connection pools to configure.
Your Apex code is automatically aware of your database, including all of its objects and fields
and the security rules protecting them.

 This section examines the five ways the database is exposed in Apex code, which are summa-
rized here:

 1. Database records as objects— Database objects are directly represented in Apex as classes.
These classes are implicitly imported into your code, so you’re always developing from
the latest database schema.

 2. Database queries— SOQL is a concise expression of the records to be queried and
returned to your programs.

 3. Persisting database records— Apex has a built-in Data Manipulation Language (DML),
providing verbs that create, update, or delete one or more records in the database.

121Database Integration in Apex

 4. Database triggers— Triggers are code that register interest in a specific action or actions
on a database object, such as an insert or delete on the Account object. When this action
occurs, the trigger code is executed and can inhibit or enhance the behavior of the
database action.

 5. Database security in Apex— Normally, Apex code runs in a privileged mode, granting it
full access to all the data in the system. Alternatively, you can configure it to run under
the same restrictions imposed on the current user, including object and record-level
sharing rules.

 Database Records as Objects

 All database objects, standard and custom, are available as first-class members of the Apex
language, automatically and transparently. This eliminates the mind-numbing, error-prone
work of importing, mapping, and translating between relational and program data structures,
chores commonly required in general-purpose programming languages. In Apex, references to
database objects are verified at compile time. This reduces the possibility of runtime surprises
caused by field or object mismatches. Listing 4.23 shows an example of creating a record in the
Contact object and setting its first name field.

 Listing 4.23 Creating a Record

 Contact contact = new Contact();
 contact.FirstName = 'Larry';

 Database relationships are also exposed in Apex. The __r syntax refers to a relationship field,
a field that contains a reference to another object or list of objects. Listing 4.24 builds on the
previous listing, creating an Assignment record and associating it with the Contact record.

 Listing 4.24 Creating a Record with Relationship

 Assignment__c assignment = new Assignment__c();
 assignment.Contact__r = contact;

 The Force.com IDE’s Schema Explorer can take the mystery out of relationship fields like
 Contact__r . It displays the correct syntax for referring to fields and relationships, based on
the actual schema of the database object. Its Schema list on the right side displays all objects,
custom and standard. Drilling into an object, the Fields folder lists all fields in the object and
their types. A reference type indicates that a field is the child object in a Lookup relationship.
Expand these fields to reveal their parent object’s type and name. For example, in the Project
custom object, Account__r is the foreign key to the Account object. This is demonstrated in
 Figure 4.4 .

122 Chapter 4 Business Logic

 Figure 4.4 Viewing relationships in Schema Explorer

 Data integrity is protected in Apex at compile and runtime using object metadata. For example,
 Name is defined as a read-only field in Contact, so the code in Listing 4.25 cannot be compiled.

 Listing 4.25 Attempted Assignment to Read-Only Field

 Contact c = new Contact();
 c.Name = 'Larry';

 After a database object is referenced in Apex code, that object cannot be deleted or edited in a
way that invalidates the code. This protects your code from changes to the database schema.
Impacted code must be commented out before the database objects are modified.

 Database Queries

 You’ve seen how data structures in Apex are implicitly defined by the objects in your data-
base. Force.com provides two query languages to populate these objects with data: Salesforce
Object Query Language (SOQL) and Salesforce Object Search Language (SOSL). SOSL, addressed
in Chapter 5 , “Advanced Business Logic,” provides unstructured, full-text search across many
objects from a single query.

123Database Integration in Apex

 The focus of this section is SOQL because it is the workhorse of typical business applications.
This section includes subsections on the basics of SOQL, filtering and sorting, how to query
related objects, and how to use SOQL from Apex code.

 As you read this section, you can experiment with the sample SOQL queries using the Force.
com IDE’s Schema Explorer. In the Navigator or Package Explorer View, expand the node for
your Force.com Project and double-click salesforce.schema. Enter a query in the text box in the
upper-left corner and click the Run Me button. The results appear in the table below the query.
In Figure 4.5 , a query has been executed against the Project object, returning four records. Note
that many of the queries rely on objects from the Services Manager sample application rather
than standard Force.com objects.

 Figure 4.5 Running SOQL queries in Schema Explorer

 Note

 This book does not cover every feature and nuance of SOQL. For the complete specification,
visit http://developer.force.com and download the latest Force.com SOQL and SOSL Reference.

 SOQL Basics

 Despite being one letter away from SQL and borrowing some of its syntax, SOQL is completely
different and much easier to understand on its own terms. Just as Apex is not a general-purpose

http://developer.force.com

124 Chapter 4 Business Logic

programming language like Java, SOQL is not a general-purpose database query language like
SQL. SOQL is specifically designed and optimized for the Force.com database.

 A SOQL statement is centered on a single database object, specifying one or more fields to
retrieve from it. The fields to select are separated by commas. Listing 4.26 is a simple SOQL
statement that returns a list of Account records with Id and Name fields populated. SOQL is
not case sensitive. SOQL keywords are shown throughout the book in uppercase and metadata
objects in title case for readability only.

 Listing 4.26 Simple SOQL Statement

 SELECT Id, Name
 FROM Account

 Filtering Records

 SOQL supports filter conditions to reduce the number of records returned. A filter condition
consists of a field name to filter, an operator, and a literal value.

 Valid operators are > (greater than), < (less than), >= (greater than or equal to), <= (less than or
equal to), = (equal to), != (not equal to), IN and NOT IN (matches a list of literal values, and
supports semi-joins and anti-joins), and INCLUDES and EXCLUDES (match against multi-select
picklist values). On String fields, the LIKE operator is also available, which applies a pattern
to filter records. The pattern uses the % wildcard to match zero or more characters, _ to match
one character, and the \ character to escape the % and _ wildcards, treating them as regular
characters.

 Multiple filters are combined in a single SOQL statement using the Boolean operators AND and
 OR and grouped with parentheses. Listing 4.27 returns the names of accounts with a type of
direct customer, a modification date sometime during the current year, and more than $100
million in annual revenue.

 Listing 4.27 SOQL Statement with Filter Conditions

 SELECT Name
 FROM Account
 WHERE AnnualRevenue > 100000000
 AND Type = 'Customer - Direct'
 AND LastModifiedDate = THIS_YEAR

 Notice the way literal values are specified. Single quotation marks must be used around String
literals but never with other data types. THIS_YEAR is a built-in relative time function. The
values of relative time functions vary based on when the query is executed. Other relative time
functions are YESTERDAY , TODAY , TOMORROW , LAST_WEEK , THIS_WEEK , NEXT_WEEK , and so forth.

 Absolute dates and times can also be specified without single quotation marks.
Dates must use the YYYY-MM-DD format. Datetimes can be YYYY-MM-DDThh:mm:ssZ ,

125Database Integration in Apex

 YYYY-MM-DDThh:mm:ss+hh:mm , or YYYY-MM-DDThh:mm:ss-hh:mm , indicating the positive or
negative offset from Coordinated Universal Time (UTC).

 In addition to filter conditions, SOQL supports the LIMIT keyword. It sets an absolute upper
bound on the number of records that can be returned from the query. It can be used in
conjunction with all the other SOQL features. For example, the SOQL statement in Listing 4.28
returns up to ten Account records modified today.

 Listing 4.28 SOQL Statement with Record Limit

 SELECT Name, Type
 FROM Account
 WHERE LastModifiedDate = TODAY
 LIMIT 10

 Sorting Query Results

 Results of a query can be sorted by up to 32 fields in ascending (ASC , the default) or descend-
ing (DESC) order. Sorting is not case sensitive, and nulls appear first unless otherwise specified
(NULLS LAST). Multi-select picklists, long text areas, and reference type fields cannot be used as
sort fields. The SOQL query in Listing 4.29 returns records first in ascending order by Type and
then in descending order by LastModifiedDate .

 Listing 4.29 SOQL Statement with Sort Fields

 SELECT Name, Type, AnnualRevenue
 FROM Account
 ORDER BY Type, LastModifiedDate DESC

 Querying Multiple Objects

 The result of a SOQL query can be a simple list of records containing rows and columns or hier-
archies of records containing data from multiple, related objects. Relationships between objects
are navigated implicitly from the database structure. This eliminates the work of writing accu-
rate, efficient join conditions common to development on traditional SQL databases.

 The two ways to navigate object relationships in SOQL are child-to-parent and parent-to-child.
 Listing 4.30 is an example of a child-to-parent query, returning the name, city, and Force.com
username creating its contact of all resources with a mailing address in the state of California.
It selects and filters fields of the Project object, the parent object of Account. It also selects the
 Name field from the User object, a parent two levels removed from Project via the Account’s
 CreatedBy field.

126 Chapter 4 Business Logic

 Listing 4.30 SOQL with Child-to-Parent Relationship

 SELECT Name, Account__r.Name, Account__r.CreatedBy.Name
 FROM Project__c
 WHERE Account__r.BillingState = 'CA'

 Caution

 The results of child-to-parent relationship queries are not completely rendered in the Force.
com IDE. You can double-click a row and column to view fields from a parent record, but this is
limited to direct parents only. Fields from parent-of-parent objects, such as the Contact__r.
CreatedBy relationship in Listing 4.29 , are omitted from the results. This is a limitation not of
SOQL, but of the Force.com IDE.

 At most, five levels of parent objects can be referenced in a single child-to-parent query, and
the query cannot reference more than 25 relationships in total.

 The second form of relationship query is the parent-to-child query. Listing 4.31 provides an
example. The parent object is Resource, and the child is Timecard. The query selects from every
Contact its Id, Name, and a list of hours from its Timecards in the current month.

 Listing 4.31 SOQL with Parent-to-Child Relationship

 SELECT Id, Name,
 (SELECT Total_Hours__c
 FROM Timecards__r
 WHERE Week_Ending__c = THIS_MONTH)
 FROM Contact

 A parent-to-child query cannot reference more than 20 child objects. Double-clicking the
parent record in the results table brings up the child records for viewing in the Force.com IDE.

 Using SOQL in Apex

 Like database objects, SOQL queries are an integrated part of the Apex language. They are
developed in-line with your code and verified at compile time against your database schema.

 Listing 4.32 is an example of a SOQL query used in Apex. It retrieves a list of Project records for
this year and loops over them, summing their billable hours in the variable totalHours . Note
the usage of the variable named statuses directly in the SOQL query, preceded by a colon.
This is known as a bind variable . Bind variables can appear on the right side of a WHERE clause,
as the value of an IN or NOT IN clause, and in the LIMIT clause.

127Database Integration in Apex

 Listing 4.32 SOQL Query in Apex

 Decimal totalHours = 0;
 List<String> statuses = new String[] { 'Green', 'Yellow' };
 List<Project__c> projects = [SELECT Billable_Hours__c
 FROM Project__c
 WHERE Start_Date__c = THIS_YEAR and Status__c IN :statuses];
 for (Project__c project : projects) {
 totalHours += project.Billable_Hours__c;
 }
 System.debug(totalHours);

 This code relies on a List to store the results of the SOQL query. This means the entire SOQL
query result must fit within the heap size available to the program. A better syntax for looping
over SOQL records is a variation of the List/Set Iteration For Loop called a SOQL For Loop. The
code in Listing 4.33 is a rewrite of Listing 4.32 using the SOQL For Loop. This allows it to run
when the Project object contains up to 50,000 records for this year without consuming 50,000
records’ worth of heap space at one time.

 Listing 4.33 SOQL Query in Apex Using SOQL For Loop

 Decimal totalHours = 0;
 for (Project__c project : [SELECT Billable_Hours__c
 FROM Project__c
 WHERE Start_Date__c = THIS_YEAR]) {
 totalHours += project.Billable_Hours__c;
 }
 System.debug(totalHours);

 An additional form of the SOQL For Loop is designed for use with Data Manipulation Language
(DML). Consider how the code in Listing 4.32 could be adapted to modify Project records
returned from the SOQL query rather than simply summing them. With the existing code, one
Project record would be modified for each loop iteration, an inefficient approach and a quick
way to run afoul of the governor limits. But if you change the type of variable in the For Loop
to a list of Project records, Force.com provides up to 200 records per loop iteration. This allows
you to modify a whole list of records in a single operation.

 Note

 Looping through a list of records to calculate the sum of a field is provided as an example of
using SOQL with Apex. It is not an optimal way to perform calculations on groups of records
in the database. Chapter 5 introduces aggregate queries, which enable calculations to be
returned directly from a SOQL query, without Apex.

128 Chapter 4 Business Logic

 Any valid SOQL statement can be executed in Apex code, including relationship queries. The
result of a child-to-parent query is returned in a List of objects whose types match the child
object. Where fields from a parent object are included in the query, they are available as nested
variables in Apex code. For example, running the query in Listing 4.30 within a block of Apex
code returns a List<Project__c> . If this List is assigned to a variable named projects , the
first Account record’s billing state is accessible by projects[0].Account__r.BillingState .

 Parent-to-child queries are returned in a List of objects, their type matching the parent object.
Each record of the parent object includes a nested List of child objects. Using Listing 4.31 as
an example, if results contains the List<Contact> returned by the query, results[0].
Timecards__r[0].Total_Hours__c accesses a field in the first Contact’s first Timecard child
record.

 Note

 Usage of SOQL in Apex is subject to governor limits. For example, you are limited to a total of
100 SOQL queries, or 300 including parent-to-child queries. The cumulative maximum number
of records returned by all SOQL queries, including parent-to-child, is 50,000.

 Persisting Database Records

 Changes to database records in Force.com are saved using Data Manipulation Language (DML)
operations. DML operations allow you to modify records one at a time, or more efficiently
in batches of multiple records. The five major DML operation types are listed next. Each is
discussed in more detail later in this subsection.

 ■ Insert — Creates new records.

 ■ Update — Updates the values in existing records, identified by Force.com unique identifier
(Id) field or a custom field designated as an external identifier.

 ■ Upsert — If records with the same unique identifier or external identifier exist, this
updates their values. Otherwise, it inserts them.

 ■ Delete — Moves records into the Recycle Bin.

 ■ Undelete — Restores records from the Recycle Bin.

 DML operations can be included in Apex code in one of two ways: DML statements and data-
base methods. Beyond the syntax, they differ in how errors are handled. If any one record in
a DML statement fails, all records fail and are rolled back. Database methods allow for partial
success. This chapter uses DML statements exclusively. Chapter 5 provides information on data-
base methods.

129Database Integration in Apex

 Note

 Usage of DML in Apex is subject to governor limits. For example, you are limited to a total of
150 DML operations. The cumulative maximum number of records modified by all DML opera-
tions is 10,000.

 Insert

 The Insert statement adds up to 200 records of a single object type to the database. When all
records succeed, they contain their new unique identifiers. If any record fails, a DmlException
is raised and the database is returned to its state prior to the Insert statement. For example,
the code in Listing 4.34 inserts a Contact record and uses it as the parent of a new Resource
record.

 Listing 4.34 Inserting a Record

 try {
 Contact c = new Contact(FirstName = 'Justin', LastName = 'Case',
 Hourly_Cost_Rate__c = 75, Region__c = 'West');
 insert c;
 } catch (DmlException e) {
 System.debug(LoggingLevel.ERROR, e.getMessage());
 }

 Update

 Update saves up to 200 existing records of a single object type. Existing records are identified
by unique identifier (Id). Listing 4.35 illustrates the usage of the Update statement by creating
a Resource record for Doug and updating it. Refresh the Resources tab in the native user inter-
face to see the new record.

 Listing 4.35 Updating Records

 Contact doug = new Contact(FirstName = 'Doug', LastName = 'Hole');
 insert doug;
 doug.Hourly_Cost_Rate__c = 100;
 doug.Home_Office__c = 'London';
 update doug;

 Upsert

 Upsert combines the behavior of the Insert and Update operations on up to 200 records of
the same object type. First, it attempts to locate a matching record using its unique identifier
or external identifier. If one is found, the statement acts as an Update . If not, it behaves as an
 Insert .

130 Chapter 4 Business Logic

 The syntax of the Upsert statement is identical to Update and Insert , but adds a second,
optional argument for specifying an external identifier. If an external identifier is not provided,
the record’s unique identifier is used. The code in Listing 4.36 upserts a record in the Contact
object using the field Resource_ID__c (created in Chapter 11 , “Advanced Integration”) as
an external identifier. If a Contact record with a Resource_ID__c value of 1001 exists, it is
updated. If not, it is created.

 Listing 4.36 Upserting a Record

 Contact c = new Contact(Resource_ID__c = 1001,
 FirstName = 'Terry', LastName = 'Bull');
 upsert c Resource_ID__c;

 Delete and Undelete

 Delete and Undelete statements move up to 200 records of the same object type to and from
the Recycle Bin, respectively. Listing 4.37 shows an example of the Delete statement. A new
Resource record named Terry is added and then deleted.

 Listing 4.37 Deleting Records

 Contact terry = new Contact(FirstName = 'Terry', LastName = 'Bull');
 insert terry;
 delete terry;

 Listing 4.38 builds on Listing 4.37 to undelete the Terry record. Concatenate the listings in the
Execute Anonymous view to test. The database is queried to prove the existence of the unde-
leted record. Try running the code a second time with the undelete statement commented out
to see that it is working as intended.

 Listing 4.38 Undeleting Records

 undelete terry;
 Contact terry2 = [SELECT Id, Name
 FROM Contact WHERE Name LIKE 'Terry%' LIMIT 1];
 System.debug(terry2.Name + ' exists');
 delete terry;

 Database Triggers

 Triggers are Apex code working in concert with the Force.com database engine, automatically
invoked by Force.com when database records are modified. Trigger code can perform any neces-
sary processing on the modified data before or after Force.com completes its own work. The
following list describes scenarios commonly implemented with triggers:

131Database Integration in Apex

 ■ A validation rule is required that is too complex to define on the database object using
formula expressions.

 ■ Two objects must be kept synchronized. When a record in one object is updated, a trigger
updates the corresponding record in the other.

 ■ Records of an object must be augmented with values from another object, a complex
calculation, or external data via a Web service call.

 This subsection covers the essentials of trigger development, including definition, batch
processing, and error handling.

 Definition

 A trigger definition consists of four parts:

 1. A unique trigger name to differentiate it from other triggers. Multiple triggers can be
defined on the same database object.

 2. The name of the database object on which to create the trigger. You can create triggers
on standard and custom objects.

 3. A comma-separated list of one or more trigger events that cause the trigger code to be
executed. An event is specified using two keywords. The first keyword is either before or
 after , indicating that the trigger is to be executed before or after the database operation
is saved. The second keyword is the DML operation: insert , update , delete , or
 undelete . For example, the trigger event before update means that the trigger is fired
before a record is updated. Note that before undelete is an invalid trigger event.

 4. The block of Apex code to execute when the trigger event occurs. The code typically
loops over the list of records in the transaction and performs some action based on
their contents. For insert and update triggers, the list of records in the transaction
is provided in the variable Trigger.new . In a before trigger, these records can be
modified. In update , delete , and undelete triggers, Trigger.old contains a read-only
list of the original versions of the records. Also available to your trigger code is a set of
Boolean variables indicating the event type that fired the trigger. They are useful when
your trigger is defined on multiple events yet requires separate behavior for each. These
variables are Trigger.isBefore , Trigger.isAfter , Trigger.isInsert , Trigger.
isUpdate , Trigger.isDelete , and Trigger.isUndelete .

 Listing 4.39 is an example of a trigger named validateTimecard . It is triggered before inserts
and updates to the Timecard custom object. It doesn’t do anything yet because its code block is
empty.

 Listing 4.39 Trigger Definition

 trigger validateTimecard on Timecard__c(before insert, before update) {
 // code block
 }

132 Chapter 4 Business Logic

 Triggers cannot be created in the Execute Anonymous view. Create them in the Force.com IDE
by selecting File, New, Apex Trigger. To test triggers, use the native user interface to manu-
ally modify a relevant record, or write a unit test and invoke it from the Apex Test Runner or
Execute Anonymous view.

 Tip

 A best practice for organizing trigger logic is to place it in an Apex class rather than the body of
the trigger itself. This does not change anything about the behavior of the trigger or its governor
limits, but encourages code reuse and makes the trigger easier to test.

 Batch Processing in Triggers

 Manual testing in the native user interface and simplistic unit tests can lull you into the false
belief that triggers operate on a single record at a time. Not to be confused with Batch Apex,
triggers can always be invoked with a list of records and should be optimized accordingly.
Many ways exist to get a batch of records into the Force.com database, including the Data
Loader and custom user interfaces. The surest way to a production issue with governor limits is
to write a trigger that operates inefficiently when given a batch of records. The process of hard-
ening a trigger to accept a batch of records is commonly called bulkifying the trigger.

 Batches can be up to 200 records. When writing your trigger code, look at the resources
consumed as you loop over Trigger.new or Trigger.old . Study the governor limits and make
sure your code splits its work into batches, doing as little work as possible in the loop. For
example, if you have some additional data to query, build a set of IDs from the trigger’s records
and query them once. Do not execute a SOQL statement for each loop iteration. If you need to
run a DML statement, don’t put that in the loop either. Create a List of objects and execute a
single DML statement on the entire List. Listing 4.40 shows an example of looping over a batch
of Contact records (in the variable contacts) to produce a list of Assignment records to insert.

 Listing 4.40 Batching DML Operations

 List<Assignment__c> toInsert = new List<Assignment__c>();
 for (Contact contact : contacts) {
 toInsert.add(new Assignment__c(
 Contact__r = contact));
 }
 insert toInsert;

 Error Handling

 Errors are handled in triggers with try , catch blocks, consistent with other Apex code. But
uncaught errors within a trigger differ from other Apex code in how they can impact execution
of the larger database transaction the trigger participates in.

133Debugging Apex Using Developer Console

 A common use of errors in triggers is for validation. Strings describing validation errors can
be added to individual records or fields using the addError method. Force.com continues to
process the batch, collecting any additional errors, and then rolls back the transaction and
returns the errors to the initiator of the transaction.

 Note

 Additional error-handling behavior is available for transactions initiated outside of Force.com;
for example, through the SOAP API. Records can fail individually without rolling back the entire
transaction. This is discussed in Chapter 10 , “Integration with Force.com.”

 If an uncaught exception is encountered in a trigger, whether thrown by the system or the
trigger code itself, the batch of records is immediately aborted, and all changes are rolled back.

 Database Security in Apex

 Outside of Anonymous blocks, Apex always runs in a privileged, system context. This gives it
access to read and write all data. It does not honor object-, field-, and record-level privileges of
the user invoking the code. This works well for triggers, which operate at a low level and need
full access to data.

 Where full access is not appropriate, Apex provides the with sharing keyword. For example,
custom user interfaces often require that access to data is limited by the privileges of the
current user. Using with sharing , the sharing rules applying to the current user are evaluated
against the data requested by queries and updated in DML operations. This option is discussed
in detail in Chapter 6 , “User Interfaces.”

 Debugging Apex Using Developer Console

 Because Apex code cannot be executed on your local machine, debugging Apex requires some
different tools and techniques than traditional software development. This section describes
how to debug your code using two features of the Force.com’s Developer Console. Developer
Console allows you to set checkpoints to capture a snapshot of the state of your program. It
also records execution logs when users perform actions in your application, allowing you to
step through the logic and resources consumed.

 Checkpoints

 Checkpoints allow you to freeze variables at a specific point of execution in your program
and examine them later. The point in the code at which the checkpoint is captured is called a
checkpoint location. It is similar to a breakpoint in a standard development environment.

 To work with checkpoints, open Developer Console and click the Checkpoints tab. To set a
checkpoint location, locate the code using the Tests or Repository tab and click to the left of

134 Chapter 4 Business Logic

the desired line. In Figure 4.6 , a checkpoint location has been set at line 10, indicated by the
dot to the left of the line number.

 Figure 4.6 Setting a heap dump location

 When code is executed at a checkpoint location, a checkpoint is generated. It can be viewed
by double-clicking on a row in the Checkpoints tab, as shown in Figure 4.7 . A checkpoint has
been selected in the Checkpoints tab at the bottom, and its details shown in the top panel.
The Symbols tab lists the program’s variables and their values at the point in time of the
checkpoint.

 Execution Logs

 Testing or debugging code from a user’s point of view, directly from the native user interface,
is often necessary. With the Developer Console pop-up window open, you can continue using
Force.com in the main browser window. Actions you perform in the application result in
execution log entries. Click the Logs tab in Developer Console to examine them.

 In Figure 4.8 , the user’s action has resulted in a log entry, shown in the top table, which is
selected and opened by double-clicking it. The top and middle of the screen display the raw
execution log on the right panel, and an analysis in the left panels. The Stack Tree, Execution
Overview, and Execution Stack provide different views of the Force.com resources consumed
and their impact on response time.

135Debugging Apex Using Developer Console

 Figure 4.8 Examining the execution log

 Figure 4.7 Examining a heap dump

136 Chapter 4 Business Logic

 Unit Tests in Apex

 Testing Apex code consists of writing and executing unit tests. Unit tests are special methods
written to exercise the functionality of your code. The goal of testing is to write unit tests that
execute as many lines as possible of the target code. The number of lines of code executed
during a test is called test coverage and is expressed as a percentage of the total lines of code.
Unit tests also typically perform some pretest preparation, such as creating sample data, and
posttest verification of results.

 Test Methods

 Test methods are static Apex code methods, annotated with @isTest . They are written within
an outer class, also annotated with @isTest . Tests are subject to the same governor limits as all
Apex code, but every test method is completely independent for the purposes of limit tracking,
not cumulative. Also, test classes are not counted against the code size limit for a Force.com
organization.

 A test is considered successful if its method is executed without encountering an uncaught
exception. A common testing pattern is to make a series of assertions about the target code’s
state using the built-in method System.assert . The argument of assert is a Boolean expres-
sion. If it evaluates to true , the program continues; otherwise, a System.Exception is thrown
and causes the test to fail.

 Listing 4.41 shows a simple test method. It asserts two statements. The second is false, so the
test always fails.

 Listing 4.41 Test Method

 @isTest static void negativeTest() {
 Integer i = 2 + 2;
 System.assert(i == 4);
 System.assert(i / 2 == 1);
 }

 Rather than adding two numbers together, most unit tests perform substantial operations in
one or more other classes. Sometimes it’s necessary to examine the contents of a private vari-
able or invoke a protected method from a test. Rather than relaxing the access modifiers of the
code to make them visible to tests, annotate the code you are testing with @TestVisible . This
annotation provides your test code with privileged access but otherwise preserves the access
modifiers in your code.

 Test Data

 With the exception of users and profiles, tests do not have access to the data in the Force.com
database. You can annotate a class or method with @isTest(SeeAllData=true) to make the
organization’s data visible to tests, but this is not a best practice. The recommended approach

137Unit Tests in Apex

is for tests to create their own temporary test data. All database modifications occurring during
execution of a test method are automatically rolled back after the method is completed. Create
your own test data in a setup phase before your tests are executed, and limit your assertions to
that test data.

 Running Tests

 All tests are automatically executed when migrating code to a production environment, even
unchanged and existing tests not included in the migration. Tests can and should be executed
manually throughout the development process. Three ways to run tests are described in the
following list:

 1. The Force.com native user interface includes a test runner. In the App Setup area, click
Develop, Apex Classes, and then click the Run All Tests button.

 2. In the Force.com IDE, right-click an Apex class containing test methods and select Force.
com, Run Tests.

 3. From Developer Console, click the Tests tab and the New Run button. Select the tests to
include, and click the Run button. Alternatively, right-click on the Classes folder
in Eclipse and select Force.com, Run Tests to execute all tests in your organization.
Figure 4.9 shows Developer Console after running a test.

 Figure 4.9 Viewing test results in Developer Console

138 Chapter 4 Business Logic

 Sample Application: Validating Timecards

 This section applies Apex, SOQL, DML, and triggers to ensure that timecards entered into the
Services Manager sample application have a valid assignment. An assignment is a record indi-
cating that a resource is staffed on a project for a certain time period. A consultant can enter
a timecard only for a project and time period he or she is authorized to work. Triggers are one
way to enforce this rule.

 The following subsections cover the process of configuring the Force.com IDE for Apex devel-
opment, creating the trigger code to implement the timecard validation rule, and writing and
running unit tests.

 Force.com IDE Setup

 Begin by creating the Force.com IDE Project for the Services Manager sample application, if you
have not already done so. Select the menu option File, New, Force.com Project. Enter a project
name, username, password, and security token of your Development Edition organization
and click the Next button and then the Finish button. The Force.com IDE connects to Force.
com, downloads the metadata in your organization to your local machine, and displays a new
project node in your Navigator view.

 Creating the Trigger

 Listing 4.42 defines the trigger to validate timecards. It illustrates a best practice for trigger
development: Keep the trigger’s code block as small as possible. Place code in a separate class
for easier maintenance and to encourage code reuse. Use naming conventions to indicate
that the code is invoked from a trigger, such as the Manager suffix on the class name and the
 handle prefix on the method name.

 Listing 4.42 Trigger validateTimecard

 trigger validateTimecard on Timecard__c(before insert, before update) {
 TimecardManager.handleTimecardChange(Trigger.old, Trigger.new);
 }

 To create this trigger, select File, New, Apex Trigger. Enter the trigger name, select the object
(Timecard__c), enable the two trigger operations (before insert , before update), and click
the Finish button. This creates the trigger declaration and adds it to your project. It is now
ready to be filled with the Apex code in Listing 4.42 . If you save the trigger now, it will fail
with a compilation error. This is because the dependent class, TimecardManager , has not yet
been defined.

 Continue on to creating the class. Select File, New, Apex Class to reveal the New Apex Class
Wizard. Enter the class name (TimecardManager), leave the other fields (Version and Template)
set to their defaults, and click the Finish button.

139Sample Application: Validating Timecards

 Listing 4.43 is the TimecardManager class. It performs the work of validating the timecard on
behalf of the trigger. First, it builds a Set of resource Ids referenced in the incoming set of time-
cards. It uses this Set to query the Assignment object. For each timecard, the assignment List is
looped over to look for a match on the time period specified in the timecard. If none is found,
an error is added to the offending timecard. This error is ultimately reported to the user or
program initiating the timecard transaction.

 Listing 4.43 TimecardManager Class

 public with sharing class TimecardManager {
 public class TimecardException extends Exception {}
 public static void handleTimecardChange(List<Timecard__c> oldTimecards,
 List<Timecard__c> newTimecards) {
 Set<ID> contactIds = new Set<ID>();
 for (Timecard__c timecard : newTimecards) {
 contactIds.add(timecard.Contact__c);
 }
 List<Assignment__c> assignments = [select Id, Start_Date__c,
 End_Date__c, Contact__c from Assignment__c
 where Contact__c in :contactIds];
 if (assignments.size() == 0) {
 throw new TimecardException('No assignments');
 }
 Boolean hasAssignment;
 for (Timecard__c timecard : newTimecards) {
 hasAssignment = false;
 for (Assignment__c assignment : assignments) {
 if (assignment.Contact__c == timecard.Contact__c &&
 timecard.Week_Ending__c - 6 >= assignment.Start_Date__c &&
 timecard.Week_Ending__c <= assignment.End_Date__c) {
 hasAssignment = true;
 break;
 }
 }
 if (!hasAssignment) {
 timecard.addError('No assignment for contact ' +
 timecard.Contact__c + ', week ending ' +
 timecard.Week_Ending__c);
 }
 }
 }
 }

140 Chapter 4 Business Logic

 Unit Testing

 Now that the trigger is developed, you must test it. During development, taking note of the
code paths and thinking about how they are best covered by unit tests is a good idea. An even
better idea is to write the unit tests as you develop.

 To create unit tests for the timecard validation code using the Force.com IDE, follow the same
procedure as that for creating an ordinary Apex class. An optional variation on this process is to
select the Test Class template from the Create New Apex Class Wizard. This generates skeleton
code for a class containing only test methods.

 Listing 4.44 contains unit tests for the TimecardManager class. Before each unit test, test data
is inserted in a static initializer. The tests cover a simple positive case, a negative case in which
no assignments exist for the timecard, a second negative case in which no valid assignments
exist for the time period in a timecard, and a batch insert of timecards. The code demonstrates
a best practice of placing all unit tests for a class in a separate test class with an intuitive,
consistent naming convention. In our example, the TimecardManager class has a test class
named TestTimecardManager , the class name prefaced by the word Test.

 Listing 4.44 Unit Tests for TimecardManager Class

 @isTest
 private class TestTimecardManager {
 private static ID contactId, projectId;

 static {
 Contact contact = new Contact(FirstName = 'Nobody', LastName = 'Special');
 insert contact;
 contactId = contact.Id;
 Project__c project = new Project__c(Name = 'Proj1');
 insert project;
 projectId = project.Id;
 }

 @isTest static void positiveTest() {
 Date weekEnding = Date.valueOf('2015-04-11');
 insert new Assignment__c(Project__c = projectId,
 Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
 Contact__c = contactId);
 insert new Timecard__c(Project__c = projectId,
 Week_Ending__c = weekEnding, Contact__c = contactId);
 }

 @isTest static void testNoAssignments() {
 Timecard__c timecard = new Timecard__c(Project__c = projectId,
 Week_Ending__c = Date.valueOf('2015-04-11'),
 Contact__c = contactId);

141Sample Application: Validating Timecards

 try {
 insert timecard;
 } catch (DmlException e) {
 System.assert(e.getMessage().indexOf('No assignments') > 0);
 return;
 }
 System.assert(false);
 }

 @isTest static void testNoValidAssignments() {
 Date weekEnding = Date.valueOf('2015-04-04');
 insert new Assignment__c(Project__c = projectId,
 Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
 Contact__c = contactId);
 try {
 insert new Timecard__c(Project__c = projectId,
 Week_Ending__c = Date.today(), Contact__c = contactId);
 } catch (DmlException e) {
 System.assert(e.getMessage().indexOf('No assignment for contact') > 0);
 return;
 }
 System.assert(false);
 }

 @isTest static void testBatch() {
 Date weekEnding = Date.valueOf('2015-04-11');
 insert new Assignment__c(Project__c = projectId,
 Start_Date__c = weekEnding - 6, End_Date__c = weekEnding,
 Contact__c = contactId);
 List<Timecard__c> timecards = new List<Timecard__c>();
 for (Integer i=0; i<200; i++) {
 timecards.add(new Timecard__c(Project__c = projectId,
 Week_Ending__c = weekEnding, Contact__c = contactId));
 }
 insert timecards;
 }
 }

 After saving the code in the unit test class, run it by right-clicking in the editor and selecting
Force.com, Run Tests. After a few seconds, you should see the Apex Test Runner view with a
green check box indicating that all tests passed, as shown in Figure 4.10 . Expand the results
node to see 100% test coverage of the TimecardManager , and scroll through the debug log to
examine performance information and resource consumption for each of the tests.

142 Chapter 4 Business Logic

 Figure 4.10 Viewing test results

 Summary

 This chapter is arguably the most important chapter in the book. It describes core Apex
concepts and syntax that form the basis of all subsequent chapters. Absorb this chapter,
augmenting it with the information available through the developer.force.com Web site and
community, and you will be well prepared to write your own Force.com applications.

 Before moving on, take a few minutes to review these major areas:

 ■ Apex is the only language that runs inside the Force.com platform and is tightly
integrated with the Force.com database. Apex is strongly typed and includes object-
oriented features.

 ■ The Force.com database is queried using SOQL and SOSL, and its records are modified
using DML. All three languages can be embedded directly inside Apex code.

 ■ Resources consumed by Apex programs are tightly controlled by the Force.com platform
through governor limits. Limits vary based on the type of resource consumed. Learn the
relevant governor limits as early as possible in your development process. This ensures
that you write efficient code that scales up to production data volumes.

 Symbols
 + (addition) operator, 110

 & (AND) operator, 110

 && (AND) operator, 110

 - (arithmetic negation) operator, 110

 = (assignment) operator, 110

 \ (backslash), UNIX line-continuation

character, 309

 / (division) operator, 110

 == (equality) operator, 110

 === (exact equality) operator, 110

 !== (exact inequality) operator, 110

 > (greater than) operator, 110

 >= (greater than or equal to) operator, 110

 () (grouping operators), 110

 ? : (if/then/else expression shortcut), 110

 < (less than) operator, 110

 <= (less than or equal to) operator, 110

 ! (logical negation) operator, 110

 * (multiplication) operator, 110

 != (not equal to) operator, 110

 | (OR) operator, 110

 || (OR) operator, 110

 << (signed shift left) operator, 110

 >> (signed shift right) operator, 110

 + (string concatenation) operator, 110

 - (subtraction) operator, 110

 -- (unary decrement) operator, 110

 ++ (unary increment) operator, 110

 >>> (unsigned shift right) operator, 110

 ̂ (XOR) operator, 110

 4GL developer contributions, 12

 A
 abortJob method, 296

 Accept button, 213

 accessibility (fields), 78 - 79 , 89 - 90

 accessing data

 mobile Web applications
 actionFunction component, 270
 authentication, 269 - 270
 JavaScript remoting, 270
 REST API, 270
 SmartSync, 270

 REST API, 306
 AccessLevel field, 163

 access modifiers, 118

 accounts receivable profile, 18 , 86

 actionFunction component, 235 - 236

 mobile Web application data access, 270
 Visualforce

 controller, 236
 page code, 236

 actionPoller component, 237

 actions, 203 - 204

 asynchronous
 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240
 as timed events, 237

 container components, 205
 custom controllers, 195 - 197

 custom logic, invoking, 195
 trigger page navigation, 195
 view state preservation, 195
 wrapper pattern, 195 - 196

 expressions
 standard controllers, 192
 standard set controllers, 193

 actionStatus component, 238 - 240

 actionSupport component, 237 - 238 , 262

 addError method, 225

 addFields method, 246

 addInfo method, 225

 addition (+) operator, 110

Index

388 administrative permissions

 administrative permissions, 75

 aggregate functions, 144 - 145

 AVG, 144
 COUNT, 144 - 145
 COUNT_DISTINCT, 144
 governor limits, 145
 MAX, 144
 MIN, 144
 records, grouping, 146
 SUM, 144 - 145

 AggregateResult object, 145

 aggregate SOQL queries, 144

 aggregate functions, 144 - 145
 AVG, 144
 COUNT, 144- 145
 COUNT_DISTINCT, 144
 governor limits, 145
 MAX, 144
 MIN, 144
 records, grouping, 146
 SUM, 144- 145

 grouping records, 145 - 146
 with aggregate functions, 146
 filtering grouped, 146
 without aggregate functions, 145 - 146

 grouping records with subtotals, 147 - 148
 debug log excerpt, 147
 GROUP BY CUBE clause, 147 - 148
 GROUP BY ROLLUP clause, 147

 Ajax (Asynchronous JavaScript and XML)

 actions, 234
 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240
 as timed events, 237
 Visualforce support, 234

 Proxy, 270
 Amazon Web Services, 2 - 3

 AND (&) operator, 110

 AND (&&) operator, 110

 AngularJS, 251 - 253

 controllers
 ProjectListCtrl, 253
 timecard editing, 279
 Visualforce, implementing, 252

 demonstration page, 251
 templates, 253
 timecard entry in-page navigation

controller, 277
 tutorial Web site, 251
 Visualforce page code, 252 - 253
 Web site, 251

 anonymous benchmarking SOAP Web

service, 333 - 335

 anti-joins

 overview, 152
 restrictions, 153

 Apex, 7

 AggregateResult object, 145
 aggregate SOQL queries, 144

 aggregate functions, 144 - 145
 grouping records, 145 - 146
 grouping records with subtotals,

 147 - 148
 arrays

 creating, 111
 initializing, 111 - 112
 sorting, 112

 Batch
 Batchable interface, 283 - 284
 batch jobs, 282 , 286 - 289
 classes, creating, 285 - 286
 iterable scope, 290 - 292
 limitations, 292
 missing timecard class,

developing, 298 - 299
 project evaluation guidelines,

 284 - 285
 scheduling, 293 - 296
 scope, 282
 stateful, 289 - 290
 testing, 293
 transactions, 283

 callouts, 301 - 302
 REST services, 302 - 304
 SOAP services, 305 - 306

 Chatter, 378 - 379
 Visualforce controller, 378
 Visualforce page, 378
 Web site, 378

389Apex

 classes
 ConnectApi, 378
 custom Apex REST services, creating,

 312 - 314
 custom Apex SOAP Web services

rules, 327
 HTTP, 302 - 303

 code deployment in Tooling API, 355
 Code Developer’s Guide Web site, 108
 code execution

 asynchronous, 116
 conditional statements, 113
 Execute Anonymous View, 104 - 105
 exception statements, 114 - 115
 governor limits, 120
 loops, 114
 recursion, 115

 collections
 clearing, 109
 cloning, 109
 emptiness, 109
 size, 109

 custom Apex REST Web services,
 312 - 314

 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 custom settings, 180 - 181
 creating, 180
 deleting, 180
 governor limits, 180
 hierarchy type, 181
 updating, 180
 values, retrieving, 180

 custom SOAP Web services, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327
 Services Manager anonymous

benchmarking, 333 - 335
 database integration

 data integrity, 122
 DML statements. See DML,

statements

 objects, referencing, 121 - 122
 overview, 120 - 121
 queries. See queries
 security, 133

 data types, 106
 Blob, 106
 Boolean, 106
 converting, 107 - 108
 Date, 106
 date to string conversions, 109
 Datetime, 106
 Decimal, 106
 Double, 106
 ID, 106
 Integer, 106
 Long, 106
 Object, 106
 String, 106
 string to date conversions, 109
 Time, 106

 debugging, 133
 checkpoints, 133 - 135
 execution logs, 134

 dynamic, 174
 instances, creating, 179
 schema metadata, 177 - 179
 SOQL queries, 175 - 176
 SOSL queries, 176

 governor limits, 100 , 120
 Apex code, 120
 databases, 120
 heaps, 120
 namespaces, 120

 lists
 creating, 111
 initializing, 111 - 112
 nesting, 111
 overview, 111
 sorting, 112

 managed sharing, 162
 organization-wide sharing defaults,

changing, 163
 rules, creating, 163 - 167
 sharing objects, 162 - 163

 maps, 112 - 113
 object-oriented principles, 117

 encapsulation, 117 - 118
 information-hiding notation, 118

390 Apex

 inheritance, 119
 modularity, 119
 polymorphism, 119

 operators, 109
 AND (&&), 110
 addition (+), 110
 arithmetic negation (-), 110
 assignment (=), 110
 bitwise, 110
 division (/), 110
 equality (==), 110
 exact equality (===), 110
 exact inequality (!==), 110
 greater than (>), 110
 greater than or equal to (>=), 110
 grouping, 110
 if/then/else expression (? :), 110
 less than (<), 110
 less than or equal to (<=), 110
 logical negation (!), 110
 multiplication (*), 110
 not equal to (!=), 110
 OR (||), 110
 signed shift left (<<), 110
 signed shift right (>>), 110
 string concatenation (+), 110
 subtraction (-), 110
 unary decrement (--), 110
 unary increment (++), 110
 unsigned shift right (>>>), 110

 ORM code snippet, 30
 overview, 100 - 101
 receiving email, 172 - 173

 class, creating, 173 - 174
 governor limits, 173
 personalizing based on sender

identity, 173
 services, configuring, 174 - 175
 uncaught exceptions, 173

 sending email, 168
 attachments, 172
 blind-carbon-copies, 171
 carbon copies, 171
 mass emails, 170 - 171
 notifications, 181 - 182
 organization-wide email address

unique identifiers, 172
 reply-to addresses, 171

 sendEmail method, 171
 sender display names, 171
 signatures, 172
 SingleEmailMessage object, 168 - 169
 templates, 169 - 170
 tracking, 172

 sets, 112
 SOQL queries, 126 - 128
 SOSL, 155 - 157
 Test Runner View (IDE), 103
 transaction processing

 DML database methods, 157 - 158
 record locking, 161
 savepoints, 159 - 160

 triggers, 130 - 131
 batching, 132
 bulkifying, 132
 definitions, 131 - 132
 error handling, 132 - 133
 names, 131
 timecard validation, creating,

 138 - 139
 unit tests, 136

 results, viewing, 137
 running, 137
 test data, 137
 test methods, 136
 Test Runner View, 103
 TimecardManager class, 140 - 141

 variables, 105
 access modifiers, 118
 checkpoints, 133 - 135
 classes, 117
 constants, 107
 declaring, 105 - 106
 enums, 107
 names, 105 - 106
 rounding, 108

 APIs

 Bulk, 344
 authentication, 345 - 346
 exporting records, 347 - 349
 importing records, 346 - 347
 two-tier system, 345
 Web site, 345

 Canvas, 349
 authentication, 349 - 350
 cross-domain XHR, 350

391architectures

 Tooling, 354
 Apex code, deploying, 355
 internal state of deployment, 355
 overview, 355
 query service, 355
 status, refreshing, 355
 user interface, 356
 Visualforce controller example,

 357 - 359
 Visualforce page example, 359 - 360
 Web site, 355

 App Builder Tools, 33

 App Engine, 3

 AppExchange, 16

 applications

 AppExchange, 16
 Connected Apps, creating, 351
 custom, creating, 58
 LDV deployments, 22
 mobile

 Chatter Mobile, 264
 containers, 271
 hybrid, 265 , 267
 native, 265 - 266
 Salesforce Classic, 264
 Salesforce Mobile SDK, 265
 Salesforce Touch, 264
 timecard entry page. See mobile

timecard entry page
 Web. See mobile applications, Web

 services, 6
 Services Manager. See Services Manager

application
 single-page, 250

 AngularJS, 251 - 253
 JavaScript remoting, 250

 social. See Chatter
 architectures

 application services, 6
 declarative metadata, 7
 multilenancy, 4 - 6
 programming languages, 7
 relational databases, 6
 security, 71
 Visualforce, 186 - 187

 example application, 350 - 354
 Web site, 349

 Metadata, 360
 object creation example, 361 - 363
 services, 360 - 361
 Web site, 360

 REST
 authentication, 306 - 307
 Chatter, 379 - 380
 Connected Apps, creating, 307
 creating record requests, 310
 data access, 306
 data integration, 31
 deleting record requests, 311
 Force.com REST API Developer’s

Guide Web site, 308
 mobile Web application data

access, 270
 record retrieval by external

identifiers, 310
 record retrieval by unique

identifiers, 309
 services available call, 308 - 309
 SObject basic information

request, 309
 SOQL query request, 310
 updating record requests, 311
 upserting record requests, 311

 SOAP
 data integration, 31
 enabled permissions, 318 - 319
 Enterprise. See Enterprise API
 error handling, 321
 Force.com data types, 321
 IP white-listing, 319
 limits, 316
 logging in/out, 318 - 320
 login call, 320
 login problems, troubleshooting, 320
 Partner, 315
 security, 316
 security tokens, 319
 stub code, generating, 316 - 317
 Web Service Connector (WSC), 316
 WSDL versions, 315 - 316

 Streaming
 example, 341 - 344
 PushTopcis, 340 - 341
 Web site, 340

392 arithmetic negation (-) operator

 classes, creating, 285 - 286
 iterable scope, 290 - 292
 limitations, 292
 missing timecard class, developing,

 298 - 299
 project evaluation guidelines, 284 - 285
 scheduled jobs

 creating, 295
 editing, 296
 viewing, 296

 scheduling, 293 - 296
 Apex user interface, 294 - 295
 sample code, 296
 schedulable code development, 294

 scope, 282
 stateful, 289 - 290
 testing, 293
 transactions, 283

 batch jobs, 282

 bulk export
 batches, creating, 348
 creating, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

 bulk import
 closing, 347
 creating, 346
 records, adding, 346 - 347
 results, retrieving, 347
 status, checking, 347

 executing, 286
 execution detail, viewing, 288
 limitations, 292
 progress, monitoring, 287 - 288
 scheduled

 creating, 295
 deleting, 296
 editing, 296

 scheduling, 293 - 296
 Apex user interface, 294 - 295
 schedulable code development, 294

 scope, 289
 triggers, 132

 BenchmarkWS class, 334

 binary data types, 322

 bitwise operators, 110

 blind-carbon-copies (email), 171

 blobs, 106

 arithmetic negation (-) operator, 110

 arrays

 creating, 111
 initializing, 111 - 112
 sorting, 112

 Assignment object

 fields, 54
 overview, 53

 assignment (=) operator, 110

 asynchronous actions

 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240

 actionStatus component, 238 - 240
 dynamic, 239
 images/stylized messages, 239

 as timed events, 237
 asynchronous code execution, 116

 Asynchronous JavaScript and XML. See Ajax

 asyncMethod, 116

 attachments (email), 172

 attributes

 page components, 200
 reRender, 234
 showChatter, 381
 view components, 199

 authentication

 Bulk API, 345 - 346
 Canvas, 349 - 350
 mobile Web applications, 269 - 270
 REST APIs, 306 - 307
 sites users, 258

 auto numbers, 40-41 , 322

 availability (PushTopics), 341

 AVG aggregate function, 144

 B
 backslash (\), UNIX line-continuation

character, 309

 Batchable interface, 283 - 284

 Batch Apex, 116

 Batchable interface, 283 - 284
 batch jobs, 282

 executing, 286
 execution detail, viewing, 288
 progress, monitoring, 287 - 288
 scope, 289

393Chatter

 example application
 adding pages, 352
 callback HTML page, 354
 configuring pages, 352
 Connected App, creating, 351
 local Web servers, configuring, 352
 main HTML page, 353 - 354
 previewing, 352
 running in App Previewer, 350

 Web site, 349
 carbon copies (email), 171

 catch keyword (exceptions), 115

 channel names, 340

 Chatter

 Apex, 378 - 379
 Visualforce controller example, 378
 Visualforce page, 378
 Web site, 378

 comments, 374 - 375
 creating, 375
 deleting, 375
 query, 375
 schema pattern, 374

 feed-tracked changes, 376
 following records, 376 - 378

 following relationships, 377
 method, 377
 unfollowing, 377 - 378

 Mobile, 264
 objects

 dynamic, 370
 high-volume design, 370
 relationship-rich, 370

 posts, 370 - 372
 content, 371
 creating, 372 - 373
 custom object feeds, 373
 deleting, 373
 Feed objects, 370 - 371
 news feeds, 374
 schema pattern, 370
 standard object feeds, 372 - 373
 user feeds, 374

 REST API, 379 - 380
 followed records request, 380
 news feed request, 379 - 380
 post request, 380
 Web site, 379

 Boolean data type, 106

 break keyword (loops), 114

 browsing data, 42 - 44

 Bulk API, 344

 authentication, 345 - 346
 records

 exporting, 347 - 349
 importing, 346 - 347

 two-tier system, 345
 Web site, 345

 bulk jobs

 export
 batches, creating, 348
 creating, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

 import
 closing, 347
 creating, 346
 records, adding, 346 - 347
 results, retrieving, 347
 status, checking, 347

 bulk modifications (records), 326

 business analyst contributions, 11

 business units

 collaboration, testing, 97 - 98
 security, 85 - 88

 buttons

 custom
 custom objects, creating, 38
 Visualforce pages, 215

 native user interface, 213
 standard, 37

 C
 callouts (Apex), 301 - 302

 REST services, 302 - 304
 formats, 302
 HTTP classes, 302 - 303
 integrating, 303 - 304
 invoking, 303
 testing, 304

 SOAP services, 305 - 306
 Canvas, 349

 authentication, 349 - 350
 cross-domain XHR, 350

394 Chatter

 MissingTimecardBatch
 creating, 298 - 299
 reset results, 300
 running, 300

 MyEmailService, 173 - 174
 properties, 117
 TimecardManager

 creating, 138 - 139
 unit tests, 140 - 141

 variables, 117
 clear method (collections), 109

 Clone button, 213

 clone method (collections), 109

 closing bulk import jobs, 347

 cloud computing

 benefits, 2
 overview, 2
 PaaS, 2

 Amazon Web Services, 2 - 3
 Force.com, 3 - 4
 Google Cloud Platform, 3
 Windows Azure, 3

 Cloudforce conference, 17

 code execution (Apex)

 asynchronous, 116
 conditional statements, 113
 exception statements, 114 - 115

 examples, 115
 handling, 115
 raising, 115

 governor limits, 120
 loops, 114
 recursion, 115

 Code Share, 16

 collections

 arrays
 creating, 111
 initializing, 111
 sorting, 112

 clearing, 109
 cloning, 109
 emptiness, 109
 lists

 creating, 111
 initializing, 111
 nesting, 111
 sorting, 112

 Services Manager Follow Team button,
 382 - 385

 configuring, 385
 controller extension code, 383 - 384
 testing, 385
 Visualforce page, 384 - 385

 Visualforce components, 380 - 382
 feed, 381
 feedWithFollowers, 381
 follow, 381
 followers, 381
 limitations, 382
 newsFeed, 381
 showChatter attribute, 381
 userPhotoUpload, 381
 Visualforce page, creating, 381

 checkboxes

 defined, 38
 SOAP type, mapping, 322

 checkpoints, 133 - 135

 child relationships

 child-to-parent, 125 - 126
 metadata, 178
 semi-joins

 child-to-child, 153
 child-to-parent, 153

 classes

 access modifiers, 118
 Apex

 ConnectApi, 378
 custom Apex REST services, creating,

 312 - 314
 custom Apex SOAP Web services

rules, 327
 HTTP, 302 - 303

 Batch Apex, creating, 285 - 286
 BenchmarkWS, 334
 constructors, 118
 defining, 118
 information-hiding notation, 118
 inheritance, 119
 initializers, 118
 inner, 118
 Iterable, 291
 Iterator, 290
 methods, 117

395converting data types

 containers

 dynamicComponent elements, 248
 mobile applications, 271
 static resources, 241 - 242

 continue keyword (loops), 114

 controlled by parent records, 81

 controller attribute (pages), 200

 controllers, 186 - 187

 actionFunction component, 236
 actions

 as JavaScript events, 237 - 238
 timed events, 237

 AngularJS, 253
 mobile timecards, editing, 279
 project list example, 252
 timecard entry in-page

navigation, 277
 Chatter example, 378
 custom, 193 - 197

 actions, 195 - 197
 exposing data, 193 - 194

 dynamic field reference, 247
 extensions, 197
 governor limits, 221
 mobile timecards

 editing, 277
 list functionality, 274

 partial page refresh, 235
 Services Manager

 business hours, configuring, 331
 Follow Team button extension code,

 383 - 384
 Skills Matrix, 225 - 227 , 229 - 231
 utilization calculation, 332
 utilization code, 335 - 337

 standard, 191 - 193
 multiple records, 192 - 193
 single records, 191 - 192

 Streaming API example, 342
 Tooling API example, 357 - 359
 unit tests, 222

 conversion methods, 108

 converting data types, 107 - 108

 conversion methods, 108
 dates to strings, 109
 exceptions, 114
 implicit conversion, 107 - 108
 strings to dates, 109

 maps, 112 - 113
 sets, 112
 size, 109

 ComeD library, 342

 commandButton component, 203

 commandLink component, 203

 comments (Chatter), 374 - 375

 creating, 375
 deleting, 375
 query, 375
 schema pattern, 374

 communication errors, 220 - 221

 CompareSkillsComponent

 creating, 259 - 260
 support, adding, 261

 CompareSkillsController, 260

 composition (modular Visualforce

pages), 243 - 244

 conditional statements, 113

 condition expressions, 194

 configuration management, 14

 configuring

 Canvas App pages, 352
 email services, 174 - 175
 field accessibility, 89 - 90
 Follow Team button, 385
 IDE, 138
 local Web servers, 352
 sharing rules, 92 - 93

 ConnectApi classes, 378

 Connected Apps, creating

 Canvas, 351
 REST API, 307

 constants, 107

 constructors, 118

 Consultant profile

 permissions, 86
 Services Manager application, 18
 testing, 96

 ContactFeed object, 372

 Contact object

 CSV import file, 69
 fields, 51
 overview, 51

 ContainerId field, 355

396 COUNT aggregate function

 Google Map example, 245 - 246
 support, adding, 259 - 260

 custom controllers, 193 - 197

 actions, 195 - 197
 custom logic, invoking, 195
 trigger page navigation, 195
 view state preservation, 195
 wrapper pattern, 195 - 196

 exposing data, 193 - 194
 custom fields. See fields, creating

 custom links

 custom objects, creating, 38
 Visualforce pages, 215

 custom objects, 22

 creating, 35 , 59 - 60
 activities, allowing, 36
 custom buttons/links, 38
 custom fields, 37
 definition, 35 - 36
 deployment status, 36
 descriptions, 36
 field history tracking, 36
 help settings, 36
 labels, 35
 names, 35
 page layouts, 37
 record name label, 36
 reports, allowing, 36
 search layouts, 37
 standard buttons/links, 37
 standard fields, 36
 triggers, 37
 validation rules, 37

 missing timecards, creating, 297
 tabs, creating, 63
 tools, 33 - 34

 App Builder Tools, 33
 data, 34
 Force.com IDE, 34
 metadata, 33
 Schema Builder, 34

 custom settings, 180 - 181

 defined, 47
 governor limits, 180
 hierarchy, 49 , 181
 list, 48

 COUNT aggregate function, 144 - 145

 COUNT_DISTINCT aggregate function, 144

 Create Lookup Field dialog box, 61

 Create New Object dialog box, 59

 create permission, 75

 createProject service, 329

 create service, 324

 cross-domain XHR, 350

 CRUD (create, read, update, delete)

operations, 31

 Crypto class, 303

 CSRF (Cross Site Request Forgery)

attacks, 385

 CSS (components), adding, 261

 CSV files

 Contact import, 69
 exporting, 64 - 65
 Project import, 65

 cURL, 306

 currency

 fields, 38
 SOAP data type, mapping, 322

 custom Apex Web services

 REST, 312 - 314
 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 SOAP, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327
 Services Manager anonymous

benchmarking, 333 - 335
 custom applications, creating, 58

 custom buttons

 custom objects, creating, 38
 Visualforce pages, 215

 custom components

 creating, 259 - 260
 CSS, adding, 261
 defining, 244 - 245

397databases

 security
 architecture, 71
 field accessibility, 73
 object-level. See object-level security
 overview, 71 - 74
 permission sets, 72
 profiles, 72
 record-level, 72
 sharing model, 73
 sharing reasons, 74

 Services Manager application integration
 implementation strategy, 363 - 364
 sample implementation, 364 - 366
 scenario, 363

 storage custom settings
 defined, 47
 governor limits, 180
 hierarchy, 49 , 181
 list, 48
 records, 180
 storage limits, 49
 types, 47 - 48
 values, retrieving, 180

 tools, 34
 Data Loader, 34
 Excel Connector, 34
 Import Wizard, 34

 Database.com, 4

 databases

 administrator contributions, 12
 Apex integration

 DML statements. See DML,
statements

 integrity, 122
 objects, referencing, 121 - 122
 overview, 120 - 121
 queries. See queries
 security, 133

 change exceptions, 114
 custom settings, 47 - 48

 defined, 47
 hierarchy, 49
 list, 48
 storage limits, 49
 types, 47 - 48

 data. See data
 developer contributions, 12
 fields. See fields

 records
 creating, 180
 deleting, 180
 updating, 180

 storage limits, 49
 types, 47 - 48
 values, retrieving, 180

 custom tabs, 215

 D
 data

 batch processing. See Batch Apex
 browsing, 42 - 44
 entering, 41 - 42
 exposing (custom controllers), 193 - 194
 expressions

 standard controllers, 192
 standard set controllers, 193

 importing, 64
 import process, 66
 preparations, 64 - 66
 verification, 67 - 69

 integration, 29
 metadata XML, 30 - 31
 native user interface, 31
 object-relational mapping, 30
 REST APIs, 31
 SOAP APIs, 31

 integrity, 122
 mobile Web applications access, 269 - 270

 actionFunction component, 270
 authentication, 269 - 270
 JavaScript remoting, 270
 REST API, 270
 SmartSync, 270

 modeler contributions, 11
 relationships

 explicitly defined, 26
 integrity enforced, 26
 records, creating, 121
 Services Manager application, 55 - 58
 SOQL, 26 - 27
 SOQL versus SQL, 27 - 28
 SOSL, 29
 viewing, 121

 REST API access, 306

398 databases

 inputText, 202
 inputTextArea, 202
 outputLabel, 202
 selectCheckboxes, 202
 selectList, 202
 selectRadio, 202

 repeating, 201 - 203
 dataList component, 203

 Data Loader tool, 34

 data preparation, 64 - 66
 Contact CSV import file, 69
 exporting CSV files, 64 - 65
 Project CSV import file, 65

 data verification, 67 - 69
 importing data, 66

 Data Manipulation Records. See DML

 data model (Services Manager)

 design goals
 Developer Edition, optimization, 50
 standard objects, leveraging, 50

 implementing
 custom application, creating, 58
 custom objects, creating, 59 - 60
 custom object tabs, creating, 63
 field visibility, 64
 Lookup relationship, creating, 60
 Master-Detail relationships,

creating, 60 - 62
 validation rules, creating, 63

 specification, 50
 assignments, 53 - 54
 contacts, 51
 data relationships, 55 - 58
 projects, 52
 skills, 53
 timecards, 53 - 56

 dataTable component, 203

 data types

 Apex, 106
 blob, 106
 Boolean, 106
 converting, 107 - 108
 converting dates to strings, 109
 converting strings to dates, 109
 date, 106
 datetime, 106
 decimal, 106
 double, 106

 governor limits, 120
 integration, 29

 logical, 13
 metadata XML, 30 - 31
 native user interface, 31
 object-relational mapping, 30
 REST APIs, 31
 SOAP APIs, 31

 objects. See objects
 queries. See queries
 records. See records
 relational, 6
 relationships. See relationships
 security

 Apex, 133
 architecture, 71
 field accessibility, 73
 object-level. See object-level security
 object permissions, 73
 overview, 71 - 74
 permission sets, 72
 profiles, 72
 record-level, 72
 sharing model, 73
 sharing reasons, 74

 services, 7
 tables. See objects
 triggers, 130 - 131

 batching, 132
 bulkifying, 132
 custom objects, creating, 37
 definitions, 131 - 132
 email notifications, 181 - 182
 error handling, 132 - 133
 names, 131
 page navigation, 195
 timecard validation, creating,

 138 - 139
 data components, 200 - 203

 metadata-aware, 200 - 201
 inputField, 201
 outputField, 201

 Mobile Components for Visualforce, 268
 primitive, 201 - 202

 inputCheckbox, 202
 inputFile, 202
 inputHidden, 202
 inputSecret, 202

399development

 Visualforce
 component identifier problems, 240
 user interfaces, 216

 decimals

 defined, 106
 rounding, 108

 declarative metadata, 7

 declaring

 future methods, 116
 variables, 105 - 106

 delegated administration sharing reason, 82

 Delete button, 213

 delete permission, 76

 delete service, 325

 Delete statement, 130

 deleting

 Chatter comments, 375
 custom setting records, 180
 PushTopics, 341
 record requests, 311
 records, 130 , 325
 scheduled batch jobs, 296

 dependent fields, 46

 deploying mobile Web applications, 271 - 272

 deployment status, 36

 detail component, 209

 Developer Console

 Apex, debugging, 133 - 134
 unit test results, viewing, 137
 Visualforce user interfaces, debugging,

 216 - 218
 Developer Force Web site, 16

 development

 Batch Apex schedulable code, 294
 discussion boards, 16
 environments, 32
 lifecycle, 12

 configuration management, 14
 end of life, 15
 integrated logical databases, 13
 integrated unit testing, 14 - 15
 interoperability, 15
 MVC pattern, 15
 native user interfaces, 14

 mobile applications
 hybrid, 265 , 267
 native, 265 - 266
 Salesforce Mobile SDK, 265
 Web. See mobile applications, Web

 ID, 106
 Integer, 106
 long, 106
 object, 106
 string, 106
 time, 106

 arrays
 creating, 111
 initializing, 111 - 112
 sorting, 112

 collections
 clearing, 109
 cloning, 109
 emptiness, 109
 size, 109

 converting, 114
 fields, selecting, 38
 lists

 creating, 111
 initializing, 111 - 112
 nesting, 111
 overview, 111
 sorting, 112

 maps, 112 - 113
 rich, 25
 sets, 112
 SOAP types, mapping, 321

 dates, 38

 converting to strings, 109
 defined, 106
 SOAP type, mapping, 322
 String conversions, 109

 datetime data type

 converting to strings, 109
 defined, 106
 SimpleDateFormat pattern, 109
 SOAP type, mapping, 322
 string conversions, 109

 DE accounts

 logging in, 32
 orgs, 32
 registration, 32

 debugging

 Apex, 133
 checkpoints, 133 - 135
 execution logs, 134

 batch jobs execution details,
viewing, 288

400 development

 E
 EC2 (Elastic Compute Cloud), 2 - 3

 editing

 mobile timecards, 277 - 279
 scheduled batch jobs, 296

 edit page, 211

 edit permission, 75

 Elastic Beanstalk, 2

 email

 fields, 38
 integration, 9
 receiving, 172 - 173

 class, creating, 173 - 174
 governor limits, 173
 personalizing based on sender

identity, 173
 services, configuring, 174 - 175
 uncaught exceptions, 173

 sending, 168
 attachments, 172
 blind-carbon-copies, 171
 carbon copies, 171
 mass emails, 170 - 171
 notifications (Services Manager

application), 181 - 182
 organization-wide email address

unique identifiers, 172
 reply-to addresses, 171
 sendEmail method, 171
 sender display names, 171
 signatures, 172
 SingleEmailMessage object, 168 - 169
 templates, 169 - 170
 tracking, 172

 SOAP data type, mapping, 322
 enabled permissions (SOAP API), 318 - 319

 encapsulation, 117 - 118

 EncodingUtil class, 303

 end of life, 15

 enhancedList component, 209

 Enhanced Profile List Views, 74

 Enhanced Profile User Interface, 74

 Enterprise API

 overview, 315
 records

 bulk modifications, 326
 creating, 324 - 325

 Visualforce
 process, 188
 tools, 188 - 190

 dialog boxes

 Create Lookup Field, 61
 Create New Object, 59
 Open Perspective, 101

 dirty writes, 161

 division (/) operator, 110

 DML (Data Manipulation Language), 128

 database methods, 157 - 158
 insert example, 158
 opt_allOrNone parameter, 158

 statements
 Delete, 130
 Insert, 129
 Undelete, 130
 Update, 129
 Upsert, 129 - 130

 DmlException exception, 114

 domain names (sites), 255

 double data type

 defined, 106
 rounding, 108

 Do-While loops, 114

 Dreamforce conference, 17

 dynamic Apex, 174

 instances, creating, 179
 queries

 governor limits, 176
 SOQL, 175 - 176
 SOSL, 176

 schema metadata, 177
 child relationship, 178
 field, 177 - 178
 limits, 177
 object, 177
 picklist, 178
 record type, 179

 dynamic Chatter objects, 370

 dynamicComponent elements, 248

 dynamic field references, 246 - 248

 dynamic status messages, 239

 dynamic Visualforce, 246

 component generation, 248 - 249
 dynamic field references, 246 - 248

401fields

 expressions

 combining, 194
 condition, 194
 if/then/else, 110
 scheduling, 295
 standard controllers

 actions, 192
 data, 192
 navigation, 192

 standard set controllers
 action, 193
 data, 193
 filters, 193
 navigation, 193
 pagination, 193

 extensions (controller), 197

 extensions attribute (pages), 200

 external IDs, 39

 F
 facets, 239

 FeedComments relationship, 375

 feed component, 381

 Feed objects, 370 - 371

 custom objects, 373
 news, 374
 standard objects, 372 - 373
 users, 374

 FeedTrackedChange object, 376

 feed-tracked changes (Chatter), 376

 feedWithFollowers component, 381

 Field change Chatter posts, 371

 fields, 23

 accessibility, 73 , 78 - 79 , 89 - 90
 Assignment object, 54
 auto number, 41
 categories, 23
 checkboxes, 38
 Contact object, 51
 ContainerId, 355
 creating, 37

 default values, 39
 descriptions, 39
 external IDs, 39
 help text, 39
 labels, 39
 names, 39

 deleting/undeleting, 325
 retrieving, 323 - 324
 updating, 325
 upserting, 325
 writing, 324

 EntitySubscription object, 377

 enums, 107

 environments, 32

 equality (==) operator, 110

 error handling

 SOAP API, 321
 triggers, 132 - 133
 Visualforce, 220 - 221

 communication, 220 - 221
 uncaught exceptions, 220

 errors

 communication, 220 - 221
 data type conversions, 108

 events

 JavaScript, 237 - 238
 timed, 237

 exact equality (===) operator, 110

 exact inequality (!==) operator, 110

 Excel Connector, 34

 exceptions

 incoming email, 173
 statements, 114 - 115

 examples, 115
 handling, 115
 raising, 115

 uncaught, 220
 EXCLUDES keyword (multi-select

picklists), 154

 Execute Anonymous view (IDE)

 batch jobs, running, 286
 missing timecard report, testing, 300
 REST services integration, testing, 304

 executeBatch method, 286

 execute method (Batchable interface), 283

 execution logs, 134

 exporting

 CSV files, 64 - 65
 records, 347 - 349

 batches, creating, 348
 creating bulk export jobs, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

402 fields

 filtering

 multi-select picklists, 154
 records

 grouped, 146
 SOQL, 124 - 125

 standard set controllers, 193
 finally keyword (exceptions), 115

 finish method (Batchable interface), 284

 follow component, 381

 followers component, 381

 following records (Chatter), 376 - 378

 following relationships, 377
 method, 377
 relationships, 377
 request, 380
 unfollowing, 377 - 378

 Follow Team button, 382 - 385

 configuring, 385
 controller extension code, 383 - 384
 testing, 385
 Visualforce page, 384 - 385

 Force.com

 architecture
 application services, 6
 declarative metadata, 7
 multilenancy, 4 - 6
 programming languages, 7
 relational databases, 6

 Database.com, 4
 developers, 3
 perspective, 101
 Project, 103
 services, 7

 business logic, 8
 database, 7
 integration, 8 - 9
 user interface, 8

 technology integrations, 4
 Force.com-styled components, 204 - 205

 action containers, 205
 notifications, 205
 page structure, 205
 paging, 205
 samples

 controller, 206
 page, 207

 table, 205

 required, 39
 types, selecting, 38
 unique, 39

 date/time, 38
 dependent, 46
 dynamic references, 246 - 248
 email/phone/URL, 38
 field sets, 247 - 248
 fieldsToNull, 325
 formula, 24 - 25 , 41
 history tracking, 25 , 36
 logical, 23
 metadata, 177 - 178
 multi-select picklists, 154
 NotifyForFields, 341
 NotifyForOperations, 341
 numbers/percent/currency/

geolocation, 38
 picklists, 38

 metadata, 178
 multi-select, 154
 SOAP type, mapping, 322

 Project object, 52
 query results, sorting, 125
 relationships. See relationships
 RequestId, 355
 rich data types, 25
 roll-up summary, 41 , 45
 security, 77

 field accessibility, 78 - 79 , 89 - 90
 profiles, 78

 sharing objects, 162 - 163
 Skill object, 54
 standard, 36
 text, 38
 Timecard object, 56
 unique identifiers, 24
 validation rules, 24
 visibility, 64

 fieldsToNull field, 325

 fields variable, 247

 file-based services, 361

 File Chatter posts, 371

 files (CSV)

 Contact import, 69
 exporting, 64 - 65
 Project import, 65

403hybrid applications

 overview, 100
 Visualforce, 221

 greater than (>) operator, 110

 greater than or equal to (>=) operator, 110

 GROUP BY clause (record groupings), 145

 GROUP BY CUBE clause, 147 - 148

 GROUP BY ROLLUP clause, 147

 groups

 operators, 110
 records, 145 - 146

 with aggregate functions, 146
 filtering, 146
 subtotals, 147 - 148
 without aggregate functions, 145 - 146

 users, 80
 public, 80
 roles, 80

 H
 The Hammer, 6

 handleInboundEmail method, 172

 handling

 errors
 SOAP API, 321
 triggers, 132 - 133
 Visualforce, 220 - 221

 exceptions, 115
 HAVING keyword (grouped records,

filtering), 146

 heap governor limits, 120

 Hello World

 code example, 105
 Visualforce example, 189 - 191

 help

 settings (custom objects), 36
 text, 39

 hierarchy custom settings, 49 , 181

 high volume objects, 370

 history tracking

 custom objects, 36
 fields, 25

 HTTP Apex classes, 302 - 303

 Http class, 302

 HttpRequest class, 302

 HttpResponse class, 302

 hybrid applications, 265 , 267

 forcetk.js library, 266

 For loops, 114 , 127

 formatting

 datetime data types, 109
 REST services, 302
 SimpleDateFormat pattern, 109
 strings for dates, 109

 formulas, 24 - 25 , 41 , 322

 frameworks (mobile Web applications),

 268 - 269

 Mobile Components for Visualforce,
 268 - 269

 Web MVC, 269
 functions (aggregate), 144 - 145

 AVG, 144
 COUNT, 144- 145
 COUNT_DISTINCT, 144
 governor limits, 145
 MAX, 144
 MIN, 144
 records, grouping, 146
 SUM, 144 - 145

 future methods, 116

 declaring, 116
 limitations, 116

 G
 geolocation fields, 38

 getCurrentUserContact method, 225

 getDescribe method, 177

 getInstance method, 181

 getSObject method, 176

 Google Cloud Platform, 3

 governor limits, 120

 aggregate functions, 145
 Apex code, 120
 custom Apex Web services

 REST, 312
 SOAP, 327

 custom settings, 180
 databases, 120
 dynamic queries, 176
 Force.com Apex Code Developer’s Guide

Web site, 100
 heaps, 120
 inbound email, 173
 namespaces, 120

404 IaaS

 includeScript component, 205

 INCLUDES keyword (multi-select

picklists), 154

 inclusion (modular Visualforce), 242

 information-hiding notation, 118

 Infrastructure as a Service. See PaaS

 inheritance (Apex), 119

 initializers, 118

 inner classes, 118

 inner joins, 149 - 150

 inputCheckbox component, 202

 inputField component, 201

 inputFile component, 202

 inputHidden component, 202

 inputSecret component, 202

 inputTextArea component, 202

 inputText component, 202

 insert database method, 158

 Insert statement, 129

 installing

 IDE, 101
 Mobile Components for Visualforce,

 268 - 269
 instances, creating, 179

 Integers, 106

 integration, 29

 Apex callouts, 301 - 304
 databases in Apex, 120 - 121

 DML statements. See DML,
statements

 integrity, 122
 objects, referencing, 121 - 122
 queries. See queries
 security, 133

 logical databases, 13
 metadata XML, 30 - 31
 native user interface, 31
 object-relational mapping, 30
 REST APIs, 31
 services, 8 - 9
 Services Manager application

 implementation strategy, 363 - 364
 sample implementation, 364 - 366
 scenario, 363

 SOAP APIs, 31
 specialist contributions, 12

 I
 IaaS. See PaaS

 id attribute (view components), 199

 IDE

 Execute Anonymous view
 batch jobs, running, 286
 missing timecard report, testing, 300
 REST services integration, testing, 304

 installation, 101
 perspective, 101
 Project, 103
 Schema Explorer, 103
 Services Manager application

configuration, 138
 Views

 Apex Test Runner, 103
 Execute Anonymous, 104 - 105
 Problems, 103

 Visualforce page editor, 189
 Ideas Web site, 16

 IDs

 defined, 106
 external, 39
 string conversion, 108

 iframe component, 204

 if/then/else expression shortcut (? :), 110

 image component, 204

 implicit conversions (data types), 107 - 108

 importing

 data, 64
 import process, 66
 preparations, 64 - 66
 Contact CSV import file, 69
 exporting CSV files, 64 - 65
 Project CSV import file, 65
 verification, 67 - 69

 records, 346 - 347
 adding records to bulk import jobs,

 346 - 347
 closing bulk import jobs, 347
 creating bulk import jobs, 346
 results, retrieving, 347
 status, checking, 347

 Import Wizard, 34

 InboundEmailHandler interface, 172

 inbound email. See receiving email

 include component, 242

405licensing

 bulk import
 closing, 347
 creating, 346
 records, adding, 346 - 347
 results, retrieving, 347
 status, checking, 347

 joins

 anti-joins
 overview, 152
 restrictions, 153

 inner, 149 - 150
 outer, 148 - 149
 semi-joins

 child-to-child, 153
 child-to-parent, 153
 parent-to-child, 151
 restrictions, 153

 jQuery UI, 259

 JSON (JavaScript Object Notation), 302 ,

 364 - 366

 K
 keywords

 break, 114
 catch, 115
 continue, 114
 EXCLUDES, 154
 finally, 115
 HAVING, 146
 INCLUDES, 154
 LIMIT, 125
 throw, 115
 try, 115

 L
 labels

 custom objects, 35
 fields, 39

 layouts

 page, 37
 search, 37

 LDV (Large Data Volume) deployments, 22

 less than (<) operator, 110

 less than or equal to (<=) operator, 110

 licensing

 orgs, 32
 profiles, 76

 Visualforce and native user interface,
 209 - 210

 custom buttons/links, 215
 custom tabs, 215
 page layouts, 213
 standard buttons, 213
 standard pages, 210 - 211

 interfaces

 Batchable, 283 - 284
 InboundEmailHandler, 172
 Schedulable, 294
 Stateful, 290

 interoperability, 15

 IP white-listing, 319

 isEmpty method, 109

 @isTest, 136

 iterable batch scope, 290 - 292

 Iterable class, 291

 Iterator class, 290

 J
 Java

 createProject service, 329
 create service, 324
 Metadata API object creation example,

 361 - 363
 query batch sizes, setting, 324
 SOQL queries, executing, 323
 stub code, generating, 317

 JavaScript

 dynamic action status messages, 239
 events, 237 - 238
 forcetk.js library, 266
 JQuery UI, 259
 Object Notation (JSON), 302 , 364 - 366
 remoting, 250 , 270
 Skills Matrix comparison overlay, 261
 Visualforce components,

referencing, 240
 job function security, 85 - 86

 jobs

 bulk export
 batches, creating, 348
 creating, 347 - 348
 results, retrieving, 348 - 349
 status, checking, 348

406 lifecycles (development)

 bulk import jobs
 closing, 347
 creating, 346
 records, adding, 346
 results, retrieving, 347
 status, checking, 347

 Canvas App
 callback HTML page, 354
 main HTML page, 353 - 354

 Chatter
 feed-tracked changes, 376
 following records, 377
 following relationships, 377
 unfollowing records, 378
 Visualforce component page, 381
 Visualforce controller example, 378
 Visualforce page example, 378

 Chatter comments
 creating, 375
 deleting, 375
 query, 375

 Chatter posts
 creating, 372
 custom object query, 373
 deleting, 373
 standard object query, 372
 user feed query, 374

 Chatter REST API requests
 followed records, 380
 news feed, 380
 posts, 380

 class definitions, 118
 commandButton component, 203
 conditional statements, 113
 constants, defining, 107
 Contact CSV import file, 69
 custom Apex REST Web services

 creating, 313
 invoking, 313

 custom Apex SOAP Web services
 creating record example, 328
 invoking, 329

 custom controllers
 extensions, 197
 read-only access to Project

record, 194
 wrapper patterns, 195 - 196

 lifecycles (development), 12

 configuration management, 14
 end of life, 15
 integrated logical databases, 13
 integrated unit testing, 14 - 15
 interoperability, 15
 MVC pattern, 15
 native user interfaces, 14

 LIMIT keyword (records), 125

 links

 custom
 custom objects, creating, 38
 Visualforce pages, 215

 standard, 37
 listings

 actionFunction component (Visualforce)
 controllers, 236
 pages, 236

 actionPoller component, 237
 actionStatus component, 238

 with facets, 239
 JavaScript functions, 239

 actionSupport component, 237 - 238
 aggregate functions

 COUNT, 145
 SUM, 145

 AngularJS project list example
(Visualforce)

 controller, 252
 page code, 252 - 253

 Apex ORM code snippet, 30
 arrays

 creating, 111
 initializing, 112

 Batch Apex
 class, 285
 execution scope, 289
 iterable batch example, 291
 project iterator, 291
 running batch jobs, 286
 schedulable code, 294
 scheduling example, 296
 stateful example, 289
 test, 293

 Bulk API password authentication, 345
 bulk export jobs

 creating, 348
 results, retrieving, 348 - 349
 status, checking, 348

407listings

 listing timecards Visualforce
page, 275

 navigation, AngularJS controller, 277
 outputField component, 201
 Project CSV import file, 65
 receiving email, 173
 records

 creating, 121
 deleting, 130
 inserting, 129
 locking, 161
 relationships, creating, 121
 undeleting, 130
 updating, 129
 upserting, 130

 records, grouping
 with aggregate functions, 146
 debug log excerpt, 147
 filtering grouped, 146
 GROUP BY CUBE clause, 147 - 148
 GROUP BY ROLLUP clause, 147
 without aggregate functions, 146

 recursion, 115
 repeat component, 203
 REST API

 authentication, 307
 creating record requests, 310
 deleting record requests, 311
 record retrieval by external

identifiers, 310
 record retrieval by unique

identifiers, 309
 services available call, 309
 SObject basic information

request, 309
 SOQL query request, 310
 updating record requests, 311
 upserting record requests, 311

 rounding operations, 108
 savepoints, 160
 schema metadata

 child relationship, 178
 field, 177
 object, 177
 picklist, 178
 record type, 179

 custom settings
 creating custom setting records, 180
 deleting, 181
 updating, 180
 values, retrieving, 180

 data integrity, 122
 data type conversions

 conversion methods, 108
 errors, 108
 ID and string, 108
 implicit conversion, 107
 strings to dates, 109

 datetime data types, formatting, 109
 dynamic queries

 SOQL, 175
 SOSL, 176

 Enterprise API
 creating records, 325
 query batch sizes, 324
 record retrieval SOQL query, 323

 enums, defining, 107
 error-severity message, 221
 exception statements, 115
 Force.com-styled components

 controller, 206
 page, 207

 formula field example, 24 - 25
 future method declaration, 116
 Hello World, 105
 include component, 242
 inputField component, 201
 insert DML database method, 158
 instances, creating, 179
 lists

 creating, 111
 initializing, 112
 nesting, 111

 maps, 113
 Metadata API object creation, 362 - 363
 metadata XML example, 31
 MissingTimecardBatch class

 creating, 298 - 299
 reset results, 300
 running, 300

 mobile timecard entry page
 editing timecards, 277 - 279
 listing timecards controller, 274

408 listings

 semi-join, 152
 sort fields, 125
 statement, 124

 SOSL
 Apex, 156
 query, 29

 SQL relationship query, 27
 standard controllers

 multiple records, 192
 single records, 191

 Streaming API Visualforce
controller, 342

 test methods, 136
 TimecardManager class

 creating, 139
 unit tests, 140 - 141

 Tooling API example (Visualforce)
 controller, 357 - 359
 page, 359 - 360

 triggers
 batching, 132
 definition, 131

 validateTimecard trigger, 138
 validation rule example, 24
 variables

 declaring, 105
 name case insensitivity, 106

 view components syntax, 199
 Visualforce

 controller partial page refresh, 235
 controller unit test, 222
 dynamic components, 248 - 249
 dynamic field references, 247
 Hello World example, 190
 pages as templates, 243
 partial page refresh, 235
 record-level security, 219
 view components, 244 , 246

 Yahoo! geocoding REST service
 integrating, 303
 invoking, 303
 testing, 304

 lists

 creating, 111
 custom settings, 48
 initializing, 111 - 112
 nesting, 111

 sending email
 mass email, 171
 SingleEmailMessage object, 168
 template, 170

 Services Manager application
 anonymous benchmark Web service,

testing, 334
 email notifications, 182
 integration implementation example,

 364 - 366
 utilization controller, 335 - 337
 Utilization page code, 337 - 338

 Services Manager Follow Team button
 controller extension code, 383
 Visualforce page, 384

 Services Manager Skills Matrix
 controller, 226 - 227
 unit test, 229 - 231
 Visualforce page, 228

 Services Manager Skills Matrix
comparison overlay

 actionSupport, adding, 262
 CompareSkillsComponent, 260
 CompareSkillsController, 260
 component CSS, adding, 261
 component support, adding, 261
 JavaScript integration, 261

 sets, 112
 sharing rules, inserting, 167
 Skill type field error condition

formula, 63
 SOAP API, logging in, 320
 SOQL

 child-to-child semi-join, 153
 child-to-parent relationships, 126
 child-to-parent semi-join, 153
 filter conditions, 124
 Group Object query, 166
 inner join, 150
 multi-select picklists, 154
 outer join, 148
 parent-to-child query, 151
 parent-to-child relationships, 126
 Project Share Object query, 165
 query in Apex, 127
 query in Apex with For loop, 127
 record limits, 125
 relationship query, 28

409methods

 MassEmailMessage object, 170 - 171

 mass emails, sending, 170 - 171

 Master-Detail relationships

 creating, 60 - 62
 defined, 40
 Lookup relationships, compared, 40
 Services Manager application, 55 - 57
 SOAP type, mapping, 322

 MAX aggregate function, 144

 messages component, 220 - 221

 metadata

 declarative, 7
 schema, 177

 child relationship, 178
 field, 177 - 178
 limits, 177
 object, 177
 picklist, 178
 record type, 179

 tools, 33
 XML, 30 - 31

 Metadata API, 360

 object creation example, 361 - 363
 services, 360 - 361
 Web site, 360

 metadata-aware components, 200 - 201

 inputField, 201
 outputField, 201

 methods

 abortJob, 296
 access modifiers, 118
 action, 195 - 197
 addError, 225
 addFields, 246
 addInfo, 225
 Apex test, 136
 clear, 109
 clone, 109
 defined, 117
 DML database, 157 - 158

 insert example, 158
 opt_allOrNone parameter, 158

 execute, 283
 executeBatch, 286
 finish, 284
 future, 116

 declaring, 116
 limitations, 116

 overview, 111
 pages, 211
 sorting, 112

 List/Set Iteration For loops, 114

 listViews component, 208

 local Web servers, configuring, 352

 locking records, 161

 logging in

 DE accounts, 32
 SOAP API, 318 - 320

 enabled permissions, 318 - 319
 IP white-listing, 327
 logging out, 320
 login call, 320
 problems, troubleshooting, 320
 security tokens, 319

 logical databases integration, 13

 logical negation (!) operator, 110

 login method, 320

 LoginResult object, 320

 logs

 debug, 288
 execution, 134

 long data type, 106

 Lookup relationships

 creating, 60
 defined, 39
 Master-Detail relationships,

compared, 40
 Services Manager application, 55
 SOAP type, mapping, 322

 loops, 114 , 127

 M
 managed sharing (Apex), 162

 organization-wide sharing defaults,
changing, 163

 restrictions, 163
 sharing objects, 162 - 163
 sharing rules, creating, 163 - 167

 inserting, 167
 Project object, 164
 SOQL queries, 165 - 166
 viewing, 163 , 167

 manual sharing reason, 82

 maps, 112 - 113

 mashups, 9

410 methods

 mobile applications

 Chatter Mobile, 264
 containers, 271
 hybrid, 265 , 267
 native, 265 - 266
 Salesforce

 Classic, 264
 Mobile SDK, 265
 Touch, 264

 timecard entry page
 editing timecards, 277 - 279
 in-page navigation, 276 - 277
 listing timecards, 273 - 276
 requirements, 272
 testing, 279
 viewing in Web browsers, 273
 viewing on iPhones, 273

 Web, 265
 data access, 269 - 270
 deployment, 271 - 272
 frameworks, 268 - 269
 overview, 266
 Salesforce SDK libraries, 266

 Mobile Components for Visualforce, 268 - 269

 documentation/source code Web
site, 269

 installing, 268 - 269
 types, 268

 Mobile Design templates, 269

 Mobile Packs, 269

 mobile timecard entry pages

 in-page navigation, 276 - 277
 requirements, 272
 testing, 279
 timecards

 editing, 277 - 279
 listing, 273 - 276

 viewing
 iPhones, 273
 Web browsers, 273

 Model-View-Controller (MVC) pattern, 15

 Modify All permission, 76

 modularity (Apex), 119

 modular Visualforce pages, 241

 composition, 243 - 244
 custom components, 244 - 246

 defining, 244 - 245
 Google Map example, 245 - 246

 inclusion, 242
 static resources, 241 - 242

 getCurrentUserContact, 225
 getDescribe, 177
 getInstance, 181
 getSObject, 176
 handleInboundEmail, 172
 isEmpty, 109
 login, 320
 nav, 277
 navClass, 277
 overloading, 119
 query

 SOQL, 175
 SOSL, 176

 rollback, 159
 schedule, 295
 sendEmail, 171
 setBccSender, 171
 setCcAddresses, 171
 setDocumentAttachments, 172
 setFileAttachments, 172
 setOrgWideEmailAddressId, 172
 setReplyTo, 171
 setSaveAsActivity, 172
 setSavePoint, 159
 setSenderDisplayName, 171
 setUseSignature, 172
 size, 109
 start, 283
 testAsUser, 231
 testNoContactForUser, 231
 testNoContactSelected, 231
 testNoSkills, 231
 testSave, 231
 testWithSkills, 231
 valueOf

 date to string conversions, 109
 string to date conversions, 109

 MIN aggregate function, 144

 MissingTimecardBatch class

 creating, 298 - 299
 reset results, 300
 running, 300

 missing timecard reports, 296 - 297

 missing timecards information,
calculating, 298 - 299

 missing timecards list custom object,
creating, 297

 testing, 299 - 300

411object-level security

 New button, 213

 New Custom Field Wizard

 default values, 39
 descriptions, 39
 external IDs, 39
 help text, 39
 labels, 39
 names, 39
 required fields, 39
 types, selecting, 38
 unique fields, 39

 New Custom Object Tab Wizard, 63

 news feeds

 defined, 381
 requests, 379 - 380

 North American Industry Classification System

(NAICS) codes, 333

 not equal to (!=) operator, 110

 notifications, 205

 action status
 actionStatus component, 238 - 240
 dynamic, 239
 images/stylized messages, 239

 Streaming API
 PushTopics, 340 - 341
 Web site, 340

 NotifyForFields field, 341

 NotifyForOperations field, 341

 NullPointerException exception, 114

 number data type, 38 , 322

 O
 OAuth, 270 , 306 - 307

 object-level security, 72 , 74

 field-level security, 77
 field accessibility, 78 - 79
 profiles, 78

 permission sets, 76 - 77
 profiles, 74

 administrative permissions, 75
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager, creating, 89 - 90
 Services Manager, listing, 85 - 86
 types, 74

 monitoring batch jobs, 287 - 288

 multilenancy, 4 - 6

 multiplication (*) operator, 110

 multi-select picklists, 154

 MVC (Model-View-Controller) pattern, 15

 MyEmailService class, 173 - 174

 N
 NAICS (North American Industry Classification

System) codes, 333

 names

 channel, 340
 custom objects, 35
 fields, 39
 sender display (email), 171
 sites domain names, 255
 triggers, 131
 variables, 105 - 106
 view components, 199

 namespaces, 120

 native applications, 265 - 266

 native user interfaces

 CRUD (create, read, update, delete)
operations, 31

 data integration, 31
 development lifecycle, 14
 new features, enabling, 41
 view components, 208 - 209

 detail, 209
 enhancedList, 209
 listViews, 208
 relatedList, 209

 Visualforce development tool, 189
 Visualforce integration, 209 - 210

 custom buttons/links, 215
 custom tabs, 215
 page layouts, 213
 standard buttons, 213
 standard pages, 210 - 211

 navClass method, 277

 navigation

 expressions
 standard controllers, 192
 standard set controllers, 193

 Mobile Components for Visualforce, 268
 mobile timecard entry page, 276 - 277

 nav method, 277

 nesting lists, 111

412 object-oriented programming

 FeedTrackedChange, 376
 logical, 22
 LoginResult, 320
 MassEmailMessage, 170 - 171
 metadata, 177
 operational tasks, 22
 permissions, 73 , 75 - 76
 Project

 CSV import file, 65
 custom object tab, creating, 63
 fields, 52
 overview, 52
 sharing rules, 164

 records
 creating, 42 , 121
 relationships, creating, 121
 types, 47

 referencing in Apex, 121 - 122
 SaveResult, 324
 security, 218
 services, 361
 sharing, 162 - 163

 fields, 162 - 163
 restrictions, 163

 SingleEmailMessage, 168 - 169
 Skill

 fields, 54
 overview, 54
 validation rule, creating, 63

 SOQL relationships, 125 - 126
 child-to-parent, 125 - 126
 parent-to-child, 126

 standard, 22
 tabs, creating, 41
 Timecard

 fields, 56
 overview, 53

 undelete support, 23
 Views, 43 - 44

 Open Perspective dialog box, 101

 operations specialist contributions, 12

 operators, 109

 & (AND) operator, 110
 AND (&&), 110
 addition (+), 110
 arithmetic negation (-), 110
 assignment (=), 110
 bitwise, 110

 object-oriented programming, 117

 analysis and design specialist
contributions, 12

 encapsulation, 117 - 118
 information-hiding notation, 118
 inheritance, 119
 modularity, 119
 polymorphism, 119

 Object-Relational Mapping (ORM), 30

 objects, 22 , 106

 AggregateResult, 145
 Assignment

 fields, 53
 overview, 53

 Chatter
 dynamic, 370
 high-volume design, 370
 relationship-rich, 370

 Contact
 CSV import file, 69
 fields, 51
 overview, 51

 ContactFeed, 372
 creating, 35 , 59 - 60

 activities, allowing, 36
 custom buttons/links, 38
 custom fields, 37
 definition, 35 - 36
 deployment status, 36
 descriptions, 36
 field history tracking, 36
 help settings, 36
 labels, 35
 with Metadata API, 361 - 363
 names, 35
 page layouts, 37
 record name label, 36
 reports, allowing, 36
 search layouts, 37
 standard buttons/links, 37
 standard fields, 36
 triggers, 37
 validation rules, 37

 EntitySubscription, 377
 Feed, 370 - 371

 custom objects, 373
 news, 374
 standard objects, 372 - 373
 users, 374

413pages

 P
 PaaS (Platform as a Service), 2

 Amazon Web Services, 2 - 3
 Force.com, 3 - 4
 Google Cloud Platform, 3
 Windows Azure, 3

 pageBlockButtons component, 228

 pageBlock component, 228

 pageBlockTable component, 228

 pageMessages component, 220 - 221

 pages

 adding to sites, 256 - 257
 Canvas App

 adding, 352
 configuring, 352

 components, 200
 layouts

 custom objects, creating, 37
 Visualforce pages, adding, 213

 security, 219
 standard native user interface

 edit, 211
 list, 211
 overriding, 211
 tab, 210
 view, 211

 structure components, 205
 view state, preserving, 195
 Visualforce, 187

 actionFunction component, 236
 adding to page layouts, 213
 adding to Salesforce Touch, 271
 AngularJS example code, 252 - 253
 asynchronous actions. See

asynchronous actions
 Chatter components, 381
 Chatter example, 378
 dynamic, 246 - 249
 JavaScript events, 237 - 238
 mobile timecards, 275 - 276 , 278
 modular, 241 - 246
 native user interface buttons/links

navigation, 215
 as native user interface tabs, 215
 partial refreshes, 234 - 235

 division (/), 110
 equality (==), 110
 exact equality (===), 110
 exact inequality (!==), 110
 greater than (>), 110
 greater than or equal to (>=), 110
 grouping, 110
 if/then/else expression (? :), 110
 less than (<), 110
 less than or equal to (<=), 110
 logical negation (!), 110
 multiplication (*), 110
 not equal to (!=), 110
 OR (||), 110
 signed shift left (<<), 110
 signed shift right (>>), 110
 string concatenation (+), 110
 subtraction (-), 110
 unary decrement (--), 110
 unary increment (++), 110
 unsigned shift right (>>>), 110

 opt_allOrNone parameter (DML database

methods), 158

 organization-wide

 email address unique identifiers, 172
 security defaults

 overview, 80 - 82
 Services Manager application, 91

 orgs, 32

 ORM (Object-Relational Mapping), 30

 OR (|) operator, 110

 OR (||) operator, 110

 outbound email. See sending email

 outer joins, 148 - 149

 outputField component, 201

 outputLabel component, 202

 outputLink component, 204

 outputPanel component, 204

 outputText component, 204

 overloading methods, 119

 overriding

 standard buttons, 213
 standard pages, 210 - 211

 ownership (records), 79 - 80

414 pages

 Feed objects, 370 - 371
 custom object, 373
 news, 374
 standard objects, 372 - 373
 user, 374

 schema pattern, 370
 primitive components, 204 - 205

 primitive data components, 201 - 202

 inputCheckbox, 202
 inputFile, 202
 inputHidden, 202
 inputSecret, 202
 inputText, 202
 inputTextArea, 202
 outputLabel, 202
 selectCheckboxes, 202
 selectList, 202
 selectRadio, 202

 private records, 81

 Problems View (IDE), 103

 procedural sharing reasons, 82

 profiles, 74

 administrative permissions, 75
 defined, 72
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager application, 18 , 91 - 92

 accounts receivable, 18
 consultants, 18
 creating, 89 - 90
 listing, 85 - 86
 project managers, 18
 sales representatives, 18
 staffing coordinators, 18
 Vice President, 18

 types, 74
 user groups, 80

 programming languages, 7

 ProjectListCtrl controller, 253

 project manager profile

 permissions, 86
 Services Manager application, 18

 projects, 103

 CSV import file, 65
 custom object tab, creating, 63

 performance tuning, 217 - 218
 public access. See sites
 security, 218 - 220
 Services Manager Follow Team

button, 384 - 385
 Services Manager Skills Matrix,

 228 - 229
 Services Manager Utilization, 337 - 338
 Services Manager Utilization page,

creating, 330 - 331
 standard pages, overriding, 210 - 211
 Streaming API example, 343
 timed events, 237
 Tooling API example, 359 - 360
 viewing from native user interface

buttons, 213
 viewing in Salesforce Classic, 271

 pagination expressions, 193

 paging components, 205

 ParentId field, 162

 parent-to-child relationships, 126

 queries, 151
 semi-join, 151

 partial page refreshes, 234 - 235

 Partner SOAP API, 315

 percent data type, 38 , 322

 performance

 custom Apex SOAP Web services, 327
 Visualforce pages, tuning, 217 - 218

 permissions

 administrative, 75
 enabled (SOAP API), 318 - 319
 object, 73 , 75 - 76
 Services Manager profiles, 85 - 86
 sets, 72 , 76 - 77

 perspectives, 101

 phone data type, 322

 phone fields, 38

 picklists, 38

 metadata, 178
 multi-select, 154
 SOAP type, mapping, 322

 Platform as a Service. See PaaS

 platform documentation, 16

 polymorphism, 119

 posts (Chatter), 370 - 372

 content, 371
 creating, 372 - 373
 deleting, 373

415records

 SOSL, 29
 Apex, 155 - 157
 dynamic, 176
 record retrieval, 324
 syntax, 155

 QueryException exception, 114

 query method

 SOQL, 175
 SOSL, 176

 queryMore service, 323

 query service, 323

 R
 raising exceptions, 115

 RCED (read, create, edit, delete)

operations, 31

 Read permission, 75

 receiving email, 172 - 173

 class, creating, 173 - 174
 governor limits, 173
 personalizing based on sender

identity, 173
 services, configuring, 174 - 175
 uncaught exceptions, 173

 records

 adding to bulk import jobs, 346 - 347
 batch processing. See Batch Apex
 controlled by parent option, 81
 counts, returning, 145
 creating, 42 , 121
 custom setting

 creating, 180
 deleting, 180
 updating, 180

 deleting, 130
 Enterprise API

 bulk modifications, 326
 creating, 324 - 325
 deleting/undeleting, 325
 retrieving, 323 - 324
 updating, 325
 upserting, 325
 writing, 324

 exporting, 347 - 349
 batches, creating, 348
 creating bulk export jobs, 347 - 348
 results retrieving, 348 - 349
 status, checking, 348

 development lifecycle, 12
 configuration management, 14
 end of life, 15
 integrated logical databases, 13
 integrated unit testing, 14 - 15
 interoperability, 15
 MVC pattern, 15
 native user interfaces, 14

 fields, 52
 overview, 52
 selecting, 10 - 11
 sharing rules, 164
 team selection, 11 - 12
 tools/resources

 AppExchange, 16
 Code Share, 16
 developer discussion boards, 16
 Developer Force Web site, 16
 Dreamforce/Cloudforce

conferences, 17
 Ideas site, 16
 platform documentation, 16
 systems integrators, 17
 technical support, 17

 Visualforce, 188
 properties, 117

 public groups, 80

 public read-only records, 81

 public read/write records, 81

 PushTopics, 340 - 341

 availability, 341
 components, 340 - 341
 deleting, 341
 limitations, 341

 Q
 quality assurance engineer contributions, 12

 queries

 batch sizes, setting, 324
 dirty writes, 161
 exceptions, 114
 joins

 anti-joins, 152 - 153
 inner, 149 - 150
 outer, 148 - 149
 semi-joins. See semi-joins

 parent-to-child, 151
 SOQL. See SOQL queries

416 records

 Services Manager application, 87 - 88
 restrictions, 163
 sharing objects, 162 - 163
 sharing reasons, 82

 sharing rules
 inserting, 167
 Project object, 164
 SOQL queries, 165 - 166
 viewing, 163 , 167

 type metadata, 179
 types, 46 - 47
 undeleting, 130
 unfollowing, 377 - 378
 updating, 129
 upserting, 129 - 130
 viewing, 42

 recursion, 115

 registration, 32

 relatedList component, 209

 relational databases, 6

 relationship-rich Chatter objects, 370

 relationships

 child metadata, 178
 comparison, 40
 creating, 39 - 40
 data, 25

 explicitly defined, 26
 integrity enforced, 26
 SOQL, 26 - 27
 SOQL versus SQL, 27 - 28
 SOSL, 29
 viewing, 121

 FeedComments, 375
 fields, 38

 comparison, 40
 creating, 39 - 40
 Lookup, 39
 Master-Detail, 40

 following, 377
 Lookup, 39

 creating, 60
 Services Manager application, 55
 SOAP type, mapping, 322

 Master-Detail, 40
 creating, 60 - 62
 Services Manager application, 55 - 57
 SOAP type, mapping, 322

 parent-to-child queries, 151
 records, creating, 121

 feed-tracked changes (Chatter), 376
 filtering, 124 - 125
 following

 method, 377
 relationships, querying, 377
 request, 380

 grouping, 145 - 146
 with aggregate functions, 146
 filtering grouped, 146
 without aggregate functions, 145 - 146

 grouping with subtotals, 147 - 148
 debug log excerpt, 147
 GROUP BY CUBE clause, 147 - 148
 GROUP BY ROLLUP clause, 147

 importing, 346 - 347
 adding records to bulk import jobs,

 346 - 347
 closing bulk import jobs, 347
 creating bulk import jobs, 346
 results, retrieving, 347
 status, checking, 347

 inserting, 129
 limits, 125
 locking, 161
 ownership, 79 - 80
 private, 81
 public read-only, 81
 public read/write, 81
 PushTopics, 340 - 341

 availability, 341
 components, 340 - 341
 deleting, 341
 limitations, 341

 relationships, creating, 121
 requests

 creating, 310
 deleting, 311
 updating, 311
 upserting, 311

 retrieving
 external identifiers, 310
 unique identifiers, 309

 security, 72 , 79
 record ownership, 79 - 80
 user groups, 80
 Visualforce user interfaces, 219

 sharing, 80 - 82
 organization-wide defaults,

 80 - 82 , 163

417rules

 API
 authentication, 306 - 307
 Chatter, 379 - 380
 Connected Apps, creating, 307
 creating record requests, 310
 data access, 306
 deleting record requests, 311
 Developer’s Guide Web site, 308
 mobile Web application data

access, 270
 record retrieval by external

identifiers, 310
 record retrieval by unique

identifiers, 309
 services available call, 308 - 309
 SObject basic information

request, 309
 SOQL query request, 310
 updating record requests, 311
 upserting record requests, 311

 custom Apex REST Web services,
 312 - 314

 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 integration, 9
 services, calling from Apex, 302 - 304

 formats, 302
 HTTP classes, 302 - 303
 integrating, 303 - 304
 invoking, 303
 testing, 304

 rich data types, 25

 roles. See profiles

 rollback method, 159

 roll-up summaries

 fields, 41 , 45
 SOAP type, mapping, 322

 rounding, 108

 RowCause field, 163

 rules

 Apex Web services classes
 REST, 312
 SOAP, 327

 governor limits, 120
 aggregate functions, 145
 Apex code, 120

 Services Manager application, 55 - 58
 SOQL, 125 - 126

 child-to-parent, 125 - 126
 parent-to-child, 126

 viewing, 121
 repeat component, 203

 repeating components, 201 - 203

 reply-to addresses (email), 171

 reports

 custom objects, allowing, 36
 missing timecard, 296 - 297

 missing timecards information,
calculating, 298 - 299

 missing timecards list custom object,
creating, 297

 testing, 299 - 300
 Representational State Transfer. See REST

 RequestId field, 355

 requests

 Chatter posts, 380
 followed records, 380
 news feed, 379 - 380
 password authentication, 307
 records

 creating, 310
 deleting, 311
 retrieving, 309 - 310
 updating, 311
 upserting, 311

 services available, 308
 SObject basic information, 309
 SOQL query, 310

 reRender attribute, 234

 resources

 Apex Code Developer’s Guide Web
site, 108

 AppExchange, 16
 Code share, 16
 developer discussion boards, 16
 Developer Force Web site, 16
 Dreamforce/Cloudforce conferences, 17
 Ideas Web site, 16
 platform documentation, 16
 REST API, 308
 security Web site, 385
 systems integrators, 17
 technical support, 17

 REST (Representational State Transfer), 301

418 rules

 sample application. See Services Manager

application

 savepoints, 159 - 160

 example, 159 - 160
 limitations, 159
 restoring to, 159
 setting, 159

 SaveResult objects, 324

 Schedulable interface, 294

 schedule method, 295

 scheduling Batch Apex, 293 - 296

 Apex user interface, 294 - 295
 sample code, 296
 schedulable code development, 294
 scheduled jobs

 creating, 295
 deleting, 296
 editing, 296

 Schema Builder, 34

 custom objects, creating, 59 - 60
 Lookup relationships, creating, 60
 Master-Detail relationships,

creating, 60 - 62
 Schema Explorer, 103

 relationships, viewing, 121
 SOQL queries, running, 123

 scope

 Batch Apex, 282
 batch jobs

 adjusting, 289
 iterable batch, 290 - 292

 search layouts, 37

 sectionHeader component, 228

 Secure Coding Guideline document Web

site, 218

 security

 Apex, 133
 architecture, 71
 authentication

 Bulk API, 345 - 346
 Canvas, 349 - 350
 mobile Web applications, 269 - 270
 REST APIs, 306 - 307
 sites users, 258

 Cross Site Request Forgery attacks, 385
 custom Apex SOAP Web services, 327
 fields, 77

 accessibility, 73 , 78 - 79 , 89 - 90
 profiles, 78

 custom Apex REST Web services, 312
 custom Apex SOAP Web services, 327
 custom settings, 180
 databases, 120
 dynamic queries, 176
 Force.com Apex Code Developer’s

Guide Web site, 100
 heaps, 120
 inbound email, 173
 namespaces, 120
 overview, 100
 Visualforce, 221

 managed sharing, 153
 creating, 163 - 167
 organization-wide sharing defaults,

changing, 163
 restrictions, 163
 sharing objects, 162 - 163

 sharing, 82
 inserting, 167
 Services Manager application, 92 - 93
 viewing, 163 , 167

 validation
 fields, 24
 Skill object creating, 63

 S
 S2S (Salesforce-to-Salesforce), 9

 SaaS. See PaaS

 Salesforce

 Classic, 264
 implementation guide, 271
 Visualforce pages, viewing, 271

 Mobile Packs, 269
 Mobile SDK

 download Web sites, 265
 home page, 267
 libraries, 266

 Object Query Language. See SOQL
 Object Search Language. See SOSL
 Touch, 264

 mobile timecard entry page,
testing, 279

 Visualforce pages, viewing, 271
 Salesforce-to-Salesforce (S2S), 9

 sales representatives profile

 permissions, 86
 Services Manager application, 18

419services

 selecting

 field types, 38
 projects, 10 - 11
 teams, 11 - 12

 selectList component, 202

 selectRadio component, 202

 semi-joins

 child-to-child, 153
 child-to-parent, 153
 parent-to-child, 151
 restrictions, 153

 sendEmail method, 171

 sender display names (email), 171

 sending email, 168

 attachments, 172
 blind-carbon-copies, 171
 carbon copies, 171
 mass emails, 170 - 171
 notifications (Services Manager

application), 181 - 182
 organization-wide email address unique

identifiers, 172
 reply-to addresses, 171
 sendEmail method, 171
 sender display names, 171
 signatures, 172
 SingleEmailMessage object, 168 - 169
 templates, 169 - 170
 tracking, 172

 services, 7

 application, 6
 business logic, 8
 create, 324
 createProject, 329
 custom Apex REST Web, 312 - 314

 Apex class rules, 312
 creating, 313
 governor limits, 312
 invoking, 313 - 314

 custom Apex SOAP Web, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327
 Services Manager anonymous

benchmarking, 333 - 335

 object-level. See object-level security
 objects, 218
 overview, 71 - 74
 permission sets, 72 , 76 - 77
 profiles, 72 , 74

 administrative permissions, 75
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager, creating, 89 - 90
 Services Manager, listing, 85 - 86
 types, 74

 records, 72 , 79
 record ownership, 79 - 80
 sharing model, 80 - 82
 user groups, 80
 Visualforce user interfaces, 219

 resources Web site, 385
 Secure Coding Guideline document Web

site, 218
 Services Manager application

 business units, 85 - 88
 designing, 85
 field accessibility, 89 - 90
 implementing, 88 - 89
 job functions, 85 - 86
 organization-wide defaults, 91
 profiles, 89 - 92
 sharing rules, 92 - 93
 Skills Matrix, 224 - 225
 testing, 94 - 98

 sharing model, 73
 sharing reasons, 74
 sites, 255 - 256
 SOAP API

 IP white-listing, 319
 overview, 316
 tokens, 319

 Visualforce user interfaces, 218
 object-level, 218
 page-level, 219
 record-level, 219

 selectCheckboxes component, 202

 selectedContactId variable, 225

420 services

 contacts, 51
 data relationships, 55 - 58
 projects, 52
 skills, 53
 timecards, 53 - 56

 email notifications, 181 - 182
 Follow Team button, 382 - 385

 configuring, 385
 controller extension code, 383 - 384
 testing, 385
 Visualforce page, 384 - 385

 hours utilization calculation, 332
 IDE configuration, 138
 importing data, 64

 data preparation, 64 - 66
 import process, 66
 verification, 67 - 69

 missing timecard report, 296 - 297
 missing information, calculating,

 298 - 299
 missing timecards list custom object,

creating, 297
 testing, 299 - 300

 mobile timecard entry page
 editing timecards, 277 - 279
 in-page navigation, 276 - 277
 listing timecards, 273 - 276
 requirements, 272
 testing, 279
 viewing in Web browsers, 273
 viewing on iPhones, 273

 security
 business units, 85 - 88
 designing, 85
 field accessibility, 89 - 90
 implementing, 88 - 89
 job functions, 85 - 86
 organization-wide defaults, 91
 profiles, creating, 89 - 90
 roles, 91 - 92
 sharing rules, 92 - 93
 testing, 94 - 98

 Skills Matrix
 complete list of skill types,

creating, 224
 contacts drop-down list, creating, 224
 controller, creating, 225 - 227
 controller tests, 229 - 231
 data security, 224 - 225

 database, 7
 delete, 325
 email, configuring, 174 - 175
 integration, 8 - 9
 Metadata API, 360 - 361
 query, 323
 queryMore, 323
 REST, calling from Apex, 302 - 304

 formats, 302
 HTTP classes, 302 - 303
 integrating, 303 - 304
 invoking, 303
 testing, 304

 SOAP, calling from Apex, 305 - 306
 sobjects

 record retrieval by external
identifiers, 310

 record retrieval by unique
identifiers, 309

 SObject basic information
request, 309

 update, 325
 upsert, 325
 user interface, 8
 Web, integration, 9

 Services Manager application

 anonymous benchmarking service,
 333 - 335

 background, 17 - 18
 business hours, configuring, 331
 database integration

 implementation strategy, 363 - 364
 sample implementation, 364 - 366
 scenario, 363

 data model design goals, 49 - 50
 Developer Edition optimization, 50
 standard objects, leveraging, 50

 data model implementation
 custom application, creating, 58
 custom objects, creating, 59 - 60
 custom object tabs, creating, 63
 field visibility, 64
 Lookup relationship, creating, 60
 Master-Detail relationships,

creating, 60 - 62
 validation rules, creating, 63

 data model specification, 50
 assignments, 53 - 54

421Skill object

 records, 73 , 80 - 82
 organization-wide defaults, 80 - 82 ,

 163
 procedural, 82
 restrictions, 163
 Services Manager application, 87 - 88
 sharing reasons, 82

 rules, 82 , 92 - 93
 inserting, 167
 Services Manager application, 92 - 93
 viewing, 163 , 167

 sharing objects, 162 - 163

 fields, 162 - 163
 restrictions, 163

 showChatter attribute, 381

 signatures (email), 172

 signed shift left (<<) operator, 110

 signed shift right (>>) operator, 110

 SimpleDateFormat pattern, 109

 Simple Object Access Protocol. See SOAP

 SingleEmailMessage object, 168 - 169

 single-page applications, 250

 AngularJS, 251 - 253
 controllers, 253
 demonstration page, 251
 templates, 253
 tutorial Web site, 251
 Visualforce controller,

implementing, 252
 Visualforce page code, 252 - 253
 Web site, 251

 JavaScript remoting, 250
 sites

 creating, 255
 domain name, 255
 enabling, 254
 main page, 255
 pages, adding, 256 - 257
 security, 255 - 256
 user authentication, 258

 size

 collections, 109
 query batches, 324
 static resources, 241

 size method (collections), 109

 Skill object

 fields, 54
 overview, 54
 validation rule, creating, 63

 page, creating, 224
 requirements, 223
 sample implementation, 223
 skills list, creating, 224
 Visualforce page, 228 - 229

 Skills Matrix comparison overlay,
 259 - 262

 actionSupport, adding, 262
 component CSS, adding, 261
 component support, adding, 261
 custom components, creating,

 259 - 260
 JavaScript integration, 261

 TimecardManager class, creating,
 138 - 139

 timecard validation
 trigger, creating, 138 - 139
 unit testing, 140 - 141

 user roles, 18
 accounts receivable, 18
 consultants, 18
 project managers, 18
 sales representatives, 18
 staffing coordinators, 18
 Vice President, 18

 utilization
 controller code, 335 - 337

 page code, 337 - 338
 Visualforce page, creating, 330 - 331

 session sharing, 270

 setBccSender method, 171

 setCcAddresses method, 171

 setDocumentAttachments method, 172

 setFileAttachments method, 172

 setOrgWideEmailAddressId method, 172

 setReplyTo method, 171

 sets, 112

 setSaveAsActivity method, 172

 setSavepoint method, 159

 setSenderDisplayName method, 171

 setUseSignature method, 172

 sharing

 reasons, 74
 delegated administration, 82
 manual, 82
 procedural, 82
 records, 82
 sharing rules, 82

422 Skills Matrix

 Services Manager anonymous
benchmarking, 333 - 335

 services, calling from Apex, 305 - 306
 sobjects service

 record retrieval
 external identifiers, 310
 unique identifiers, 309

 SObject basic information request, 309
 social applications. See Chatter

 Software as Service. See PaaS

 SOQL (Salesforce Object Query

Language), 26 - 27

 aggregate queries, 144
 aggregate functions, 144 - 145
 grouping records, 145 - 146
 grouping records with subtotals,

 147 - 148
 Chatter queries

 comments, 375
 custom object, 373
 feed-tracked changes, 376
 following relationships, 377
 standard object, 372
 user feed, 374

 dirty writes, 161
 joins

 anti-joins, 152- 153
 inner, 149 - 150
 outer, 148 - 149
 semi-joins. See semi-joins

 multi-select picklists, 154
 queries

 Apex, 126 - 128
 child-to-parent, 125 - 126
 dynamic, 175 - 176
 example, 26 - 27
 parent-to-child, 126 , 151
 PushTopics, 340
 record retrieval, 323
 record sharing, 165 - 166
 relationships, 125 - 126
 REST API request, 310
 results, sorting, 125
 Schema Explorer, 123

 records
 filter conditions, 124 - 125
 limits, 125

 Skills Matrix

 comparison overlay, 259 - 262
 actionSupport, adding, 262
 component CSS, adding, 261
 component support, adding, 261
 custom component, creating,

 259 - 260
 JavaScript integration, 261

 complete list of skill types, creating, 224
 contacts drop-down list, creating, 224
 controllers

 creating, 225 - 227
 tests, 229 - 231

 data security, 224 - 225
 page, creating, 224
 requirements, 223
 sample implementation, 223
 skills list, creating, 224
 Visualforce page, 228 - 229

 SmartSync

 library, 266
 mobile Web applications data

access, 270
 SOAP (Simple Object Access Protocol), 301

 API, 31
 enabled permissions, 318 - 319
 Enterprise. See Enterprise API
 error handling, 322
 Force.com data types, 321
 IP white-listing, 319
 limits, 316
 logging in/out, 318 - 320
 login call, 320
 login problems, troubleshooting, 320
 Partner, 315
 security, 316
 security tokens, 319
 stub code, generating, 316 - 317
 Web Service Connector (WSC), 316
 WSDL versions, 315 - 316

 custom Apex SOAP Web services, 326
 Apex class rules, compared, 327
 calling, 328
 creating records example, 328
 governor limits, 327
 invoking, 329
 limitations, 326 - 327

423strings

 standard set controllers, 192 - 193

 start method (Batchable interface), 283

 stateful Batch Apex, 289 - 290

 Stateful interface, 290

 statements

 conditional, 113
 Delete, 130
 DML. See DML, statements
 exception, 114 - 115

 examples, 115
 handling, 115
 raising, 115

 Insert, 129
 loops, 114
 SOQL, 124

 filter conditions, 124
 record limits, 125
 sort fields, 125

 Undelete, 130
 Update, 129
 Upsert, 129 - 130

 static resources, 241 - 242

 status

 bulk export jobs, 348
 bulk import jobs, 347
 messages, displaying, 238

 dynamic, 239
 images/stylized, 239

 Status update Chatter posts, 371

 storage custom settings, 47 - 48

 defined, 47
 hierarchy, 49
 limits, 49
 list, 48
 types, 47 - 48

 Streaming API

 example, 341 - 344
 CometD library, 342
 Visualforce controller, 342
 Visualforce page, 343

 PushTopics, 340 - 341
 availability, 341
 components, 340 - 341
 deleting, 341
 limitations, 341

 Web site, 340
 strings

 concatenation (+) operator, 110
 converting to dates, 109

 SQL, compared, 27 - 28
 column list functions, 28
 governor limits, 28
 implicit joins, 27
 nested resultsets, 27 - 29

 statements, 124
 filter conditions, 124
 record limits, 125
 sort fields, 125

 sorting

 lists/arrays, 112
 query results, 125

 SOSL (Salesforce Object Search

Language), 29

 Apex, 155 - 157
 dirty writes, 161
 queries

 dynamic, 176
 example, 29

 record retrieval, 324
 syntax, 155

 column list functions, 28
 governor limits, 28
 implicit joins, 27
 nested resultsets, 27 - 29

 SQL versus SOQL, 27 - 28

 Staffing Coordinator profile

 permissions, 86
 Services Manager application, 18
 testing, 96 - 97

 standard buttons

 custom objects, creating, 37
 listing of, 213
 overriding, 213

 standardController attribute, 200

 standard controllers, 191 - 193

 multiple records, 192 - 193
 single records, 191 - 192

 standard fields

 custom objects, creating, 36
 defined, 23

 standard links, 37

 standard objects, 22

 standard pages

 edit, 211
 list, 211
 overriding, 210 - 211
 tab, 210
 view, 211

424 strings

 Skills Matrix controllers, 229 - 231
 TimecardManager class, 140 - 141
 Visualforce controllers, 222

 test methods (Apex), 136

 testNoContactForUser method, 231

 testNoContactSelected method, 231

 testNoSkills method, 231

 testSave method, 231

 testWithSkills method, 231

 text

 Chatter posts, 371
 fields, 38
 SOAP data type, mapping, 322

 Text Area data type, 322

 throw keyword (exceptions), 115

 time data type, 38 , 106

 TimecardManager class

 creating, 138 - 139
 unit tests, 140 - 141

 Timecard object

 fields, 56
 overview, 53

 timed events, 237

 Tooling API, 354

 Apex code, deploying, 355
 internal state of deployment, 355
 overview, 355
 query service, 355
 status, refreshing, 355
 user interface, 356
 Visualforce examples

 controller, 357 - 359
 page, 359 - 360

 Web site, 355
 tools

 cURL, 306
 custom objects, 33 - 34

 App Builder Tools, 33
 data, 34
 Force.com IDE, 34
 metadata, 33
 Schema Builder, 34

 data, 34
 Data Loader, 34
 Excel Connector, 34
 Import Wizard, 34

 Data Loader
 data preparation, 64 - 66
 data verification, 67 - 69
 importing data, 66

 date conversions, 109
 defined, 106
 ID conversion, 108

 structural components (Mobile Components

for Visualforce), 268

 stub code, generating, 316 - 317

 stylesheet component, 205

 subtraction (-) operator, 110

 SUM aggregate function, 144 - 145

 systems integrators, 17

 T
 table components, 205

 tables. See objects

 tabs

 creating, 41 , 63 , 215
 page, 210

 targetObjectIds unique identifiers

 email templates, 169
 MassEmailMessage object, 170

 teams, selecting, 11 - 12

 technical support, 17

 technology integrations, 4

 templateIds unique identifiers, 170

 templates

 AngularJS, 253
 Mobile Design, 269
 sending email, 169 - 170
 Visualforce pages as, 243 - 244

 testAsUser method, 231

 testing

 anonymous benchmarking Web
service, 334

 Batch Apex, 293
 REST services integration, 304
 Services Manager application, 97 - 98

 Follow Team button, 385
 mobile timecard entry page, 279

 Services Manager security, 94 - 98
 additional users, creating, 94 - 95
 Consultant profile, 96
 data preparation, 95 - 96
 Staffing Coordinator profile, 96 - 97
 Vice President profile, 97

 unit tests
 Apex. See Apex, unit tests
 integrated, 14 - 15
 missing timecard report, 299 - 300

425users

 mass emails, 170
 organization-wide email addresses, 172
 record retrieval, 309 , 324

 unit tests

 Apex, 136
 results, viewing, 137
 running, 137
 test data, 137
 test methods, 136
 Test Runner View, 103

 integrated, 14 - 15
 missing timecard report, 299 - 300
 Skills Matrix controllers, 229 - 231
 TimecardManager class, 140 - 141
 Visualforce controllers, 222

 UNIX line-continuation character (\), 309

 unsigned shift right (>>>) operator, 110

 update service, 325

 Update statement, 129

 updating

 custom setting records, 180
 records, 129

 Enterprise API, 325
 requests, 311

 upserting records

 Enterprise API, 325
 requests, 311

 upsert service, 325

 Upsert statement, 129 - 130

 URLs

 Chatter posts, 371
 fields, 38
 SOAP data type, mapping, 322

 user feeds (Chatter posts), 374

 user interfaces

 Apex Test Runner View, 103
 custom, creating. See Visualforce
 designer contributions, 12
 Enhanced Profile, 74
 jQuery, 259
 modularity, 119
 native. See native user interface
 services, 8
 Tooling API example, 356

 UserOrGroupId field, 162

 userPhotoUpload component, 381

 users

 authentication
 Bulk API, 345 - 346

 Schema Builder
 custom objects, creating, 59 - 60
 Lookup relationships, creating, 60
 Master-Detail relationships, creating,

 60 - 62
 Visualforce development, 188 - 190
 Web Service Connector, 316

 tracking email, 172

 transaction processing

 DML database methods, 157 - 158
 insert example, 158
 opt_allOrNone parameter, 158

 record locking, 161
 savepoints, 159 - 160

 example, 159 - 160
 limitations, 159
 restoring to, 159
 setting, 159

 transactions

 Batch Apex, 283
 custom Apex SOAP Web services, 327

 triggers, 130 - 131

 batching, 132
 bulkifying, 132
 custom objects, creating, 37
 definitions, 131 - 132
 email notifications, 181 - 182
 error handling, 132 - 133
 names, 131
 page navigation, 195
 timecard validation, creating, 138 - 139

 troubleshooting SOAP API login

problems, 320

 try keyword (exceptions), 115

 tuning Visualforce user interfaces, 217 - 218

 TypeException exception, 114

 U
 unary decrement (--) operator, 110

 unary increment (++) operator, 110

 uncaught exceptions, 220

 undelete service, 325

 Undelete statement, 130

 undeleting records, 130 , 325

 unfollowing records, 377 - 378

 unique identifiers

 email templates, 169
 fields, 24

426 users

 converting strings to dates, 109
 date, 106
 datetime, 106
 decimal, 106
 double, 106
 ID, 106
 Integer, 106
 long, 106
 object, 106
 string, 106
 time, 106

 declaring, 105 - 106
 enums, 107
 fields, 247
 names, 105 - 106
 rounding, 108
 selectedContactId, 225

 verifying data imports, 67 - 69

 Vice President profile

 permissions, 86
 Services Manager application, 18
 testing, 97

 View All permission, 76

 view components (Visualforce), 198

 action, 203 - 204
 attributes, 199
 Chatter support, 380 - 382

 feed, 381
 feedWithFollowers, 381
 follow, 381
 followers, 381
 limitations, 382
 newsFeed, 381
 userPhotoUpload, 381

 component body, 199
 custom, 244 - 246

 CompareSkillsComponent, creating,
 259 - 260

 CSS, adding, 261
 defining, 244 - 245
 Google Map example, 245 - 246
 support, adding, 261

 data, 200 - 203
 metadata-aware, 200 - 201
 primitive, 201 - 202
 repeating, 201 - 203

 facets, 239

 Canvas, 349 - 350
 mobile Web applications, 269 - 270
 REST APIs, 306 - 307
 sites, 258

 creating, 94 - 95
 groups, 80

 public, 80
 roles, 80

 permission sets, 72
 profiles, 74

 administrative permissions, 75
 defined, 72
 Enhanced Profile List Views, 74
 Enhanced Profile User Interface, 74
 field-level security, 78
 licenses, 76
 object permissions, 75 - 76
 Services Manager, 85 - 86 , 89 - 90
 types, 74

 roles (Services Manager application),
 18 , 91 - 92

 accounts receivable, 18
 consultants, 18
 project managers, 18
 sales representatives, 18
 staffing coordinators, 18
 Vice President, 18

 V
 validateTimecard trigger, 131

 validation rules

 custom objects, 37
 fields, 24
 Skill object, creating, 63

 valueOf method

 date to string conversions, 109
 string to date conversions, 109

 variables, 105

 access modifiers, 118
 checkpoints, 133 - 135
 classes, 117
 constants, 107
 data types, 106

 blob, 106
 Boolean, 106
 converting, 107 - 108
 converting dates to strings, 109

427Visualforce

 asynchronous actions
 Ajax support, 234
 as JavaScript events, 237 - 238
 as JavaScript functions, 235 - 236
 partial page refreshes, 234 - 235
 status messages, 238 - 240
 as timed events, 237

 Chatter components, 380 - 382
 feed, 381
 feedWithFollowers, 381
 follow, 381
 followers, 381
 limitations, 382
 newsFeed, 381
 userPhotoUpload, 381

 controllers, 186 - 187
 actionFunction component, 236
 AngularJS project list example, 252
 Chatter example, 378
 custom, 193 - 197
 dynamic field reference, 247
 editing mobile timecards, 277
 extensions, 197
 governor limits, 221
 mobile timecard list

functionality, 274
 partial page refresh, 235
 Services Manager Follow Team

button extension code, 383 - 384
 Services Manager Skills Matrix,

 225 - 227 , 229 - 231
 standard, 191 - 193
 Streaming API example, 342
 unit tests, 222

 debugging, 216
 development

 process, 188
 tools, 188 - 190

 dynamic, 246
 component generation, 248 - 249
 dynamic field references, 246 - 248

 error handling, 220 - 221
 communication, 220 - 221
 uncaught exceptions, 220

 Hello World example, 189 - 191
 Mobile Components, 268 - 269

 documentation/source code Web
site, 269

 Force.com-styled, 204 - 205
 action containers, 205
 notifications, 205
 page structure, 205
 paging, 205
 sample controller, 206
 sample page, 207
 table, 205

 identifier problems, debugging, 240
 Mobile Components for Visualforce,

 268 - 269
 documentation/source code Web site,

 269
 installing, 268 - 269
 types, 268

 names, 199
 native user interface, 208 - 209

 detail, 209
 enhancedList, 209
 listViews, 208
 relatedList, 209

 page, 200
 primitive, 204 - 205
 referencing from JavaScript, 240
 syntax, 198 - 199
 visibility, 200

 viewing

 batch jobs execution detail, 288
 fields, 64
 mobile timecard entry pages

 iPhones, 273
 Web browsers, 273

 relationships, 121
 scheduled batch jobs, 296
 sharing rules, 163 , 167
 unit test results, 137
 Visualforce pages

 native user interface buttons, 213
 Salesforce Classic, 271
 Salesforce Touch, 271

 view page, 211

 Views, browsing data, 43 - 44

 Apex Test Runner, 103
 Execute Anonymous, 104 - 105
 Problems, 103

 view state, preserving, 195

 Visualforce

 architecture, 186 - 187

428 Visualforce

 security, 218
 object-level, 218
 page-level, 219
 record-level, 219

 Services Manager application
 business hours, configuring, 331
 hours utilization calculation, 332
 utilization controller code, 335 - 337
 Utilization page, 330 - 331 , 337 - 338

 Streaming API page, 343
 Tooling API example

 controller, 357 - 359
 page, 359 - 360

 view components, 198
 action, 203 - 204
 attributes, 199
 component body, 199
 custom. See custom components
 data, 200 - 203
 facets, 239
 Force.com-styled, 205 - 208
 identifier problems, debugging, 240
 names, 199
 native user interface, 208 - 209
 page, 200
 primitive, 204 - 205
 referencing from JavaScript, 240
 syntax, 198 - 199
 visibility, 200

 W
 web developer contributions, 12

 Web development frameworks, 268 - 269

 Mobile Components for Visualforce,
 268 - 269

 documentation/source code Web
site, 269

 installing, 268 - 269
 types, 268

 Web MVC, 269
 Web servers, configuring, 352

 Web services

 Connector (WSC), 316
 Description Language. See WSDL
 integration, 9

 installing, 268 - 269
 types, 268

 modular, 241
 composition, 243 - 244
 custom components, 244 - 246
 inclusion, 242
 static resources, 241 - 242

 native user interface integration,
 209 - 210

 custom buttons/links, 215
 custom tabs, 215
 page layouts, 213
 standard buttons, 213
 standard pages, 210 - 211

 overview, 186
 pages, 187

 actionFunction component, 236
 adding to page layouts, 213
 adding to Salesforce Touch, 271
 AngularJS example code, 252 - 253
 Chatter components, 381
 Chatter example, 378
 dynamic, 246 - 249
 JavaScript events, 237 - 238
 mobile timecards, 275 - 276 , 278
 native user interface buttons/links

navigation, 215
 as native user interface tabs, 215
 performance tuning, 217 - 218
 security, 218 - 220
 Services Manager Follow Team

button, 384 - 385
 Services Manager Skills Matrix,

 228 - 229
 Services Manager Utilization, 337 - 338
 Services Manager Utilization page,

creating, 330 - 331
 standard pages, overriding, 210 - 211
 Streaming API example, 343
 timed events, 237
 Tooling API example, 359 - 360
 viewing from native user interface

buttons, 213
 viewing in Salesforce Classic, 271

 performance, tuning, 217 - 218
 public access. See sites

429Yahoo! geocoding REST service

 whatIds unique identifiers

 email templates, 169
 MassEmailMessage object, 170

 While loops, 114

 Windows Azure, 3

 wizards

 Import, 34
 New Custom Field

 default values, 39
 descriptions, 39
 external IDs, 39
 help text, 39
 labels, 39
 names, 39
 required fields, 39
 types, selecting, 38
 unique fields, 39

 New Custom Object Tab, 63
 wrapper patterns, 195 - 196

 write locks, 161

 WSC (Web Service Connector), 316

 WSDL (Web Services Description Language)

 Services Manager anonymous
benchmark, 333

 stub code, generating, 316 - 317
 versions, 315 - 316

 X
 XML metadata, 30 - 31

 XOR (^) operator, 110

 Y
 Yahoo! geocoding REST service

 integrating, 303
 invoking, 303
 testing, 304

 Web sites

 AJAX Proxy, 270
 AngularJS, 251
 anonymous benchmark WSDL, 333
 Apex Code Developer’s Guide, 100 , 108
 AppExchange, 16
 Bulk API, 345
 Canvas, 349
 Chatter

 Apex, 378
 REST API, 379

 Code Share, 16
 CometD library, 342
 cURL, 306
 Data Loader Mac OS X version, 34
 DE account registration, 32
 developer discussion boards, 16
 Developer Force, 16
 Dreamforce/Cloudforce conferences, 17
 Excel Connector, 34
 expressions, scheduling, 295
 Force.com IDE, 34
 Ideas, 16
 IDE installation, 101
 jQuery UI, 259
 Large Data Volume (LDV)

deployments, 22
 Metadata API, 360
 Mobile Components for Visualforce, 269
 Mobile Packs, 269
 multilenancy whitepaper, 5
 NAICS codes, 333
 OAuth, 307
 REST API Developer’s Guide, 308
 Salesforce

 Classic implementation guide, 271
 Mobile SDK, 265 , 267

 Secure Coding Guideline document, 218
 security resources, 385
 SimpleDateFormat pattern, 109
 SOAP Partner API, 315
 Streaming API, 340
 systems integrators, 17
 Tooling API, 355
 Visualforce pages, performance

tuning, 218
 Web Service Connector, 316
 Yahoo! geocoding REST service, 303

	Table of Contents
	4 Business Logic
	Introduction to Apex
	Introducing the Force.com IDE
	Installation
	Force.com Perspective
	Force.com Projects
	Problems View
	Schema Explorer
	Apex Test Runner View
	Execute Anonymous View

	Apex Language Basics
	Variables
	Operators
	Arrays and Collections
	Control Logic
	Object-Oriented Apex
	Understanding Governor Limits

	Database Integration in Apex
	Database Records as Objects
	Database Queries
	Persisting Database Records
	Database Triggers
	Database Security in Apex

	Debugging Apex Using Developer Console
	Checkpoints
	Execution Logs

	Unit Tests in Apex
	Test Methods
	Test Data
	Running Tests

	Sample Application: Validating Timecards
	Force.com IDE Setup
	Creating the Trigger
	Unit Testing

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

