
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321948106
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321948106
https://plusone.google.com/share?url=http://www.ciscopress.com/title/9780321948106
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ciscopress.com.com/title/9780321948106
http://www.stumbleupon.com/submit?url=http://www.ciscopress.com/title/9780321948106/Free-Sample-Chapter

 The Core iOS
Developer’s
Cookbook

This page intentionally left blank

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

The Core iOS
Developer’s
Cookbook

 Fifth Edition

 Erica Sadun
Rich Wardwell

 Editor-in-Chief:

Mark Taub

 Senior Acquisitions
Editor:

Trina MacDonald

 Senior
Development
Editor:

Chris Zahn

 Managing Editor:

Kristy Hart

 Senior Project
Editor:

Betsy Gratner

 Copy Editor:

Kitty Wilson

 Indexer:

Lisa Stumpf

 Proofreader:

Anne Goebel

 Technical
Reviewers:

Collin Ruffenach
 Mike Shields
 Ashley Ward

 Editorial Assistant:

Olivia Basegio

 Cover Designer:

Chuti Prasertsith

 Senior Compositor:

Gloria Schurick

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

 The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Visit us on the web: informit.com/aw

Library of Congress Control Number: 2013953064

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

 AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua,
Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode, Finder, FireWire,
iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch, iTunes, the
iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch, Objective-C, Quartz,
QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight, and Xcode are trademarks
of Apple, Inc., registered in the United States and other countries. OpenGL and the logo
are registered trademarks of Silicon Graphics, Inc. The YouTube logo is a trademark of
Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in the United States
and other countries.

ISBN-13: 978-0-321-94810-6
 ISBN-10: 0-321-94810-6

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

 First printing: March 2014

❖

 Erica Sadun

 I dedicate this book with love to my husband, Alberto,
who has put up with too many gadgets and too
many SDKs over the years while remaining both

kind and patient at the end of the day.

❖

❖

 Rich Wardwell

 I dedicate this book to my wife, Julie, who was relegated
to single-parent status during this endeavor,

and my children, Davis and Anne, who never stopped
asking me to play with them even after countless refusals.

❖

vi Contentsvi Contents

Contents

 Preface xiii

 1 Gestures and Touches 1

Touches 1

Recipe: Adding a Simple Direct Manipulation Interface 5

Recipe: Adding Pan Gesture Recognizers 7

Recipe: Using Multiple Gesture Recognizers
Simultaneously 9

Recipe: Constraining Movement 14

Recipe: Testing Touches 15

Recipe: Testing Against a Bitmap 17

Recipe: Drawing Touches Onscreen 20

Recipe: Smoothing Drawings 22

Recipe: Using Multi-Touch Interaction 26

Recipe: Detecting Circles 29

Recipe: Creating a Custom Gesture Recognizer 34

Recipe: Dragging from a Scroll View 37

Recipe: Live Touch Feedback 40

Recipe: Adding Menus to Views 45

Summary 47

 2 Building and Using Controls 49

The UIControl Class 49

Buttons 53

Buttons in Interface Builder 55

Recipe: Building Buttons 56

Recipe: Animating Button Responses 60

Recipe: Adding a Slider with a Custom Thumb 62

Recipe: Creating a Twice-Tappable Segmented Control 67

Working with Switches and Steppers 70

Recipe: Subclassing UIControl 72

Recipe: Building a Star Slider 76

Recipe: Building a Touch Wheel 79

Recipe: Creating a Pull Control 83

Recipe: Building a Custom Lock Control 88

Recipe: Image Gallery Viewer 93

viiContents viiContents

Building Toolbars 96

Summary 98

 3 Alerting the User 101

Talking Directly to Your User through Alerts 101

Recipe: Using Blocks with Alerts 105

Recipe: Using Variadic Arguments with Alert Views 110

Presenting Lists of Options 112

“Please Wait”: Showing Progress to Your User 115

Recipe: Modal Progress Overlays 117

Recipe: Custom Modal Alert View 119

Recipe: Basic Popovers 124

Recipe: Local Notifications 126

Alert Indicators 128

Recipe: Simple Audio Alerts 129

Summary 133

 4 Assembling Views and Animations 135

View Hierarchies 135

Recipe: Recovering a View Hierarchy Tree 137

Recipe: Querying Subviews 139

Managing Subviews 141

Tagging and Retrieving Views 142

Recipe: Naming Views by Object Association 143

View Geometry 146

Recipe: Working with View Frames 150

Recipe: Retrieving Transform Information 158

Display and Interaction Traits 164

UIView Animations 165

Recipe: Fading a View In and Out 167

Recipe: Swapping Views 168

Recipe: Flipping Views 169

Recipe: Using Core Animation Transitions 170

Recipe: Bouncing Views as They Appear 172

Recipe: Key Frame Animations 174

Recipe: Image View Animations 176

Summary 177

viii Contentsviii Contents

 5 View Constraints 179

What Are Constraints? 179

Constraint Attributes 180

The Laws of Constraints 182

Constraints and Frames 184

Creating Constraints 186

Format Strings 189

Predicates 194

Format String Summary 196

Aligning Views and Flexible Sizing 198

Constraint Processing 198

Managing Constraints 199

Recipe: Comparing Constraints 201

Recipe: Creating Fixed-Size Constrained Views 204

Recipe: Centering Views 209

Recipe: Setting Aspect Ratio 210

Recipe: Responding to Orientation Changes 212

Debugging Your Constraints 214

Recipe: Describing Constraints 215

Constraint Macros 218

Summary 221

 6 Text Entry 223

Recipe: Dismissing a UITextField Keyboard 224

Recipe: Dismissing Text Views with Custom Accessory
Views 228

Recipe: Adjusting Views Around Keyboards 230

Recipe: Creating a Custom Input View 235

Recipe: Making Text-Input-Aware Views 240

Recipe: Adding Custom Input Views to Nontext Views 243

Recipe: Building a Better Text Editor (Part I) 246

Recipe: Building a Better Text Editor (Part II) 248

Recipe: Text-Entry Filtering 252

Recipe: Detecting Text Patterns 255

Recipe: Detecting Misspelling in a UITextView 260

Searching for Text Strings 262

Summary 262

ixContents ixContents

 7 Working with View Controllers 263

View Controllers 263

Developing with Navigation Controllers and Split
Views 266

Recipe: The Navigation Item Class 271

Recipe: Modal Presentation 273

Recipe: Building Split View Controllers 278

Recipe: Creating Universal Split View/Navigation
Apps 283

Recipe: Tab Bars 286

Remembering Tab State 290

Recipe: Page View Controllers 293

Recipe: Custom Containers 303

Recipe: Segues 309

Summary 315

 8 Common Controllers 317

Image Picker Controller 317

Recipe: Selecting Images 319

Recipe: Snapping Photos 326

Recipe: Recording Video 331

Recipe: Playing Video with Media Player 333

Recipe: Editing Video 336

Recipe: Picking and Editing Video 339

Recipe: E-mailing Pictures 341

Recipe: Sending a Text Message 344

Recipe: Posting Social Updates 347

Summary 349

 9 Creating and Managing Table Views 351

iOS Tables 351

Delegation 352

Creating Tables 353

Recipe: Implementing a Basic Table 356

Table View Cells 360

Recipe: Creating Checked Table Cells 362

Working with Disclosure Accessories 364

Recipe: Table Edits 366

x Contentsx Contents

Recipe: Working with Sections 374

Recipe: Searching Through a Table 381

Recipe: Adding Pull-to-Refresh to Your Table 387

Recipe: Adding Action Rows 390

Coding a Custom Group Table 395

Recipe: Building a Multiwheel Table 396

Using UIDatePicker 400

Summary 401

 10 Collection Views 403

Collection Views Versus Tables 403

Establishing Collection Views 405

Flow Layouts 407

Recipe: Basic Collection View Flows 412

Recipe: Custom Cells 416

Recipe: Scrolling Horizontal Lists 418

Recipe: Introducing Interactive Layout Effects 422

Recipe: Scroll Snapping 424

Recipe: Creating a Circle Layout 425

Recipe: Adding Gestures to Layout 431

Recipe: Creating a True Grid Layout 433

Recipe: Custom Item Menus 440

Summary 442

 11 Documents and Data Sharing 445

Recipe: Working with Uniform Type Identifiers 445

Recipe: Accessing the System Pasteboard 451

Recipe: Monitoring the Documents Folder 454

Recipe: Activity View Controller 460

Recipe: The Quick Look Preview Controller 470

Recipe: Using the Document Interaction Controller 473

Recipe: Declaring Document Support 480

Recipe: Creating URL-Based Services 486

Summary 489

 12 A Taste of Core Data 491

Introducing Core Data 491

Entities and Models 492

xiContents xiContents

Creating Contexts 494

Adding Data 495

Querying the Database 498

Removing Objects 500

Recipe: Using Core Data for a Table Data Source 501

Recipe: Search Tables and Core Data 505

Recipe: Adding Edits to Core Data Table Views 508

Recipe: A Core Data–Powered Collection View 514

Summary 519

 13 Networking Basics 521

Recipe: Checking Your Network Status 521

Scanning for Connectivity Changes 524

The URL Loading System 526

Recipe: Simple Downloads 528

Recipe: Downloads with Feedback 533

Recipe: Background Transfers 543

Recipe: Using JSON Serialization 546

Recipe: Converting XML into Trees 549

Summary 554

 14 Device-Specific Development 555

Accessing Basic Device Information 555

Adding Device Capability Restrictions 556

Recipe: Checking Device Proximity and Battery States 559

Recipe: Recovering Additional Device Information 563

Core Motion Basics 565

Recipe: Using Acceleration to Locate “Up” 566

Working with Basic Orientation 568

Recipe: Using Acceleration to Move Onscreen Objects 571

Recipe: Accelerometer-Based Scroll View 575

Recipe: Retrieving and Using Device Attitude 578

Detecting Shakes Using Motion Events 579

Recipe: Using External Screens 581

Tracking Users 587

One More Thing: Checking for Available Disk Space 588

Summary 589

xii Contentsxii Contents

 15 Accessibility 591

Accessibility 101 591

Enabling Accessibility 593

Traits 594

Labels 595

Hints 596

Testing with the Simulator 597

Broadcasting Updates 599

Testing Accessibility on iOS 599

Speech Synthesis 601

Dynamic Type 602

Summary 604

 A Objective-C Literals 605

Numbers 605

Boxing 606

Container Literals 607

Subscripting 608

Feature Tests 609

 Index 611

Preface
 Welcome to a new Core iOS Developer’s Cookbook !

 With iOS 7, Apple introduced the most significant changes to its mobile operating system since
its inception. This cookbook is here to help you get started developing for the latest exciting
release. This revision introduces all the new features and visual paradigms announced at the
latest Worldwide Developers Conference (WWDC), showing you how to incorporate them into
your applications.

 For this edition, the publishing team has split the cookbook material into manageable print
volumes. This book, The Core iOS Developer’s Cookbook , provides solutions for the heart of
day-to-day development. It covers all the classes you need for creating iOS applications using
standard APIs and interface elements. It provides recipes you need for working with graphics,
touches, and views to create mobile applications.

And there’s Learning iOS Development: A Hands-on Guide to the Fundamentals of iOS Programming ,
which covers much of the tutorial material that used to comprise the first several chapters
of the cookbook. There you’ll find all the fundamental how-to you need to learn iOS 7
development from the ground up. From Objective-C to Xcode, debugging to deployment,
 Learning iOS Development teaches you how to get started with Apple’s development tool suite.

 As in the past, you can find sample code at GitHub. You’ll find the repository for this
Cookbook at https://github.com/erica/iOS-7-Cookbook , all of it refreshed for iOS 7 after
WWDC 2013.

 If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a
future edition, please contact us at erica@ericasadun.com or rich@lifeisrich.org . We thank you
all in advance. We appreciate all your feedback, which helps make this a better, stronger book.

 —Erica Sadun and Rich Wardwell, January 2014

https://github.com/erica/iOS-7-Cookbook

xiv Preface

 What You’ll Need

 It goes without saying that, if you’re planning to build iOS applications, you’re going to need
at least one iOS device to test your applications, preferably a new model iPhone or iPad. The
following list covers the basics of what you’ll need to begin:

 ■ Apple’s iOS SDK — You can download the latest version of the iOS SDK from Apple’s iOS
Dev Center (http://developer.apple.com/ios). If you plan to sell apps through the App
Store, you need to become a paid iOS developer. This costs $99/year for individuals and
$299/year for enterprise (that is, corporate) developers. Registered developers receive
certificates that allow them to “sign” and download their applications to their iPhone/
iPod touch or iPad for testing and debugging and to gain early access to prerelease
versions of iOS. Free-program developers can test their software on the Mac-based
simulator but cannot deploy to devices or submit to the App Store.

 ■ A modern Mac running Mac OS X Mountain Lion (v 10.8) or, preferably, Mac OS
X Mavericks (v 10.9) — You need plenty of disk space for development, and your Mac
should have as much RAM as you can afford to put into it.

 ■ An iOS device — Although the iOS SDK includes a simulator for you to test your
applications, you really do need to own iOS hardware to develop for the platform. You
can tether your unit to the computer and install the software you’ve built. For real-life
App Store deployment, it helps to have several units on hand, representing the various
hardware and firmware generations, so that you can test on the same platforms your
target audience will use.

 ■ An Internet connection — This connection enables you to test your programs with a live
Wi-Fi connection as well as with a cellular data service.

 ■ Familiarity with Objective-C — To program for the iPhone, you need to know
Objective-C 2.0. The language is based on ANSI C with object-oriented extensions, which
means you also need to know a bit of C, too. If you have programmed with Java or C++
and are familiar with C, you should be able to make the move to Objective-C.

 Your Roadmap to Mac/iOS Development

 One book can’t be everything to everyone. If we were to pack everything you need to know
into this book, you wouldn’t be able to pick it up. (As it stands, this book offers an excellent
tool for upper-body development. Please don’t sue if you strain yourself lifting it.) There is,
indeed, a lot you need to know to develop for the Mac and iOS platforms. If you are just
starting out and don’t have any programming experience, your first course of action should
be to take a college-level course in the C programming language. Although the alphabet might
start with the letter A, the root of most programming languages, and certainly your path as a
developer, is C.

http://developer.apple.com/ios

xvYour Roadmap to Mac/iOS Development

 Once you know C and how to work with a compiler (something you’ll learn in that basic C
course), the rest should be easy. From there, you’ll hop right on to Objective-C and learn how
to program with that, alongside the Cocoa frameworks. The flowchart in Figure P-1 shows the
key titles offered by Pearson Education that can help provide the training you need to become
a skilled iOS developer.

No

No

ooNNo

YesYesYes

Yes

Yes

YesYes

College Level
Course on C

No

Familiar with Cocoa and Xcode?

Coming Soon

Do you know C?

Do you know Objective-C?

 Figure P-1 A roadmap to becoming an iOS developer .

xvi Preface

 Once you know C, you’ve got a few options for learning how to program with Objective-C. If
you want an in-depth view of the language, you can either read Apple’s own documentation or
pick up one of these books on Objective-C:

 ■ Objective-C Programming: The Big Nerd Ranch Guide , 2nd edition, by Aaron Hillegass and
Mikey Ward (Big Nerd Ranch, 2013)

 ■ Learning Objective-C 2.0: A Hands-on Guide to Objective-C for Mac and iOS Developers , 2nd
edition, by Robert Clair (Addison-Wesley, 2012)

 ■ Programming in Objective-C 2.0 , 6th edition, by Stephen Kochan (Addison-Wesley, 2012)

 With the language under your belt, next up is tackling Cocoa (Mac) or Cocoa Touch (iOS) and
the developer tools, otherwise known as Xcode. For that, you have a few different options.
Again, you can refer to Apple’s own documentation on Cocoa, Cocoa Touch, and Xcode (Apple
Developer: developer.apple.com), or if you prefer books, you can learn from the best. Aaron
Hillegass, founder of the Big Nerd Ranch in Atlanta (www.bignerdranch.com), is the coauthor
of iOS Programming: The Big Nerd Ranch Guide , 2nd edition, and author of Cocoa Programming
for Mac OS X , 4th edition. Aaron’s book is highly regarded in Mac developer circles and is the
most-recommended book you’ll see on the cocoa-dev mailing list.

 Note

 There are plenty of other books from other publishers on the market, including the bestselling
 Beginning iOS 6 Development by Dave Mark, Jack Nutting, Jeff LaMarche, and Fredrik Olsson
(Apress, 2011). Another book that’s worth picking up if you’re a total newbie to programming is
 Beginning Mac Programming by Tim Isted (Pragmatic Programmers, 2011). Don’t just limit your-
self to one book or publisher. Just as you can learn a lot by talking with different developers,
you will learn lots of tricks and tips from other books on the market.

 To truly master Mac or iOS development, you need to look at a variety of sources: books, blogs,
mailing lists, Apple’s own documentation, and, best of all, conferences. If you get a chance
to attend WWDC, you’ll know what we’re talking about. The time you spend at conferences
talking with other developers—and in the case of WWDC, talking with Apple’s engineers—is
well worth the expense if you are a serious developer.

 How This Book Is Organized

 This book offers single-task recipes for the most common issues new iOS developers face: laying
out interface elements, responding to users, accessing local data sources, and connecting to
the Internet. Each chapter groups together related tasks, allowing you to jump directly to the
solution you’re looking for without having to decide which class or framework best matches
that problem.

 The Core iOS Developer’s Cookbook offers you “cut-and-paste convenience,” which means you
can freely reuse the source code from recipes in this book for your own applications and then
tweak the code to suit the needs of each of your apps.

http://www.bignerdranch.com

xviiHow This Book Is Organized

 Here’s a rundown of what you’ll find in this book’s chapters:

 ■ Chapter 1 , “Gestures and Touches” —On iOS, touch provides the most important way
for users to communicate their intent to an application. Touches are not limited to
button presses and keyboard interaction. This chapter introduces direct manipulation
interfaces, Multi-Touch, and more. You’ll see how to create views that users can drag
around the screen and read about distinguishing and interpreting gestures, as well as how
to create custom gesture recognizers.

 ■ Chapter 2 , “Building and Using Controls” —Take your controls to the next level.
This chapter introduces everything you need to know about how controls work. You’ll
discover how to build and customize controls in a variety of ways. From the prosaic to
the obscure, this chapter introduces a range of control recipes you can reuse in your
programs.

 ■ Chapter 3 , “Alerting the User” —iOS offers many ways to provide users with heads-
ups, from pop-up dialogs and progress bars to local notifications, popovers, and audio
pings. This chapter shows how to build these indications into your applications and
expand your user-alert vocabulary. It introduces standard ways of working with these
classes and offers solutions that allow you to use a blocks-based API to easily handle alert
interactions.

 ■ Chapter 4 , “Assembling Views and Animations” —The UIView class and its subclasses
populate the iOS device screens. This chapter introduces views from the ground up. This
chapter dives into view recipes, exploring ways to retrieve, animate, and manipulate
view objects. You’ll learn how to build, inspect, and break down view hierarchies and
understand how views work together. You’ll discover the role that geometry plays in
creating and placing views into your interface, and you read about animating views so
they move and transform onscreen.

 ■ Chapter 5 , “View Constraints” —Auto Layout revolutionized view layout in iOS.
Apple’s layout features make your life easier and your interfaces more consistent.
This is especially important when working across members of the same device family
with different screen sizes, dynamic interfaces, rotation, or localization. This chapter
introduces code-level constraint development. You’ll discover how to create relations
between onscreen objects and specify the way iOS automatically arranges your views. The
outcome is a set of robust rules that adapt to screen geometry.

 ■ Chapter 6 , “Text Entry” —This chapter introduces text recipes that support a wide range
of solutions. You’ll read about controlling keyboards, making onscreen elements “text
aware,” scanning text, formatting text, and so forth. From text fields and text views to
iOS’s inline spelling checkers, this chapter introduces everything you need to know to
work with iOS text in your apps.

 ■ Chapter 7 , “Working with View Controllers” —In this chapter, you’ll discover
the various view controller classes that enable you to enlarge and order the virtual
spaces your users interact with. You’ll learn from how-to recipes that cover page view
controllers, split view controllers, navigation controllers, and more.

xviii Preface

 ■ Chapter 8 , “Common Controllers” —The iOS SDK provides a wealth of system-supplied
controllers that you can use in your day-to-day development tasks. This chapter
introduces some of the most popular ones. You’ll read about selecting images from your
photo library, snapping photos, and recording and editing videos. You’ll discover how
to allow users to compose e-mails and text messages and how to post updates to social
media such as Twitter and Facebook.

 ■ Chapter 9 , “Creating and Managing Table Views” —Tables provide a scrolling
interaction class that works particularly well both on smaller devices and as a key player
on larger tablets. Many iOS apps center on tables due to their simple natural organization
features. This chapter introduces tables, explaining how tables work, what kinds of tables
are available to you as a developer, and how you can leverage table features in your
applications.

 ■ Chapter 10 , “Collection Views” —Collection views use many of the same concepts as
tables but provide more power and more flexibility. This chapter walks you through all
the basics you need to get started. Prepare to read about creating side-scrolling lists, grids,
one-of-a-kind layouts like circles, and more. You’ll learn about integrating visual effects
through layout specifications and snapping items into place after scrolling, and you’ll
discover how to take advantage of built-in animation support to create the most effective
interactions possible.

 ■ Chapter 11 , “Documents and Data Sharing” —Under iOS, applications can share
information and data as well as move control from one application to another, using
several system-supplied features. This chapter introduces the ways you can integrate
documents and data sharing between applications. You’ll see how to add these features
into your applications and use them smartly to make your apps cooperative citizens of
the iOS ecosystem.

 ■ Chapter 12 , “A Taste of Core Data” —Core Data offers managed data stores that can
be queried and updated from your application. It provides a Cocoa Touch–based object
interface that brings relational data management out from SQL queries and into the
Objective-C world of iOS development. This chapter introduces Core Data. It provides
just enough recipes to give you a taste of the technology, offering a jumping-off point for
further Core Data learning. You’ll learn how to design managed database stores, add and
delete data, and query data from your code and integrate it into your UIKit table views
and collection views.

 ■ Chapter 13 , “Networking Basics” —On Internet-connected devices, iOS is particularly
suited to subscribing to web-based services. Apple has lavished the platform with a solid
grounding in all kinds of network computing services and their supporting technologies.
This chapter surveys common techniques for network computing and offers recipes that
simplify day-to-day tasks. This chapter introduces the new HTTP system in iOS 7 and
provides examples for downloading data, including background downloading. You’ll also
read about network reachability and web services, including examples of XML parsing
and JSON serialization utilizing live services.

xixAbout the Sample Code

 ■ Chapter 14 , “Device-Specific Development” —Each iOS device represents a meld of
unique, shared, momentary, and persistent properties. These properties include the
device’s current physical orientation, its model name, its battery state, and its access to
onboard hardware. This chapter looks at the device from its build configuration to its
active onboard sensors. It provides recipes that return a variety of information items
about the unit in use.

 ■ Chapter 15 , “Accessibility” —This chapter offers a brief overview of VoiceOver
accessibility to extend your audience to the widest possible range of users. You’ll read
about adding accessibility labels and hints to your applications and testing those features
in the simulator and on the iOS device.

 ■ Appendix A , “Objective-C Literals” —This appendix introduces new Objective-C
constructs for specifying numbers, arrays, and dictionaries.

 About the Sample Code

 For the sake of pedagogy, this book’s sample code uses a single main.m file. This is not how
people normally develop iPhone or Cocoa applications, or, honestly, how they should be
developing them, but it provides a great way of presenting a single big idea. It’s hard to tell
a story that requires looking through five or seven or nine individual files at once. Offering a
single file concentrates that story, allowing access to that idea in a single chunk.

 The examples in this book are not intended as standalone applications. Each is here to
demonstrate a single recipe and a single idea. One main.m file with a central presentation
reveals the implementation story in one place. Readers can study these concentrated ideas and
transfer them into normal application structures, using the standard file structure and layout.
The presentation in this book does not produce code in a standard day-to-day best-practices
approach. Instead, it reflects a pedagogy that offers concise solutions that you can incorporate
into your work as needed.

 Contrast this to Apple’s standard sample code, where you must comb through many files to
build up a mental model of the concepts that are being demonstrated. Those examples are built
as full applications, often involving tasks that are related to but not essential to what you need
to solve. Finding just the relevant portions is a lot of work, and the effort may outweigh any
gains.

 In this book, you’ll find exceptions to this one-file-with-the-story rule: This book provides
standard class and header files when a class implementation is the recipe. Instead of
highlighting a technique, some recipes offer these classes and categories (that is, extensions to a
preexisting class rather than a new class). For those recipes, look for separate .m and .h files, in
addition to the skeletal main.m that encapsulates the rest of the story.

 For the most part, the examples in this book use a single application identifier: com.sadun.
helloworld. This book uses one identifier to avoid clogging up your iOS devices with dozens
of examples at once. Each example replaces the previous one, ensuring that your home screen
remains relatively uncluttered. If you want to install several examples simultaneously, simply

xx Preface

edit the identifier by adding a unique suffix, such as com.sadun.helloworld.table-edits. You can
also edit the custom display name to make the apps visually distinct. Your Team Provisioning
Profile matches every application identifier, including com.sadun.helloworld. This allows you
to install compiled code to devices without having to change the identifier; just make sure to
update your signing identity in each project’s build settings.

 Getting the Sample Code

 You’ll find the source code for this book at github.com/erica/iOS-7-Cookbook on the open-
source GitHub hosting site. There you’ll find a chapter-by-chapter collection of source code
that provides working examples of the material covered in this book. Recipes are numbered
as they are in the book. Recipe 6 in Chapter 5 , for example, appears in the 06 subfolder of the
C05 folder.

 Any project numbered 00 or that has a suffix (like 05b or 02c) refers to material that is used
to create in-text coverage and figures. For example, Chapter 9 ’s 00 – Cell Types project helped
build Figure 9-2 , showing system-supplied table view cell styles. Normally, we delete these extra
projects. Early readers of this manuscript requested that we include them in this edition. You’ll
find a half dozen or so of these extra samples scattered around the repository.

 Contribute!

 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. You can pitch in by suggesting bug fixes and corrections
as well as by expanding the code that’s on offer. GitHub allows you to fork repositories and
grow them with your own tweaks and features and to share them back to the main repository.
If you come up with a new idea or approach, let us know. Our team is happy to include great
suggestions both at the repository and in the next edition of this book.

 Getting Git

 You can download this book’s source code by using the git version control system. Xcode 5
includes robust support for git within the IDE. The git command-line tool is also packaged with
the Xcode 5 toolset. Numerous third-party free and commercial git tools are also available.

 Getting GitHub

 GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public
repositories. It provides both free hosting for public projects and paid options for private
projects. With a custom web interface that includes wiki hosting, issue tracking, and an
emphasis on social networking for project developers, it’s a great place to find new code and
collaborate on existing libraries. You can sign up for a free account at the GitHub website,
where you can also copy and modify the repository for this book or create your own open-
source iOS projects to share with others.

http://github.com

xxiContacting the Authors

 Contacting the Authors

 If you have any comments or questions about this book, please drop us an e-mail message at
 erica@ericasadun.com or rich@lifeisrich.org , or stop by the GitHub repository and contact us
there.

Acknowledgments
 Erica Sadun

 This book would not exist without the efforts of Chuck Toporek, who was my editor and whip
cracker for many years and multiple publishers. He is now at Omnigroup and deeply missed.
There’d be no cookbook were it not for him. He balances two great skill sets: inspiring authors
to do what they think they cannot do and wielding the large “reality trout” of whacking 1
to keep subject matter focused and in the real world. There’s nothing like being smacked
repeatedly by a large virtual fish to bring a book in on deadline and with compelling content.

 Thanks go as well to Trina MacDonald (my terrific editor), Chris Zahn (the awesomely talented
development editor), and Olivia Basegio (the faithful and rocking editorial assistant who kept
things rolling behind the scenes). Also, a big thank you to the entire Addison-Wesley/Pearson
production team, specifically Kristy Hart, Betsy Gratner, Kitty Wilson, Anne Goebel, Lisa
Stumpf, Gloria Schurick, and Chuti Prasertsith. Thanks also to the crew at Safari for getting my
book up in Rough Cuts and for quickly fixing things when technical glitches occurred.

 Thanks to Stacey Czarnowki of Studio B, my agency of many years, and to the recently retired
Neil Salkind; to tech reviewers Collin Ruffenach, Mike Shields, and Ashley Ward, who helped
keep this book in the realm of sanity rather than wishful thinking; and to all my colleagues,
both present and former, at TUAW, Ars Technica, and the Digital Media/Inside iPhone blog.

 I am deeply indebted to the wide community of iOS developers, including Jon Bauer, Tim
Burks, Matt Martel, Tim Isted, Joachim Bean, Aaron Basil, Roberto Gamboni, John Muchow,
Scott Mikolaitis, Alex Schaefer, Nick Penree, James Cuff, Jay Freeman, Mark Montecalvo, August
Joki, Max Weisel, Optimo, Kevin Brosius, Planetbeing, Pytey, Michael Brennan, Daniel Gard,
Michael Jones, Roxfan, MuscleNerd, np101137, UnterPerro, Jonathan Watmough, Youssef
Francis, Bryan Henry, William DeMuro, Jeremy Sinclair, Arshad Tayyeb, Jonathan Thompson,
Dustin Voss, Daniel Peebles, ChronicProductions, Greg Hartstein, Emanuele Vulcano, Sean
Heber, Josh Bleecher Snyder, Eric Chamberlain, Steven Troughton-Smith, Dustin Howett, Dick
Applebaum, Kevin Ballard, Hamish Allan, Oliver Drobnik, Rod Strougo, Kevin McAllister, Jay
Abbott, Tim Grant Davies, Maurice Sharp, Chris Samuels, Chris Greening, Jonathan Willing,
Landon Fuller, Jeremy Tregunna, Wil Macaulay, Stefan Hafeneger, Scott Yelich, chrallelinder,
John Varghese, Andrea Fanfani, J. Roman, jtbandes, Artissimo, Aaron Alexander, Christopher
Campbell Jensen, Nico Ameghino, Jon Moody, Julián Romero, Scott Lawrence, Evan K. Stone,
Kenny Chan Ching-King, Matthias Ringwald, Jeff Tentschert, Marco Fanciulli, Neil Taylor,
Sjoerd van Geffen, Absentia, Nownot, Emerson Malca, Matt Brown, Chris Foresman, Aron
Trimble, Paul Griffin, Paul Robichaux, Nicolas Haunold, Anatol Ulrich (hypnocode GmbH),
Kristian Glass, Remy “psy” Demarest, Yanik Magnan, ashikase, Shane Zatezalo, Tito Ciuro,
Mahipal Raythattha, Jonah Williams of Carbon Five, Joshua Weinberg, biappi, Eric Mock, and
everyone at the iPhone developer channels at irc.saurik.com and irc.freenode.net, among many
others too numerous to name individually. Their techniques, suggestions, and feedback helped
make this book possible. If I have overlooked anyone who helped contribute, please accept my
apologies for the oversight.

xxiiiAcknowledgments

 Special thanks go out to my family and friends, who supported me through month after month
of new beta releases and who patiently put up with my unexplained absences and frequent
howls of despair. I appreciate you all hanging in there with me. And thanks to my children for
their steadfastness, even as they learned that a hunched back and the sound of clicking keys is
a pale substitute for a proper mother. My kids provided invaluable assistance over the past few
months by testing applications, offering suggestions, and just being awesome people. I try to
remind myself on a daily basis how lucky I am that these kids are part of my life.

 Rich Wardwell

 Although with deadlines mounting I may have versed otherwise, I give my deepest respect and
appreciation to Erica for allowing me the honor of participating in the creation of this latest
edition of the Developer’s Cookbook . Through her mentoring and fish slapping, I’ve learned a
great deal and, hopefully, at a minimum, flirted with the high standard that she has set forth.

 Without the persistence of Trina MacDonald, our editor, I think I would have given up after
the first chapter, screaming into the night. She has directed and encouraged through my
frustration with, anxiety about, and ignorance of the book authoring process. I’m also indebted
to Olivia Basegio, editorial assistant, and the team of technical editors she expertly arranged
and managed. The technical editors’ comprehensive efforts resulted in a much better book
than we could have ever created on our own, for which I owe a great deal of gratitude: Thank
you, Collin Ruffenach, Mike Shields, and Ashley Ward. The production team, including Betsy
Gratner and Kitty Wilson, ensured that I appear much more adept at writing than I could ever
hope to attain on my own. Many others at Addison-Wesley/Pearson to whom I’ve never spoken
directly had a part; to each I’m immensely thankful for bringing this work to fruition.

 A special thanks goes to Bil Moorhead, George Dick, and Daniel Pasco at Black Pixel, who were
incredibly understanding as the demands of the book required attention and distraction from
my daily responsibilities. It is an honor to work for and with the great folks at Black Pixel.

 My parents, Rick and Janet, have been my greatest supporters, encouraging me in all my
endeavors, including this one. My in-laws, Steve and Cary, provided a home for us during
much of the writing of this book, for which I’m eternally grateful.

 Finally, my wife and two children have been the true enablers of this project. I hope to
reimburse in full for every honey-do item I neglected and every invite to play that I turned
down. Their love and presence made it possible for me to complete this work.

 Endnote

 1 No trouts, real or imaginary, were hurt in the development and production of this book. The
same cannot be said for countless cans of Diet Coke (Erica) and Diet Mountain Dew (Rich),
who selflessly surrendered their contents in the service of this manuscript.

About the Authors
 Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
 The iOS 5 Developer’s Cookbook. She currently blogs at TUAW.com and has blogged in the past
at O’Reilly’s Mac Devcenter, Lifehacker, and Ars Technica. In addition to being the author of
dozens of iOS-native applications, Erica holds a Ph.D. in computer science from Georgia Tech’s
Graphics, Visualization and Usability Center. A geek, a programmer, and an author, she’s
never met a gadget she didn’t love. When not writing, she and her geek husband parent three
geeks-in-training, who regard their parents with restrained bemusement when they’re not busy
rewiring the house or plotting global dominance.

 Rich Wardwell is a senior iOS and Mac developer at Black Pixel, with more than 20 years of
professional software development experience in server, desktop, and mobile spaces. He has
been a primary developer on numerous top-ranking iOS apps in the Apple App Store, including
apps for USA Today and Fox News . Rich has served as a technical editor for The Core iOS 6
Developer’s Cookbook and The Advanced iOS 6 Developer’s Cookbook , both by author Erica Sadun,
as well as many other Addison-Wesley iOS developer titles. When not knee-deep in iOS code,
Rich enjoys “tractor therapy” and working on his 30-acre farm in rural Georgia with his wife
and children.

 Editor’s Note: We Want to Hear from You!
 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and authors as well as your name
and phone or e-mail address. I will carefully review your comments and share them with the
authors and editors who worked on the book.

 E-mail: trina.macdonald@pearson.com

 Mail: Trina MacDonald
 Senior Acquisitions Editor
 Addison-Wesley/Pearson Education, Inc.
 75 Arlington St., Ste. 300
 Boston, MA 02116

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

 1
 Gestures and Touches

 The touch represents the heart of iOS interaction; it provides the core way that users commu-
nicate their intent to an application. Touches are not limited to button presses and keyboard
interaction. You can design and build applications that work directly with users’ gestures in
meaningful ways. This chapter introduces direct manipulation interfaces that go far beyond
prebuilt controls. You’ll see how to create views that users can drag around the screen. You’ll
also discover how to distinguish and interpret gestures, which are a high-level touch abstrac-
tion, and gesture recognizer classes, which automatically detect common interaction styles
like taps, swipes, and drags. By the time you finish reading this chapter, you’ll have read about
many different ways you can implement gesture control in your own applications.

 Touches

 Cocoa Touch implements direct manipulation in the simplest way possible. It sends touch
events to the view you’re interacting with. As an iOS developer, you tell the view how to
respond. Before jumping into gestures and gesture recognizers, you should gain a solid founda-
tion in this underlying touch technology. It provides the essential components of all touch-
based interaction.

 Each touch conveys information: where the touch took place (both the current and previous
location), what phase of the touch was used (essentially mouse down, mouse moved, mouse
up in the desktop application world, corresponding to finger or touch down, moved, and up in
the direct manipulation world), a tap count (for example, single-tap/double-tap), and when the
touch took place (through a time stamp).

 iOS uses what is called a responder chain to decide which objects should process touches. As
their name suggests, responders are objects that respond to events, and they act as a chain of
possible managers for those events. When the user touches the screen, the application looks for
an object to handle this interaction. The touch is passed along, from view to view, until some
object takes charge and responds to that event.

 At the most basic level, touches and their information are stored in UITouch objects, which
are passed as groups in UIEvent objects. Each UIEvent object represents a single touch event,

2 Chapter 1 Gestures and Touches

containing single or multiple touches. This depends both on how you’ve set up your applica-
tion to respond (that is, whether you’ve enabled Multi-Touch interaction) and how the user
touches the screen (that is, the physical number of touch points).

 Your application receives touches in view or view controller classes; both implement touch
handlers via inheritance from the UIResponder class. You decide where you process and
respond to touches. Trying to implement low-level gesture control in non-responder classes has
tripped up many new iOS developers.

 Handling touches in views may seem counterintuitive. You probably expect to separate the
way an interface looks (its view) from the way it responds to touches (its controller). Further,
using views for direct touch interaction may seem to contradict Model–View–Controller design
orthogonality, but it can be necessary and can help promote encapsulation.

 Consider the case of working with multiple touch-responsive subviews such as game pieces on
a board. Building interaction behavior directly into view classes allows you to send meaningful
semantically rich feedback to your core application code while hiding implementation minutia.
For example, you can inform your model that a pawn has moved to Queen’s Bishop 5 at the
end of an interaction sequence rather than transmit a meaningless series of vector changes. By
hiding the way the game pieces move in response to touches, your model code can focus on
game semantics instead of view position updates.

 Drawing presents another reason to work in the UIView class. When your application handles
any kind of drawing operation in response to user touches, you need to implement touch
handlers in views. Unlike views, view controllers don’t implement the all-important drawRect:
method needed for providing custom presentations.

 Working at the UIViewController class level also has its perks. Instead of pulling out primary
handling behavior into a secondary class implementation, adding touch management directly
to the view controller allows you to interpret standard gestures, such as tap-and-hold or swipes,
where those gestures have meaning. This better centralizes your code and helps tie controller
interactions directly to your application model.

 In the following sections and recipes, you’ll discover how touches work, how you can respond
to them in your apps, and how to connect what a user sees with how that user interacts with
the screen.

 Phases

 Touches have life cycles. Each touch can pass through any of five phases that represent the
progress of the touch within an interface. These phases are as follows:

 ■ UITouchPhaseBegan — Starts when the user touches the screen.

 ■ UITouchPhaseMoved — Means a touch has moved on the screen.

 ■ UITouchPhaseStationary — Indicates that a touch remains on the screen surface but
that there has not been any movement since the previous event.

3Touches

 ■ UITouchPhaseEnded — Gets triggered when the touch is pulled away from the screen.

 ■ UITouchPhaseCancelled — Occurs when the iOS system stops tracking a particular
touch. This usually happens due to a system interruption, such as when the application
is no longer active or the view is removed from the window.

 Taken as a whole, these five phases form the interaction language for a touch event. They
describe all the possible ways that a touch can progress or fail to progress within an interface
and provide the basis for control for that interface. It’s up to you as the developer to interpret
those phases and provide reactions to them. You do that by implementing a series of responder
methods.

 Touches and Responder Methods

 All subclasses of the UIResponder class, including UIView and UIViewController , respond to
touches. Each class decides whether and how to respond. When choosing to do so, they imple-
ment customized behavior when a user touches one or more fingers down in a view or window.

 Predefined callback methods handle the start, movement, and release of touches from the
screen. Corresponding to the phases you’ve already seen, the methods involved are as follows:

 ■ touchesBegan:withEvent: — Gets called at the starting phase of the event, as the user
starts touching the screen.

 ■ touchesMoved:withEvent: — Handles the movement of the fingers over time.

 ■ touchesEnded:withEvent: — Concludes the touch process, where the finger or fingers
are released. It provides an opportune time to clean up any work that was handled
during the movement sequence.

 ■ touchesCancelled:WithEvent :— Called when Cocoa Touch must respond to a system
interruption of the ongoing touch event.

 Each of these is a UIResponder method, often implemented in a UIView or
 UIViewController subclass. All views inherit basic nonfunctional versions of the methods.
When you want to add touch behavior to your application, you override these methods
and add a custom version that provides the responses your application needs. Notice that
 UITouchPhaseStationary does not generate a callback.

 Your classes can implement all or just some of these methods. For real-world deployment,
you will always want to add a touches-cancelled event to handle the case of a user drag-
ging his or her finger offscreen or the case of an incoming phone call, both of which cancel
an ongoing touch sequence. As a rule, you can generally redirect a cancelled touch to your
 touchesEnded:withEvent: method. This allows your code to complete the touch sequence,
even if the user’s finger has not left the screen. Apple recommends overriding all four methods
as a best practice when working with touches.

4 Chapter 1 Gestures and Touches

 Note

 Views have a mode called exclusive touch that prevents touches from being delivered to other
views in the same window. When enabled, this property blocks other views from receiving touch
events within that view. The primary view handles all touch events exclusively.

 Touching Views

 When dealing with many onscreen views, iOS automatically decides which view the user
touched and passes any touch events to the proper view for you. This helps you write concrete
direct manipulation interfaces where users touch, drag, and interact with onscreen objects.

 Just because a touch is physically on top of a view doesn’t mean that a view has to respond.
Each view can use a “hit test” to choose whether to handle a touch or to let that touch fall
through to views beneath it. As you’ll see in the recipes that follow, you can use clever response
strategies to decide when your view should respond, particularly when you’re using irregular art
with partial transparency.

 With touch events, the first view that passes the hit test opts to handle or deny the touch. If it
passes, the touch continues to the view’s superview and then works its way up the responder
chain until it is handled or until it reaches the window that owns the views. If the window
does not process it, the touch moves to the UIApplication instance, where it is either
processed or discarded.

 Multi-Touch

 iOS supports both single- and Multi-Touch interfaces. Single-touch GUIs handle just one touch
at any time. This relieves you of any responsibility to determine which touch you were track-
ing. The one touch you receive is the only one you need to work with. You look at its data,
respond to it, and wait for the next event.

 When working with Multi-Touch—that is, when you respond to multiple onscreen touches at
once—you receive an entire set of touches. It is up to you to order and respond to that set. You
can, however, track each touch separately and see how it changes over time, which enables
you to provide a richer set of possible user interaction. Recipes for both single-touch and Multi-
Touch interaction follow in this chapter.

 Gesture Recognizers

 With gesture recognizers, Apple added a powerful way to detect specific gestures in your inter-
face. Gesture recognizers simplify touch design. They encapsulate touch methods, so you don’t
have to implement them yourself, and they provide a target-action feedback mechanism that
hides implementation details. They also standardize how certain movements are categorized, as
drags or swipes.

5Recipe: Adding a Simple Direct Manipulation Interface

 With gesture recognizer classes, you can trigger callbacks when iOS determines that the user
has tapped, pinched, rotated, swiped, panned, or used a long press. These detection capabilities
simplify development of touch-based interfaces. You can code your own for improved reliabil-
ity, but a majority of developers will find that the recognizers, as shipped, are robust enough
for many application needs. You’ll find several recognizer-based recipes in this chapter. Because
recognizers all basically work in the same fashion, you can easily extend these recipes to your
specific gesture recognition requirements.

 Here is a rundown of the kinds of gestures built in to recent versions of the iOS SDK:

 ■ Taps — Taps correspond to single or multiple finger taps onscreen. Users can tap with
one or more fingers; you specify how many fingers you require as a gesture recognizer
property and how many taps you want to detect. You can create a tap recognizer that
works with single finger taps, or more nuanced recognizers that look for, for example,
two-fingered triple-taps.

 ■ Swipes — Swipes are short single- or Multi-Touch gestures that move in a single cardinal
direction: up, down, left, or right. They cannot move too far off course from that primary
direction. You set the direction you want your recognizer to work with. The recognizer
returns the detected direction as a property.

 ■ Pinches — To pinch or unpinch, a user must move two fingers together or apart in a
single movement. The recognizer returns a scale factor indicating the degree of pinching.

 ■ Rotations — To rotate, a user moves two fingers at once, either in a clockwise or
counterclockwise direction, producing an angular rotation as the main returned property.

 ■ Pans — Pans occur when users drag their fingers across the screen. The recognizer
determines the change in translation produced by that drag.

 ■ Long press es— To create a long press, the user touches the screen and holds his or her
finger (or fingers) there for a specified period of time. You can specify how many fingers
must be used before the recognizer triggers.

 Recipe: Adding a Simple Direct Manipulation Interface

 Before moving on to more modern (and commonly used) gesture recognizers, take time to
understand and explore the traditional method of responding to a user’s touch. You’ll gain a
deeper understanding of the touch interface by learning how simple UIResponder touch event
handling works.

 When you work with direct manipulation, your design focus moves from the
 UIViewController to the UIView . The view, or more precisely the UIResponder , forms the
heart of direct manipulation development. You create touch-based interfaces by customizing
methods that derive from the UIResponder class.

 Recipe 1-1 centers on touches in action. This example creates a child of UIImageView called
 DragView and adds touch responsiveness to the class. Because this is an image view, it’s
important to enable user interaction (that is, set setUserInteractionEnabled to YES). This

6 Chapter 1 Gestures and Touches

property affects all the view’s children as well as the view itself. User interaction is generally
enabled for most views, but UIImageView is the one exception that stumps most beginners;
Apple apparently didn’t think people would generally use touches with UIImageView .

 The recipe works by updating a view’s center to match the movement of an onscreen touch.
When a user first touches any DragView , the object stores the start location as an offset from
the view’s origin. As the user drags, the view moves along with the finger—always maintaining
the same origin offset so that the movement feels natural. Movement occurs by updating the
object’s center. Recipe 1-1 calculates x and y offsets and adjusts the view center by those offsets
after each touch movement.

 Upon being touched, the view pops to the front. That’s due to a call in the touchesBegan:
withEvent: method. The code tells the superview that owns the DragView to bring that view
to the front. This allows the active element to always appear foremost in the interface.

 This recipe does not implement touches-ended or touches-cancelled methods. Its interests lie
only in the movement of onscreen objects. When the user stops interacting with the screen,
the class has no further work to do.

 Recipe 1-1 Creating a Draggable View

 @implementation DragView
 {
 CGPoint startLocation;
 }

 - (instancetype)initWithImage:(UIImage *)anImage
 {
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 }
 return self;
 }

 - (void)touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event
 {
 // Calculate and store offset, pop view into front if needed
 startLocation = [[touches anyObject] locationInView:self];
 [self.superview bringSubviewToFront:self];
 }

 - (void)touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event
 {
 // Calculate offset

7Recipe: Adding Pan Gesture Recognizers

 CGPoint pt = [[touches anyObject] locationInView:self];
 float dx = pt.x - startLocation.x;
 float dy = pt.y - startLocation.y;
 CGPoint newcenter = CGPointMake(
 self.center.x + dx,
 self.center.y + dy);

 // Set new location
 self.center = newcenter;
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to
 https://github.com/erica/iOS-7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Adding Pan Gesture Recognizers

 With gesture recognizers, you can achieve the same kind of interaction shown in Recipe 1-1
without working quite so directly with touch handlers. Pan gesture recognizers detect dragging
gestures. They allow you to assign a callback that triggers whenever iOS senses panning.

 Recipe 1-2 mimics Recipe 1-1 ’s behavior by adding a recognizer to the view when it is first
initialized. As iOS detects the user dragging on a DragView instance, the handlePan: callback
updates the view’s center to match the distance dragged.

 This code uses what might seem like an odd way of calculating distance. It stores the original
view location in an instance variable (previousLocation) and then calculates the offset from
that point each time the view updates with a pan detection callback. This allows you to use
affine transforms or apply the setTranslation:inView: method; you normally do not move
view centers, as done here. This recipe creates a dx / dy offset pair and applies that offset to the
view’s center, changing the view’s actual frame.

 Unlike simple offsets, affine transforms allow you to meaningfully work with rotation, scaling,
and translation all at once. To support transforms, gesture recognizers provide their coordinate
changes in absolute terms rather than relative ones. Instead of issuing iterative offset vectors,
 UIPanGestureRecognizer returns a single vector representing a translation in terms of some
view’s coordinate system, typically the coordinate system of the manipulated view’s superview.
This vector translation lends itself to simple affine transform calculations and can be mathe-
matically combined with other changes to produce a unified transform representing all changes
applied simultaneously.

https://github.com/erica/iOS-7-Cookbook

8 Chapter 1 Gestures and Touches

 Here’s what the handlePan: method looks like, using straight transforms and no stored state:

 - (void)handlePan:(UIPanGestureRecognizer *)uigr
 {
 if (uigr.state == UIGestureRecognizerStateEnded)
 {
 CGPoint newCenter = CGPointMake(
 self.center.x + self.transform.tx,
 self.center.y + self.transform.ty);
 self.center = newCenter;

 CGAffineTransform theTransform = self.transform;
 theTransform.tx = 0.0f;
 theTransform.ty = 0.0f;
 self.transform = theTransform;

 return;
 }

 CGPoint translation = [uigr translationInView:self.superview];
 CGAffineTransform theTransform = self.transform;
 theTransform.tx = translation.x;
 theTransform.ty = translation.y;
 self.transform = theTransform;
 }

 Notice how the recognizer checks for the end of interaction and then updates the view’s posi-
tion and resets the transform’s translation. This adaptation requires no local storage and would
eliminate the need for a touchesBegan:withEvent: method. Without these modifications,
 Recipe 1-2 has to store the previous state.

 Recipe 1-2 Using a Pan Gesture Recognizer to Drag Views

 @implementation DragView
 {
 CGPoint previousLocation;
 }

 - (instancetype)initWithImage:(UIImage *)anImage
 {
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 UIPanGestureRecognizer *panRecognizer =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self action:@selector(handlePan:)];

9Recipe: Using Multiple Gesture Recognizers Simultaneously

 self.gestureRecognizers = @[panRecognizer];
 }
 return self;
 }

 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
 {
 // Promote the touched view
 [self.superview bringSubviewToFront:self];

 // Remember original location
 previousLocation = self.center;
 }

 - (void)handlePan:(UIPanGestureRecognizer *)uigr
 {
 CGPoint translation = [uigr translationInView:self.superview];
 self.center = CGPointMake(previousLocation.x + translation.x,
 previousLocation.y + translation.y);
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Using Multiple Gesture Recognizers

Simultaneously

 Recipe 1-3 builds on the ideas presented in Recipe 1-2 , but with several differences. First, it
introduces multiple recognizers that work in parallel. To achieve this, the code uses three
separate recognizers—rotation, pinch, and pan—and adds them all to the DragView ’s
 gestureRecognizers property. It assigns the DragView as the delegate for each recognizer.
This allows the DragView to implement the gestureRecognizer:shouldRecognize-
SimultaneouslyWithGestureRecognizer: delegate method, enabling these recognizers to
work simultaneously. Until this method is added to return YES as its value, only one recognizer
will take charge at a time. Using parallel recognizers allows you to, for example, both zoom and
rotate in response to a user’s pinch gesture.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

10 Chapter 1 Gestures and Touches

 Note

 UITouch objects store an array of gesture recognizers. The items in this array represent each
recognizer that receives the touch object in question. When a view is created without gesture
recognizers, its responder methods will be passed touches with empty recognizer arrays.

 Recipe 1-3 extends the view’s state to include scale and rotation instance variables. These
items keep track of previous transformation values and permit the code to build compound
affine transforms. These compound transforms, which are established in Recipe 1-3 ’s
updateTransformWithOffset : method, combine translation, rotation, and scaling into a
single result. Unlike the previous recipe, this recipe uses transforms uniformly to apply
changes to its objects, which is the standard practice for recognizers.

 Finally, this recipe introduces a hybrid approach to gesture recognition. Instead of adding
a UITapGestureRecognizer to the view’s recognizer array, Recipe 1-3 demonstrates how
you can add the kind of basic touch method used in Recipe 1-1 to catch a triple-tap. In this
example, a triple-tap resets the view back to the identity transform. This undoes any manipula-
tion previously applied to the view and reverts it to its original position, orientation, and size.
As you can see, the touches began, moved, ended, and cancelled methods work seamlessly
alongside the gesture recognizer callbacks, which is the point of including this extra detail in
this recipe. Adding a tap recognizer would have worked just as well.

 This recipe demonstrates the conciseness of using gesture recognizers to interact with touches.

 Recipe 1-3 Recognizing Gestures in Parallel

 @interface DragView : UIImageView <UIGestureRecognizerDelegate>
 @end

 @implementation DragView
 {
 CGFloat tx; // x translation
 CGFloat ty; // y translation
 CGFloat scale; // zoom scale
 CGFloat theta; // rotation angle
 }

 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
 {
 // Promote the touched view
 [self.superview bringSubviewToFront:self];

 // initialize translation offsets
 tx = self.transform.tx;
 ty = self.transform.ty;
 scale = self.scaleX;
 theta = self.rotation;
 }

11Recipe: Using Multiple Gesture Recognizers Simultaneously

 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
 {
 UITouch *touch = [touches anyObject];
 if (touch.tapCount == 3)
 {
 // Reset geometry upon triple-tap
 self.transform = CGAffineTransformIdentity;
 tx = 0.0f; ty = 0.0f; scale = 1.0f; theta = 0.0f;
 }
 }

 - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
 {
 [self touchesEnded:touches withEvent:event];
 }

 - (void)updateTransformWithOffset:(CGPoint)translation
 {
 // Create a blended transform representing translation,
 // rotation, and scaling
 self.transform = CGAffineTransformMakeTranslation(
 translation.x + tx, translation.y + ty);
 self.transform = CGAffineTransformRotate(self.transform, theta);

 // Guard against scaling too low, by limiting the scale factor
 if (self.scale > 0.5f)
 {
 self.transform = CGAffineTransformScale(self.transform, scale, scale);
 }
 else
 {
 self.transform = CGAffineTransformScale(self.transform, 0.5f, 0.5f);
 }
 }

 - (void)handlePan:(UIPanGestureRecognizer *)uigr
 {
 CGPoint translation = [uigr translationInView:self.superview];
 [self updateTransformWithOffset:translation];
 }

 - (void)handleRotation:(UIRotationGestureRecognizer *)uigr
 {
 theta = uigr.rotation;
 [self updateTransformWithOffset:CGPointZero];
 }

12 Chapter 1 Gestures and Touches

 - (void)handlePinch:(UIPinchGestureRecognizer *)uigr
 {
 scale = uigr.scale;
 [self updateTransformWithOffset:CGPointZero];
 }

 - (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer *)otherGestureRecognizer
 {
 return YES;
 }

 - (instancetype)initWithImage:(UIImage *)image
 {
 // Initialize and set as touchable
 self = [super initWithImage:image];
 if (self)
 {
 self.userInteractionEnabled = YES;

 // Reset geometry to identities
 self.transform = CGAffineTransformIdentity;
 tx = 0.0f; ty = 0.0f; scale = 1.0f; theta = 0.0f;

 // Add gesture recognizer suite
 UIRotationGestureRecognizer *rot =
 [[UIRotationGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleRotation:)];
 UIPinchGestureRecognizer *pinch =
 [[UIPinchGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePinch:)];
 UIPanGestureRecognizer *pan =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePan:)];
 self.gestureRecognizers = @[rot, pinch, pan];
 for (UIGestureRecognizer *recognizer
 in self.gestureRecognizers)
 recognizer.delegate = self;
 }
 return self;
 }
 @end

13Recipe: Using Multiple Gesture Recognizers Simultaneously

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

 Resolving Gesture Conflicts

 Gesture conflicts may arise when you need to recognize several types of gestures at the same
time. For example, what happens when you need to recognize both single- and double-taps?
Should the single-tap recognizer fire at the first tap, even when the user intends to enter a
double-tap? Or should you wait and respond only after it’s clear that the user isn’t about to add
a second tap? The iOS SDK allows you to take these conflicts into account in your code.

 Your classes can specify that one gesture must fail in order for another to succeed. Accomplish
this by calling requireGestureRecognizerToFail:. This gesture recognizer method takes
one argument, another gesture recognizer. This call creates a dependency between the two
gesture recognizers. For the first gesture to trigger, the second gesture must fail. If the second
gesture is recognized, the first gesture will not be.

 iOS 7 introduces new APIs that offer more flexibility in providing runtime failure conditions
via gesture recognizer delegates and subclasses. You implement gestureRecognizer:
shouldRequireFailureOfGestureRecognizer: and gestureRecognizer:shouldBe-
RequiredToFailByGestureRecognizer: in recognizer delegates and shouldRequire-
FailureOfGestureRecognizer : and shouldBeRequiredToFailByGestureRecognizer : in
subclasses.

 Each method returns a Boolean result. A positive response requires the failure condition speci-
fied by the method to occur for the gesture to succeed. These UIGestureRecognizer delegate
methods are called by the recognizer once per recognition attempt and can be set up between
recognizers across view hierarchies, while implementations provided in subclasses can define
class-wide failure requirements.

 In real life, failure requirements typically mean that the recognizer adds a delay until it can
be sure that the dependent recognizer has failed. It waits until the second gesture is no longer
possible. Only then does the first recognizer complete. If you recognize both single- and
double-taps, the application waits a little longer after the first tap. If no second tap happens,
the single-tap fires. Otherwise, the double-tap fires, but not both.

 Your GUI responses will slow down to accommodate this change. Your single-tap responses
become slightly laggy. That’s because there’s no way to tell if a second tap is coming until time
elapses. You should never use both kinds of recognizers where instant responsiveness is criti-
cal to your user experience. Try, instead, to design around situations where that tap means “do
something now ” and avoid requiring both gestures for those modes.

 Don’t forget that you can add, remove, and disable gesture recognizers on-the-fly. A single-tap
may take your interface to a place where it then makes sense to further distinguish between
single- and double-taps. When leaving that mode, you could disable or remove the double-tap
recognizer to regain better single-tap recognition. Tweaks like this can limit interface slow-
downs to where they’re absolutely needed.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

14 Chapter 1 Gestures and Touches

 Recipe: Constraining Movement

 One problem with the simple approach of the earlier recipes in this chapter is that it’s entirely
possible to drag a view offscreen to the point where the user cannot see or easily recover it.
Those recipes use unconstrained movement. There is no check to test whether the object
remains in view and is touchable. Recipe 1-4 fixes this problem by constraining a view’s move-
ment to within its parent. It achieves this by limiting movement in each direction, splitting its
checks into separate x and y constraints. This two-check approach allows the view to continue
to move even when one direction has passed its maximum. If the view has hit the rightmost
edge of its parent, for example, it can still move up and down.

 Note

 iOS 7 introduces UIKit Dynamics, for modeling real-world physical behaviors including physics
simulation and responsive animations. By using the declarative Dynamics API, you can model
gravity, collisions, force, attachments, springs, elasticity, and numerous other behaviors and
apply them to UIKit objects. While this recipe presents a traditional approach to moving and
constraining UI objects via gesture recognizers and direct frame manipulation, you can con-
struct a much more elaborate variant with Dynamics.

 Figure 1-1 shows a sample interface. The subviews (flowers) are constrained into the black
rectangle in the center of the interface and cannot be dragged offscreen. Recipe 1-4 ’s code is
general and can adapt to parent bounds and child views of any size.

 Figure 1-1 The movement of these flowers is constrained within the black rectangle.

15Recipe: Testing Touches

 Recipe 1-4 Constrained Movement

 - (void)handlePan:(UIPanGestureRecognizer *)uigr
 {
 CGPoint translation = [uigr translationInView:self.superview];
 CGPoint newcenter = CGPointMake(
 previousLocation.x + translation.x,
 previousLocation.y + translation.y);

 // Restrict movement within the parent bounds
 float halfx = CGRectGetMidX(self.bounds);
 newcenter.x = MAX(halfx, newcenter.x);
 newcenter.x = MIN(self.superview.bounds.size.width - halfx,
 newcenter.x);

 float halfy = CGRectGetMidY(self.bounds);
 newcenter.y = MAX(halfy, newcenter.y);
 newcenter.y = MIN(self.superview.bounds.size.height - halfy,
 newcenter.y);

 // Set new location
 self.center = newcenter;
 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Testing Touches

 Most onscreen view elements for direct manipulation interfaces are not rectangular. This
complicates touch detection because parts of the actual view rectangle may not correspond
to actual touch points. Figure 1-2 shows the problem in action. The screen shot on the right
shows the interface with its touch-based subviews. The shot on the left shows the actual view
bounds for each subview. The light gray areas around each onscreen circle fall within the
bounds, but touches to those areas should not “hit” the view in question.

 iOS senses user taps throughout the entire view frame. This includes the undrawn area, such
as the corners of the frame outside the actual circles of Figure 1-2 , just as much as the primary
presentation. That means that unless you add some sort of hit test, users may attempt to tap
through to a view that’s “obscured” by the clear portion of the UIView frame.

 Visualize your actual view bounds by setting its background color, like this:

 dragger.backgroundColor = [UIColor lightGrayColor];

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

16 Chapter 1 Gestures and Touches

 This adds the backsplashes shown in Figure 1-2 (left) without affecting the actual onscreen art.
In this case, the art consists of a centered circle with a transparent background. Unless you add
some sort of test, all taps to any portion of this frame are captured by the view in question.
Enabling background colors offers a convenient debugging aid to visualize the true extent of
each view; don’t forget to comment out the background color assignment in production code.
Alternatively, you can set a view layer’s border width or style.

 Figure 1-2 The application should ignore touches to the gray areas that surround each circle
(left). The actual interface (right) uses a clear background (zero alpha values) to hide the parts of
the view that are not used.

 Recipe 1-5 adds a simple hit test to the views, determining whether touches fall within the
circle. This test overrides the standard UIView ’s pointInside:withEvent: method. This
method returns either YES (the point falls inside the view) or NO (it does not). The test here
uses basic geometry, checking whether the touch lies within the circle’s radius. You can provide
any test that works with your onscreen views. As you’ll see in Recipe 1-6 , which follows in the
next section, you can expand that test for much finer control.

 Be aware that the math for touch detection on Retina display devices remains the same as that
for older units, using the normalized points coordinate system rather than actual pixels. The
extra onboard pixels do not affect your gesture-handling math. Your view’s coordinate system
remains floating point with subpixel accuracy. The number of pixels the device uses to draw to
the screen does not affect UIView bounds and UITouch coordinates. It simply provides a way to
provide higher detail graphics within that coordinate system.

17Recipe: Testing Against a Bitmap

 Note

 Do not confuse the point inside test, which checks whether a point falls inside a view, with
the similar-sounding hitTest:withEvent: . The hit test returns the topmost view (clos-
est to the user/screen) in a view hierarchy that contains a specific point. It works by calling
 pointInside:withEvent: on each view. If the pointInside method returns YES , the search
continues down that hierarchy.

 Recipe 1-5 Providing a Circular Hit Test

 - (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event
 {
 CGPoint pt;
 float halfSide = kSideLength / 2.0f;

 // normalize with centered origin
 pt.x = (point.x - halfSide) / halfSide;
 pt.y = (point.y - halfSide) / halfSide;

 // x^2 + y^2 = radius^2
 float xsquared = pt.x * pt.x;
 float ysquared = pt.y * pt.y;

 // If the radius < 1, the point is within the clipped circle
 if ((xsquared + ysquared) < 1.0) return YES;
 return NO;
 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Testing Against a Bitmap

 Unfortunately, most views don’t fall into the simple geometries that make the hit test from
 Recipe 1-5 so straightforward. The flowers shown in Figure 1-1 , for example, offer irregular
boundaries and varied transparencies. For complicated art, it helps to test touches against a
bitmap. Bitmaps provide byte-by-byte information about the contents of an image-based view,
allowing you to test whether a touch hits a solid portion of the image or should pass through
to any views below.

 Recipe 1-6 extracts an image bitmap from a UIImageView . It assumes that the image used
provides a pixel-by-pixel representation of the view in question. When you distort that view

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

18 Chapter 1 Gestures and Touches

(normally by resizing a frame or applying a transform), update the math accordingly. CGPoint s
can be transformed via CGPointApplyAffineTransform() to handle scaling and rotation
changes. Keeping the art at a 1:1 proportion to the actual view pixels simplifies lookup and
avoids any messy math. You can recover the pixel in question, test its alpha level, and deter-
mine whether the touch has hit a solid portion of the view.

 This example uses a cutoff of 85. This corresponds to a minimum alpha level of 33% (that is,
85 / 255). This custom pointInside: method considers any pixel with an alpha level below
33% to be transparent. This is arbitrary. Use any level (or other test, for that matter) that works
with the demands of your actual GUI.

 Note

 Unless you need pixel-perfect touch detection, you can probably scale down the bitmap so that
it uses less memory and adjust the detection math accordingly.

 Recipe 1-6 Testing Touches Against Bitmap Alpha Levels

 // Return the offset for the alpha pixel at (x,y) for RGBA
 // 4-bytes-per-pixel bitmap data
 static NSUInteger alphaOffset(NSUInteger x, NSUInteger y, NSUInteger w)
 {return y * w * 4 + x * 4;}

 // Return the bitmap from a provided image
 NSData *getBitmapFromImage(UIImage *image)
 {
 if (!sourceImage) return nil;

 // Establish color space
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();
 if (colorSpace == NULL)
 {
 NSLog(@"Error creating RGB color space");
 return nil;
 }

 // Establish context
 int width = sourceImage.size.width;
 int height = sourceImage.size.height;
 CGContextRef context =
 CGBitmapContextCreate(NULL, width, height, 8,
 width * 4, colorSpace,
 (CGBitmapInfo) kCGImageAlphaPremultipliedFirst);
 CGColorSpaceRelease(colorSpace);
 if (context == NULL)
 {

19Recipe: Testing Against a Bitmap

 NSLog(@"Error creating context");
 return nil;
 }

 // Draw source into context bytes
 CGRect rect = (CGRect){.size = sourceImage.size};
 CGContextDrawImage(context, rect, sourceImage.CGImage);

 // Create NSData from bytes
 NSData *data =
 [NSData dataWithBytes:CGBitmapContextGetData(context)
 length:(width * height * 4)];
 CGContextRelease(context);

 return data;
 }

 // Store the bitmap data into an NSData instance variable
 - (instancetype)initWithImage:(UIImage *)anImage
 {
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 data = getBitmapFromImage(anImage);
 }
 return self;
 }

 // Does the point hit the view?
 - (BOOL)pointInside:(CGPoint)point withEvent:(UIEvent *)event
 {
 if (!CGRectContainsPoint(self.bounds, point)) return NO;
 Byte *bytes = (Byte *)data.bytes;
 uint offset = alphaOffset(point.x, point.y, self.image.size.width);
 return (bytes[offset] > 85);
 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

20 Chapter 1 Gestures and Touches

 Recipe: Drawing Touches Onscreen

 UIView hosts the realm of direct onscreen drawing. Its drawRect: method offers a low-level
way to draw content directly, letting you create and display arbitrary elements using Quartz 2D
calls. With touch and drawing, you can build concrete, manipulatable interfaces.

 Recipe 1-7 combines gestures with drawRect to introduce touch-based painting. As a user
touches the screen, the TouchTrackerView class builds a Bezier path that follows the user’s
finger. To paint the progress as the touch proceeds, the touchesMoved:withEvent: method
calls setNeedsDisplay . This, in turn, triggers a call to drawRect :, where the view strokes the
accumulated Bezier path. Figure 1-3 shows the interface with a path created in this way.

 Figure 1-3 A simple painting tool for iOS requires little more than collecting touches along a
path and painting that path with UIKit/Quartz 2D calls.

 Although you could adapt this recipe to use gesture recognizers, there’s really no point to it.
The touches are essentially meaningless; they’re only provided to create a pleasing tracing. The
basic responder methods (that is, touches began, moved, and so on) are perfectly capable of
handling path creation and management tasks.

 This example is meant for creating continuous traces. It does not respond to any touch event
without a move. If you want to expand this recipe to add a simple dot or mark, you’ll have to
add that behavior yourself.

21Recipe: Drawing Touches Onscreen

 Recipe 1-7 Touch-Based Painting in a UIView

 @implementation TouchTrackerView
 {
 UIBezierPath * path;
 }

 - (instancetype)initWithFrame:(CGRect)frame
 {
 self = [super initWithFrame:frame];
 if (self)
 {
 self.multipleTouchEnabled = NO;
 }
 return self;
 }

 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
 {
 // Initialize a new path for the user gesture
 path = [UIBezierPath bezierPath];
 path.lineWidth = IS_IPAD ? 8.0f : 4.0f;

 UITouch *touch = [touches anyObject];
 [path moveToPoint:[touch locationInView:self]];
 }

 - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
 {
 // Add new points to the path
 UITouch *touch = [touches anyObject];
 [self.path addLineToPoint:[touch locationInView:self]];
 [self setNeedsDisplay];
 }

 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
 {
 UITouch *touch = [touches anyObject];
 [path addLineToPoint:[touch locationInView:self]];
 [self setNeedsDisplay];
 }

 - (void)touchesCancelled:(NSSet *)touches
 withEvent:(UIEvent *)event
 {
 [self touchesEnded:touches withEvent:event];
 }

 - (void)drawRect:(CGRect)rect

22 Chapter 1 Gestures and Touches

 {
 // Draw the path
 [path stroke];
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Smoothing Drawings

 Depending on the device in use and the amount of simultaneous processing involved, captur-
ing user gestures may produce results that are rougher than desired. Touch events are often
limited by CPU demands as well as by shaking hands. A smoothing algorithm can offset those
limitations by interpolating between points. Figure 1-4 demonstrates the kind of angularity that
derives from granular input and the smoothing that can be applied instead.

 Figure 1-4 Catmull-Rom smoothing can be applied in real time to improve arcs between touch
events. The images shown here are based on identical gesture input, with (right) and without (left)
smoothing applied.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

23Recipe: Smoothing Drawings

 Catmull-Rom splines create continuous curves between key points. This algorithm ensures
that each initial point you provide remains part of the final curve. The resulting path retains
the original path’s shape. You choose the number of interpolation points between each pair of
reference points. The trade-off is between processing power and greater smoothing. The more
points you add, the more CPU resources you’ll consume. As you can see when using the sample
code that accompanies this chapter, a little smoothing goes a long way, even on newer devices.
The latest iPad is so responsive that it’s hard to draw a particularly jaggy line in the first place.

 Recipe 1-8 demonstrates how to extract points from an existing Bezier path and then apply
splining to create a smoothed result. Catmull-Rom uses four points at a time to calculate inter-
mediate values between the second and third points, using a granularity you specify between
those points.

 Recipe 1-8 provides an example of just one kind of real-time geometric processing you might
add to your applications. Many other algorithms out there in the world of computational
geometry can be applied in a similar manner.

 Note

 More extensive UIBezierPath utilities similar to getPointsFromBezier can be found
in Erica Sadun’s iOS Drawing: Practical UIKit Solutions (Addison-Wesley, 2013). For many
excellent graphics-related recipes, including more advanced smoothing algorithms, check
out the Graphics Gems series of books published by Academic Press and available at
www.graphicsgems.org .

 Recipe 1-8 Creating Smoothed Bezier Paths Using Catmull-Rom Splining

 #define VALUE(_INDEX_) [NSValue valueWithCGPoint:points[_INDEX_]]

 @implementation UIBezierPath (Points)
 void getPointsFromBezier(void *info, const CGPathElement *element)
 {
 NSMutableArray *bezierPoints = (__bridge NSMutableArray *)info;

 // Retrieve the path element type and its points
 CGPathElementType type = element->type;
 CGPoint *points = element->points;

 // Add the points if they're available (per type)
 if (type != kCGPathElementCloseSubpath)
 {
 [bezierPoints addObject:VALUE(0)];
 if ((type != kCGPathElementAddLineToPoint) &&
 (type != kCGPathElementMoveToPoint))
 [bezierPoints addObject:VALUE(1)];
 }

http://www.graphicsgems.org

24 Chapter 1 Gestures and Touches

 if (type == kCGPathElementAddCurveToPoint)
 [bezierPoints addObject:VALUE(2)];
 }

 - (NSArray *)points
 {
 NSMutableArray *points = [NSMutableArray array];
 CGPathApply(self.CGPath,
 (__bridge void *)points, getPointsFromBezier);
 return points;
 }
 @end

 #define POINT(_INDEX_) \
 [(NSValue *)[points objectAtIndex:_INDEX_] CGPointValue]

 @implementation UIBezierPath (Smoothing)
 - (UIBezierPath *)smoothedPath:(int)granularity
 {
 NSMutableArray *points = [self.points mutableCopy];
 if (points.count < 4) return [self copy];

 // Add control points to make the math make sense
 // Via Josh Weinberg
 [points insertObject:[points objectAtIndex:0] atIndex:0];
 [points addObject:[points lastObject]];

 UIBezierPath *smoothedPath = [UIBezierPath bezierPath];

 // Copy traits
 smoothedPath.lineWidth = self.lineWidth;

 // Draw out the first 3 points (0..2)
 [smoothedPath moveToPoint:POINT(0)];

 for (int index = 1; index < 3; index++)
 [smoothedPath addLineToPoint:POINT(index)];

 for (int index = 4; index < points.count; index++)
 {
 CGPoint p0 = POINT(index - 3);
 CGPoint p1 = POINT(index - 2);
 CGPoint p2 = POINT(index - 1);
 CGPoint p3 = POINT(index);

 // now add n points starting at p1 + dx/dy up
 // until p2 using Catmull-Rom splines

25Recipe: Smoothing Drawings

 for (int i = 1; i < granularity; i++)
 {
 float t = (float) i * (1.0f / (float) granularity);
 float tt = t * t;
 float ttt = tt * t;

 CGPoint pi; // intermediate point
 pi.x = 0.5 * (2*p1.x+(p2.x-p0.x)*t +
 (2*p0.x-5*p1.x+4*p2.x-p3.x)*tt +
 (3*p1.x-p0.x-3*p2.x+p3.x)*ttt);
 pi.y = 0.5 * (2*p1.y+(p2.y-p0.y)*t +
 (2*p0.y-5*p1.y+4*p2.y-p3.y)*tt +
 (3*p1.y-p0.y-3*p2.y+p3.y)*ttt);
 [smoothedPath addLineToPoint:pi];
 }

 // Now add p2
 [smoothedPath addLineToPoint:p2];
 }

 // finish by adding the last point
 [smoothedPath addLineToPoint:POINT(points.count - 1)];

 return smoothedPath;
 }
 @end

 // Example usage:
 // Replace the path with a smoothed version after drawing completes
 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
 {
 UITouch *touch = [touches anyObject];
 [path addLineToPoint:[touch locationInView:self]];
 path = [path smoothedPath:4];
 [self setNeedsDisplay];
 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

26 Chapter 1 Gestures and Touches

 Recipe: Using Multi-Touch Interaction

 Enabling Multi-Touch interaction in UIView instances lets iOS recover and respond to more
than one finger touch at a time. Set the UIView property multipleTouchEnabled to YES or
override isMultipleTouchEnabled for your view. When enabled, each touch callback returns
an entire set of touches. When that set’s count exceeds 1, you know you’re dealing with
Multi-Touch.

 In theory, iOS supports an arbitrary number of touches. You can explore that limit by running
 Recipe 1-9 on an iPad, using as many fingers as possible at once. The practical upper limit has
changed over time; this recipe modestly demurs from offering a specific number.

 When Multi-Touch was first explored on the iPhone, developers did not dream of the freedom
and flexibility that Multi-Touch combined with multiple users offered. Adding Multi-Touch to
your games and other applications opens up not just expanded gestures but also new ways of
creating profoundly exciting multiuser experiences, especially on larger screens like the iPad.
Include Multi-Touch support in your applications wherever it is practical and meaningful.

 Multi-Touch touches are not grouped. If you touch the screen with two fingers from each
hand, for example, there’s no way to determine which touches belong to which hand. The
touch order is also arbitrary. Although grouped touches retain the same finger order (or, more
specifically, the same memory address) for the lifetime of a single touch event, from touch
down through movement to release, the correspondence between touches and fingers may and
likely will change the next time your user touches the screen. When you need to distinguish
touches from each other, build a touch dictionary indexed by the touch objects, as shown in
this recipe.

 Perhaps it’s a comfort to know that if you need it, the extra finger support has been built
in. Unfortunately, when you are using three or more touches at a time, the screen has a
pronounced tendency to lose track of one or more of those fingers. It’s hard to programmati-
cally track smooth gestures when you go beyond two finger touches. So instead of focusing
on gesture interpretation, think of the Multi-Touch experience more as a series of time-limited
independent interactions. You can treat each touch as a distinct item and process it indepen-
dently of its fellows.

 Recipe 1-9 adds Multi-Touch to a UIView by setting its multipleTouchEnabled property and
tracing the lines that each finger draws. It does this by keeping track of each touch’s physi-
cal address in memory but without pointing to or retaining the touch object, as per Apple’s
recommendations.

 This is, obviously, an oddball approach, but it has worked reliably throughout the history of
the SDK. That’s because each UITouch object persists at a single address throughout the touch–
move–release life cycle. Apple recommends against retaining UITouch instances, which is why
the integer values of these objects are used as keys in this recipe. By using the physical address
as a key, you can distinguish each touch, even as new touches are added or old touches are
removed from the screen.

27Recipe: Using Multi-Touch Interaction

 Be aware that new touches can start their life cycle via touchesBegan:withEvent: indepen-
dently of others as they move, end, or cancel. Your code should reflect that reality.

 This recipe expands from Recipe 1-7 . Each touch grows a separate Bezier path, which is painted
in the view’s drawRect method. Recipe 1-7 essentially starts a new drawing at the end of each
touch cycle. That works well for application bookkeeping but fails when it comes to creating a
standard drawing application, where you expect to iteratively add elements to a picture.

 Recipe 1-9 continues adding traces into a composite picture without erasing old items. Touches
collect into an ever-growing mutable array, which can be cleared on user demand. This recipe
draws in-progress tracing in a slightly lighter color, to distinguish it from paths that have
already been stored to the drawing’s stroke array.

 Recipe 1-9 Accumulating User Tracings for a Composite Drawing

 @interface TouchTrackerView : UIView
 - (void) clear;
 @end

 @implementation TouchTrackerView
 {
 NSMutableArray *strokes;
 NSMutableDictionary *touchPaths;
 }

 // Establish new views with storage initialized for drawing
 - (instancetype)initWithFrame:(CGRect)frame
 {
 self = [super initWithFrame:frame];
 if (self)
 {
 self.multipleTouchEnabled = YES;
 strokes = [NSMutableArray array];
 touchPaths = [NSMutableDictionary dictionary];
 }
 return self;
 }

 // On clear, remove all existing strokes, but not in-progress drawing
 - (void)clear
 {
 [strokes removeAllObjects];
 [self setNeedsDisplay];
 }

 // Start touches by adding new paths to the touchPath dictionary
 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
 {

28 Chapter 1 Gestures and Touches

 for (UITouch *touch in touches)
 {
 NSString *key = [NSString stringWithFormat:@"%d", (int) touch];
 CGPoint pt = [touch locationInView:self];

 UIBezierPath *path = [UIBezierPath bezierPath];
 path.lineWidth = IS_IPAD ? 8: 4;
 path.lineCapStyle = kCGLineCapRound;
 [path moveToPoint:pt];

 touchPaths[key] = path;
 }
 }
 // Trace touch movement by growing and stroking the path
 - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
 {
 for (UITouch *touch in touches)
 {
 NSString *key =
 [NSString stringWithFormat:@"%d", (int) touch];
 UIBezierPath *path = [touchPaths objectForKey:key];
 if (!path) break;

 CGPoint pt = [touch locationInView:self];
 [path addLineToPoint:pt];
 }
 [self setNeedsDisplay];
 }

 // On ending a touch, move the path to the strokes array
 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
 {
 for (UITouch *touch in touches)
 {
 NSString *key = [NSString stringWithFormat:@"%d", (int) touch];
 UIBezierPath *path = [touchPaths objectForKey:key];
 if (path) [strokes addObject:path];
 [touchPaths removeObjectForKey:key];
 }
 [self setNeedsDisplay];
 }

 - (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
 {
 [self touchesEnded:touches withEvent:event];
 }

29Recipe: Detecting Circles

 // Draw existing strokes in dark purple, in-progress ones in light
 - (void)drawRect:(CGRect)rect
 {
 [COOKBOOK_PURPLE_COLOR set];
 for (UIBezierPath *path in strokes)
 {
 [path stroke];
 }

 [[COOKBOOK_PURPLE_COLOR colorWithAlphaComponent:0.5f] set];
 for (UIBezierPath *path in [touchPaths allValues])
 {
 [path stroke];
 }
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-7-Cookbook and go to the folder for Chapter 1 .

 Note

 Apple provides many Core Graphics/Quartz 2D resources on its developer website. Although
many of these forums, mailing lists, and source code examples are not iOS-specific, they offer
an invaluable resource for expanding your iOS Core Graphics knowledge.

 Recipe: Detecting Circles

 In a direct manipulation interface like iOS, you’d imagine that most people could get by
just pointing to items onscreen. And yet, circle detection remains one of the most requested
gestures. Developers like having people circle items onscreen with their fingers. In the spirit
of providing solutions that readers have requested, Recipe 1-10 offers a relatively simple circle
detector, which is shown in Figure 1-5 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

30 Chapter 1 Gestures and Touches

 Figure 1-5 The dot and the outer ellipse show the key features of the detected circle.

 In this implementation, detection uses a multistep test. A time test checks that the stroke is not
lingering. A circle gesture should be quickly drawn. An inflection test checks that the touch
does not change directions too often. A proper circle includes four direction changes. This test
allows for five. There’s a convergence test. The circle must start and end close enough together
that the points are somehow related. A fair amount of leeway is needed because when you
don’t provide direct visual feedback, users tend to undershoot or overshoot where they began.
The pixel distance used here is generous, approximately a third of the view size.

 The final test looks at movement around a central point. It adds up the arcs traveled, which
should equal 360 degrees in a perfect circle. This example allows any movement that falls
within 45 degrees for not-quite-finished circles and 180 degrees for circles that continue on a
bit wider, allowing the finger to travel more naturally.

 Upon these tests being passed, the algorithm produces a least bounding rectangle and centers
that rectangle on the geometric mean of the points from the original gesture. This result is
assigned to the circle instance variable. It’s not a perfect detection system (you can try to fool it
when testing the sample code), but it’s robust enough to provide reasonably good circle checks
for many iOS applications.

31Recipe: Detecting Circles

 Recipe 1-10 Detecting Circles

 // Retrieve center of rectangle
 CGPoint GEORectGetCenter(CGRect rect)
 {
 return CGPointMake(CGRectGetMidX(rect), CGRectGetMidY(rect));
 }

 // Build rectangle around a given center
 CGRect GEORectAroundCenter(CGPoint center, float dx, float dy)
 {
 return CGRectMake(center.x - dx, center.y - dy, dx * 2, dy * 2);
 }

 // Center one rect inside another
 CGRect GEORectCenteredInRect(CGRect rect, CGRect mainRect)
 {
 CGFloat dx = CGRectGetMidX(mainRect)-CGRectGetMidX(rect);
 CGFloat dy = CGRectGetMidY(mainRect)-CGRectGetMidY(rect);
 return CGRectOffset(rect, dx, dy);
 }

 // Return dot product of two vectors normalized
 CGFloat dotproduct(CGPoint v1, CGPoint v2)
 {
 CGFloat dot = (v1.x * v2.x) + (v1.y * v2.y);
 CGFloat a = ABS(sqrt(v1.x * v1.x + v1.y * v1.y));
 CGFloat b = ABS(sqrt(v2.x * v2.x + v2.y * v2.y));
 dot /= (a * b);

 return dot;
 }

 // Return distance between two points
 CGFloat distance(CGPoint p1, CGPoint p2)
 {
 CGFloat dx = p2.x - p1.x;
 CGFloat dy = p2.y - p1.y;

 return sqrt(dx*dx + dy*dy);
 }

 // Offset in X
 CGFloat dx(CGPoint p1, CGPoint p2)
 {
 return p2.x - p1.x;
 }

32 Chapter 1 Gestures and Touches

 // Offset in Y
 CGFloat dy(CGPoint p1, CGPoint p2)
 {
 return p2.y - p1.y;
 }

 // Sign of a number
 NSInteger sign(CGFloat x)
 {
 return (x < 0.0f) ? (-1) : 1;
 }

 // Return a point with respect to a given origin
 CGPoint pointWithOrigin(CGPoint pt, CGPoint origin)
 {
 return CGPointMake(pt.x - origin.x, pt.y - origin.y);
 }

 // Calculate and return least bounding rectangle
 #define POINT(_INDEX_) [(NSValue *)[points \
 objectAtIndex:_INDEX_] CGPointValue]

 CGRect boundingRect(NSArray *points)
 {
 CGRect rect = CGRectZero;
 CGRect ptRect;

 for (NSUInteger i = 0; i < points.count; i++)
 {
 CGPoint pt = POINT(i);
 ptRect = CGRectMake(pt.x, pt.y, 0.0f, 0.0f);
 rect = (CGRectEqualToRect(rect, CGRectZero)) ?
 ptRect : CGRectUnion(rect, ptRect);
 }
 return rect;
 }

 CGRect testForCircle(NSArray *points, NSDate *firstTouchDate)
 {
 if (points.count < 2)
 {
 NSLog(@"Too few points (2) for circle");
 return CGRectZero;
 }

 // Test 1: duration tolerance
 float duration = [[NSDate date]

33Recipe: Detecting Circles

 timeIntervalSinceDate:firstTouchDate];
 NSLog(@"Transit duration: %0.2f", duration);

 float maxDuration = 2.0f;
 if (duration > maxDuration)
 {
 NSLog(@"Excessive duration");
 return CGRectZero;
 }

 // Test 2: Direction changes should be limited to near 4
 int inflections = 0;
 for (int i = 2; i < (points.count - 1); i++)
 {
 float deltx = dx(POINT(i), POINT(i-1));
 float delty = dy(POINT(i), POINT(i-1));
 float px = dx(POINT(i-1), POINT(i-2));
 float py = dy(POINT(i-1), POINT(i-2));

 if ((sign(deltx) != sign(px)) ||
 (sign(delty) != sign(py)))
 inflections++;
 }

 if (inflections > 5)
 {
 NSLog(@"Excessive inflections");
 return CGRectZero;
 }

 // Test 3: Start and end points near each other
 float tolerance = [[[UIApplication sharedApplication]
 keyWindow] bounds].size.width / 3.0f;
 if (distance(POINT(0), POINT(points.count - 1)) > tolerance)
 {
 NSLog(@"Start too far from end");
 return CGRectZero;
 }

 // Test 4: Count the distance traveled in degrees
 CGRect circle = boundingRect(points);
 CGPoint center = GEORectGetCenter(circle);
 float distance = ABS(acos(dotproduct(
 pointWithOrigin(POINT(0), center),
 pointWithOrigin(POINT(1), center))));
 for (int i = 1; i < (points.count - 1); i++)
 distance += ABS(acos(dotproduct(

34 Chapter 1 Gestures and Touches

 pointWithOrigin(POINT(i), center),
 pointWithOrigin(POINT(i+1), center))));

 float transitTolerance = distance - 2 * M_PI;

 if (transitTolerance < 0.0f) // fell short of 2 PI
 {
 if (transitTolerance < - (M_PI / 4.0f)) // under 45
 {
 NSLog(@"Transit too short");
 return CGRectZero;
 }
 }

 if (transitTolerance > M_PI) // additional 180 degrees
 {
 NSLog(@"Transit too long ");
 return CGRectZero;
 }

 return circle;
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Creating a Custom Gesture Recognizer

 It takes little work to transform the code shown in Recipe 1-10 into a custom recognizer, but
 Recipe 1-11 does it. Subclassing UIGestureRecognizer enables you to build your own circle
recognizer that you can add to views in your applications.

 Start by importing UIGestureRecognizerSubclass.h from UIKit into your new class. The
file declares everything you need your recognizer subclass to override or customize. For each
method you override, make sure to call the original version of the method by calling the super-
class method before invoking your new code.

 Gestures fall into two types: continuous and discrete. The circle recognizer is discrete. It either
recognizes a circle or fails. Continuous gestures include pinches and pans, where recognizers
send updates throughout their life cycle. Your recognizer generates updates by setting its state
property.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

35Recipe: Creating a Custom Gesture Recognizer

 Recognizers are basically state machines for fingertips. All recognizers start in the possible
state (UIGestureRecognizerStatePossible), and then for continuous gestures pass
through a series of changed states (UIGestureRecognizerStateChanged). Discrete recogniz-
ers either succeed in recognizing a gesture (UIGestureRecognizerStateRecognized) or fail
(UIGestureRecognizerStateFailed), as demonstrated in Recipe 1-11 . The recognizer sends
actions to its target each time you update the state except when the state is set to possible or
failed.

 The rather long comments you see in Recipe 1-11 belong to Apple, courtesy of the subclass
header file. They help explain the roles of the key methods that override their superclass. The
 reset method returns the recognizer back to its quiescent state, allowing it to prepare itself for
its next recognition challenge.

 The touches began (and so on) methods are called at similar points as their UIResponder
analogs, enabling you to perform your tests at the same touch life cycle points. This example
waits to check for success or failure until the touches ended callback, and uses the same
testForCircle method defined in Recipe 1-10 .

 Note

 As an overriding philosophy, gesture recognizers should fail as soon as possible. When they
succeed, you should store information about the gesture in local properties. The circle gesture
recognizer should save any detected circle so users know where the gesture occurred.

 Recipe 1-11 Creating a Gesture Recognizer Subclass

 #import <UIKit/UIGestureRecognizerSubclass.h>
 @implementation CircleRecognizer

 // Called automatically by the runtime after the gesture state has
 // been set to UIGestureRecognizerStateEnded. Any internal state
 // should be reset to prepare for a new attempt to recognize the gesture.
 // After this is received, all remaining active touches will be ignored
 // (no further updates will be received for touches that had already
 // begun but haven't ended).
 - (void)reset
 {
 [super reset];

 points = nil;
 firstTouchDate = nil;
 self.state = UIGestureRecognizerStatePossible;
 }

 // mirror of the touch-delivery methods on UIResponder
 // UIGestureRecognizers aren't in the responder chain, but observe
 // touches hit-tested to their view and their view's subviews.

36 Chapter 1 Gestures and Touches

 // UIGestureRecognizers receive touches before the view to which
 // the touch was hit-tested.
 - (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
 {
 [super touchesBegan:touches withEvent:event];

 if (touches.count > 1)
 {
 self.state = UIGestureRecognizerStateFailed;
 return;
 }

 points = [NSMutableArray array];
 firstTouchDate = [NSDate date];
 UITouch *touch = [touches anyObject];
 [points addObject: [NSValue valueWithCGPoint:
 [touch locationInView:self.view]]];
 }

 - (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
 {
 [super touchesMoved:touches withEvent:event];
 UITouch *touch = [touches anyObject];
 [points addObject: [NSValue valueWithCGPoint:
 [touch locationInView:self.view]]];
 }

 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
 {
 [super touchesEnded:touches withEvent: event];
 BOOL detectionSuccess = !CGRectEqualToRect(CGRectZero,
 testForCircle(points, firstTouchDate));
 if (detectionSuccess)
 self.state = UIGestureRecognizerStateRecognized;
 else
 self.state = UIGestureRecognizerStateFailed;
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

37Recipe: Dragging from a Scroll View

 Recipe: Dragging from a Scroll View

 iOS’s rich set of gesture recognizers doesn’t always accomplish exactly what you’re looking
for. Here’s an example. Imagine a horizontal scrolling view filled with image views, one next
to another, so you can scroll left and right to see the entire collection. Now, imagine that you
want to be able to drag items out of that view and add them to a space directly below the
scrolling area. To do this, you need to recognize downward touches on those child views (that
is, orthogonal to the scrolling direction).

 This was the puzzle developer Alex Hosgrove encountered while he was trying to build an
application roughly equivalent to a set of refrigerator magnet letters. Users could drag those
letters down into a workspace and then play with and arrange the items they’d chosen. There
were two challenges with this scenario. First, who owned each touch? Second, what happened
after the downward touch was recognized?

 Both the scroll view and its children own an interest in each touch. A downward gesture
should generate new objects; a sideways gesture should pan the scroll view. Touches have to
be shared to allow both the scroll view and its children to respond to user interactions. This
problem can be solved using gesture delegates.

 Gesture delegates allow you to add simultaneous recognition, so that two recogniz-
ers can operate at the same time. You add this behavior by declaring a protocol
(UIGestureRecognizerDelegate) and adding a simple delegate method:

 - (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer *)otherGestureRecognizer
 {
 return YES;
 }

 You cannot reassign gesture delegates for scroll views, so you must add this delegate override to
the implementation for the scroll view’s children.

 The second question, converting a swipe into a drag, is addressed by thinking about the entire
touch lifetime. Each touch that creates a new object starts as a directional drag but ends up as a
pan once the new view is created. A pan recognizer works better here than a swipe recognizer,
whose lifetime ends at the point of recognition.

 To make this happen, Recipe 1-12 manually adds that directional-movement detection, outside
the built-in gesture detection. In the end, that working-outside-the-box approach provides a
major coding win. That’s because once the swipe has been detected, the underlying pan gesture
recognizer continues to operate. This allows the user to keep moving the swiped object without
having to raise his or her finger and retouch the object in question.

 The implementation in Recipe 1-12 detects swipes that move down at least 16 vertical pixels
without straying more than 12 pixels to either side. When this code detects a downward swipe,
it adds a new DragView (the same class used earlier in this chapter) to the screen and allows it
to follow the touch for the remainder of the pan gesture interaction.

38 Chapter 1 Gestures and Touches

 At the point of recognition, the class marks itself as having handled the swipe
(gestureWasHandled) and disables the scroll view for the duration of the panning
event. This gives the child complete control over the ongoing pan gesture without
the scroll view reacting to further touch movement.

 Recipe 1-12 Dragging Items Out of Scroll Views

 @implementation DragView

 #define DX(p1, p2) (p2.x - p1.x)
 #define DY(p1, p2) (p2.y - p1.y)

 const NSInteger kSwipeDragMin = 16;
 const NSInteger kDragLimitMax = 12;

 // Categorize swipe types
 typedef enum {
 TouchUnknown,
 TouchSwipeLeft,
 TouchSwipeRight,
 TouchSwipeUp,
 TouchSwipeDown,
 } SwipeTypes;

 @implementation PullView
 // Create a new view with an embedded pan gesture recognizer
 - (instancetype)initWithImage:(UIImage *)anImage
 {
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 UIPanGestureRecognizer *pan =
 [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(handlePan:)];
 pan.delegate = self;
 self.gestureRecognizers = @[pan];
 }

 // Allow simultaneous recognition
 - (BOOL)gestureRecognizer:(UIGestureRecognizer *)gestureRecognizer
 shouldRecognizeSimultaneouslyWithGestureRecognizer:
 (UIGestureRecognizer *)otherGestureRecognizer
 {
 return YES;
 }

39Recipe: Dragging from a Scroll View

 // Handle pans by detecting swipes
 - (void)handlePan:(UISwipeGestureRecognizer *)uigr
 {
 // Only deal with scroll view superviews
 if (![self.superview isKindOfClass:[UIScrollView class]]) return;

 // Extract superviews
 UIView *supersuper = self.superview.superview;
 UIScrollView *scrollView = (UIScrollView *) self.superview;

 // Calculate location of touch
 CGPoint touchLocation = [uigr locationInView:supersuper];

 // Handle touch based on recognizer state

 if(uigr.state == UIGestureRecognizerStateBegan)
 {
 // Initialize recognizer
 gestureWasHandled = NO;
 pointCount = 1;
 startPoint = touchLocation;
 }

 if(uigr.state == UIGestureRecognizerStateChanged)
 {
 pointCount++;

 // Calculate whether a swipe has occurred
 float dx = DX(touchLocation, startPoint);
 float dy = DY(touchLocation, startPoint);

 BOOL finished = YES;
 if ((dx > kSwipeDragMin) && (ABS(dy) < kDragLimitMax))
 touchtype = TouchSwipeLeft;
 else if ((-dx > kSwipeDragMin) && (ABS(dy) < kDragLimitMax))
 touchtype = TouchSwipeRight;
 else if ((dy > kSwipeDragMin) && (ABS(dx) < kDragLimitMax))
 touchtype = TouchSwipeUp;
 else if ((-dy > kSwipeDragMin) && (ABS(dx) < kDragLimitMax))
 touchtype = TouchSwipeDown;
 else
 finished = NO;

 // If unhandled and a downward swipe, produce a new draggable view
 if (!gestureWasHandled && finished &&
 (touchtype == TouchSwipeDown))
 {

40 Chapter 1 Gestures and Touches

 dragView = [[DragView alloc] initWithImage:self.image];
 dragView.center = touchLocation;
 [supersuper addSubview: dragView];
 scrollView.scrollEnabled = NO;
 gestureWasHandled = YES;
 }
 else if (gestureWasHandled)
 {
 // allow continued dragging after detection
 dragView.center = touchLocation;
 }
 }

 if(uigr.state == UIGestureRecognizerStateEnded)
 {
 // ensure that the scroll view returns to scrollable
 if (gestureWasHandled)
 scrollView.scrollEnabled = YES;
 }
 }
 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Live Touch Feedback

 Have you ever needed to record a demo for an iOS app? There’s always compromise involved.
Either you use an overhead camera and struggle with reflections and the user’s hand blocking
the screen or you use a tool like Reflection (http://reflectionapp.com) but you only get to see
what’s directly on the iOS device screen. These app recordings lack any indication of the user’s
touch and visual focus.

 Recipe 1-13 offers a simple set of classes (called TOUCHkit) that provide a live touch feedback
layer for demonstration use. With it, you can see both the screen that you’re recording and the
touches that create the interactions you’re trying to present. It provides a way to compile your
app for both normal and demonstration deployment. You don’t change your core application
to use it. It’s designed to work as a single toggle, providing builds for each use.

 To demonstrate this, the code shown in Recipe 1-13 is bundled in the sample code repository
with a standard Apple demo. This shows how you can roll the kit into nearly any standard
application.

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook
http://reflectionapp.com

41Recipe: Live Touch Feedback

 Enabling Touch Feedback

 You add touch feedback by switching on the TOUCHkit feature, without otherwise affecting
your normal code. To enable TOUCHkit, you set a single flag, compile, and use that build for
demonstration, complete with touch overlay. For App Store deployment, you disable the flag.
The application reverts to its normal behavior, and there are no App Store–unsafe calls to worry
about:

 #define USES_TOUCHkit 1

 This recipe assumes that you’re using a standard application with a single primary window.
When compiled in, the kit replaces that window with a custom class that captures and dupli-
cates all touches, allowing your application to show the user’s touch bubble feedback.

 There is one key code-level change you must make, but it’s a very small one. In your applica-
tion delegate class, you define a WINDOW_CLASS to use when building your iOS screen:

 #if USES_TOUCHkit
 #import "TOUCHkitView.h"
 #import "TOUCHOverlayWindow.h"
 #define WINDOW_CLASS TOUCHOverlayWindow
 #else
 #define WINDOW_CLASS UIWindow
 #endif

 Then, instead of declaring a UIWindow , you use whichever class has been set by the toggle:

 WINDOW_CLASS *window;
 window = [[WINDOW_CLASS alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];

 From here, you can set the window’s rootViewController as normal.

 Intercepting and Forwarding Touch Events

 The key to this overlay lies in intercepting touch events, creating a floating presentation above
your normal interface, and then forwarding those events on to your application. A TOUCHkit
view lies on top of your interface. The custom window class grabs user touch events and pres-
ents them as circles in the TOUCHkit view. It then forwards them as if the user were interacting
with a normal UIWindow . To accomplish this, this recipe uses event forwarding.

 Event forwarding is achieved by calling a secondary event handler. The TOUCHOverlayWindow
class overrides UIWindow ’s sendEvent: method to force touch drawing and then invokes its
superclass implementation to return control to the normal responder chain.

 The following implementation is drawn from Apple’s Event Handling Guide for iOS. It collects
all the touches associated with the current event, allowing Multi-Touch as well as single-touch
interactions; dispatches them to TOUCHkit view layer; and then redirects them to the window
via the normal UIWindow sendEvent: implementation:

42 Chapter 1 Gestures and Touches

 @implementation TOUCHOverlayWindow
 - (void)sendEvent:(UIEvent *)event
 {
 // Collect touches
 NSSet *touches = [event allTouches];
 NSMutableSet *began = nil;
 NSMutableSet *moved = nil;
 NSMutableSet *ended = nil;
 NSMutableSet *cancelled = nil;

 // Sort the touches by phase for event dispatch
 for(UITouch *touch in touches) {
 switch ([touch phase]) {
 case UITouchPhaseBegan:
 if (!began) began = [NSMutableSet set];
 [began addObject:touch];
 break;
 case UITouchPhaseMoved:
 if (!moved) moved = [NSMutableSet set];
 [moved addObject:touch];
 break;
 case UITouchPhaseEnded:
 if (!ended) ended = [NSMutableSet set];
 [ended addObject:touch];
 break;
 case UITouchPhaseCancelled:
 if (!cancelled) cancelled = [NSMutableSet set];
 [cancelled addObject:touch];
 break;
 default:
 break;
 }
 }

 // Create pseudo-event dispatch
 if (began)
 [[TOUCHkitView sharedInstance]
 touchesBegan:began withEvent:event];
 if (moved)
 [[TOUCHkitView sharedInstance]
 touchesMoved:moved withEvent:event];
 if (ended)
 [[TOUCHkitView sharedInstance]
 touchesEnded:ended withEvent:event];
 if (cancelled)
 [[TOUCHkitView sharedInstance]
 touchesCancelled:cancelled withEvent:event];

43Recipe: Live Touch Feedback

 // Call normal handler for default responder chain
 [super sendEvent: event];
 }
 @end

 Implementing the TOUCHkit Overlay View

 The TOUCHkit overlay is a single clear UIView singleton. It’s created the first time the appli-
cation requests its shared instance, and the call adds it to the application’s key window. The
overlay’s user interaction flag is disabled, allowing touches to continue past the overlay and on
through the responder chain, even after processing those touches through the standard began/
moved/ended/cancelled event callbacks.

 The touch processing events draw a circle at each touch point, creating a strong pointer to the
touches until that drawing is complete. Recipe 1-13 details the callback and drawing methods
that handle that functionality.

 Recipe 1-13 Creating a Touch Feedback Overlay View

 @implementation TOUCHkitView
 {
 NSSet *touches;
 UIImage *fingers;
 }

 + (instancetype)sharedInstance
 {
 // Create shared instance if it does not yet exist
 if(!sharedInstance)
 {
 sharedInstance = [[self alloc] initWithFrame:CGRectZero];
 }

 // Parent it to the key window
 if (!sharedInstance.superview)
 {
 UIWindow *keyWindow = [UIApplication sharedApplication].keyWindow;
 sharedInstance.frame = keyWindow.bounds;
 [keyWindow addSubview:sharedInstance];
 }

 return sharedInstance;
 }

 // You can override the default touchColor if you want
 - (instancetype)initWithFrame:(CGRect)frame

44 Chapter 1 Gestures and Touches

 {
 self = [super initWithFrame:frame];
 if (self)
 {
 self.backgroundColor = [UIColor clearColor];
 self.userInteractionEnabled = NO;
 self.multipleTouchEnabled = YES;
 touchColor =
 [[UIColor whiteColor] colorWithAlphaComponent:0.5f];
 touches = nil;
 }
 return self;
 }

 // Basic touches processing
 - (void)touchesBegan:(NSSet *)theTouches withEvent:(UIEvent *)event
 {
 touches = theTouches;
 [self setNeedsDisplay];
 }

 - (void)touchesMoved:(NSSet *)theTouches withEvent:(UIEvent *)event
 {
 touches = theTouches;
 [self setNeedsDisplay];
 }

 - (void)touchesEnded:(NSSet *)theTouches withEvent:(UIEvent *)event
 {
 touches = nil;
 [self setNeedsDisplay];
 }

 // Draw touches interactively
 - (void)drawRect:(CGRect)rect
 {
 // Clear
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextClearRect(context, self.bounds);

 // Fill see-through
 [[UIColor clearColor] set];
 CGContextFillRect(context, self.bounds);

 float size = 25.0f; // based on 44.0f standard touch point

 for (UITouch *touch in touches)

45Recipe: Adding Menus to Views

 {
 // Create a backing frame
 [[[UIColor darkGrayColor] colorWithAlphaComponent:0.5f] set];
 CGPoint aPoint = [touch locationInView:self];
 CGContextAddEllipseInRect(context,
 CGRectMake(aPoint.x - size, aPoint.y - size, 2 * size, 2 * size));
 CGContextFillPath(context);

 // Draw the foreground touch
 float dsize = 1.0f;
 [touchColor set];
 aPoint = [touch locationInView:self];
 CGContextAddEllipseInRect(context,
 CGRectMake(aPoint.x - size - dsize, aPoint.y - size - dsize,
 2 * (size - dsize), 2 * (size - dsize)));
 CGContextFillPath(context);
 }

 // Reset touches after use
 touches = nil;
 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

 Recipe: Adding Menus to Views

 The UIMenuController class allows you to add pop-up menus to any item that acts as a first
responder. Normally menus are used with text views and text fields, enabling users to select,
copy, and paste. Menus also provide a way to add actions to interactive elements like the small
drag views used throughout this chapter. Figure 1-6 shows a customized menu. In Recipe 1-14 ,
this menu is presented after long-tapping a flower. The actions will zoom, rotate, or hide the
associated drag view.

 This recipe demonstrates how to retrieve the shared menu controller and assign items to it.
Set the menu’s target rectangle (typically the bounds of the view that presents it), adjust the
menu’s arrow direction, and update the menu with your changes. The menu can now be set
to visible.

 Menu items work with standard target-action callbacks, but you do not assign the
target directly. Their target is always the first responder view. This recipe omits a
 canPerformAction:withSender: responder check, but you’ll want to add that if

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

46 Chapter 1 Gestures and Touches

some views support certain actions and other views do not. With menus, that support is often
tied to the state. For example, you don’t want to offer a copy command if the view has no
content to copy.

 Figure 1-6 Contextual pop-up menus allow you to add interactive actions to first responder
views.

 Recipe 1-14 Adding Menus to Interactive Views

 - (BOOL)canBecomeFirstResponder
 {
 // Menus only work with first responders
 return YES;
 }

 - (void)pressed:(UILongPressGestureRecognizer *)recognizer
 {
 if (![self becomeFirstResponder])
 {
 NSLog(@"Could not become first responder");

47Summary

 return;
 }

 UIMenuController *menu = [UIMenuController sharedMenuController];
 UIMenuItem *pop = [[UIMenuItem alloc]
 initWithTitle:@"Pop" action:@selector(popSelf)];
 UIMenuItem *rotate = [[UIMenuItem alloc]
 initWithTitle:@"Rotate" action:@selector(rotateSelf)];
 UIMenuItem *ghost = [[UIMenuItem alloc]
 initWithTitle:@"Ghost" action:@selector(ghostSelf)];
 [menu setMenuItems:@[pop, rotate, ghost]];

 [menu setTargetRect:self.bounds inView:self];
 menu.arrowDirection = UIMenuControllerArrowDown;
 [menu update];
 [menu setMenuVisible:YES];
 }

 - (instancetype)initWithImage:(UIImage *)anImage
 {
 self = [super initWithImage:anImage];
 if (self)
 {
 self.userInteractionEnabled = YES;
 UILongPressGestureRecognizer *pressRecognizer =
 [[UILongPressGestureRecognizer alloc] initWithTarget:self
 action:@selector(pressed:)];
 [self addGestureRecognizer:pressRecognizer];
 }
 return self;
 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
7-Cookbook and go to the folder for Chapter 1 .

 Summary

 UIView s and their underlying layers provide the onscreen components your users see. Touch
input lets users interact directly with views via the UITouch class and gesture recognizers. As
this chapter has shown, even in their most basic form, touch-based interfaces offer easy-to-
implement flexibility and power. You discovered how to move views around the screen and
how to bound that movement. You read about testing touches to see whether views should or

https://github.com/erica/iOS-7-Cookbook
https://github.com/erica/iOS-7-Cookbook

48 Chapter 1 Gestures and Touches

should not respond to them. You saw how to “paint” on a view and how to attach recognizers
to views to interpret and respond to gestures. Here’s a collection of thoughts about the recipes
in this chapter that you might want to ponder before moving on:

 ■ Be concrete. iOS devices have perfectly good touch screens. Why not let your users drag
items around the screen or trace lines with their fingers? It adds to the reality and the
platform’s interactive nature.

 ■ Users typically have five fingers per hand. iPads, in particular, offer a lot of screen real
estate. Don’t limit yourself to a one-finger interface when it makes sense to expand your
interaction into Multi-Touch territory, screen space allowing.

 ■ A solid grounding in Quartz graphics and Core Animation will be your friend. Using
 drawRect: , you can build any kind of custom UIView presentation you want, including
text, Bezier curves, scribbles, and so forth.

 ■ If Cocoa Touch doesn’t provide the kind of specialized gesture recognizer you’re looking
for, write your own. It’s not that hard, although it helps to be as thorough as possible
when considering the states your custom recognizer might pass through.

 ■ Use Multi-Touch whenever possible, especially when you can expand your application
to invite more than one user to touch the screen at a time. Don’t limit yourself to one-
person, one-touch interactions when a little extra programming will open doors of
opportunity for multiuser use.

 ■ Explore! This chapter only touches lightly on the ways you can use direct manipulation
in your applications. Use this material as a jumping-off point to explore the full
vocabulary of the UITouch class.

This page intentionally left blank

 A
 acceleration

 monitoring, 566 - 568

 moving onscreen objects, 571 - 575

 accelerometer, calculating, orientation,

 569 - 570

 accelerometer-based scroll view, 575 - 578

 accessibility, 591 - 592

 broadcasting, updates, 599

 Dynamic Type, 601 - 604

 enabling, 593 - 594

 hints, 596

 IB, 592

 labels, 595 - 596

 speech synthesis, 600 - 601

 testing

 on iOS, 599 - 601

 with simulators, 597 - 598

 traits, 594 - 595

 Accessibility Inspector, 597 - 598

 accessibilityFrame, 592

 accessibilityHint, 592

 accessibilityLabel, 592

 accessibilityLabel property, 595

 accessibilityPath, 592

 accessibilityTraits, 592

 accessibilityValue, 592

Index

 accessing

 basic device information, 555 - 556

 sensor data, 566

 system pasteboards, 451 - 452

 accessory views, 363 - 364

 accessoryType property, 363

 accumulating, user tracings for composite

drawings, 27 - 29

 action rows, adding to tables, 390 - 394

 action sheets, 112

 displaying, text, 114 - 115

 values, 113

 actions, connecting, to buttons, 55

 activating, refresh controls, 388

 activities

 activity view controller, 469-470

 excluding, 470

 activity item sources, 462

 activity view controller, 460 - 461

 activity item sources, 462

 adding services, 464 - 465

 code, 463 - 464

 excluding activities, 470

 item providers, 462

 item source callbacks, 462 - 463

 items and activities, 469-470

 presenting, 461

 activityImage, 465

 activityTitle, 465

612 activityType

 activityType, 465

 activityViewController, 465

 adapting, table edits to Core Data,

 510 - 514

 adding

 action rows, to tables, 390 - 394

 animated elements, to buttons, 59

 cells to tables, 369

 child view controllers, 304

 custom buttons to keyboards, 229 - 230

 custom input views to nontext views,
 243

 custom selection traits, to table view
cells, 361 - 362

 data, Core Data, 495 - 496

 device capability restrictions, 556 - 557

 display links, 583

 edits to Core Data table views, 508 ,
 510 - 514

 undo/redo support, 508 - 509

 undo transactions, 509 - 510

 efficiency to sliders, 64

 extra state to buttons, 59 - 60

 gestures to layout, collection views,
 431 - 433

 handler method, URL-based services,
 488

 input clicks, 243

 keyboard input to nontext views,
 241 - 243

 menus, to views, 45 - 47

 motion effects, 85

 page indicator controls, 92

 pan gesture recognizers, 7 - 9

 persistence to text views, 246 - 248

 photos to simulators, 319

 pull-to-refresh to tables, 387 - 390

 services, activity view controller,
 464 - 465

 simple direct manipulation interfaces,
 5 - 7

 sliders, 62 - 67

 subviews, 141

 undo support

 table edits, 367

 to text views, 246 - 248

 adjusting

 sizes, frames, 151 - 152

 views, around keyboards, 230 - 234

 advertisingIdentifier, 588

 alert indicators, 128 - 129

 badging applications, 129

 alert sounds, 131

 alert views, variadic arguments, 110 - 111

 alerts, 101

 audio alerts, 129 , 131

 delays, 131

 disposing of system sounds, 132

 system sounds, 129 - 130

 vibration, 130 - 131

 blocks, 105 - 107

 blocks-based alerts, creating, 108 - 110

 custom modal alert view, 119 - 120

 frosted glass effect, 120 - 124

 delegates, 103 - 104

 displaying, 104 - 105

 kinds of alerts, 104 - 105

 lists of options, 112 - 114

 local notifications, 126 - 127

 best practices, 127 - 128

 modal progress overlays, 117 - 119

 popovers, 124 - 126

 simple alerts, building, 101 - 102

 tappable overlays, 119

 variadic arguments, 110 - 111

613background transfers

 alerts, audio alert modules for system

frameworks, 130

 alertViewStyle property, 104

 aligning views and flexible sizing with con-

straints, 198

 alignment rectangles, 185 - 186

 declaring, 186

 allowsEditing property, 336

 Alpha property, 167 - 168

 animated elements, adding to buttons, 59

 animating

 button responses, 60 - 62

 constraints, 203

 animation

 creation and deletion animation, col-
lection views, 426

 image view animations, 176

 key frame animations, 174 - 175

 UIView animations, 165 - 166

 building with blocks, 166 - 167

 animation blocks, adding to controls

(UIView), 60 - 61

 annotation, document interaction control-

ler, 476

 Apple, checking network status, 521

 application activities, code, 466 - 469

 array literals, 608

 ASIdentifierManager, 588

 aspect ratio, 210 - 211

 assets library module, image picker con-

trollers, 319 - 320

 assigning

 data sources, tables, 354

 delegates, 356

 attitude, devices, 578 - 579

 attributed text, enabling, 249

 attributes

 constraints, 180 - 181

 controlling, 249

 controls and, 69 - 70

 Core Data, 493

 audio alerts, 129 , 131

 delays, 131

 disposing of system sounds, 132

 modules for system frameworks, 130

 system sounds, 129 - 130

 vibration, 130 - 131

 Audio Services, 131

 playing sounds, alerts, and vibrations,
 132 - 133

 Audio Toolbox framework, 130

 Auto Layout, 179

 alignment rectangles, 185 - 186

 constraint processing, 198 - 199

 constraints, 183

 Auto Layout system, 151

 autocapitalizationType, 225

 autocorrectionType, 225

 autoresizesSubviews property, 151

 autoresizing constraints, disabling,

 204 - 205

 autoresizingMask property, 152

 AV Foundation

 Core Media and, 337 - 338

 video, trimming, 338 - 339

 B
 back buttons, navigation item class, 271

 background transfers, 543 - 544

 testing, 544 - 545

 web services, 546

 converting XML into trees,
 549 - 551

 JSON serialization, 546 - 548

614 badging applications

 badging applications, 129

 bar buttons, navigation controllers, 269

 basic constraint declarations, creating, 187

 battery state, monitoring, 560 - 562

 beginTrackingWithTouch:withEvent:, 73

 Bezier paths, creating smooth with

Catmull-Rom splining, 23 - 25

 bitmap alpha levels, testing, touches

against, 18 - 19

 bitmaps, testing against, 17 - 19

 blocks

 alerts, 105 - 107

 creating blocks-based alerts,
 108 - 110

 building animations, 166 - 167

 retain cycles, 107 - 108

 blocks-based alerts, 108 - 110

 book properties, page view controllers,

 294 - 295

 border style, 227

 bottomLayoutGuide, 270

 bouncing, views, 172 - 174

 bounds, 152

 boxed expressions, 606

 enums, 607

 broadcasting, updates, accessibility, 599

 built-in type detectors, 257

 button responses, animating, 60 - 62

 buttons, 53 - 54

 adding, to keyboards, 229 - 230

 animating button responses, 60 - 62

 building, 56 - 60

 adding animated elements, 59

 adding extra state to buttons,
 59 - 60

 buttons that toggle on and off,
 57 - 58

 multiline button text, 59

 connecting to actions, 55

 Interface Builder, 55

 C
 calculating

 orientation, from accelerometer,
 569 - 570

 relative angle, 570 - 571

 callbacks, views, 142

 cameras, UIImagePickerController class,

 328

 Cancel button, 114

 cancelTrackingWithEvent:, 73

 canPerformWithActivityItems, 465

 caret symbols, 106

 Catmull-Rom, 22 - 23

 creating smoothed Bezier paths using
Catmull-Rom splining, 23 - 25

 cell classes, registering, 355

 cells, 354

 adding to tables, 369

 checked table cells, creating, 362 - 364

 custom cells, collection views, 416 - 417

 dequeuing, 355 - 356

 registering for search display control-
lers, 383

 reordering, 369

 returning in sections, 376 - 377

 swiping, 369

 table view cells, 360

 adding custom selection traits,
 361 - 362

 selection style, 361

 tables, 354

 centering views, constraints, 209 - 210

 centers, frames, 153

 CFBundleURLTypes, 487

615code

 code

 accessory views and stored state,
 363 - 364

 accumulating user tracings for a com-
posite drawing, 27 - 29

 activity view controller, 463 - 464

 adapting table edits to Core Data,
 510 - 514

 adding action drawers to tables,
 392 - 394

 adding custom buttons to keyboards,
 229 - 230

 adding gestures to collection view lay-
outs, 432 - 433

 adding keyboard input to nontext
views, 241 - 243

 adding menus to interactive views,
 46 - 47

 adding motion effects, 85

 adding UIViewAnimation blocks to
controls, 60 - 61

 adding undo support and persistence
to text views, 246 - 248

 adding universal support for split view
alternatives, 284 - 285

 animating transitions with Core
Animation, 172

 animating transparency changes to a
view's alpha property, 167 - 168

 application activities, 466 - 469

 automatically copying text to the
pasteboard, 454

 background transfers, 545

 basic collection view controller with
flow layout, 412 - 416

 basic navigation drilling, 272 - 273

 basic popovers, 125 - 126

 basic size constraints, 207 - 208

 bouncing views, 172 - 174

 building a basic table, 358 - 360

 CGAffineTransform, 159

 CGPoint, 148

 CGRect, 147

 CGRectApplyAffineTransform, 148

 CGRectDivide(), 148

 CGRectEqualToRect, 148

 CGRectFromString(aString), 147

 CGRectGetMidX, 147

 CGRectInset(aRect, xinset, yinset), 147

 CGRectIntersectsRect, 148

 CGRectOffset, 147

 CGRects, 148

 frames, 153

 CGRectZero, 148

 CGSize, 148

 checked table cells, creating, 362 - 364

 checking

 for available disk space, 588

 network status, 521 - 524

 chevrons, 364

 child view controllers, adding/removing,

 304

 circle layout, collection views, 425 - 426

 creation and deletion animation, 426

 powering, 426 - 427

 circles

 detecting, 29 - 34

 laying out views in, 428 - 431

 circular hit tests, 17

 Clang specification, number literals, 606

 classes, gesture recognizer subclasses,

 35 - 36

 clear button, 227

 clipsToBounds flag, 152

616 code

 building a custom color control, 74 - 76

 building a discrete-valued star slider,
 76 - 79

 building a draggable ribbon control,
 86 - 88

 building a pull-to-refresh into your
tables, 390

 building a sectioned table with Core
Data, 503 - 505

 building a touch wheel control, 80 - 82

 building a UIButton that toggles on
and off, 57 - 58

 building detail and master view for a
split view controller, 280 - 283

 building dynamic slider thumbs, 64 - 67

 centering views with constraints,
 209 - 210

 combining multiple view changes in
animation blocks, 168 - 169

 comparing constraints, 202 - 203

 constrained movement, 15

 constraint macros, 219 - 221

 Core Data collection view, 516 - 519

 creating a custom input controller for a
nontext view, 244 - 245

 creating a custom input view, 238 - 240

 creating a custom view controller
segue, 311 - 314

 creating a dedicated keyboard spacer,
 233 - 234

 creating a draggable view, 6 - 7

 creating a gesture recognizer subclass,
 35 - 36

 creating a lock control, 89 - 91

 creating a page view controller wrap-
per, 298 - 303

 creating a segmented control subclass
that responds to a second tap, 70

 creating a tab bar view controller,
 287 - 290

 creating a touch feedback overlay view,
 43 - 45

 creating a view controller container,
 306 - 308

 creating aspect ratio constraints,
 210 - 211

 creating blocks-based alerts, 108 - 110

 creating smoothed Bezier paths using
Catmull-Rom splining, 23 - 25

 creating the illusion of a repeating cyl-
inder, 398 - 400

 creating toolbars in code, 97 - 98

 custom alert, 121 - 124

 custom collection view cell menus,
 441 - 442

 custom collection view cells, 417

 customizing the target content offset,
 424 - 425

 describing constraints, 216 - 218

 detecting circles, 31 - 33

 detecting text patterns using predicates
and regular expressions, 258 - 259

 to-do list view hierarchy, 137

 document interaction controllers,
 477 - 480

 downloads with feedback, 535 - 542

 dragging items out of scroll views,
 38 - 40

 editing tables, 370 - 373

 enhanced text editor, 251 - 252

 extending device information gather-
ing, 563 - 564

 extracting a view hierarchy tree, 138

 grid layout customization, 434 - 439

 handling acceleration events, 567 - 568

 handling incoming documents,
 483 - 486

 horizontal scroller collection view,
 419 - 421

 image gallery viewer, 94 - 95

617code

 storing tab state to user defaults,
 291 - 293

 subview utility functions, 140 - 141

 supporting a table with sections,
 379 - 380

 testing conformance, 450 - 451

 testing a network connection, 523 - 524

 testing touches against bitmap alpha
levels, 18 - 19

 tilt scroller, 576 - 578

 touch-based painting in a UIView,
 21 - 22

 trimming video with AV Foundation,
 338 - 339

 UIViewFrame geometry category,
 154 - 157

 updating view constraints, 213 - 214

 using a kqueue file monitor, 458 - 460

 using a pan gesture recognizer to drag
views, 8 - 9

 using a variadic method for
UIAlertView creation, 111

 using device motion updates to fix an
image in space, 578 - 579

 using fetch requests with predicates,
 505 - 508

 using search features, 386 - 387

 using the done key to dismiss a text
field keyboard, 227 - 228

 using the video editor controller,
 340 - 341

 using transitions with UIView anima-
tions, 170

 using UIImageView animation, 176

 utilizing text-to-speech in iOS 7,
 601 - 602

 video playback, 335 - 336

 VIDEOkit, 584 - 587

 XMLParser helper class, 552 - 553

 interactive layout effects, 423 - 424

 JSON data, 547 - 548

 key frame animation, 175

 laying out views in a circle, 428 - 431

 monitoring connectivity changes,
 525 - 526

 monitoring proximity and battery,
 561 - 562

 naming views, 145

 playing sounds, alerts, and vibrations
using audio services, 132 - 133

 posting social updates, 348 - 349

 presenting and dismissing a modal
controller, 276 - 278

 presenting and hiding a custom alert
overlay, 118 - 119

 programmatically updating accessibility
information, 592

 providing a circular hit test, 17

 providing URL scheme support,
 488 - 489

 pull controls, testing touches, 85 - 88

 quick look, 472 - 473

 recognizing gestures in parallel, 10 - 12

 recording video, 332 - 333

 recovering file system size and file sys-
tem free size, 588

 retrieving transform values, 160 - 164

 scheduling local notifications, 127 - 128

 searching for misspellings, 260 - 261

 selecting images, 323 - 326

 sending images by e-mail, 343 - 344

 sending texts, 345 - 346

 simple downloads, 530 - 533

 sliding an onscreen object based on
accelerometer feedback, 573 - 575

 snapping pictures, 329 - 330

 spell checker protocol, 261

618 collection views

 collection views, 403 , 405 - 406

 adding gestures to layout, 431 - 433

 circle layout, 425 - 426

 creation and deletion animation,
 426

 powering, 426 - 427

 controllers, 406

 Core Data, 514 - 519

 custom cells, 416 - 417

 data sources, 407

 delegates, 407

 flow layouts, 407 , 412 - 416

 header and footer sizing, 410

 insets, 410

 item size and line spacing, 408

 scroll direction, 407

 grid layouts, creating, 433 - 439

 interactive layout effects, 422 - 424

 item menus, 440 - 442

 scroll snapping, 424 - 425

 scrolling horizontal lists, 418 - 421

 versus tables, 403 - 405

 views, 406 - 407

 colorWithPatternImage: method, 165

 common keys, 559

 common types, storing, on pasteboards,

 452 - 453

 comparing constraints, 201 - 203

 composite drawings, accumulating user

tracings, 27 - 29

 composition view controller, 347 - 349

 compression resistance, 185

 configurations, URL Loading System, 527

 conformance, testing, 450 - 451

 conformance lists, retrieving, 449 - 451

 conformance trees, UTIs (Uniform Type

Identifiers), 446

 connecting buttons, to actions, 55

 connections, format strings, 191 - 193

 connectivity changes

 monitoring, 525 - 526

 scanning for, 524 - 526

 constrained movement, code, 15

 constraining

 movement, 14 - 15

 sizes, constraints, 206

 constrainPosition:, 206

 constraint multipliers, 210

 constraints, 179 - 180

 aligning views and flexible sizing, 198

 animating, 203

 aspect ratio, 210 - 211

 attributes, 180 - 181

 Auto Layout, 183

 centering views, 209 - 210

 comparing, 201 - 203

 constraining size, 206

 creating, 186

 basic constraint declarations, 187

 fixed-size constrained views, 204

 variable bindings, 188 - 189

 visual format constraints, 187 - 188

 debugging, 214 - 215

 describing, 215 - 218

 disabling autoresizing constraints,
 204 - 205

 fixed-size constrained views, 206 - 208

 format strings, 189 , 196 - 197

 connections, 191 - 193

 orientation, 189 - 191

 frames, 184

 alignment rectangles, 185 - 186

 intrinsic content size, 184 - 185

 laws of, 182 - 184

 macros, 218 - 221

 managing, 199 - 201

619Core Animation transitions

 navigation controllers. See navigation
controllers

 Quick Look preview controller. See
Quick Look preview controller

 Social framework, 347 - 349

 video editor controller, 340 - 341

 controlling attributes, 249

 controls

 attributes and, 69 - 70

 building, custom color controls, 74 - 76

 buttons. See buttons

 creating, UIControl class, 73

 custom lock controls, building, 88 - 92

 draggable ribbon controls, building,
 86 - 88

 image picker controllers, selecting
images, 323 - 326

 lock controls, creating, 89 - 91

 motion effects, adding, 85

 page indicator controls, adding, 92

 pull controls

 creating, 83

 discoverability, 84 - 85

 sliders, adding, 62 - 67

 star sliders, building, 76 - 79

 steppers, 70 - 72

 switches, 70 - 72

 touch wheels, building, 79 - 82

 twice-tappable segmented controls, cre-
ating, 67 - 70

 UIControl class, 49 - 50

 control events, 51 - 53

 target-actions, 49 - 50

 converting XML into trees, 549 - 551

 coordinate systems, view geometry,

 149 - 150

 copying text to pasteboards, 454

 Core Animation transitions, 170 - 172

 math, 181

 orientation changes, 212 - 214

 predicates, 194 - 195

 metrics, 195 - 196

 priorities, 196

 view-to-view predicates, 196

 priorities, 182

 processing, 198 - 199

 starting within view bounds, 205

 updating, 213 - 214

 Contact Add button, 54

 container literals, 607 - 608

 containers, custom containers, 303

 adding/removing child view control-
lers, 304

 content hugging, 185

 contentMode property, 152

 contentViewController property, 266

 contexts, creating (Core Data), 494 - 495

 continueTrackingWithTouch:withEvent:, 73

 control events, UIControl class, 51 - 53

 controllers

 activity view controller. See activity
view controller

 collection views, 406

 composition view controller, 347 - 349

 document interaction controller. See
document interaction controller

 image picker controllers

 adding photos to simulators, 319

 assets library module, 319 - 320

 delegate callbacks, 321 - 322

 image sources, 317 - 318

 iPhone/iPad, 318

 presenting pickers, 320 - 321

 Media Player, 333 - 336

 Message UI framework, 341 - 344

620 Core Data

 Core Data, 491

 adding data, 495 - 496

 adding edits to table views, 508 ,
 510 - 514

 undo/redo support, 508 - 509

 undo transactions, 509 - 510

 collection views, 514 - 519

 contexts, creating, 494 - 495

 entities, 492

 attributes and relationships, 493

 building model files, 492 - 493

 building object classes, 494

 examining, data files, 497 - 498

 model files, building, 492 - 493

 models, 492

 querying database, 498

 fetch requests, 499

 removing, objects, 500 - 501

 search tables, 505 - 508

 table data sources, 501

 index path access, 501

 index titles, 502

 section groups, 502

 section key paths, 502

 table readiness, 502 - 503

 Core Data querying database, performing

fetch requests, 499 - 500

 Core Graphics, 62 - 64

 Core Media, AV Foundation, 337 - 338

 Core Motion, 565

 monitoring accelerometer, 566

 testing, sensors, 565 - 566

 counting sections and rows, 375 - 376

 creation animation, circle layout (collection

views), 426

 curls, modal presentations, 274

 current context style, 275

 custom accessory views, dismissing text

views, 228 - 230

 custom alert overlays, 118 - 119

 custom buttons, adding to keyboards,

 229 - 230

 custom cells, collection views, 416 - 417

 custom color controls, building, 74 - 76

 custom containers, 303

 adding/removing child view control-
lers, 304

 custom document types, creating, 481 - 482

 custom gesture recognizers, creating,

 34 - 36

 custom group tables, 395

 custom input view, creating, 235 - 240

 custom input views to nontext views, add-

ing to nontext views, 243

 custom lock controls, building, 88 - 92

 custom modal alert view, 119 - 120

 frosted glass effect, 120 - 124

 custom modal information view, 275 - 278

 custom presentation style, 275

 custom selection traits, adding to table

view cells, 361 - 362

 custom view controller segues, creating,

 311 - 314

 customizing

 grids, collection views, 434 - 439

 headers and footers, sections, 377 - 378

 sliders, 62 - 64

 target content offsets, collection views,
 424 - 425

 D
 data

 adding (Core Data), 495 - 496

 retrieving from system pasteboards, 453

 storing on pasteboards, 452

621devices

 describing constraints, 215 - 218

 Deselect button, 356

 Detail Disclosure button, 53

 detail views, split view controllers, 280 - 283

 DetailViewController class, 280

 detecting

 circles, 29 - 34

 misspelling in UITextView, 260 - 261

 retina support, 562 - 563

 screens, 582

 shakes, using motion events, 579 - 581

 text patterns, 255

 built-in type detectors, 257

 data detectors, 257

 enumerating regular expressions,
 256 - 257

 expressions, 255 - 256

 predicates and regular expressions,
 258 - 259

 device capability restrictions, adding,

 556 - 557

 device information

 accessing, 555 - 556

 recovering, 563 - 564

 devices

 accelerometer-based scroll view,
 575 - 578

 attitude, 578 - 579

 battery state, 560 - 562

 calculating relative angle, 570 - 571

 checking for available disk space, 588

 common keys, 559

 detecting

 retina support, 562 - 563

 screens, 582

 external screens, 581

 adding display links, 583

 overscanning compensation, 583

 data detectors, 257

 built-in type detectors, 257

 data files, examining (Core Data), 497 - 498

 data source methods

 multiwheel tables, 397

 tables, 357 - 358

 data sources

 assigning to tables, 354

 collection views, 407

 tables, 352

 databases (Core Data), querying, 498

 fetch requests, 499 - 500

 dataSource property, 354

 date pickers, creating, 400

 debugging constraints, 214 - 215

 declaring

 alignment rectangles, 186

 document support, 480 - 481

 creating custom document types,
 481 - 482

 schemes, URL-based services, 487

 delays, audio alerts, 131

 delegate callbacks, image picker control-

lers, 321 - 322

 delegate methods

 multiwheel tables, 397

 searching tables, 385

 delegates, 352

 alerts, 103 - 104

 assigning, 356

 collection views, 407

 sections, 379

 table views, 352 - 353

 delete requests, table edits, 369

 deletion animation, circle layout (collection

views), 426

 dequeuing cells, 355 - 356

622 devices

 retrieving screen resolutions, 582

 video out, 583

 VIDEOkit, 584 - 587

 moving onscreen objects, with accel-
eration, 571 - 575

 orientation, 568 - 569

 proximity sensors, 559 - 560

 required device capabilities, 557-558

 tracking, users, 587 - 588

 user permissions, 558

 diacritics, 381

 didAddSubview:, 142

 didMoveToSuperview:, 142

 didMoveToWindow, 142

 direct manipulation

 adding interfaces, 5 - 7

 multiple gesture recognizers, using
simultaneously, 9 - 13

 pan gesture recognizers, adding, 7 - 9

 touches, 1 - 2

 drawing onscreen, 20 - 22

 gesture recognizers, 4 - 5

 Multi-Touch, 4 , 26 - 29

 phases, 2 - 3

 responder methods, 3 - 4

 testing, 15 - 17

 views, 4

 disabling autoresizing constraints, 204 - 205

 disclosure accessories, table views,

 364 - 366

 discoverability, pull controls, 84 - 85

 disk space, checking for available disk

space, 588

 dismissing

 text views with custom accessory views,
 228 - 230

 UITextField keyboard, 224 - 225

 text trait properties, 225 - 228

 dispatching events, UIControl class, 73 - 74

 display links, adding, 583

 display traits, 164 - 165

 displaying

 alerts, 104 - 105

 images, image picker controllers, 328

 remove controls, table edits, 368

 text, in action sheets, 114 - 115

 disposing of system sounds, 132

 document interaction controller, 473 - 474

 checking, for open menu, 476 - 477

 code for, 477 - 480

 creating instances, 475

 properties, 475 - 476

 providing Quick Look support, 476

 document support

 declaring, 480 - 481

 creating custom document types,
 481 - 482

 implementing, 483

 document types, creating, 481 - 482

 documents

 document interaction controller. See
document interaction controller

 handling incoming, 483 - 486

 Quick Look preview controller. See
Quick Look preview controller

 scanning for, 456 - 457

 Documents folder, monitoring, 454 - 455

 file sharing, 455

 scanning for new documents, 456 - 457

 user control, 455 - 456

 Xcode, 456

 double-tap gesture, 440

 doubleSided property, 294

623flexible sizing

 excluding activities, 470

 exclusive touch, views, 4

 expressions

 detecting text patterns, 255 - 256

 enumerating, 256 - 257

 regular expressions, resources for, 258

 extensions, UTIs (Uniform Type Identifiers),

 447 - 448

 external screens, 581

 adding display links, 583

 detecting, 582

 overscanning compensation, 583

 retrieving, screen resolutions, 582

 video out, 583

 VIDEOkit, 584 - 587

 extracting view hierarchy trees, 138

 F
 fades, modal presentations, 274

 fading in and out, views, 167 - 168

 feature tests, 609

 feedback

 downloads, 533 - 542

 second-tap feedback, 68

 fetch requests

 Core Data, 499

 performing, Core Data, 499 - 500

 predicates, 505 - 508

 file sharing

 Documents folder, 455

 Xcode, 456

 filtering, text entry, 252 - 255

 finding views with tags, 143

 fixed-size constrained views, 206 - 208

 creating, 204

 flexible sizing, aligning with constraints,

 198

 downloads

 with feedback, 533 - 542

 running, 543

 simple downloads, 528 - 533

 draggable ribbon controls, building, 86 - 88

 draggable views, creating, 6 - 7

 dragging, from scroll view, 37 - 40

 DragView, 6

 drawing touches, onscreen, 20 - 22

 drawings

 composite drawings, accumulating user
tracings, 27 - 29

 smoothing, 22 - 25

 dynamic sliders, building, 64 - 67

 Dynamic Type, 602 - 604

 Dynamics, 120

 E
 e-mailing pictures, Message UI framework,

 341 - 344

 edge-to-edge layout, navigation controllers,

 269 - 271

 editing video, 336 - 341

 efficiency, adding to sliders, 64

 enablesReturnKeyAutomatically, 226

 endTrackingWithTouch:withEvent:, 73

 entities, Core Data, 492

 attributes and relationships, 493

 building model files, 492 - 493

 building object classes, 494

 Entity editor, 493

 enumerating regular expressions, 256 - 257

 enums, 607

 establishMotionManager, 572

 events, dispatching (UIControl class), 73 - 74

 examining, data files (Core Data), 497 - 498

 exceptions, 608

624 flipping

 flipping, views, 169 - 170

 flips, modal presentations, 274

 flow layouts, collection views, 407 ,

 412 - 416

 header and footer sizing, 410

 insets, 410

 item size and line spacing, 408

 scroll direction, 407

 footer sizing, flow layouts (collection views),

 410

 footers, customizing in sections, 377 - 378

 form sheet style, 275

 format strings, 189 , 196 - 198

 connections, 191 - 193

 orientation, 189 - 191

 forwarding touch events, 41 - 43

 frames

 constraints, 184

 alignment rectangles, 185 - 186

 intrinsic content size, 184 - 185

 view geometry, 147

 views, 150 - 151

 centers, 153

 CGRects, 153

 frames views, adjusting sizes, 151 - 152

 frosted glass effect, 120 - 124

 full-screen presentation, 274

 G
 geometry, views, 146 , 154 - 157

 coordinate systems, 149 - 150

 frames, 147

 points and sizes, 148

 rectangle utility functions, 147 - 148

 transforms, 149

 gesture recognizer subclasses, creating,

 35 - 36

 gesture recognizers, 4 - 5

 creating custom, 34 - 36

 using multiple gesture recognizers
simultaneously, 9 - 13

 gestures

 adding to layout, collection views,
 431 - 433

 double-tap gesture, 440

 recognizing in parallel, 10 - 12

 resolving conflicts, 13

 VoiceOver, 600-601

 GitHub, xx

 gray disclosure indicators, 366

 grid layouts, collection views, 433 - 439

 grids, customizing (collection views),

 434 - 439

 grouped preferences tables, creating,

 395 - 396

 GUIs, navigation controllers, 266

 H
 handlePan: method, 8

 handler method, adding to URL-based ser-

vices, 488

 Hartstein, Greg, 428

 header sizing, flow layouts (collection

views), 410

 header titles, sections, 377

 headers, customizing in sections, 377 - 378

 hierarchies

 view hierarchy trees, recovering,
 137 - 139

 views, 135 - 137

 HIG (Human Interface Guidelines), 53

 hints, accessibility, 596

 Hollemans, Matthijs, 84

 horizontal lists, scrolling (collection views),

 418 - 421

625interactive layout effects

 implementing

 document support, 483

 page view controllers, 295 - 296

 Quick Look preview controller, 471 - 472

 tables, 356

 data source methods, 357 - 358

 responding to user touches, 358

 TOUCHkit overlay view, 43

 undo, table edits, 367

 Inbox (iTunes), 456

 incoming, documents, handling, 483 - 486

 index path access, Core Data (table data

sources), 501

 index titles, Core Data (table data sources),

 502

 indexes

 presentation indexes, page view con-
trollers, 297 - 298

 search-aware index, 385 - 386

 indicators

 alert indicators, 128 - 129

 badging applications, 129

 showing progress, 115

 Info Dark button, 53

 Info Light button, 53

 inheritance, UTIs (Uniform Type Identifiers),

 446

 input clicks, adding, 243

 inputView property, 235

 insertSubview:aboveSubview:, 141

 insertSubview:atIndex:, 141

 insertSubview:belowSubview:, 141

 insets, flow layouts, collection views, 410

 instances, creating for document interac-

tion controllers, 475

 interaction traits, 164 - 165

 interactive layout effects, collection views,

 422 - 424

 Hosgrove, Alex, 37

 Human Interface Guidelines (HIG), 53

 I
 IB (Interface Builder)

 accessibility, 592

 segues, 314

 IB Identity Inspector, accessibility, 592

 icons, document interaction controller, 475

 identifierForVendor property, 588

 image gallery viewer, 93 - 95

 image picker controllers, 317

 adding photos to simulators, 319

 assets library module, 319 - 320

 delegate callbacks, 321 - 322

 displaying images, 328

 image sources, 317 - 318

 iPhone/iPad, 318

 presenting pickers, 320 - 321

 recording video, 331 - 333

 saving images, 329

 selecting images, 323 - 326

 snapping photos, 326 - 330

 video

 editing, 336 - 339

 picking and editing, 339 - 341

 recording, 332 - 333

 saving, 332

 image sources, image picker controllers,

 317 - 318

 image view animations, 176

 imageData, 514

 images

 displaying, image picker controllers,
 328

 saving, image picker controllers, 329

 selecting, image picker controllers,
 323 - 326

626 intercepting touch events

 intercepting touch events, 41 - 43

 Interface Builder, 355

 buttons, 55

 naming views, 144 - 145

 interfaces, adding simple direct manipula-

tion interfaces, 5 - 7

 internationalizing applications, constraint

attributes, 180

 intrinsic content size, frames, constraints,

 184 - 185

 iOS tables, 351 - 352

 testing accessibility, 599 - 601

 iPad, image picker controllers, 318

 iPhone, image picker controllers, 318

 iPhone-style navigation controllers, 267

 item menus, collection views, 440 - 442

 item providers, activity view controller, 462

 item size, flow layouts, collection views,

 408

 item source callbacks, activity view control-

ler, 462 - 463

 items, activity view controller, 469-470

 J-K
 JSON serialization, 546 - 548

 key frame animations, views, 174 - 175

 keyboard dismissal, preventing, 225

 keyboardAppearance, 226

 keyboards

 adding custom buttons to, 229 - 230

 adding input to nontext views, 241 - 243

 adjusting views, 230 - 234

 creating dedicated keyboard spacers,
 233 - 234

 keyboardType, 226

 kqueue file monitor, 458 - 460

 kSCNetworkReachabilityFlagsConnection-

OnTraffic, 522

 kSCNetworkReachabilityFlagsIsDirect, 522

 kSCNetworkReachabilityFlagsIsWWAN, 522

 kUTTypeConformsToKey, 449

 kUTTypeDescriptionKey, 449

 kUTTypeIdentifierKey, 449

 kUTTypeTagSpecificationKey, 449

 L
 labels, accessibility, 595 - 596

 laws of constraints, 182 - 184

 laying out views in circles, 428 - 431

 line spacing, flow layouts (collection views),

 408

 List Items, 465

 lists of options, alerts, 112 - 114

 literals, 605

 array literals, 608

 boxed expressions, 606

 enums, 607

 container literals, 607 - 608

 feature tests, 609

 number literals, 605 - 606

 subscripting, 608

 local notifications, 126 - 127

 best practices, 127 - 128

 scheduling, 127 - 128

 lock controls, creating, 89 - 91

 long presses, 5

 M
 macros

 constraints, 218 - 221

 navigation item class, 272

 managing, constraints, 199 - 201

 master view controller, 280

 master views, split view controllers,

 280 - 283

627naming views

 Model-View-Controller (MVC), 352

 models, Core Data, 492

 modules for system frameworks, audio

alerts, 130

 monitoring

 acceleration, 566 - 568

 battery state, 560 - 562

 connectivity changes, 525 - 526

 Documents folder, 454 - 455

 file sharing, 455

 scanning for new documents,
 456 - 457

 user control, 455 - 456

 Xcode, 456

 motion effects, adding, 85

 motion events, detecting shakes, 579 - 581

 movement, constraining, 14 - 15

 moving

 onscreen objects with acceleration,
 571 - 575

 UTIs (Uniform Type Identifiers) to
extensions or MIME types, 447 - 448

 Multi-Touch, 4 , 26 - 29

 multiline button text, 59

 multiple gesture recognizers, using simulta-

neously, 9 - 13

 multiwheel tables, 396 - 397

 data source and delegate methods, 397

 picker views, 397 - 398

 UIPickerView, 397

 MVC (Model-View-Controller), 352 , 491

 myView.alpha property, 164

 N
 name, 556

 document interaction controller, 475

 naming views

 in Interface Builder, 144 - 145

 by object association, 143 - 144

 math, constraints, 181

 Media Player, playing video, 333 - 336

 menu support, item menus, 440

 menus, 112

 adding to views, 45 - 47

 scrolling, 114

 showFromBarButtonItem:animated,
 112

 showFromRect:inView:animated, 112

 showFromTabBar, 112

 showFromToolBar, 112

 showInView, 112

 message contents, creating, 342 - 343

 Message UI framework, e-mailing pictures,

 341 - 344

 metrics, predicates, 195 - 196

 metrics dictionary, 188

 MFMessageComposeViewController-

Delegate protocol, 344

 MIME helper, UTIs (Uniform Type

Identifiers), 448

 MIME type

 message contents, 342 - 343

 UTIs (Uniform Type Identifiers),
 447 - 448

 minwidth, 196

 mismatches, sections, 378 - 379

 misspelling in UITextView, detecting,

 260 - 261

 modal controllers, code, 276 - 278

 modal presentations

 custom modal information view,
 275 - 278

 navigation controllers, 273 - 275

 modal progress overlays, 117 - 119

 modalPresentationStyle property, 274 - 275

 model, 556

 model files, building (Core Data), 492 - 493

628 navigation apps

 navigation apps, creating, 283 - 285

 navigation controllers, 264 - 265

 bar buttons, 269

 custom containers, 303

 adding/removing child view con-
trollers, 304

 edge-to-edge layout, 269 - 271

 modal presentations, 273 - 275

 custom modal information view,
 275 - 278

 navigation drilling, 272 - 273

 navigation item class, 271

 macros, 272

 titles and back buttons, 271

 page view controllers, 265 , 293 ,
 296 - 297

 book properties, 294 - 295

 implementing, 295 - 296

 presentation indexes, 297 - 298

 popover controllers, 266

 segues, 309 - 314

 split view controllers, 265

 creating, 278 - 283

 split views, 266 - 267

 stacks, 268

 tab bar controllers, 286 - 290

 tab state, 290 - 293

 universal split view/navigation apps,
creating, 283 - 285

 view controllers

 pushing and popping, 268 - 269

 transitioning between, 304 - 308

 navigation item class, 271

 macros, 272

 titles and back buttons, 271

 navigationOrientation property, 295

 network connections, testing, 523 - 524

 network status, checking, 521 - 524

 network timeouts, 527

 networkAvailable method, 522

 nontext views, adding custom input views,

 243

 notifications, local notifications, 126 - 127

 best practices, 127 - 128

 NSAttributedString, 469

 NSDataDetector class, 257

 NSDictionary, 469

 NSDictionaryOfVariableBindings() macro,

 189

 NSEntityDescription, 495

 NSFontAttributeName, 70

 NSForegroundColorAttributeName, 70

 NSJSONSerialization, 546

 NSNotFound, 262

 NSNumber, 605 - 606

 NSOperationQueue, 522

 NSProgress, 534

 NSRegularExpression class, 256

 NSShadowAttributeName, 70

 NSSQLiteStoreType, 495

 NSString, 469

 NSStringFromCGRect, 147

 NSUnderlineStyleAttribute Name, 70

 NSURL, 469

 NSURLSession, 528

 NSURLSessionConfiguration object, 527

 NSURLSessionDownloadTask, 543

 NSURLSessionTask, 527

 number literals, 605 - 606

 numberOfSectionsInTableView, 357 , 375 ,

 395

 O
 object association, naming views, 143 - 144

 object classes, building (Core Data), 494

 objects, removing (Core Data), 500 - 501

629progress

 onscreen objects, moving with acceleration,

 571 - 575

 Open in options, 476 - 477

 open menus, checking for in document

interaction controller, 476 - 477

 open-source llamasettings project, 396

 orientation

 calculating, from accelerometer,
 569 - 570

 devices, 568 - 569

 format strings, 189 - 191

 orientation changes, constraints, 212 - 214

 overlays

 modal progress overlays, 117 - 119

 tappable overlays, 119

 overscanning compensation, 583

 P
 page indicator controls, adding, 92

 page sheet style, 274

 page view controllers, 265 , 293 , 296 - 297

 book properties, 294 - 295

 implementing, 295 - 296

 presentation indexes, 297 - 298

 wrappers, creating, 298 - 303

 pan gesture recognizers, adding, 7 - 9

 pans, 5

 parse trees, building, 551 - 553

 pasteboards. See system pasteboards

 performing fetch requests, Core Data,

 499 - 500

 permissions, user permissions, 558

 persistence, adding to text views, 246 - 248

 phases, touches, 2 - 3

 photos

 adding to simulators, 319

 snapping, image picker controllers,
 326 - 330

 picker views, multiwheel tables, 397 - 398

 pickers, presentation indexes (image picker

controllers), 320 - 321

 picking video, 339 - 341

 pictures, e-mailing (Message UI frame-

work), 341 - 344

 pinches, 5

 placeholders, 226

 playing video with Media Player, 333 - 336

 points, view geometry, 148

 popover controllers, 266

 popoverArrowDirection property, 125

 popovers, 124 - 126

 posting social updates, 347 - 349

 powering, circle layout (collection views),

 426 - 427

 predicates, 194 - 195

 detecting data patterns, 258 - 259

 fetch requests, 505 - 508

 metrics, 195 - 196

 priorities, 196

 view-to-view predicates, 196

 prepareWithActivityItems, 465

 presentation indexes, page view controllers,

 297 - 298

 presenting

 activity view controller, 461

 pickers, image picker controllers,
 320 - 321

 preventing keyboard dismissal, 225

 priorities

 constraints, 182

 predicates, 196

 processing constraints, 198 - 199

 progress, showing, 115

 UIActivityIndicatorView, 116

 UIProgressView, 116

630 properties

 properties

 accessoryType property, 363

 document interaction controller,
 475 - 476

 inputView property, 235

 scrollDirection property, 407

 text trait properties, 225 - 228

 transforms, retrieving, 158 - 159

 providing

 Quick Look support, document interac-
tion controller, 476

 URL scheme support, 488 - 489

 proximity sensors, devices, 559 - 560

 pull controls

 creating, 83

 discoverability, 84 - 85

 testing, touches, 85 - 88

 pull-to-refresh, adding to tables, 387 - 390

 pushing view controllers, 268 - 269

 Q
 QLPreviewController, 349

 querying

 databases (Core Data), 498

 fetch requests, 499

 performing fetch requests, 499 - 500

 subviews, 139 - 141

 Quick Look, providing support for document

interaction controllers, 476

 Quick Look preview controller, 470 - 471

 code, 472 - 473

 implementing, 471 - 472

 R
 reachabilityChanged, 524

 recording video, image picker controllers,

 331 - 333

 recovering

 device information, 563 - 564

 view hierarchy trees, 137 - 139

 rectangle utility functions, view geometry,

 147 - 148

 refresh controls, activating, 388

 registering

 cell classes, 355

 cells for search display controllers, 383

 regular expressions

 detecting data patterns, 258 - 259

 resources for, 258

 relationships, Core Data, 493

 relative angle, calculating, 570 - 571

 remove controls, displaying in table edits,

 368

 removing

 child view controllers, 304

 objects, Core Data, 500 - 501

 subviews, 141 - 142

 reordering

 cells, 369

 subviews, 141 - 142

 repeating cylinders, creating illusion of,

 398 - 400

 resolving, gesture conflicts, 13

 resources for regular expressions, 258

 responder methods, touches, 3 - 4

 responders, text editors, 250

 responding to user touches, 358

 restrictions, adding device capability restric-

tions, 556 - 557

 retain cycles, blocks, 107 - 108

 retina support, detecting, 562 - 563

 retrieving

 conformance lists, UTIs (Uniform Type
Identifiers), 449 - 451

 data, system pasteboards, 453

631sectionIndexTitlesForTableView

 device attitude, 578 - 579

 screen resolutions, 582

 transform information, 158

 properties, 158 - 159

 testing for view intersection,
 159 - 164

 returning cells, sections, 376 - 377

 returnKeyType, 226

 root view controllers, 268

 rotations, 5

 rows, counting, 375 - 376

 running downloads, 543

 S
 saving

 images, image picker controllers, 329

 video, image picker controllers, 332

 scanning

 for connectivity changes, 524 - 526

 for new documents, 456 - 457

 scheduling, local notifications, 127 - 128

 schemes

 declaring, URL-based services, 487

 URL scheme support, providing,
 488 - 489

 SCNetworkReachabilityGetFlags, 522

 screen resolutions, retrieving, 582

 screens

 detecting, 582

 external screens, 581

 adding display links, 583

 overscanning compensation, 583

 retrieving screen resolutions, 582

 video out, 583

 VIDEOkit, 584 - 587

 scroll direction, flow layouts (collection

views), 407

 scroll snapping, collection views, 424 - 425

 scroll view, dragging from, 37 - 40

 scrollDirection property, 407

 scrolling

 horizontal lists, collection views,
 418 - 421

 menus, 114

 search-aware index, 385 - 386

 search bars, 381

 search display controllers

 creating, 382 - 383

 registering cells, 383

 search features, 386 - 387

 search tables, Core Data, 505 - 508

 searchable data source methods, building,

 383 - 385

 searching

 tables, 381

 building searchable data source
methods, 383 - 385

 creating search display controllers,
 382 - 383

 delegate methods, 385

 registering cells for the search dis-
play controller, 383

 search-aware index, 385 - 386

 for text strings, 262

 second-tap feedback, 68

 section groups, Core Data (table data

sources), 502

 section index, creating, 378

 section key paths, Core Data (table data

sources), 502

 sectioned tables, creating with Core Data,

 503 - 505

 sectionIndexTitlesForTableView, 378

632 sections

 sections, 374

 counting, 375 - 376

 creating, 374 - 375

 section index, 378

 customizing headers and footers,
 377 - 378

 delegates, 379

 header titles, 377

 mismatches, 378 - 379

 returning cells, 376 - 377

 supporting tables with sections, code,
 379 - 380

 secureTextEntry, 226

 segmented control subclasses, second

taps, 70

 segues, 309 - 314

 IB, 314

 selecting images, image picker controllers,

 323 - 326

 selection style, table view cells, 361

 sending

 text messages, 344 - 346

 texts, 345 - 346

 sensor data, accessing, 566

 sensors

 proximity sensors, devices, 559 - 560

 testing, Core Motion, 565 - 566

 services, adding (activity view controller),

 464 - 465

 setBarButtonItems method, 367

 shakes, detecting using motion events,

 579 - 581

 sharing data, system pasteboards, 451 - 452

 showFromRect:inView:animated, 112

 showFromTabBar, 112

 showFromToolBar, 112

 showing progress, 115

 UIActivityIndicatorView, 116

 UIProgressView, 116

 showInView, 112

 shutDownMotionManager, 572

 simple alerts, building, 101 - 102

 simple downloads, 528 - 533

 simulators

 adding photos to, 319

 testing, accessibility, 597 - 598

 sizes

 adjusting frames, 151 - 152

 constraining, constraints, 206

 view geometry, 148

 sliders

 adding, 62 - 67

 building, 64 - 67

 customizing, 62 - 64

 efficiency, adding, 64

 star sliders, building, 76 - 79

 slides, modal presentations, 274

 smoothing, drawings, 22 - 25

 snapping photos, image picker controllers,

 326 - 330

 Social framework, 347 - 349

 social updates, posting, 347 - 349

 speech synthesis, 600 - 601

 spell checker protocol, 261

 spellCheckingType, 225

 spineLocation property, 294

 splining, Catmull-Rom (creating smoothed

Bezier paths), 23 - 25

 split view alternatives, adding universal

support for, 284 - 285

 split view controllers, 265

 creating, 278 - 283

 detail views, 280 - 283

 master views, 280 - 283

 split views, navigation controllers, 266 - 267

 stacks, navigation controllers, 268

633table view cells

 star sliders, building, 76 - 79

 starting within view bounds, constraints,

within view bounds, 205

 steppers, 70 - 72

 stored state, 363 - 364

 storing

 common types, on pasteboards,
 452 - 453

 data, system pasteboards, 452

 tab states to user defaults, 291 - 293

 storyboard views, XIB, 139

 storyboards, 314

 styles, table styles, 353

 subclassing, UIControl class, 72 - 76

 subscripting, 608

 subview utility functions, 140 - 141

 subviews, 135

 adding, 141

 querying, 139 - 141

 removing, 141 - 142

 reordering, 141 - 142

 subviews property, 139

 suffixes, for number literals, 606

 swapping views, 168 - 169

 swipes, 5

 swiping cells, 369

 switches, 70 - 72

 sysctl(), 563

 sysctlbyname(), 563

 System button, 54

 System Configuration framework, 522

 system pasteboards

 accessing, 451 - 452

 copying text to, 454

 retrieving data, 453

 storing

 common types, 452 - 453

 data, 452

 updating, 453 - 454

 system sounds, 129 - 130

 disposing of, 132

 systemName, 555

 systemVersion, 555

 T
 tab bar controllers, 265 , 286 - 290

 creating, 287 - 290

 tab state, 290 - 293

 storing to user default, 291 - 293

 table data sources, Core Data, 501

 index path access, 501

 index titles, 502

 section groups, 502

 section key paths, 502

 table readiness, 502 - 503

 table edits, 366 - 367

 adding

 cells, 369

 undo support, 367

 code, 370 - 373

 delete requests, 369

 displaying remove controls, 368

 implementing undo, 367

 reordering cells, 369

 swiping cells, 369

 table readiness, Core Data (table data

sources), 502 - 503

 table styles, 353

 table view cells, 360

 accessibility, 593

 adding custom selection traits, 361 - 362

 selection style, 361

634 table views

 table views, 353 - 354

 Core Data, 508

 delegates, 352 - 353

 iOS tables, 351 - 352

 sections. See sections

 table views disclosure accessories, 364 - 366

 tables

 adding

 action rows, 390 - 394

 pull-to-refresh, 387 - 390

 versus collection views, 403 - 405

 Core Data

 table views, 510 - 514

 undo/redo support, 508 - 509

 undo transactions, 509 - 510

 creating, 353

 assigning data sources, 354

 assigning delegates, 356

 building basic tables, 358 - 360

 cells, 354

 dequeuing cells, 355 - 356

 registering cell classes, 355

 table styles, 353

 views, 353 - 354

 creating checked table cells, 362 - 364

 custom group tables, 395

 Deselect button, 356

 grouped preferences tables, creating,
 395 - 396

 implementing, 356

 data source methods, 357 - 358

 responding to user touches, 358

 iOS tables, 351 - 352

 multiwheel tables, 396 - 397

 data source and delegate methods,
 397

 picker views, 397 - 398

 UIPickerView, 397

 search tables, Core Data, 505 - 508

 searching, 381

 building searchable data source
methods, 383 - 385

 creating search display controllers,
 382 - 383

 delegate methods, 385

 registering cells for the search dis-
play controller, 383

 search-aware index, 385 - 386

 section tables, creating with Core Data,
 503 - 505

 table view cells, 360

 adding custom selection traits,
 361 - 362

 selection style, 361

 UIDatePicker, 400

 creating, 400

 tableView:cellForRowAtIndexPath:, 358 ,

 395

 tableView:didSelectRowAtIndexPath, 395

 tableView:heightForRowAtIndexPath, 395

 tableView:numberOfRowsInSection:, 357 ,

 376 , 395

 tableView:titleForHeaderInSection, 395

 tagging views, 142 - 143

 tags, finding views, 143

 tappable overlays, 119

 taps, 5

 target-actions, UIControl class, 49 - 50

 tasks, URL Loading System, 527 - 528

 testing

 accessibility

 on iOS, 599 - 601

 with simulators, 597 - 598

 background transfers, 544 - 545

 against bitmaps, 17 - 19

635touches

 conformance, 450 - 451

 UTIs (Uniform Type Identifiers),
 448 - 449

 network connections, 523 - 524

 sensors, Core Motion, 565 - 566

 touches, 15 - 17

 against bitmap alpha levels, 18 - 19

 pull controls, 85 - 88

 URLs, 488

 for view intersection, transforms,
 159 - 164

 tests, circular hit tests, 17

 text

 copying, 454

 displaying in action sheets, 114 - 115

 text editors

 attributed text, 249

 attributes, controlling, 249

 building, 246 - 248

 responders, 250

 text entry, 223

 adding

 custom input views to nontext
views, 243

 input clicks, 243

 building text editors, 246 - 252

 creating, custom input view, 235 - 240

 detecting

 misspelling in UITextView, 260 - 261

 text patterns, 255

 dismissing UITextField keyboard,
 224 - 225

 filtering, 252 - 255

 keyboards. See keyboards

 text-input-aware views, 240 - 243

 text strings, searching for, 262

 text-input-aware views, 240 - 243

 Text Kit, 223 , 258

 text messages, sending, 344 - 346

 text patterns, detecting, 255

 built-in type detectors, 257

 data detectors, 257

 enumerating regular expressions,
 256 - 257

 expressions, 255 - 256

 predicates and regular expressions,
 258 - 259

 text strings, searching for, 262

 text trait properties, 225 - 228

 text views, 246

 dismissing, with custom accessory
views, 228 - 230

 persistence, adding, 246 - 248

 undo support, adding, 246 - 248

 textFieldAtIndex: method, 105

 textFieldShouldReturn:, 225

 texts, sending, 345 - 346

 tintColor property, 269

 titles, navigation item class, 271

 to-do list view hierarchy, 137

 toolbars

 building, 96 - 98

 creating, code, 97 - 98

 topLayoutGuide, 270

 touch-based painting, UIView, 21 - 22

 touch events, intercepting/forwarding,

 41 - 43

 touch feedback, 40

 enabling, 41

 overlay view, creating, 43 - 45

 touch events, intercepting/forwarding,
 41 - 43

 touch wheels, building, 79 - 82

 touches, 1 - 2

 dragging from scroll view, 37 - 40

 drawing, onscreen, 20 - 22

636 touches

 feedback

 enabling, 41

 intercepting/forwarding, 41 - 43

 TOUCHkit overlay view, 43

 gesture recognizers, 4 - 5

 creating custom, 34 - 36

 Multi-Touch, 4 , 26 - 29

 phases, 2 - 3

 responder methods, 3 - 4

 testing, 15 - 17

 against bitmap alpha levels, 18 - 19

 pull controls, 85 - 88

 tracking, UIControl instances, 73

 views, 4

 touchesBegan:withEvent:, 3

 touchesCancelled:WithEvent:, 3

 touchesEnded:withEvent:, 3

 touchesMoved:withEvent:, 3

 TOUCHkit, 40

 implementing, 43

 TOUCHOverlayWindow class, 41

 tracking

 touches, UIControl instances, 73

 users, 587 - 588

 traits, accessibility, 594 - 595

 transfers, background transfers, 543 - 544

 testing, 544 - 545

 web services, 546

 transforms

 defined, 158

 retrieving information, 158

 properties, 158 - 159

 testing for view intersection,
 159 - 164

 view geometry, 149

 transitioning between view controllers,

 304 - 308

 transitions

 Core Animation transitions, 170 - 172

 flipping views, 169 - 170

 transitionStyle property, 294

 trees, 550 - 551

 converting XML into, 549 - 551

 parse trees, building, 551 - 553

 trimming video with AV Foundation,

 338 - 339

 twice-tappable segmented controls, creat-

ing, 67 - 70

 U
 UIAccessibility protocol, 592

 UIAccessibilityLayoutChangeNotification,

 599

 UIAccessibilityPageScrolledNotification, 599

 UIAccessibilityTraitAdjustable, 595

 UIAccessibilityTraitAllowsDirectInteraction,

 595

 UIAccessibilityTraitButton, 594

 UIAccessibilityTraitCausesPageTurn, 595

 UIAccessibilityTraitHeader, 594

 UIAccessibilityTraitImage, 594

 UIAccessibilityTraitKeyboardKey, 594

 UIAccessibilityTraitLink, 594

 UIAccessibilityTraitNone, 594

 UIAccessibilityTraitNotEnabled, 594

 UIAccessibilityTraitPlaysSound, 595

 UIAccessibilityTraitSearchField, 594

 UIAccessibilityTraitSelected, 594

 UIAccessibilityTraitStartsMediaSession, 595

 UIAccessibilityTraitStaticText, 594

 UIAccessibilityTraitSummaryElement, 595

 UIAccessibilityTraitUpdatesFrequently, 595

 UIAccessibilityZoomFocusChange, 599

 UIActionSheet, 101

 UIActionSheet instances, 112

637UIProgressView

 UIActivityIndicatorView, 115

 modal view, 117

 showing progress, 116

 UIActivityItemProvider, 462

 UIActivityItemSource, 462

 UIAlertView, 101 - 102

 variadic methods, 111

 UIAlertViewStyleLoginAndPasswordInput,

 104

 UIAlertViewStylePlainTextInput, 104

 UIAlertViewStyleSecureTextInput, 104

 UIAppearance protocol, 286

 UIAppFonts, 559

 UIApplication property, 128

 UIApplicationExitsOnSuspend, 559

 UIBarButtonItems, 96 - 98

 UIBarButtonSystemItemFlexibleSpace, 97

 UIButton instances, 53 - 54

 UIButtonTypeCustom, 54 , 56

 UICollectionView instances, 403

 UICollectionViewFlowLayout, 406

 UIColor, 469

 UIControl class, 49

 control events, 51 - 53

 dispatching events, 73 - 74

 kinds of controls, 50

 subclassing, 72 - 76

 target-actions, 49 - 50

 UIControl event types, 52

 UIControl instances, tracking touches, 73

 UIControlEventValueChanged, 73

 UIDatePicker, 400

 creating, 400

 UIDevice class, 555 - 556

 UIDocumentInteractionController, 473

 UIFileSharingEnabled, 559

 UIImage, 56 , 469

 UIImagePickerController class, cameras,

 328

 UIImagePickerControllerCropRect, 322

 UIImagePickerControllerEditedImage, 322

 UIImagePickerControllerMediaMetadata,

 322

 UIImagePickerControllerMediaType, 322 ,

 337

 UIImagePickerControllerMediaURL, 337

 UIImagePickerControllerOriginalImage, 322

 UIImagePickerControllerReferenceURL, 322

 UIImagePickerControllers class, 317

 UIImagePickerControllerSourceType-

Cameras, 318

 UIImagePickerControllerSourceTypePhoto

Library, 317

 UIImagePickerControllerSourceTypeSaved-

PhotosAlbum, 317

 _UIImagePickerControllerVideoEditingEnd,

 337

 _UIImagePickerControllerVideoEditingStart,

 337

 UIImageView, animation, 176

 UIKeyInput protocol, 241

 UIKit Dynamics, 14

 UIModalTransitionStyleCrossDissolve, 274

 UIModalTransitionStyleFlipHorizontal, 274

 UIModalTransitionStylePartialCurl, 274

 UINavigationController, hierarchies, 136

 UIPageControl class, 92

 UIPasteboard, 451

 UIPickerView, 396 , 397

 UIPopoverController, 125

 UIPrintFormatter, 469

 UIPrintInfo, 469

 UIPrintPageRenderer, 469

 UIProgressView, 115 , 533

 showing progress, 116

638 UIRequiredDeviceCapabilities

 UIRequiredDeviceCapabilities, 556

 UIRequiresPersistentWifi, 559

 UIResponder class, 3

 UIScreen, 562 - 563 , 582

 UIScrollView instance, 93

 UISegmentedControl class, 67

 UISlider, 62

 UISplitViewController, 264 , 265

 UIStatusBarHidden, 559

 UIStatusBarStyle, 559

 UIStepper class, 71

 UISwitch instances, 71

 UISwitch object, 71

 UITabBarController class, 265

 UITabBarControllerDelegate protocol, 290

 UITableView delegate method, 352

 UITableViewCellAccessoryDetailDisclosure-

Button, 365

 UITableViewCellAccessoryDisclosure-

Indicator, 365

 UITableViewCellStyleDefault, 360

 UITableViewCellStyleSubtitle, 361

 UITableViewCellStyleValue1, 360

 UITableViewCellStyleValue2, 361

 UITableViewControllers, 354

 UITextChecker, 261

 UITextField keyboard, dismissing, 224 - 225

 text trait properties, 225 - 228

 UITextView, detecting misspelling, 260 - 261

 UITouch objects, 10

 UITouchPhaseBegan, 2

 UITouchPhaseCancelled, 3

 UITouchPhaseEnded, 3

 UITouchPhaseMoved, 2

 UITouchPhaseStationary, 2

 UIView animations, 165 - 166

 building with blocks, 166 - 167

 transitions, 170

 UIView class

 adding animation blocks to controls,
 60 - 61

 touch-based painting, 21 - 22

 touches, 2

 UIViewContentModeScaleAspectFill mode,

 328

 UIViewContentModeScaleAspectFit mode,

 328

 UIViewController class, 269 - 271

 view controllers, 264

 UIViewFrame geometry category, 154 - 157

 undo, implementing in table edits, 367

 undo/redo support, Core Data table views,

 508 - 509

 undo support, adding

 to table edits, 367

 to text views, 246 - 248

 undo transactions, Core Data table views,

 509 - 510

 Uniform Type Identifiers. See UTIs (Uniform

Type Identifiers)

 universal split view/navigation apps, creat-

ing, 283 - 285

 updates, broadcasting, accessibility, 599

 updateTransformWithOffset: method, 10

 updating

 system pasteboards, 453 - 454

 view constraints, 213 - 214

 URL, 475

 testing, 488

 URL-based services

 adding handler method, 488

 creating, 486 - 487

 declaring schemes, 487

 testing URLs, 488

639views

 URL Loading System, 526

 configurations, 527

 NSURLSession, 528

 tasks, 527 - 528

 URL scheme support, providing, 488 - 489

 user control, Documents folder, 455 - 456

 user permissions, 558

 user touches, responding to user touches,

 358

 user tracings, accumulating for composite

drawings, 27 - 29

 userInterfaceIdiom, 556

 users, tracking, 587 - 588

 UTI declarations, 449

 UTIs (Uniform Type Identifiers), 445 - 446 ,

 475

 conformance lists, retrieving, 449 - 451

 conformance trees, 446

 file extensions, 446 - 447

 inheritance, 446

 MIME helper, 448

 moving to extensions or MIME types,
 447 - 448

 testing conformance, 448 - 449

 UTTypeCopyPreferredTagWithClass(), 447

 UUIDs (Universally Unique Identifiers), 588

 V
 variable bindings, 188 - 189

 variadic arguments, alerts, 110 - 111

 verbose logging, 180

 vibration, 130 - 131

 video

 editing, 336 - 339

 picking and editing, 339 - 341

 playing with Media Player, 333 - 336

 recording, image picker controllers,
 331 - 333

 saving, image picker controllers, 332

 trimming with AV Foundation, 338 - 339

 video editor controller, 340 - 341

 video out, external screens, 583

 video-recording picker, creating, 331 - 332

 VIDEOkit, 584 - 587

 view bounds, starting constraints, 205

 view controller containers, creating,

 306 - 308

 view controllers, 263 - 264

 navigation controllers, 264 - 265

 pushing and popping, 268 - 269

 segues, 309 - 314

 tab bar controllers, 265

 transitioning between, 304 - 308

 UIViewController class, 264

 view hierarchy trees

 extracting, 138

 recovering, 137 - 139

 view intersection, testing for, 159 - 164

 view-to-view predicates, 196

 viewDidLoad method, 368 , 391

 views

 accelerometer-based scroll view,
 575 - 578

 adding menus to, 45 - 47

 adjusting around keyboards, 230 - 234

 aligning with constraints, 198

 bouncing, 172 - 174

 callbacks, 142

 centering in constraints, 209 - 210

 collection views, 406 - 407

 Core Animation transitions, 170 - 172

 display traits, 164 - 165

 exclusive touch, 4

 fading in and out, 167 - 168

 finding with tags, 143

 flipping, 169 - 170

640 views

 frames, 150 - 151

 adjusting sizes, 151 - 152

 centers, 153

 CGRects, 153

 geometry, 146 , 154 - 157

 coordinate systems, 149 - 150

 frames, 147

 points and sizes, 148

 rectangle utility functions, 147 - 148

 transforms, 149

 hierarchies, 135 - 137

 image view animations, 176

 interaction traits, 164 - 165

 key frame animations, 174 - 175

 laying out in circles, 428 - 431

 naming

 in Interface Builder, 144 - 145

 by object association, 143 - 144

 swapping, 168 - 169

 tables, 353 - 354

 tagging, 142 - 143

 text-input-aware views, 240 - 243

 touching, 4

 views: parameter, 188

 visual format constraints, creating, 187 - 188

 VoiceOver, 591

 gestures for apps, 600-601

 speech synthesis, 601

 testing accessibility, 599 - 601

 UIAccessibilityLayoutChange-
Notification, 599

 VoiceOver toggle, 599

 W
 web services, background transfers, 546

 converting XML into trees, 549 - 551

 JSON serialization, 546 - 548

 willMoveToSuperview:, 142

 willMoveToWindow:, 142

 willRemoveSubview, 142

 wrappers, page view controllers, 298 - 303

 X
 .xcdatamodeld files, 492

 Xcode

 file sharing, 456

 verbose logging, 180

 Xcode5, accessibility, 597

 XIB, storyboard views, 139

 XML, converting into trees, 549 - 551

 XMLParser class, 551 - 553

 XMLParser helper class, 551 - 553

 Y-Z
 y coordinate, 149

	Contents
	Preface
	1 Gestures and Touches
	Touches
	Recipe: Adding a Simple Direct Manipulation Interface
	Recipe: Adding Pan Gesture Recognizers
	Recipe: Using Multiple Gesture Recognizers Simultaneously
	Recipe: Constraining Movement
	Recipe: Testing Touches
	Recipe: Testing Against a Bitmap
	Recipe: Drawing Touches Onscreen
	Recipe: Smoothing Drawings
	Recipe: Using Multi-Touch Interaction
	Recipe: Detecting Circles
	Recipe: Creating a Custom Gesture Recognizer
	Recipe: Dragging from a Scroll View
	Recipe: Live Touch Feedback
	Recipe: Adding Menus to Views
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

