
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321944276
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321944276
https://plusone.google.com/share?url=http://www.informit.com/title/9780321944276
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321944276
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321944276/Free-Sample-Chapter

Praise for The Rails Way

For intermediates and above, I strongly recommend adding this title to your tech-
nical bookshelf. There is simply no other Rails title on the market at this time that
offers the technical depth of the framework than The Rails™ 3 Way.

— Mike Riley, Dr. Dobb’s Journal

I highly suggest you get this book. Software moves fast, especially the Rails API, but
I feel this book has many core API and development concepts that will be useful for
a while to come.

— Matt Polito, software engineer and member of Chicago Ruby User Group

This book should live on your desktop if you’re a Rails developer. It’s nearly perfect
in my opinion.

— Luca Pette, developer

The Rails™ 3 Way is likely to take you from being a haphazard poke- a- stick- at- it
programmer to a deliberate, skillful, productive, and confi dent RoR developer.

— Katrina Owen, JavaRanch

I can positively say that it’s the single best Rails book ever published to date. By a
long shot.

— Antonio Cangiano, software engineer and technical evangelist at IBM

psn-fernandez-all.indb i 5/9/14 10:07 AM

This book is a great crash course in Ruby on Rails! It doesn’t just document the
features of Rails, it fi lters everything through the lens of an experienced Rails
developer— so you come out a pro on the other side.

— Dirk Elmendorf, cofounder of Rackspace Inc. and Rails developer

The key to The Rails Way is in the title. It literally covers the “way” to do almost
everything with Rails. Writing a truly exhaustive reference to the most popular web
application framework used by thousands of developers is no mean feat. A thankful
community of developers that has struggled to rely on scant documentation will
embrace The Rails Way with open arms. A tour de force!

— Peter Cooper, editor, Ruby Inside: The Ruby Blog

In the past year, dozens of Rails books have been rushed to publication. A handful are
good. Most regurgitate rudimentary information easily found on the Web. Only this
book provides both the broad and deep technicalities of Rails. Nascent and expert
developers, I recommend you follow The Rails Way.

— Martin Streicher, chief technology offi cer, McClatchy Interactive, former editor
in chief of Linux Magazine

Hal Fulton’s The Ruby Way has always been by my side as a reference while program-
ming Ruby. Many times I had wished there was a book that had the same depth and
attention to detail, only focused on the Rails framework. That book is now here and
hasn’t left my desk for the past month.

— Nate Klaiber, Ruby programmer

I knew soon after becoming involved with Rails that I had found something great.
Now, with Obie’s book, I have been able to step into Ruby on Rails development
coming from .NET and be productive right away. The applications I have created
I believe to be a much better quality due to the techniques I learned using Obie’s
knowledge.

— Robert Bazinet, InfoQ.com, .NET, and Ruby community editor and founding
member of the Hartford Ruby Brigade

Extremely well written; it’s a resource that every Rails programmer should have. Yes,
it’s that good.

— Reuven Lerner, Linux Journal columnist

psn-fernandez-all.indb ii 5/9/14 10:07 AM

THE RAILS™ 4 WAY

psn-fernandez-all.indb iii 5/9/14 10:07 AM

The Addison-Wesley Professional Ruby Series provides readers with practical,

people-oriented, and in-depth information about applying the Ruby platform

to create dynamic technology solutions. The series is based on the premise that the

need for expert reference books, written by experienced practitioners, will never

be satisfied solely by blogs and the Internet.

Visit informit.com/ruby for a complete list of available products.

Make sure to connect with us!
informit.com/socialconnect

Addison-Wesley
Professional Ruby Series

Obie Fernandez, Series Editor

psn-fernandez-all.indb iv 5/9/14 10:07 AM

THE RAILS™ 4 WAY

Obie Fernandez

Kevin Faustino

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

psn-fernandez-all.indb v 5/9/14 10:07 AM

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382- 3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the web: informit.com/aw

Cataloging- in- Publication Data is on fi le with the Library of Congress

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236- 3290.

Parts of this book contain material excerpted from the Ruby and Rails source code and API doc-
umentation, copyright © 2004– 2014 by David Heinemeier Hansson under the MIT license.
Chapter 21 contains material excerpted from the RSpec source code and API documentation,
copyright © 2005– 2014 by the RSpec Development Team. Rails and Ruby on Rails are trademarks
of David Heinemeier Hansson.

The MIT License reads: Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation fi les (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions: The above copyright notice and this permission
notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE
IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES, OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR
OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OF OR OTHER DEALINGS IN THE SOFTWARE.

ISBN- 13: 978- 0- 321- 94427- 6
ISBN- 10: 0- 321- 94427- 5

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, June 2014

Editor- in-Chief
Mark L. Taub

Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Full- Service Production
Manager
Julie B. Nahil

Editorial Assistant
Kim Boedigheimer

Production Editor
Scribe Inc.

Copy Editor
Scribe Inc.

Indexer
Scribe Inc.

Proofreader
Scribe Inc.

Compositor
Scribe Inc.

Cover Designer
Chuti Prasertsith

psn-fernandez-all.indb vi 5/9/14 10:07 AM

 Taylor, your hard work and dedication to your craft are an inspiration
to me every day. I love you.

psn-fernandez-all.indb vii 5/9/14 10:07 AM

This page intentionally left blank

ix

Contents

Foreword by Steve Klabnik xxxix
Foreword to the Previous Edition by David Heinemeier Hansson xli
Foreword to the Previous Edition by Yehuda Katz xliii
Introduction xlv
Acknowledgments li
About the Authors liii

Chapter 1 Rails Environments and Confi guration 1

1.1 Bundler 2
1.1.1 Gemfile 3
1.1.2 Installing Gems 5
1.1.3 Gem Locking 7
1.1.4 Packaging Gems 7

1.2 Startup and Application Settings 9
1.2.1 config/application.rb 9
1.2.2 Initializers 11
1.2.3 Additional Confi guration 16
1.2.4 Spring Application Preloader 17

1.3 Development Mode 18
1.3.1 Automatic Class Reloading 18
1.3.2 Eager Load 20
1.3.3 Error Reports 20
1.3.4 Caching 20
1.3.5 Raise Delivery Errors 21

psn-fernandez-all.indb ix 5/9/14 10:07 AM

x Contents

1.3.6 Deprecation Notices 21
1.3.7 Pending Migrations Error Page 21
1.3.8 Assets Debug Mode 22

1.4 Test Mode 22
1.5 Production Mode 23

1.5.1 Assets 25
1.5.2 Asset Hosts 26

1.6 Confi guring a Database 26
1.7 Confi guring Application Secrets 27
1.8 Logging 29

1.8.1 Rails Log Files 30
1.8.2 Tagged Logging 32
1.8.3 Log File Analysis 32

1.9 Conclusion 35

Chapter 2 Routing 37

2.1 The Two Purposes of Routing 38
2.2 The routes.rb File 39

2.2.1 Regular Routes 40
2.2.2 Constraining Request Methods 41
2.2.3 URL Patterns 42
2.2.4 Segment Keys 43
2.2.5 Spotlight on the :id Field 44
2.2.6 Optional Segment Keys 44
2.2.7 Redirect Routes 45
2.2.8 The Format Segment 46
2.2.9 Routes as Rack Endpoints 48
2.2.10 Accept Header 48
2.2.11 Segment Key Constraints 49
2.2.12 The Root Route 50

2.3 Route Globbing 51
2.4 Named Routes 53

2.4.1 Creating a Named Route 53
2.4.2 name_path versus name_url 54
2.4.3 What to Name Your Routes 55
2.4.4 Argument Sugar 56
2.4.5 A Little More Sugar with Your Sugar? 56

psn-fernandez-all.indb x 5/9/14 10:07 AM

Contents xi

2.5 Scoping Routing Rules 57
2.5.1 Controller 58
2.5.2 Path Prefi x 58
2.5.3 Name Prefi x 58
2.5.4 Namespaces 59
2.5.5 Bundling Constraints 59

2.6 Listing Routes 60
2.7 Conclusion 61

Chapter 3 REST, Resources, and Rails 63

3.1 REST in a Rather Small Nutshell 63
3.2 Resources and Representations 64
3.3 REST in Rails 65
3.4 Routing and CRUD 66

3.4.1 REST Resources and Rails 66
3.4.2 From Named Routes to REST Support 67
3.4.3 Reenter the HTTP Verb 68

3.5 The Standard RESTful Controller Actions 69
3.5.1 PATCH versus PUT 70
3.5.2 Singular and Plural RESTful Routes 71
3.5.3 The Special Pairs: new/create and edit/update 71
3.5.4 The PATCH and DELETE Cheat 72
3.5.5 Limiting Routes Generated 73

3.6 Singular Resource Routes 73
3.7 Nested Resources 74

3.7.1 RESTful Controller Mappings 75
3.7.2 Considerations 75
3.7.3 Deep Nesting? 76
3.7.4 Shallow Routes 77

3.8 Routing Concerns 78
3.9 RESTful Route Customizations 79

3.9.1 Extra Member Routes 80
3.9.2 Extra Collection Routes 81
3.9.3 Custom Action Names 82
3.9.4 Mapping to a Different Controller 82
3.9.5 Routes for New Resources 82
3.9.6 Considerations for Extra Routes 83

psn-fernandez-all.indb xi 5/9/14 10:07 AM

xii Contents

3.10 Controller- Only Resources 83
3.11 Different Representations of Resources 86

3.11.1 The respond_to Method 86
3.11.2 Formatted Named Routes 87

3.12 The RESTful Rails Action Set 88
3.12.1 Index 88
3.12.2 Show 90
3.12.3 Destroy 90
3.12.4 New and Create 91
3.12.5 Edit and Update 92

3.13 Conclusion 92

Chapter 4 Working with Controllers 95

4.1 Rack 96
4.1.1 Confi guring Your Middleware Stack 97

4.2 Action Dispatch: Where It All Begins 99
4.2.1 Request Handling 99
4.2.2 Getting Intimate with the Dispatcher 99

4.3 Render unto View… 102
4.3.1 When in Doubt, Render 102
4.3.2 Explicit Rendering 103
4.3.3 Rendering Another Action’s Template 103
4.3.4 Rendering a Different Template Altogether 104
4.3.5 Rendering a Partial Template 105
4.3.6 Rendering Inline Template Code 106
4.3.7 Rendering Text 106
4.3.8 Rendering Other Types of Structured Data 107
4.3.9 Rendering Nothing 108
4.3.10 Rendering Options 108

4.4 Additional Layout Options 111
4.5 Redirecting 111

4.5.1 The redirect_to Method 113
4.6 Controller/View Communication 115
4.7 Action Callbacks 116

4.7.1 Action Callback Inheritance 116
4.7.2 Action Callback Types 117
4.7.3 Action Callback Chain Ordering 118
4.7.4 Around Action Callbacks 119
4.7.5 Action Callback Chain Skipping 120

psn-fernandez-all.indb xii 5/9/14 10:07 AM

Contents xiii

4.7.6 Action Callback Conditions 120
4.7.7 Action Callback Chain Halting 121

4.8 Streaming 121
4.8.1 ActionController::Live 121
4.8.2 View Streaming via render stream: true 122
4.8.3 send_data(data, options = {}) 123
4.8.4 send_file(path, options = {}) 124

4.9 Variants 126
4.10 Conclusion 127

Chapter 5 Working with Active Record 129

5.1 The Basics 130
5.2 Macro- Style Methods 131

5.2.1 Relationship Declarations 131
5.2.2 Convention over Confi guration 132
5.2.3 Setting Names Manually 132
5.2.4 Legacy Naming Schemes 133

5.3 Defi ning Attributes 133
5.3.1 Default Attribute Values 134
5.3.2 Serialized Attributes 136
5.3.3 ActiveRecord::Store 137

5.4 CRUD: Create, Read, Update, and Delete 138
5.4.1 Creating New Active Record Instances 138
5.4.2 Reading Active Record Objects 139
5.4.3 Reading and Writing Attributes 139
5.4.4 Accessing and Manipulating Attributes before They

Are Typecast 142
5.4.5 Reloading 142
5.4.6 Cloning 142
5.4.7 Custom SQL Queries 143
5.4.8 The Query Cache 144
5.4.9 Updating 145
5.4.10 Updating by Condition 147
5.4.11 Updating a Particular Instance 147
5.4.12 Updating Specifi c Attributes 148
5.4.13 Convenience Updaters 149
5.4.14 Touching Records 149
5.4.15 readonly Attributes 149
5.4.16 Deleting and Destroying 150

psn-fernandez-all.indb xiii 5/9/14 10:07 AM

xiv Contents

5.5 Database Locking 151
5.5.1 Optimistic Locking 152
5.5.2 Pessimistic Locking 154
5.5.3 Considerations 154

5.6 Where Clauses 155
5.6.1 where(*conditions) 155
5.6.2 order(*clauses) 157
5.6.3 limit(number) and offset(number) 158
5.6.4 select(*clauses) 159
5.6.5 from(*tables) 159
5.6.6 exists? 160
5.6.7 extending(*modules, &block) 160
5.6.8 group(*args) 160
5.6.9 having(*clauses) 161
5.6.10 includes(*associations) 161
5.6.11 joins 162
5.6.12 none 162
5.6.13 readonly 163
5.6.14 references 163
5.6.15 reorder 163
5.6.16 reverse_order 164
5.6.17 uniq / distinct 164
5.6.18 unscope(*args) 164
5.6.19 arel_table 165

5.7 Connections to Multiple Databases in Different Models 165
5.8 Using the Database Connection Directly 167

5.8.1 The DatabaseStatements Module 167
5.8.2 Other Connection Methods 169

5.9 Other Confi guration Options 171
5.10 Conclusion 171

Chapter 6 Active Record Migrations 173

6.1 Creating Migrations 173
6.1.1 Sequencing Migrations 174
6.1.2 change 174
6.1.3 reversible 175
6.1.4 Irreversible Migrations 176

psn-fernandez-all.indb xiv 5/9/14 10:07 AM

Contents xv

6.1.5 create_table(name, options, &block) 176
6.1.6 change_table(table_name, &block) 178
6.1.7 create_join_table 178
6.1.8 API Reference 178
6.1.9 Defi ning Columns 181
6.1.10 Command- Line Column Declarations 187

6.2 Data Migration 187
6.2.1 Using SQL 187
6.2.2 Migration Models 188

6.3 schema.rb 189
6.4 Database Seeding 190
6.5 Database- Related Rake Tasks 191

6.5.1 db:migrate:status 193
6.6 Conclusion 194

Chapter 7 Active Record Associations 195

7.1 The Association Hierarchy 195
7.2 One- to- Many Relationships 196

7.2.1 Adding Associated Objects to a Collection 198
7.2.2 Association Collection Methods 199

7.3 The belongs_to Association 205
7.3.1 Reloading the Association 205
7.3.2 Building and Creating Related Objects via the

Association 206
7.3.3 belongs_to Options 206
7.3.4 belongs_to Scopes 211

7.4 The has_many Association 214
7.4.1 has_many Options 214
7.4.2 has_many Scopes 218

7.5 Many- to- Many Relationships 222
7.5.1 has_and_belongs_to_many 222
7.5.2 has_many :through 226
7.5.3 has_many :through Options 230
7.5.4 Unique Association Objects 232

7.6 One- to- One Relationships 233
7.6.1 has_one 233
7.6.2 has_one Scopes 236

psn-fernandez-all.indb xv 5/9/14 10:07 AM

xvi Contents

7.7 Working with Unsaved Objects and Associations 236
7.7.1 One- to- One Associations 236
7.7.2 Collections 237
7.7.3 Deletion 237

7.8 Association Extensions 238
7.9 The CollectionProxy Class 239
7.10 Conclusion 240

Chapter 8 Validations 241

8.1 Finding Errors 241
8.2 The Simple Declarative Validations 242

8.2.1 validates_absence_of 242
8.2.2 validates_acceptance_of 242
8.2.3 validates_associated 243
8.2.4 validates_confirmation_of 244
8.2.5 validates_each 244
8.2.6 validates_format_of 245
8.2.7 validates_inclusion_of and

validates_exclusion_of 246
8.2.8 validates_length_of 246
8.2.9 validates_numericality_of 247
8.2.10 validates_presence_of 248
8.2.11 validates_uniqueness_of 249
8.2.12 validates_with 251
8.2.13 RecordInvalid 252

8.3 Common Validation Options 253
8.3.1 :allow_blank and :allow_nil 253
8.3.2 :if and :unless 253
8.3.3 :message 253
8.3.4 :on 254
8.3.5 :strict 254

8.4 Conditional Validation 255
8.4.1 Usage and Considerations 255
8.4.2 Validation Contexts 256

8.5 Short- Form Validation 256
8.6 Custom Validation Techniques 258

8.6.1 Add Custom Validation Macros to Your
Application 258

psn-fernandez-all.indb xvi 5/9/14 10:07 AM

Contents xvii

8.6.2 Create a Custom Validator Class 259
8.6.3 Add a validate Method to Your Model 260

8.7 Skipping Validations 260
8.8 Working with the Errors Hash 261

8.8.1 Checking for Errors 261
8.9 Testing Validations with Shoulda 262
8.10 Conclusion 262

Chapter 9 Advanced Active Record 263

9.1 Scopes 263
9.1.1 Scope Parameters 264
9.1.2 Chaining Scopes 264
9.1.3 Scopes and has_many 265
9.1.4 Scopes and Joins 265
9.1.5 Scope Combinations 265
9.1.6 Default Scopes 266
9.1.7 Using Scopes for CRUD 267

9.2 Callbacks 268
9.2.1 One- Liners 269
9.2.2 Protected or Private 269
9.2.3 Matched before/after Callbacks 269
9.2.4 Halting Execution 271
9.2.5 Callback Usages 271
9.2.6 Special Callbacks: after_initialize and

after_find 274
9.2.7 Callback Classes 276

9.3 Calculation Methods 278
9.3.1 average(column_name, *options) 279
9.3.2 count(column_name, *options) 279
9.3.3 ids 279
9.3.4 maximum(column_name, *options) 279
9.3.5 minimum(column_name, *options) 279
9.3.6 pluck(*column_names) 279
9.3.7 sum(column_name, *options) 279

9.4 Single- Table Inheritance (STI) 280
9.4.1 Mapping Inheritance to the Database 282
9.4.2 STI Considerations 283
9.4.3 STI and Associations 283

psn-fernandez-all.indb xvii 5/9/14 10:07 AM

xviii Contents

9.5 Abstract Base Model Classes 286
9.6 Polymorphic has_many Relationships 287

9.6.1 In the Case of Models with Comments 287
9.7 Enums 290
9.8 Foreign- Key Constraints 292
9.9 Modules for Reusing Common Behavior 292

9.9.1 A Review of Class Scope and Contexts 294
9.9.2 The included Callback 295

9.10 Modifying Active Record Classes at Runtime 297
9.10.1 Considerations 298
9.10.2 Ruby and Domain- Specifi c Languages 298

9.11 Using Value Objects 299
9.11.1 Immutability 301

9.12 Nonpersisted Models 302
9.13 PostgreSQL Enhancements 304

9.13.1 Schemaless Data with hstore 304
9.13.2 Array Type 306
9.13.3 Network Address Types 308
9.13.4 UUID Type 309
9.13.5 Range Types 310
9.13.6 JSON Type 310

9.14 Conclusion 311

Chapter 10 Action View 313

10.1 Layouts and Templates 314
10.1.1 Template Filename Conventions 314
10.1.2 Layouts 314
10.1.3 Yielding Content 315
10.1.4 Conditional Output 316
10.1.5 Decent Exposure 317
10.1.6 Standard Instance Variables 318
10.1.7 Displaying flash Messages 321
10.1.8 flash.now 321

10.2 Partials 322
10.2.1 Simple Use Cases 322
10.2.2 Reuse of Partials 324
10.2.3 Shared Partials 324
10.2.4 Passing Variables to Partials 325
10.2.5 Rendering an Object 327

psn-fernandez-all.indb xviii 5/9/14 10:07 AM

Contents xix

10.2.6 Rendering Collections 327
10.2.7 Logging 328

10.3 Conclusion 329

Chapter 11 All about Helpers 331

11.1 ActiveModelHelper 331
11.1.1 Reporting Validation Errors 332
11.1.2 Automatic Form Creation 335
11.1.3 Customizing the Way Validation Errors Are

Highlighted 337
11.2 AssetTagHelper 338

11.2.1 Head Helpers 338
11.2.2 Asset Helpers 341
11.2.3 Using Asset Hosts 343
11.2.4 For Plugins Only 345

11.3 AtomFeedHelper 346
11.4 CacheHelper 348
11.5 CaptureHelper 348
11.6 CsrfHelper 349
11.7 DateHelper 349

11.7.1 The Date and Time Selection Helpers 350
11.7.2 The Individual Date and Time Select Helpers 351
11.7.3 Common Options for Date Selection Helpers 354
11.7.4 distance_in_time Methods with Complex

Descriptive Names 355
11.7.5 time_tag(date_or_time, *args,

&block) 356
11.8 DebugHelper 356
11.9 FormHelper 357

11.9.1 Creating Forms for Models 357
11.9.2 How Form Helpers Get Their Values 361
11.9.3 Integrating Additional Objects in One Form 362
11.9.4 Customized Form Builders 366
11.9.5 Form Inputs 366

11.10 FormOptionsHelper 371
11.10.1 Select Helpers 371
11.10.2 Check Box/Radio Helpers 373
11.10.3 Option Helpers 375

11.11 FormTagHelper 379

psn-fernandez-all.indb xix 5/9/14 10:07 AM

xx Contents

11.12 JavaScriptHelper 385
11.13 NumberHelper 385
11.14 OutputSafetyHelper 390
11.15 RecordTagHelper 390
11.16 RenderingHelper 391
11.17 SanitizeHelper 391
11.18 TagHelper 393
11.19 TextHelper 395
11.20 TranslationHelper and the I18n API 399

11.20.1 Localized Views 400
11.20.2 TranslationHelper Methods 400
11.20.3 I18n Setup 401
11.20.4 Setting and Passing the Locale 402
11.20.5 Setting Locale from Client- Supplied Information 405
11.20.6 Internationalizing Your Application 407
11.20.7 Organization of Locale Files 409
11.20.8 Looking Up Translations 410
11.20.9 How to Store Your Custom Translations 413
11.20.10 Overview of Other Built- In Methods

That Provide I18n Support 416
11.20.11 Exception Handling 417

11.21 UrlHelper 418
11.22 Writing Your Own View Helpers 422

11.22.1 Small Optimizations: The Title Helper 422
11.22.2 Encapsulating View Logic: The photo_for

Helper 423
11.22.3 Smart View: The breadcrumbs Helper 424

11.23 Wrapping and Generalizing Partials 425
11.23.1 A tiles Helper 425
11.23.2 Generalizing Partials 428

11.24 Conclusion 431

Chapter 12 Haml 433

12.1 Getting Started 434
12.2 The Basics 434

12.2.1 Creating an Element 434
12.2.2 Attributes 434
12.2.3 Classes and IDs 436

psn-fernandez-all.indb xx 5/9/14 10:07 AM

Contents xxi

12.2.4 Implicit Divs 438
12.2.5 Empty Tags 439

12.3 Doctype 440
12.4 Comments 440

12.4.1 HTML Comments 440
12.4.2 Haml Comments 440

12.5 Evaluating Ruby Code 441
12.5.1 Interpolation 442
12.5.2 Escaping/Unescaping HTML 442
12.5.3 Escaping the First Character of a Line 442
12.5.4 Multiline Declarations 443

12.6 Helpers 443
12.6.1 Object Reference [] 443
12.6.2 page_class 444
12.6.3 list_of(enum, opts = {}) { |item| ... } 444

12.7 Filters 444
12.8 Haml and Content 445
12.9 Confi guration Options 446

12.9.1 autoclose 446
12.9.2 cdata 446
12.9.3 compiler_class 447
12.9.4 Encoding 447
12.9.5 escape_attrs 447
12.9.6 escape_html 447
12.9.7 format 447
12.9.8 hyphenate_data_attrs 447
12.9.9 mime_type 447
12.9.10 parser_class 447
12.9.11 preserve 448
12.9.12 remove_whitespace 448
12.9.13 ugly 448

12.10 Conclusion 448

Chapter 13 Session Management 449

13.1 What to Store in the Session 450
13.1.1 The Current User 450
13.1.2 Session Use Guidelines 450

13.2 Session Options 451

psn-fernandez-all.indb xxi 5/9/14 10:07 AM

xxii Contents

13.3 Storage Mechanisms 451
13.3.1 Active Record Session Store 451
13.3.2 Memcached Session Storage 452
13.3.3 The Controversial CookieStore 453
13.3.4 Cleaning Up Old Sessions 455

13.4 Cookies 455
13.4.1 Reading and Writing Cookies 455

13.5 Conclusion 457

Chapter 14 Authentication and Authorization 459

14.1 Devise 459
14.1.1 Getting Started 460
14.1.2 Modules 460
14.1.3 Models 461
14.1.4 Controllers 462
14.1.5 Views 463
14.1.6 Confi guration 463
14.1.7 Strong Parameters 464
14.1.8 Extensions 465
14.1.9 Testing with Devise 465
14.1.10 Summary 466

14.2 has_secure_password 466
14.2.1 Getting Started 466
14.2.2 Creating the Models 466
14.2.3 Setting Up the Controllers 467
14.2.4 Controller, Limiting Access to Actions 469
14.2.5 Summary 469

14.3 Pundit 470
14.3.1 Getting Started 470
14.3.2 Creating a Policy 471
14.3.3 Controller Integration 472
14.3.4 Policy Scopes 473
14.3.5 Strong Parameters 474
14.3.6 Testing Policies 475

14.4 Conclusion 476

Chapter 15 Security 477

15.1 Password Management 477
15.2 Log Masking 479

psn-fernandez-all.indb xxii 5/9/14 10:07 AM

Contents xxiii

15.3 SSL (Secure Sockets Layer) 480
15.4 Model Mass- Assignment Attributes Protection 481
15.5 SQL Injection 483

15.5.1 What Is an SQL Injection? 483
15.6 Cross- Site Scripting (XSS) 484

15.6.1 HTML Escaping 485
15.6.2 HTML Sanitization 487
15.6.3 Input versus Output Escaping 487

15.7 XSRF (Cross- Site Request Forgery) 487
15.7.1 Restricting HTTP Method for Actions with Side

Effects 488
15.7.2 Require Security Token for Protected Requests 489
15.7.3 Client- Side Security Token Handling 490

15.8 Session Fixation Attacks 490
15.9 Keeping Secrets 491
15.10 Conclusion 492

Chapter 16 Action Mailer 493

16.1 Setup 493
16.2 Mailer Models 494

16.2.1 Preparing Outbound Email Messages 494
16.2.2 HTML Email Messages 496
16.2.3 Multipart Messages 497
16.2.4 Attachments 497
16.2.5 Generating URLs 498
16.2.6 Mailer Layouts 498
16.2.7 Sending an Email 499
16.2.8 Callbacks 499

16.3 Receiving Emails 500
16.3.1 Handling Incoming Attachments 501

16.4 Server Confi guration 502
16.5 Testing Email Content 502
16.6 Previews 503
16.7 Conclusion 504

Chapter 17 Caching and Performance 505

17.1 View Caching 505
17.1.1 Page Caching 506
17.1.2 Action Caching 508

psn-fernandez-all.indb xxiii 5/9/14 10:07 AM

xxiv Contents

17.1.3 Fragment Caching 509
17.1.4 Russian Doll Caching 514
17.1.5 Conditional Caching 516
17.1.6 Expiration of Cached Content 516
17.1.7 Automatic Cache Expiry with Sweepers 517
17.1.8 Avoiding Extra Database Activity 518
17.1.9 Cache Logging 519
17.1.10 Cache Storage 519

17.2 Data Caching 521
17.2.1 Eliminating Extra Database Lookups 521
17.2.2 Initializing New Caches 522
17.2.3 fetch Options 522

17.3 Control of Web Caching 523
17.3.1 expires_in(seconds, options =) 523
17.3.2 expires_now 524

17.4 ETags 524
17.4.1 fresh_when(options) 525
17.4.2 stale?(options) 525

17.5 Conclusion 526

Chapter 18 Background Processing 527

18.1 Delayed Job 528
18.1.1 Getting Started 528
18.1.2 Creating Jobs 529
18.1.3 Running 530
18.1.4 Summary 530

18.2 Sidekiq 531
18.2.1 Getting Started 531
18.2.2 Workers 532
18.2.3 Scheduled Jobs 533
18.2.4 Delayed Action Mailer 533
18.2.5 Running 534
18.2.6 Error Handling 536
18.2.7 Monitoring 536
18.2.8 Summary 537

18.3 Resque 537
18.3.1 Getting Started 537
18.3.2 Creating Jobs 538
18.3.3 Hooks 539

psn-fernandez-all.indb xxiv 5/9/14 10:07 AM

Contents xxv

18.3.4 Plugins 540
18.3.5 Running 540
18.3.6 Monitoring 541
18.3.7 Summary 541

18.4 Rails Runner 541
18.4.1 Getting Started 542
18.4.2 Usage Notes 542
18.4.3 Considerations 543
18.4.4 Summary 543

18.5 Conclusion 543

Chapter 19 Ajax on Rails 545

19.0.1 Firebug 546
19.1 Unobtrusive JavaScript 547

19.1.1 UJS Usage 547
19.1.2 Helpers 548
19.1.3 jQuery UJS Custom Events 550

19.2 Turbolinks 551
19.2.1 Turbolinks Usage 551
19.2.2 Turbolinks Events 551
19.2.3 Controversy 552

19.3 Ajax and JSON 553
19.3.1 Ajax link_to 553

19.4 Ajax and HTML 555
19.5 Ajax and JavaScript 557
19.6 Conclusion 558

Chapter 20 Asset Pipeline 559

20.1 Asset Pipeline 560
20.2 Wish List 560
20.3 The Big Picture 561
20.4 Organization: Where Does Everything Go? 561
20.5 Manifest Files 561

20.5.1 Manifest Directives 563
20.5.2 Search Path 564
20.5.3 Gemifi ed Assets 564
20.5.4 Index Files 565
20.5.5 Format Handlers 565

20.6 Custom Format Handlers 567

psn-fernandez-all.indb xxv 5/9/14 10:07 AM

xxvi Contents

20.7 Postprocessing 568
20.7.1 Stylesheets 568
20.7.2 JavaScripts 568
20.7.3 Custom Compressor 569

20.8 Helpers 569
20.8.1 Images 570
20.8.2 Getting the URL of an Asset File 570
20.8.3 Built- In SASS Asset Path Helpers 570
20.8.4 Data URIs 571

20.9 Fingerprinting 571
20.10 Serving the Files 572

20.10.1 GZip Compression 573
20.11 Rake Tasks 573
20.12 Conclusion 574

Chapter 21 RSpec 575

21.1 Introduction 575
21.2 Basic Syntax and API 578

21.2.1 describe and context 578
21.2.2 let(:name) { expression } 578
21.2.3 let!(:name) { expression } 580
21.2.4 before and after 580
21.2.5 it 581
21.2.6 specify 581
21.2.7 pending 582
21.2.8 expect(...).to / expect(...).not_to 583
21.2.9 Implicit Subject 586
21.2.10 Explicit Subject 586

21.3 Matchers 587
21.4 Custom Expectation Matchers 588

21.4.1 Custom Matcher DSL 590
21.4.2 Fluent Chaining 590

21.5 Shared Behaviors 591
21.6 Shared Context 592
21.7 RSpec’s Mocks and Stubs 592

21.7.1 Test Doubles 592
21.7.2 Null Objects 593
21.7.3 Method Stubs 5.93
21.7.4 Partial Mocking and Stubbing 594

psn-fernandez-all.indb xxvi 5/9/14 10:07 AM

Contents xxvii

21.7.5 receive_message_chain 594
21.8 Running Specs 595
21.9 RSpec Rails Gem 596

21.9.1 Installation 596
21.9.2 Model Specs 599
21.9.3 Controller Specs 601
21.9.4 View Specs 604
21.9.5 Helper Specs 605
21.9.6 Feature Specs 606

21.10 RSpec Tools 609
21.10.1 Guard- RSpec 609
21.10.2 Spring 610
21.10.3 Specjour 610
21.10.4 SimpleCov 610

21.11 Conclusion 610

Chapter 22 XML 611

22.1 The to_xml Method 611
22.1.1 Customizing to_xml Output 613
22.1.2 Associations and to_xml 614
22.1.3 Advanced to_xml Usage 617
22.1.4 Dynamic Runtime Attributes 618
22.1.5 Overriding to_xml 620

22.2 The XML Builder 620
22.3 Parsing XML 622

22.3.1 Turning XML into Hashes 622
22.3.2 Typecasting 623

22.4 Conclusion 624

Appendix A Active Model API Reference 625

A.1 AttributeMethods 625
A.1.1 active_model/attribute_methods.rb 626

A.2 Callbacks 627
A.2.1 active_model/callbacks.rb 628

A.3 Conversion 629
A.3.1 active_model/conversion.rb 629

A.4 Dirty 629
A.4.1 active_model/dirty.rb 630

psn-fernandez-all.indb xxvii 5/9/14 10:07 AM

xxviii Contents

A.5 Errors 631
A.5.1 active_model/errors.rb 631

A.6 ForbiddenAttributesError 635
A.7 Lint::Tests 635
A.8 Model 635
A.9 Name 636

A.9.1 active_model/naming.rb 637
A.10 Naming 638

A.10.1 active_model/naming.rb 638
A.11 SecurePassword 638
A.12 Serialization 638

A.12.1 active_model/serialization.rb 639
A.13 Serializers::JSON 639

A.13.1 active_model/serializers/json.rb 639
A.14 Serializers::Xml 639

A.14.1 active_model/serializers/xml.rb 640
A.15 Translation 640

A.15.1 active_model/translation.rb 641
A.16 Validations 641

A.16.1 active_model/validations 642
A.16.2 active_model/validations/absence 643
A.16.3 active_model/validations/acceptance 643
A.16.4 active_model/validations/callbacks 643
A.16.5 active_model/validations/

confirmation 644
A.16.6 active_model/validations/exclusion 644
A.16.7 active_model/validations/format 644
A.16.8 active_model/validations/inclusion 645
A.16.9 active_model/validations/length 645
A.16.10 active_model/validations/

numericality 646
A.16.11 active_model/validations/presence 647
A.16.12 active_model/validations/validates 647
A.16.13 active_model/validations/with 648

A.17 Validator 648
A.17.1 active_model/validator.rb 649

psn-fernandez-all.indb xxviii 5/9/14 10:07 AM

Contents xxix

Appendix B Active Support API Reference 651

B.1 Array 651
B.1.1 active_support/core_ext/array/

access 651
B.1.2 active_support/core_ext/array/

conversions 652
B.1.3 active_support/core_ext/array/

extract_options 655
B.1.4 active_support/core_ext/array/

grouping 655
B.1.5 active_support/core_ext/array/

prepend_and_append 656
B.1.6 active_support/core_ext/array/wrap 657
B.1.7 active_support/core_ext/object/

blank 657
B.1.8 active_support/core_ext/object/

to_param 657
B.2 ActiveSupport::BacktraceCleaner 657

B.2.1 active_support/backtrace_cleaner 657
B.3 Benchmark 658

B.3.1 ms 658
B.4 ActiveSupport::Benchmarkable 658

B.4.1 active_support/benchmarkable 658
B.5 BigDecimal 659

B.5.1 active_support/core_ext/big_decimal/

conversions 659
B.5.2 active_support/json/encoding 659

B.6 ActiveSupport::Cache::Store 660
B.7 ActiveSupport::CachingKeyGenerator 665

B.7.1 active_support/key_generator 665
B.8 ActiveSupport::Callbacks 665

B.8.1 active_support/callbacks 666
B.9 Class 668

B.9.1 active_support/core_ext/class/

attribute 668

psn-fernandez-all.indb xxix 5/9/14 10:07 AM

xxx Contents

B.9.2 active_support/core_ext/class/attribute
_accessors 670

B.9.3 active_support/core_ext/class/attribute
_accessors 671

B.9.4 active_support/core_ext/class/delegating
_attributes 671

B.9.5 active_support/core_ext/class/

subclasses 671
B.10 ActiveSupport::Concern 671

B.10.1 active_support/concern 671
B.11 ActiveSupport::Concurrency 672

B.11.1 ActiveSupport::Concurrency::Latch 672
B.12 ActiveSupport::Configurable 673

B.12.1 active_support/configurable 673
B.13 Date 673

B.13.1 active_support/core_ext/date/

acts_like 673
B.13.2 active_support/core_ext/date/

calculations 674
B.13.3 active_support/core_ext/date/

conversions 681
B.13.4 active_support/core_ext/date/zones 682
B.13.5 active_support/json/encoding 682

B.14 DateTime 682
B.14.1 active_support/core_ext/date_time/

acts_like 682
B.14.2 active_support/core_ext/date_time/

calculations 682
B.14.3 active_support/core_ext/date_time/

conversions 685
B.14.4 active_support/core_ext/date_time/

zones 686
B.14.5 active_support/json/encoding 687

B.15 ActiveSupport::Dependencies 687
B.15.1 active_support/dependencies 687
B.15.2 active_support/dependencies/

autoload 691

psn-fernandez-all.indb xxx 5/9/14 10:07 AM

Contents xxxi

B.16 ActiveSupport::Deprecation 693
B.16.1 active_support/deprecation 693

B.17 ActiveSupport::DescendantsTracker 694
B.17.1 active_support/descendants_tracker 694

B.18 ActiveSupport::Duration 695
B.18.1 active_support/duration 695

B.19 Enumerable 696
B.19.1 active_support/core_ext/enumerable 696
B.19.2 active_support/json/encoding 697

B.20 ERB::Util 697
B.20.1 active_support/core_ext/string/

output_safety 697
B.21 FalseClass 698

B.21.1 active_support/core_ext/object/

blank 698
B.21.2 active_support/json/encoding 698

B.22 File 698
B.22.1 active_support/core_ext/file/atomic 698

B.23 Hash 699
B.23.1 active_support/core_ext/hash/

compact 699
B.23.2 active_support/core_ext/hash/

conversions 699
B.23.3 active_support/core_ext/hash/

deep_merge 700
B.23.4 active_support/core_ext/hash/except 700
B.23.5 active_support/core_ext/hash/

indifferent_access 701
B.23.6 active_support/core_ext/hash/keys 701
B.23.7 active_support/core_ext/hash/

reverse_merge 703
B.23.8 active_support/core_ext/hash/slice 703
B.23.9 active_support/core_ext/object/

to_param 704
B.23.10 active_support/core_ext/object/

to_query 704
B.23.11 active_support/json/encoding 704
B.23.12 active_support/core_ext/object/blank 704

psn-fernandez-all.indb xxxi 5/9/14 10:07 AM

xxxii Contents

B.24 ActiveSupport::Gzip 704
B.24.1 active_support/gzip 705

B.25 ActiveSupport::HashWithIndifferentAccess 705
B.25.1 active_support/

hash_with_indifferent_access 705
B.26 ActiveSupport::Inflector::Inflections 705

B.26.1 active_support/inflector/

inflections 707
B.26.2 active_support/inflector/

transliterate 710
B.27 Integer 711

B.27.1 active_support/core_ext/integer/
inflections 711

B.27.2 active_support/core_ext/integer/

multiple 712
B.28 ActiveSupport::JSON 712

B.28.1 active_support/json/decoding 712
B.28.2 active_support/json/encoding 712

B.29 Kernel 712
B.29.1 active_support/core_ext/kernel/

agnostics 713
B.29.2 active_support/core_ext/kernel/

debugger 713
B.29.3 active_support/core_ext/kernel/

reporting 713
B.29.4 active_support/core_ext/kernel/

singleton_class 714
B.30 ActiveSupport::KeyGenerator 714

B.30.1 active_support/key_generator 714
B.31 ActiveSupport::Logger 714

B.31.1 active_support/logger 714
B.31.2 active_support/logger_silence 715

B.32 ActiveSupport::MessageEncryptor 715
B.32.1 active_support/message_encryptor 715

B.33 ActiveSupport::MessageVerifier 715
B.33.1 active_support/message_verifier 716

B.34 Module 716

psn-fernandez-all.indb xxxii 5/9/14 10:07 AM

Contents xxxiii

B.34.1 active_support/core_ext/module/

aliasing 716
B.34.2 active_support/core_ext/module/

anonymous 718
B.34.3 active_support/core_ext/module/

attr_internal 718
B.34.4 active_support/core_ext/module/

attribute_accessors 719
B.34.5 active_support/core_ext/module/

concerning 719
B.34.6 active_support/core_ext/module/

delegation 720
B.34.7 active_support/core_ext/module/

deprecation 722
B.34.8 active_support/core_ext/module/

introspection 722
B.34.9 active_support/core_ext/module/

qualified_const 723
B.34.10 active_support/core_ext/module/

reachable 723
B.34.11 active_support/core_ext/module/

remove_method 724
B.34.12 active_support/dependencies 724

B.35 ActiveSupport::Multibyte::Chars 724
B.35.1 active_support/multibyte/chars 724
B.35.2 active_support/multibyte/unicode 727

B.36 NilClass 729
B.36.1 active_support/core_ext/object/

blank 729
B.36.2 active_support/json/encoding 729

B.37 ActiveSupport::Notifications 729
B.37.1 active_support/core_ext/object/

blank 730
B.37.2 active_support/json/encoding 730
B.37.3 active_support/core_ext/numeric/bytes 730
B.37.4 active_support/core_ext/numeric/

conversions 731
B.37.5 active_support/core_ext/numeric/time 737

psn-fernandez-all.indb xxxiii 5/9/14 10:07 AM

xxxiv Contents

B.38 Object 738
B.38.1 active_support/core_ext/object/

acts_like 738
B.38.2 active_support/core_ext/object/

blank 739
B.38.3 active_support/core_ext/object/

deep_dup 739
B.38.4 active_support/core_ext/object/

duplicable 739
B.38.5 active_support/core_ext/object/

inclusion 740
B.38.6 active_support/core_ext/object/instance

_variables 740
B.38.7 active_support/core_ext/object/json 741
B.38.8 active_support/core_ext/object/

to_param 741
B.38.9 active_support/core_ext/object/

to_query 741
B.38.10 active_support/core_ext/object/try 741
B.38.11 active_support/core_ext/object/

with_options 742
B.38.12 active_support/dependencies 742

B.39 ActiveSupport::OrderedHash 743
B.39.1 active_support/ordered_hash 743

B.40 ActiveSupport::OrderedOptions 743
B.40.1 active_support/ordered_options 743

B.41 ActiveSupport::PerThreadRegistry 744
B.41.1 active_support/per_thread_registry 744

B.42 ActiveSupport::ProxyObject 744
B.42.1 active_support/proxy_object 745

B.43 ActiveSupport::Railtie 745
B.43.1 active_support/railtie 745

B.44 Range 746
B.44.1 active_support/core_ext/range/

conversions 746
B.44.2 active_support/core_ext/range/each 746
B.44.3 active_support/core_ext/range/

include_range 746

psn-fernandez-all.indb xxxiv 5/9/14 10:07 AM

Contents xxxv

B.44.4 active_support/core_ext/range/

overlaps 747
B.44.5 active_support/core_ext/enumerable 747

B.45 Regexp 747
B.45.1 active_support/core_ext/regexp 747
B.45.2 active_support/json/encoding 747

B.46 ActiveSupport::Rescuable 748
B.46.1 active_support/rescuable 748

B.47 String 748
B.47.1 active_support/json/encoding 748
B.47.2 active_support/core_ext/object/

blank 749
B.47.3 active_support/core_ext/string/

access 749
B.47.4 active_support/core_ext/string/

behavior 750
B.47.5 active_support/core_ext/string/

conversions 750
B.47.6 active_support/core_ext/string/

exclude 750
B.47.7 active_support/core_ext/string/

filters 751
B.47.8 active_support/core_ext/string/

indent 752
B.47.9 active_support/core_ext/string/

inflections 752
B.47.10 active_support/core_ext/string/

inquiry 756
B.47.11 active_support/core_ext/string/

multibyte 756
B.47.12 active_support/core_ext/string/

output_safety 757
B.47.13 active_support/core_ext/string/starts

_ends_with 757
B.47.14 active_support/core_ext/string/

strip 757
B.47.15 active_support/core_ext/string/in_time

_zone 758

psn-fernandez-all.indb xxxv 5/9/14 10:07 AM

xxxvi Contents

B.48 ActiveSupport::StringInquirer 758
B.49 Struct 758

B.49.1 active_support/core_ext/struct 758
B.50 ActiveSupport::Subscriber 758
B.51 Symbol 759

B.51.1 active_support/json/encoding 759
B.52 ActiveSupport::TaggedLogging 759

B.52.1 active_support/tagged_logger 759
B.53 ActiveSupport::TestCase 759

B.53.1 active_support/test_case 759
B.54 ActiveSupport::Testing::Assertions 761

B.54.1 active_support/testing/assertions 761
B.54.2 active_support/testing/time_helpers 762

B.55 Thread 762
B.55.1 active_support/core_ext/thread 763

B.56 Time 763
B.56.1 active_support/json/encoding 763
B.56.2 active_support/core_ext/time/

acts_like 764
B.56.3 active_support/core_ext/time/

calculations 764
B.56.4 active_support/core_ext/time/

conversions 770
B.56.5 active_support/core_ext/time/

marshal 771
B.56.6 active_support/core_ext/time/zones 771

B.57 ActiveSupport::TimeWithZone 773
B.58 ActiveSupport::TimeZone 774

B.58.1 active_support/values/time_zone 775
B.59 TrueClass 778

B.59.1 active_support/core_ext/object/

blank 778
B.59.2 active_support/json/encoding 778

B.60 ActiveSupport::XmlMini 778
B.60.1 active_support/xml_mini 778

psn-fernandez-all.indb xxxvi 5/9/14 10:07 AM

Contents xxxvii

Appendix C Rails Essentials 781

C.1 Environmental Concerns 781
C.1.1 Operating System 781
C.1.2 Aliases 782

C.2 Essential Gems 782
C.2.1 Better Errors 782
C.2.2 Country Select 783
C.2.3 Debugger 783
C.2.4 Draper 783
C.2.5 Kaminari 784
C.2.6 Nested Form Fields 785
C.2.7 Pry and Friends 786
C.2.8 Rails Admin 787
C.2.9 Simple Form 788
C.2.10 State Machine 788

C.3 Ruby Toolbox 789
C.4 Screencasts 789

C.4.1 Railcasts 790

Index 791

psn-fernandez-all.indb xxxvii 5/9/14 10:07 AM

This page intentionally left blank

xxxix

A long time ago, I was an intern at a technology company. We had “deploy week,”
meaning that after deploying, we took an entire week to fi ght fi res. Moving our code
to the production environment would inevitably cause unexpected changes. One
day, I read a blog post titled “Unit Testing with Ruby on Rails,” and my life was for-
ever changed. I excitedly went and told my team that we could write code to check
whether our code worked before deploying, but they weren’t particularly interested.
A few months later, when a friend asked me to be the CTO of his startup, I said,
“Only if I can do it in Ruby on Rails.”

My story was fairly typical for that period. I didn’t know anything about Ruby,
but I had to write my application in Rails. I fi gured out enough Ruby to fake it and
cobbled together an application in record time. There was just one problem: I didn’t
really understand how it actually worked. This is the deal everyone makes with Rails
at the start. You can’t think about the details too much because you’re fl ying to the
sky like a rocket.

This book, however, isn’t about that. When I read The Rails Way for the fi rst time,
I felt like I truly understood Rails for the fi rst time. All those details I didn’t fully
understand were now able to be grokked. Every time someone said, “Rails is magic,”
I would smile to myself. If Rails was magic, I had peered behind the curtain. One
day, I decided that I should write some documentation to help dispel those kinds of
comments. One commit became two; two became twenty. Eventually, I was a large
contributor in my own right. Such a long way for someone who had just a few short
years earlier never heard of a unit test!

As Rails has changed, so has The Rails Way. In fact, one criticism you could make
of this book is that it’s not actually “the Rails way”; after all, it teaches you HAML

Foreword

psn-fernandez-all.indb xxxix 5/9/14 10:07 AM

xl Foreword

instead of ERb! I think that this criticism misses the mark. After all, it’s not 2005
anymore. To see what I mean, go read the two forewords from the previous edition.
They appear right after this one … I’ll wait.

Done? David’s foreword was quite accurate for both Rails 2 and The Rails Way.
At that time, Rails was very much “not as a blank slate equally tolerant of every kind
of expression.” Rails was built for what I call the “Omakase Stack”: you have no
choice, you get exactly what Chef David wants to serve you.1

Yehuda’s foreword was also quite accurate— but for Rails 3 and The Rails™ 3 Way.
“We brought this philosophy to every area of Rails 3: fl exibility without compro-
mise.” With Rails 3, you get the Omakase stack by default, but you are free to swap
out components: if you don’t like sushi, you can substitute some sashimi.

There was a lot of wailing and gnashing of teeth during the development of
Rails 3. Jeremy Ashkenas called it “by far the worst misfortune to ever happen
to Rails.” Rails 3 was an investment in the future of Rails, and investments can take
a while to pay off. At the release of Rails 3, it seemed like we had waited more than a
year for no new features. Rails was a little better but mostly the same. The real benefi t
was where it couldn’t be seen: in the refactoring work. Rails 1 was “red- green.” Rails
2 was “red- green.” Rails 3 was “refactor.” It took a little while for gem authors to take
advantage of this fl exibility, but eventually, they did.

And that brings us to Rails 4 and The Rails™ 4 Way. This book still explains quite
a bit about how Rails works at a low level but also gives you an alternate vision from
the Omakase Stack, based on the experience and talent of Hashrocket. In many
ways, The Rails™ 4 Way, Agile Web Development with Rails, and Rails 4 in Action are
all “the Rails way.” Contemporary Rails developers get the best of both worlds: They
can take advantage of the rapid development of convention over confi guration, but
if they choose to follow a different convention, they can. And we have many sets of
conventions to choose from. It’s no longer “David’s way or the highway,” though
David’s way is obviously the default, as it should be.

It has been an amazing few years for Rails, and it has been a pleasure to take a part
in its development. I hope that this book will give you the same level of insight and
clarity into Rails as it did for me, years ago, while also sparking your imagination for
what Rails will undoubtedly become in the future.

—Steve Klabnik

1. Omakase is a Japanese term used at sushi restaurants to leave the selection to the chef. To
learn more about the Omakase stack, read http://words.steveklabnik.com/rails-has
-two-default-stacks

psn-fernandez-all.indb xl 5/9/14 10:07 AM

http://words.steveklabnik.com/rails-has-two-default-stacks
http://words.steveklabnik.com/rails-has-two-default-stacks

xli

Rails is more than programming framework for creating web applications. It’s also a
framework for thinking about web applications. It ships not as a blank slate equally
tolerant of every kind of expression. On the contrary, it trades that fl exibility for the
convenience of “what most people need most of the time to do most things.” It’s a
designer straightjacket that sets you free from focusing on the things that just don’t
matter and focuses your attention on the stuff that does.

To be able to accept that trade, you need to understand not just how to do some-
thing in Rails but also why it’s done like that. Only by understanding the why will
you be able to consistently work with the framework instead of against it. It doesn’t
mean that you’ll always have to agree with a certain choice, but you will need to agree
to the overachieving principle of conventions. You have to learn to relax and let go of
your attachment to personal idiosyncrasies when the productivity rewards are right.

This book can help you do just that. Not only does it serve as a guide in your
exploration of the features in Rails, but it also gives you a window into the mind and
soul of Rails. Why we’ve chosen to do things the way we do them and why we frown
on certain widespread approaches. It even goes so far as to include the discussions
and stories of how we got there— straight from the community participants that
helped shape them.

Learning how to do Hello World in Rails has always been easy to do on your
own, but getting to know and appreciate the gestalt of Rails, less so. I applaud Obie
for trying to help you on this journey. Enjoy it.

—David Heinemeier Hansson
creator of Ruby on Rails

Foreword to the Previous Edition

psn-fernandez-all.indb xli 5/9/14 10:07 AM

This page intentionally left blank

xliii

From the beginning, the Rails framework turned web development on its head with
the insight that the vast majority of time spent on projects amounted to meaning-
less sit- ups. Instead of having the time to think through your domain- specifi c code,
you’d spend the fi rst few weeks of a project deciding meaningless details. By making
decisions for you, Rails frees you to kick off your project with a bang, getting a work-
ing prototype out the door quickly. This makes it possible to build an application
with some meat on its bones in a few weekends, making Rails the web framework of
choice for people with a great idea and a full- time job.

Rails makes some simple decisions for you, like what to name your controller
actions and how to organize your directories. It also gets pretty aggressive and sets
development- friendly defaults for the database and caching layer you’ll use, making
it easy to change to more production- friendly options once you’re ready to deploy.

By getting so aggressive, Rails makes it easy to put at least a few real users in
front of your application within days, enabling you to start gathering the require-
ments from your users immediately rather than spending months architecting a per-
fect solution only to learn that your users use the application differently than you
expected.

The Rails team built the Rails project itself according to very similar goals. Don’t
try to overthink the needs of your users. Get something out there that works and
improve it based on actual usage patterns. By all accounts, this strategy has been a
smashing success, and with the blessing of the Rails core team, the Rails community
leveraged the dynamism of Ruby to fi ll in the gaps in plugins. Without taking a close
look at Rails, you might think that Rails’ rapid prototyping powers are limited to the
15- minute blog demo but that you’d fall off a cliff when writing a real app. This has

Foreword to the Previous Edition

psn-fernandez-all.indb xliii 5/9/14 10:07 AM

xliv Foreword to the Previous Edition

never been true. In fact, in Rails 2.1, 2.2, and 2.3, the Rails team looked closely at
common usage patterns refl ected in very popular plugins, adding features that would
further reduce the number of sit- ups needed to start real- life applications.

By the release of Rails 2.3, the Rails ecosystem had thousands of plugins, and
applications like Twitter started to push the boundaries of the Rails defaults. Increas-
ingly, you might build your next Rails application using a nonrelational database or
deploy it inside a Java infrastructure using JRuby. It was time to take the tight inte-
gration of the Rails stack to the next level.

Over the course of 20 months, starting in January 2008, we looked at a wide
range of plugins, spoke with the architects of some of the most popular Rails appli-
cations, and changed the way the Rails internals thought about its defaults.

Rather than starting from scratch, trying to build a generic data layer for Rails,
we took on the challenge of making it easy to give any ORM the same tight level of
integration with the rest of the framework as Active Record. We accepted no com-
promises, taking the time to write the tight Active Record integration using the same
APIs that we now expose for other ORMs. This covers the obvious, such as making it
possible to generate a scaffold using DataMapper or Mongoid. It also covers the less
obvious, such as giving alternative ORMs the same ability to include the amount of
time spent in the model layer in the controller’s log output.

We brought this philosophy to every area of Rails 3: fl exibility without compro-
mise. By looking at the ways that an estimated million developers use Rails, we could
hone in on the needs of real developers and plugin authors, signifi cantly improving
the overall architecture of Rails based on real user feedback.

Because the Rails 3 internals are such a departure from what’s come before, devel-
opers building long- lived applications and plugin developers need a resource that
comprehensively covers the philosophy of the new version of the framework. The
Rails™ 3 Way is a comprehensive resource that digs into the new features in Rails 3
and perhaps, more important, the rationale behind them.

—Yehuda Katz
Rails Core

psn-fernandez-all.indb xliv 5/9/14 10:07 AM

xlv

It’s an exciting time for the Rails community. We have matured tremendously and
our mainstream adoption continues to pick up steam. Nearly 10 years after DHH
fi rst started playing with Ruby, it’s safe to say that Rails remains a relevant and vital
tool in the greater web technology ecosystem.

Rails 4 represents a big step forward for the community. We shed a variety of
vestigial features that had been deprecated in Rails 3. Security was beefed up and
raw performance improved. Most everything in the framework feels, well, tighter
than before. Rails 4 is leaner and meaner than its previous incarnations, and so is this
edition of The Rails Way.

In addition to normal revisions to bring the text up to date with the evolution
of Rails’ numerous APIs, this edition adds a signifi cant amount of new and updated
material about security, performance, and caching; Haml; RSpec; Ajax; and the new
Asset Pipeline.

About This Book
As with previous editions, this book is not a tutorial or basic introduction to Ruby or
Rails. It is meant as a day- to- day reference for the full- time Rails developer. The more
confi dent reader might be able to get started in Rails using just this book, extensive
online resources, and his or her wits, but there are other publications that are more
introductory in nature and might be a wee bit more appropriate for beginners.

Every contributor to this book works with Rails on a full- time basis. We do not
spend our days writing books or training other people, although that is certainly
something that we enjoy doing on the side.

Introduction

psn-fernandez-all.indb xlv 5/9/14 10:07 AM

xlvi Introduction

This book was originally conceived for myself, because I hate having to use online
documentation, especially API docs, which need to be consulted over and over again.
Since the API documentation is liberally licensed (just like the rest of Rails), there
are a few sections of the book that reproduce parts of the API documentation. In
practically all cases, the API documentation has been expanded and/or corrected
and supplemented with additional examples and commentary drawn from practical
experience.

Hopefully you are like me— I really like books that I can keep next to my key-
board, scribble notes in, and fi ll with bookmarks and dog- ears. When I’m coding, I
want to be able to quickly refer to API documentation, in- depth explanations, and
relevant examples.

Book Structure
I attempted to give the material a natural structure while meeting the goal of being
the best possible Rails reference book. To that end, careful attention has been given
to presenting holistic explanations of each subsystem of Rails, including detailed
API information where appropriate. Every chapter is slightly different in scope, and
I suspect that Rails is now too big a topic to cover the whole thing in depth in just
one book.

Believe me, it has not been easy coming up with a structure that makes perfect
sense for everyone. Particularly, I have noted surprise in some readers when they
notice that Active Record is not covered fi rst. Rails is foremost a web framework and,
at least to me, the controller and routing implementation is the most unique, power-
ful, and effective feature, with Active Record following a close second.

Sample Code and Listings
The domains chosen for the code samples should be familiar to almost all profes-
sional developers. They include time and expense tracking, auctions, regional data
management, and blogging applications. I don’t spend pages explaining the subtler
nuances of the business logic for the samples or justifying design decisions that don’t
have a direct relationship to the topic at hand. Following in the footsteps of my
series colleague Hal Fulton and The Ruby Way, most of the snippets are not full code
listings—only the relevant code is shown. Ellipses (…) often denote parts of the code
that have been eliminated for clarity.

Whenever a code listing is large and signifi cant, and I suspect that you might
want to use parts of it verbatim in your code, I supply a listing heading. There are
not too many of those. The whole set of code listings will not add up to a complete
working system, nor are there 30 pages of sample application code in an appendix.

psn-fernandez-all.indb xlvi 5/9/14 10:07 AM

Introduction xlvii

The code listings should serve as inspiration for your production- ready work, but
keep in mind that it often lacks touches necessary in real- world work. For example,
examples of controller code are often missing pagination and access control logic,
because it would detract from the point being expressed.

Some of the source code for my examples can be found at https://github
.com/obie/tr3w_time_and_expenses. Note that it is not a working nor
complete application. It just made sense at times to keep the code in the context
of an application and hopefully you might draw some inspiration from browsing
through it.

Concerning Third- Party RubyGems and Plugins
Whenever you fi nd yourself writing code that feels like plumbing, by which I mean
completely unrelated to the business domain of your application, you’re probably
doing too much work. I hope that you have this book at your side when you encoun-
ter that feeling. There is almost always some new part of the Rails API or a third-
party RubyGem for doing exactly what you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate to
call out the availability of third- party code, and I even document the RubyGems and
plugins that I feel are most crucial for effective Rails work. In cases where third- party
code is better than the built- in Rails functionality, I don’t cover the built- in Rails
functionality (pagination is a good example).

An average developer might see her productivity double with Rails, but I’ve seen
serious Rails developers achieve gains that are much higher. That’s because we follow
the “don’t repeat yourself ” (DRY) principle religiously, of which “don’t reinvent the
wheel” (DRTW) is a close corollary. Reimplementing something when an existing
implementation is good enough is an unnecessary waste of time that nevertheless can
be very tempting, since it’s such a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, offi cial plugins, and
third- party plugins. That ecosystem has been exploding rapidly and provides all the
raw technology you need to build even the most complicated enterprise- class web
applications. My goal is to equip you with enough knowledge that you’ll be able to
avoid continuously reinventing the wheel.

Recommended Reading and Resources
Readers may fi nd it useful to read this book while referring to some of the excellent
reference titles listed in this section.

Most Ruby programmers always have their copy of the “Pickaxe” book nearby,
Programming Ruby (ISBN: 0- 9745140- 5- 5), because it is a good language reference.

psn-fernandez-all.indb xlvii 5/9/14 10:07 AM

https://github.com/obie/tr3w_time_and_expenses
https://github.com/obie/tr3w_time_and_expenses

xlviii Introduction

Readers interested in really understanding all the nuances of Ruby programming
should acquire The Ruby Way, Second Edition (ISBN: 0- 672-3288- 4- 4).

I highly recommend Peepcode Screencasts, in- depth video presentations on a
variety of Rails subjects by the inimitable Geoffrey Grosenbach, available at http://
peepcode.com.

Ryan Bates does an excellent job explaining nuances of Rails development in his
long- running series of free webcasts available at http://railscasts.com.

Regarding David Heinemeier Hansson, a.k.a. DHH: I had the pleasure of estab-
lishing a friendship with David, creator of Rails, in early 2005, before Rails hit the
mainstream and he became an international Web 2.0 superstar. My friendship with
David is a big factor in my writing this book today. David’s opinions and public
statements shape the Rails world, which means he gets quoted a lot when we discuss
the nature of Rails and how to use it effectively.

I don’t know if this is true anymore, but back when I wrote the original edition
of this book, David had told me on a couple of occasions that he hates the “DHH”
moniker that people tend to use instead of his long and diffi cult- to- spell full name.
For that reason, in this book I try to always refer to him as “David” instead of the
ever- tempting “DHH.” When you encounter references to “David” without further
qualifi cation, I’m referring to the one and only David Heinemeier Hansson.

There are a number of notable people from the Rails world that are also referred
to on a fi rst- name basis in this book. Those include the following:

 • Yehuda Katz

 • Jamis Buck

 • Xavier Noria

 • Tim Pope

Goals
As already stated, I hope to make this your primary working reference for Ruby on
Rails. I don’t really expect too many people to read it through to the end unless they’re
expanding their basic knowledge of the Rails framework. Whatever the case may be,
over time, I hope this book gives you as an application developer/programmer great-
er confi dence in making design and implementation decisions while working on
your day- to- day tasks. After spending time with this book, your understanding of the
fundamental concepts of Rails coupled with hands- on experience should leave you
feeling comfortable working on real- world Rails projects, with real- world demands.

If you are in an architectural or development lead role, this book is not targeted
to you but should make you feel more comfortable discussing the pros and cons of

psn-fernandez-all.indb xlviii 5/9/14 10:07 AM

http://peepcode.com
http://peepcode.com
http://railscasts.com

Introduction xlix

Ruby on Rails adoption and ways to extend Rails to meet the particular needs of the
project under your direction.

Finally, if you are a development manager, you should fi nd the practical perspec-
tive of the book and our coverage of testing and tools especially interesting and hope-
fully get some insight into why your developers are so excited about Ruby and Rails.

Prerequisites
The reader is assumed to have the following knowledge:

 • Basic Ruby syntax and language constructs such as blocks

 • Solid grasp of object- oriented principles and design patterns

 • Basic understanding of relational databases and SQL

 • Familiarity with how Rails applications are laid out and function

 • Basic understanding of network protocols such as HTTP and SMTP

 • Basic understanding of XML documents and web services

 • Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy
material in the front to harder material in the back. Some chapters do start out with
fundamental, almost introductory material and push on to more advanced coverage.
There are defi nitely sections of the text that experienced Rails developers will gloss
over. However, I believe that there is new knowledge and inspiration in every chapter
for all skill levels.

Required Technology
A late- model Apple MacBook Pro running Mac OS X should be fi ne— just kidding,
of course. Linux is pretty good for Rails development also. Microsoft Windows—
well, let me just put it this way: your mileage may vary. I’m being nice and diplomatic
in saying that. We specifi cally do not discuss Rails development on Microsoft plat-
forms in this book. It’s common knowledge that the vast majority of working Rails
professionals develop and deploy on non- Microsoft platforms.

psn-fernandez-all.indb xlix 5/9/14 10:07 AM

This page intentionally left blank

li

The Rails™ 4 Way was very much a team effort. On behalf of myself and Kevin, I
would like to thank Vitaly Kushner and Ari Lerner for their contributions and sup-
port throughout the life of the project. We’d also like to thank Mike Perham, Juanito
Fatas, Phillip Campbell, Brian Cardarella, Carlos Souza, and Michael Mazyar for
technical review and edits. I must thank my understanding business partner Trevor
Owens and staff at Lean Startup Machine for their ongoing support. Of course,
Kevin and I also thank our families for their patience as writing tasks quite often ate
into our personal time with them.

As always, I’d also like to express a huge debt of gratitude to our executive editor
at Pearson: Debra Williams Cauley. Without her constant support and encourage-
ment throughout the years, the Professional Ruby Series would not exist.

—Obie Fernandez
December 2013

Acknowledgments

psn-fernandez-all.indb li 5/9/14 10:07 AM

This page intentionally left blank

liii

Obie Fernandez
Obie has been hacking computers since he got his fi rst Commodore VIC- 20 in the
eighties. In the midnineties, he found himself in the right place and time as a pro-
grammer on some of the fi rst Java enterprise projects. He moved to Atlanta, Georgia,
in 1998 and founded the Extreme Programming (later Agile Atlanta) User Group
and was that group’s president and organizer for several years. In 2004, he joined
world-renowned consultancy ThoughtWorks and made a name for himself tackling
high- risk, progressive projects in the enterprise, including some of the fi rst enterprise
projects in the world utilizing Ruby on Rails.

As founder and CEO of Hashrocket, one of the world’s best web design and
development consultancies, Obie specialized in orchestrating the creation of large-
scale, web- based applications, both for startups and mission- critical enterprise
projects. In 2010, Obie sold his stake in Hashrocket and has been working with
technology startups ever since. He’s currently cofounder and CTO of Lean Startup
Machine, where he leads an awesome technology team and is building recognition as
a thought leader on lean startup topics.

Obie’s evangelization of Ruby on Rails online via blog posts and publications
dates back to early 2005, and it earned him quite a bit of notoriety (and trash
talking) from his old friends in the Java open- source community. Since then, he has
traveled around the world relentlessly promoting Rails at large industry conferences.
The previous two editions of this book are considered the “bibles” of Ruby on Rails
development and are bestsellers.

About the Authors

psn-fernandez-all.indb liii 5/9/14 10:07 AM

liv About the Authors

Obie still gets his hands dirty with code daily and posts regularly on various
topics to his popular weblog at http://blog.obiefernandez.com. His next
book, The Lean Enterprise, is scheduled to be published in spring 2014.

Kevin Faustino
Kevin is founder and chief craftsman of Remarkable Labs, based in Toronto, Cana-
da. He believes that software should not just work but be well crafted. He founded
Remarkable Labs because he wanted to build a company that he would be proud to
work for and that other companies would love to work with.

Following his passion for sharing knowledge, Kevin also founded the Toronto
Ruby Brigade, which hosts tech talks, hack nights, and book clubs. Kevin has been
specializing in Ruby since 2008 and has been professionally developing since 2005.

psn-fernandez-all.indb liv 5/9/14 10:07 AM

http://blog.obiefernandez.com

A
ctive

Record

263

Respectful debate, honesty, passion, and working systems created an environment that not

even the most die- hard enterprise architect could ignore, no matter how buried in Java design

patterns. Those who placed technical excellence and pragmaticism above religious attachment

and vendor cronyism were easily convinced of the benefi ts that broadening their defi nition of

acceptable technologies could bring.

— Ryan Tomayko1

Active Record is a simple object- relational mapping (ORM) framework compared to
other popular ORM frameworks, such as Hibernate in the Java world. Don’t let that
fool you, though: Under its modest exterior, Active Record has some pretty advanced
features. To really get the most effectiveness out of Rails development, you need to
have more than a basic understanding of Active Record— things like knowing when
to break out of the one- table/one- class pattern or how to leverage Ruby modules to
keep your code clean and free of duplication.

In this chapter, we wrap up this book’s comprehensive coverage of Active Record
by reviewing callbacks, single- table inheritance (STI), and polymorphic models. We
also review a little bit of information about metaprogramming and Ruby domain-
specifi c languages (DSLs) as they relate to Active Record.

9.1 Scopes
Scopes (or “named scopes” if you’re old school) allow you to defi ne and chain query
criteria in a declarative and reusable manner.

1. http://lesscode.org/2006/03/12/someone-tell-gosling/

CHAPTER 9

Advanced Active Record

psn-fernandez-all.indb 263 5/9/14 10:07 AM

http://lesscode.org/2006/03/12/someone-tell-gosling/

264 Chapter 9: Advanced Active Record

1 class Timesheet < ActiveRecord::Base
2 scope :submitted, - > { where(submitted: true) }
3 scope :underutilized, - > { where('total_hours < 40') }

To declare a scope, use the scope class method, passing it a name as a symbol and a
callable object that includes a query criteria within. You can simply use Arel criteria
methods such as where, order, and limit to construct the defi nition as shown in
the example. The queries defi ned in a scope are only evaluated whenever the scope
is invoked.

1 class User < ActiveRecord::Base
2 scope :delinquent, - > { where('timesheets_updated_at < ?', 1.week.ago) }

Invoke scopes as you would class methods.

>> User.delinquent
=> [#<User id: 2, timesheets_updated_at: "2013- 04-20 20:02:13"...>]

Note that instead of using the scope macro- style method, you can simply defi ne
a class method on an Active Record model that returns a scoped method, such as
where. To illustrate, the following class method is equivalent to the delinquent
scope defi ned in the previous example.

1 def self.delinquent
2 where('timesheets_updated_at < ?', 1.week.ago)
3 end

9.1.1 Scope Parameters
You can pass arguments to scope invocations by adding parameters to the proc you
use to defi ne the scope query.

1 class BillableWeek < ActiveRecord::Base
2 scope :newer_than, - >(date) { where('start_date > ?', date) }

Then pass the argument to the scope as you would normally.

BillableWeek.newer_than(Date.today)

9.1.2 Chaining Scopes
One of the benefi ts of scopes is that you can chain them together to create complex
queries from simple ones:

>> Timesheet.underutilized.submitted.to_a
=> [#<Timesheet id: 3, submitted: true, total_hours: 37 ...

psn-fernandez-all.indb 264 5/9/14 10:07 AM

9.1 Scopes 265

A
ctive

Record

Scopes can be chained together for reuse within scope defi nitions themselves. For
instance, let’s say that we always want to constrain the result set of the underuti-
lized scope to only submitted timesheets:

1 class Timesheet < ActiveRecord::Base
2 scope :submitted, - > { where(submitted: true) }
3 scope :underutilized, - > { submitted.where('total_hours < 40') }

9.1.3 Scopes and has_many
In addition to being available at the class context, scopes are available automatically
on has_many association attributes.

>> u = User.find(2)
=> #<User id: 2, username: "obie"...>
>> u.timesheets.size
=> 3
>> u.timesheets.underutilized.size
=> 1

9.1.4 Scopes and Joins
You can use Arel’s join method to create cross model scopes. For instance, if we gave our
recurring example Timesheet a submitted_at date attribute instead of just a boolean,
we could add a scope to User allowing us to see who is late on their timesheet submission.

1 scope :tardy, - > {
2 joins(:timesheets).
3 where("timesheets.submitted_at <= ?", 7.days.ago).
4 group("users.id")
5 }

Arel’s to_sql method is useful for debugging scope defi nitions and usage.

>> User.tardy.to_sql
=> "SELECT "users".* FROM "users"
 INNER JOIN "timesheets" ON "timesheets"."user_id" = "users"."id"
 WHERE (timesheets.submitted_at <= '2013- 04-13 18:16:15.203293')
 GROUP BY users.id" # query formatted nicely for the book

Note that as demonstrated in the example, it’s a good idea to use unambiguous col-
umn references (including the table name) in cross model scope defi nitions so that
Arel doesn’t get confused.

9.1.5 Scope Combinations
Our example of a cross model scope violates good object- oriented design principles:
It contains the logic for determining whether or not a Timesheet is submitted, which

psn-fernandez-all.indb 265 5/9/14 10:07 AM

266 Chapter 9: Advanced Active Record

is code that properly belongs in the Timesheet class. Luckily, we can use Arel’s merge
method to fi x it. First, we put the late logic where it belongs— in Timesheet:

scope :late, - > { where("timesheet.submitted_at <= ?", 7.days.ago) }

Then we use our new late scope in tardy:

scope :tardy, - > {
 joins(:timesheets).group("users.id").merge(Timesheet.late)
}

If you have trouble with this technique, make absolutely sure that your scopes’
clauses refer to fully qualifi ed column names. (In other words, don’t forget to prefi x
column names with tables.) The console and to_sql method is your friend for
debugging.

9.1.6 Default Scopes
There may arise use cases where you want certain conditions applied to the fi nders
for your model. Consider that our timesheet application has a default view of open
timesheets—we can use a default scope to simplify our general queries.

class Timesheet < ActiveRecord::Base
 default_scope { where(status: "open") }
end

Now when we query for our Timesheets, by default, the open condition will be applied:

>> Timesheet.pluck(:status)
=> ["open", "open", "open"]

Default scopes also get applied to your models when building or creating them,
which can be a great convenience or a nuisance if you are not careful. In our previous
example, all new Timesheets will be created with a status of “open.”

>> Timesheet.new
=> #<Timesheet id: nil, status: "open">
>> Timesheet.create
=> #<Timesheet id: 1, status: "open">

You can override this behavior by providing your own conditions or scope to override
the default setting of the attributes.

>> Timesheet.where(status: "new").new
=> #<Timesheet id: nil, status: "new">
>> Timesheet.where(status: "new").create

psn-fernandez-all.indb 266 5/9/14 10:07 AM

9.1 Scopes 267

A
ctive

Record

=> #<Timesheet id: 1, status: "new">

There may be cases where at runtime you want to create a scope and pass it around as
a fi rst- class object leveraging your default scope. In this case, Active Record provides
the all method.

>> timesheets = Timesheet.all.order("submitted_at DESC")
=> #<ActiveRecord::Relation [#<Timesheet id: 1, status: "open"]>
>> timesheets.where(name: "Durran Jordan").to_a
=> []

There’s another approach to scopes that provides a sleeker syntax: scoping, which
allows the chaining of scopes via nesting within a block.

>> Timesheet.order("submitted_at DESC").scoping do
>> Timesheet.first
>> end
=> #<Timesheet id: 1, status: "open">

That’s pretty nice, but what if we don’t want our default scope to be included in
our queries? In this case, Active Record takes care of us through the unscoped
method.

>> Timesheet.unscoped.order("submitted_at DESC").to_a
=> [#<Timesheet id: 2, status: "submitted">]

Similarly to overriding our default scope with a relation when creating new objects,
we can supply unscoped as well to remove the default attributes.

>> Timesheet.unscoped.new
=> #<Timesheet id: nil, status: nil>

9.1.7 Using Scopes for CRUD
You have a wide range of Active Record’s CRUD methods available on scopes,
which gives you some powerful abilities. For instance, let’s give all our underutilized
timesheets some extra hours.

>> u.timesheets.underutilized.pluck(:total_hours)
=> [37, 38]

>> u.timesheets.underutilized.update_all("total_hours = total_hours + 2")
=> 2

>> u.timesheets.underutilized.pluck(:total_hours)
=> [39]

psn-fernandez-all.indb 267 5/9/14 10:07 AM

268 Chapter 9: Advanced Active Record

Scopes— including a where clause using hashed conditions— will populate attributes
of objects built off of them with those attributes as default values. Admittedly, it’s a
bit diffi cult to think of a plausible case for this feature, but we’ll show it in an exam-
ple. First, we add the following scope to Timesheet:

scope :perfect, - > { submitted.where(total_hours: 40) }

Now building an object on the perfect scope should give us a submitted timesheet
with 40 hours.

> Timesheet.perfect.build
=> #<Timesheet id: nil, submitted: true, user_id: nil, total_hours: 40 ...>

As you’ve probably realized by now, the Arel underpinnings of Active Record are
tremendously powerful and truly elevate the Rails platform.

9.2 Callbacks
This advanced feature of Active Record allows the savvy developer to attach behavior
at a variety of different points along a model’s life cycle, such as after initialization;
before database records are inserted, updated, or removed; and so on.

Callbacks can do a variety of tasks, ranging from simple things such as the log-
ging and massaging of attribute values prior to validation to complex calculations.
Callbacks can halt the execution of the life cycle process taking place. Some callbacks
can even modify the behavior of the model class on the fl y. We’ll cover all those sce-
narios in this section, but fi rst let’s get a taste of what a callback looks like. Check out
the following silly example:

1 class Beethoven < ActiveRecord::Base
2 before_destroy :last_words
3
4 protected
5
6 def last_words
7 logger.info "Friends applaud, the comedy is over"
8 end
9 end

So prior to dying (ehrm, being destroyed), the last words of the Beethoven
class will always be logged for posterity. As we’ll see soon, there are 14 different op-
portunities to add behavior to your model in this fashion. Before we get to that list,
let’s cover the mechanics of registering a callback.

psn-fernandez-all.indb 268 5/9/14 10:07 AM

9.2 Callbacks 269

A
ctive

Record

9.2.1 One- Liners
Now if (and only if) your callback routine is really short,2 you can add it by passing
a block to the callback macro. We’re talking one- liners!

class Napoleon < ActiveRecord::Base
 before_destroy { logger.info "Josephine..." }
 ...
end

Since Rails 3, the block passed to a callback is executed via instance_eval so that
its scope is the record itself (versus needing to act on a passed- in record variable).
The following example implements “paranoid” model behavior, covered later in the
chapter.

1 class Account < ActiveRecord::Base
2 before_destroy { self.update_attribute(:deleted_at, Time.now); false }
3 ...

9.2.2 Protected or Private
Except when you’re using a block, the access level for callback methods should always
be protected or private. It should never be public, since callbacks should never be
called from code outside the model.

Believe it or not, there are even more ways to implement callbacks, but we’ll
cover those techniques later in the chapter. For now, let’s look at the lists of callback
hooks available.

9.2.3 Matched before/after Callbacks
In total, there are 19 types of callbacks you can register on your models! Thirteen of
them are matching before/after callback pairs, such as before_validation
and after_validation. Four of them are around callbacks, such as around_
save. (The other two, after_initialize and after_find, are special, and
we’ll discuss them later in this section.)

9.2.3.1 List of Callbacks
This is the list of callback hooks available during a save operation. (The list varies
slightly depending on whether you’re saving a new or existing record.)

2. If you are browsing old Rails source code, you might come across callback macros receiving a short
string of Ruby code to be evaluated in the binding of the model object. That way of adding callbacks
was deprecated in Rails 1.2, because you’re always better off using a block in those situations.

psn-fernandez-all.indb 269 5/9/14 10:07 AM

270 Chapter 9: Advanced Active Record

 • before_validation

 • after_validation

 • before_save

 • around_save

 • before_create (for new records) and before_update (for existing records)

 • around_create (for new records) and around_update (for existing records)

 • after_create (for new records) and after_update (for existing records)

 • after_save

Delete operations have their own callbacks:

 • before_destroy

 • around_destroy, which executes a DELETE database statement on yield

 • after_destroy, which is called after record has been removed from the
database and all attributes have been frozen (readonly)

Callbacks may be limited to specifi c Active Record life cycles (:create, :update,
:destroy) by explicitly defi ning which ones can trigger it using the :on option.
The :on option may accept a single lifecycle (like on: :create) or an array of life
cycles (like on: [:create, :update]).

Run only on create.
before_validation :some_callback, on: :create

Additionally, transactions have callbacks as well for when you want actions to occur
after the database is guaranteed to be in a permanent state. Note that only “after”
callbacks exist here due to the nature of transactions— it’s a bad idea to be able to
interfere with the actual operation itself.

 • after_commit

 • after_rollback

 • after_touch

Skipping Callback Execution

The following Active Record methods, when executed, do not run any
callbacks:

psn-fernandez-all.indb 270 5/9/14 10:07 AM

9.2 Callbacks 271

A
ctive

Record

 • decrement

 • decrement_counter

 • delete

 • delete_all

 • increment

 • increment_counter

 • toggle

 • touch

 • update_column

 • update_columns

 • update_all

 • update_counters

9.2.4 Halting Execution
If you return a boolean false (not nil) from a callback method, Active Record
halts the execution chain. No further callbacks are executed. The save method will
return false, and save! will raise a RecordNotSaved error.

Keep in mind that since the last expression of a Ruby method is returned implic-
itly, it is a pretty common bug to write a callback that halts execution unintentional-
ly. If you have an object with callbacks that mysteriously fails to save, make sure you
aren’t returning false by mistake.

9.2.5 Callback Usages
Of course, the callback you should use for a given situation depends on what you’re
trying to accomplish. The best I can do is to serve up some examples to inspire you
with your own code.

9.2.5.1 Cleaning Up Attribute Formatting with
before_validation on Create

The most common examples of using before_validation callbacks have
to do with cleaning up user- entered attributes. For example, the following
CreditCard class cleans up its number attribute so that false negatives don’t
occur on validation:

1 class CreditCard < ActiveRecord::Base
2 before_validation on: :create do
3 # Strip everything in the number except digits.
4 self.number = number.gsub(/[^0-9]/, "")
5 end
6 end

psn-fernandez-all.indb 271 5/9/14 10:07 AM

272 Chapter 9: Advanced Active Record

9.2.5.2 Geocoding with before_save
Assume that you have an application that tracks addresses and has mapping features.
Addresses should always be geocoded before saving so that they can be displayed
rapidly on a map later.3

As is often the case, the wording of the requirement itself points you in the direc-
tion of the before_save callback:

 1 class Address < ActiveRecord::Base
 2
 3 before_save :geocode
 4 validates_presence_of :street, :city, :state, :country
 5 ...
 6
 7 def to_s
 8 [street, city, state, country].compact.join(', ')
 9 end
10
11 protected
12
13 def geocode
14 result = Geocoder.coordinates(to_s)
15 self.latitude = result.first
16 self.longitude = result.last
17 end
18 end

Note

For the sake of this example, we will not be using Geocoder’s Active Record
extensions.

Before we move on, there are a couple of additional considerations. The preced-
ing code works great if the geocoding succeeds, but what if it doesn’t? Do we
still want to allow the record to be saved? If not, we should halt the execution
chain:

1 def geolocate
2 result = Geocoder.coordinates(to_s)
3 return false if result.empty? # halt execution
4
5 self.latitude = result.first
6 self.longitude = result.last
7 end

3. I recommend the excellent Geocoder gem available at http://www.rubygeocoder.com

psn-fernandez-all.indb 272 5/9/14 10:07 AM

http://www.rubygeocoder.com

9.2 Callbacks 273

A
ctive

Record

The only problem remaining is that we give the rest of our code (and by extension,
the end user) no indication of why the chain was halted. Even though we’re not in a
validation routine, I think we can put the errors collection to good use here:

 1 def geolocate
 2 result = Geocoder.coordinates(to_s)
 3 if result.present?
 4 self.latitude = result.first
 5 self.longitude = result.last
 6 else
 7 errors[:base] << "Geocoding failed. Please check address."
 8 false
 9 end
10 end

If the geocoding fails, we add a base error message (for the whole object) and halt
execution so that the record is not saved.

9.2.5.3 Exercise Your Paranoia with before_destroy
What if your application has to handle important kinds of data that, once entered,
should never be deleted? Perhaps it would make sense to hook into Active Record’s
destroy mechanism and somehow mark the record as deleted instead?

The following example depends on the accounts table having a deleted_at
datetime column.

1 class Account < ActiveRecord::Base
2 before_destroy do
3 self.update_attribute(:deleted_at, Time.current)
4 false
5 end
6
7 ...
8 end

After the deleted_at column is populated with the current time, we return false
in the callback to halt execution. This ensures that the underlying record is not actu-
ally deleted from the database.4

It’s probably worth mentioning that there are ways that Rails allows you to unin-
tentionally circumvent before_destroy callbacks:

4. Real- life implementation of the example would also need to modify all fi nders to include conditions
where deleted_at is null; otherwise, the records marked deleted would continue to show up in the
application. That’s not a trivial undertaking, and luckily you don’t need to do it yourself. There’s a Rails
plugin named destroyed_at created by Dockyard that does exactly that, and you can fi nd it at https://
github.com/dockyard/destroyed_at

psn-fernandez-all.indb 273 5/9/14 10:07 AM

https://github.com/dockyard/destroyed_at
https://github.com/dockyard/destroyed_at

274 Chapter 9: Advanced Active Record

 • The delete and delete_all class methods of ActiveRecord::Base
are almost identical. They remove rows directly from the database without in-
stantiating the corresponding model instances, which means no callbacks will
occur.

 • Model objects in associations defi ned with the option dependent: :delete

_all will be deleted directly from the database when removed from the collec-
tion using the association’s clear or delete methods.

9.2.5.4 Cleaning Up Associated Files with after_destroy
Model objects that have fi les associated with them, such as attachment records and
uploaded images, can clean up after themselves when deleted using the after
_destroy callback. The following method from Thoughtbot’s Paperclip5 gem is a
good example:

1 # Destroys the file. Called in an after_destroy callback.
2 def destroy_attached_files
3 Paperclip.log("Deleting attachments.")
4 each_attachment do |name, attachment|
5 attachment.send(:flush_deletes)
6 end
7 end

9.2.6 Special Callbacks: after_initialize and after_find
The after_initialize callback is invoked whenever a new Active Record
model is instantiated (either from scratch or from the database). Having it
available prevents you from having to muck around with overriding the actual
initialize method.

The after_find callback is invoked whenever Active Record loads a model
object from the database and is actually called before after_initialize if both
are implemented. Because after_find and after_initialize are called for
each object found and instantiated by fi nders, performance constraints dictate that
they can only be added as methods and not via the callback macros.

What if you want to run some code only the fi rst time a model is ever instanti-
ated and not after each database load? There is no native callback for that scenario,
but you can do it using the after_initialize callback. Just add a condition that
checks to see if it is a new record:

1 after_initialize do
2 if new_record?

5. Get Paperclip at https://github.com/thoughtbot/paperclip

psn-fernandez-all.indb 274 5/9/14 10:07 AM

https://github.com/thoughtbot/paperclip

9.2 Callbacks 275

A
ctive

Record

3 ...
4 end
5 end

In a number of Rails apps that I’ve written, I’ve found it useful to capture user pref-
erences in a serialized hash associated with the User object. The serialize feature
of Active Record models makes this possible, since it transparently persists Ruby ob-
ject graphs to a text column in the database. Unfortunately, you can’t pass it a default
value, so I have to set one myself:

 1 class User < ActiveRecord::Base
 2 serialize :preferences # defaults to nil
 3 ...
 4
 5 protected
 6
 7 def after_initialize
 8 self.preferences ||= Hash.new
 9 end
10 end

Using the after_initialize callback, I can automatically populate the
preferences attribute of my user model with an empty hash, so that I never have
to worry about it being nil when I access it with code such as user.preferences
[:show_help_text] = false.

Kevin Says …

You could change the previous example to not use callbacks by using the
Active Record store, a wrapper around serialize that is used exclusively for
storing hashes in a database column.

1 class User < ActiveRecord::Base
2 serialize :preferences # defaults to nil
3 store :preferences, accessors: [:show_help_text]
4 ...
5 end

By default, the preferences attribute would be populated with an empty
hash. Another added benefi t is the ability to explicitly defi ne accessors, remov-
ing the need to interact with the underlying hash directly. To illustrate, let’s set
the show_help_text preference to true:

>> user = User.new
=> #<User id: nil, properties: {}, ...>

psn-fernandez-all.indb 275 5/9/14 10:07 AM

276 Chapter 9: Advanced Active Record

>> user.show_help_text = true
=> true
>> user.properties
=> {"show_help_text" => true}

Ruby’s metaprogramming capabilities combined with the ability to run code
whenever a model is loaded using the after_find callback are a powerful mix.
Since we’re not done learning about callbacks yet, we’ll come back to uses of after_
find later on in the chapter in the section “Modifying Active Record Classes at
Runtime.”

9.2.7 Callback Classes
It is common enough to want to reuse callback code for more than one object that
Rails provides a way to write callback classes. All you have to do is pass a given call-
back queue an object that responds to the name of the callback and takes the model
object as a parameter.

Here’s our paranoid example from the previous section as a callback class:

1 class MarkDeleted
2 def self.before_destroy(model)
3 model.update_attribute(:deleted_at, Time.current)
4 false
5 end
6 end

The behavior of MarkDeleted is stateless, so I added the callback as a class method.
Now you don’t have to instantiate MarkDeleted objects for no good reason. All
you do is pass the class to the callback queue for whichever models you want to have
the mark- deleted behavior:

1 class Account < ActiveRecord::Base
2 before_destroy MarkDeleted
3 ...
4 end
5
6 class Invoice < ActiveRecord::Base
7 before_destroy MarkDeleted
8 ...
9 end

9.2.7.1 Multiple Callback Methods in One Class
There’s no rule that says you can’t have more than one callback method in a
callback class. For example, you might have special audit log requirements to
implement:

psn-fernandez-all.indb 276 5/9/14 10:07 AM

9.2 Callbacks 277

A
ctive

Record

 1 class Auditor
 2 def initialize(audit_log)
 3 @audit_log = audit_log
 4 end
 5
 6 def after_create(model)
 7 @audit_log.created(model.inspect)
 8 end
 9
10 def after_update(model)
11 @audit_log.updated(model.inspect)
12 end
13
14 def after_destroy(model)
15 @audit_log.destroyed(model.inspect)
16 end
17 end

To add audit logging to an Active Record class, you would do the following:

1 class Account < ActiveRecord::Base
2 after_create Auditor.new(DEFAULT_AUDIT_LOG)
3 after_update Auditor.new(DEFAULT_AUDIT_LOG)
4 after_destroy Auditor.new(DEFAULT_AUDIT_LOG)
5 ...
6 end

Wow, that’s ugly, having to add three Auditors on three lines. We could extract
a local variable called auditor, but it would still be repetitive. This might be an
opportunity to take advantage of Ruby’s open classes, allowing you to modify classes
that aren’t part of your application.

Wouldn’t it be better to simply say acts_as_audited at the top of the model
that needs auditing? We can quickly add it to the ActiveRecord::Base class so
that it’s available for all our models.

On my projects, the fi le where “quick and dirty” code like the method in Listing 9.1
would reside is lib/core_ext/active_record_base.rb, but you can put it
anywhere you want. You could even make it a plugin.

Listing 9.1 A Quick- and-Dirty acts_as_audited Method
1 class ActiveRecord::Base
2 def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)
3 auditor = Auditor.new(audit_log)
4 after_create auditor
5 after_update auditor
6 after_destroy auditor
7 end
8 end

psn-fernandez-all.indb 277 5/9/14 10:07 AM

278 Chapter 9: Advanced Active Record

Now the top of Account is a lot less cluttered:

1 class Account < ActiveRecord::Base
2 acts_as_audited

9.2.7.2 Testability
When you add callback methods to a model class, you pretty much have to test that they’re
functioning correctly in conjunction with the model to which they are added. That may
or may not be a problem. In contrast, callback classes are easy to test in isolation.

 1 describe '#after_create' do
 2 let(:auditable) { double() }
 3 let(:log) { double() }
 4 let(:content) { 'foo' }
 5
 6 it 'audits a model was created' do
 7 expect(auditable).to receive(:inspect).and_return(content)
 8 expect(log).to receive(:created).and_return(content)
 9 Auditor.new(log).after_create(auditable)
10 end
11 end

9.3 Calculation Methods
All Active Record classes have a calculate method that provides easy access to
aggregate function queries in the database. Methods for count, sum, average,
minimum, and maximum have been added as convenient shortcuts.

Calculation methods can be used in combination with Active Record rela-
tion methods to customize the query. Since calculation methods do not return an
ActiveRecord::Relation, they must be the last method in a scope chain.

There are two basic forms of output:

Single Aggregate Value The single value is typecast to Fixnum for COUNT, Float
for AVG, and the given column’s type for everything else.

Grouped Values This returns an ordered hash of the values and groups them by the
:group option. It takes either a column name or the name of a belongs_to
association.

The following examples illustrate the usage of various calculation methods.

 1 Person.calculate(:count, :all) # the same as Person.count
 2
 3 # SELECT AVG(age) FROM people
 4 Person.average(:age)
 5

psn-fernandez-all.indb 278 5/9/14 10:07 AM

9.3 Calculation Methods 279

A
ctive

Record

 6 # Selects the minimum age for everyone with a last name other than "Drake."
 7 Person.where.not(last_name: 'Drake').minimum(:age)
 8
 9 # Selects the minimum age for any family without any minors.
10 Person.having('min(age) > 17').group(:last_name).minimum(:age)

9.3.1 average(column_name, *options)
Calculates the average value on a given column. The fi rst parameter should be a sym-
bol identifying the column to be averaged.

9.3.2 count(column_name, *options)
Count operates using three different approaches. Count without parameters will
return a count of all the rows for the model. Count with a column_name will return
a count of all the rows for the model with the supplied column present.

9.3.3 ids
Return all the ids for a relation based on its table’s primary key.

User.ids # SELECT id FROM "users"

9.3.4 maximum(column_name, *options)
Calculates the maximum value on a given column. The fi rst parameter should be a
symbol identifying the column to be calculated.

9.3.5 minimum(column_name, *options)
Calculates the minimum value on a given column. The fi rst parameter should be a
symbol identifying the column to be calculated.

9.3.6 pluck(*column_names)
The pluck method queries the database for one or more columns of the underlying
table of a model.

>> User.pluck(:id, :name)
=> [[1, 'Obie']]
>> User.pluck(:name)
=> ['Obie']

It returns an array of values of the specifi ed columns with the corresponding data type.

9.3.7 sum(column_name, *options)
Calculates a summed value in the database using SQL. The fi rst parameter should be
a symbol identifying the column to be summed.

psn-fernandez-all.indb 279 5/9/14 10:07 AM

280 Chapter 9: Advanced Active Record

9.4 Single- Table Inheritance (STI)
A lot of applications start out with a User model of some sort. Over time, as differ-
ent kinds of users emerge, it might make sense to make a greater distinction between
them. Admin and Guest classes are introduced as subclasses of User. Now the shared
behavior can reside in User, and the subtype behavior can be pushed down to sub-
classes. However, all user data can still reside in the users table— all you need to do
is introduce a type column that will hold the name of the class to be instantiated for
a given row.

To continue explaining single- table inheritance, let’s turn back to our example of
a recurring Timesheet class. We need to know how many billable_hours are
outstanding for a given user. The calculation can be implemented in various ways,
but in this case we’ve chosen to write a pair of class and instance methods on the
Timesheet class:

 1 class Timesheet < ActiveRecord::Base
 2 ...
 3
 4 def billable_hours_outstanding
 5 if submitted?
 6 billable_weeks.map(&:total_hours).sum
 7 else
 8 0
 9 end
10 end
11
12 def self.billable_hours_outstanding_for(user)
13 user.timesheets.map(&:billable_hours_outstanding).sum
14 end
15
16 end

I’m not suggesting that this is good code. It works, but it’s ineffi cient and that if/
else condition is a little fi shy. Its shortcomings become apparent once requirements
emerge about marking a Timesheet as paid. It forces us to modify Timesheet’s
billable_hours_outstanding method again:

1 def billable_hours_outstanding
2 if submitted? && not paid?
3 billable_weeks.map(&:total_hours).sum
4 else
5 0
6 end
7 end

psn-fernandez-all.indb 280 5/9/14 10:07 AM

9.4 Single- Table Inheritance (STI) 281

A
ctive

Record

That latest change is a clear violation of the open- closed principle,6 which urg-
es you to write code that is open for extension but closed for modifi cation. We
know that we violated the principle, because we were forced to change the
billable_hours_outstanding method to accommodate the new Timesheet
status. Though it may not seem like a large problem in our simple example, consider
the amount of conditional code that will end up in the Timesheet class once we
start having to implement functionality such as paid_hours and unsubmitted_
hours.

So what’s the answer to this messy question of the constantly changing con-
ditional? Given that you’re reading the section of the book about single- table
inheritance, it’s probably no big surprise that we think one good answer is to use
object- oriented inheritance. To do so, let’s break our original Timesheet class
into four classes.

 1 class Timesheet < ActiveRecord::Base
 2 # nonrelevant code ommited
 3
 4 def self.billable_hours_outstanding_for(user)
 5 user.timesheets.map(&:billable_hours_outstanding).sum
 6 end
 7 end
 8
 9 class DraftTimesheet < Timesheet
10 def billable_hours_outstanding
11 0
12 end
13 end
14
15 class SubmittedTimesheet < Timesheet
16 def billable_hours_outstanding
17 billable_weeks.map(&:total_hours).sum
18 end
19 end

Now when the requirements demand the ability to calculate partially paid timesheets,
we need only add some behavior to a PaidTimesheet class. No messy conditional
statements in sight!

1 class PaidTimesheet < Timesheet
2 def billable_hours_outstanding
3 billable_weeks.map(&:total_hours).sum - paid_hours
4 end
5 end

6. http://en.wikipedia.org/wiki/Open/closed_principle has a good summary.

psn-fernandez-all.indb 281 5/9/14 10:07 AM

http://en.wikipedia.org/wiki/Open/closed_principle has a good summary

282 Chapter 9: Advanced Active Record

9.4.1 Mapping Inheritance to the Database
Mapping object inheritance effectively to a relational database is not one of those prob-
lems with a defi nitive solution. We’re only going to talk about the one mapping strat-
egy that Rails supports natively, which is single- table inheritance, called STI for short.

In STI, you establish one table in the database to hold all the records for any
object in a given inheritance hierarchy. In Active Record STI, that one table is named
after the top parent class of the hierarchy. In the example we’ve been considering, that
table would be named timesheets.

Hey, that’s what it was called before, right? Yes, but to enable STI, we have to add
a type column to contain a string representing the type of the stored object. The
following migration would properly set up the database for our example:

1 class AddTypeToTimesheet < ActiveRecord::Migration
2 def change
3 add_column :timesheets, :type, :string
4 end
5 end

No default value is needed. Once the type column is added to an Active Record
model, Rails will automatically take care of keeping it populated with the right value.
Using the console, we can see this behavior in action:

>> d = DraftTimesheet.create
>> d.type
=> 'DraftTimesheet'

When you try to fi nd an object using the query methods of a base STI class, Rails
will automatically instantiate objects using the appropriate subclass. This is especially
useful in polymorphic situations, such as the timesheet example we’ve been describ-
ing, where we retrieve all the records for a particular user and then call methods that
behave differently depending on the object’s class.

>> Timesheet.first
=> #<DraftTimesheet:0x2212354...>

Note

Rails won’t complain about the missing column; it will simply ignore it. Re-
cently, the error message was reworded with a better explanation, but too
many developers skim error messages and then spend an hour trying to fi gure
out what’s wrong with their models. (A lot of people skim sidebar columns
too when reading books, but, hey, at least I am doubling their chances of
learning about this problem.)

psn-fernandez-all.indb 282 5/9/14 10:07 AM

9.4 Single- Table Inheritance (STI) 283

A
ctive

Record

9.4.2 STI Considerations
Although Rails makes it extremely simple to use single- table inheritance, there are
four caveats that you should keep in mind.

First, you cannot have an attribute on two different subclasses with the same
name but a different type. Since Rails uses one table to store all subclasses, these
attributes with the same name occupy the same column in the table. Frankly, there’s
not much of a reason that should be a problem unless you’ve made some pretty bad
data-modeling decisions.

Second and more important, you need to have one column per attribute on any
subclass, and any attribute that is not shared by all the subclasses must accept nil
values. In the recurring example, PaidTimesheet has a paid_hours column
that is not used by any of the other subclasses. DraftTimesheet and Submitted
Timesheet will not use the paid_hours column and leave it as null in the data-
base. In order to validate data for columns not shared by all subclasses, you must use
Active Record validations and not the database.

Third, it is not a good idea to have subclasses with too many unique attributes.
If you do, you will have one database table with many null values in it. Normally, a
tree of subclasses with a large number of unique attributes suggests that something
is wrong with your application design and that you should refactor. If you have an
STI table that is getting out of hand, it is time to reconsider your decision to use
inheritance to solve your particular problem. Perhaps your base class is too abstract?

Finally, legacy database constraints may require a different name in the database
for the type column. In this case, you can set the new column name using the class
setter method inheritance_column in the base class. For the Timesheet exam-
ple, we could do the following:

1 class Timesheet < ActiveRecord::Base
2 self.inheritance_column = 'object_type'
3 end

Now Rails will automatically populate the object_type column with the object’s type.

9.4.3 STI and Associations
It seems pretty common for applications, particularly data- management ones, to
have models that are very similar in terms of their data payload, mostly varying in
their behavior and associations to each other. If you used object- oriented languag-
es prior to Rails, you’re probably already accustomed to breaking down problem
domains into hierarchical structures.

Take, for instance, a Rails application that deals with the population of states,
counties, cities, and neighborhoods. All of these are places, which might lead you

psn-fernandez-all.indb 283 5/9/14 10:07 AM

284 Chapter 9: Advanced Active Record

to defi ne an STI class named Place as shown in Listing 9.2. I’ve also included the
database schema for clarity:7

Listing 9.2 The Places Database Schema and the Place Class
 1 # == Schema Information
 2 #
 3 # Table name: places
 4 #
 5 # id :integer(11) not null, primary key
 6 # region_id :integer(11)
 7 # type :string(255)
 8 # name :string(255)
 9 # description :string(255)
10 # latitude :decimal(20, 1)
11 # longitude :decimal(20, 1)
12 # population :integer(11)
13 # created_at :datetime
14 # updated_at :datetime
15
16 class Place < ActiveRecord::Base
17 end

Place is in essence an abstract class. It should not be instantiated, but there is no
foolproof way to enforce that in Ruby. (No big deal, this isn’t Java!) Now let’s go
ahead and defi ne concrete subclasses of Place:

 1 class State < Place
 2 has_many :counties, foreign_key: 'region_id'
 3 end
 4
 5 class County < Place
 6 belongs_to :state, foreign_key: 'region_id'
 7 has_many :cities, foreign_key: 'region_id'
 8 end
 9
10 class City < Place
11 belongs_to :county, foreign_key: 'region_id'
12 end

You might be tempted to try adding a cities association to State, knowing that
has_many :through works with both belongs_to and has_many target asso-
ciations. It would make the State class look something like this:

7. For autogenerated schema information added to the top of your model classes, try the annotate gem
at https://github.com/ctran/annotate_models

psn-fernandez-all.indb 284 5/9/14 10:07 AM

https://github.com/ctran/annotate_models

9.4 Single- Table Inheritance (STI) 285

A
ctive

Record

1 class State < Place
2 has_many :counties, foreign_key: 'region_id'
3 has_many :cities, through: :counties
4 end

That would certainly be cool if it worked. Unfortunately, in this particular case, since
there’s only one underlying table that we’re querying, there simply isn’t a way to dis-
tinguish among the different kinds of objects in the query:

Mysql::Error: Not unique table/alias: 'places': SELECT places.* FROM
places INNER JOIN places ON places.region_id = places.id WHERE
((places.region_id = 187912) AND ((places.type = 'County'))) AND
((places.`type` = 'City'))

What would we have to do to make it work? Well, the most realistic would be to use
specifi c foreign keys instead of trying to overload the meaning of region_id for all the
subclasses. For starters, the places table would look like the example in Listing 9.3.

Listing 9.3 The Places Database Schema Revised
== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
state_id :integer(11)
county_id :integer(11)
type :string(255)
name :string(255)
description :string(255)
latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

The subclasses would be simpler without the :foreign_key options on the asso-
ciations. Plus you could use a regular has_many relationship from State to City
instead of the more complicated has_many :through.

 1 class State < Place
 2 has_many :counties
 3 has_many :cities
 4 end
 5
 6 class County < Place
 7 belongs_to :state

psn-fernandez-all.indb 285 5/9/14 10:07 AM

286 Chapter 9: Advanced Active Record

 8 has_many :cities
 9 end
10
11 class City < Place
12 belongs_to :county
13 end

Of course, all those null columns in the places table won’t win you any friends with
relational database purists. That’s nothing, though. Just a little bit later in this chap-
ter, we’ll take a second, more in- depth look at polymorphic has_many relationships,
that will make the purists positively hate you.

9.5 Abstract Base Model Classes
In contrast to single- table inheritance, it is possible for Active Record models to share
common code via inheritance and still be persisted to different database tables. In
fact, every Rails developer uses an abstract model in their code whether they realize
it or not: ActiveRecord::Base.8

The technique involves creating an abstract base model class that persistent subclasses
will extend. It’s actually one of the simpler techniques that we broach in this chapter. Let’s
take the Place class from the previous section (refer to Listing 9.3) and revise it to be an
abstract base class in Listing 9.4. It’s simple really— we just have to add one line of code:

Listing 9.4 The Abstract Place Class
1 class Place < ActiveRecord::Base
2 self.abstract_class = true
3 end

Marking an Active Record model abstract is essentially the opposite of making it an
STI class with a type column. You’re telling Rails, “Hey, I don’t want you to assume
that there is a table named places.”

In our running example, it means we would have to establish tables for states,
counties, and cities, which might be exactly what we want. Remember, though, that
we would no longer be able to query across subtypes with code like Place.all.

Abstract classes is an area of Rails where there aren’t too many hard- and- fast rules
to guide you— experience and gut feeling will help you out.

In case you haven’t noticed yet, both class and instance methods are shared down
the inheritance hierarchy of Active Record models. So are constants and other class
members brought in through module inclusion. That means we can put all sorts of
code inside Place that will be useful to its subclasses.

8. http://m.onkey.org/namespaced-models

psn-fernandez-all.indb 286 5/9/14 10:07 AM

http://m.onkey.org/namespaced-models

9.6 Polymorphic has_many Relationships 287

A
ctive

Record

9.6 Polymorphic has_many Relationships
Rails gives you the ability to make one class belong_to more than one type of
another class, as eloquently stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears some
resemblance to the regular polymorphic union of a class hierarchy, is not
really the same since you’re only dealing with a particular association to a
single target class from any number of source classes, source classes which
don’t have anything else to do with each other; i.e. they aren’t in any par-
ticular inheritance relationship and probably are all persisted in completely
different tables. In this way, the polymorphic association has a lot less to do
with object inheritance and a lot more to do with aspect- oriented program-
ming (AOP); a particular concept needs to be applied to a divergent set of
entities which otherwise are not directly related. Such a concept is referred
to as a cross cutting concern, such as, all the entities in your domain need
to support a history log of all changes to a common logging table. In the
AR example, an Order and a User object are illustrated to both require links
to an Address object.9

In other words, this is not polymorphism in the typical object- oriented sense of
the word; rather, it is something unique to Rails.

9.6.1 In the Case of Models with Comments
In our recurring time and expenses example, let’s assume that we want both
BillableWeek and Timesheet to have many comments (a shared Comment
class). A naive way to solve this problem might be to have the Comment class belong
to both the BillableWeek and Timesheet classes and have billable_week
_id and timesheet_id as columns in its database table.

1 class Comment < ActiveRecord::Base
2 belongs_to :timesheet
3 belongs_to :expense_report
4 end

I call that approach naive because it would be diffi cult to work with and hard to extend.
Among other things, you would need to add code to the application to ensure that a
Comment never belonged to both a BillableWeek and a Timesheet at the same
time. The code to fi gure out what a given comment is attached to would be cumbersome

9. http://techspot.zzzeek.org/2007/05/29/polymorphic-associations-with-sqlalchemy/

psn-fernandez-all.indb 287 5/9/14 10:07 AM

http://techspot.zzzeek.org/2007/05/29/polymorphic-associations-with-sqlalchemy/

288 Chapter 9: Advanced Active Record

to write. Even worse, every time you want to be able to add comments to another type
of class, you’d have to add another nullable foreign key column to the comments table.

Rails solves this problem in an elegant fashion by allowing us to defi ne what
it terms polymorphic associations, which we covered when we described the
polymorphic: true option of the belongs_to association in Chapter 7,
“Active Record Associations.”

9.6.1.1 The Interface
Using a polymorphic association, we need to defi ne only a single belongs_to and
add a pair of related columns to the underlying database table. From that moment on,
any class in our system can have comments attached to it (which would make it com-
mentable) without needing to alter the database schema or the Comment model itself.

1 class Comment < ActiveRecord::Base
2 belongs_to :commentable, polymorphic: true
3 end

There isn’t a Commentable class (or module) in our application. We named the
association :commentable because it accurately describes the interface of objects
that will be associated in this way. The name :commentable will turn up again on
the other side of the association:

1 class Timesheet < ActiveRecord::Base
2 has_many :comments, as: :commentable
3 end
4
5 class BillableWeek < ActiveRecord::Base
6 has_many :comments, as: :commentable
7 end

Here we have the friendly has_many association using the :as option. The :as
marks this association as polymorphic and specifi es which interface we are using on the
other side of the association. While we’re on the subject, the other end of a polymor-
phic belongs_to can be either a has_many or a has_one and work identically.

9.6.1.2 The Database Columns
Here’s a migration that will create the comments table:

1 class CreateComments < ActiveRecord::Migration
2 def change
3 create_table :comments do |t|
4 t.text :body
5 t.integer :commentable

psn-fernandez-all.indb 288 5/9/14 10:07 AM

9.6 Polymorphic has_many Relationships 289

A
ctive

Record

6 t.string :commentable_type
7 end
8 end
9 end

As you can see, there is a column called commentable_type, which stores the class
name of associated object. The Migrations API actually gives you a one- line shortcut
with the references method, which takes a polymorphic option:

1 create_table :comments do |t|
2 t.text :body
3 t.references :commentable, polymorphic: true
4 end

We can see how it comes together using the Rails console (some lines omitted for
brevity):

>> c = Comment.create(body: 'I could be commenting anything.')
>> t = TimeSheet.create
>> b = BillableWeek.create
>> c.update_attribute(:commentable, t)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "Timesheet: 1"
>> c.update_attribute(:commentable, b)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "BillableWeek: 1"

As you can tell, both the Timesheet and the BillableWeek that we played with
in the console had the same id (1). Thanks to the commentable_type attribute,
stored as a string, Rails can fi gure out which is the correct related object.

9.6.1.3 Has_many :through and Polymorphics
There are some logical limitations that come into play with polymorphic associa-
tions. For instance, since it is impossible for Rails to know the tables necessary to join
through a polymorphic association, the following hypothetical code, which tries to
fi nd everything that the user has commented on, will not work:

 1 class Comment < ActiveRecord::Base
 2 belongs_to :user # author of the comment
 3 belongs_to :commentable, polymorphic: true
 4 end
 5
 6 class User < ActiveRecord::Base

psn-fernandez-all.indb 289 5/9/14 10:07 AM

290 Chapter 9: Advanced Active Record

 7 has_many :comments
 8 has_many :commentables, through: :comments
 9 end
10
11 >> User.first.commentables
12 ActiveRecord::HasManyThroughAssociationPolymorphicSourceError: Cannot
13 have a has_many :through association 'User#commentables'on the polymorphic object

If you really need it, has_many :through is possible with polymorphic associa-
tions but only by specifying exactly what type of polymorphic associations you want.
To do so, you must use the :source_type option. In most cases, you will also need
to use the :source option, since the association name will not match the interface
name used for the polymorphic association:

1 class User < ActiveRecord::Base
2 has_many :comments
3 has_many :commented_timesheets, through: :comments,
4 source: :commentable, source_type: 'Timesheet'
5 has_many :commented_billable_weeks, through: :comments,
6 source: :commentable, source_type: 'BillableWeek'
7 end

It’s verbose, and the whole scheme loses its elegance if you go this route, but it works:

>> User.first.commented_timesheets.to_a
=> [#<Timesheet ...>]

9.7 Enums
One of the newest additions to Active Record introduced in Rails 4.1 is the ability
to set an attribute as an enumerable. Once an attribute has been set as an enumer-
able, Active Record will restrict the assignment of the attribute to a collection of
predefi ned values.

To declare an enumerable attribute, use the enum macro- style class method, pass-
ing it an attribute name and an array of status values that the attribute can be set to.

1 class Post < ActiveRecord::Base
2 enum status: %i(draft published archived)
3 ...
4 end

Active Record implicitly maps each predefi ned value of an enum attribute to an
integer; therefore, the column type of the enum attribute must be an integer as well.
By default, an enum attribute will be set to nil. To set an initial state, one can set a
default value in a migration. It’s recommended to set this value to the fi rst declared
status, which would map to 0.

psn-fernandez-all.indb 290 5/9/14 10:07 AM

9.7 Enums 291

A
ctive

Record

1 class CreatePosts < ActiveRecord::Migration
2 def change
3 create_table :posts do |t|
4 t.integer :status, default: 0
5 end
6 end
7 end

For instance, given our example, the default status of a Post model would be “draft”:

>> Post.new.status
=> "draft"

You should never have to work with the underlying integer data type of an enum
attribute, as Active Record creates both predicate and bang methods for each status
value.

 1 post.draft!
 2 post.draft? # => true
 3 post.published? # => false
 4 post.status # => "draft"
 5
 6 post.published!
 7 post.published? # => true
 8 post.draft? # => false
 9 post.status # => "published"
10
11 post.status = nil
12 post.status.nil? # => true
13 post.status # => nil

Active Record also provides scope methods for each status value. Invoking one of
these scopes will return all records with that given status.

Post.draft
Post Load (0.1ms) SELECT "posts".* FROM "posts"

WHERE "posts"."status" = 0

Note

Active Record creates a class method with a pluralized name of the defi ned
enum on the model that returns a hash with the key and value of each sta-
tus. In our preceding example, the Post model would have a class method
named statuses.

>> Post.statuses
=> {"draft"=>0, "published"=>1, "archived"=>2}

psn-fernandez-all.indb 291 5/9/14 10:07 AM

292 Chapter 9: Advanced Active Record

You should only need to access this class method when you need to know
the underlying ordinal value of an enum.

With the addition of the enum attribute, Active Record fi nally has a simple state
machine out of the box. This feature alone should simplify models that had pre-
viously depended on multiple boolean fi elds to manage state. If you require more
advanced functionality, such as status transition callbacks and conditional tran-
sitions, it’s still recommended to use a full- blown state machine like state_
machine.10

9.8 Foreign- Key Constraints
As we work toward the end of this book’s coverage of Active Record, you might have
noticed that we haven’t really touched on a subject of particular importance to many
programmers: foreign- key constraints in the database. That’s mainly because use of
foreign- key constraints simply isn’t the Rails way to tackle the problem of relational
integrity. To put it mildly, that opinion is controversial, and some developers have
written off Rails (and its authors) for expressing it.

There really isn’t anything stopping you from adding foreign- key constraints to
your database tables, although you’d do well to wait until after the bulk of develop-
ment is done. The exception, of course, is those polymorphic associations, which are
probably the most extreme manifestation of the Rails opinion against foreign- key
constraints. Unless you’re armed for battle, you might not want to broach that par-
ticular subject with your DBA.

9.9 Modules for Reusing Common Behavior
In this section, we’ll talk about one strategy for breaking out functionality that is
shared between disparate model classes. Instead of using inheritance, we’ll put the
shared code into modules.

In the section “Polymorphic has_many Relationships” in this chapter, we
described how to add a commenting feature to our recurring sample “Time and
Expenses” application. We’ll continue fl eshing out that example, since it lends itself
to factoring out into modules.

The requirements we’ll implement are as follows: Both users and approvers should
be able to add their comments to a Timesheet or ExpenseReport. Also, since
comments are indicators that a timesheet or expense report requires extra scrutiny
or processing time, administrators of the application should be able to easily view a

10. https://github.com/pluginaweek/state_machine

psn-fernandez-all.indb 292 5/9/14 10:07 AM

https://github.com/pluginaweek/state_machine

9.9 Modules for Reusing Common Behavior 293

A
ctive

Record

list of recent comments. Human nature being what it is, administrators occasionally
gloss over the comments without actually reading them, so the requirements specify
that a mechanism should be provided for marking comments as “OK” fi rst by the
approver and then by the administrator.

Again, here is the polymorphic has_many :comments, as: :commentable
that we used as the foundation for this functionality:

 1 class Timesheet < ActiveRecord::Base
 2 has_many :comments, as: :commentable
 3 end
 4
 5 class ExpenseReport < ActiveRecord::Base
 6 has_many :comments, as: :commentable
 7 end
 8
 9 class Comment < ActiveRecord::Base
10 belongs_to :commentable, polymorphic: true
11 end

Next we enable the controller and action for the administrator that list the 10 most
recent comments with links to the item to which they are attached.

1 class Comment < ActiveRecord::Base
2 scope :recent, - > { order('created_at desc').limit(10) }
3 end
4
5 class CommentsController < ApplicationController
6 before_action :require_admin, only: :recent
7 expose(:recent_comments) { Comment.recent }
8 end

Here’s some of the simple view template used to display the recent comments:

1 %ul.recent.comments
2 - recent_comments.each do |comment|
3 %li.comment
4 %h4= comment.created_at
5 = comment.text
6 .meta
7 Comment on:
8 = link_to comment.commentable.title, comment.commentable
9 # Yes, this would result in N+1 selects.

So far, so good. The polymorphic association makes it easy to access all types of
comments in one listing. In order to fi nd all the unreviewed comments for an item,

psn-fernandez-all.indb 293 5/9/14 10:07 AM

294 Chapter 9: Advanced Active Record

we can use a named scope on the Comment class together with the comments asso-
ciation.

1 class Comment < ActiveRecord::Base
2 scope :unreviewed, - > { where(reviewed: false) }
3 end
4
5 >> timesheet.comments.unreviewed

Both Timesheet and ExpenseReport currently have identical has_many meth-
ods for comments. Essentially, they both share a common interface. They’re com-
mentable!

To minimize duplication, we could specify common interfaces that share code in
Ruby by including a module in each of those classes, where the module contains the
code common to all implementations of the common interface. So, mostly for the
sake of example, let’s go ahead and defi ne a Commentable module to do just that
and include it in our model classes:

 1 module Commentable
 2 has_many :comments, as: :commentable
 3 end
 4
 5 class Timesheet < ActiveRecord::Base
 6 include Commentable
 7 end
 8
 9 class ExpenseReport < ActiveRecord::Base
10 include Commentable
11 end

Whoops, this code doesn’t work! To fi x it, we need to understand an essential aspect
of the way that Ruby interprets our code dealing with open classes.

9.9.1 A Review of Class Scope and Contexts
In many other interpreted, object- oriented programming languages, you have two
phases of execution: one in which the interpreter loads the class defi nitions and says,
“This is the defi nition of what I have to work with,” and the second in which it exe-
cutes the code. This makes it diffi cult (though not necessarily impossible) to add new
methods to a class dynamically during execution.

In contrast, Ruby lets you add methods to a class at any time. In Ruby, when
you type class MyClass, you’re doing more than simply telling the interpreter
to defi ne a class; you’re telling it to “execute the following code in the scope of
this class.”

psn-fernandez-all.indb 294 5/9/14 10:07 AM

9.9 Modules for Reusing Common Behavior 295

A
ctive

Record

Let’s say you have the following Ruby script:

1 class Foo < ActiveRecord::Base
2 has_many :bars
3 end
4 class Foo < ActiveRecord::Base
5 belongs_to :spam
6 end

When the interpreter gets to line 1, we are telling it to execute the following code
(up to the matching end) in the context of the Foo class object. Because the Foo
class object doesn’t exist yet, it goes ahead and creates the class. At line 2, we execute
the statement has_many :bars in the context of the Foo class object. Whatever
the has_many method does, it does right now.

When we again say class Foo at line 4, we are once again telling the interpreter
to execute the following code in the context of the Foo class object, but this time,
the interpreter already knows about class Foo; it doesn’t actually create another class.
Therefore, on line 5, we are simply telling the interpreter to execute the belongs_
to :spam statement in the context of that same Foo class object.

In order to execute the has_many and belongs_to statements, those methods
need to exist in the context in which they are executed. Because these are defi ned as
class methods in ActiveRecord::Base, and we have previously defi ned class Foo
as extending ActiveRecord::Base, the code will execute without a problem.

However, let’s say we defi ned our Commentable module like this:

1 module Commentable
2 has_many :comments, as: :commentable
3 end

In this case, we get an error when it tries to execute the has_many statement. That’s
because the has_many method is not defi ned in the context of the Commentable
module object.

Given what we now know about how Ruby is interpreting the code, we now
realize that what we really want is for that has_many statement to be executed in
the context of the including class.

9.9.2 The included Callback
Luckily, Ruby’s Module class defi nes a handy callback that we can use to do just that.
If a Module object defi nes the method included, it gets run whenever that module
is included in another module or class. The argument passed to this method is the
module/class object into which this module is being included.

psn-fernandez-all.indb 295 5/9/14 10:07 AM

296 Chapter 9: Advanced Active Record

We can defi ne an included method on our Commentable module object
so that it executes the has_many statement in the context of the including class
(Timesheet, ExpenseReport, etc.):

1 module Commentable
2 def self.included(base)
3 base.class_eval do
4 has_many :comments, as: :commentable
5 end
6 end
7 end

Now when we include the Commentable module in our model classes, it will execute
the has_many statement just as if we had typed it into each of those classes’ bodies.

The technique is common enough, within Rails and gems, that it was added as
a fi rst- class concept in the Active Support API as of Rails 3. The previous example
becomes shorter and easier to read as a result:

1 # app/models/concerns/commentable.rb
2 module Commentable
3 extend ActiveSupport::Concern
4 included do
5 has_many :comments, as: :commentable
6 end
7 end

Whatever is inside of the included block will get executed in the class context of
the class where the module is included.

As of version 4.0, Rails includes the directory app/models/concerns as a
place to keep all your application’s model concerns. Any fi le found within this direc-
tory will automatically be part of the application load path.

Courtenay Says …

There’s a fi ne balance to strike here. Magic like include Commentable
certainly saves on typing and makes your model look less complex, but it
can also mean that your association code is doing things you don’t know
about. This can lead to confusion and hours of head scratching while you
track down code in a separate module. My personal preference is to leave all
associations in the model and extend them with a module. That way you can
quickly get a list of all associations just by looking at the code.

psn-fernandez-all.indb 296 5/9/14 10:07 AM

9.10 Modifying Active Record Classes at Runtime 297

A
ctive

Record

9.10 Modifying Active Record Classes at Runtime
The metaprogramming capabilities of Ruby, combined with the after_find call-
back, open the door to some interesting possibilities, especially if you’re willing to
blur your perception of the difference between code and data. I’m talking about mod-
ifying the behavior of model classes on the fl y, as they’re loaded into your application.

Listing 9.5 is a drastically simplifi ed example of the technique, which assumes
the presence of a config column on your model. During the after_find call-
back, we get a handle to the unique singleton class11 of the model instance being
loaded. Then we execute the contents of the config attribute belonging to this
particular Account instance, using Ruby’s class_eval method. Since we’re doing
this using the singleton class for this instance rather than the global Account class,
other account instances in the system are completely unaffected.

Listing 9.5 Runtime Metaprogramming with after_find
 1 class Account < ActiveRecord::Base
 2 ...
 3
 4 protected
 5
 6 def after_find
 7 singleton = class << self; self; end
 8 singleton.class_eval(config)
 9 end
10 end

I used powerful techniques like this one in a supply chain application that I wrote
for a large industrial client. A lot is a generic term in the industry used to describe a
shipment of product. Depending on the vendor and product involved, the attributes
and business logic for a given lot vary quite a bit. Since the set of vendors and prod-
ucts being handled changed on a weekly (sometimes daily) basis, the system needed
to be reconfi gurable without requiring a production deployment.

Without getting into too much detail, the application allowed the mainte-
nance programmers to easily customize the behavior of the system by manipu-
lating Ruby code stored in the database, associated with whatever product the
lot contained.

11. I don’t expect this to make sense to you unless you are familiar with Ruby’s singleton classes and
have the ability to evaluate arbitrary strings of Ruby code at runtime. A good place to start is http://
yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/

psn-fernandez-all.indb 297 5/9/14 10:07 AM

http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/
http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/

298 Chapter 9: Advanced Active Record

For example, one of the business rules associated with lots of butter being shipped
for Acme Dairy Co. might dictate a strictly integral product code, exactly 10 digits in
length. The code (stored in the database) associated with the product entry for Acme
Dairy’s butter product would therefore contain the following two lines:

1 validates_numericality_of :product_code, only_integer: true
2 validates_length_of :product_code, is: 10

9.10.1 Considerations
A relatively complete description of everything you can do with Ruby metaprogram-
ming, and how to do it correctly, would fi ll its own book. For instance, you might
realize that doing things like executing arbitrary Ruby code straight out of the data-
base is inherently dangerous. That’s why I emphasize again that the examples shown
here are very simplifi ed. All I want to do is give you a taste of the possibilities.

If you do decide to begin leveraging these kinds of techniques in real- world applica-
tions, you’ll have to consider security and approval workfl ow and a host of other import-
ant concerns. Instead of allowing arbitrary Ruby code to be executed, you might feel
compelled to limit it to a small subset related to the problem at hand. You might design
a compact API or even delve into authoring a domain- specifi c language (DSL), crafted
specifi cally for expressing the business rules and behaviors that should be loaded dynami-
cally. Proceeding down the rabbit hole, you might write custom parsers for your DSL that
could execute it in different contexts— some for error detection and others for reporting.
It’s one of those areas where the possibilities are quite limitless.

9.10.2 Ruby and Domain- Specifi c Languages
My former colleague Jay Fields and I pioneered the mix of Ruby metaprogramming,
Rails, and internal12 domain- specifi c languages while doing Rails application devel-
opment for clients. I still occasionally speak at conferences and blog about writing
DSLs in Ruby.

Jay has also written and delivered talks about his evolution of Ruby DSL tech-
niques, which he calls business natural languages (or BNL for short13). When devel-
oping BNLs, you craft a domain- specifi c language that is not necessarily valid Ruby

12. The qualifi er internal is used to differentiate a domain- specifi c language hosted entirely inside of a
general- purpose language, such as Ruby, from one that is completely custom and requires its own parser
implementation.
13. Googling BNL will give you tons of links to the Toronto- based band Barenaked Ladies, so
you’re better off going directly to the source at http://blog.jayfields.com/2006/07/business
-natural-language-material.html

psn-fernandez-all.indb 298 5/9/14 10:07 AM

http://blog.jay.elds.com/2006/07/business-natural-language-material.html
http://blog.jay.elds.com/2006/07/business-natural-language-material.html

9.11 Using Value Objects 299

A
ctive

Record

syntax but is close enough to be transformed easily into Ruby and executed at run-
time, as shown in Listing 9.6.

Listing 9.6 Example of Business Natural Language
employee John Doe
compensate 500 dollars for each deal closed in the past 30 days
compensate 100 dollars for each active deal that closed more than
365 days ago
compensate 5 percent of gross profits if gross profits are greater than
1,000,000 dollars
compensate 3 percent of gross profits if gross profits are greater than
2,000,000 dollars
compensate 1 percent of gross profits if gross profits are greater than
3,000,000 dollars

The ability to leverage advanced techniques such as DSLs is yet another powerful
tool in the hands of experienced Rails developers.

Courtenay Says …

DSLs suck! Except the ones written by Obie, of course. The only peo-
ple who can read and write most DSLs are their original authors. As a
developer taking over a project, it’s often quicker to just reimplement
instead of learning the quirks and exactly which words you’re allowed to
use in an existing DSL. In fact, a lot of Ruby metaprogramming sucks
too. It’s common for people gifted with these new tools to go a bit over-
board. I consider metaprogramming, self.included, class_eval,
and friends to be a bit of a code smell on most projects. If you’re making
a web application, future developers and maintainers of the project will
appreciate your using simple, direct, granular, and well- tested methods
rather than monkey patching into existing classes or hiding associations
in modules. That said, if you can pull it off, your code will become more
powerful than you can possibly imagine.

9.11 Using Value Objects
In domain-driven design14 (DDD), there is a distinction between Entity Objects and
Value Objects. All model objects that inherit from ActiveRecord::Base could
be considered Entity Objects in DDD. An Entity Object cares about identity, since
each one is unique. In Active Record, uniqueness is derived from the primary key.

14. http://www.domaindrivendesign.org/

psn-fernandez-all.indb 299 5/9/14 10:07 AM

http://www.domaindrivendesign.org/

300 Chapter 9: Advanced Active Record

Comparing two different Entity Objects for equality should always return false, even
if all its attributes (other than the primary key) are equivalent.

Here is an example comparing two Active Record addresses:

>> home = Address.create(city: "Brooklyn", state: "NY")
>> office = Address.create(city: "Brooklyn", state: "NY")
>> home == office
=> false

In this case, you are actually creating two new Address records and persisting them
to the database; therefore, they have different primary key values.

Value Objects, on the other hand, only care that all their attributes are equal.
When creating Value Objects for use with Active Record, you do not inherit from
ActiveRecord::Base but instead simply defi ne a standard Ruby object. This is a
form of composition called an aggregate in DDD. The attributes of the Value Object
are stored in the database together with the parent object, and the standard Ruby
object provides a means to interact with those values in a more object- oriented way.

A simple example is of a Person with a single Address. To model this using
composition, fi rst we need a Person model with fi elds for the Address. Create it
with the following migration:

1 class CreatePeople < ActiveRecord::Migration
2 def change
3 create_table :people do |t|
4 t.string :name
5 t.string :address_city
6 t.string :address_state
7 end
8 end
9 end

The Person model looks like this:

 1 class Person < ActiveRecord::Base
 2 def address
 3 @address ||= Address.new(address_city, address_state)
 4 end
 5
 6 def address=(address)
 7 self[:address_city] = address.city
 8 self[:address_state] = address.state
 9
10 @address = address
11 end
12 end

psn-fernandez-all.indb 300 5/9/14 10:07 AM

9.11 Using Value Objects 301

A
ctive

Record

We need a corresponding Address object, which looks like this:

 1 class Address
 2 attr_reader :city, :state
 3
 4 def initialize(city, state)
 5 @city, @state = city, state
 6 end
 7
 8 def ==(other_address)
 9 city == other_address.city && state == other_address.state
10 end
11 end

Note that this is just a standard Ruby object that does not inherit from
ActiveRecord::Base. We have defi ned reader methods for our attributes and are
assigning them upon initialization. We also have to defi ne our own == method for
use in comparisons. Wrapping this all up, we get the following usage:

>> gary = Person.create(name: "Gary")
>> gary.address_city = "Brooklyn"
>> gary.address_state = "NY"
>> gary.address
=> #<Address:0x007fcbfcce0188 @city="Brooklyn", @state="NY">

Alternately you can instantiate the address directly and assign it using the address accessor:

>> gary.address = Address.new("Brooklyn", "NY")
>> gary.address
=> #<Address:0x007fcbfa3b2e78 @city="Brooklyn", @state="NY">

9.11.1 Immutability
It’s also important to treat value objects as immutable. Don’t allow them to be
changed after creation. Instead, create a new object instance with the new value
instead. Active Record will not persist value objects that have been changed through
means other than the writer method on the parent object.

9.11.1.1 The Money Gem
A common approach to using Value Objects is in conjunction with the money gem.15

 1 class Expense < ActiveRecord::Base
 2 def cost
 3 @cost ||= Money.new(cents || 0, currency || Money.default_currency)
 4 end

15. https://github.com/RubyMoney/money

psn-fernandez-all.indb 301 5/9/14 10:07 AM

https://github.com/RubyMoney/money

302 Chapter 9: Advanced Active Record

 5
 6 def cost=(cost)
 7 self[:cents] = cost.cents
 8 self[:currency] = cost.currency.to_s
 9
10 cost
11 end
12 end

Remember to add a migration with the two columns— the integer cents and the
string currency that money needs.

1 class CreateExpenses < ActiveRecord::Migration
2 def change
3 create_table :expenses do |t|
4 t.integer :cents
5 t.string :currency
6 end
7 end
8 end

Now when asking for or setting the cost of an item, we would use a Money instance.

>> expense = Expense.create(cost: Money.new(1000, "USD"))
>> cost = expense.cost
>> cost.cents
=> 1000
>> expense.currency
=> "USD"

9.12 Nonpersisted Models
In Rails 3, if one wanted to use a standard Ruby object with Action View helpers, such
as form_for, the object had to “act” like an Active Record instance. This involved
including/extending various Active Model module mixins and implementing the
method persisted?. At a minimum, ActiveModel::Conversion should be
included and ActiveModel::Naming extended. These two modules alone provide
the object all the methods it needs for Rails to determine partial paths, routes, and
naming. Optionally, extending ActiveModel::Translation adds internation-
alization support to your object, while including ActiveModel::Validations
allows for validations to be defi ned. All modules are covered in detail in the Active
Model API Reference.

psn-fernandez-all.indb 302 5/9/14 10:07 AM

9.12 Nonpersisted Models 303

A
ctive

Record

To illustrate, let’s assume we have a Contact class that has attributes for name,
email, and message. The following implementation is Action Pack and Action
View compatible in both Rails 3 and 4:

 1 class Contact
 2 extend ActiveModel::Naming
 3 extend ActiveModel::Translation
 4 include ActiveModel::Conversion
 5 include ActiveModel::Validations
 6
 7 attr_accessor :name, :email, :message
 8
 9 validates :name, presence: true
10 validates :email,
11 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]

{2,})\z/ },
12 presence: true
13 validates :message, length: {maximum: 1000}, presence: true
14
15 def initialize(attributes = {})
16 attributes.each do |name, value|
17 send("#{name}=", value)
18 end
19 end
20
21 def persisted?
22 false
23 end
24 end

New to Rails 4 is the ActiveModel::Model, a module mixin that removes the
drudgery of manually having to implement a compatible interface. It takes care
of including/extending the modules mentioned earlier, defi nes an initializer to set
all attributes on initialization, and sets persisted? to false by default. Using
ActiveModel::Model, the Contact class can be implemented as follows:

 1 class Contact
 2 include ActiveModel::Model
 3
 4 attr_accessor :name, :email, :message
 5
 6 validates :name, presence: true
 7 validates :email,
 8 format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/ },

psn-fernandez-all.indb 303 5/9/14 10:07 AM

304 Chapter 9: Advanced Active Record

 9 presence: true
10 validates :message, length: {maximum: 1000}, presence: true
11 end

9.13 PostgreSQL Enhancements
Out of all the supported databases available in Active Record, PostgreSQL received
the most amount of attention during the development of Rails 4. In this section, we
are going to look at the various additions made to the PostgreSQL database adapter.

9.13.1 Schemaless Data with hstore
The hstore data type from PostgreSQL allows for the storing of key/value pairs or
simply a hash within a single column. In other words, if you are using PostgreSQL
and Rails 4, you can now have schema- less data within your models.

To get started, fi rst set up your PostgreSQL database to use the hstore extension
via the enable_extension migration method:

1 class AddHstoreExtension < ActiveRecord::Migration
2 def change
3 enable_extension "hstore"
4 end
5 end

Next, add the hstore column type to a model. For the purpose of our examples, we
will be using a Photo model with an hstore attribute properties.

1 class AddPropertiesToPhotos < ActiveRecord::Migration
2 change_table :photos do |t|
3 t.hstore :properties
4 end
5 end

With the hstore column properties set up, we are able to write a hash to the
database:

1 photo = Photo.new
2 photo.properties # nil
3 photo.properties = { aperture: 'f/4.5', shutter_speed: '1/100 secs' }
4 photo.save && photo.reload
5 photo.properties # {:aperture=>"f/4.5", :shutter_speed=>"1/100 secs"}

Although this works well enough, Active Record does not keep track of any changes
made to the properties attribute itself.

1 photo.properties[:taken] = Time.current
2 photo.properties

psn-fernandez-all.indb 304 5/9/14 10:07 AM

9.13 PostgreSQL Enhancements 305

A
ctive

Record

3 # {:aperture=>"f/4.5", :shutter_speed=>"1/100 secs",
4 # :taken=>Wed, 23 Oct 2013 16:03:35 UTC +00:00}
5
6 photo.save && photo.reload
7 photo.properties # {:aperture=>"f/4.5", :shutter_speed=>"1/100 secs"}

As with some other PostgreSQL column types, such as array and json, you must
tell Active Record that a change has taken place via the <attribute>_will_
change! method. However, a better solution is to use the Active Record store_
accessor macro- style method to add read/write accessors to hstore values.

1 class Photo < ActiveRecord::Base
2 store_accessor :properties, :aperture, :shutter_speed
3 end

When we set new values to any of these accessors, Active Record is able to
track the changes made to the underlying hash, eliminating the need to call the
<attribute>_will_change! method. Like any accessor, they can have Active
Model validations added to them and also can be used in forms.

 1 photo = Photo.new
 2 photo.aperture = "f/4.5"
 3 photo.shutter_speed = "1/100 secs"
 4 photo.properties # {"aperture"=>"f/4.5", "shutter_speed"=>"1/100 secs"}
 5
 6 photo.save && photo.reload
 7
 8 photo.properties # {"aperture"=>"f/4.5", "shutter_speed"=>"1/100 secs"}
 9 photo.aperture = "f/1.4"
10
11 photo.save && photo.reload
12 photo.properties # {"aperture"=>"f/1.4", "shutter_speed"=>"1/100 secs"}

Be aware that when an hstore attribute is returned from PostgreSQL, all key/values
will be strings.

9.13.1.1 Querying hstore
To query against an hstore value in Active Record, use SQL string conditions with
the where query method. For the sake of clarity, here are a couple examples of vari-
ous queries that can be made against an hstore column type:

 1 # Nonindexed query to find all photos that have a key 'aperture' with a
 2 # value of f/1.4
 3 Photo.where("properties ->:key = :value", key: 'aperture', value: 'f/1.4')
 4

psn-fernandez-all.indb 305 5/9/14 10:07 AM

306 Chapter 9: Advanced Active Record

 5 # Indexed query to find all photos that have a key 'aperture' with a value
 6 # of f/1.4
 7 Photo.where("properties @> 'aperture=>f/1.4'")
 8
 9 # All photos that have a key 'aperture' in properties
10 Photo.where("properties ? :key", key: 'aperture')
11
12 # All photos that do not have a key 'aperture' in properties
13 Photo.where("not properties ? :key", key: 'aperture')
14
15 # All photos that contains all keys 'aperture' and 'shutter_speed'
16 Photo.where("properties ?& ARRAY[:keys]", keys: %w(aperture shutter_speed))
17
18 # All photos that contains any of the keys 'aperture' or 'shutter_speed'
19 Photo.where("properties ?| ARRAY[:keys]", keys: %w(aperture shutter_speed))

For more information on how to build hstore queries, you can consult the
PostgreSQL documentation directly.16

9.13.1.2 GiST and GIN Indexes
If you are doing any queries on an hstore column type, be sure to add the appropriate
index. When adding an index, you will have to decide to use either GIN or GiST
index types. The distinguishing factor between the two index types is that GIN index
lookups are three times faster than GiST indexes; however, they also take three times
longer to build.

You can defi ne either a GIN or GiST index using Active Record migrations by
setting the index option :using to :gin or :gist, respectively.

 add_index :photos, :properties, using: :gin
 # or
 add_index :photos, :properties, using: :gist

GIN and GiST indexes support queries with @>, ?, ?&, and ?| operators.

9.13.2 Array Type
Another NoSQL- like column type supported by PostgreSQL and Rails 4 is array.
This allows us to store a collection of a data type, such as strings, within the database
record itself. For instance, assuming we had an Article model, we could store all
the article’s tags in an array attribute named tags. Since the tags are not stored in

16. http://www.postgresql.org/docs/9.3/static/hstore.html

psn-fernandez-all.indb 306 5/9/14 10:07 AM

http://www.postgresql.org/docs/9.3/static/hstore.html

9.13 PostgreSQL Enhancements 307

A
ctive

Record

another table, when Active Record retrieves an article from the database, it does so
in a single query.

To declare a column as an array, pass true to the :array option for a column
type such as string:

1 class AddTagsToArticles < ActiveRecord::Migration
2 def change
3 change_table :articles do |t|
4 t.string :tags, array: true
5 end
6 end
7 end
8 # ALTER TABLE "articles" ADD COLUMN "tags" character varying(255)[]

The array column type will also accept the option :length to limit the amount of
items allowed in the array.

 t.string :tags, array: true, length: 10

To set a default value for an array column, you must use the PostgreSQL array no-
tation ({value}). Setting the default option to {} ensures that every row in the
database will default to an empty array.

 t.string :tags, array: true, default: '{rails,ruby}'

The migration in the previous code sample would create an array of strings that de-
faults every row in the database to have an array containing strings “rails” and “ruby.”

>> article = Article.create
 (0.1ms) BEGIN
 SQL (66.2ms) INSERT INTO "articles" ("created_at", "updated_at") VALUES
 ($1, $2) RETURNING "id" [["created_at", Wed, 23 Oct 2013 15:03:12

>> article.tags
=> ["rails", "ruby"]

Note that Active Record does not track destructive or in- place changes to the Array
instance.

1 article.tags.pop
2 article.tags # ["rails"]
3 article.save && article.reload
4 article.tags # ["rails", "ruby"]

psn-fernandez-all.indb 307 5/9/14 10:07 AM

308 Chapter 9: Advanced Active Record

To ensure changes are persisted, you must tell Active Record that the attribute has
changed by calling <attribute>_will_change!.

1 article.tags.pop
2 article.tags # ["rails"]
3 article.tags_will_change!
4 article.save && article.reload
5 article.tags # ["rails"]

If the pg_array_parser gem is included in the application Gemfile, Rails will
use it when parsing PostgreSQL’s array representation. The gem includes a native C
extension and JRuby support.

9.13.2.1 Searching in Arrays
If you wish to query against an array column using Active Record, you must use
PSQL’s methods ANY and ALL. To demonstrate, given our previous example, using
the ANY method, we could query for any articles that have the tag “rails”:

Article.where("'rails' = ANY(tags)")

Alternatively, the ALL method searches for arrays where all values in the array equal
the value specifi ed.

Article.where("'rails' = ALL(tags)")

As with the hstore column type, if you are doing queries against an array column
type, the column should be indexed with either GiST or GIN.

add_index :articles, :tags, using: 'gin'

9.13.3 Network Address Types
PostgreSQL comes with column types exclusively for IPv4, IPv6, and MAC address-
es. IPv4 or IPv6 host address are represented with Active Record data types inet and
cidr, where the former accepts values with nonzero bits to the right of the netmask.
When Active Record retrieves inet/cidr data types from the database, it converts
the values to IPAddr objects. MAC addresses are represented with the macaddr
data type, which are represented as a string in Ruby.

To set a column as a network address in an Active Record migration, set the data
type of the column to inet, cidr, or macaddr:

1 class CreateNetworkAddresses < ActiveRecord::Migration
2 def change
3 create_table :network_addresses do |t|
4 t.inet :inet_address

psn-fernandez-all.indb 308 5/9/14 10:07 AM

9.13 PostgreSQL Enhancements 309

A
ctive

Record

5 t.cidr :cidr_address
6 t.macaddr :mac_address
7 end
8 end
9 end

Setting an inet or cidr type to an invalid network address will result in an IP-
Addr::InvalidAddressError exception being raised. If an invalid MAC
address is set, an error will occur at the database level resulting in an Active
Record::StatementInvalid: PG::InvalidTextRepresentation ex-
ception being raised.

>> address = NetworkAddress.new
=> #<NetworkAddress id: nil, inet_address: nil, ...>

>> address.inet_address = 'abc'
IPAddr::InvalidAddressError: invalid address

>> address.inet_address = "127.0.0.1"
=> "127.0.0.1"

>> address.inet_address
=> #<IPAddr: IPv4:127.0.0.1/255.255.255.255>

>> address.save && address.reload
=> #<NetworkAddress id: 1,
 inet_address: #<IPAddr: IPv4:127.0.0.1/255.255.255.255>, ...>

9.13.4 UUID Type
The uuid column type represents a universally unique identifi er (UUID), a 128- bit
value that is generated by an algorithm that makes it highly unlikely that the same
value can be generated twice.

To set a column as a UUID in an Active Record migration, set the type of the
column to uuid:

add_column :table_name, :unique_identifier, :uuid

When reading and writing to a UUID attribute, you will always be dealing with a
Ruby string:

record.unique_identifier = 'a0eebc99- 9c0b-4ef8-bb6d-6bb9bd380a11'

If an invalid UUID is set, an error will occur at the database level, resulting in an
ActiveRecord::StatementInvalid: PG::InvalidTextRepresentation

exception being raised.

psn-fernandez-all.indb 309 5/9/14 10:07 AM

310 Chapter 9: Advanced Active Record

9.13.5 Range Types
If you have ever needed to store a range of values, Active Record now supports Post-
greSQL range types. These ranges can be created with both inclusive and exclusive
bounds. The following range types are natively supported:

 • daterange

 • int4range

 • int8range

 • numrange

 • tsrange

 • tstzrange

To illustrate, consider a scheduling application that stores a date range representing
the availability of a room.

 1 class CreateRooms < ActiveRecord::Migration
 2 def change
 3 create_table :rooms do |t|
 4 t.daterange :availability
 5 end
 6 end
 7 end
 8
 9 room = Room.create(availability: Date.today..Float::INFINITY)
10 room.reload
11 room.availability # Tue, 22 Oct 2013...Infinity
12 room.availability.class # Range

Note that the Range class does not support exclusive lower bound. For more detailed
information about the PostgreSQL range types, consult the offi cial documentation.17

9.13.6 JSON Type
Introduced in PostgreSQL 9.2, the json column type adds the ability for PostgreSQL
to store JSON structured data directly in the database. When an Active Record object
has an attribute with the type of json, the encoding/decoding of the JSON itself is
handled behind the scenes by ActiveSupport::JSON. This allows you to set the
attribute to a hash or already encoded JSON string. If you attempt to set the JSON
attribute to a string that cannot be decoded, a JSON::ParserError will be raised.

17. http://www.postgresql.org/docs/9.3/static/rangetypes.html

psn-fernandez-all.indb 310 5/9/14 10:07 AM

http://www.postgresql.org/docs/9.3/static/rangetypes.html

9.14 Conclusion 311

A
ctive

Record

To set a column as JSON in an Active Record migration, set the data type of the
column to json:

add_column :users, :preferences, :json

To demonstrate, let’s play with the preferences attribute from the previous ex-
ample in the console. To begin, I’ll create a user with the color preference of blue.

>> user = User.create(preferences: { color: "blue"})
 (0.2ms) BEGIN
 SQL (1.1ms) INSERT INTO "users" ("preferences") VALUES ($1) RETURNING
 "id" [["preferences", {:color=>"blue"}]]
 (0.4ms) COMMIT
=> #<User id: 1, preferences: {:color=>"blue"}>

Next up, let’s verify when we retrieve the user from the database that the prefer-
ences attribute doesn’t return a JSON string but a hash representation instead.

>> user.reload
 User Load (10.7ms) SELECT "users".* FROM "users" WHERE "users"."id" = $1
 LIMIT 1 [["id", 1]]
=> #<User id: 1, preferences: {"color"=>"blue"}>

>> user.preferences.class
=> Hash

It’s important to note that like the array data type, Active Record does not
track in place changes. This means that updating the existing hash does not per-
sist the changes to the database. To ensure changes are persisted, you must call
<attribute>_will_change! (preferences_will_change! in our previ-
ous example) or completely replace the object instance with a new value instead.

9.14 Conclusion
With this chapter we conclude our coverage of Active Record. Among other things,
we examined how callbacks let us factor our code in a clean and object- oriented fash-
ion. We also expanded our modeling options by considering single- table inheritance,
abstract classes, and Active Record’s distinctive polymorphic relationships.

At this point in the book, we’ve covered two parts of the MVC pattern: the model
and the controller. It’s now time to delve into the third and fi nal part: the view.

psn-fernandez-all.indb 311 5/9/14 10:07 AM

This page intentionally left blank

791

Index

Symbols
- , 674, 695, 764
[], 149, 443, 631
`, 713
+, 674, 695, 764
<<, 199, 214, 215, 237
<=>, 683, 725, 764, 775
=~, 775
===, 764

A
abstract_class=, 166, 286
accepts_nested_attributes_for, 362– 365
acronym, 707– 708
Action Controller

callbacks, 116– 121
around, 119– 120
classes 118
conditions, 120– 121
halting, 121
inline method, 118
inheritance, 116– 117

ordering, 118– 119
skipping, 120

communication with view, 115
controller specs, 601– 604
layouts, specifying, 111
postbacks, 381
rendering, 102– 111
standard RESTful actions, 69– 73
streaming content, 121– 126
variants, 126– 127
verify method, 117

Action Dispatch, 99– 102
Action Mailer, 493– 504

attachments, 497– 498
callbacks, 499– 500
custom email headers, 495
generating URLs inside messages,

498
handing inbound attachments, 500–

501
HTML messages, 496
mailer layouts, 498– 499

psn-fernandez-all.indb 791 5/9/14 10:08 AM

792 Index

Action Mailer (continued)
models, 494– 500
multipart messages, 497
preparing outbound messages, 494–

496
previews, 503– 504
raising delivery errors, 21
receiving, 500– 501
sending, 499
server confi guration, 502
SMTP, 493, 502
testing with RSpec, 502– 503

Action View, 313– 329
conditional output, 316– 317
customizing validation error output,

337– 338
ERb. See ERb
fi lename conventions, 314
fl ash messages, 321– 322
Haml. See Haml
Helpers. See Helpers
instance variables, 318– 320
layouts, 314– 315
logging, 328
partial_counter variable, 328
partials. See Partials
rendering 327
view specs, 604– 605
yielding content, 315– 316

Active Model, 625– 649
AttributeMethods module, 625– 627
Callbacks module, 627– 629
Conversion module, 629
Dirty module, 629– 631
Errors class, 631– 635
ForbiddenAttributesError, 635
Model, 635– 636
Naming module, 636– 638

SecurePassword, 638
serialization, 638– 640
testing compatibility of custom

classes with Lint::Tests, 635
translation, 640– 641
Validations module, 641– 649

Active Record
abstract base models, 286– 287
associations, 121, 195– 240

:counter cache option, 207– 208
:counter sql option, 200
:dependent option, 201, 208, 235
:fi nder sql option, 200
AssociationProxy class, 239– 240
belongs_to. See belongs_to

associations
destroying records, 201
extensions, 238– 239
foreign- key constraints, 292
has_and_belongs_to_many. See

has_and_belongs_to_many
associations

has_many. See has_many
associations

has_many :through. See has_many
:through associations

indexing, 509
many-to- many relationships, 222–

233
one- to- many relationships, 196–

204
one- to- one relationships, 233– 236
polymorphic, 287– 290
size of, 202
unique sets, 232– 233
unsaved objects, 236– 238

attributes, 133– 137
readonly, 149– 150

psn-fernandez-all.indb 792 5/9/14 10:08 AM

Index 793

reloading, 142
serialized, 136– 137
translation, 640– 641
typecasting, 142
updating, 145– 147

Base class, 120
basic object operations, 138– 151
calculation methods, 278– 279
callbacks, 268– 278
cloning, 142– 143
concurrency. See Database locking
confi guration, 171
fi nd_by_sql method, 143– 144
legacy naming schemes, 133
migrations, 173– 194

column type mappings, 182– 183
creating, 173– 187
magic timestamp columns, 186–

187
schema.rb fi le, 189– 190
sequencing, 174

model specs, 599– 601
pattern, 129
query caching, 144– 145
querying, 155– 165

arel_table, 165
exists, 160
extending, 160
from, 159– 160
group, 160– 161
having, 161
includes, 161– 162
joins, 162
limit, 158– 159
none, 162
offset, 158– 159
order, 157– 158
readonly, 163

references, 163
reorder, 163– 164
reverse_order, 164
select, 159
unique, 164
unscope, 164– 165
where, 155– 165

RecordInvalid exception, 252– 253
RecordNotSaved exception, 200–

201, 271
records

deleting, 150– 151
random ordering, 158
touching, 149

scopes, 263– 268
session store, 14– 15, 450– 455
STI (Single- Table Inheritance), 280–

287
translations, 413– 417
validations, 241– 263

common options, 253– 254
conditional validation, 255– 256
contexts, 256
custom macros, 258– 259
declarative, 242– 253
errors, 241– 242, 261
enforcing uniqueness of join

models, 250– 251
reporting, 332– 335
short- form, 256– 258
skipping, 260– 261
testing with Shoulda, 262

value objects, 299– 302
Active Support, 651– 780
active?, 170
acts_like?, 673– 674, 682, 738, 750,

764
adapter_name, 170

psn-fernandez-all.indb 793 5/9/14 10:08 AM

794 Index

add, 632
add_column, 181– 182, 187, 197
added?, 632
add_index, 179
add_on_blank, 632
add_on_empty, 632
add_silencer, 12, 658

advance, 674, 683, 764
after, 580– 581

after_add, 214
after_commit, 270
after_create, 270
after_destroy, 258, 262, 270, 274
after_fi lter, 473– 474
after_fi nd, 269, 274– 275, 297
after_fork, 539
after_initialize, 137, 269, 274– 276
after_remove, 215
after_rollback, 270
after_save, 270
after_touch, 270
after_update, 270
after_validation, 269– 270, 643

ago, 674, 683, 695, 737, 765
Ajax, 91, 545– 558

HTML fragments, 555– 557
JSON, 553– 555
JSONP, 557– 558
Unobtrusive JavaScript (UJS), 547–

550
alias_attribute, 626, 716– 717
alias_method_chain, 529, 717– 718
all_day, 765
all_month, 765
all_quarter, 765
all_week, 765
all_year, 765
allow_forgery_protection, 23

and_return, 593
anonymous?, 718
any?, 199
append, 656
arel_table, 165
around_create, 270
around_save, 270
Array, extensions, 651– 657
Array.wrap, 657
as: association_name, 215
as_json, 632– 633, 639, 659– 660, 682,

687, 697
assert

assert_difference, 761– 762
assert_equal, 584

assert_no_difference, 762
assert_no_match, 759
assert_not, 762

assert_not_empty, 760
assert_not_equal, 760
assert_not_in_delta, 760
assert_not_in_epsilon, 760
assert_not_includes, 760
assert_not_instance_of, 760
assert_not_kind_of, 760
assert_not_nil, 760
assert_not_operator, 760
assert_not_predicate, 760
assert_not_respond_to, 760
assert_not_same, 760

assert_nothing_raised, 760
assert_raise, 761
assert_valid_keys, 701– 702
asset_host, 26, 343– 345
Asset hosts, 343– 345
Asset Pipeline, 559– 574

fi le serving, 572– 573
fi ngerprinting, 571– 572

psn-fernandez-all.indb 794 5/9/14 10:08 AM

Index 795

compression, 569, 573
Data URL, 571
helpers, 569– 570

built- in SASS asset path helpers,
570– 571

getting the URL of an asset fi le,
570

images, 570
manifest fi les, 561– 567

directives, 563– 564
format handlers, 565– 568
gemifi ed assets, 564– 565
index fi les, 565
search path, 564

postprocessing, 568– 569
custom compressor, 569
JavaScripts, 568
stylesheets, 568

rake tasks, 573– 674
template engines, 566– 567
web server confi guration, 572– 573

Assets, 25– 26
Assets debug mode, 22
assigns, 318
associate_with, 688
Asynchronous processing. See

Background processing.
at, 749, 776

at_beginning_of_day, 674, 683, 765
at_beginning_of_hour, 683, 765
at_beginning_of_minute, 683, 765
at_beginning_of_month, 674– 675
at_beginning_of_quarter, 675, 766
at_beginning_of_week, 675, 766
at_beginning_of_year, 675, 766
at_end_of_day, 675, 683, 766
at_end_of_hour, 683, 766
at_end_of_minute, 683, 766

at_end_of_month, 675, 766
at_end_of_quarter, 675, 766
at_end_of_week, 675, 766
at_end_of_year, 675, 766
at_midnight, 674, 683, 765

Atom Feeds
autodetection, 338
atom feed method, 346– 347

atomic_write, 698– 699
attr_accessible, 481
attr_internal_accessor, 718– 719
attr_internal_reader, 718
attr_internal_writer, 719
attr_protected, 481
attr_readonly, 150
attribute_methods.rb, 626– 627

attribute_method_affi x, 626
attribute_method_prefi x, 626
attribute_method_suffi x, 626

attributes, 141
attributes=, 141
audio_path, 341
audio_tag, 341
authenticate_user!, 462
Authentication

Active Resource, 467
client-side certifi cates, 490
HTTP basic, 467
HTTP digest, 468

auto_discovery_link_tag, 338– 339
autoclose, 446
autoload, 691

autoload_at, 692
autoload_module!, 689
autoload_once_paths, 687
autoload_paths, 687– 688
autoload_under, 692
autoloadable_module?, 689

psn-fernandez-all.indb 795 5/9/14 10:08 AM

796 Index

autoload (continued)
autoloaded?, 689
autoloads, 692

average, 199, 278– 279
await, 673

B
background processing, 527– 543
backtrace_cleaner, 12, 657
base_path, 318
be_an_error, 530
be_routable, 604
before, 580– 581

before_action, 116
before_add, 215– 216
before_create, 270, 628– 629
before_destroy, 151, 216, 268– 270,

273– 274, 276
before_fi rst_fork, 539
before_fork, 539
before_perform, 539
before_remove, 216
before_save, 272– 273, 666– 667
before_update, 270
before_validation, 269– 271

begin_db_transaction, 167
beginning_of_*

beginning_of_day, 674, 683, 765
beginning_of_hour, 683, 765
beginning_of_minute, 683, 765
beginning_of_month, 674– 675
beginning_of_quarter, 675, 766
beginning_of_week, 676, 767

belongs_to associations, 149, 180, 196,
205– 214
building and creating related objects,

206
options, 206– 211

polymorphic, 197
reloading, 205
scopes, 211– 214
touch, 210

benchmarking, 120, 213, 219, 221,
658– 659

Better Errors gem, 782– 783
binary data storage, 185
blank?, 633, 657, 698, 704, 729, 730,

739, 749, 778
breadcrumbs, 424– 425
build, 199– 200
build_association, 206
Builder::XmlMarkup class, 617, 620–

622
Bundler, 2– 7
button_tag, 379
button_to, 418, 548– 549
by, 510
byte / bytes, 731

C
cache, 510

cache_classes=, 18
cache_directory, 507
cache_if, 516
cache_key, 513, 517, 525, 637, 660
cache_path, 520
cache_store=, 452– 453, 519– 520,

522
cache_sweeper, 518
cache_unless, 516
caches_action, 506, 508, 510
caches_page, 506– 507

Caching
:counter_cache, 195– 196
action caching, 508– 509
avoiding extra database activity

psn-fernandez-all.indb 796 5/9/14 10:08 AM

Index 797

during, 518– 519, 521– 522
CacheHelper module, 347
conditional caching, 516
controlling web caches and proxies,

523– 524
disabling in development mode, 20
ETags, 524– 526
expiration, 516– 518
fetch, 522– 523
fragment caching, 509– 516
logging, 519
new caches, 522
page caching, 506– 507
query caching, 145
storage, 519– 521
Store class, 592– 597
sweeping, 508, 517– 518
view caching, 505– 521

calculate, 200
Callbacks

Action Controller, 116– 121
Action Mailer, 499– 500
Active Model module, 627– 629
Active Record, 268– 278
has_many associations, 214
new in Rails 4, 499– 500

callbacks.rb, 628– 629
camelize, 707– 708, 752– 753
capitalize, 725
capture, 348, 713
CAS, 465
cattr_accessor, 670
cattr_reader, 671
cattr_writer, 671
CDATA, 393, 446– 447
change, 178, 584– 585, 676, 684, 767

change_default, 178– 179
change_table, 178, 197

changed, 630
changed_attributes, 631
changed?, 630
changes, 631

chars proxy, 756– 757
check_box, 367
check_box_tag, 379
Class

automatic reloading, 18– 20
extensions, 668– 671
Rails class loader, 18– 19

class << self, 297
class_attribute, 668– 670
class_eval, 297, 299, 714
classify, 753
cleanup, 661
clear, 200, 261, 661, 689, 708
clear_query_cache, 145
clone, 739
collection_check_boxes, 373– 374
collection_radio_buttons, 374– 375
collection_select, 372, 374
CollectionProxy, 239– 240
color_fi eld, 367
color_fi eld_tag, 379
column, 179
commit_db_transaction, 168
compact, 699
compact!, 699
compiler_class, 447
compose, 725
concat, 395
concern, 719– 720
Concern module, 671– 672
concerning, 719
Concurrency. See Database Locking
confi g, 673
confi g_accessor, 673

psn-fernandez-all.indb 797 5/9/14 10:08 AM

798 Index

Confi gurable module, 673
confi gure, 673
consider_all_requests_local=, 20
console, 17
const_missing, 688, 690, 724
constant_watch_stack, 688
constantize, 689, 753
content_for, 315– 316, 348– 349
content_for?, 349
content_tag, 394
content_tag_for, 390– 391
context, 578
controller, 318– 319
Controllers. See Action Controller
Convention over confi guration, 103,

129, 132, 171, 401
Cookies, 319, 455– 457

:secure option, 456
reading and writing, 455– 456
session store, 14– 15, 453– 455
signing, 456

copy_instance_variables_from, 718
count, 200, 279, 633
count_by_sql, 144
Country Select gem, 783
create, 199, 200– 201

create_association, 206
create_join_table, 178
create_table, 176– 178, 223
create!, 200– 201
created_at, 186
created_on, 186

CRUD (Create Read Update Delete),
138– 151
routing and, 66– 69

CSS
linking stylesheets to template, 340
relation to Haml, 446

sanitizing, 393
Currency

formatting, 385
Money gem, 301– 302

current
current_cycle, 396
current_page, 419
current_page?, 419

cycle, 396

D
dasherize, 12, 614, 654, 753
Data migration, 187– 189
Databases

confi guring, 26– 27, 171
connecting to multiple, 165– 166
foreign- key constraints, 292
locking, 151– 155

considerations, 154– 155
optimistic, 152– 154
pessimistic, 154

migrations. See ActiveRecord,
Migrations.

schemas, 16– 17, 152, 171– 172
seeding, 190– 191
using directly, 167– 169

Date, extensions, 673– 682
date_fi eld, 367
date_fi eld_tag, 380
DATE_FORMATS hash constant, 770

DateHelper module, 349– 356
Date input tags, 367, 380
date_select, 350
datetime

datetime_fi eld, 367– 368
datetime_fi eld_tag, 380
datetime_local_fi eld, 368
datetime_local_fi eld_tag, 380

psn-fernandez-all.indb 798 5/9/14 10:08 AM

Index 799

datetime_select, 351, 416
DateTime, extensions, 682– 687
day / days, 737

days_ago, 677, 767
days_in_month, 767
days_since, 677, 767
days_to_week_start, 677, 767

Debugger gem, 783
Decent Exposure gem, 105, 317– 318
decimal precision, 184– 185
decode, 712
decompose, 725
decrement, 271, 662
decrypt_and_verify, 715
deep_merge, 700
deep_merge!, 700
deep_stringify_keys, 702
deep_symbolize_keys, 702
deep_transform_keys, 702
default_locale, 402
default_scope, 266
default_timezone=, 171
defi ne_attribute_method, 627
defi ne_attribute_methods, 627
defi ne_callbacks, 665– 667
defi ne_model_callbacks, 628– 629
delay, 534
delay_for, 534
delay_unti, 534
Delayed Job gem, 528– 530
delegate, 720– 721
delete, 168, 201, 271, 633, 662
delete_all, 199– 201, 271
delete_matched, 662
demodulize, 753
depend_on, 689
deprecate_methods, 693, 722
Deprecation, 21, 693– 694, 722, 745

Deprecation.behavior, 693
descendants, 694
describe, 578
destroy_all, 201
destroyed?, 151
Devise gem, 459– 466
direct_descendants, 694
disconnect!, 170
distance_of_time_in_words, 355– 356,

416
distance_of_time_in_words_to_now, 356
distinct, 222
div_for, 327– 328, 391
does_not_match?, 588
dom_id, 426
Domain- Specifi c Languages, 131, 298
downcase, 726
Draper gem, 783– 784
drop_table, 192
duplicable?, 739– 740
Duration class, 695– 696

E
each, 633
Eager load, 20

eager_autoload, 692
eager_load!, 692

element, 637
Email. See Action Mailer
email_fi eld, 368
email_fi eld_tag, 380
empty?, 201, 633
enable_warnings, 713
encode, 712
encode_json, 730, 749
encode64, 779
encrypt_and_sign, 715
end_of_*

psn-fernandez-all.indb 799 5/9/14 10:08 AM

800 Index

end_of_* (continued)
end_of_day, 675, 683, 766
end_of_hour, 683, 766
end_of_minute, 683, 766
end_of_month, 675, 766
end_of_quarter, 675, 766
end_of_week, 677, 767
end_of_year, 675, 766

ends_with?, 757
enqueue, 529– 530, 532– 533
Enumerable, extensions, 696– 697
ERb, 313, 697– 698

asset pipeline, 566, 570
Devise, 463
email templates, 496– 497
Haml versus, 433– 434, 439, 463.

See also Haml
rendering inline template code, 106

error_message_on, 332– 333
error_messages, 332– 334
error_messages_for, 333– 334
errors, 261, 642
escape_attrs, 447
escape_html, 447
escape_javascript, 385
escape_once, 394
establish_connection, 164– 166
ETags, 524– 525
exabyte / exabytes2, 731
except, 700– 701
except!, 701
exception_handler, 418
excerpt, 397
Excerpting text, 397
exclude?, 696, 750
execute, 168
exist?, 523, 662
exists?, 160

expect, 583– 584
expire

expire_action, 516– 517
expire_fragment, 516– 517
expire_page, 516– 517
expires_in, 520
expires_now, 524

explicitly_unloadable_constants, 688
extending, 160, 219
extract!, 703
extract_options!, 655

F
Facebook Open Graph meta tags, 316
fallbacks=, 25
favicon_link_tag, 339
favicon.ico fi le, 339
fetch, 522– 523, 662– 664
fi eld_set_tag, 380
fi elds_for, 362– 365
fi fth, 652
fi le_fi eld, 368
fi le_fi eld_tag, 380– 381
Files

extensions by Active Support, 698– 699
reporting sizes to users, 385– 389
upload fi eld, 368, 380– 381

fi nd
fi nd_by_sql, 143– 144
fi nd_tzinfo, 776
fi nd_zone, 771
fi nd_zone!, 772

Firebug, 546
fi rst, 202, 749
fl ash, 320– 321
fl ash.now, 321
fl oats, 186, 659
fl ush, 759

psn-fernandez-all.indb 800 5/9/14 10:08 AM

Index 801

font_path, 341
foreign_key, 208, 217, 754
form, 335– 336

form_for, 92, 358, 549
form_tag, 381– 382, 549

format, 447
formatted_offset, 685, 770, 776
Forms, 357– 371

accepts_nested_attributes_for
method, 362– 363

automatic view creation, 335– 337
button_to helper method, 418, 548–

549
helper methods, 357– 371
input, 366– 371

fortnight / fortnights, 737
forty_two, 652
fourth, 652
fragment_exist?, 518– 519
freeze, 763
fresh_when, 525
Friends gem, 786– 788
from, 159– 160, 651, 749

from_json, 639
from_now, 695, 738
from_xml, 622– 624, 640, 699– 700

full_messages, 633
full_messages_for, 633
future?, 677– 678, 684, 767

G
Gemfi le, 3– 8

dependencies, 8
essential, 782– 789
installing, 5– 7
loading, 4– 5
locking, 7
packaging 7– 9

generate, 716
generate_key, 665, 714
generate_message, 633– 634

generated_attribute_method, 627
Geocoding, 272– 273
gigabyte / gigabytes, 731
grapheme_length, 726
group, 160– 161, 219
grouped_collection_select, 372
Gzip, 705

H
Haml, 433– 448

attributes, 434– 436
boolean, 436
clases and IDs, 436– 438
data, 435– 436
empty tags, 439
implicit divs, 438– 439

comments, 440– 441
confi guration, 446– 448
content, 445– 446
creating elements, 434
doctype, 440
escaping, 442– 443, 447
fi lters, 444– 445
helpers, 443– 444
HTML and, 440– 441, 442, 447
interpolation, 442
multiline declarations, 443

handle_asynchronously, 529
has_and_belongs_to_many associations,

222– 226
bidirectional, 224– 225
custom SQL, 211– 213
extra columns, 225
real join models and habtm, 225– 226
self- referential, 223– 224

psn-fernandez-all.indb 801 5/9/14 10:08 AM

802 Index

has_key?, 634
has_many associations, 214– 222

:conditions option, 251
:include option, 213
callbacks, 214

has_many :through associations, 226– 230
aggregating, 228– 229
join models, 226– 227, 229– 230
options, 230– 233
usage, 228
validations and, 229– 230

has_one associations, 233– 236
:as, 235
:class name option, 235
:dependent, 235
options, 235
scopes, 236
together with has_many, 235

has_secure_password, 466– 467
Hash, extensions, 699– 704

Hash.from_trusted_xml, 699
Hash.from_xml, 699– 700

HashWithIndifferentAccess class, 705
having, 161, 219
Helper methods

breadcrumbs helper, 424– 425
helper specs, 605
photo_for helper, 423– 424
Title helper, 422– 423
writing your own View helpers, 422–

425
helper_method, 91, 468
hidden_fi eld, 368
hidden_fi eld_tag, 382
hide_action, 116
highlight, 397
history, 688
hook!, 689

hour / hours, 738
hstore data type, 304– 305
HTML

escaping, 442, 447, 485– 486, 697– 698
sanitizing, 487
tags

a, 419– 421
audio, 341
empty, 439
form. See Forms.
image, 341– 342
label, 368– 369
option, 378– 379
password, 383
script, 385
select, 383
submit, 383– 384
video, 342

html_escape, 697– 698
html_escape_once(s), 698
html_safe, 757
HTTP

foundation of REST, 62– 64
role in routing, 38, 41, 54
stateless, 449
status codes, 109– 111
verbs (GET, POST, etc.), 68– 71, 74,

419, 549
human, 637, 708
human_attribute_name, 413– 414, 417,

641
human_name, 419
humanize, 754
hyphenate_data_attrs, 447

I
i18n_key, 637
i18n_scope, 641

psn-fernandez-all.indb 802 5/9/14 10:08 AM

Index 803

ids, 202, 279
Image tags, 341– 342
image_path, 341– 342
image_submit_tag, 382
image_tag, 341– 342
in, 679, 684, 696, 769

in?, 740
in_groups, 655
in_groups_of, 656
in_milliseconds, 738
in_time_zone, 682, 686, 758, 772

include, 202, 634, 740, 746– 747
included, 295– 296
includes, 161– 162, 219– 220
increment, 271, 664
increment_counter, 271
indent, 752
indent!, 752
index, 179
index_by, 696
infl ections, 709
inherited, 694
initialize, 665, 714– 716, 776
Initializers, 11– 15

backtrace silencers.rb, 12– 13
fi le parameter logging, 12
infl ections.rb, 12– 13, 705
mime_types.rb, 13– 14
session store.rb, 14– 15, 455
wrap parameters, 15

input, 336– 337
inquiry, 756
insert, 168
insert_after, 98
insert_before, 98
inspect, 695– 696
instance_eval, 118, 255, 269
instance_values, 740

instance_variable_names, 740– 741
instrument, 729– 730
Integer, extensions, 711– 712
Internationalization (I18n), 399– 418

default locale, 11
exception handling, 417– 418
i18n_key, 637
i18n_scope, 641
interpolation, 442
locale fi les, 409– 410
methods, 400– 401, 416– 417
setting user locales, 405– 406
setup, 401– 402
storing custom translations, 413– 316

invalid?, 642
inverse_of, 208, 217– 218
irregular, 709
is_utf8?, 757
it, 581

J
JavaScript

Ajax and, 557– 558
escaping, 385
helpers, 339– 340, 385
postprocessing, 658
Unobtrusive JavaScript (UJS), 547–

550
javascript_include_tag, 339– 340, 559,

569
javascript_path, 340
javascript_tag, 385
joins, 162
jQuery framework, 547, 550, 552,

557– 558. See also Turbolinks
JSON, 64, 87, 712

:json, 107
Ajax and, 553– 555

psn-fernandez-all.indb 803 5/9/14 10:08 AM

804 Index

JSON (continued)
as_json, 632– 633
format segments, 46– 47
output escaping, 487, 698
PostgreSQL column type, 310– 311
Redis database, 532
serializers, 639
strings, 659– 660, 682, 687, 749, 763
variants, 126
wrap parameters, 15

json_escape, 698
JSONP, 107, 557– 558

K
Kernel, extensions, 712– 715
Kaminari gem, 784– 785
keys, 634
kilobyte / kilobytes, 731
kind, 649

L
l, 401
label, 368– 369
label_tag, 382
last, 202, 750
last_month / prev_month, 678, 768
last_quarter / prev_quarter, 678, 768
last_week, 678, 768
last_year / prev_year, 678, 768
LDAP, 465
length, 202
let, 578– 580
let!, 580
limit, 158– 159, 221, 726
link_to, 419– 420, 549– 550
link_to helper methods, 549– 550
link_to_if, 420
link_to_unless, 420
link_to_unless_current, 420– 421

list_of, 444
load, 742

load?, 689
load_fi le, 690
load_missing_constant, 690
load_once_path?, 690
loadable_constants_for_path, 690
loaded, 688

local, 776
local_assigns, 326– 327
local_constants, 722
local_to_utc, 776
Locale fi les, 409– 410
localize, 401, 407
lock!, 154
log_activity, 688
log_level, 16
logger, 321
Logging, 29– 35

backtrace silencing, 12– 13, 657– 658
colorization, 34
level override, 16
levels, 29– 30
log fi le analysis, 32– 35
Logger, extensions, 714– 715
Syslog, 35
tagged, 32

lookup_ancestors, 641
lookup_store, 522

M
mail_to, 421
many?, 199, 696– 697
mark_for_destruction, 237– 238
mark_for_unload, 690
match, 40– 43
matches?, 59– 60, 588– 589
mattr_accessor, 719
mattr_reader, 719

psn-fernandez-all.indb 804 5/9/14 10:08 AM

Index 805

mattr_writer, 719
maximum, 203, 279
mb_chars, 724– 727, 756– 757
mechanism, 688
megabyte / megabytes, 731
Memcached, session store, 452– 453
MessageEncryptor class, 715
MessageVerifi er class, 715– 716
method_missing, 726
middle_of_day / noon, 678, 684, 768
Middleware (Rack), 96– 98
midnight, 683, 674, 683, 765
MIME types, 13– 14
mime_type, 447
minimum, 203, 279
minute / minutes, 738
mock, 520

mock_model, 605
mock_with, 598

model_name, 638
Module, extensions, 716– 724
monday, 678, 768
MongoDB, 463, 528, 530
month / months, 738

month_fi eld, 369
month_fi eld_tag, 382
months_ago, 678, 768
months_since, 678, 768

ms, 658
multiline?, 747
multiple_of?, 712
mute, 664
MVC (Model- View- Controller), 2, 15,

37, 95, 106, 311

N
name_path, 54– 55
name_url, 54– 55
Named scopes. See Active Record, scopes

namespace, 59
Nested Form Fields gem, 785– 786
new, 91, 203

new_constants_in, 690
new_record?, 138, 202, 236

next_*
next_month, 678, 768
next_quarter, 678, 768
next_week, 679, 768
next_year, 679, 769

Nonces, 454
none, 162
normalize, 726, 728
Notifi cations, 729
now, 777
nsec, 685
number_fi eld, 369
number_fi eld_tag, 382– 383
number_to_currency, 385– 386, 417
number_to_human_size, 386– 388
number_to_percentage, 388
number_to_phone, 388– 389
number_with_delimiter, 389, 417
number_with_precision, 389– 390, 417
Numbers

conversions, 385– 390
delimiters, 386– 390, 731– 736
extensions to Numeric class, 738– 743

O
Object, extensions,738– 743
object_id, 205
offset, 158– 159, 222
OpenSSL Digests, 665, 714– 715
option_groups_from_collection_for_

select, 372, 375– 376
options, 664
options_for_select, 376– 378
options_from_collection_for_select, 378

psn-fernandez-all.indb 805 5/9/14 10:08 AM

806 Index

order, 222, 236
ordinal, 711– 712
ordinalize, 712
overlaps?, 747

P
page_class, 444
param_key, 637
parameterize, 56, 710, 754
params, 322
params hash, 322
parent, 722
parent_name, 722
parents, 722– 723
parse, 777
parser_class, 447
partial_counter, 328– 329
Partials, 105– 106, 322– 329

passing variables to, 325– 327
rendering collections, 327– 328
rendering objects, 327
reuse, 324
shared, 324– 325
wrapping and generalizing, 425– 426

password_fi eld, 370
password_fi eld_tag, 383
past?, 679, 684
pending, 582– 583
perform_caching=, 20, 22, 24, 509
period_for_local, 777
period_for_utf, 777
persisted?, 138, 302– 303, 335, 629
petabyte / petabytes, 731
photo_for, 423– 424
pluck, 203, 279
Plugins, xlvii, 345– 346, 540
plural, 637, 706
Pluralization

i18n, 399– 418
Infl ections class, 705– 711
Infl ector class, 12

pluralize, 398, 754
pluralize_table_names=, 133
prepend, 657

prepend_after_fi lter, 118– 119
prepend_before_fi lter, 118– 119

presence, 739
present?, 739
preserve, 448
previous_changes, 631
primary_key, 210, 218
primary_key_prefi x_type=, 133
Prototype framework, 547
provide, 349
proxy_owner, 240
proxy_refl ection, 240
proxy_target, 240
Pry gems, 786– 788
published_prior_to, 240
Pundit, 469– 476

creating a policy, 471– 472
controller integration, 472
policy scopes, 473– 474
strong parameters, 474– 475
testing policies, 475– 476

Q
qualifi ed_const_defi ned?, 690, 723
qualifi ed_const_get, 723
qualifi ed_const_set, 723
qualifi ed_name_for, 691
quietly, 713

R
Rack, 96– 98, 90– 91

Rack::Sendfi le middleware, 124

psn-fernandez-all.indb 806 5/9/14 10:08 AM

Index 807

RACK_ENV variable, 1
routes as Rack endpoints, 48

radio_button, 370
radio_button_tag, 383
Railcasts, 790
Rails

class loader and reloading, 17, 615–
619

confi gurations, 1– 35
development of, xl, xliii– xliv
environments, 1– 35, 781– 782
essentials, 781– 790
lib directory, 20
root directory, 4
runner, 541– 543
scaffolding, 147, 174, 333, 434
screencasts, 789– 790
settings, 9– 18

application.rb fi le, 9– 11
autoload_paths, 16, 687, 689–

690, 692
boot.rb fi le, 9
cherry- picking frameworks used, 10
custom environments, 23
development mode, 18– 20
environment.rb fi le, 9, 502, 557,

599
generator defaults, 11
initializers. See Initializers
production mode, 23– 26
test mode, 22– 23

Rails Admin gem, 787– 788
RAILS_ENV variable, 1
Railtie, 745– 746
raise_delivery_errors=, 21, 25
raise_error, 584– 585
Rake tasks

asset pipeline and, 573– 574

database-related, 171, 191– 194
listing routes, 53
Rack fi lters, 96– 97
Rails log fi les, 30
Resque, 540– 541
Rspec Rails gem, 596
Spring application preloader, 17

Random ordering (of records), 157– 158
Range, extensions, 746– 747
range_fi eld, 370
range_fi eld_tag, 383
raw, 390
raw_connection, 170
reachable?, 723– 724
read, 664
read_attribute, 135– 141
read_multi, 523– 524, 664– 665
readable_inspect, 681. 685
readonly, 163, 213, 222, 236
readonly_attributes, 150
reconnect!, 170
record_timestamps=, 187
RecordNotFound exception, 139
redefi ne_method, 724
redirect_to, 54
reference / references, 163, 180, 691
Regexp, extensions, 747
register, 14

register_alias, 14
register_javascript_expansion, 345–

346
register_stylesheet_expansion, 345–

346
release, 673
reload, 240
reload!, 102, 130
remove, 180– 181, 751

remove_belongs_to, 180– 181

psn-fernandez-all.indb 807 5/9/14 10:08 AM

808 Index

remove (continued)
remove_column, 187– 189
remove_constant, 691
remove_fi lters, 658
remove_index, 180
remove_possible_method, 724
remove_references, 180– 181
remove_silencers!, 12, 658
remove_timestamps, 181
remove_unloadable_constants!, 691
remove_whitespace, 448

remove!, 751
rename, 181
Rendering views, 102– 111

another actions’s template, 93, 102–
104

explicit, 103, 104
implicit, 102– 103
inline templates, 106
JSON, 107
nothing, 108
options, 108– 111
partials, see Partials.
render_views method, 603
text, 106
XML, 107

reorder, 163– 164
reorder_characters, 728
replace, 203
reply_to, 495, 502
Request handling

in routing, 99
redirecting, 111– 115

request, 322
require,18, 742

require_dependency, 742
require_or_load, 689, 691, 742

Rescuable module, 748

rescue_from, 748
reset, 240

reset_callbacks, 668
reset_counters, 208
reset_cycle, 398
reset_sequence!, 168

respond_to, 322
Resque gem, 537– 541
REST and RESTful design, 63– 93

action set, 88– 92
collection routes, 81– 82
controller- only resources, 83– 86
forms, 359
HTTP verbs, 68– 69
member routes, 80– 81
nested resources, 74– 78
resources and representations, 64– 65
routes, 37, 66– 69
singular resource routes, 73
standard controller actions, 61– 64

reverse, 726
reverse_merge, 703
reverse_merge!, 703
reverse_order, 164
reverse_update, 703

reversible, 175
revert, 181
rollback_db_transation, 168
route_key, 638
route_to, 604
Routing, 37– 61

:id fi eld, 44
concerns, 78– 79
constraining by request method, 41
formats, 46– 48
globbing, 51– 52
listing, 60– 61
match method, 40– 43

psn-fernandez-all.indb 808 5/9/14 10:08 AM

Index 809

name_path versus name_url, 54– 55
named, 52– 57, 67– 68
rack endpoints, 48
redirecting, 45– 46
RESTful routes, 66– 69

:format parameter, 86
collection, 79– 82
controller mappings, 75
member, 81– 81
nested, 74– 78
singular and plural, 71– 73

root routes, 50– 51
routes.rb fi le, 39– 40
scopes, 57– 60
segment keys, 43– 44, 49– 50

RPX authentication, 465
RSpec, 575– 610

custom expectation matchers, 588– 591
fl uent chaining, 590– 591
generator settings, 11
grouping related examples, 578
let methods, 578– 580
mocking and stubbing, 592– 595
pending, 582– 583
predicate matchers, 587– 591
running specs, 595– 596
shared behaviors, 591
shared context, 592
spec_helper.rb fi le, 596– 597, 607– 608
subjects, 586– 587
testing email, 502– 503
tools, 609– 610

RSS autodetection, 338– 339
Ruby

$LOAD PATH, 19
hashes, 375, 386, 450, 456, 657
macro- style methods, 131– 133
Marshal API, 450

modules for reusing common
behavior, 292– 296

Ruby Toolbox, 789
RubyGems, xlvii

Bundler, 2– 9
dependencies, 8
Git repository, loading directly from,

4– 5
installing, 5– 7
packaging, 7– 9

S
safe_constantize, 691, 754
safe_join, 390
sanitize, 393
sanitize_css, 393
save, 147
save!, 147, 271
schema_format, 16, 171
scope, 57
Scopes. See Active Record, scopes
search_fi eld, 370
search_fi eld_tag, 383
search_for_fi le, 691
second / seconds, 652, 738

seconds_since_midnight, 684, 769
seconds_to_utc_offset, 777
seconds_until_end_of_day, 684, 769

secret_key_base, 27
Security

cross- site request forgery (XSRF),
360, 487– 490

cross- site scripting (XSS), 483– 484
fi xation attacks, 490– 491
HTML, 485– 487
log masking, 479– 480
model mass- assignment attributes

protection, 481– 483

psn-fernandez-all.indb 809 5/9/14 10:08 AM

810 Index

Security (continued)
password management, 477– 479
replay attacks, 454– 455
secrets, 491– 492
secure sockets layer. See SSL
SQL injection, 143– 144
token handling, 489– 490

select, 159, 203– 204, 213, 222, 372
select_all, 168
select_date, 351– 352
select_datetime, 352– 353
select_day, 352
select_hour, 352
select_minute, 352– 353
select_month, 353– 354, 416
select_one, 168– 169
select_second, 353– 354
select_tag, 383
select_time, 354
select_value, 169
select_values, 169
select_year, 354

send_data, 123– 124
send_fi le, 124– 126
serializable_hash, 639
serve_static_assets=, 22
Session Management, 449– 456

cleaning old sessions, 450, 452, 455
RESTful storage considerations, 85
turning off sessions, 451

session, 322
set, 634
set_callback, 668
Settings, 9– 18
should, 583– 584
should_not, 583– 584
show_exceptions=, 22
Sidekiq, 531– 537

delayed Action Mailer, 533– 534
error handling, 536
monitoring, 536– 537
running, 534– 536
scheduled jobs, 533
workers, 523– 533

silence, 665, 715
silence!, 665
silence_stream, 713
silence_warnings, 713

simple_format, 398
Simple Form gem, 788
since, 679, 684, 696, 769
singleton_class, 714
singular, 638, 709
singular_route_key, 638
singularize, 755
site=, 204
size, 204, 634
skip_callback, 668
slice, 703– 704
slice!, 704, 726
smtp_settings, 502
SOAP, 64
specify, 581– 582
Specjour, 610
split, 656, 727
Spring application preloader, 17– 18
squish, 751
SSL

certifi cates for asset hosts, 345
OpenSSL digests, 665, 714– 715
serving protected assets, 345

stale?, 525– 526
starts_with?, 757
State Machine gem, 788– 789
Static content, 51, 400, 506
store_full_sti_class=, 171

psn-fernandez-all.indb 810 5/9/14 10:08 AM

Index 811

store_translations, 412, 711
Streaming, 121– 126
String

extensions, 748– 758
usage versus symbols, 141

stringify_keys, 702
StringInquirer class, 758
strip_heredoc, 757
strip_links, 393
strip_tags, 393
stylesheet_link_tag, 340
stylesheet_path, 340
subclasses, 671
submit, 370
submit_tag, 383– 384
submit_to_remote, 361
sum, 204, 279, 697, 747
sunday, 679, 769
superclass_delegating_accessors, 671
supports_count_distinct?, 170
supports_migrations?, 170
suppress, 714
swapcase, 727
Symbol

extensions, 759
usage versus strings, 141

T
t, 401
table_name_prefi x=, 133
table_name_suffi x=, 133
tableize, 755
tables, 171
tag, 394– 395
tagged, 759
telephone_fi eld, 370
telephone_fi eld_tag, 384
template_engine, 11

Templates. See View templates
terabyte / terabytes, 731
test_framework, 11
text_area, 370– 371
text_area_tag, 384
text_fi eld, 371
text_fi eld_tag, 384
third, 652
thread_variable?, 763
thread_variable_get, 763
thread_variable_set, 763
thread_variables, 763
tidy_bytes, 727– 728
Time

extensions, 763– 773
input tags, 350– 351
reporting distances in time, 355– 356
storing in database, 185

Time Zones
DateTime conversions, 681– 682
default, 10
option tags helper, 375– 379
TimeZone class, 774– 778
TimeWithZone class, 773– 774

time
time_fi eld, 371
time_fi eld_tag, 384
time_select, 351
time_tag, 356
time_zone_options_for_select, 373,

378– 379
time_zone_select, 373

timestamps, 181
titleize, 755
to, 652, 720

to_a, 634
to_constant_name, 691
to_date, 367, 685, 750

psn-fernandez-all.indb 811 5/9/14 10:08 AM

812 Index

to (continued)
to_datetime, 685, 750
to_default_s, 653
to_f, 685
to_formatted_s, 652– 653, 659,

681, 686, 731– 732, 746, 770–
771

to_h, 758
to_hash, 634
to_i, 686
to_json, 87, 107, 553, 741
to_key, 629
to_model, 629
to_options, 702
to_param, 629, 657, 704, 741
to_partial_path, 629
to_query, 704, 741
to_s, 653, 659, 771, 777
to_sentence, 653
to_sql, 265– 266
to_time, 681, 750
to_xml method, 611– 620
to_yaml, 779

today, 679, 769, 777
toggle, 271
toggle!, 271
tomorrow, 680, 769
touch, 210
transform_keys, 703
translate, 401, 407– 408, 410– 412
transliterate, 710– 711
travel, 762
travel_to, 762
truncate, 398– 399, 751
Truncating text, 398– 399
try, 741– 742
Turbolinks, 551– 553

U
ugly, 448
uncountable, 709– 710
undefi ne_attribute_method, 627
underscore, 755
unhook!, 691
Unicode

methods for handling, 727– 729
multibiyte safe proxy for, 756
pluralization rules, 412– 413
security concerns of, 392

uniq, 164, 204
unloadable, 743
Unobtrusive JavaScript (UJS), 547– 550

helpers, 548
jQuery UJS custom events, 550

unscope, 164– 165
until, 696, 737
update, 169, 271
update_all, 147, 188, 271
update_attribute, 148– 149, 260– 261
update_column(s), 260– 261, 271
update_counters, 271
updated_at, 186
updated_on, 186
URL

generation, 43
patterns in routing, 42
segment keys, 43– 44

url_fi eld, 371
url_fi eld_tag, 384– 385
url_for, 113, 358
us_utf8?, 757
us_zones, 379, 778
use_zone, 772
usec, 686
utc, 684

psn-fernandez-all.indb 812 5/9/14 10:08 AM

Index 813

utc?, 684
utc_offset, 684, 778
utc_to_local, 778
utf8_enforcer_tag, 384– 385

V
valid?, 146, 241– 242, 256, 635, 643
validate, 210– 211, 218, 260, 649
validate!, 648
validates, 647– 648

validates_absence_of, 242, 643
validates_acceptance_of, 242– 243, 643
validates_associated, 243– 244
validates_callbacks, 643– 644
validates_confi rmation_of, 244, 644
validates_each, 244– 245, 643
validates_exclusion_of, 246, 644
validates_format_of, 245– 246, 645–

646
validates_inclusion_of, 246, 645
validates_length_of, 246– 247, 645–

646
validates_numericality_of, 247– 248,

646– 647
validates_presence_of, 248– 249, 647
validates_uniqueness_of, 249– 251
validates_with, 251– 252, 648

Validation. See Active Record,
validations

validators, 648
validators_on, 648
Value objects, 299– 302
View templates

capturing block content, 395
concat method, 395s
cycling content, 398
encapsulating logic in helper

methods, 423– 424
highlighting content, 396
localization, 399
transforming text into HTML, 398
translation. See Internationalization.
word wrap, 399
See also Action View, 313– 329

values, 635
verify, 489, 716
verify!, 171
video_path, 342
video_tag, 342– 343

W
warn, 30, 693
warnings_on_fi rst_load, 688
Web 2.0, 355, 431, 558
Web architecture, 63– 64
week / weeks, 738

week_fi eld, 371
week_fi eld_tag, 385
weeks_ago, 680, 769
weeks_since, 680, 769

where, 211– 212, 218– 219, 236
will_unload?, 691
with_indifferent_access, 701, 705
with_options, 255, 742
word_wrap, 399
write, 661, 665
write_attribute, 135, 140

X
XML, 611– 625

Active Record associations, 614– 617
customizing output, 613– 614
extra elements, 618
overriding, 620

psn-fernandez-all.indb 813 5/9/14 10:08 AM

814 Index

XML (continued)
parsing, 622– 624
Ruby hashes, 616
to_xml method, 611– 620
typecasting, 624

XML Builder, 620– 622
XMLHttpRequestObject, 545– 546
XMLMini module, 778– 780
x_sendfi le_header=, 24, 573

Y
y, 101
YAML, 26, 136

Devise, 460
Resque, 537– 538
Sidekiq, 535
translations, 402, 408, 413

year / years, 738
years_ago, 680, 769
years_since, 680, 769

yesterday, 680, 770
yield, 119– 120, 315– 316

Z
zone, 772
zone=, 772– 773

psn-fernandez-all.indb 814 5/9/14 10:08 AM

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PMpsn-fernandez-all.indb 824 5/9/14 10:08 AM

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

psn-fernandez-all.indb 825 5/9/14 10:08 AM

	Contents
	Foreword by Steve Klabnik
	Foreword to the Previous Edition by David Heinemeier Hansson
	Foreword to the Previous Edition by Yehuda Katz
	Introduction
	Acknowledgments
	About the Authors
	Chapter 9 Advanced Active Record
	9.1 Scopes
	9.1.1 Scope Parameters
	9.1.2 Chaining Scopes
	9.1.3 Scopes and has_many
	9.1.4 Scopes and Joins
	9.1.5 Scope Combinations
	9.1.6 Default Scopes
	9.1.7 Using Scopes for CRUD

	9.2 Callbacks
	9.2.1 One-Liners
	9.2.2 Protected or Private
	9.2.3 Matched before/after Callbacks
	9.2.4 Halting Execution
	9.2.5 Callback Usages
	9.2.6 Special Callbacks: after_initialize and after_find
	9.2.7 Callback Classes

	9.3 Calculation Methods
	9.3.1 average(column_name, *options)
	9.3.2 count(column_name, *options)
	9.3.3 ids
	9.3.4 maximum(column_name, *options)
	9.3.5 minimum(column_name, *options)
	9.3.6 pluck(*column_names)
	9.3.7 sum(column_name, *options)

	9.4 Single-Table Inheritance (STI)
	9.4.1 Mapping Inheritance to the Database
	9.4.2 STI Considerations
	9.4.3 STI and Associations

	9.5 Abstract Base Model Classes
	9.6 Polymorphic has_many Relationships
	9.6.1 In the Case of Models with Comments

	9.7 Enums
	9.8 Foreign-Key Constraints
	9.9 Modules for Reusing Common Behavior
	9.9.1 A Review of Class Scope and Contexts
	9.9.2 The included Callback

	9.10 Modifying Active Record Classes at Runtime
	9.10.1 Considerations
	9.10.2 Ruby and Domain- Specific Languages

	9.11 Using Value Objects
	9.11.1 Immutability

	9.12 Nonpersisted Models
	9.13 PostgreSQL Enhancements
	9.13.1 Schemaless Data with hstore
	9.13.2 Array Type
	9.13.3 Network Address Types
	9.13.4 UUID Type
	9.13.5 Range Types
	9.13.6 JSON Type

	9.14 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

