
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321943187
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321943187
https://plusone.google.com/share?url=http://www.informit.com/title/9780321943187
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321943187
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321943187/Free-Sample-Chapter


The Practice of Cloud
System Administration

Volume 2



This page intentionally left blank 



The Practice of Cloud
System Administration

Designing and Operating
Large Distributed Systems

Volume 2

Thomas A. Limoncelli
Strata R. Chalup

Christina J. Hogan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Limoncelli, Tom.

The practice of cloud system administration : designing and operating large distributed systems /
Thomas A. Limoncelli, Strata R. Chalup, Christina J. Hogan.

volumes cm
Includes bibliographical references and index.
ISBN-13: 978-0-321-94318-7 (volume 2 : paperback)
ISBN-10: 0-321-94318-X (volume 2 : paperback)

1. Computer networks—Management. 2. Computer systems. 3. Cloud computing. 4. Electronic data
processing—Distributed processing. I. Chalup, Strata R. II. Hogan, Christina J. III. Title.

TK5105.5.L529 2015
004.67’82068—dc23 2014024033

Copyright © 2015 Thomas A. Limoncelli, Virtual.NET Inc., Christina J. Lear née Hogan

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-94318-7
ISBN-10: 0-321-94318-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, September 2014



Contents at a Glance

Contents vii

Preface xxiii

About the Authors xxix

Introduction 1

Part I Design: Building It 7
Chapter 1 Designing in a Distributed World 9
Chapter 2 Designing for Operations 31
Chapter 3 Selecting a Service Platform 51
Chapter 4 Application Architectures 69
Chapter 5 Design Patterns for Scaling 95
Chapter 6 Design Patterns for Resiliency 119

Part II Operations: Running It 145
Chapter 7 Operations in a Distributed World 147
Chapter 8 DevOps Culture 171
Chapter 9 Service Delivery: The Build Phase 195
Chapter 10 Service Delivery: The Deployment Phase 211
Chapter 11 Upgrading Live Services 225
Chapter 12 Automation 243
Chapter 13 Design Documents 275
Chapter 14 Oncall 285
Chapter 15 Disaster Preparedness 307
Chapter 16 Monitoring Fundamentals 331

v



vi Contents at a Glance

Chapter 17 Monitoring Architecture and Practice 345
Chapter 18 Capacity Planning 365
Chapter 19 Creating KPIs 387
Chapter 20 Operational Excellence 401
Epilogue 417

Part III Appendices 419

Appendix A Assessments 421

Appendix B The Origins and Future of Distributed Computing
and Clouds 451

Appendix C Scaling Terminology and Concepts 475

Appendix D Templates and Examples 481

Appendix E Recommended Reading 487

Bibliography 491

Index 499



Contents

Preface xxiii

About the Authors xxix

Introduction 1

Part I Design: Building It 7

1 Designing in a Distributed World 9

1.1 Visibility at Scale 10

1.2 The Importance of Simplicity 11

1.3 Composition 12

1.3.1 Load Balancer with Multiple Backend Replicas 12

1.3.2 Server with Multiple Backends 14

1.3.3 Server Tree 16

1.4 Distributed State 17

1.5 The CAP Principle 21

1.5.1 Consistency 21

1.5.2 Availability 21

1.5.3 Partition Tolerance 22

1.6 Loosely Coupled Systems 24

1.7 Speed 26

1.8 Summary 29

Exercises 30

vii



viii Contents

2 Designing for Operations 31

2.1 Operational Requirements 31

2.1.1 Configuration 33

2.1.2 Startup and Shutdown 34

2.1.3 Queue Draining 35

2.1.4 Software Upgrades 36

2.1.5 Backups and Restores 36

2.1.6 Redundancy 37

2.1.7 Replicated Databases 37

2.1.8 Hot Swaps 38

2.1.9 Toggles for Individual Features 39

2.1.10 Graceful Degradation 39

2.1.11 Access Controls and Rate Limits 40

2.1.12 Data Import Controls 41

2.1.13 Monitoring 42

2.1.14 Auditing 42

2.1.15 Debug Instrumentation 43

2.1.16 Exception Collection 43

2.1.17 Documentation for Operations 44

2.2 Implementing Design for Operations 45

2.2.1 Build Features in from the Beginning 45

2.2.2 Request Features as They Are Identified 46

2.2.3 Write the Features Yourself 47

2.2.4 Work with a Third-Party Vendor 48

2.3 Improving the Model 48

2.4 Summary 49

Exercises 50

3 Selecting a Service Platform 51

3.1 Level of Service Abstraction 52

3.1.1 Infrastructure as a Service 52

3.1.2 Platform as a Service 54

3.1.3 Software as a Service 55

3.2 Type of Machine 56

3.2.1 Physical Machines 57

3.2.2 Virtual Machines 57

3.2.3 Containers 60



Contents ix

3.3 Level of Resource Sharing 62

3.3.1 Compliance 63

3.3.2 Privacy 63

3.3.3 Cost 63

3.3.4 Control 64

3.4 Colocation 65

3.5 Selection Strategies 66

3.6 Summary 68

Exercises 68

4 Application Architectures 69

4.1 Single-Machine Web Server 70

4.2 Three-Tier Web Service 71

4.2.1 Load Balancer Types 72

4.2.2 Load Balancing Methods 74

4.2.3 Load Balancing with Shared State 75

4.2.4 User Identity 76

4.2.5 Scaling 76

4.3 Four-Tier Web Service 77

4.3.1 Frontends 78

4.3.2 Application Servers 79

4.3.3 Configuration Options 80

4.4 Reverse Proxy Service 80

4.5 Cloud-Scale Service 80

4.5.1 Global Load Balancer 81

4.5.2 Global Load Balancing Methods 82

4.5.3 Global Load Balancing with User-Specific Data 82

4.5.4 Internal Backbone 83

4.6 Message Bus Architectures 85

4.6.1 Message Bus Designs 86

4.6.2 Message Bus Reliability 87

4.6.3 Example 1: Link-Shortening Site 87

4.6.4 Example 2: Employee Human Resources Data Updates 89

4.7 Service-Oriented Architecture 90

4.7.1 Flexibility 91

4.7.2 Support 91

4.7.3 Best Practices 91



x Contents

4.8 Summary 92

Exercises 93

5 Design Patterns for Scaling 95

5.1 General Strategy 96

5.1.1 Identify Bottlenecks 96

5.1.2 Reengineer Components 97

5.1.3 Measure Results 97

5.1.4 Be Proactive 97

5.2 Scaling Up 98

5.3 The AKF Scaling Cube 99

5.3.1 x: Horizontal Duplication 99

5.3.2 y: Functional or Service Splits 101

5.3.3 z: Lookup-Oriented Split 102

5.3.4 Combinations 104

5.4 Caching 104

5.4.1 Cache Effectiveness 105

5.4.2 Cache Placement 106

5.4.3 Cache Persistence 106

5.4.4 Cache Replacement Algorithms 107

5.4.5 Cache Entry Invalidation 108

5.4.6 Cache Size 109

5.5 Data Sharding 110

5.6 Threading 112

5.7 Queueing 113

5.7.1 Benefits 113

5.7.2 Variations 113

5.8 Content Delivery Networks 114

5.9 Summary 116

Exercises 116

6 Design Patterns for Resiliency 119

6.1 Software Resiliency Beats Hardware Reliability 120

6.2 Everything Malfunctions Eventually 121

6.2.1 MTBF in Distributed Systems 121

6.2.2 The Traditional Approach 122

6.2.3 The Distributed Computing Approach 123



Contents xi

6.3 Resiliency through Spare Capacity 124

6.3.1 How Much Spare Capacity 125

6.3.2 Load Sharing versus Hot Spares 126

6.4 Failure Domains 126

6.5 Software Failures 128

6.5.1 Software Crashes 128

6.5.2 Software Hangs 129

6.5.3 Query of Death 130

6.6 Physical Failures 131

6.6.1 Parts and Components 131

6.6.2 Machines 134

6.6.3 Load Balancers 134

6.6.4 Racks 136

6.6.5 Datacenters 137

6.7 Overload Failures 138

6.7.1 Traffic Surges 138

6.7.2 DoS and DDoS Attacks 140

6.7.3 Scraping Attacks 140

6.8 Human Error 141

6.9 Summary 142

Exercises 143

Part II Operations: Running It 145

7 Operations in a Distributed World 147

7.1 Distributed Systems Operations 148

7.1.1 SRE versus Traditional Enterprise IT 148

7.1.2 Change versus Stability 149

7.1.3 Defining SRE 151

7.1.4 Operations at Scale 152

7.2 Service Life Cycle 155

7.2.1 Service Launches 156

7.2.2 Service Decommissioning 160

7.3 Organizing Strategy for Operational Teams 160

7.3.1 Team Member Day Types 162

7.3.2 Other Strategies 165



xii Contents

7.4 Virtual Office 166

7.4.1 Communication Mechanisms 166

7.4.2 Communication Policies 167

7.5 Summary 167

Exercises 168

8 DevOps Culture 171

8.1 What Is DevOps? 172

8.1.1 The Traditional Approach 173

8.1.2 The DevOps Approach 175

8.2 The Three Ways of DevOps 176

8.2.1 The First Way: Workflow 176

8.2.2 The Second Way: Improve Feedback 177

8.2.3 The Third Way: Continual Experimentation and
Learning 178

8.2.4 Small Batches Are Better 178

8.2.5 Adopting the Strategies 179

8.3 History of DevOps 180

8.3.1 Evolution 180

8.3.2 Site Reliability Engineering 181

8.4 DevOps Values and Principles 181

8.4.1 Relationships 182

8.4.2 Integration 182

8.4.3 Automation 182

8.4.4 Continuous Improvement 183

8.4.5 Common Nontechnical DevOps Practices 183

8.4.6 Common Technical DevOps Practices 184

8.4.7 Release Engineering DevOps Practices 186

8.5 Converting to DevOps 186

8.5.1 Getting Started 187

8.5.2 DevOps at the Business Level 187

8.6 Agile and Continuous Delivery 188

8.6.1 What Is Agile? 188

8.6.2 What Is Continuous Delivery? 189

8.7 Summary 192

Exercises 193



Contents xiii

9 Service Delivery: The Build Phase 195

9.1 Service Delivery Strategies 197

9.1.1 Pattern: Modern DevOps Methodology 197

9.1.2 Anti-pattern: Waterfall Methodology 199

9.2 The Virtuous Cycle of Quality 200

9.3 Build-Phase Steps 202

9.3.1 Develop 202

9.3.2 Commit 202

9.3.3 Build 203

9.3.4 Package 204

9.3.5 Register 204

9.4 Build Console 205

9.5 Continuous Integration 205

9.6 Packages as Handoff Interface 207

9.7 Summary 208

Exercises 209

10 Service Delivery: The Deployment Phase 211

10.1 Deployment-Phase Steps 211

10.1.1 Promotion 212

10.1.2 Installation 212

10.1.3 Configuration 213

10.2 Testing and Approval 214

10.2.1 Testing 215

10.2.2 Approval 216

10.3 Operations Console 217

10.4 Infrastructure Automation Strategies 217

10.4.1 Preparing Physical Machines 217

10.4.2 Preparing Virtual Machines 218

10.4.3 Installing OS and Services 219

10.5 Continuous Delivery 221

10.6 Infrastructure as Code 221

10.7 Other Platform Services 222

10.8 Summary 222

Exercises 223



xiv Contents

11 Upgrading Live Services 225

11.1 Taking the Service Down for Upgrading 225

11.2 Rolling Upgrades 226

11.3 Canary 227

11.4 Phased Roll-outs 229

11.5 Proportional Shedding 230

11.6 Blue-Green Deployment 230

11.7 Toggling Features 230

11.8 Live Schema Changes 234

11.9 Live Code Changes 236

11.10 Continuous Deployment 236

11.11 Dealing with Failed Code Pushes 239

11.12 Release Atomicity 240

11.13 Summary 241

Exercises 241

12 Automation 243

12.1 Approaches to Automation 244

12.1.1 The Left-Over Principle 245

12.1.2 The Compensatory Principle 246

12.1.3 The Complementarity Principle 247

12.1.4 Automation for System Administration 248

12.1.5 Lessons Learned 249

12.2 Tool Building versus Automation 250

12.2.1 Example: Auto Manufacturing 251

12.2.2 Example: Machine Configuration 251

12.2.3 Example: Account Creation 251

12.2.4 Tools Are Good, But Automation Is Better 252

12.3 Goals of Automation 252

12.4 Creating Automation 255

12.4.1 Making Time to Automate 256

12.4.2 Reducing Toil 257

12.4.3 Determining What to Automate First 257

12.5 How to Automate 258

12.6 Language Tools 258

12.6.1 Shell Scripting Languages 259

12.6.2 Scripting Languages 259



Contents xv

12.6.3 Compiled Languages 260

12.6.4 Configuration Management Languages 260

12.7 Software Engineering Tools and Techniques 262

12.7.1 Issue Tracking Systems 263

12.7.2 Version Control Systems 265

12.7.3 Software Packaging 266

12.7.4 Style Guides 266

12.7.5 Test-Driven Development 267

12.7.6 Code Reviews 268

12.7.7 Writing Just Enough Code 269

12.8 Multitenant Systems 270

12.9 Summary 271

Exercises 272

13 Design Documents 275

13.1 Design Documents Overview 275

13.1.1 Documenting Changes and Rationale 276

13.1.2 Documentation as a Repository of Past
Decisions 276

13.2 Design Document Anatomy 277

13.3 Template 279

13.4 Document Archive 279

13.5 Review Workflows 280

13.5.1 Reviewers and Approvers 281

13.5.2 Achieving Sign-off 281

13.6 Adopting Design Documents 282

13.7 Summary 283

Exercises 284

14 Oncall 285

14.1 Designing Oncall 285

14.1.1 Start with the SLA 286

14.1.2 Oncall Roster 287

14.1.3 Onduty 288

14.1.4 Oncall Schedule Design 288

14.1.5 The Oncall Calendar 290

14.1.6 Oncall Frequency 291



xvi Contents

14.1.7 Types of Notifications 292

14.1.8 After-Hours Maintenance Coordination 294

14.2 Being Oncall 294

14.2.1 Pre-shift Responsibilities 294

14.2.2 Regular Oncall Responsibilities 294

14.2.3 Alert Responsibilities 295

14.2.4 Observe, Orient, Decide, Act (OODA) 296

14.2.5 Oncall Playbook 297

14.2.6 Third-Party Escalation 298

14.2.7 End-of-Shift Responsibilities 299

14.3 Between Oncall Shifts 299

14.3.1 Long-Term Fixes 299

14.3.2 Postmortems 300

14.4 Periodic Review of Alerts 302

14.5 Being Paged Too Much 304

14.6 Summary 305

Exercises 306

15 Disaster Preparedness 307

15.1 Mindset 308

15.1.1 Antifragile Systems 308

15.1.2 Reducing Risk 309

15.2 Individual Training: Wheel of Misfortune 311

15.3 Team Training: Fire Drills 312

15.3.1 Service Testing 313

15.3.2 Random Testing 314

15.4 Training for Organizations: Game Day/DiRT 315

15.4.1 Getting Started 316

15.4.2 Increasing Scope 317

15.4.3 Implementation and Logistics 318

15.4.4 Experiencing a DiRT Test 320

15.5 Incident Command System 323

15.5.1 How It Works: Public Safety Arena 325

15.5.2 How It Works: IT Operations Arena 326

15.5.3 Incident Action Plan 326

15.5.4 Best Practices 327

15.5.5 ICS Example 328



Contents xvii

15.6 Summary 329

Exercises 330

16 Monitoring Fundamentals 331

16.1 Overview 332

16.1.1 Uses of Monitoring 333

16.1.2 Service Management 334

16.2 Consumers of Monitoring Information 334

16.3 What to Monitor 336

16.4 Retention 338

16.5 Meta-monitoring 339

16.6 Logs 340

16.6.1 Approach 341

16.6.2 Timestamps 341

16.7 Summary 342

Exercises 342

17 Monitoring Architecture and Practice 345

17.1 Sensing and Measurement 346

17.1.1 Blackbox versus Whitebox Monitoring 346

17.1.2 Direct versus Synthesized Measurements 347

17.1.3 Rate versus Capability Monitoring 348

17.1.4 Gauges versus Counters 348

17.2 Collection 350

17.2.1 Push versus Pull 350

17.2.2 Protocol Selection 351

17.2.3 Server Component versus Agent versus Poller 352

17.2.4 Central versus Regional Collectors 352

17.3 Analysis and Computation 353

17.4 Alerting and Escalation Manager 354

17.4.1 Alerting, Escalation, and Acknowledgments 355

17.4.2 Silence versus Inhibit 356

17.5 Visualization 358

17.5.1 Percentiles 359

17.5.2 Stack Ranking 360

17.5.3 Histograms 361

17.6 Storage 362



xviii Contents

17.7 Configuration 362

17.8 Summary 363

Exercises 364

18 Capacity Planning 365

18.1 Standard Capacity Planning 366

18.1.1 Current Usage 368

18.1.2 Normal Growth 369

18.1.3 Planned Growth 369

18.1.4 Headroom 370

18.1.5 Resiliency 370

18.1.6 Timetable 371

18.2 Advanced Capacity Planning 371

18.2.1 Identifying Your Primary Resources 372

18.2.2 Knowing Your Capacity Limits 372

18.2.3 Identifying Your Core Drivers 373

18.2.4 Measuring Engagement 374

18.2.5 Analyzing the Data 375

18.2.6 Monitoring the Key Indicators 380

18.2.7 Delegating Capacity Planning 381

18.3 Resource Regression 381

18.4 Launching New Services 382

18.5 Reduce Provisioning Time 384

18.6 Summary 385

Exercises 386

19 Creating KPIs 387

19.1 What Is a KPI? 388

19.2 Creating KPIs 389

19.2.1 Step 1: Envision the Ideal 390

19.2.2 Step 2: Quantify Distance to the Ideal 390

19.2.3 Step 3: Imagine How Behavior Will Change 390

19.2.4 Step 4: Revise and Select 391

19.2.5 Step 5: Deploy the KPI 392

19.3 Example KPI: Machine Allocation 393

19.3.1 The First Pass 393



Contents xix

19.3.2 The Second Pass 394

19.3.3 Evaluating the KPI 396

19.4 Case Study: Error Budget 396

19.4.1 Conflicting Goals 396

19.4.2 A Unified Goal 397

19.4.3 Everyone Benefits 398

19.5 Summary 399

Exercises 399

20 Operational Excellence 401

20.1 What Does Operational Excellence Look Like? 401

20.2 How to Measure Greatness 402

20.3 Assessment Methodology 403

20.3.1 Operational Responsibilities 403

20.3.2 Assessment Levels 405

20.3.3 Assessment Questions and Look-For’s 407

20.4 Service Assessments 407

20.4.1 Identifying What to Assess 408

20.4.2 Assessing Each Service 408

20.4.3 Comparing Results across Services 409

20.4.4 Acting on the Results 410

20.4.5 Assessment and Project Planning Frequencies 410

20.5 Organizational Assessments 411

20.6 Levels of Improvement 412

20.7 Getting Started 413

20.8 Summary 414

Exercises 415

Epilogue 416

Part III Appendices 419

A Assessments 421

A.1 Regular Tasks (RT) 423

A.2 Emergency Response (ER) 426

A.3 Monitoring and Metrics (MM) 428



xx Contents

A.4 Capacity Planning (CP) 431

A.5 Change Management (CM) 433

A.6 New Product Introduction and Removal (NPI/NPR) 435

A.7 Service Deployment and Decommissioning (SDD) 437

A.8 Performance and Efficiency (PE) 439

A.9 Service Delivery: The Build Phase 442

A.10 Service Delivery: The Deployment Phase 444

A.11 Toil Reduction 446

A.12 Disaster Preparedness 448

B The Origins and Future of Distributed Computing and Clouds 451

B.1 The Pre-Web Era (1985–1994) 452

Availability Requirements 452

Technology 453

Scaling 454

High Availability 454

Costs 454

B.2 The First Web Era: The Bubble (1995–2000) 455

Availability Requirements 455

Technology 455

Scaling 456

High Availability 457

Costs 459

B.3 The Dot-Bomb Era (2000–2003) 459

Availability Requirements 460

Technology 460

High Availability 461

Scaling 462

Costs 464

B.4 The Second Web Era (2003–2010) 465

Availability Requirements 465

Technology 465

High Availability 466

Scaling 467

Costs 468



Contents xxi

B.5 The Cloud Computing Era (2010–present) 469

Availability Requirements 469

Costs 469

Scaling and High Availability 471

Technology 472

B.6 Conclusion 472

Exercises 473

C Scaling Terminology and Concepts 475

C.1 Constant, Linear, and Exponential Scaling 475

C.2 Big O Notation 476

C.3 Limitations of Big O Notation 478

D Templates and Examples 481

D.1 Design Document Template 481

D.2 Design Document Example 482

D.3 Sample Postmortem Template 484

E Recommended Reading 487

Bibliography 491

Index 499



This page intentionally left blank 



Preface

Which of the following statements are true?

1. The most reliable systems are built using cheap, unreliable components.
2. The techniques that Google uses to scale to billions of users follow the same

patterns you can use to scale a system that handles hundreds of users.
3. The more risky a procedure is, the more you should do it.
4. Some of themost important software features are the ones that users never see.
5. You should pick random machines and power them off.
6. The code for every feature Facebook will announce in the next six months is

probably in your browser already.
7. Updating software multiple times a day requires little human effort.
8. Being oncall doesn’t have to be a stressful, painful experience.
9. You shouldn’t monitor whether machines are up.

10. Operations and management can be conducted using the scientific principles
of experimentation and evidence.

11. Google has rehearsed what it would do in case of a zombie attack.

All of these statements are true. By the time you finish reading this book, you’ll
know why.

This is a book about building and running cloud-based services on a large
scale: internet-based services for millions or billions of users. That said, every day
more and more enterprises are adopting these techniques. Therefore, this is a book
for everyone.

The intended audience is system administrators and their managers. We do
not assume a background in computer science, but we do assume experience with
UNIX/Linux system administration, networking, and operating system concepts.

Our focus is on building and operating the services that make up the cloud,
not a guide to using cloud-based services.

xxiii



xxiv Preface

Cloud services must be available, fast, and secure. At cloud scale, this is a
unique engineering feat. Therefore cloud-scale services are engineered differently
than your typical enterprise service. Being available is important because the
Internet is open 24 × 7 and has users in every time zone. Being fast is important
because users are frustrated by slow services, so slow services lose out to faster
rivals. Being secure is important because, as caretakers of other people’s data, we
are duty-bound (and legally responsible) to protect people’s data.

These requirements are intermixed. If a site is not secure, by definition, it
cannot be made reliable. If a site is not fast, it is not sufficiently available. If a site
is down, by definition, it is not fast.

The most visible cloud-scale services are web sites. However, there is a
huge ecosystem of invisible internet-accessible services that are not accessed with
a browser. For example, smartphone apps use API calls to access cloud-based
services.

For the remainder of this book we will tend to use the term “distributed com-
puting” rather than “cloud computing.” Cloud computing is a marketing term that
means different things to different people.Distributed computing describes an archi-
tecture where applications and services are provided using many machines rather
than one.

This is a book of fundamental principles and practices that are timeless.
Therefore we don’t make recommendations about which specific products or tech-
nologies to use. We could provide a comparison of the top five most popular web
servers or NoSQL databases or continuous build systems. If we did, then this book
would be out of date the moment it is published. Instead, we discuss the quali-
ties one should look for when selecting such things. We provide a model to work
from. This approach is intended to prepare you for a long career where technology
changes over time but you are always prepared. We will, of course, illustrate our
points with specific technologies and products, but not as an endorsement of those
products and services.

This book is, at times, idealistic. This is deliberate.We set out to give the reader
a vision of how things can be, what to strive for. We are here to raise the bar.

About This Book
The book is structured in two parts, Design and Operations.

Part I captures our thinking on the design of large, complex, cloud-based dis-
tributed computing systems. After the Introduction, we tackle each element of
design from the bottom layers to the top. We cover distributed systems from the
point of view of a system administrator, not a computer scientist. To operate a
system, one must be able to understand its internals.



Preface xxv

Part II describes how to run such systems. The first chapters cover the most
fundamental issues. Later chapters delve into more esoteric technical activities,
then high-level planning and strategy that tie together all of the above.

At the end is extra material including an assessment system for operations
teams, a highly biased history of distributed computing, templates for forms
mentioned in the text, recommended reading, and other reference material.

We’re excited to present a new feature of our book series: our operational
assessment system. This system consists of a series of assessments you can use
to evaluate your operations and find areas of improvement. The assessment ques-
tions and “Look For” recommendations are found in Appendix A. Chapter 20 is
the instruction manual.

Acknowledgments
This bookwouldn’t have been possible without the help and feedback we received
from our community and people all over the world. The DevOps community was
generous in its assistance.

First, we’d like to thank our spouses and families: Christine Polk, Mike
Chalup, and Eliot and Joanna Lear. Your love and patience make all this possible.

If we have seen further, it is by standing on the shoulders of giants. Certain
chapters relied heavily on support and advice from particular people: John Looney
and Cian Synnott (Chapter 1); Marty Abbott and Michael Fisher (Chapter 5);
Damon Edwards, Alex Honor, and Jez Humble (Chapters 9 and 10); John Allspaw
(Chapter 12); Brent Chapman (Chapter 15); Caskey Dickson and Theo Schlossna-
gle (Chapters 16 and 17); Arun Kejariwal and Bruce Yan (Chapter 18); Benjamin
Treynor Sloss (Chapter 19); and Geoff Halprin (Chapter 20 and Appendix A).

Thanks to Gene Kim for the “strategic” inspiration and encouragement.
Dozens of people helped us—some by supplying anecdotes, some by review-

ing parts of or the entire book. The only fair way to thank them all is alphabetically
and to apologize in advance to anyone we left out: Thomas Baden, George Beech,
Raymond Blum, Kyle Brandt, Mark Burgess, Nick Craver, Geoff Dalgas, Robert
P. J. Day, Patrick Debois, Bill Duane, Paul Evans, David Fullerton, TomGeller, Peter
Grace, Elizabeth Hamon Reid, JimHickstein, Zachary Hueras, Matt Jones, Jennifer
Joy, Jimmy Kaplowitz, Daniel V. Klein, Steven Levine, Cory Lueninghoener, Shane
Madden, Jim Maurer, Stephen McHenry, Dinah McNutt, Scott Hazen Mueller,
Steve Murawski, Mohit Muthanna, Lenny Rachitsky, Amy Rich, Adele Shakal,
Bart Silverstrim, Josh Simon, Joel Spolsky, Desiree Sylvester, Win Treese, Todd
Underwood, Nicole Forsgren Velasquez, and Dave Zwieback.

Last but not least, thanks to everyone from Addison-Wesley. In particular,
thanks to Debra Williams Cauley, for guiding us to Addison-Wesley and steering



xxvi Preface

us the entire way; Michael Thurston, for editing our earliest drafts and reshaping
them to be much, much better; Kim Boedigheimer, who coordinated and assisted
us calmly even when we were panicking; Lori Hughes, our LaTeX wizard; Julie
Nahil, our production manager; Jill Hobbs, our copyeditor; and John Fuller and
Mark Taub, for putting up with all our special requests!

Part I Design: Building It

Chapter 1: Designing in a Distributed World
Overview of how distributed systems are designed.

Chapter 2: Designing for Operations
Features software should have to enable smooth operations.

Chapter 3: Selecting a Service Platform
Physical and virtual machines, private and public clouds.

Chapter 4: Application Architectures
Building blocks for creating web and other applications.

Chapter 5: Design Patterns for Scaling
Building blocks for growing a service.

Chapter 6: Design Patterns for Resiliency
Building blocks for creating systems that survive failure.

Part II Operations: Running It

Chapter 7: Operations in a Distributed World
Overview of how distributed systems are run.

Chapter 8: DevOps Culture
Introduction to DevOps culture, its history and practices.

Chapter 9: Service Delivery: The Build Phase
How a service gets built and prepared for production.

Chapter 10: Service Delivery: The Deployment Phase
How a service is tested, approved, and put into production.

Chapter 11: Upgrading Live Services
How to upgrade services without downtime.

Chapter 12: Automation
Creating tools and automating operational work.

Chapter 13: Design Documents
Communicating designs and intentions in writing.

Chapter 14: Oncall
Handling exceptions.

Chapter 15: Disaster Preparedness
Making systems stronger through planning and practice.



Preface xxvii

Chapter 16: Monitoring Fundamentals
Monitoring terminology and strategy.

Chapter 17: Monitoring Architecture and Practice
The components and practice of monitoring.

Chapter 18: Capacity Planning
Planning for and providing additional resources before we need them.

Chapter 19: Creating KPIs
Driving behavior scientifically through measurement and reflection.

Chapter 20: Operational Excellence
Strategies for constant improvement.

Epilogue
Some final thoughts.

Part III Appendices

Appendix A: Assessments
Appendix B: The Origins and Future of Distributed Computing and Clouds
Appendix C: Scaling Terminology and Concepts
Appendix D: Templates and Examples
Appendix E: Recommended Reading
Bibliography
Index



This page intentionally left blank 



About the Authors

Thomas A. Limoncelli is an internationally recognized author, speaker, and
system administrator. During his seven years at Google NYC, he was an SRE for
projects such as Blog Search, Ganeti, and various internal enterprise IT services. He
now works as an SRE at Stack Exchange, Inc., home of ServerFault.com and Stack-
Overflow.com. His first paid system administration job was as a student at Drew
University in 1987, and he has since worked at small and large companies, includ-
ing AT&T/Lucent Bell Labs. His best-known books include Time Management for
System Administrators (O’Reilly) and The Practice of System and Network Adminis-
tration, Second Edition (Addison-Wesley). His hobbies include grassroots activism,
for which his work has been recognized at state and national levels. He lives in
New Jersey.

Strata R. Chalup has been leading and managing complex IT projects for many
years, serving in roles ranging from project manager to director of operations.
Strata has authored numerous articles on management and working with teams
and has applied her management skills on various volunteer boards, including
BayLISA and SAGE. She started administering VAX Ultrix and Unisys UNIX in
1983 atMIT in Boston, and spent the dot-com years in Silicon Valley building inter-
net services for clients like iPlanet and Palm. In 2007, she joined Tom and Christina
to create the second edition of The Practice of System and Network Administration
(Addison-Wesley). Her hobbies includeworkingwith new technologies, including
Arduino and various 2D CAD/CAM devices, as well as being a master gardener.
She lives in Santa Clara County, California.

Christina J. Hogan has twenty years of experience in system administration
and network engineering, from Silicon Valley to Italy and Switzerland. She has
gained experience in small startups, mid-sized tech companies, and large global
corporations. She worked as a security consultant for many years and her cus-
tomers included eBay, Silicon Graphics, and SystemExperts. In 2005 she and Tom

xxix



xxx About the Authors

shared the SAGE Outstanding Achievement Award for their book The Practice of
System and Network Administration (Addison-Wesley). She has a bachelor’s degree
in mathematics, a master’s degree in computer science, a doctorate in aeronautical
engineering, and a diploma in law. She also worked for six years as an aero-
dynamicist in a Formula 1 racing team and represented Ireland in the 1988 Chess
Olympiad. She lives in Switzerland.



Introduction

The goal of this book is to help you build and run the best cloud-scale service
possible. What is the ideal environment that we seek to create?

Business Objectives
Simply stated, the end result of our ideal environment is that business objectives
are met. That may sound a little boring but actually it is quite exciting to work
where the entire company is focused and working together on the same goals.

To achieve this, we must understand the business objectives and work back-
ward to arrive at the system we should build.

Meeting business objectivesmeans knowingwhat those objectives are, having
a plan to achieve them, and working through the roadblocks along the way.

Well-defined business objectives are measurable, and such measurements can
be collected in an automated fashion. A dashboard is automatically generated so
everyone is aware of progress. This transparency enhances trust.

Here are some sample business objectives:

• Sell our products via a web site
• Provide service 99.99 percent of the time
• Process x million purchases per month, growing 10 percent monthly
• Introduce new features twice a week
• Fix major bugs within 24 hours

In our ideal environment, business and technical teams meet their objectives and
project goals predictably and reliably. Because of this, both types of teams trust
that other teams will meet their future objectives. As a result, teams can plan
better. They canmakemore aggressive plans because there is confidence that exter-
nal dependencies will not fail. This permits even more aggressive planning. Such
an approach creates an upward spiral that accelerates progress throughout the
company, benefiting everyone.

1



2 Introduction

Ideal System Architecture
The ideal service is built on a solid architecture. It meets the requirements of the
service today and provides an obvious path for growth as the system becomes
more popular and receives more traffic. The system is resilient to failure. Rather
than being surprised by failures and treating them as exceptions, the architecture
accepts that hardware and software failures are a part of the physics of information
technology (IT). As a result, the architecture includes redundancy and resiliency
features that work around failures. Components fail but the system survives.

Each subsystem that makes up our service is itself a service. All subsys-
tems are programmable via an application programming interface (API). Thus,
the entire system is an ecosystem of interconnected subservices. This is called a
service-oriented architecture (SOA). Because all these systems communicate over
the same underlying protocol, there is uniformity in how they are managed.
Because each subservice is loosely coupled to the others, all of these services can
be independently scaled, upgraded, or replaced.

The geometry of the infrastructure is described electronically. This electronic
description is read by IT automation systems, which then build the production
environment without human intervention. Because of this automation, the entire
infrastructure can be re-created elsewhere. Software engineers use the automation
to make micro-versions of the environment for their personal use. Quality and test
engineers use the automation to create environments for system tests.

This “infrastructure as code” can be achieved whether we use physical
machines or virtual machines, and whether they are in datacenters we run or are
hosted by a cloud provider.With virtualmachines there is an obviousAPI available
for spinning up a new machine. However, even with physical machines, the entire
flow from bare metal to working system can be automated. In our ideal world the
automation makes it possible to create environments using combinations of phys-
ical and virtual machines. Developers may build the environment out of virtual
machines. The production environment might consist of a mixture of physical and
virtualmachines. The temporary and unexpected need for additional capacitymay
require extending the production environment into one or more cloud providers
for some period of time.

Ideal Release Process
Our ideal environment has a smooth flow of code fromdevelopment to operations.

Traditionally (not in our ideal environment) the sequence looks like this:

1. Developers check code into a repository.
2. Test engineers put the code through a number of tests.



Introduction 3

3. If all the tests pass, the a release engineer builds the packages that will be used
to deploy the software. Most of the files come from the source code repos-
itory, but some files may be needed from other sources such as a graphics
department or documentation writers.

4. A test environment is created; without an “infrastructure as code” model, this
may take weeks.

5. The packages are deployed into a test environment.
6. Test engineers perform further tests, focusing on the interaction between

subsystems.
7. If all these tests succeed, the code is put into production.
8. System administrators upgrade systems while looking for failures.
9. If there are failures, the software is rolled back.

Doing these steps manually incurs a lot of risk, owing to the assumptions that the
right people are available, that the steps are done the same way every time, that
nobody makes mistakes, and that all the tasks are completed in time.

Mistakes, bugs, and errors happen, of course—and as a result defects are
passed down the line to the next stage. When a mistake is discovered the flow of
progress is reversed as the team members who were responsible for the previous
stage are told to fix their problem. This means progress is halted and time is lost.

A typical response to a risky process is to do it as rarely as possible. Thus
there is a temptation to do as few releases as possible. The result is “mega-releases”
launched only a few times a year.

However, by batching up so many changes at once, we actually create more
risk. How can we be sure thousands of changes, released simultaneously, will
all work on the first try? We can’t. Therefore we become even more recalcitrant
toward and fearful of making changes. Soon change becomes nearly impossible
and innovation comes to a halt.

Not so in our ideal environment.
In our ideal environment, we find automation that eliminates all manual steps

in the software build, test, release, and deployment processes. The automation
accurately and consistently performs tests that prevent defects from being passed
to the next step. As a consequence, the flow of progress is in one direction: forward.

Rather than mega-releases, our ideal environment creates micro-releases. We
reduce risk by doing many deployments, each with a few small changes. In fact,
we might do 100 deployments per day.

1. When the developers check in code, a system detects this fact and triggers a
series of automated tests. These tests verify basic code functionality.

2. If these tests pass, the process of building the packages is kicked off and runs
in a completely automated fashion.



4 Introduction

3. The successful creation of new packages triggers the creation of a test envi-
ronment. Building a test environment used to be a long week of connecting
cables and installing machines. But with infrastructure as code, the entire
environment is created quickly with no human intervention.

4. When the test environment is complete, a series of automated tests are run.
5. On successful completion the new packages are rolled out to production. The

roll-out is also automated but orderly and cautious.
6. Certain systems are upgraded first and the system watches for failures. Since

the test environment was built with the same automation that built the
production environment, there should be very few differences.

7. Seeing no failures, the new packages are rolled out to more and more systems
until the entire production environment is upgraded.

In our ideal environment all problems are caught before they reach production.
That is, roll-out is not a form of testing. Failure during a roll-out to production is
essentially eliminated. However, if a failure does happen, it would be considered
a serious issue warranting pausing new releases from going into production until
a root causes analysis is completed. Tests are added to detect and prevent future
occurrences of this failure. Thus, the system gets stronger over time.

Because of this automation, the traditional roles of release engineering, qual-
ity assurance, and deployment are practically unrecognizable from their roles at a
traditional company. Hours of laborious manual toil are eliminated, leaving more
time for improving the packaging system, improving the software quality, and
refining the deployment process. In other words, people spend more time making
improvements in how work is done rather than doing work itself.

A similar process is used for third-party software. Not all systems are home-
grown or come with source code. Deploying third-party services and products
follows a similar pattern of release, testing, deployment. However, because these
products and services are developed externally, they require a slightly different
process. New releases are likely to occur less frequently and we have less control
over what is in each new release. The kind of testing these components require is
usually related to features, compatibility, and integration.

Ideal Operations
Once the code is in production, operational objectives take precedence. The soft-
ware is instrumented so that it can be monitored. Data is collected about how long
it takes to process transactions from external users as well as from internal APIs.
Other indicators such as memory usage are also monitored. This data is collected
so that operational decisions can be made based on data, not guesses, luck, or



Introduction 5

hope. The data is stored for many years so it may be used to predict the future
capacity needs.

Measurements are used to detect internal problems while they are small, long
before they result in a user-visible outage. We fix problems before they become
outages. An actual outage is rare and would be investigated with great diligence.
When problems are detected there is a process in place to make sure they are
identified, worked on, and resolved quickly.

An automated system detects problems and alerts whoever is oncall. Our
oncall schedule is a rotation constructed so that each shift typically receives a man-
ageable number of alerts. At any given time one person is the primary oncall person
and is first to receive any alerts. If that individual does not respond in time, a sec-
ondary person is alerted. The oncall schedule is prepared far enough in advance
that people can plan vacations, recreational activities, and personal time.

There is a “playbook” of instructions on how to handle every alert that can be
generated. Each type of alert is documented with a technical description of what
is wrong, what the business impact is, and how to fix the issue. The playbook is
continually improved. Whoever is oncall uses the playbook to fix the problem. If
it proves insufficient, there is a well-defined escalation path, usually to the oncall
person for the related subsystem. Developers also participate in the oncall rotation
so they understand the operational pain points of the system they are building.

All failures have a corresponding countermeasure, whether it is manually or
automatically activated. Countermeasures that are activated frequently are always
automated. Our monitoring system detects overuse, as this may indicate a larger
problem. The monitoring system collects internal indicator data used by engineers
to reduce the failure rate as well as improve the countermeasure.

The less frequently a countermeasure is activated, the less confident we are
that it will work the next time it is needed. Therefore infrequently activated coun-
termeasures are periodically and automatically exercised by intentionally causing
failures. Just as we require school children to practice fire drills so that everyone
knows what to do in an emergency, so we practice fire drills with our operational
practices. This way our team becomes experienced at implementing the counter-
measures and is confident that they work. If a database failover process doesn’t
work due to an unexpected dependency, it is better to learn this during a live drill
on Monday at 10  rather than during an outage at 4  on a Sunday morning.
Again, we reduce risk by increasing repetition rather than shying away from it. The
technical term for improving something through repetition is called “practice.”We
strongly believe that practice makes perfect.

Our ideal environment scales automatically. Asmore capacity is needed, addi-
tional capacity comes from internal or external cloud providers. Our dashboards
indicate when re-architecting will be a better solution than simply allocating more
RAM, disk, or CPU.



6 Introduction

Scaling down is also automatic. When the system is overloaded or degraded,
we never turn users away with a “503—Service Unavailable” error. Instead, the
system automatically switches to algorithms that use less resources. Bandwidth
fully utilized? Low-bandwidth versions of the service kick in, displaying fewer
graphics or a more simplified user interface. Databases become corrupted? A read-
only version of the service keeps most users satisfied.

Each feature of our service can be individually enabled or disabled. If a feature
turns out to have negative consequences, such as security holes or unexpectedly
bad performance, it can be disabledwithout deploying a different software release.

When a feature is revised, the new code does not eliminate the old
functionality. The new behavior can be disabled to reveal the old behavior. This is
particularly useful when rolling out a new user interface. If a release can produce
both the old and new user interface, it can be enabled on a per-user basis. This
enables us to get feedback from “early access” users. On the official release date,
the new feature is enabled for successively larger and larger groups. If performance
problems are found, the feature can easily be reverted or switched off entirely.

In our ideal environment there is excellent operational hygiene. Like brush-
ing our teeth, we regularly do the things that preserve good operational health.
We maintain clear and updated documentation for how to handle every counter-
measure, process, and alert. Overactive alerts are fine-tuned, not ignored. Open
bug counts are kept to a minimum. Outages are followed by the publication
of a postmortem report with recommendations on how to improve the system
in the future. Any “quick fix” is followed by a root causes analysis and the
implementation of a long-term fix.

Most importantly, the developers and operations people do not think of them-
selves as two distinct teams. They are simply specializations within one large
team. Some people write more code than others; some people do more operational
projects than others. All share responsibility for maintaining high uptime. To that
end, all members participate in the oncall (pager) rotation. Developers are most
motivated to improve code that affects operations when they feel the pain of oper-
ations, too. Operations must understand the development process if they are to be
able to constructively collaborate.

Now you know our vision of an ideal environment. The remainder of this book
will explain how to create and run it.



This page intentionally left blank 



Chapter 1

Designing in a Distributed
World

There are two ways of constructing
a software design: One way is to
make it so simple that there are
obviously no deficiencies and the
other way is to make it so
complicated that there are no
obvious deficiencies.

—C.A.R. Hoare, The 1980 ACM
Turing Award Lecture

How does Google Search work? How does your Facebook Timeline stay updated
around the clock? How does Amazon scan an ever-growing catalog of items to tell
you that people who bought this item also bought socks?

Is it magic? No, it’s distributed computing.
This chapter is an overview of what is involved in designing services that use

distributed computing techniques. These are the techniques all large web sites use
to achieve their size, scale, speed, and reliability.

Distributed computing is the art of building large systems that divide thework
over many machines. Contrast this with traditional computing systems where a
single computer runs software that provides a service, or client–server computing
where many machines remotely access a centralized service. In distributed com-
puting there are typically hundreds or thousands of machines working together to
provide a large service.

Distributed computing is different from traditional computing in many ways.
Most of these differences are due to the sheer size of the system itself. Hundreds or
thousands of computersmay be involved.Millions of usersmay be served. Billions
and sometimes trillions of queries may be processed.

9



10 Chapter 1 Designing in a Distributed World

..

Terms to Know
Server: Software that provides a function or application program interface

(API). (Not a piece of hardware.)
Service: A user-visible system or product composed of many servers.
Machine: A virtual or physical machine.
QPS: Queries per second. Usually howmany web hits or API calls received

per second.
Traffic: A generic term for queries, API calls, or other requests sent to a

server.
Performant: A system whose performance conforms to (meets or exceeds)

the design requirements. A neologism from merging “performance”
and “conformant.”

Application Programming Interface (API): A protocol that governs how
one server talks to another.

Speed is important. It is a competitive advantage for a service to be fast and
responsive. Users consider aweb site sluggish if replies do not come back in 200ms
or less. Network latency eats upmost of that time, leaving little time for the service
to compose the page itself.

In distributed systems, failure is normal. Hardware failures that are rare, when
multiplied by thousands of machines, become common. Therefore failures are
assumed, designs work around them, and software anticipates them. Failure is an
expected part of the landscape.

Due to the sheer size of distributed systems, operations must be automated.
It is inconceivable to manually do tasks that involve hundreds or thousands
of machines. Automation becomes critical for preparation and deployment of
software, regular operations, and handling failures.

1.1 Visibility at Scale
To manage a large distributed system, one must have visibility into the system.
The ability to examine internal state—called introspection—is required to operate,
debug, tune, and repair large systems.

In a traditional system, one could imagine an engineer who knows enough
about the system to keep an eye on all the critical components or “just knows”
what is wrong based on experience. In a large system, that level of visibility must
be actively created by designing systems that draw out the information and make
it visible. No person or team can manually keep tabs on all the parts.



1.2 The Importance of Simplicity 11

Distributed systems, therefore, require components to generate copious logs
that detailwhat happened in the system. These logs are then aggregated to a central
location for collection, storage, and analysis. Systems may log information that is
very high level, such as whenever a user makes a purchase, for each web query,
or for every API call. Systems may log low-level information as well, such as the
parameters of every function call in a critical piece of code.

Systems should export metrics. They should count interesting events, such as
how many times a particular API was called, and make these counters accessible.

In many cases, special URLs can be used to view this internal state.
For example, the Apache HTTP Web Server has a “server-status” page
(http://www.example.com/server-status/).

In addition, components of distributed systems often appraise their own
health and make this information visible. For example, a component may have
a URL that outputs whether the system is ready (OK) to receive new requests.
Receiving as output anything other than the byte “O” followed by the byte “K”
(including no response at all) indicates that the system does not want to receive
new requests. This information is used by load balancers to determine if the
server is healthy and ready to receive traffic. The server sends negative replies
when the server is starting up and is still initializing, and when it is shutting
down and is no longer accepting new requests but is processing any requests
that are still in flight.

1.2 The Importance of Simplicity
It is important that a design remain as simple as possible while still being able
to meet the needs of the service. Systems grow and become more complex
over time. Starting with a system that is already complex means starting at a
disadvantage.

Providing competent operations requires holding a mental model of the sys-
tem in one’s head. As we work we imagine the system operating and use this
mental model to track how it works and to debug it when it doesn’t. The more
complex the system, the more difficult it is to have an accurate mental model. An
overly complex system results in a situation where no single person understands
it all at any one time.

In The Elements of Programming Style, Kernighan and Plauger (1978) wrote:

Debugging is twice as hard aswriting the code in the first place. Therefore, if youwrite
the code as cleverly as possible, you are, by definition, not smart enough to debug it.

The same is true for distributed systems. Every minute spent simplifying a design
pays off time and time again when the system is in operation.

http://www.example.com/server-status/


12 Chapter 1 Designing in a Distributed World

1.3 Composition
Distributed systems are composed of many smaller systems. In this section, we
explore three fundamental composition patterns in detail:

• Load balancer with multiple backend replicas
• Server with multiple backends
• Server tree

1.3.1 Load Balancer with Multiple Backend Replicas
The first composition pattern is the load balancer with multiple backend replicas.
As depicted in Figure 1.1, requests are sent to the load balancer server. For each
request, it selects one backend and forwards the request there. The response comes
back to the load balancer server, which in turn relays it to the original requester.

The backends are called replicas because they are all clones or replications of
each other. A request sent to any replica should produce the same response.

The load balancer must always know which backends are alive and ready to
accept requests. Load balancers send health check queries dozens of times each
second and stop sending traffic to that backend if the health check fails. A health
check is a simple query that should execute quickly and return whether the system
should receive traffic.

Picking which backend to send a query to can be simple or complex. A
simple method would be to alternate among the backends in a loop—a practice
called round-robin. Some backends may be more powerful than others, however,

Figure 1.1: A load balancer with many replicas



1.3 Composition 13

and may be selected more often using a proportional round-robin scheme.
More complex solutions include the least loaded scheme. In this approach, a
load balancer tracks how loaded each backend is and always selects the least
loaded one.

Selecting the least loaded backend sounds reasonable but a naive implemen-
tation can be a disaster. A backend may not show signs of being overloaded until
long after it has actually become overloaded. This problem arises because it can be
difficult to accurately measure how loaded a system is. If the load is a measure-
ment of the number of connections recently sent to the server, this definition is
blind to the fact that some connections may be long lasting while others may be
quick. If the measurement is based on CPU utilization, this definition is blind to
input/output (I/O) overload. Often a trailing average of the last 5 minutes of load
is used. Trailing averages have a problem in that, as an average, they reflect the
past, not the present. As a consequence, a sharp, sudden increase in load will not
be reflected in the average for a while.

Imagine a load balancer with 10 backends. Each one is running at 80 percent
load. A new backend is added. Because it is new, it has no load and, therefore,
is the least loaded backend. A naive least loaded algorithm would send all traffic
to this new backend; no traffic would be sent to the other 10 backends. All too
quickly, the new backend would become absolutely swamped. There is no way a
single backend could process the traffic previously handled by 10 backends. The
use of trailing averages would mean the older backends would continue reporting
artificially high loads for a fewminutes while the new backendwould be reporting
an artificially low load.

With this scheme, the load balancer will believe that the new machine is less
loaded than all the other machines for quite some time. In such a situation the
machine may become so overloaded that it would crash and reboot, or a system
administrator trying to rectify the situation might reboot it. When it returns to
service, the cycle would start over again.

Such situations make the round-robin approach look pretty good. A less naive
least loaded implementation would have some kind of control in place that would
never send more than a certain number of requests to the same machine in a row.
This is called a slow start algorithm.

..

Trouble with a Naive Least Loaded Algorithm

Without slow start, load balancers have been known to cause many prob-
lems. One famous example is what happened to the CNN.com web site on
the day of the September 11, 2001, terrorist attacks. So many people tried to
accessCNN.com that the backends became overloaded.One crashed, and then
crashed again after it came back up, because the naive least loaded algorithm



14 Chapter 1 Designing in a Distributed World

..

sent all traffic to it. When it was down, the other backends became overloaded
and crashed. One at a time, each backend would get overloaded, crash, and
become overloaded from again receiving all the traffic and crash again.

As a result the service was essentially unavailable as the system adminis-
trators rushed to figure out what was going on. In their defense, the web was
new enough that no one had experience with handling sudden traffic surges
like the one encountered on September 11.

The solution CNN used was to halt all the backends and boot them at
the same time so they would all show zero load and receive equal amounts of
traffic.

The CNN team later discovered that a few days prior, a software upgrade
for their load balancer had arrived but had not yet been installed. The upgrade
added a slow start mechanism.

1.3.2 Server with Multiple Backends
The next composition pattern is a server with multiple backends. The server
receives a request, sends queries to many backend servers, and composes the final
reply by combining those answers. This approach is typically used when the orig-
inal query can easily be deconstructed into a number of independent queries that
can be combined to form the final answer.

Figure 1.2a illustrates how a simple search engine processes a query with the
help of multiple backends. The frontend receives the request. It relays the query
to many backend servers. The spell checker replies with information so the search
engine may suggest alternate spellings. The web and image search backends reply
with a list of web sites and images related to the query. The advertisement server

Figure 1.2: This service is composed of a server and many backends.



1.3 Composition 15

replies with advertisements relevant to the query. Once the replies are received,
the frontend uses this information to construct the HTML that makes up the search
results page for the user, which is then sent as the reply.

Figure 1.2b illustrates the same architecture with replicated, load-balanced,
backends. The same principle applies but the system is able to scale and survive
failures better.

This kind of composition has many advantages. The backends do their work
in parallel. The reply does not have to wait for one backend process to complete
before the next begins. The system is loosely coupled. One backend can fail and the
page can still be constructed by filling in some default information or by leaving
that area blank.

This pattern also permits some rather sophisticated latencymanagement. Sup-
pose this system is expected to return a result in 200ms or less. If one of the
backends is slow for some reason, the frontend doesn’t have towait for it. If it takes
10ms to compose and send the resulting HTML, at 190ms the frontend can give
up on the slow backends and generate the page with the information it has. The
ability to manage a latency time budget like that can be very powerful. For exam-
ple, if the advertisement system is slow, search results can be displayed without
any ads.

To be clear, the terms “frontend” and “backend” are a matter of perspective.
The frontend sends requests to backends, which replywith a result. A server can be
both a frontend and a backend. In the previous example, the server is the backend
to the web browser but a frontend to the spell check server.

There are many variations on this pattern. Each backend can be replicated for
increased capacity or resiliency. Caching may be done at various levels.

The term fan out refers to the fact that one query results in many new queries,
one to each backend. The queries “fan out” to the individual backends and the
replies fan in as they are set up to the frontend and combined into the final result.

Any fan in situation is at risk of having congestion problems. Often small
queries may result in large responses. Therefore a small amount of bandwidth is
used to fan out but there may not be enough bandwidth to sustain the fan in. This
may result in congested network links and overloaded servers. It is easy to engineer
the system to have the right amount of network and server capacity if the sizes of
the queries and replies are consistent, or if there is an occasional large reply. The
difficult situation is engineering the system when there are sudden, unpredictable
bursts of large replies. Some network equipment is engineered specifically to deal
with this situation by dynamically provisioning more buffer space to such bursts.
Likewise, the backends can rate-limit themselves to avoid creating the situation in
the first place. Lastly, the frontends can manage the congestion themselves by con-
trolling the new queries they send out, by notifying the backends to slow down, or
by implementing emergency measures to handle the flood better. The last option
is discussed in Chapter 5.



16 Chapter 1 Designing in a Distributed World

1.3.3 Server Tree
The other fundamental composition pattern is the server tree. As Figure 1.3 illus-
trates, in this scheme a number of servers work cooperatively with one as the root
of the tree, parent servers below it, and leaf servers at the bottom of the tree. (In
computer science, trees are drawn upside-down.) Typically this pattern is used to
access a large dataset or corpus. The corpus is larger than any one machine can
hold; thus each leaf stores one fraction or shard of the whole.

To query the entire dataset, the root receives the original query and forwards it
to the parents. The parents forward the query to the leaf servers, which search their
parts of the corpus. Each leaf sends its findings to the parents, which sort and filter
the results before forwarding them up to the root. The root then takes the response
from all the parents, combines the results, and replies with the full answer.

Imagine you wanted to find out how many times George Washington was
mentioned in an encyclopedia. You could read each volume in sequence and arrive
at the answer. Alternatively, you could give each volume to a different person and
have the various individuals search their volumes in parallel. The latter approach
would complete the task much faster.

Figure 1.3: A server tree



1.4 Distributed State 17

The primary benefit of this pattern is that it permits parallel searching of a
large corpus. Not only are the leaves searching their share of the corpus in parallel,
but the sorting and ranking performed by the parents are also done in parallel.

For example, imagine a corpus of the text extracted from every book in the
U.S. Library of Congress. This cannot fit in one computer, so instead the informa-
tion is spread over hundreds or thousands of leaf machines. In addition to the leaf
machines are the parents and the root. A search query would go to a root server,
which in turn relays the query to all parents. Each parent repeats the query to all
leaf nodes below it. Once the leaves have replied, the parent ranks and sorts the
results by relevancy.

For example, a leaf may reply that all the words of the query exist in the same
paragraph in one book, but for another book only some of the words exist (less
relevant), or they exist but not in the same paragraph or page (even less relevant).
If the query is for the best 50 answers, the parent can send the top 50 results to the
root and drop the rest. The root then receives results from each parent and selects
the best 50 of those to construct the reply.

This scheme also permits developers to work within a latency budget. If fast
answers are more important than perfect answers, parents and roots do not have
to wait for slow replies if the latency deadline is near.

Many variations of this pattern are possible. Redundant serversmay existwith
a load-balancing scheme to divide the work among them and route around failed
servers. Expanding the number of leaf servers can give each leaf a smaller por-
tion of the corpus to search, or each shard of corpus can be placed on multiple
leaf servers to improve availability. Expanding the number of parents at each level
increases the capacity to sort and rank results. There may be additional levels of
parent servers, making the tree taller. The additional levels permit a wider fan-
out, which is important for an extremely large corpus. The parents may provide a
caching function to relieve pressure on the leaf servers; in this case more levels of
parents may improve cache effectiveness. These techniques can also help mitigate
congestion problems related to fan-in, as discussed in the previous section.

1.4 Distributed State
Large systems often store or process large amounts of state. State consists of data,
such as a database, that is frequently updated. Contrast this with a corpus, which
is relatively static or is updated only periodically when a new edition is published.
For example, a system that searches the U.S. Library of Congress may receive a
new corpus each week. By comparison, an email system is in constant churn with
new data arriving constantly, current data being updated (email messages being
marked as “read” or moved between folders), and data being deleted.



18 Chapter 1 Designing in a Distributed World

Distributed computing systems have many ways to deal with state. How-
ever, they all involve some kind of replication and sharding, which brings about
problems of consistency, availability, and partitioning.

The easiest way to store state is to put it on one machine, as depicted in
Figure 1.4. Unfortunately, that method reaches its limit quite quickly: an individ-
ual machine can store only a limited amount of state and if the one machine dies
we lose access to 100 percent of the state. The machine has only a certain amount
of processing power, which means the number of simultaneous reads and writes
it can process is limited.

In distributed computing we store state by storing fractions or shards of the
whole on individual machines. This way the amount of state we can store is lim-
ited only by the number of machines we can acquire. In addition, each shard is
stored on multiple machines; thus a single machine failure does not lose access
to any state. Each replica can process a certain number of queries per second, so
we can design the system to process any number of simultaneous read and write
requests by increasing the number of replicas. This is illustrated in Figure 1.5,
where N QPS are received and distributed among three shards, each replicated
three ways. As a result, on average one ninth of all queries reach a particular
replica server.

Writes or requests that update state require all replicas to be updated. While
this update process is happening, it is possible that some clients will read from
stale replicas that have not yet been updated. Figure 1.6 illustrates how a write can
be confounded by reads to an out-of-date cache. This will be discussed further in
the next section.

In the most simple pattern, a root server receives requests to store or retrieve
state. It determines which shard contains that part of the state and forwards the
request to the appropriate leaf server. The reply then flows up the tree. This looks
similar to the server tree pattern described in the previous section but there are two

Figure 1.4: State kept in one location; not distributed computing



1.4 Distributed State 19

Figure 1.5: This distributed state is sharded and replicated.

Figure 1.6: State updates using cached data lead to an inconsistent view.



20 Chapter 1 Designing in a Distributed World

differences. First, queries go to a single leaf instead of all leaves. Second, requests
can be update (write) requests, not just read requests. Updates are more complex
when a shard is stored on many replicas. When one shard is updated, all of the
replicas must be updated, too. This may be done by having the root update all
leaves or by the leaves communicating updates among themselves.

A variation of that pattern is more appropriate when large amounts of data
are being transferred. In this case, the root replies with instructions on how to get
the data rather than the data itself. The requestor then requests the data from the
source directly.

For example, imagine a distributed file system with petabytes of data spread
out over thousands of machines. Each file is split into gigabyte-sized chunks. Each
chunk is stored onmultiplemachines for redundancy. This scheme also permits the
creation of files larger than those that would fit on one machine. A master server
tracks the list of files and identifies where their chunks are. If you are familiar with
the UNIX file system, the master can be thought of as storing the inodes, or per-file
lists of data blocks, and the other machine as storing the actual blocks of data. File
system operations go through a master server that uses the inode-like information
to determine which machines to involve in the operation.

Imagine that a large read request comes in. Themaster determines that the file
has a few terabytes stored on one machine and a few terabytes stored on another
machine. It could request the data from each machine and relay it to the system
that made the request, but the master would quickly become overloaded while
receiving and relaying huge chunks of data. Instead, it replies with a list of which
machines have the data, and the requestor contacts those machines directly for the
data. This way the master is not the middle man for those large data transfers. This
situation is illustrated in Figure 1.7.

..

Figure 1.7: This master server delegates replies to other servers.



1.5 The CAP Principle 21

1.5 The CAP Principle
CAP stands for consistency, availability, and partition resistance. The CAP Prin-
ciple states that it is not possible to build a distributed system that guarantees
consistency, availability, and resistance to partitioning. Any one or two can be
achieved but not all three simultaneously. When using such systems you must be
aware of which are guaranteed.

1.5.1 Consistency
Consistency means that all nodes see the same data at the same time. If there are
multiple replicas and there is an update being processed, all users see the update
go live at the same time even if they are reading from different replicas. Systems
that do not guarantee consistency may provide eventual consistency. For exam-
ple, they may guarantee that any update will propagate to all replicas in a certain
amount of time. Until that deadline is reached, some queries may receive the new
data while others will receive older, out-of-date answers.

Perfect consistency is not always important. Imagine a social network that
awards reputation points to users for positive actions. Your reputation point total
is displayed anywhere your name is shown. The reputation database is replicated
in the United States, Europe, andAsia. A user in Europe is awarded points and that
changemight takeminutes to propagate to theUnited States andAsia replicas. This
may be sufficient for such a system because an absolutely accurate reputation score
is not essential. If a user in the United States and one in Asia were talking on the
phoneasonewasawardedpoints, theotheruserwould see theupdate seconds later
and that would be okay. If the update took minutes due to network congestion or
hours due to a network outage, the delay would still not be a terrible thing.

Now imagine a banking application built on this system. A person in the
United States and another in Europe could coordinate their actions to withdraw
money from the same account at the same time. The ATM that each person uses
would query its nearest database replica, which would claim the money is avail-
able andmay bewithdrawn. If the updates propagated slowly enough, both people
would have the cash before the bank realized the money was already gone.1

1.5.2 Availability
Availability is a guarantee that every request receives a response about whether
it was successful or failed. In other words, it means that the system is up. For

1. The truth is that the global ATM system does not require database consistency. It can be defeated by
leveraging network delays and outages. It is less expensive for banks to give out a limited amount of
money when the ATM network is down than to have an unhappy customer stranded without cash.
Fraudulent transactions are dealt with after the fact. Daily withdrawal limits prevent major fraud.
Assessing overage fees is easier than implementing a globally consistant database.



22 Chapter 1 Designing in a Distributed World

example, using many replicas to store data such that clients always have access
to at least one working replica guarantees availability.

The CAP Principle states that availability also guarantees that the system is
able to report failure. For example, a system may detect that it is overloaded and
reply to requests with an error code that means “try again later.” Being told this
immediately is more favorable than having to wait minutes or hours before one
gives up.

1.5.3 Partition Tolerance
Partition tolerance means the system continues to operate despite arbitrary mes-
sage loss or failure of part of the system. The simplest example of partition
tolerance is when the system continues to operate even if the machines involved
in providing the service lose the ability to communicate with each other due to a
network link going down (see Figure 1.8).

Returning to our example of replicas, if the system is read-only it is easy to
make the systempartition tolerant, as the replicas do not need to communicatewith
each other. But consider the example of replicas containing state that is updated
on one replica first, then copied to other replicas. If the replicas are unable to com-
municate with each other, the system fails to be able to guarantee updates will
propagate within a certain amount of time, thus becoming a failed system.

Now consider a situation where two servers cooperate in a master–slave rela-
tionship. Both maintain a complete copy of the state and the slave takes over the
master’s role if themaster fails, which is determined by a loss of heartbeat—that is,

Figure 1.8: Nodes partitioned from each other



1.5 The CAP Principle 23

a periodic health check between two servers often done via a dedicated network.
If the heartbeat network between the two is partitioned, the slave will promote
itself to being the master, not knowing that the original master is up but unable
to communicate on the heartbeat network. At this point there are two masters and
the system breaks. This situation is called split brain.

Some special cases of partitioning exist. Packet loss is considered a temporary
partitioning of the system as it applies to the CAP Principle. Another special case
is the complete network outage. Even the most partition-tolerant system is unable
to work in that situation.

The CAP Principle says that any one or two of the attributes are achievable in
combination, but not all three. In 2002, Gilbert and Lynch published a formal proof
of the original conjecture, rendering it a theorem. One can think of this as the third
attribute being sacrificed to achieve the other two.

The CAP Principle is illustrated by the triangle in Figure 1.9. Traditional rela-
tional databases like Oracle, MySQL, and PostgreSQL are consistent and available
(CA). They use transactions and other database techniques to assure that updates
are atomic; they propagate completely or not at all. Thus they guarantee all users
will see the same state at the same time. Newer storage systems such as Hbase,

Figure 1.9: The CAP Principle



24 Chapter 1 Designing in a Distributed World

Redis, and Bigtable focus on consistency and partition tolerance (CP). When par-
titioned, they become read-only or refuse to respond to any requests rather than
be inconsistent and permit some users to see old data while others see fresh data.
Finally, systems such as Cassandra, Risk, and Dynamo focus on availability and
partition tolerance (AP). They emphasize always being able to serve requests even
if it means some clients receive outdated results. Such systems are often used in
globally distributed networks where each replica talks to the others by less reliable
media such as the Internet.

SQL and other relational databases use the term ACID to describe their side
of the CAP triangle. ACID stands for Atomicity (transactions are “all or nothing”),
Consistency (after each transaction the database is in a valid state), Isolation (con-
current transactions give the same results as if they were executed serially), and
Durability (a committed transaction’s data will not be lost in the event of a crash
or other problem). Databases that provide weaker consistency models often refer
to themselves as NoSQL and describe themselves as BASE: Basically Available
Soft-state services with Eventual consistency.

1.6 Loosely Coupled Systems
Distributed systems are expected to be highly available, to last a long time, and to
evolve and change without disruption. Entire subsystems are often replaced while
the system is up and running.

To achieve this a distributed system uses abstraction to build a loosely cou-
pled system. Abstraction means that each component provides an interface that
is defined in a way that hides the implementation details. The system is loosely
coupled if each component has little or no knowledge of the internals of the other
components. As a result a subsystem can be replaced by one that provides the same
abstract interface even if its implementation is completely different.

Take, for example, a spell check service. A good level of abstraction would be
to take in text and return a description of which words are misspelled and a list of
possible corrections for each one. A bad level of abstraction would simply provide
access to a lexicon of words that the frontends could query for similar words. The
reason the latter is not a good abstraction is that if an entirely new way to check
spelling was invented, every frontend using the spell check service would need
to be rewritten. Suppose this new version does not rely on a lexicon but instead
applies an artificial intelligence technique called machine learning. With the good
abstraction, no frontend would need to change; it would simply send the same
kind of request to the new server. Users of the bad abstraction would not be so
lucky.

For this and many other reasons, loosely coupled systems are easier to evolve
and change over time.



1.6 Loosely Coupled Systems 25

Continuing our example, in preparation for the launch of the new spell check
service both versions could be run in parallel. The load balancer that sits in front
of the spell check system could be programmed to send all requests to both the
old and new systems. Results from the old system would be sent to the users, but
results from the new system would be collected and compared for quality control.
At first the new systemmight not produce results that were as good, but over time
it would be enhanced until its results were quantifiably better. At that point the
new system would be put into production. To be cautious, perhaps only 1 percent
of all queries would come through the new system—if no users complained, the
new system would take a larger fraction. Eventually all responses would come
from the new system and the old system could be decommissioned.

Other systems require more precision and accuracy than a spell check system.
For example, there may be requirements that the new system be bug-for-bug com-
patible with the old system before it can offer new functionality. That is, the new
system must reproduce not only the features but also the bugs from the old sys-
tem. In this case the ability to send requests to both systems and compare results
becomes critical to the operational task of deploying it.

..

Case Study: Emulation before Improvements

When Tom was at Cibernet, he was involved in a project to replace an older
system. Because it was a financial system, the new system had to prove it was
bug-for-bug compatible before it could be deployed.

The old system was built on obsolete, pre-web technology and had
become so complex and calcified that it was impossible to add new features.
The new system was built on newer, better technology and, being a cleaner
design, was more easily able to accommodate new functionality. The systems
were run in parallel and results were compared.

At that point engineers found a bug in the old system. Currency conver-
sion was being done in a way that was non-standard and the results were
slightly off. To make the results between the two systems comparable, the
developers reverse-engineered the bug and emulated it in the new system.

Now the results in the old and new systems matched down to the penny.
With the company having gained confidence in the new system’s ability to be
bug-for-bug compatible, it was activated as the primary system and the old
system was disabled.

At this point, new features and improvements could be made to the sys-
tem. The first improvement, unsurprisingly, was to remove the code that
emulated the currency conversion bug.



26 Chapter 1 Designing in a Distributed World

1.7 Speed
So far we have elaborated on many of the considerations involved in designing
large distributed systems. For web and other interactive services, one item may
be the most important: speed. It takes time to get information, store information,
compute and transform information, and transmit information. Nothing happens
instantly.

An interactive system requires fast response times. Users tend to perceive any-
thing faster than 200 ms to be instant. They also prefer fast over slow. Studies have
documented sharp drops in revenue when delays as little as 50 ms were artificially
added to web sites. Time is also important in batch and non-interactive systems
where the total throughput must meet or exceed the incoming flow of work.

The general strategy for designing a system that is performant is to design a
system using our best estimates of how quickly it will be able to process a request
and then to build prototypes to test our assumptions. If we are wrong, we go back
to step one; at least the next iterationwill be informed bywhat we have learned. As
we build the system, we are able to remeasure and adjust the design if we discover
our estimates and prototypes have not guided us as well as we had hoped.

At the start of the design process we often create many designs, estimate how
fast each will be, and eliminate the ones that are not fast enough. We do not auto-
matically select the fastest design. The fastest design may be considerably more
expensive than one that is sufficient.

How do we determine if a design is worth pursuing? Building a prototype is
very time consuming. Much can be deduced with some simple estimating exer-
cises. Pick a few common transactions and break them down into smaller steps,
and then estimate how long each step will take.

Two of the biggest consumers of time are disk access and network delays.
Disk accesses are slow because they involve mechanical operations. To read a

block of data from adisk requires the read arm tomove to the right track; the platter
must then spin until the desired block is under the read head. This process typically
takes 10 ms. Compare this to reading the same amount of information from RAM,
which takes 0.002 ms, which is 5,000 times faster. The arm and platters (known as
a spindle) can process only one request at a time. However, once the head is on
the right track, it can read many sequential blocks. Therefore reading two blocks
is often nearly as fast as reading one block if the two blocks are adjacent. Solid-
state drives (SSDs) do not have mechanical spinning platters and are much faster,
though more expensive.

Network access is slow because it is limited by the speed of light. It takes
approximately 75 ms for a packet to get from California to the Netherlands. About
half of that journey time is due to the speed of light. Additional delays may be
attributable to processing time on each router, the electronics that convert from



1.7 Speed 27

wired to fiber-optic communication and back, the time it takes to assemble and
disassemble the packet on each end, and so on.

Two computers on the same network segment might seem as if they commu-
nicate instantly, but that is not really the case. Here the time scale is so small that
other delays have a bigger factor. For example, when transmitting data over a local
network, the first byte arrives quickly but the program receiving the data usually
does not process it until the entire packet is received.

In many systems computation takes little time compared to the delays from
network and disk operation. As a result you can often estimate how long a trans-
action will take if you simply know the distance from the user to the datacenter
and the number of disk seeks required. Your estimate will often be good enough
to throw away obviously bad designs.

To illustrate this, imagine you are building an email system that needs to
be able to retrieve a message from the message storage system and display it
within 300 ms. We will use the time approximations listed in Figure 1.10 to help us
engineer the solution.

..

Jeff Dean, a Google Fellow, has popularized this chart of common numbers
to aid in architectural and scaling decisions. As you can see, there are many
orders of magnitude difference between certain options. These numbers
improve every year. Updates can be found online.

Action Typical Time
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns (0.01 ms)
Send 2K bytes over 1 Gbps network 20,000 ns (0.02 ms)
Read 1 MB sequentially from memory 250,000 ns (0.25 ms)
Round trip within same datacenter 500,000 ns (0.5 ms)
Read 1 MB from SSD 1,000,000 ns (3 ms)
Disk seek 10,000,000 ns (10 ms)
Read 1 MB sequentially from network 10,000,000 ns (10 ms)
Read 1 MB sequentially from disk 30,000,000 ns (30 ms)
Send packet from California to

Netherlands to California
150,000,000 ns (150 ms)

Figure 1.10: Numbers every engineer should know



28 Chapter 1 Designing in a Distributed World

First we follow the transaction from beginning to end. The request comes from
a web browser that may be on another continent. The request must be authenti-
cated, the database index is consulted to determine where to get the message text,
the message text is retrieved, and finally the response is formatted and transmitted
back to the user.

Now let’s budget for the items we can’t control. To send a packet between
California and Europe typically takes 75 ms, and until physics lets us change the
speed of light that won’t change. Our 300ms budget is reduced by 150ms since we
have to account for not only the time it takes for the request to be transmitted but
also the reply. That’s half our budget consumed by something we don’t control.

We talk with the team that operates our authentication system and they
recommend budgeting 3 ms for authentication.

Formatting the data takes very little time—less than the slop in our other
estimates—so we can ignore it.

This leaves 147 ms for the message to be retrieved from storage. If a typical
index lookup requires 3 disk seeks (10 ms each) and reads about 1 megabyte of
information (30 ms), that is 60 ms. Reading the message itself might require 4 disk
seeks and reading about 2 megabytes of information (100 ms). The total is 160 ms,
which is more than our 147 ms remaining budget.

..

How Did We Know That?

How did we know that it will take 3 disk seeks to read the index? It requires
knowledge of the inner workings of the UNIX file system: how files are looked
up in a directory to find an inode and how inodes are used to look up the data
blocks. This is why understanding the internals of the operating system you
use is key to being able to design and operate distributed systems. The inter-
nals of UNIX and UNIX-like operating systems are well documented, thus
giving them an advantage over other systems.

While disappointed that our design did not meet the design parameters, we
are happy that disaster has been averted. Better to knownow than to find outwhen
it is too late.

It seems like 60 ms for an index lookup is a long time. We could improve that
considerably. What if the index was held in RAM? Is this possible? Some quick
calculations estimate that the lookup tree would have to be 3 levels deep to fan
out to enough machines to span this much data. To go up and down the tree is
5 packets, or about 2.5 ms if they are all within the same datacenter. The new total
(150 ms+3 ms+2.5 ms+100 ms = 255.5 ms) is less than our total 300ms budget.



1.8 Summary 29

We would repeat this process for other requests that are time sensitive. For
example, we send email messages less frequently than we read them, so the time
to send an email message may not be considered time critical. In contrast, delet-
ing a message happens almost as often reading messages. We might repeat this
calculation for a few deletion methods to compare their efficiency.

One design might contact the server and delete the message from the stor-
age system and the index. Another design might have the storage system simply
mark the message as deleted in the index. This would be considerably faster but
would require a new element that would reap messages marked for deletion and
occasionally compact the index, removing any items marked as deleted.

Even faster response time can be achieved with an asynchronous design. That
means the client sends requests to the server and quickly returns control to the user
withoutwaiting for the request to complete. The user perceives this systemas faster
even though the actual work is lagging. Asynchronous designs are more complex
to implement. The server might queue the request rather than actually performing
the action. Another process reads requests from the queue and performs them in
the background. Alternatively, the client could simply send the request and check
for the reply later, or allocate a thread or subprocess to wait for the reply.

All of these designs are viable but each offers different speed and complexity of
implementation.With speed and cost estimates, backed byprototypes, the business
decision of which to implement can be made.

1.8 Summary
Distributed computing is different from traditional computing in many ways. The
scale is larger; there are many machines, each doing specialized tasks. Services are
replicated to increase capacity. Hardware failure is not treated as an emergency or
exception but as an expected part of the system. Thus the system works around
failure.

Large systems are built through composition of smaller parts. We discussed
three ways this composition is typically done: load balancer for many backend
replicas, frontend with many different backends, and a server tree.

The load balancer divides traffic among many duplicate systems. The front-
end with many different backends uses different backends in parallel, with each
performing different processes. The server tree uses a tree configuration, with each
tree level serving a different purpose.

Maintaining state in a distributed system is complex, whether it is a large
database of constantly updated information or a few key bits to which many sys-
tems need constant access. The CAP Principle states that it is not possible to build
a distributed system that guarantees consistency, availability, and resistance to
partitioning simultaneously. At most two of the three can be achieved.



30 Chapter 1 Designing in a Distributed World

Systems are expected to evolve over time. Tomake this easier, the components
are loosely coupled. Each embodies an abstraction of the service it provides, such
that the internals can be replaced or improved without changing the abstraction.
Thus, dependencies on the service do not need to change other than to benefit from
new features.

Designing distributed systems requires an understanding of the time it takes
various operations to run so that time-sensitive processes can be designed to meet
their latency budget.

Exercises
1. What is distributed computing?
2. Describe the three major composition patterns in distributed computing.
3. What are the three patterns discussed for storing state?
4. Sometimes a master server does not reply with an answer but instead replies

with where the answer can be found. What are the benefits of this method?
5. Section 1.4 describes a distributed file system, including an example of how

reading terabytes of data would work. How would writing terabytes of data
work?

6. Explain the CAP Principle. (If you think the CAP Principle is awesome, read
“The Part-Time Parliament” (Lamport & Marzullo 1998) and “Paxos Made
Simple” (Lamport 2001).)

7. What does it mean when a system is loosely coupled? What is the advantage
of these systems?

8. Give examples of loosely and tightly coupled systems you have experience
with. What makes them loosely or tightly coupled?

9. How do we estimate how fast a system will be able to process a request such
as retrieving an email message?

10. In Section 1.7 three design ideas are presented for how to process email dele-
tion requests. Estimate how long the request will take for deleting an email
message for each of the three designs. First outline the steps each would take,
then break each one into individual operations until estimates can be created.



This page intentionally left blank 



Chapter 7

Operations in a Distributed
World

The rate at which organizations
learn may soon become the only
sustainable source of competitive
advantage.

—Peter Senge

Part I of this book discussed how to build distributed systems. Now we discuss
how to run such systems.

The work done to keep a system running is called operations. More specifi-
cally, operations is the work done to keep a system running in a way that meets or
exceeds operating parameters specified by a service level agreement (SLA). Oper-
ations includes all aspects of a service’s life cycle: from initial launch to the final
decommissioning and everything in between.

Operational work tends to focus on availability, speed and performance, secu-
rity, capacity planning, and software/hardware upgrades. The failure to do any
of these well results in a system that is unreliable. If a service is slow, users will
assume it is broken. If a system is insecure, outsiders can take it down. With-
out proper capacity planning, it will become overloaded and fail. Upgrades, done
badly, result in downtime. If upgrades aren’t done at all, bugs will go unfixed.
Because all of these activities ultimately affect the reliability of the system, Google
calls its operations team Site Reliability Engineering (SRE). Many companies have
followed suit.

Operations is a team sport. Operations is not done by a single person but
rather by a team of people working together. For that reason much of what we
describe will be processes and policies that help youwork as a team, not as a group
of individuals. In some companies, processes seem to be bureaucratic mazes that
slow things down. As we describe here—and more important, in our professional
experience—good processes are exactly what makes it possible to run very large

147



148 Chapter 7 Operations in a Distributed World

..

Terms to Know
Innovate: Doing (good) things we haven’t done before.
Machine: A virtual or physical machine.
Oncall: Being available as first responder to an outage or alert.
Server: Software that provides a function or API. (Not a piece of hardware.)
Service: A user-visible system or product composed of one or more servers.
Soft launch: Launching a new service without publicly announcing it. This

way traffic grows slowly as word of mouth spreads, which gives opera-
tions some cushion to fix problems or scale the system before too many
people have seen it.

SRE: Site Reliability Engineer, the Google term for systems administrators
who maintain live services.

Stakeholders: People and organizations that are seen as having an interest
in a project’s success.

computing systems. In other words, process is what makes it possible for teams to
do the right thing, again and again.

This chapter starts with some operations management background, then dis-
cusses the operations service life cycle, and ends with a discussion of typical
operations work strategies. All of these topics will be expanded upon in the
chapters that follow.

7.1 Distributed Systems Operations
To understand distributed systems operations, one must first understand how it is
different from typical enterprise IT. Onemust also understand the source of tension
between operations and developers, and basic techniques for scaling operations.

7.1.1 SRE versus Traditional Enterprise IT
System administration is a continuum. On one end is a typical IT department,
responsible for traditional desktop and client–server computing infrastructure,
often called enterprise IT. On the other end is an SRE or similar team responsi-
ble for a distributed computing environment, often associated with web sites and
other services.While thismay be a broad generalization, it serves to illustrate some
important differences.

SRE is different from an enterprise IT department because SREs tend to be
focused on providing a single service or awell-defined set of services. A traditional
enterprise IT department tends to have broad responsibility for desktop services,



7.1 Distributed Systems Operations 149

back-office services, and everything in between (“everything with a power plug”).
SRE’s customers tend to be the product management of the service while IT cus-
tomers are the end users themselves. This means SRE efforts are focused on a few
select business metrics rather than being pulled in many directions by users, each
of whom has his or her own priorities.

Another difference is in the attitude toward uptime. SREs maintain services
that have demanding, 24 × 7 uptime requirements. This creates a focus on pre-
venting problems rather than reacting to outages, and on performing complex
but non-intrusive maintenance procedures. IT tends to be granted flexibility with
respect to scheduling downtime and has SLAs that focus on how quickly service
can be restored in the event of an outage. In the SRE view, downtime is some-
thing to be avoided and service should not stop while services are undergoing
maintenance.

SREs tend to manage services that are constantly changing due to new soft-
ware releases and additions to capacity. IT tends to run services that are upgraded
rarely. Often IT services are built by external contractors who go away once the
system is stable.

SREs maintain systems that are constantly being scaled to handle more traffic
and larger workloads. Latency, or how fast a particular request takes to process,
is managed as well as overall throughput. Efficiency becomes a concern because
a little waste per machine becomes a big waste when there are hundreds or thou-
sands of machines. In IT, systems are often built for environments that expect a
modest increase in workload per year. In this case a workable strategy is to build
the system large enough to handle the projected workload for the next few years,
when the system is expected to be replaced.

As a result of these requirements, systems in SRE tend to be bespoke systems,
built on platforms that are home-grown or integrated from open source or other
third-party components. They are not “off the shelf” or turn key systems. They are
actively managed, while IT systems may be unchanged from their initial delivery
state. Because of these differences, distributed computing services are best man-
aged by a separate team, with separate management, with bespoke operational
and management practices.

While there are many such differences, recently IT departments have begun to
see a demand for uptime and scalability similar to that seen in SRE environments.
Therefore the management techniques from distributed computing are rapidly
being adopted in the enterprise.

7.1.2 Change versus Stability
There is a tension between the desire for stability and the desire for change. Oper-
ations teams tend to favor stability; developers desire change. Consider how each
group is evaluated during end-of-the-year performance reviews. A developer is
praised for writing code that makes it into production. Changes that result in a



150 Chapter 7 Operations in a Distributed World

tangible difference to the service are rewarded above any other accomplishment.
Therefore, developers want new releases pushed into production often. Opera-
tions, in contrast, is rewarded for achieving compliance with SLAs, most of which
relate to uptime. Therefore stability is the priority.

A system starts at a baseline of stability. A change is then made. All changes
have some kind of a destabilizing effect. Eventually the system becomes stable
again, usually through some kind of intervention. This is called the change-
instability cycle.

All software roll-outs affect stability. A change may introduce bugs, which are
fixed through workarounds and new software releases. A release that introduces
no new bugs still creates a destabilizing effect due to the process of shifting work-
loads away frommachines about to be upgraded. Non-software changes also have
a destabilizing effect. A network change may make the local network less stable
while the change propagates throughout the network.

Because of the tension between the operational desire for stability and the
developer desire for change, there must be mechanisms to reach a balance.

One strategy is to prioritize work that improves stability over work that adds
new features. For example, bug fixes would have a higher priority than feature
requests. With this approach, a major release introduces many new features, the
next few releases focus on fixing bugs, and then a newmajor release starts the cycle
over again. If engineering management is pressured to focus on new features and
neglect bug fixes, the result is a system that slowly destabilizes until it spins out of
control.

Another strategy is to align the goals of developers and operational staff. Both
parties become responsible for SLA compliance as well as the velocity (rate of
change) of the system. Both have a component of their annual review that is tied
to SLA compliance and both have a portion tied to the on-time delivery of new
features.

Organizations that have been the most successful at aligning goals like this
have restructured themselves so that developers and operations work as one
team. This is the premise of the DevOps movement, which will be described in
Chapter 8.

Another strategy is to budget time for stability improvements and time for
new features. Software engineering organizations usually have a way to estimate
the size of a software request or the amount of time it is expected to take to com-
plete. Each new release has a certain size or time budget; within that budget a
certain amount of stability-improvement work is allocated. The case study at the
end of Section 2.2.2 is an example of this approach. Similarly, this allocation can be
achieved by assigning dedicated people to stability-related code changes.

The budget can also be based on an SLA. A certain amount of instability is
expected each month, which is considered a budget. Each roll-out uses some of
the budget, as do instability-related bugs. Developers can maximize the number



7.1 Distributed Systems Operations 151

of roll-outs that can be done each month by dedicating effort to improve the code
that causes this instability. This creates a positive feedback loop. An example of
this is Google’s Error Budgets, which are more fully explained in Section 19.4.

7.1.3 Defining SRE
The core practices of SRE were refined for more than 10 years at Google before
being enumerated in public. In his keynote address at the first USENIX SREcon,
Benjamin Treynor Sloss (2014), Vice President of Site Reliability Engineering at
Google, listed them as follows:

Site Reliability Practices

1. Hire only coders.
2. Have an SLA for your service.
3. Measure and report performance against the SLA.
4. Use Error Budgets and gate launches on them.
5. Have a common staffing pool for SRE and Developers.
6. Have excess Ops work overflow to the Dev team.
7. Cap SRE operational load at 50 percent.
8. Share 5 percent of Ops work with the Dev team.
9. Oncall teams should have at least eight people at one location, or six people

at each of multiple locations.
10. Aim for a maximum of two events per oncall shift.
11. Do a postmortem for every event.
12. Postmortems are blameless and focus on process and technology, not people.

The first principle for site reliability engineering is that SREs must be able to code.
An SRE might not be a full-time software developer, but he or she should be able
to solve nontrivial problems by writing code. When asked to do 30 iterations of
a task, an SRE should do the first two, get bored, and automate the rest. An SRE
must have enough software development experience to be able to communicate
with developers on their level and have an appreciation for what developers do,
and for what computers can and can’t do.

When SREs and developers come from a common staffing pool, that means
that projects are allocated a certain number of engineers; these engineers may be
developers or SREs. The end result is that each SRE neededmeans one fewer devel-
oper in the team.Contrast this to the case atmost companieswhere systemadminis-
trators anddevelopers are allocated from teamswith separate budgets. Rationally a
projectwants tomaximize the number of developers, since theywrite new features.
The common staffing pool encourages the developers to create systems that can be
operated efficiently so as to minimize the number of SREs needed.



152 Chapter 7 Operations in a Distributed World

Another way to encourage developers to write code that minimizes opera-
tional load is to require that excess operational work overflows to the developers.
This practice discourages developers from taking shortcuts that create undue oper-
ational load. The developers would share any such burden. Likewise, by requiring
developers to perform 5 percent of operational work, developers stay in tune with
operational realities.

Within the SRE team, capping the operational load at 50 percent limits the
amount ofmanual labor done.Manual labor has a lower return on investment than,
for example, writing code to replace the need for such labor. This is discussed in
Section 12.4.2, “Reducing Toil.”

Many SRE practices relate to finding balance between the desire for change
and the need for stability. The most important of these is the Google SRE practice
called Error Budgets, explained in detail in Section 19.4.

Central to the Error Budget is the SLA. All services must have an SLA, which
specifies how reliable the system is going to be. The SLA becomes the standard by
which all work is ultimately measured. SLAs are discussed in Chapter 16.

Any outage or other major SLA-related event should be followed by the cre-
ation of a written postmortem that includes details of what happened, along with
analysis and suggestions for how to prevent such a situation in the future. This
report is shared within the company so that the entire organization can learn from
the experience. Postmortems focus on the process and the technology, not find-
ing who to blame. Postmortems are the topic of Section 14.3.2. The person who is
oncall is responsible for responding to any SLA-related events and producing the
postmortem report.

Oncall is not just a way to react to problems, but rather a way to reduce future
problems. It must be done in a way that is not unsustainably stressful for those
oncall, and it drives behaviors that encourage long-term fixes and problem pre-
vention. Oncall teams are made up of at least eight members at one location, or
six members at two locations. Teams of this size will be oncall often enough that
their skills do not get stale, and their shifts can be short enough that each catches
no more than two outage events. As a result, each member has enough time to fol-
low through on each event, performing the required long-term solution.Managing
oncall this way is the topic of Chapter 14.

Other companies have adopted the SRE job title for their system administra-
tors who maintain live production services. Each company applies a different set
of practices to the role. These are the practices that define SRE at Google and are
core to its success.

7.1.4 Operations at Scale
Operations in distributed computing is operations at a large scale. Distributed com-
puting involves hundreds and often thousands of computers working together. As
a result, operations is different than traditional computing administration.



7.1 Distributed Systems Operations 153

Manual processes do not scale. When tasks are manual, if there are twice as
many tasks, there is twice as much human effort required. A system that is scaling
to thousands of machines, servers, or processes, therefore, becomes untenable if
a process involves manually manipulating things. In contrast, automation does
scale. Code written once can be used thousands of times. Processes that involve
many machines, processes, servers, or services should be automated. This idea
applies to allocating machines, configuring operating systems, installing software,
and watching for trouble. Automation is not a “nice to have” but a “must have.”
(Automation is the subject of Chapter 12.)

When operations is automated, system administration is more like an assem-
bly line than a craft. The job of the system administrator changes from being the
personwho does thework to the personwhomaintains the robotics of an assembly
line. Mass production techniques become viable and we can borrow operational
practices from manufacturing. For example, by collecting measurements from
every stage of production, we can apply statistical analysis that helps us improve
system throughput. Manufacturing techniques such as continuous improvement
are the basis for the Three Ways of DevOps. (See Section 8.2.)

Three categories of things are not automated: things that should be automated
but have not been yet, things that are not worth automating, and human processes
that can’t be automated.

Tasks That Are Not Yet Automated
It takes time to create, test, and deploy automation, so there will always be things
that are waiting to be automated. There is never enough time to automate every-
thing, so we must prioritize and choose our methods wisely. (See Section 2.2.2 and
Section 12.1.1.)

For processes that are not, or have not yet been, automated, creating proce-
dural documentation, called a playbook, helps make the process repeatable and
consistent. A good playbook makes it easier to automate the process in the future.
Often the most difficult part of automating something is simply describing the
process accurately. If a playbook does that, the actual coding is relatively easy.

Tasks That Are Not Worth Automating
Some things are not worth automating because they happen infrequently, they are
too difficult to automate, or the process changes so often that automation is not pos-
sible. Automation is an investment in time and effort and the return on investment
(ROI) does not always make automation viable.

Nevertheless, there are some common cases that are worth automating. Often
when those are automated, the more rare cases (edge cases) can be consolidated or
eliminated. In many situations, the newly automated common case provides such
superior service that the edge-case customers will suddenly lose their need to be
so unique.



154 Chapter 7 Operations in a Distributed World

..

Benefits of Automating the Common Case

At one company there were three ways that virtual machines were being pro-
visioned. All three were manual processes, and customers often waited days
until a systemadministratorwas available to do the task.Aproject to automate
provisioning was stalled because of the complexity of handling all three vari-
ations. Users of the two less common cases demanded that their provisioning
process be different because they were (in their own eyes) unique and beau-
tiful snowflakes. They had very serious justifications based on very serious
(anecdotal) evidence and waved their hands vigorously to prove their point.
To get the project moving, it was decided to automate just the most common
case and promise the two edge cases would be added later.

This was much easier to implement than the original all-singing, all-
dancing, provisioning system. With the initial automation, provisioning time
was reduced to a few minutes and could happen without system administra-
tor involvement. Provisioning could even happen at night and on weekends.
At that point an amazing thing happened. The other two cases suddenly dis-
covered that their uniqueness had vanished! They adopted the automated
method. The system administrators never automated the two edge cases and
the provisioning system remained uncomplicated and easy to maintain.

Tasks That Cannot Be Automated
Some tasks cannot be automated because they are human processes: maintaining
your relationshipwith a stakeholder,managing the bidding process tomake a large
purchase, evaluating new technology, or negotiating within a team to assemble an
oncall schedule. While they cannot be eliminated through automation, they can be
streamlined:

• Many interactions with stakeholders can be eliminated through better
documentation. Stakeholders can be more self-sufficient if provided with
introductory documentation, user documentation, best practices recommen-
dations, a style guide, and so on. If your service will be used by many other
services or service teams, it becomes more important to have good documen-
tation. Video instruction is also useful and does not require much effort if you
simply make a video recording of presentations you already give.

• Some interactions with stakeholders can be eliminated by making common
requests self-service. Rather than meeting individually with customers to
understand future capacity requirements, their forecasts can be collected via a
webuser interface or anAPI. For example, if youprovide a service to hundreds



7.2 Service Life Cycle 155

of other teams, forecasting can be become a full-time job for a project manager;
alternatively, it can be very little work with proper automation that integrates
with the company’s supply-chain management system.

• Evaluating new technology can be labor intensive, but if a common case is
identified, the end-to-end process can be turned into an assembly-line process
and optimized. For example, if hard drives are purchased by the thousand, it is
wise to add a newmodel to themix only periodically and only after a thorough
evaluation. The evaluation process should be standardized and automated,
and results stored automatically for analysis.

• Automation can replace or accelerate team processes. Creating the oncall
schedule can evolve into a chaotic mess of negotiations between team mem-
bers battling to take time off during an important holiday. Automation turns
this into a self-service system that permits people to list their availability and
that churns out an optimal schedule for the next few months. Thus, it solves
the problem better and reduces stress.

• Meta-processes such as communication, status, and process tracking can be
facilitated through online systems. As teams grow, just tracking the interac-
tion and communication among all parties can become a burden. Automating
that can eliminate hours of manual work for each person. For example, a web-
based system that lets people see the status of their order as it works its way
through approval processes eliminates the need for status reports, leaving
people to deal with just exceptions and problems. If a process has many com-
plex handoffs between teams, a system that provides a status dashboard and
automatically notifies teams when hand-offs happen can reduce the need for
legions of project managers.

• The best process optimization is elimination. A task that is eliminated does not
need to be performed or maintained, nor will it have bugs or security flaws.
For example, if production machines run three different operating systems,
narrowing that number down to two eliminates a lot of work. If you provide a
service to other service teams and require a lengthy approval process for each
new team, itmay be better to streamline the approval process by automatically
approving certain kinds of users.

7.2 Service Life Cycle
Operations is responsible for the entire service life cycle: launch, maintenance
(both regular and emergency), upgrades, and decommissioning. Each phase
has unique requirements, so you’ll need a strategy for managing each phase
differently.



156 Chapter 7 Operations in a Distributed World

The stages of the life cycle are:

• Service Launch: Launching a service the first time. The service is brought to
life, initial customers use it, and problems that were not discovered prior to
the launch are discovered and remedied. (Section 7.2.1)

• Emergency Tasks: Handling exceptional or unexpected events. This includes
handling outages and, more importantly, detecting and fixing conditions that
precipitate outages. (Chapter 14)

• Nonemergency Tasks: Performing all manual work required as part of the
normally functioning system. This may include periodic (weekly or monthly)
maintenance tasks (for example, preparation for monthly billing events) as
well as processing requests from users (for example, requests to enable the
service for use by another internal service or team). (Section 7.3)

• Upgrades:Deploying new software releases and hardware platforms. The bet-
ter we can do this, the more aggressively the company can try new things and
innovate. Each new software release is built and tested before deployment.
Tests include system tests, done by developers, as well as user acceptance
tests (UAT), done by operations. UAT might include tests to verify there are
no performance regressions (unexpected declines in performance). Vulner-
ability assessments are done to detect security issues. New hardware must
go through a hardware qualification to test for compatibility, performance
regressions, and any changes in operational processes. (Section 10.2)

• Decommissioning: Turning off a service. It is the opposite of a service launch:
removing the remaining users, turning off the service, removing references to
the service from any related service configurations, giving back any resources,
archiving old data, and erasing or scrubbing data from any hardware before
it is repurposed, sold, or disposed. (Section 7.2.2)

• Project Work: Performing tasks large enough to require the allocation of
dedicated resources and planning. While not directly part of the service life
cycle, along the way tasks will arise that are larger than others. Examples
include fixing a repeating but intermittent failure, working with stakehold-
ers on roadmaps and plans for the product’s future, moving the service to a
new datacenter, and scaling the service in new ways. (Section 7.3)

Most of the life-cycle stages listed here are covered in detail elsewhere in this book.
Service launches and decommissioning are covered in detail next.

7.2.1 Service Launches
Nothing ismore embarrassing than the failed public launch of a new service. Often
we see a new service launch that is so successful that it receives too much traffic,
becomes overloaded, and goes down. This is ironic but not funny.



7.2 Service Life Cycle 157

Each timewe launch a new service, we learn something new. If we launch new
services rarely, then remembering those lessons until the next launch is difficult.
Therefore, if launches are rare, we should maintain a checklist of things to do and
record the things you should remember to do next time. As the checklist grows
with each launch, we become better at launching services.

If we launch new services frequently, then there are probably many peo-
ple doing the launches. Some will be less experienced than others. In this case
we should maintain a checklist to share our experience. Every addition increases
our organizational memory, the collection of knowledge within our organization,
thereby making the organization smarter.

A common problem is that other teamsmay not realize that planning a launch
requires effort. They may not allocate time for this effort and surprise operations
teamsat or near the launchdate. These teamsareunaware of all thepotential pitfalls
and problems that the checklist is intended to prevent. For this reason the launch
checklist should be something mentioned frequently in documentation, socialized
among product managers, and made easy to access. The best-case scenario occurs
whena service teamcomes to operationswishing to launch something andhas been
using the checklist as a guide throughoutdevelopment. Such a teamhas “done their
homework”; they have been working on the items in the checklist in parallel as the
productwas being developed. This does not happen by accident; the checklistmust
be available, be advertised, and become part of the company culture.

A simple strategy is to create a checklist of actions that need to be completed
prior to launch. A more sophisticated strategy is for the checklist to be a series
of questions that are audited by a Launch Readiness Engineer (LRE) or a Launch
Committee.

Here is a sample launch readiness review checklist:

Sample Launch Readiness Review Survey
The purpose of this document is to gather information to be evaluated by a Launch Readi-
ness Engineer (LRE) when approving the launch of a new service. Please complete the
survey prior to meeting with your LRE.

• General Launch Information:
– What is the service name?
– When is the launch date/time?
– Is this a soft or hard launch?

• Architecture:
– Describe the systemarchitecture. Link to architecture documents if possible.
– How does the failover work in the event of single-machine, rack, and

datacenter failure?
– How is the system designed to scale under normal conditions?



158 Chapter 7 Operations in a Distributed World

• Capacity:
– What is the expected initial volume of users and QPS?
– How was this number arrived at? (Link to load tests and reports.)
– What is expected to happen if the initial volume is 2× expected? 5×? (Link

to emergency capacity documents.)
– What is the expected external (internet) bandwidth usage?
– What are the requirements for network and storage after 1, 3, and 12

months? (Link to confirmation documents from the network and storage
teams capacity planner.)

• Dependencies:
– Which systems does this depend on? (Link to dependency/data flow

diagram.)
– Which RPC limits are in place with these dependencies? (Link to limits and

confirmation from external groups they can handle the traffic.)
– What will happen if these RPC limits are exceeded ?
– For each dependency, list the ticket number where this new service’s use

of the dependency (and QPS rate) was requested and positively acknowl-
edged.

• Monitoring:
– Are all subsystems monitored? Describe the monitoring strategy and doc-

ument what is monitored.
– Does a dashboard exist for all major subsystems?
– Do metrics dashboards exist? Are they in business, not technical, terms?
– Was the number of “false alarm” alerts in the last month less than x?
– Is the number of alerts received in a typical week less than x?

• Documentation:
– Does a playbook exist and include entries for all operational tasks and

alerts?
– Have an LRE review each entry for accuracy and completeness.
– Is the number of open documentation-related bugs less than x?

• Oncall:
– Is the oncall schedule complete for the next n months?
– Is the oncall schedule arranged such that each shift is likely to get fewer

than x alerts?
• Disaster Preparedness:

– What is the plan in case first-day usage is 10 times greater than expected?
– Do backups work and have restores been tested?

• Operational Hygiene:
– Are “spammy alerts” adjusted or corrected in a timely manner?



7.2 Service Life Cycle 159

– Are bugs filed to raise visibility of issues—evenminor annoyances or issues
with commonly known workarounds?

– Do stability-related bugs take priority over new features?
– Is a system in place to assure that the number of open bugs is kept low?

• Approvals:
– Has marketing approved all logos, verbiage, and URL formats?
– Has the security team audited and approved the service?
– Has a privacy audit been completed and all issues remediated?

Because a launch is complex,withmanymoving parts, we recommend that a single
person (the launch lead) take a leadership or coordinator role. If the developer
and operations teams are very separate, one person from each might be selected to
represent each team.

The launch lead thenworks through the checklist, delegatingwork, filing bugs
for any omissions, and tracking all issues until launch is approved and executed.
The launch lead may also be responsible for coordinating post-launch problem
resolution.

..

Case Study: Self-Service Launches at Google

Google launches somany services that it needed away tomake the launch pro-
cess streamlined and able to be initiated independently by a team. In addition
to providing APIs and portals for the technical parts, the Launch Readiness
Review (LRR) made the launch process itself self-service.

The LRR included a checklist and instructions on how to achieve each
item. An SRE engineer was assigned to shepherd the team through the process
and hold them to some very high standards.

Some checklist items were technical—for example, making sure that the
Google load balancing system was used properly. Other items were caution-
ary, to prevent a launch team from repeating other teams’ past mistakes. For
example, one team had a failed launch because it received 10 times more
users than expected. There was no plan for how to handle this situation. The
LRR checklist required teams to create a plan to handle this situation and
demonstrate that it had been tested ahead of time.

Other checklist items were business related. Marketing, legal, and other
departments were required to sign off on the launch. Each department had
its own checklist. The SRE team made the service visible externally only after
verifying that all of those sign-offs were complete.



160 Chapter 7 Operations in a Distributed World

7.2.2 Service Decommissioning
Decommissioning (or just “decomm”), or turning off a service, involves threemajor
phases: removal of users, deallocation of resources, and disposal of resources.

Removing users is often a product management task. Usually it involves mak-
ing the users aware that they must move. Sometimes it is a technical issue of
moving them to another service. User data may need to be moved or archived.

Resource deallocation can cover many aspects. There may be DNS entries to
be removed,machines to power off, database connections to be disabled, and so on.
Usually there are complex dependencies involved. Often nothing can begin until
the last user is off the service; certain resources cannot be deallocated before others,
and so on. For example, typically a DNS entry is not removed until the machine is
no longer in use. Network connections must remain in place if deallocating other
services depends on network connectivity.

Resource disposal includes securely erasing disks and other media and dis-
posing of all hardware. The hardware may be repurposed, sold, or scrapped.

If decommissioning is done incorrectly or items are missed, resources will
remain allocated. A checklist, that is added to over time, will help assure decom-
missioning is done completely and the tasks are done in the right order.

7.3 Organizing Strategy for Operational Teams
An operational team needs to get work done. Therefore teams need a strategy that
assures that all incoming work is received, scheduled, and completed. Broadly
speaking, there are three sources of operational work and these work items fall
into three categories. To understand how to best organize a team, first you must
understand these sources and categories.

The three sources of work are life-cycle management, interacting with stake-
holders, and process improvement and automation. Life-cycle management is the
operational work involved in running the service. Interacting with stakeholders
refers to both maintaining the relationship with people who use and depend on
the service, and prioritizing and fulfilling their requests. Process improvement and
automation is work inspired by the business desire for continuous improvement.

No matter the source, this work tends to fall into one of these three broad
categories:

• Emergency Issues:Outages, and issues that indicate a pending outage that can
be prevented, and emergency requests from other teams. Usually initiated by
an alert sent by the monitoring system via SMS or pager. (Chapter 14)



7.3 Organizing Strategy for Operational Teams 161

• Normal Requests: Process work (repeatable processes that have not yet been
automated), non-urgent trouble reports, informational questions, and initial
consulting that results in larger projects. Usually initiated by a request ticket
system. (Section 14.1.3)

• Project Work: Small and large projects that evolve the system. Managed with
whatever project management style the team selects. (Section 12.4.2)

To assure that all sources and categories of work receive attention, we recommend
this simple organizing principle: people should always be working on projects,
with exceptions made to assure that emergency issues receive immediate attention
and non-project customer requests are triaged and worked in a timely manner.

More specifically, at any given moment, the highest priority for one person on
the team should be responding to emergencies, the highest priority for one other
person on the team should be responding to normal requests, and the rest of the
team should be focused on project work.

This is counter to the way operations teams often work: everyone running
from emergency to emergency with no time for project work. If there is no effort
dedicated to improving the situation, the team will simply run from emergency to
emergency until they are burned out.

Major improvements come from project work. Project work requires concen-
tration and focus. If you are constantly being interrupted with emergency issues
and requests, you will not be able to get projects done. If an entire team is focused
on emergencies and requests, nobody is working on projects.

It can be tempting to organize an operations team into three subteams, each
focusing on one source of work or one category of work. Either of these approaches
will create silos of responsibility. Process improvement is best done by the people
involved in the process, not by observers.

To implement our recommended strategy, all members of the team focus on
project work as their main priority. However, team members take turns being
responsible for emergency issues as they arise. This responsibility is called oncall.
Likewise, team members take turns being responsible for normal requests from
other teams. This responsibility is called ticket duty.

It is common that oncall duty and ticket duty are scheduled in a rotation.
For example, a team of eight people may use an eight-week cycle. Each person is
assigned a week where he or she is on call: expected to respond to alerts, spending
any remaining time on projects. Each person is also assigned a different week
where he or she is on ticket duty: expected to focus on triaging and responding
to request tickets first, working on other projects only if there is remaining time.
This gives team members six weeks out of the cycle that can be focused on project
work.



162 Chapter 7 Operations in a Distributed World

Limiting each rotation to a specific personmakes for smoother handoffs to the
next shift. In such a case, there are two people doing the handoff rather than a large
operations team meeting. If more than 25 percent of a team needs to be dedicated
to ticket duty and oncall, there is a serious problem with firefighting and a lack of
automation.

The team manager should be part of the operational rotation. This practice
ensures the manager is aware of the operational load and firefighting that goes
on. It also ensures that nontechnical managers don’t accidentally get hired into the
operations organization.

Teams may combine oncall and ticket duty into one position if the amount of
work in those categories is sufficiently small. Some teams may need to designate
multiple people to fill each role.

Project work is best done in small teams. Solo projects can damage a team by
making members feel disconnected or by permitting individuals to work without
constructive feedback. Designs are better with at least some peer review. Without
feedback, members may end up working on projects they feel are important but
have marginal benefit. Conversely, large teams often get stalled by lack of consen-
sus. In their case, focusing on shipping quickly overcomesmany of these problems.
It helps by making progress visible to the project members, the wider team, and
management. Course corrections are easier to make when feedback is frequent.

The Agile methodology, discussed in Section 8.6, is an effective way to
organize project work.

..

Meta-work

There is also meta-work: meetings, status reports, company functions. These
generally eat into project time and should be minimized. For advice, see
Chapter 11, “Eliminating Time Wasters,” in the book Time Management for
System Administrators by Limoncelli (2005).

7.3.1 Team Member Day Types
Now that we have established an organizing principle for the team’s work, each
team member can organize his or her work based on what kind of day it is: a
project-focused day, an oncall day, or a ticket duty day.

Project-Focused Days
Most days should be project days for operational staff. Specifically, most days
should be spent developing software that automates or optimizes aspects of the
team’s responsibilities. Non-software projects include shepherding a new launch
or working with stakeholders on requirements for future releases.



7.3 Organizing Strategy for Operational Teams 163

Organizing the work of a team through a single bug tracking system has the
benefit of reducing time spent checking different systems for status. Bug tracking
systems provide an easy way for people to prioritize and track their work. On a
typical project day the staff member starts by checking the bug tracking system to
review the bugs assigned to him or her, or possibly to review unassigned issues of
higher priority the team member might need to take on.

Software development in operations tends to mirror the Agile methodology:
rather than making large, sudden changes, many small projects evolve the system
over time. Chapter 12 will discuss automation and software engineering topics in
more detail.

Projects that do not involve software development may involve technical
work. Moving a service to a new datacenter is highly technical work that cannot
be automated because it happens infrequently.

Operations staff tend not to physically touch hardware not just because of the
heavy use of virtualmachines, but also because even physical machines are located
in datacenters that are located far away. Datacenter technicians act as remote
hands, applying physical changes when needed.

Oncall Days
Oncall days are spent working on projects until an alert is received, usually by
SMS, text message, or pager.

Once an alert is received, the issue is worked until it is resolved. Often there
are multiple solutions to a problem, usually including one that will fix the problem
quickly but temporarily and others that are long-term fixes. Generally the quick
fix is employed because returning the service to normal operating parameters is
paramount.

Once the alert is resolved, a number of other tasks should always be done. The
alert should be categorized and annotated in some form of electronic alert jour-
nal so that trends may be discovered. If a quick fix was employed, a bug should
be filed requesting a longer-term fix. The oncall person may take some time to
update the playbook entry for this alert, thereby building organizational mem-
ory. If there was a user-visible outage or an SLA violation, a postmortem report
should be written. An investigation should be conducted to ascertain the root
cause of the problem. Writing a postmortem report, filing bugs, and root causes
identification are all ways that we raise the visibility of issues so that they get
attention. Otherwise, we will continually muddle through ad hoc workarounds
and nothing will ever get better. Postmortem reports (possibly redacted for tech-
nical content) can be shared with the user community to build confidence in the
service.

The benefit of having a specific person assigned to oncall duty at any given
time is that it enables the rest of the team to remain focused on projectwork. Studies
have found that the key to software developer productivity is to have long periods



164 Chapter 7 Operations in a Distributed World

of uninterrupted time. That said, if a major crisis appears, the oncall person will
pull people away from their projects to assist.

If oncall shifts are too long, the oncall person will be overloaded with follow-
up work. If the shifts are too close together, there will not be time to complete the
follow-up work. Many great ideas for new projects and improvements are first
imagined while servicing alerts. Between oncall shifts people should have enough
time to pursue such projects.

Chapter 14 will discuss oncall in greater detail.

Ticket Duty Days
Ticket duty days are spent working on requests from customers. Here the cus-
tomers are the internal users of the service, such as other service teams that use
your service’s API. These are not tickets from external users. Those items should
be handled by customer support representatives.

While oncall is expected to have very fast reaction time, tickets generally have
an expected response time measured in days.

Typical tickets may consist of questions about the service, which can lead to
some consulting on how to use the service. They may also be requests for activa-
tion of a service, reports of problems or difficulties people are experiencing, and so
forth. Sometimes tickets are created by automated systems. For example, a moni-
toring system may detect a situation that is not so urgent that it needs immediate
response and may open a ticket instead.

Some long-running tickets left from the previous shift may need follow-up.
Often there is a policy that if we are waiting for a reply from the customer, every
three days the customer will be politely “poked” to make sure the issue is not for-
gotten. If the customer is waiting for follow-up from us, there may be a policy that
urgent tickets will have a status update posted daily, with longer stretches of time
for other priorities.

If a ticket will not be completed by the end of a shift, its status should be
included in the shift report so that the next person can pick up where the previous
person left off.

By dedicating a person to ticket duty, that individual can be more focused
while responding to tickets. All tickets can be triaged and prioritized. There ismore
time to categorize tickets so that trends can be spotted. Efficiencies can be realized
by batching up similar tickets to be done in a row.More importantly, by dedicating
a person to tickets, that individual should have time to go deeper into each ticket:
to update documentation and playbooks along the way, to deep-dive into bugs
rather than find superficial workarounds, to fix complex broken processes. Ticket
duty should not be a chore, but rather should be part of the strategy to reduce the
overall work faced by the team.

Every operations team should have a goal of eliminating the need for people
to open ticketswith them, similar to how there should always be a goal to automate



7.3 Organizing Strategy for Operational Teams 165

manual processes. A ticket requesting information is an indication that documen-
tation should be improved. It is best to respond to the question by adding the
requested information to the service’s FAQ or other user documentation and then
directing the user to that document. Requests for service activation, allocations, or
configuration changes indicate an opportunity to create a web-based portal or API
tomake such requests obsolete. Any ticket created by an automated system should
have a corresponding playbook entry that explains how to process it, with a link
to the bug ID requesting that the automation be improved to eliminate the need to
open such tickets.

At the end of oncall and ticket duty shifts, it is common for the person to email
out a shift report to the entire team. This report should mention any trends noticed
and any advice or status information to be passed on to the next person. The oncall
end-of-shift report should also include a log ofwhich alertswere received andwhat
was done in response.

When you are oncall or doing ticket duty, that is your main project. Other
project work that is accomplished, if any, is a bonus. Management should not
expect other projects to get done, nor should people be penalized for having the
proper focus. When people end their oncall or ticket duty time, they should not
complain that they weren’t able to get any project work done; their project, so to
speak, was ticket duty.

7.3.2 Other Strategies
There are many other ways to organize the work of a team. The team can rotate
though projects focused on a particular goal or subsystem, it can focus on reducing
toil, or special days can be set aside for reducing technical debt.

Focus or Theme
One can pick a category of issues to focus on for a month or two, changing themes
periodically or when the current theme is complete. For example, at the start of a
theme, a number of security-related issues can be selected and everyone commit
to focusing on them until they are complete. Once these items are complete, the
next theme begins. Some common themes include monitoring, a particular service
or subservice, or automating a particular task.

If the team cohesion was low, this can help everyone feel as if they are work-
ing as a team again. It can also enhance productivity: if everyone has familiarized
themselves with the same part of the code base, everyone can do a better job of
helping each other.

Introducing a theme can also provide a certain amount of motivation. If the
team is looking forward to the next theme (because it is more interesting, novel, or
fun), they will be motivated to meet the goals of the current theme so they can start
the next one.



166 Chapter 7 Operations in a Distributed World

Toil Reduction
Toil is manual work that is particularly exhausting. If a team calculates the number
of hours spent on toil versus normal project work, that ratio should be as low as
possible. Management may set a threshold such that if it goes above 50 percent,
the team pauses all new features and works to solve the big problems that are the
source of so much toil. (See Section 12.4.2.)

Fix-It Days
Aday (or series of days) can be set aside to reduce technical debt. Technical debt is
the accumulation of small unfinished amounts of work. By themselves, these bits
and pieces are not urgent, but the accumulation of them starts to become a problem.
For example, a Documentation Fix-It Day would involve everyone stopping all
other work to focus on bugs related to documentation that needs to be improved.
Alternatively, a Fix-It Week might be declared to focus on bringing all monitoring
configurations up to a particular standard.

Often teams turn fix-its into a game. For example, at the start a list of tasks (or
bugs) is published. Prizes are given out to the people who resolve the most bugs.
If done company-wide, teams may receive T-shirts for participating and/or prizes
for completing the most tasks.

7.4 Virtual Office
Manyoperations teamswork fromhome rather than an office. Sincework is virtual,
with remote hands touching hardwarewhen needed, we canwork from anywhere.
Therefore, it is common to work from anywhere. When necessary, the team meets
in chat rooms or other virtual meeting spaces rather than physical meeting rooms.
When teams work this way, communicationmust be more intentional because you
don’t just happen to see each other in the office.

It is good to have a policy that anyone who is not working from the office
takes responsibility for staying in touch with the team. They should clearly and
periodically communicate their status. In turn, the entire team should take respon-
sibility formaking sure remoteworkers do not feel isolated. Everyone should know
what their team members are working on and take the time to include everyone in
discussions. There are many tools that can help achieve this.

7.4.1 Communication Mechanisms
Chat rooms are commonly used for staying in touch throughout the day. Chat
room transcripts should be stored and accessible so people can read what they
may have missed. There are many chat room “bots” (software robots that join the



7.5 Summary 167

chat room and provide services) that can provide transcription services, pass mes-
sages to offline members, announce when oncall shifts change, and broadcast any
alerts generated by the monitoring system. Some bots provide entertainment: At
Google, a bot keeps track of who has received the most virtual high-fives. At Stack
Exchange, a bot notices if anyone types the phrase “not my fault” and responds
by selecting a random person from the room and announcing this person has been
randomly designated to be blamed.

Higher-bandwidth communication systems include voice and video systems
as well as screen sharing applications. The higher the bandwidth, the better the
fidelity of communication that can be achieved. Text-chat is not good at conveying
emotions, while voice and video can. Always switch to higher-fidelity communi-
cation systems when conveying emotions is more important, especially when an
intense or heated debate starts.

The communication medium with the highest fidelity is the in-person meet-
ing. Virtual teams greatly benefit from periodic in-person meetings. Everyone
travels to the same place for a few days of meetings that focus on long-term
planning, team building, and other issues that cannot be solved online.

7.4.2 Communication Policies
Many teams establish a communication agreement that clarifies which methods
will be used in which situations. For example, a common agreement is that chat
rooms will be the primary communication channel but only for ephemeral discus-
sions. If a decision is made in the chat room or an announcement needs to bemade,
it will be broadcast via email. Email is for information that needs to carry across
oncall shifts or day boundaries. Announcements with lasting effects, such as major
policies or design decisions, need to be recorded in the team wiki or other docu-
ment system (and the creation of said document needs to be announced via email).
Establishing this chat–email–document paradigm can go a long way in reducing
communication problems.

7.5 Summary
Operations is different from typical enterprise IT because it is focused on a par-
ticular service or group of services and because it has more demanding uptime
requirements.

There is a tension between the operations team’s desire for stability and the
developers’ desire to get new code into production. There are many ways to reach
a balance. Most ways involve aligning goals by sharing responsibility for both
uptime and velocity of new features.



168 Chapter 7 Operations in a Distributed World

Operations in distributed computing is done at a large scale. Processes that
have to be done manually do not scale. Constant process improvement and
automation are essential.

Operations is responsible for the life cycle of a service: launch, maintenance,
upgrades, and decommissioning. Maintenance tasks include emergency and non-
emergency response. In addition, related projects maintain and evolve the service.

Launches, decommissioning of services, and other tasks that are done infre-
quently require an attention to detail that is best assured by use of checklists.
Checklists ensure that lessons learned in the past are carried forward.

Themost productive use of time for operational staff is time spent automating
and optimizing processes. This should be their primary responsibility. In addition,
two other kinds of work require attention. Emergency tasks need fast response.
Nonemergency requests need to be managed such that they are prioritized and
worked in a timely manner. To make sure all these things happen, at any given
time one person on the operations team should be focused on responding to emer-
gencies; another should be assigned to prioritizing andworking on nonemergency
requests. When team members take turns addressing these responsibilities, they
receive the dedicated resources required to assure they happen correctly by sharing
the responsibility across the team. People also avoid burning out.

Operations teams generally work far from the actual machines that run their
services. Since they operate the service remotely, they can work from anywhere
there is a network connection. Therefore teams often work from different places,
collaborating and communicating in a chat room or other virtual office. Many tools
are available to enable this type of organizational structure. In such an environ-
ment, it becomes important to change the communication medium based on the
type of communication required. Chat rooms are sufficient for general commu-
nication but voice and video are more appropriate for more intense discussions.
Email is more appropriate when a record of the communication is required, or if it
is important to reach people who are not currently online.

Exercises
1. What is operations? What are its major areas of responsibilities?
2. Howdoes operations in distributed computing differ from traditional desktop

support or enterprise client–server support?
3. Describe the service life cycle as it relates to a service you have experience

with.
4. Section 7.1.2 discusses the change-instability cycle. Draw a series of graphs

where the x-axis is time and the y-axis is the measure of stability. Each graph
should represent two months of project time.



Exercises 169

Each Monday, a major software release that introduces instability (9 bugs) is
rolled out. On Tuesday through Friday, the team has an opportunity to roll out
a “bug-fix” release, each of which fixes three bugs. Graph these scenarios:

(a) No bug-fix releases
(b) Two bug-fix releases after every major release
(c) Three bug-fix releases after every major release
(d) Four bug-fix releases after every major release
(e) No bug-fix release after odd releases, five bug-fix releases after even

releases

5. What do you observe about the graphs from Exercise 4?
6. For a service you provide or have experience with, who are the stakeholders?

Which interactions did you or your team have with them?
7. What are some of the ways operations work can be organized? How does this

compare to how your current team is organized?
8. For a service you are involved with, give examples of work whose source is

life-cycle management, interacting with stakeholders, and process improve-
ment and automation.

9. For a service you are involved with, give examples of emergency issues,
normal requests, and project work.



This page intentionally left blank 



This page intentionally left blank 



Index

A-B testing, 232–233
AAA (authentication, authorization, and

accounting), 222
Abbott, M., 99–100
Abstracted administration in

DevOps, 185
Abstraction in loosely coupled

systems, 24
Abts, D., 137
Access Control List (ACL) mechanisms

description, 40
Google, 41

Access controls in design for operations,
40–41

Account creation automation example,
251–252

Accuracy, automation for, 253
ACID databases, 24
Acknowledgments for alert messages,

355–356
ACL (Access Control List) mechanisms

description, 40
Google, 41

Active-active pairs, 126
Active users, 366
Adaptive Replacement Cache (ARC)

algorithm, 107
Adopting design documents, 282–283
Advertising systems in second web

era, 465
After-hours oncall maintenance

coordination, 294
Agents in collections, 352
Aggregators, 352
Agile Alliance, 189

Agile Manifesto, 189
Agile techniques, 180

continuous delivery, 188–189
feature requests, 264

AKF Scaling Cube, 99
combinations, 104
functional and service splits,

101–102
horizontal duplication, 99–101
lookup-oriented splits, 102–104

Alerts, 163, 285
alerting and escalation systems, 345,

354–357
monitoring, 333
oncall for. See Oncall
rules, 353
thresholds, 49

Alexander, Christopher, 69
Allen, Woody, 285
Allspaw, John

automation, 249
disaster preparedness tests, 318–320
outage factors, 302
postmortems, 301

Alternatives in design documents, 278
Amazon

design process, 276
Game Day, 318
Simple Queue Service, 85

Amazon Elastic Compute Cloud
(Amazon EC2), 472

Amazon Web Services (AWS), 59
Analysis

in capacity planning, 375–376
causal, 301–302

499



500 Index

Analysis (continued)
crash reports, 129
in monitoring, 345, 353–354

Ancillary resources in capacity
planning, 372

Andreessen, Marc, 181
Anomaly detection, 354
“Antifragile Organization” article,

315, 320
Antifragile systems, 308–310
Apache systems

Hadoop, 132, 467
Mesos, 34
web server forking, 114
Zookeeper, 231, 363

API (Application Programming
Interface)

defined, 10
logs, 340

Applicability in dot-bomb era,
463–464

Application architectures, 69
cloud-scale service, 80–85
exercises, 93
four-tier web service, 77–80
message bus, 85–90
reverse proxy service, 80
service-oriented, 90–92
single-machine web servers, 70–71
summary, 92–93
three-tier web service, 71–77

Application debug logs, 340
Application logs, 340
Application Programming Interface

(API)
defined, 10
logs, 340

Application servers in four-tier web
service, 79

Approvals
code, 47–48
deployment phase, 214, 216–217
design documents, 277, 281
service launches, 159

Arbitrary groups, segmentation
by, 104

ARC (Adaptive Replacement Cache)
algorithm, 107

Architecture factors in service launches,
157

Archives
design documents, 279–280
email, 277

Art of Scalability, Scalable Web
Architecture, Processes, and
Organizations for the Modern
Enterprise, 100

Artifacts
artifact-scripted database changes,

185
defined, 196

Assessments, 421–422
Capacity Planning, 431–432
Change Management, 433–434
Disaster Preparedness, 448–450
Emergency Response, 426–428
levels, 405–407
methodology, 403–407
Monitoring and Metrics, 428–430
New Product Introduction and

Removal, 435–436
operational excellence, 405–407
organizational, 411–412
Performance and Efficiency, 439–441
questions, 407
Regular Tasks, 423–425
Service Delivery: The Build Phase,

442–443
Service Delivery: The Deployment

Phase, 444–445
Service Deployment and

Decommissioning, 437–438
services, 407–410
Toil Reduction, 446–447

Asynchronous design, 29
Atlassian Bamboo tool, 205
Atomicity

ACID term, 24
release, 240–241

Attack surface area, 79
Auditing operations design, 42–43
Augmentation files, 41–42
Authentication, authorization, and

accounting (AAA), 222
Authentication in deployment phase,

222
Authors in design documents, 277, 282
Auto manufacturing automation

example, 251



Index 501

Automation, 243–244
approaches, 244–245
baking, 219
benefits, 154
code amount, 269–270
code reviews, 268–269
compensatory principle, 246–247
complementarity principle, 247–248
continuous delivery, 190
crash data collection and analysis,

129
creating, 255–258
DevOps, 182, 185–186
exercises, 272–273
goals, 252–254
hidden costs, 250
infrastructure strategies, 217–220
issue tracking systems, 263–265
language tools, 258–262
left-over principle, 245–246
lessons learned, 249–250
multitenant systems, 270–271
prioritizing, 257–258
repair life cycle, 254–255
software engineering tools and

techniques, 262–270
software packaging, 266
software restarts and escalation,

128–129
steps, 258
style guides, 266–267, 270
summary, 271–272
system administration, 248–249
tasks, 153–155
test-driven development, 267–268
toil reduction, 257
vs. tool building, 250–252
version control systems, 265–266

Availability
CAP Principle, 21–22
monitoring, 336

Availability and partition tolerance
(AP), 24

Availability requirements
cloud computing era, 469
dot-bomb era, 460
first web era, 455
pre-web era, 452–453
second web era, 465

Averages in monitoring, 358
AWS (Amazon Web Services), 59

Backend replicas, load balancers with,
12–13

Backends
multiple, 14–15
server stability, 336

Background in design documents,
277–278

Background processes for containers, 61
Backups in design for operations, 36
Baked images for OS installation,

219–220
Banned query lists, 130
Bare metal clouds, 68
Barroso, L. A.

canary requests, 131
cost comparisons, 464
disk drive failures, 133, 338

BASE (Basically Available Soft-state
services) databases, 24

Baseboard Management Controller
(BMC), 218

Basecamp application, 55
bash (Bourne Again Shell), 259
Batch size in DevOps, 178–179
Bathtub failure curve, 133
Beck, K., 189
Behaviors in KPIs, 390–391
Behr, K., 172
Bellovin, S. M., 79
Benchmarks in service platform

selection, 53
Bernstein, Leonard, 487
Berra, Yogi, 331
Bibliography, 491–497
Bidirectional learning in code review

systems, 269
Big O notation, 476–479
Bigtable storage system, 24
Bimodal patterns in histograms, 361
BIOS settings in deployment phase,

218
Blackbox monitoring, 346–347
Blacklists, 40–42
Blade servers, 217–218
“Blameless Postmortems and a Just

Culture” article, 301



502 Index

Blog Search, upgrading, 226
Blue-green deployment, 230
BMC (Baseboard Management

Controller), 218
Botnets, 140
Bots in virtual offices, 166–167
Bottlenecks

automation for, 257
DevOps, 179
identifying, 96

Bourne Again Shell (bash), 259
Bowen, H. K., 172
Boyd, John, 296
BSD UNIX, 460
Buckets in histograms, 361
Buffer thrashing, 71
Bugs

code review systems, 269
vs. feature requests, 263
flag flips for, 232
lead time, 201
monitoring, 336
new releases, 178
priority for, 150
unused code, 270

Builds
assessments, 442–443
build console, 205
build step, 203–204
commit step, 202–203
continuous deployment, 237
continuous integration, 205–207
develop step, 202
DevOps, 185–186
exercises, 209
overview, 195–196
package step, 204
packages as handoff interface, 207–208
register step, 204
service delivery strategies, 197–200
steps overview, 202–204
summary, 208–209
version-controlled, 191
virtuous cycle of quality, 200–201
waterfall methodology, 199

“Built to Win: Deep Inside Obama’s
Campaign Tech” article, 307

Business impact in alert messages, 355
Business listings in Google Maps, 42

c-SOX requirements, 43
Cache hit ratio, 105, 109
Cache hits, 104
Cache misses, 104
Caches, 104–105

effectiveness, 105
persistence, 106
placement, 106
replacement algorithms, 107
size, 108–110

Calendar documents for oncall
schedules, 290–291

Canary process for upgrading services,
227–228

Canary requests, 131
Candea, G., 35
CAP Principle, 21–24
Capability Maturity Model (CMM),

405–407
Capability monitoring, 348
Capacity factors in service launches, 158
Capacity models, 374
Capacity planning (CP), 365

advanced, 371–381
assessments, 431–432
capacity limits, 366, 372–373
core drivers, 373–374
current usage, 368–369
data analysis, 375–380
delegating, 381
engagement measuring, 374–375
exercises, 386
headroom, 370
key indicators, 380–381
launching new services, 382–384
monitoring, 335
normal growth, 369
operational responsibility, 404
planned growth, 369–370
primary resources, 372
provisioning time, 384–385
resiliency, 370–371
resource regression, 381–382
standard, 366–371
summary, 385–386
timetables, 371

Cart size monitoring, 336
Cascade load balancing, 74
Cassandra system, 24



Index 503

Causal analysis, 301–302
CCA (contributing conditions analysis),

301
CDNs (content delivery networks),

114–116
Central collectors, 352–353
Certificate management, 79
CFEngine system

configuration management, 261
deployment phase, 213

Chalup, S. R., 204
Change

documenting, 276
limits, 41
vs. stability, 149–151
success rate, 201
version control systems, 265

Change-instability cycles, 150
Change Management (CM)

assessments, 433–434
operational responsibility, 404

Channels in message bus architectures,
86

Chaos Gorilla, 315
Chaos Monkey, 315
Chapman, Brent, 323
Chat room bots for alerts, 293
Chat rooms for virtual offices, 166–167
Checklists

oncall pre-shift responsibilities, 294
service launches, 157, 159

Chef software framework, 213
Cheswick, W. R., 79
“Choose Your Own Adventure” talk, 173
Chubby system, 231, 314
Churchill, Winston, 119
Classification systems for oncall, 292
Clos networking, 137
Cloud computing era (2010-present),

469–472
Cloud-scale service, 80–81

global load balancing methods, 82,
83–85

internal backbones, 83–84
points of presence, 83–85

CM (configuration management)
languages, 260–262

CMDB (Configuration Management
Database), 222

CMM (Capability Maturity Model),
405–407

CNN.com web site, 13–14
Code

approval process, 47–48
automated reviews, 268–269
lead time, 201
live changes, 236
sufficient amount, 269–270

Code latency in DevOps, 178–179
Code pushes

description, 225, 226
failed, 239–240

Code review system (CRS), 268–269
Cognitive systems engineering (CSE)

approach, 248
Cold caches, 106
Cold storage factor in service platform

selection, 54
Collaboration in DevOps, 183
Collection systems, 345

central vs. regional collectors,
352–353

monitoring, 349–353
protocol selection, 351
push and pull, 350–351
server component vs. agents vs.

pollers, 352
Colocation

CDNs, 114
service platform selection, 65–66

Command-line flags, 231
Comments in style guides, 267
Commit step in build phase, 202–203
Commodity servers, 463
Communication

emergency plans, 317–318
postmortems, 302
virtual offices, 166–167

Compensation in oncall schedules, 290
Compensatory automation principle,

244, 246–247
Compiled languages, 260
Complementarity principle, 244, 247–248
Compliance in platform selection, 63
Comprehensiveness in continuous

deployment, 237
Computation, monitoring, 353–354
Confidence in service delivery, 200



504 Index

Configuration
automating, 254
deployment phase, 213–214
in designing for operations, 33–34
DevOps, 185
four-tier web service, 80
monitoring, 345–346, 362–363

Configuration management (CM)
languages, 260–262

Configuration Management Database
(CMDB), 222

Configuration management strategy in
OS installation, 219

Configuration packages, 220
Conflicting goals, 396–397
Congestion problems, 15
Consistency

ACID term, 24
CAP Principle, 21

Consistency and partition tolerance
(CP), 24

Constant scaling, 475–476
Containers, 60–62
Content delivery networks (CDNs),

114–116
Content distribution servers, 83
Continuous builds in DevOps, 186
Continuous Delivery, 223
Continuous delivery (CD)

deployment phase, 221
DevOps, 189–192
practices, 191
principles, 190–191

Continuous deployment
DevOps, 186
upgrading live services, 236–239

Continuous improvement technique
DevOps, 153, 183
service delivery, 201

Continuous integration (CI) in build
phase, 205–207

Continuous tests, 186
Contract questions for hosting

providers, 64–65
Contributing conditions analysis (CCA),

301
Control in platform selection, 64
Convergent orchestration, 213–214
Cookies, 76–78

Coordination for oncall schedules, 290
Core drivers

capacity planning, 373–374
defined, 366

Coredumps, 129
Corporate emergency communications

plans, 317–318
Corpus, 16–17
Correlation coefficient, 367
Correlation in capacity planning,

375–378
Costs

caches, 105
cloud computing era, 469–470
dot-bomb era, 464–465
first web era, 459
platform selection, 63–64
pre-web era, 454
second web era, 468–469
service platform selection, 66–67
TCO, 172

Counters in monitoring, 348–350, 358
CPU core sharing, 59
Crash-only software, 35
Crashes

automated data collection and
analysis, 129

software, 128–129
Craver, Nick, 430
CRS (code review system), 268–269
CSE (cognitive systems engineering)

approach, 248
Current usage in capacity planning,

368–369
Customer functionality, segmentation

by, 103
Customers in DevOps, 177
Cycle time, 196

Daemons for containers, 61
Daily oncall schedules, 289
Dark launches, 233, 383–384
Dashboards for alerts, 293
Data analysis in capacity planning,

375–380
Data import controls, 41–42
Data scaling in dot-bomb era, 463
Data sharding, 110–112
Database-driven dynamic content, 70



Index 505

Database views in live schema
changes, 234

Datacenter failures, 137–138
Dates in design documents, 277, 282
Dawkins, Richard, 475
DDoS (distributed denial-of-service)

attacks, 140
Deallocation of resources, 160
Dean, Jeff

canary requests, 131
scaling information, 27

Debois, Patrick, 180
Debug instrumentation, 43
Decommissioning services, 404

assessments, 437–438
description, 156
overview, 160

Dedicated wide area network
connections, 83

Default policies, 40
Defense in depth, 119
Defined level in CMM, 406–407
Degradation, graceful, 39–40, 119
Delays in continuous deployment,

238
Delegating capacity planning, 381
Delegations of authority in Incident

Command System, 324
Deming, W. Edwards, 172
Denial-of-service (DoS) attacks, 140
Dependencies

containers, 60–61
service launches, 158

Deployment and deployment phase,
195, 197, 211

approvals, 216–217
assessments, 444–445
configuration step, 213–214
continuous delivery, 221
defined, 196
DevOps, 185
exercises, 223
frequency in service delivery, 201
infrastructure as code, 221–222
infrastructure automation strategies,

217–220
installation step, 212–213
installing OS and services, 219–220
KPIs, 392–393

operations console, 217
physical machines, 217–218
platform services, 222
promotion step, 212
summary, 222–223
testing, 215–216
virtual machines, 218

Descriptions of outages, 301
Descriptive failure domains, 127
Design documents, 275

adopting, 282–283
anatomy, 277–278
archive, 279–280
changes and rationale, 276
exercises, 284
overview, 275–276
past decisions, 276–277
review workflows, 280–282
summary, 283
templates, 279, 282, 481–484

Design for operations, 31
access controls and rate limits,

40–41
auditing, 42–43
backups and restores, 36
configuration, 33–34
data import controls, 41–42
debug instrumentation, 43
documentation, 43–44
exception collection, 43–44
exercises, 50
features, 45–48
graceful degradation, 39–40
hot swaps, 38–39
implementing, 45–48
improving models, 48–49
monitoring, 42
operational requirements, 31–32
queue draining, 35–36
redundancy, 37
replicated databases, 37–38
software upgrades, 36
startup and shutdown, 34–35
summary, 49–50
third-party vendors, 48
toggles for features, 39

Design patterns for resiliency. See
Resiliency

Design patterns for scaling. See Scaling



506 Index

Details
design documents, 278
postmortems, 302

Develop step in build phase, 202
Developers for oncall, 287
DevOps, 171–172

Agile, 188–189
approach, 175–176
automation, 182, 185–186
batch size, 178–179
build phase, 197–198
business level, 187–188
continuous delivery, 189–192
continuous improvement, 183
converting to, 186–188
description, 172–173
exercises, 193
experimentation and learning,

178
feedback, 177–178
history, 180–181
integration, 182
nontechnical practices, 183–184
recommended reading, 487
relationships, 182
release engineering practices, 186
SRE, 181
starting, 187
strategy adoption, 179–180
summary, 192
vs. traditional approach, 173–175
values and principles, 181–186
workflow, 176–177

DevOps Cafe Podcast, 180, 200
DevOps culture, 171
“DevOps Days” conferences, 180
Diagnostics, monitoring, 337
Dickson, C., 345
Dickson model, 334
diff tool, 33
Differentiated services, 233
Direct measurements, 347–348
Direct orchestration, 213–214
DiRT (Disaster Recovery Testing), 316,

318, 320–323
Disaster preparedness, 307, 448–450

antifragile systems, 308–309
DiRT tests, 320–323
exercises, 330

fire drills, 312–313
implementation and logistics, 318–320
incident Command System, 323–329
mindset, 308–310
random testing, 314–315
risk reduction, 309–311
scope, 317–318
service launches, 158
service testing, 313–314
starting, 316–317
summary, 329–330
training for individuals, 311–312
training for organizations, 315–317

Disaster Recovery Testing (DiRT), 316,
318, 320–323

Disks
access time, 26
caches, 106–107
failures, 132–133

Distributed computing and clouds
cloud computing era, 469–472
conclusion, 472–473
dot-bomb era, 459–465
exercises, 473
first web era, 455–459
origins overview, 451–452
pre-web era, 452–455
second web era, 465–469

Distributed computing overview, 9–10
CAP Principle, 21–24
distributed state, 17–20
exercises, 30
load balancer with multiple backend

replicas, 12–13
loosely coupled systems, 24–25
server trees, 16–17
servers with multiple backends, 14–15
simplicity importance, 11
speed issues, 26–29
summary, 29–30
visibility at scale, 10–11

Distributed denial-of-service (DDoS)
attacks, 140

Distributed state, 17–20
Distributed version control systems

(DVCSs), 265
Diurnal cycles, 332
Diurnal usage patterns, 359
Diversity, monitoring, 334



Index 507

DNS
deployment phase, 222
round robin, 72–73

Docker system, 61, 219
Documentation

design documents. See Design
documents

design for operations, 43–44
service launches, 158
stakeholder interactions, 154

Doerr, John, 389
Domains, failure, 126–128
Domain-specific languages (DSLs), 244
DoS (denial-of-service) attacks, 140
Dot-bomb era (2000–2003), 459–465
Downsampling, monitoring, 339
Downtime

containers, 61
pre-web era, 453
in upgrading live services, 225

Drain tool, 254
Draining process, 112
Drains, queue, 35–36
“DRAM Errors in the Wild: A

Large-Scale Field Study” article, 134
DSLs (domain-specific languages), 244
Dual load balancers, 76
Durability in ACID term, 24
DVCSs (distributed version control

systems), 265
Dynamic content with web servers, 70
Dynamic resource allocation, 138
Dynamic roll backs, 232
Dynamo system, 24

“Each Necessary, But Only Jointly
Sufficient” article, 302

ECC (error-correcting code) memory,
131–132

Edge cases, 153
Edwards, Damon

DevOps benefits, 172-173
DevOps Cafe podcast, 180, 188, 200

Effectiveness of caches, 105
80/20 rule for operational features, 47
Elements of Programming Style, 11
Eliminating tasks, 155
EMA (exponential moving average),

367, 379

Email
alerts, 292–293
archives, 277

Embedded knowledge in DevOps,
177–178, 187

Emergency hotfixes, 240
Emergency issues, 160
Emergency Response (ER), 403, 426–428
Emergency tasks, 156
Employee human resources data

updates example, 89–90
Empowering users, automation for, 253
Emptying queues, 35
Encryption in four-tier web service, 79
End-of-shift oncall responsibilities, 299
End-to-end process in service delivery,

200
Engagement

defined, 366
measuring, 374–375

Enterprise Integration Practices: Designing,
Building, and Deploying Messaging
Solutions, 87

Environment-related files, 220
Ephemeral computing, 67
Ephemeral machines, 58
Erlang language, 236
Error Budgets, 152

case study, 396–399
DevOps, 184

Error-correcting code (ECC) memory,
131–132

Escalation
alert messages, 345, 354–357
automated, 128–129
monitoring, 333
third-party, 298

Etsy blog, 256
EU Data Protection Directive

platform selection factor, 63
requirements, 43

Eventual consistency, 21
Exception collection, 43–44
Exceptional situations. See Oncall
Execution in service delivery, 201
Executive summaries in design

documents, 277, 282
Expand/contract technique, 234–235
Experimentation in DevOps, 178



508 Index

Expertise of cloud providers factor in
service platform selection, 66

Explicit oncall handoffs, 299
Exponential moving average (EMA),

367, 379
Exponential scaling, 476

Face-to-face discussions in DevOps, 187
Facebook

chat dark launch, 384
recommended reading, 488

Factorial scaling, 477
Fail closed actions, 40
Fail open actions, 40
Failed code pushes, 239–240
Failed RAM chips, 123
Failure condition in alert messages, 354
“Failure Trends in a Large Disk Drive

Population,” 133, 338
Failures, 10, 120. See also Resiliency

overload, 138–141
physical. See Physical failures

Fair queueing, 113
Fan in, 15
Fan out, 15
Farley, D., 190, 223
“Fault Injection in Production,” 320
Feature requests vs. bugs, 263
Features in design for operations, 46

building, 45
toggles, 39, 230–232
writing, 47–48

Federal Emergency Management
Administration (FEMA) web site,
324

Feedback
design for operations, 47–48
DevOps, 177–178, 186–187

Feeding from queues, 113
Felderman, B., 137
FEMA (Federal Emergency Management

Administration) web site, 324
Files, environment-related, 220
Finance monitoring, 336
Fire drills, 312–313
First web era: bubble (1995-2000),

455–459
Fisher, M., 99–100
Fitts, P., 246

Fitts’s list, 246
Fix-it days, 166
FIXME comments in style guides, 267
Flag flipping, 39, 230–232
Flexibility in service-oriented

architectures, 91
Flows

build phase, 197
defined, 196

Focus in operational teams, 165–166
Follow-up oncall work, 296
Forecasting in capacity planning,

378–380
Formal workflows, 280
Four-tier web service, 77–78

application servers, 79
configuration options, 80
encryption and certificate

management, 79
frontends, 78–79
security, 79

Fox, A., 35
FreeBSD containers, 60
Frequency

deployment, 201
measurement, 333
oncall, 291–292

Frontends in four-tier web service, 78–79
Frying images, 219–220
Fulghum, P., 188, 215
Functional splits in AKF Scaling Cube,

101–102
Future capacity planning, 49

Gallagher, S., 307
Game Day exercises

Amazon, 318
DevOps, 184
disaster preparedness, 315, 318–320

“Gamedays on the Obama Campaign”
article, 320

Ganapathi, A., 141
Ganeti system, 240, 254
Gatekeeper tool, 233
Gates, 196
Gauges in monitoring, 348–350
Geographic diversity factor in service

platform selection, 54
Geolocation in cloud-scale service, 81



Index 509

GFS (Google File System), 466
Gibson, William, 402
Gilbert, S., 23
Global load balancing (GLB), 82–83,

83–85
Go Continuous Delivery tool, 205
Goals

automation, 252–254
conflicting, 396–397
design documents, 277, 282
unified, 397–398

Google
ACLs, 41
AdSense, 465
AppEngine, 54
Blog Search upgrading, 226
bots, 167
Chubby system, 231, 314
Disaster Recovery Testing, 316, 318
graceful degradation of apps, 40
message bus architectures, 86
oncall, 291
outages, 119
postmortem reports, 301
recommended reading, 488
self-service launches at, 159
SRE model, 181
timestamps, 341–342

“Google DiRT: The View from Someone
Being Tested” article, 320–323

Google Error Budget KPI, 396–399
Google File System (GFS), 466
Google Maps

load balancing, 83–84
local business listings, 42

Google Omega system, 34
“Google Throws Open Doors to Its

Top-Secret Data Center” article, 320
Graceful degradation, 39–40, 119
Graphical user interfaces (GUIs) for

configuration, 34
Graphs, monitoring, 358
Greatness, measuring, 402–403
Gruver, G., 188, 215
“Guided Tour through Data-center

Networking” article, 137
“Guideline for Postmortem

Communication” blog post, 302
GUIs (graphical user interfaces) for

configuration, 34

Hadoop system, 132, 467
Handoff interface, packages as, 207–208
Handoffs, oncall, 299
Hangs, software, 129–130
Hardware components

dot-bomb era, 460
load balancers, 136
resiliency, 120–121

Hardware output factor in service
platform selection, 67–68

Hardware qualification, 156
Hardware virtual machines (HVMs), 58
Hash functions, 110
Hash prefix, segmentation by, 103
Hbase storage system, 23–24
Head of line blocking, 112
Headroom in capacity planning, 370
Health checks

deployment phase, 213
queries, 12

Heartbeat requests, 129
Help

oncall. See Oncall
scaling, 252

Hidden costs of automation, 250
Hierarchy, segmentation by, 104
High availability

cloud computing era, 471
dot-bomb era, 461–462
first web era, 457–458
pre-web era, 454
second web era, 466–467

High-level design, 278
High-speed network counters, 349
Histograms, 361–362
“Hit” logs, 340
Hits, cache, 104
Hoare, C. A. R., 9
Hogan, C., 204
Hohpe, G., 87
Home computers in dot-bomb era, 460
Horizontal duplication in AKF Scaling

Cube, 99–101
Hosting providers, contract questions

for, 64–65
Hot-pluggable devices, 38–39
Hot spares vs. load sharing, 126
Hot-swappable devices, 38–39
Hotfixes, 240



510 Index

“How Google Sets Goals: OKRs” video,
389

HTTP (Hyper-Text Transfer Protocol)
load balancing, 75
overview, 69

Hudson tool, 205
Human error, 141–142
Human processes, automating, 154
Human resources data updates example,

89–90
Humble, J.

continuous delivery, 190, 223
DevOps Cafe Podcast, 188, 200

HVMs (hardware virtual machines), 58
Hybrid load balancing strategy, 75
Hyper-Text Transfer Protocol (HTTP)

load balancing, 75
overview, 69

IaaS (Infrastructure as a Service), 51–54
IAPs (Incident Action Plans), 326–327
Ideals for KPIs, 390
Image method of OS installation,

219–220
Impact focus for feature requests, 46
Implementation of disaster

preparedness, 318–320
Import controls, 41–42
Improvement levels in operational

excellence, 412–413
Improving models in design for

operations, 48–49
In-house service provider factor in

service platform selection, 67
Incident Action Plans (IAPs), 326–327
“Incident Command for IT: What We

Can Learn from the Fire
Department” talk, 323

Incident Command System, 323–324
best practices, 327–328
example use, 328–329
Incident Action Plan, 326–327
IT operations arena, 326
public safety arena, 325

Incident Commanders, 324–325, 328
Index lookup speed, 28
Individual training for disaster

preparedness, 311–312
Informal review workflows, 280

Infrastructure
automation strategies, 217–220
DevOps, 185
service platform selection, 67

Infrastructure as a Service (IaaS), 51–54
Infrastructure as code, 221–222
Inhibiting alert messages, 356–357
Initial level in CMM, 405
Innovating, 148
Input/output (I/O)

overload, 13
virtual environments, 58–59

Installation
in deployment phase, 212–213
OS and services, 219–220

Integration in DevOps, 182
Intel OKR system, 389
Intentional delays in continuous

deployment, 238
Intermodal shipping, 62
Internal backbones in cloud-scale

service, 83–85
Internet Protocol (IP) addresses

deployment phase, 222
load balancers, 72–73
restrictions on, 40

Introducing new features, flag flips for,
232

Introspection, 10
Invalidation of cache entry, 108
Involvement in DevOps, 183
IP (Internet Protocol) addresses

deployment phase, 222
load balancers, 72–73
restrictions on, 40

Isolation in ACID term, 24
ISPs for cloud-scale service, 83
Issues

naming standards, 264
tracking systems, 263–265

IT operations arena in Incident
Command System, 326

ITIL recommended reading, 488

j-SOX requirements, 43
Jacob, Adam, 173
Jails

containers, 60
processes, 55



Index 511

Java counters, 350
JCS (joint cognitive system), 248
Jenkins CI tool, 205
Job satisfaction in service delivery, 201
Joint cognitive system (JCS), 248
JSON transmitted over HTTP, 351

Kamp, P.-H., 478–479
Kartar, J., 183
Keeven, T., 99
Kejariwal, A., 371
Kernighan, B., 11
Key indicators in capacity planning,

380–381
Key performance indicators (KPIs),

387–388
creating, 389–390
Error Budget case study, 396–399
evaluating, 396
exercises, 399–400
machine allocation example,

393–396
monitoring example, 336–337
overview, 388–389
summary, 399

Keywords in alerts, 304
Kim, Gene, 171–172
Klau, Rick, 389
Kotler, Philip, 365
KPIs. See Key performance indicators

(KPIs)
Krishnan, Kripa, 319–320

Labor laws, 43
Lame-duck mode, 35
“LAMP” acronym, 461
Language tools for automation, 258–262
Latency

cloud computing era, 471
cloud-scale service, 81–82
code, 178–179
monitoring, 334, 336
service platform selection, 54
SRE vs. traditional enterprise IT, 149

Latency load balancing, 74
Latency Monkey, 315
Launch leads, 159
Launch Readiness Engineers (LREs),

157–158

Launch Readiness Reviews (LRRs), 159
Launches

dark, 233
services, 156–160, 382–384

Layer 3 and 4 load balancers, 73
Layer 7 load balancers, 73
Lead times in service delivery, 201
Leaf servers, 17
“Lean Manufacturing,” 172
Learning DevOps, 178
Least Frequently Used (LFU) algorithm,

107
Least Loaded (LL) algorithm, 13

load balancing, 74
problems, 13–14

Least Loaded with Slow Start load
balancing, 74

Least Recently Used (LRU) algorithm,
107

Lee, J. D., 249
Left-over automation principle, 244–246
Legacy system backups and restores, 36
Lessons learned in automation, 249–250
Level of service abstraction in service

platform selection, 52–56
Levels of improvement in operational

excellence, 412–413
Levy, Steven, 320
LFU (Least Frequently Used) algorithm,

107
Limoncelli, T. A.

DiRT tests, 320
meta-work, 162
packages, 204
test event planning, 319
time management, 256

Linear scaling, 476–477
Link-shortening site example, 87–89
Linking tickets to subsystems, 263–264
Linux in dot-bomb era, 460–461
Live code changes, 236
Live restores, 36
Live schema changes, 234–236
Live service upgrades. See Upgrading

live services
Load balancers

failures, 134–136
first web era, 456
with multiple backend replicas, 12–13



512 Index

Load balancers (continued)
with shared state, 75
three-tier web service, 72–74

Load sharing vs. hot spares, 126
Load shedding, 139
Load testing, 215
Local business listings in Google Maps,

42
Local labor laws, 43
Logarithmic scaling, 476
Logistics in disaster preparedness,

318–320
Logistics team in Incident Command

System, 326
Loglinear scaling, 476–477
Logs, 11, 340

approach, 341
design documents, 282
timestamps, 341–342

Long-term analysis, 354
Long-term fixes

oncall, 299–300
vs. quick, 295–296

Longitudinal hardware failure study,
133–134

Look-for’s, 407
Lookup-oriented splits in AKF Scaling

Cube, 102–104
Loosely coupled systems, 24–25
Lower-latency services in cloud

computing era, 469
LREs (Launch Readiness Engineers),

157–158
LRRs (Launch Readiness Reviews), 159
LRU (Least Recently Used) algorithm,

107
Lynch, N., 23

MACD (moving average
convergence/divergence) metric,
367, 378–379

MACD signal line, 367
Machine Learning service, 55
Machines

automated configuration example, 251
defined, 10
failures, 134
KPI example, 393–396

Madrigal, A. C., 316
Main threads, 112

Maintenance alert messages, 356
Major bug resolution monitoring, 336
Major outages, 307
Malfunctions, 121

defined, 120
distributed computing approach, 123
MTBF, 121–122
traditional approach, 122–123

Managed level in CMM, 406–407
Management support in design

documents, 282
Manual scaling, 153
Manual stop lists, 238
Many-to-many communication in

message bus architectures, 85–86
Many-to-one communication in message

bus architectures, 85–86
MapReduce system, 466–467
Master-master pairs, 126
Master of Disaster (MoD) in Wheel of

Misfortune game, 311–312
Master servers, 20
Master-slave split-brain relationship, 22
Math terms, 367
“Mature Role for Automation” blog

post, 249
MAUs (monthly active users), 366, 373
McHenry, Stephen, 234
McHenry Technique, 234–235
McKinley, D., 256
McLean, Malcom, 62
MCollective service, 86
MD5 algorithm, 110
Mean time between failures (MTBF),

120–122, 125
Mean time to repair (MTTR), 125
Mean time to restore service in service

delivery, 201
Measurements, 332

engagement, 374–375
frequency, 333
greatness, 402–403
monitoring. SeeMonitoring
scaling, 97

Medians, monitoring, 359
Memory

caches, 104–106
ECC, 131–132
failures, 123, 131–132



Index 513

virtual machines, 59
web servers, 71

Mesos system, 34
Message bus architectures, 85–86

designs, 86
employee human resources data

updates example, 89–90
link-shortening site example, 87–89
reliability, 87

Messages, alert. See Alerts
Meta-monitoring, 339–340
Meta-processes, automating, 155
Meta-work, 162
Metrics, 11, 332
Mindset in disaster preparedness,

308–310
Minimum monitor problem, 337–338
Misses, cache, 104
“Model for Types and Levels of Human

Interaction with Automation”
article, 248

Monitoring, 331–332
alerting and escalation management,

354–357
analysis and computation,

353–354
assessments, 428–430
blackbox vs. whitebox, 346–347
collections, 350–353
components, 345–346
configuration, 362–363
consumers, 334–336
design for operations, 42
exercises, 342–343, 364
histograms, 361–362
key indicators, 336–337, 380–381
logs, 340–342
meta-monitoring, 339–340
overview, 332–333
percentiles, 359
protocol selection, 351
push vs. pull, 350–351
retention, 338–339
sensing and measurement, 345–350
service launches, 158
stack ranking, 360
storage, 362
summary, 342, 363–364
system integration, 250

uses, 333
visualization, 358–362

Monitoring and Metrics (MM), 404,
428–430

Monthly active users (MAUs), 366, 373
Moving average

convergence/divergence (MACD)
metric, 367, 378–379

Moving averages
capacity planning, 377
defined, 367

MTBF (mean time between failures),
120–122, 125

MTTR (mean time to repair), 125
Multiple backend replicas, load

balancers with, 12–13
Multiple backends, servers with, 14–15
Multiple data stores in three-tier web

service, 77
Multitenant systems, automation,

270–271
Multithreaded code, 112

N + 1 configurations, 458
N + 2 configurations, 458–459
N + M redundancy, 124–125
“NAK” (negatively acknowledge) alerts,

355
Naming standards, 264
Native URLs, 115
Natural disasters factor in service

platform selection, 53
Nearest load balancing, 81
Nearest by other metric load balancing,

81
Nearest with limits load balancing, 81
Negatively acknowledge (“NAK”)

alerts, 355
Netflix

disaster preparedness, 315
virtual machines, 59

Netflix Aminator framework, 219
Netflix Simian Army, 315
Networks

access speed, 26–27
counters, 349
interface failures, 133
protocols, 489

New feature reviews in DevOps, 183



514 Index

New Product Introduction and Removal
(NPI/NPR)

assessments, 435–436
operational responsibility, 404

New services, launching, 382–384
Nielsen, Jerri, 225
Non-blocking bandwidth, 137
Non-functional requirements term, 32
Non-goals in design documents, 277
Nonemergency tasks, 156
Nontechnical DevOps practices, 183–184
Normal growth in capacity planning, 369
Normal requests, 161
NoSQL databases, 24
Notification types in oncall, 292–293

Objectives in Incident Command
System, 324

Observe, Orient, Decide, Act (OODA)
loop, 296–297

O’Dell’s Axiom, 95
OKR system, 389
On-premises, externally run services

factor in service platform
selection, 67

Oncall, 285
after-hours maintenance coordination,

294
alert responsibilities, 295–296
alert reviews, 302–304
benefits, 152
calendar, 290–291, 355
continuous deployment, 238
defined, 148
designing, 285–286
DevOps, 183
end-of-shift responsibilities, 299
excessive paging, 304–305
exercises, 306
frequency, 291–292
long-term fixes, 299–300
notification types, 292–293
onduty, 288
OODA, 296–297
operational rotation, 161–162
overview, 163–164
playbooks, 297–298
postmortems, 300–302
pre-shift responsibilities, 294

regular responsibilities, 294–295
rosters, 287
schedule design, 288–290
service launches, 158
SLAs, 286–287
summary, 305–306
third-party escalation, 298

Onduty, 288
One percent testing, 233
One-to-many communication in

message bus architectures, 85–86
One-way pagers, 293
OODA (Observe, Orient, Decide, Act)

loop, 296–297
Open source projects in dot-bomb era,

460
OpenStack system, 240
Operating system installation, 219–220
Operational excellence, 401

assessment levels, 405–407
assessment methodology, 403–407
assessment questions and look-for’s,

407
exercises, 415
greatness measurement, 402–403
improvement levels, 412–413
organizational assessments, 411–412
overview, 401–402
service assessments, 407–410
starting, 413–414
summary, 414

Operational Health, monitoring, 335
Operational hygiene in service launches,

158–159
Operational requirements in designing

for operations, 31–32
Operational responsibilities (OR),

403–404
Operational teams, 160–162

fix-it days, 166
focus, 165–166
in Incident Command System, 326
oncall days, 163–164
organizing strategies, 160–166
project-focused days, 162–163
ticket duty days, 164–165
toil reduction, 166

Operations, 147–148
change vs. stability, 149–151



Index 515

design for. See Design for operations
exercises, 168–169
organizing strategies for operational

teams, 160–166
at scale, 152–155
service life cycle, 155–160
SRE overview, 151–152
SRE vs. traditional enterprise IT,

148–149
summary, 167–168
virtual offices, 166–167

Operations console in deployment
phase, 217

Operator errors, 171
Oppenheimer, D. L., 141, 171
Opportunity costs in service platform

selection, 66–67
Optimizing level in CMM, 406
Orders of magnitude, 478
Organizational assessments in

operational excellence, 411–412
Organizational divisions, segmentation

by, 103
Organizational memory, 157
Organizational training for disaster

preparedness, 315–317
OS installation, 219–220
Outages

code review systems, 269
defined, 120
disasters. See Disaster preparedness

Overflow capacity factor in service
platform selection, 67

Overload failures
DoS and DDoS attacks, 139
load shedding, 139
scraping attacks, 140–141
traffic surges, 138–139

Oversubscribed systems
defined, 53
spare capacity, 125

PaaS (Platform as a Service), 51, 54–55
Packages

build phase, 204
configuration, 220
continuous delivery, 190
deployment phase, 213
distributing, 266

as handoff interface, 207–208
pinning, 212
registering, 206

Pager storms, 356
Pagers for alerts, 293, 304–305
Panics, 128
Parasuraman, R., 248
Paravirtualization (PV), 58–59
Parity bits, 131–132
Partition tolerance in CAP Principle,

22–24
Parts and components failures, 131–134
Past decisions, documenting, 276–277
Patch lead time in service delivery, 201
Patterson, D. A., 141
PCI DSS requirements, 43
Percentiles in monitoring, 359
Performance

caches, 105
testing, 215

Performance and Efficiency (PE)
assessments, 439–441
operational responsibility, 404

Performance regressions, 156, 215
Performant systems, 10
Perl language, 259–260, 262
Persistence in caches, 106
Perspective in monitoring, 333
Phased roll-outs, 229
Phoenix Project, 172
Physical failures, 131

datacenters, 137–138
load balancers, 134–136
machines, 134
parts and components, 131–134
racks, 136–137

Physical machines
deployment phase, 217–218
failures, 134
service platform selection, 57

Pie charts, 358
Pinheiro, E.

drive failures, 133, 338
memory errors, 134

Pinning packages, 212
PKI (public key infrastructure), 40
Planned growth in capacity planning,

369–370
Planning in disaster preparedness,

318–319



516 Index

Planning team in Incident Command
System, 326

Platform as a Service (PaaS), 51, 54–55
Platform selection. See Service platform

selection
Plauger, P., 11
Playbooks

oncall, 297–298
process, 153

Pods, 137
Points of presence (POPs), 83–85
Pollers, 352
Post-crash recovery, 35
Postmortems, 152

communication, 302
DevOps, 184
oncall, 291, 300–302
purpose, 300–301
reports, 301–302
templates, 484–485

Power failures, 34, 133
Power of 2 mapping process, 110–111
Practical Approach to Large-Scale Agile

Development: How HP Transformed
HP LaserJet FutureSmart Firmware,
188

Practice of System and Network
Administration, 132, 204

Pre-checks, 141
Pre-shift oncall responsibilities, 294
Pre-submit checks in build phase,

202–203
Pre-submit tests, 267
Pre-web era (1985-1994), 452–455
Prefork processing module, 114
Premature optimization, 96
Prescriptive failure domains, 127
Primary resources

capacity planning, 372
defined, 366

Prioritizing
automation, 257–258
feature requests, 46
for stability, 150

Privacy in platform selection, 63
Private cloud factor in platform

selection, 62
Private sandbox environments, 197
Proactive scaling solutions, 97–98

Problems to solve in DevOps, 187
Process watchers, 128
Processes

automation benefits, 253
containers, 60
instead of threads, 114

Proctors for Game Day, 318
Product Management (PM) monitoring,

336
Production candidates, 216
Production health in continuous

deployment, 237
Project-focused days, 162–163
Project planning frequencies, 410
Project work, 161–162
Promotion step in deployment phase,

212
Propellerheads, 451
Proportional shedding, 230
Protocols

collections, 351
network, 489

Prototyping, 258
Provider comparisons in service

platform selection, 53
Provisional end-of-shift reports, 299
Provisioning

in capacity planning, 384–385
in DevOps, 185–186

Proxies
monitoring, 352
reverse proxy service, 80

Public cloud factor in platform
selection, 62

Public Information Officers in Incident
Command System, 325–326

Public key infrastructure (PKI), 40
Public safety arena in Incident

Command System, 325
Publishers in message bus architectures,

85
Publishing postmortems, 302
PubSub2 system, 86
Pull monitoring, 350–351
Puppet systems

configuration management, 261
deployment phase, 213
multitenant, 271

Push conflicts in continuous
deployment, 238



Index 517

Push monitoring, 350–351
“Pushing Millions of Lines of Code Five

Days a Week” presentation, 233
PV (paravirtualization), 58–59
Python language

libraries, 55
overview, 259–261

QPS (queries per second)
defined, 10
limiting, 40–41

Quadratic scaling, 476
Quality Assurance monitoring, 335
Quality assurance (QA) engineers, 199
Quality measurements, 402
Queries in HTTP, 69
Queries of death, 130–131
Queries per second (QPS)

defined, 10
limiting, 40–41

Queues, 113
benefits, 113
draining, 35–36
issue tracking systems, 263
messages, 86
variations, 113–114

Quick fixes vs. long-term, 295–296

RabbitMQ service, 86
Rachitsky, L., 302
Rack diversity, 136
Racks

failures, 136
locality, 137

RAID systems, 132
RAM

for caching, 104–106
failures, 123, 131–132

Random testing for disaster
preparedness, 314–315

Rapid development, 231–232
Rate limits in design for operations,

40–41
Rate monitoring, 348
Rationale, documenting, 276
Re-assimilate tool, 255
Read-only replica support, 37
Real-time analysis, 353
Real user monitoring (RUM), 333

Reboots, 34
Recommendations in postmortem

reports, 301
Recommended reading, 487–489
Recovery-Oriented Computing (ROC),

461
Recovery tool, 255
Redis storage system, 24, 106
Reduced risk factor in service delivery,

200
Reducing risk, 309–311
Reducing toil, automation for, 257
Redundancy

design for operations, 37
file chunks, 20
for resiliency, 124–125
servers, 17

Reengineering components, 97
Refactoring, 97
Regional collectors, 352–353
Registering packages, 204, 206
Regression analysis, 375–376
Regression lines, 376
Regression tests for performance, 156,

215
Regular meetings in DevOps, 187
Regular oncall responsibilities, 294–295
Regular software crashes, 128
Regular Tasks (RT)

assessments, 423–425
operational responsibility, 403

Regulating system integration, 250
Relationships in DevOps, 182
Release atomicity, 240–241
Release candidates, 197
Release engineering practice in DevOps,

186
Release vehicle packaging in DevOps,

185
Releases

defined, 196
DevOps, 185

Reliability
automation for, 253
message bus architectures, 87

Reliability zones in service platform
selection, 53–54

Remote hands, 163
Remote monitoring stations, 352



518 Index

Remote Procedure Call (RPC) protocol,
41

Repair life cycle, 254–255
Repeatability

automation for, 253
continuous delivery, 190

Repeatable level in CMM, 405
Replacement algorithms for caches, 107
Replicas, 124

in design for operations, 37–38
load balancers with, 12–13
three-tier web service, 76
updating, 18

Reports for postmortems, 301–302
Repositories in build phase, 197
Reproducibility in continuous

deployment, 237
Requests in updating state, 18
“Resilience Engineering: Learning to

Embrace Failure” article, 320
Resiliency, 119–120

capacity planning, 370–371
DevOps, 178
exercises, 143
failure domains, 126–128
human error, 141–142
malfunctions, 121–123
overload failures, 138–141
physical failures. See Physical failures
software failures, 128–131
software vs. hardware, 120–121
spare capacity for, 124–126
summary, 142

Resolution
alert messages, 355
monitoring, 334

Resource pools, 99
Resource regression in capacity

planning, 381–382
Resource sharing

service platform selection, 62–65
virtual machines, 59

Resources
contention, 59, 238
deallocation, 160
dynamic resource allocation, 138

Responsibilities for oncall, 294–296
Restarts, automated, 128–129
Restores in design for operations, 36

Retention monitoring, 338–339
Reverse proxy service, 80
Review workflows in design documents,

280–282
Reviewers in design documents, 277, 281
Revising KPIs, 391–392
Revision numbers in design documents,

277, 282
Rework time factor in service delivery,

201
Rich, Amy, 51
Richard, Dylan, 320
Risk reduction, 309–311
Risk system, 24
Risk taking in DevOps, 178
Rituals in DevOps, 178
Robbins, Jesse

communication benefits, 186
DiRT tests, 320
test planning, 319–320

ROC (Recovery-Oriented Computing),
461

Roll back, 239
Roll forward, 239
Rolling upgrades, 226
Roosevelt, Franklin D., 275
Roosevelt, Theodore, 307
Root cause analysis, 301–302
Root servers, 17
Rossi, Chuck, 233
Rosters, oncall, 287
Round-robin for backends, 12
Round robin (RR) load balancing, 72–74
Royce, D. W. W., 175
RPC (Remote Procedure Call) protocol,

41
RSS feeds of build status, 205
Rubin, A. D., 79
Ruby language, 259–260
RUM (real user monitoring), 333
“Run run run dead” problem, 462

SaaS (Software as a Service), 51, 55–56
Safeguards, automation for, 253
Safety for automation, 249
Salesforce.com, 55–56
Sample launch readiness review survey,

157–158
Sandbox environments, 197



Index 519

Satellites in cloud-scale service, 83
Scalability Rules: 50 Principles for Scaling

Web Sites, 100
Scale

operations at, 152–155
visibility at, 10–11

Scaling, 95, 475
AKF Scaling Cube, 99–104
automation for, 252
Big O notation, 476–479
caching, 104–110
cloud computing era, 471
constant, linear, and exponential,

475–476
content delivery networks, 114–116
data sharding, 110–112
database access, 37
dot-bomb era, 462–463
exercises, 116–117
first web era, 456–457
general strategy, 96–98
monitoring, 350
PaaS services, 54
pre-web era, 454
queueing, 113–114
recommended reading, 489
in resiliency, 135
scaling out, 99–101
scaling up, 98–99
second web era, 467–468
small-scale computing systems, 470
summary, 116
threading, 112–113
three-tier web service, 76

Schedules
continuous deployment, 238
oncall, 288–291

Schema changes, 234–236
Schlossnagle, Theo, 31, 172
Schroeder, B., 134
Scope in disaster preparedness, 317–318
Scraping attacks, 140–141
Scripting languages, 259–260
SDLC (Software Development Life

Cycle), 184–185
SeaLand company, 62
Second web era (2003-2010), 465–469
Secondary resources in capacity

planning, 372

Security in four-tier web service, 79
See, K. A., 249
Segments in lookup-oriented splits,

102–103
Selenium WebDriver project, 215
Self-service launches at Google, 159
Self-service requests, 154
Send to Repairs tool, 255
Senge, Peter, 147
Sensing and measurement systems,

345–350
Server trees, 16–17, 80
ServerFault.com, 102
Servers

collections, 352
defined, 10
with multiple backends, 14–15

Service assessments, operational
excellence, 407–410

Service delivery
assessments, 442–445
build phase. See Builds
deployment phase. See Deployment

and deployment phase
flow, 196

Service Deployment and
Decommissioning (SDD), 404,
437–438

Service latency in cloud computing era,
471

Service level agreements (SLAs)
Error Budgets, 152

load shedding, 139
monitoring, 334
oncall, 286–287

Service Level Indicators (SLIs), 334
Service Level Objectives (SLOs), 334
Service Level Targets (SLTs), 334
Service life cycle, 155

decommissioning services, 160
stages, 156–160

Service management monitoring, 334
Service-oriented architecture (SOA),

90–91
best practices, 91–92
flexibility, 91
support, 91

Service platform selection, 51–52
colocation, 65–66
containers, 60–61



520 Index

Service platform selection (continued)
exercises, 68
level of service abstraction, 52–56
machine overview, 56
physical machines, 57
resource sharing levels, 62–65
strategies, 66–68
summary, 68
virtual machines, 57–60

Service splits in AKF Scaling Cube,
101–102

Service testing in disaster preparedness,
313–314

Services
assessing, 407–410
decommissioning, 160
defined, 10
installing, 219–220
restart, 34

SRE vs. traditional enterprise IT, 148–149
Session IDs, 76
7-day actives (7DA), 373
Sharding, 110–112
Shards, 16, 18–19
Shared oncall responsibilities, 183
Shared pools, 138
Shared state in load balancing, 75
Shaw, George Bernard, 387
Shedding, proportional, 230
Shell scripting languages, 259
Sheridan, T. B., 248
“Shewhart cycle,” 172
Shifts, oncall, 164–165, 291–292
Shipping containers, 62
Short-lived machines, 58
Short-term analysis, 353
Shutdown in design for operations,

34–35
Sign-off for design documents, 281–282
Signal line crossover, 367
Silencing alert messages, 356–357
Silos, 174
Simian Army, 315
Simple Network Management Protocol

(SNMP), 351
Simple Queue Service (SQS), 86
Simplicity

importance, 11
review workflows, 280

Singapore MAS requirements, 43

Single-machine web servers, 70–71
Site Reliability Engineering (SRE),

147–148
DevOps, 181
overview, 151–152
vs. traditional enterprise IT, 148–149

Site reliability practices, 151–152
Size

batches, 178–179
caches, 108–110

SLAs (service level agreements)
Error Budgets, 152
load shedding, 139
monitoring, 334
oncall, 286–287

SLIs (Service Level Indicators), 334
SLOs (Service Level Objectives), 334
Sloss, Benjamin Treynor

Google Error Budget, 396
site reliability practices, 151

Slow start algorithm, 13
SLTs (Service Level Targets), 334
Small-scale computing systems, scaling,

470
SMART (Specific, Measurable,

Achievable, Relevant, and
Time-phrased) criteria, 388

Smart phone apps for alerts, 293
Smoke tests, 192
SMS messages for alerts, 293
SNMP (Simple Network Management

Protocol), 351
SOA (service-oriented architecture),

90–91
best practices, 91–92
flexibility, 91
support, 91

Soft launches, 148, 382
Software as a Service (SaaS), 51, 55–56
Software Development Life Cycle

(SDLC), 184–185
Software engineering tools and

techniques in automation, 262–263
code reviews, 268–269
issue tracking systems, 263–265
packages, 266
style guides, 266–267, 270
sufficient code, 269–270
test-driven development, 267–268
version control systems, 265–266



Index 521

Software engineers (SWEs), 199
Software failures, 128

crashes, 128–129
hangs, 129–130
queries of death, 130–131

Software load balancers, 136
Software packages. See Packages
Software resiliency, 120–121
Software upgrades in design for

operations, 36
Solaris containers, 60
Solid-state drives (SSDs)

failures, 132
speed, 26

Source control systems, 206
SOX requirements, 43
Spafford, G., 172
Spare capacity, 124–125

load sharing vs. hot spares, 126
need for, 125–126

Spear, S., 172
Special constraints in design documents,

278
Special notations in style guides, 267
Specific, Measurable, Achievable,

Relevant, and Time-phrased
(SMART) criteria, 388

Speed
importance, 10
issues, 26–29

Spell check services, abstraction in, 24
Spindles, 26
Split brain, 23
Split days oncall schedules, 289
Spolsky, J., 121
Sprints, 189
SQS (Simple Queue Service), 86
SRE (Site Reliability Engineering),

147–148
DevOps, 181
overview, 151–152
vs. traditional enterprise IT, 148–149

SSDs (solid-state drives)
failures, 132
speed, 26

Stability vs. change, 149–151
Stack Exchange, 167
Stack ranking, 360
Stakeholders, 148

Standard capacity planning, 366–368
Standardized shipping containers, 62
Startup in design for operations, 34–35
States, distributed, 17–20
Static content on web servers, 70
Status of design documents, 277, 282
Steal time, 59
Stickiness in load balancing, 75
Storage systems, monitoring, 345, 362
Stranded capacity, 57
Stranded resources in containers, 61
Style guides

automation, 266–267, 270
code review systems, 269

Sub-linear scaling, 477
Subscribers in message bus

architectures, 86
Subsystems, linking tickets to, 263–264
Suggested resolution in alert messages,

355
Summarization, monitoring, 339
Super-linear scaling, 477
Survivable systems, 120
SWEs (software engineers), 199
Synthesized measurements, 347–348
System administration, automating,

248–249, 253
System logs, 340
System testing

in build phase, 203
vs. canarying, 228–229
overview, 215

T-bird database system, 103
Tags in repositories, 208
Taking down services for upgrading,

225–226
Targeting in system integration, 250
Tasks

assessments, 423–425
automating, 153–155

TCO (total cost of ownership), 172
TDD (test-driven development), 267–268
Team managers in operational rotation,

162
TeamCity tool, 205
Teams, 160–162

automating processes, 155
fix-it days, 166
focus, 165–166



522 Index

Teams (continued)
in Incident Command System, 326
oncall days, 163–164
organizing strategies, 160–166
project-focused days, 162–163
ticket duty days, 164–165
toil reduction, 166
virtual offices, 166–167

Technical debt, 166
Technical practices in DevOps, 184–185
Technology

cloud computing era, 472
dot-bomb era, 460–461
first web era, 455–456
pre-web era, 453–454
second web era, 465–466

Telles, Marcel, 401
Templates

design documents, 279, 282, 481–484
postmortem, 484–485

Terminology for Incident Command
System, 324

Test-driven development (TDD),
267–268

Tests
vs. canarying, 228–229
continuous deployment, 237
deployment phase, 215–216
DevOps, 186
disaster preparedness. See Disaster

preparedness
early and fast, 195
environments, 197
flag flips for, 232–233

Text-chat, 167
Text files for configuration, 33
Text messages for alerts, 293
Theme for operational teams, 165–166
Theory, recommended reading for, 488
Thialfi system, 86
“Things You Should Never Do” essay,

121
Third-party vendors

design for operations, 48
oncall escalation, 298

30-day actives (30DA), 373
Thompson, Ken, 245
Threading, 112–113
Three-tier web service, 71–72

load balancer methods, 74

load balancer types, 72–73
load balancing with shared state,

75
scaling, 76–77
user identity, 76

Ticket duty
description, 161–162
ticket duty days, 164–165

Time Management for System
Administrators, 162, 256

Time savings, automation for, 253
Time series, 366
Time to live (TTL) value for caches,

108
Time zones in oncall schedules, 289
Timed release dates, 232
Timelines of events, 301
Timestamps in logs, 341–342
Timetables in capacity planning, 371
Titles in design documents, 277, 282
TODO comments in style guides, 267,

270
Toggling features, 39, 230–233
Toil

defined, 244
reducing, 166, 257, 446–447

Tool building vs. automation, 250–252
Torvalds, Linus, 276
Total cost of ownership (TCO), 172
Tracebacks, 129
Tracking system integration, 250
Traffic

defined, 10
surges, 138–139

Trailing averages, 13
Training

disaster preparedness, 311–312,
315–317

oncall, 287
Transit ISPs, 83
Trends, monitoring, 333
Triggers, 353
Trustworthiness of automation, 249
Tseitlin, A., 315, 320
TTL (time to live) value for caches, 108
Tufte, E. R., 362
Tumblr Invisible Touch system, 218
Twain, Mark, 243
Twitter, 103
Two-way pagers, 293



Index 523

UAT (User Acceptance Testing), 216
Ubuntu Upstart system, 34
Unaligned failure domains, 127
Undersubscribed systems, 53
Unified goals, 397–398
Uninterrupted time, 164
Uninterruptible power supply (UPS)

systems, 34
Unit tests in build phase, 203
UNIX, recommended reading, 489
Unused code, bugs in, 270
Updating state, 18
Upgrades

Blog Search, 226
overview, 156
software, 36

Upgrading live services, 225–226
blue-green deployment, 230
canary process, 227–228
continuous deployment, 236–239
exercises, 241–242
failed code pushes, 239–240
live code changes, 236
live schema changes, 234–236
phased roll-outs, 229
proportional shedding, 230
release atomicity, 240–241
rolling upgrades, 226–227
summary, 241
taking down services for, 225–226
toggling features, 230–233

Uploading to CDNs, 115
UPS (uninterruptible power supply)

systems, 34
Uptime in SRE vs. traditional enterprise

IT, 149
Urgent bug count, monitoring, 336
Urgent bug resolution, monitoring, 336
URLs for CDNs, 115
U.S. Federal Emergency Management

Administration web site, 324
User Acceptance Testing (UAT), 216
User identity in three-tier web service,

76
User satisfaction, monitoring, 336
User-specific data, global load balancing

with, 82–83
User stories, 189
User wait time, automation for, 253

Utilization, segmentation by, 103
Utilization Limit load balancing, 74

Vagrant framework, 219
Value streams in DevOps, 176
Varnish HTTP accelerator, 478
VCSs (version control systems), 265–266
Velocity in DevOps, 179
Vendor lock-in, 56
Vendors

design for operations, 48
oncall escalations, 298

Version conflicts in containers, 60–61
Version control systems (VCSs), 265–266
Version-controlled builds, 191
Vertical integration, 64
Views in live schema changes, 234
Virtual machine monitor (VMM), 58–59
Virtual machines

benefits, 58
deployment phase, 218
disadvantages, 59–60
IaaS, 52
I/O, 58–59
overview, 57
service platform selection, 66

Virtual offices, 166–167
Virtuous cycle of quality, 200–201
Visibility at scale, 10–11
Visual Display of Quantitative Information,

362
Visualization, monitoring, 333, 358–362
VMM (virtual machine monitor), 58–59
Voice calls for alerts, 293
Volatile data in OS installation, 219–220

Wait time
automation for, 253
service delivery, 201

WAN (wide area network) connections,
83

Warmed caches, 106
Watchdog timers, 130
Waterfall methodology

overview, 173–175
phases, 199

WAUs (weekly active users), 373
“Weathering the Unexpected” article,

320



524 Index

Web “Hit” logs, 340
“Web Search for a Planet: The Google

Cluster Architecture” article, 464
Web servers, single-machine, 70–71
Web services

four-tier, 77–80
three-tier, 71–77

Weber, W.-D.
drive errors, 133, 338
memory errors, 134

Weekly active users (WAUs), 373
Weekly oncall schedules, 288–289
Weighted RR load balancing, 74
Wheel of Misfortune game, 311–312
“When the Nerds Go Marching in”

article, 316, 320
Whitebox monitoring, 346–347
Whitelists, 40–42
“Why Do Internet Services Fail, and

What Can Be Done about It?”
paper, 141, 171

Wickens, C. D., 248
Wide area network (WAN) connections,

83

Wilde, Oscar, 345
Willis, John, 180, 200
Willy Wonka, 195
Woolf, B., 87
Worker threads, 112
Workflows

design documents, 280–282
DevOps, 176–177

Working from home, 166–167
Writes in updating state, 18

X-axes in AKF Scaling Cube, 99–101
X-Forwarded-For headers, 73

Y-axes in AKF Scaling Cube, 99,
101–102

Yan, B., 371
“You’re Doing It Wrong” article, 479
Young, M., 188, 215

Z-axes in AKF Scaling Cube, 99, 102–104
Zero line crossover, 367
Zones, Solaris, 60
ZooKeeper system, 231, 363


	Contents
	Preface
	About the Authors
	Introduction
	1 Designing in a Distributed World
	1.1 Visibility at Scale
	1.2 The Importance of Simplicity
	1.3 Composition
	1.4 Distributed State
	1.5 The CAP Principle
	1.6 Loosely Coupled Systems
	1.7 Speed
	1.8 Summary
	Exercises

	7 Operations in a Distributed World
	7.1 Distributed Systems Operations
	7.2 Service Life Cycle
	7.3 Organizing Strategy for Operational Teams
	7.4 Virtual Office
	7.5 Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




