
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321933881
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321933881
https://plusone.google.com/share?url=http://www.informit.com/title/9780321933881
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321933881
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321933881/Free-Sample-Chapter

Praise for OpenGL® ES™ 3.0 Programming Guide,
Second Edition

“As a graphics technologist and intense OpenGL ES developer, I
can honestly say that if you buy only one book on OpenGL ES 3.0
programming, then this should be the book. Dan and Budirijanto have
written a book clearly by programmers for programmers. It is simply
required reading for anyone interested in OpenGL ES 3.0. It is informative,
well organized, and comprehensive, but best of all practical. You will find
yourself reaching for this book over and over again instead of the actual
OpenGL ES specification during your programming sessions. I give it my
highest recommendation.”

—Rick Tewell, Graphics Technology Architect, Freescale

“This book provides outstanding coverage of the latest version of OpenGL
ES, with clear, comprehensive explanations and extensive examples. It
belongs on the desk of anyone developing mobile applications.”

—Dave Astle, Graphics Tools Lead, Qualcomm Technologies, Inc.,
and Founder, GameDev.net

“The second edition of OpenGL® ES™ 3.0 Programming Guide provides a
solid introduction to OpenGL ES 3.0 specifications, along with a wealth
of practical information and examples to help any level of developer
begin programming immediately. We’d recommend this guide as a primer
on OpenGL ES 3.0 to any of the thousands of developers creating apps
for the many mobile and embedded products using our PowerVR Rogue
graphics.”

—Kristof Beets, Business Development, Imagination Technologies

“This is a solid OpenGL ES 3.0 reference book. It covers all aspects of the
API and will help any developer get familiar with and understand the API,
including specifically the new ES 3.0 functionality.”

—Jed Fisher, Managing Partner, 4D Pipeline

“This is a clear and thorough reference for OpenGL ES 3.0, and an
excellent presentation of the concepts present in all modern OpenGL
programming. This is the guide I’d want by my side when diving into
embedded OpenGL.”

—Todd Furlong, President & Principal Engineer, Inv3rsion LLC

This page intentionally left blank

OpenGL® ES™ 3.0
Programming Guide

Second Edition

The OpenGL graphics system is a software interface to graphics hardware.

(“GL” stands for “Graphics Library”.) It allows you to create interactive programs

that produce color images of moving, three-dimensional objects. With OpenGL,

you can control computer-graphics technology to produce realistic pictures, or

ones that depart from reality in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises tutorial and

reference books that help programmers gain a practical understanding of OpenGL

standards, along with the insight needed to unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products.

Make sure to connect with us!
informit.com/socialconnect

OpenGL Series
from Addison-Wesley

Dan Ginsburg
Budirijanto Purnomo

With Earlier Contributions From
Dave Shreiner
Aaftab Munshi

OpenGL® ES™ 3.0
Programming Guide

Second Edition

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Front cover image is from Snapdragon Game Studio’s Fortress: Fire OpenGL® ES™

3.0 demo, courtesy of Qualcomm Technologies Inc.

OpenGL® is a registered trademark and the OpenGL® ES™ logo is a trademark of
Silicon Graphics Inc. used by permission by Khronos.

The OpenGL® ES™ shading language built-in functions described in Appendix B are
copyrighted by Khronos and are reprinted with permission from the OpenGL® ES™
3.00.4 Shading Language Specification.

The OpenGL® ES™ 3.0 Reference Card is copyrighted by Khronos and reprinted with
permission.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Ginsburg, Dan.
  OpenGL ES 3.0 programming guide / Dan Ginsburg, Budirijanto Purnomo ; with
earlier contributions from Dave Shreiner, Aaftab Munshi.—Second edition.
   pages  cm
  Revised edition of: The OpenGL ES 2.0 programming guide / Aaftab Munshi,
Dan Ginsburg, Dave Shreiner. 2009.
  Includes bibliographical references and index.
  ISBN 978-0-321-93388-1 (paperback : alk. paper)
  1. OpenGL. 2. Computer graphics—Specifications. 3. Application program
interfaces (Computer software) 4. Computer programming. I. Purnomo, Budirijanto.
II. Shreiner, Dave. III. Munshi, Aaftab. IV. Title.
  T385.G5426 2014
  006.6’6—dc23					    2013049233

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-93388-1
ISBN-10: 0-321-93388-5

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

First printing, March 2014

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Sheri Cain

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Jill Hobbs

Indexer
Infodex Indexing Services,
Inc.

Proofreader
Linda Begley

Technical Reviewers
Emmanuel Agu
Peter Lohrmann
Maurice Ribble

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
diacriTech

vii

Contents

List of Figures��xvii

List of Examples��xxi

List of Tables���xxv

Foreword��xxix

Preface���xxxi

Intended Audience...xxxi
Organization of This Book...xxxii
Example Code and Shaders..xxxvi
Errata...xxxvi

Acknowledgments���xxxvii

About the Authors���xxxix

1.	 Introduction to OpenGL ES 3.0...1

OpenGL ES 3.0...3
Vertex Shader...4
Primitive Assembly..7
Rasterization..7
Fragment Shader..8
Per-Fragment Operations..9

What’s New in OpenGL ES 3.0..11
Texturing...11
Shaders...13

viii	 Contents

Geometry...15
Buffer Objects..16
Framebuffer...17

OpenGL ES 3.0 and Backward Compatibility.......................................17
EGL..19

Programming with OpenGL ES 3.0...20
Libraries and Include Files...20

EGL Command Syntax..20
OpenGL ES Command Syntax..21
Error Handling...22
Basic State Management..23
Further Reading...25

2.	 Hello Triangle: An OpenGL ES 3.0 Example���27

Code Framework..28
Where to Download the Examples..28
Hello Triangle Example...29
Using the OpenGL ES 3.0 Framework...34
Creating a Simple Vertex and Fragment Shader....................................35
Compiling and Loading the Shaders...36
Creating a Program Object and Linking the Shaders............................38
Setting the Viewport and Clearing the Color Buffer.............................39
Loading the Geometry and Drawing a Primitive..................................40
Displaying the Back Buffer..41
Summary..42

3.	 An Introduction to EGL��43

Communicating with the Windowing System.....................................44
Checking for Errors..45
Initializing EGL..46
Determining the Available Surface Configurations..............................46
Querying EGLConfig Attributes..48
Letting EGL Choose the Configuration...51
Creating an On-Screen Rendering Area: The EGL Window..................53
Creating an Off-Screen Rendering Area: EGL Pbuffers..........................56
Creating a Rendering Context...60

	 Contents	 ix

Making an EGLContext Current...62
Putting All Our EGL Knowledge Together..63
Synchronizing Rendering..66
Summary..67

4.	 Shaders and Programs��69

Shaders and Programs..69
Creating and Compiling a Shader...70
Creating and Linking a Program...74

Uniforms and Attributes..80
Getting and Setting Uniforms...81
Uniform Buffer Objects...87
Getting and Setting Attributes..92

Shader Compiler..93
Program Binaries..94
Summary..95

5.	 OpenGL ES Shading Language��97

OpenGL ES Shading Language Basics..98
Shader Version Specification...98
Variables and Variable Types...99
Variable Constructors..100
Vector and Matrix Components..101
Constants...102
Structures...103
Arrays...104
Operators...104
Functions...106
Built-In Functions..107
Control Flow Statements...107
Uniforms..108
Uniform Blocks..109
Vertex and Fragment Shader Inputs/Outputs.....................................111
Interpolation Qualifiers...114
Preprocessor and Directives...115
Uniform and Interpolator Packing..117

x	 Contents

Precision Qualifiers..119
Invariance..121
Summary..123

6.	 Vertex Attributes, Vertex Arrays, and Buffer Objects���������������������������125

Specifying Vertex Attribute Data...126
Constant Vertex Attribute...126
Vertex Arrays...126

Declaring Vertex Attribute Variables in a Vertex Shader.....................135
Binding Vertex Attributes to Attribute Variables

in a Vertex Shader..137
Vertex Buffer Objects...140
Vertex Array Objects..150
Mapping Buffer Objects...154

Flushing a Mapped Buffer...158
Copying Buffer Objects...159
Summary..160

7.	 Primitive Assembly and Rasterization��161

Primitives...161
Triangles..162
Lines..163
Point Sprites...164

Drawing Primitives..165
Primitive Restart..168
Provoking Vertex...169
Geometry Instancing...169
Performance Tips...172

Primitive Assembly..174
Coordinate Systems...175
Perspective Division..178
Viewport Transformation..178

Rasterization..179
Culling...180
Polygon Offset...181

Occlusion Queries..183
Summary..185

	 Contents	 xi

8.	 Vertex Shaders���187

Vertex Shader Overview..188
Vertex Shader Built-In Variables..189
Precision Qualifiers..192
Number of Uniforms Limitations in a Vertex Shader...................193

Vertex Shader Examples..196
Matrix Transformations...196
Lighting in a Vertex Shader...199

Generating Texture Coordinates...205
Vertex Skinning...207
Transform Feedback...211
Vertex Textures..214
OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader................215
Summary..223

9.	 Texturing��225

Texturing Basics...226
2D Textures..226
Cubemap Textures...228
3D Textures..229
2D Texture Arrays..230
Texture Objects and Loading Textures..230
Texture Filtering and Mipmapping...237
Automatic Mipmap Generation..242
Texture Coordinate Wrapping...243
Texture Swizzles...244
Texture Level of Detail..245
Depth Texture Compare (Percentage Closest Filtering)................245
Texture Formats...246
Using Textures in a Shader..255
Example of Using a Cubemap Texture..258
Loading 3D Textures and 2D Texture Arrays................................260

Compressed Textures...262
Texture Subimage Specification...266
Copying Texture Data from the Color Buffer......................................269

xii	 Contents

Sampler Objects...273
Immutable Textures...276
Pixel Unpack Buffer Objects..277
Summary..278

10.	 Fragment Shaders��279

Fixed-Function Fragment Shaders...280
Fragment Shader Overview...282

Built-In Special Variables...283
Built-In Constants...284
Precision Qualifiers..285

Implementing Fixed-Function Techniques Using Shaders.................286
Multitexturing...286
Fog...288
Alpha Test (Using Discard)..291
User Clip Planes...293

Summary..295

11.	 Fragment Operations��297

Buffers..298
Requesting Additional Buffers...299
Clearing Buffers...299
Using Masks to Control Writing to Framebuffers.........................301

Fragment Tests and Operations...303
Using the Scissor Test..304
Stencil Buffer Testing...305

Blending...311
Dithering..314
Multisampled Anti-Aliasing...314

Centroid Sampling..316
Reading and Writing Pixels to the Framebuffer..................................316

Pixel Pack Buffer Objects...320
Multiple Render Targets...320
Summary..324

	 Contents	 xiii

12.	 Framebuffer Objects���325

Why Framebuffer Objects?..325
Framebuffer and Renderbuffer Objects...327

Choosing a Renderbuffer Versus a Texture as
a Framebuffer Attachment...328

Framebuffer Objects Versus EGL Surfaces.....................................329
Creating Framebuffer and Renderbuffer Objects................................329
Using Renderbuffer Objects...330

Multisample Renderbuffers...333
Renderbuffer Formats..333

Using Framebuffer Objects..335
Attaching a Renderbuffer as a Framebuffer Attachment..............337
Attaching a 2D Texture as a Framebuffer Attachment..................338
Attaching an Image of a 3D Texture as a Framebuffer

Attachment..339
Checking for Framebuffer Completeness......................................341

Framebuffer Blits..342
Framebuffer Invalidation...344
Deleting Framebuffer and Renderbuffer Objects................................346

Deleting Renderbuffer Objects That Are Used
as Framebuffer Attachments..347

Reading Pixels and Framebuffer Objects.......................................347
Examples..348
Performance Tips and Tricks..354
Summary..355

13.	 Sync Objects and Fences���357

Flush and Finish..357
Why Use a Sync Object?..358
Creating and Deleting a Sync Object..358
Waiting for and Signaling a Sync Object..359
Example...360
Summary..361

xiv	 Contents

14.	 Advanced Programming with OpenGL ES 3.0��������������������������������363

Per-Fragment Lighting...363
Lighting with a Normal Map..364
Lighting Shaders..366
Lighting Equations..369

Environment Mapping..370
Particle System with Point Sprites...374
Particle System Setup...374
Particle System Vertex Shader...375
Particle System Fragment Shader..377

Particle System Using Transform Feedback...380
Particle System Rendering Algorithm...381
Particle Emission with Transform Feedback.................................381
Rendering the Particles..385

Image Postprocessing...387
Render-to-Texture Setup..387
Blur Fragment Shader..388

Projective Texturing...390
Projective Texturing Basics..391
Matrices for Projective Texturing..392
Projective Spotlight Shaders..394

Noise Using a 3D Texture..397
Generating Noise...397
Using Noise..402

Procedural Texturing...404
A Procedural Texture Example..405
Anti-Aliasing of Procedural Textures...407
Further Reading on Procedural Textures.......................................410

Rendering Terrain with Vertex Texture Fetch.....................................410
Generating a Square Terrain Grid...411
Computing Vertex Normal and Fetching Height Value

in Vertex Shader...412
Further Reading on Large Terrain Rendering................................413

Shadows Using a Depth Texture..414
Rendering from the Light Position Into a Depth Texture............415
Rendering from the Eye Position with the Depth Texture...........418

Summary..420

	 Contents	 xv

15.	 State Queries���421

OpenGL ES 3.0 Implementation String Queries.................................421
Querying Implementation-Dependent Limits....................................423
Querying OpenGL ES State..429
Hints..435
Entity Name Queries..436
Nonprogrammable Operations Control and Queries.........................436
Shader and Program State Queries..438
Vertex Attribute Queries..440
Texture State Queries...441
Sampler Queries...442
Asynchronous Object Queries...442
Sync Object Queries...443
Vertex Buffer Queries...444
Renderbuffer and Framebuffer State Queries......................................445
Summary..446

16.	 OpenGL ES Platforms��447

Building for Microsoft Windows with Visual Studio..........................447
Building for Ubuntu Linux..449
Building for Android 4.3+ NDK (C++)...450

Prerequisites...451
Building the Example Code with Android NDK...........................452

Building for Android 4.3+ SDK (Java)...452
Building for iOS 7..453

Prerequisites...453
Building the Example Code with Xcode 5....................................453

Summary..455

A.	 GL_HALF_FLOAT���457

16-Bit Floating-Point Number...458
Converting a Float to a Half-Float...459

B.	 Built-In Functions���463

Angle and Trigonometry Functions..465
Exponential Functions..466
Common Functions...467

xvi	 Contents

Floating-Point Pack and Unpack Functions..471
Geometric Functions...472
Matrix Functions...474
Vector Relational Functions..475
Texture Lookup Functions...476
Fragment Processing Functions...483

C.	 ES Framework API��485

Framework Core Functions...485
Transformation Functions...490

Index��495

xvii

List of Figures

Figure 1-1	 OpenGL ES 3.0 Graphics Pipeline..4

Figure 1-2	 OpenGL ES 3.0 Vertex Shader...5

Figure 1-3	 OpenGL ES 3.0 Rasterization Stage...7

Figure 1-4	 OpenGL ES 3.0 Fragment Shader..8

Figure 1-5	 OpenGL ES 3.0 Per-Fragment Operations............................10

Figure 2-1	 Hello Triangle Example...33

Figure 5-1	 Z Fighting Artifacts Due to Not Using Invariance..............121

Figure 5-2	 Z Fighting Avoided Using Invariance.................................122

Figure 6-1 	 �Triangle with a Constant Color Vertex and
Per-Vertex Position Attributes...125

Figure 6-2 	 �Position, Normal, and Two Texture Coordinates
Stored as an Array...128

Figure 6-3	 Selecting Constant or Vertex Array Vertex Attribute.........133

Figure 6-4 �	 �Specifying and Binding Vertex Attributes for
Drawing One or More Primitives..138

Figure 7-1	 Triangle Primitive Types...162

Figure 7-2	 Line Primitive Types...163

Figure 7-3	 gl_PointCoord Values...165

Figure 7-4	 Cube..167

Figure 7-5	 Connecting Triangle Strips...173

Figure 7-6	 OpenGL ES Primitive Assembly Stage................................175

Figure 7-7	 Coordinate Systems..175

Figure 7-8	 Viewing Volume..176

Figure 7-9	 OpenGL ES Rasterization Stage...179

Figure 7-10	 Clockwise and Counterclockwise Triangles........................180

Figure 7-11	 Polygon Offset...182

xviii	 List of Figures

Figure 8-1	 OpenGL ES 3.0 Programmable Pipeline.............................188

Figure 8-2	 OpenGL ES 3.0 Vertex Shader...189

Figure 8-3	 �Geometric Factors in Computing Lighting
Equation for a Directional Light...199

Figure 8-4	 �Geometric Factors in Computing Lighting
Equation for a Spotlight..202

Figure 9-1	 2D Texture Coordinates..227

Figure 9-2	 3D Texture Coordinate for Cubemap.................................228

Figure 9-3	 3D Texture...229

Figure 9-4	 MipMap2D: Nearest Versus Trilinear Filtering...................241

Figure 9-5	 �GL_REPEAT, GL_CLAMP_TO_EDGE, and
GL_MIRRORED_REPEAT Modes...243

Figure 10-1	 OpenGL ES 3.0 Programmable Pipeline.............................280

Figure 10-2	 OpenGL ES 3.0 Fragment Shader..283

Figure 10-3	 Multitextured Quad..287

Figure 10-4	 Linear Fog on Torus in PVRShaman...................................289

Figure 10-5	 Alpha Test Using Discard..292

Figure 10-6	 User Clip Plane Example...294

Figure 11-1	 The Post-Shader Fragment Pipeline....................................297

Figure 12-1	 �Framebuffer Objects, Renderbuffer Objects,
and Textures..328

Figure 12-2	 Render to Color Texture..350

Figure 12-3	 Render to Depth Texture...353

Figure 14-1	 Per-Fragment Lighting Example...364

Figure 14-2	 Environment Mapping Example..370

Figure 14-3	 Particle System Sample...374

Figure 14-4	 Particle System with Transform Feedback..........................380

Figure 14-5	 Image Postprocessing Example...387

Figure 14-6	 Light Bloom Effect..389

Figure 14-7	 Light Bloom Stages...390

Figure 14-8	 Projective Spotlight Example..391

Figure 14-9	 2D Texture Projected onto Object......................................392

Figure 14-10	 Fog Distorted by 3D Noise Texture.....................................397

Figure 14-11	 2D Slice of Gradient Noise..402

Figure 14-12	 Checkerboard Procedural Texture.......................................407

	 List of Figures	 xix

Figure 14-13	 Anti-Aliased Checkerboard Procedural Texture..................409

Figure 14-14	 Terrain Rendered with Vertex Texture Fetch......................411

Figure 14-15	 �Shadow Rendering with a Depth Texture
and 6 × 6 PCF..414

Figure 16-1	 Building Samples with CMake GUI on Windows..............448

Figure 16-2	 �VertexArrayObjects Sample in Xcode Running
on iOS 7 Simulator..454

Figure A-1	 A 16-Bit Floating-Point Number...458

This page intentionally left blank

xxi

List of Examples

Example 1-1	 A Vertex Shader Example..6

Example 1-2	 A Fragment Shader Example...9

Example 2-1	 Hello_Triangle.c Example...29

Example 3-1	 Initializing EGL...44

Example 3-2	 Specifying EGL Attributes...51

Example 3-3	 Querying EGL Surface Configurations.................................52

Example 3-4	 Creating an EGL Window Surface..55

Example 3-5	 Creating an EGL Pixel Buffer..59

Example 3-6	 Creating an EGL Context...62

Example 3-7	 A Complete Routine for Creating an EGL Window.............64

Example 3-8	 Creating a Window Using the esUtil Library.....................65

Example 4-1	 Loading a Shader...73

Example 4-2	 Create, Attach Shaders to, and Link a Program....................79

Example 4-3	 Querying for Active Uniforms..86

Example 5-1	 Sample Vertex Shader...112

Example 5-2	 Vertex and Fragment Shaders with Matching
Output/Input Declarations...113

Example 6-1	 Array of Structures..129

Example 6-2	 Structure of Arrays..130

Example 6-3	 Using Constant and Vertex Array Attributes......................133

Example 6-4	 Creating and Binding Vertex Buffer Objects......................141

Example 6-5	 Drawing with and without Vertex Buffer Objects..............146

Example 6-6	 Drawing with a Buffer Object per Attribute.......................149

Example 6-7	 Drawing with a Vertex Array Object...................................152

Example 6-8	 Mapping a Buffer Object for Writing..................................157

Example 8-1	 Vertex Shader with Matrix Transform for the Position......196

xxii	 List of Examples

Example 8-2	 Directional Light...200

Example 8-3	 Spotlight..203

Example 8-4	 Sphere Map Texture Coordinate Generation......................206

Example 8-5	 Cubemap Texture Coordinate Generation.........................206

Example 8-6	 Vertex Skinning Shader with No Check of
Whether Matrix Weight = 0..208

Example 8-7	 Vertex Skinning Shader with Checks of Whether
Matrix Weight = 0...210

Example 8-8	 Displacement Mapping Vertex Shader...............................214

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline.................216

Example 9-1	 Generating a Texture Object, Binding It, and
Loading Image Data..234

Example 9-2	 Loading a 2D Mipmap Chain...238

Example 9-3	 Vertex and Fragment Shaders for Performing
2D Texturing...255

Example 9-4	 Loading a Cubemap Texture...258

Example 9-5	 Vertex and Fragment Shader Pair for
Cubemap Texturing..259

Example 10-1	 Multitexture Fragment Shader..287

Example 10-2	 Vertex Shader for Computing Distance to Eye...................289

Example 10-3	 Fragment Shader for Rendering Linear Fog........................290

Example 10-4	 Fragment Shader for Alpha Test Using Discard..................292

Example 10-5	 User Clip Plane Vertex Shader..294

Example 10-6	 User Clip Plane Fragment Shader.......................................295

Example 11-1	 Setting up Multiple Render Targets....................................322

Example 11-2	 Fragment Shader with Multiple Render Targets.................324

Example 12-1	 Copying Pixels Using Framebuffer Blits.............................343

Example 12-2	 Render to Texture..348

Example 12-3	 Render to Depth Texture...351

Example 13-1	 Inserting a Fence Command and Waiting for
Its Result in Transform Feedback Example.........................361

Example 14-1	 Per-Fragment Lighting Vertex Shader.................................366

Example 14-2	 Per-Fragment Lighting Fragment Shader............................367

Example 14-3	 Environment Mapping Vertex Shader................................371

Example 14-4	 Environment Mapping Fragment Shader...........................372

Example 14-5	 Particle System Vertex Shader...375

	 List of Examples	 xxiii

Example 14-6	 Update Function for Particle System Sample.....................376

Example 14-7	 Particle System Fragment Shader..377

Example 14-8	 Draw Function for Particle System Sample........................378

Example 14-9	 Particle Emission Vertex Shader...382

Example 14-10 	Emit Particles with Transform Feedback.............................384

Example 14-11	 Particle Rendering Vertex Shader..386

Example 14-12	 Blur Fragment Shader...388

Example 14-13	 Projective Texturing Vertex Shader.....................................394

Example 14-14	 Projective Texturing Fragment Shader................................396

Example 14-15	 Generating Gradient Vectors..398

Example 14-16	 3D Noise..400

Example 14-17	 Noise-Distorted Fog Fragment Shader................................402

Example 14-18	 Checker Vertex Shader..405

Example 14-19	 Checker Fragment Shader with Conditional Checks.........406

Example 14-20	 Checker Fragment Shader without
Conditional Checks..406

Example 14-21	 Anti-Aliased Checker Fragment Shader..............................407

Example 14-22	 Terrain Rendering Flat Grid Generation.............................411

Example 14-23	 Terrain Rendering Vertex Shader..412

Example 14-24	 Set up a MVP Matrix from the Light Position....................415

Example 14-25	 Create a Depth Texture and Attach
It to a Framebuffer Object...416

Example 14-26	 Rendering to Depth Texture Shaders..................................417

Example 14-27	 Rendering from the Eye Position Shaders..........................418

This page intentionally left blank

xxv

List of Tables

Table 1-1	 EGL Data Types...21

Table 1-2	 OpenGL ES Command Suffixes and
Argument Data Types..22

Table 1-3	 OpenGL ES Basic Error Codes...23

Table 3-1	 EGLConfig Attributes..49

Table 3-2	 Attributes for Window Creation Using
eglCreateWindowSurface...54

Table 3-3	 Possible Errors When eglCreateWindowSurface Fails........55

Table 3-4	 EGL Pixel Buffer Attributes..57

Table 3-5	 Possible Errors When eglCreatePbufferSurface Fails......58

Table 3-6	 Attributes for Context Creation Using
eglCreateContext...61

Table 5-1	 Data Types in the OpenGL ES Shading Language.................99

Table 5-2	 OpenGL ES Shading Language Operators...........................104

Table 5-3	 OpenGL ES Shading Language Qualifiers...........................106

Table 5-4	 Uniform Block Layout Qualifiers..111

Table 5-5	 Extension Behaviors..116

Table 5-6	 Uniform Storage without Packing.......................................118

Table 5-7	 Uniform Storage with Packing..119

Table 6-1	 Data Conversions..132

Table 6-2	 Buffer Usage...143

Table 7-1	 Provoking Vertex Selection for the ith Primitive
Instance Where Vertices Are Numbered from 1 to n,
and n Is the Number of Vertices Drawn..............................169

Table 8-1	 Transform Feedback Primitive Mode
and Allowed Draw Mode...213

Table 9-1	 Texture Base Formats...227

xxvi	 List of Tables

Table 9-2	 Pixel Storage Options..236

Table 9-3	 Texture Wrap Modes..243

Table 9-4	 Valid Unsized Internal Format Combinations
for glTexImage2D..247

Table 9-5	 Normalized Sized Internal Format Combinations
for glTexImage2D..248

Table 9-6	 Valid Sized Floating-Point Internal Format
Combinations for glTexImage2D.......................................249

Table 9-7	 Valid Sized Internal Integer Texture Format
Combinations for glTexImage2D.......................................251

Table 9-8	 Valid Shared Exponent Sized Internal Format
Combinations for glTexImage2D.......................................253

Table 9-9	 Valid sRGB Sized Internal Format Combinations
for glTexImage2D...254

Table 9-10	 Valid Depth Sized Internal Format Combinations
for glTexImage2D...255

Table 9-11	 Mapping of Texture Formats to Colors...............................257

Table 9-12	 Standard Texture Compression Formats.............................264

Table 9-13	 Valid Format Conversions for glCopyTex*Image*............273

Table 10-1	 OpenGL ES 1.1 RGB Combine Functions...........................281

Table 11-1	 Fragment Test Enable Tokens..304

Table 11-2	 Stencil Operations...306

Table 11-3	 Blending Functions...312

Table 12-1	 Renderbuffer Formats for Color-Renderable Buffer............333

Table 12-2	 Renderbuffer Formats for Depth-Renderable
and Stencil-Renderable Buffer..335

Table 15-1	 Implementation-Dependent State Queries.........................423

Table 15-2	 Application-Modifiable OpenGL ES State Queries.............429

Table 15-3	 OpenGL ES 3.0 Capabilities Controlled by
glEnable and glDisable...437

Table B-1	 Angle and Trigonometry Functions....................................465

Table B-2	 Exponential Functions..466

Table B-3	 Common Functions..467

Table B-4	 Floating-Point Pack and Unpack Functions.......................471

	 List of Tables	 xxvii

Table B-5	 Geometric Functions..473

Table B-6	 Matrix Functions...474

Table B-7	 Vector Relational Functions..475

Table B-8	 Supported Combinations of Sampler and Internal
Texture Formats..476

Table B-9	 Texture Lookup Functions..478

Table B-10	 Fragment Processing Functions..484

This page intentionally left blank

xxix

Foreword

Five years have passed since the OpenGL ES 2.0 version of this reference
book helped alert developers everywhere that programmable 3D graphics
on mobile and embedded systems had not just arrived, but was here
to stay.

Five years later, more than 1 billion people around the world use
OpenGL ES every day to interact with their computing devices, for both
information and entertainment. Nearly every pixel on nearly every
smartphone screen has been generated, manipulated, or composited by
this ubiquitous graphics API.

Now, OpenGL ES 3.0 has been developed by Khronos Group and is shipping
on the latest mobile devices, continuing the steady flow of advanced
graphics features into the hands of consumers everywhere—features that
were first developed and proven on high-end systems shipping with desktop
OpenGL.

In fact, OpenGL is now easily the most widely deployed family of 3D APIs,
with desktop OpenGL and OpenGL ES being joined by WebGL to bring
the power of OpenGL ES to web content everywhere. OpenGL ES 3.0 will
be instrumental in powering the evolution of WebGL, enabling HTML5
developers to tap directly into the power of the latest GPUs from the first
truly portable 3D applications.

OpenGL ES 3.0 not only places more graphics capabilities into the hands
of developers across a huge range of devices and platforms, but also
enables faster, more power-efficient 3D applications that are easier to
write, port, and maintain—and this book will show you how.

xxx	 Foreword

There has never been a more fascinating and rewarding time to be a 3D
developer. My thanks and congratulations go to the authors for continuing
to be a vital part of the evolving story of OpenGL ES, and for working hard
to produce this book that helps ensure developers everywhere can better
understand and leverage the full power of OpenGL ES 3.0.

—Neil Trevett
President, Khronos Group
Vice President Mobile Ecosystem, NVIDIA

xxxi

Preface

OpenGL ES 3.0 is a software interface for rendering sophisticated 3D
graphics on handheld and embedded devices. OpenGL ES is the primary
graphics library for handheld and embedded devices with programmable
3D hardware including cell phones, personal digital assistants (PDAs),
consoles, appliances, vehicles, and avionics. This book details the entire
OpenGL ES 3.0 application programming interface (API) and pipeline,
including detailed examples, to provide a guide for developing a wide
range of high-performance 3D applications for handheld devices.

Intended Audience

This book is intended for programmers who are interested in learning
OpenGL ES 3.0. We expect the reader to have a solid grounding in
computer graphics. In the text we explain many of the relevant graphics
concepts as they relate to various parts of OpenGL ES 3.0, but we expect
the reader to understand basic 3D concepts. The code examples in the book
are all written in C. We assume that the reader is familiar with C or C++
and cover language topics only where they are relevant to OpenGL ES 3.0.

The reader will learn about setting up and programming every aspect
of the graphics pipeline. The book details how to write vertex and
fragment shaders and how to implement advanced rendering techniques
such as per-pixel lighting and particle systems. In addition, it provides
performance tips and tricks for efficient use of the API and hardware.
After finishing the book, the reader will be ready to write OpenGL ES 3.0
applications that fully harness the programmable power of embedded
graphics hardware.

xxxii	 Preface

Organization of This Book

This book is organized to cover the API in a sequential fashion, building
up your knowledge of OpenGL ES 3.0 as we go.

Chapter 1—Introduction to OpenGL ES 3.0

Chapter 1 introduces OpenGL ES and provides an overview of the
OpenGL ES 3.0 graphics pipeline. We discuss the philosophies and
constraints that went into the design of OpenGL ES 3.0. Finally, the
chapter covers some general conventions and types used in OpenGL
ES 3.0.

Chapter 2—Hello Triangle: An OpenGL ES 3.0 Example

Chapter 2 walks through a simple OpenGL ES 3.0 example program
that draws a triangle. Our purpose here is to show what an OpenGL ES
3.0 program looks like, introduce the reader to some API concepts, and
describe how to build and run an example OpenGL ES 3.0 program.

Chapter 3—An Introduction to EGL

Chapter 3 presents EGL, the API for creating surfaces and rendering
contexts for OpenGL ES 3.0. We describe how to communicate with
the native windowing system, choose a configuration, and create EGL
rendering contexts and surfaces. We teach you enough EGL so that you
can do everything you will need to do to get up and rendering with
OpenGL ES 3.0.

Chapter 4—Shaders and Programs

Shader objects and program objects form the most fundamental objects in
OpenGL ES 3.0. In Chapter 4, we describe how to create a shader object,
compile a shader, and check for compile errors. The chapter also explains
how to create a program object, attach shader objects to it, and link a
final program object. We discuss how to query the program object for
information and how to load uniforms. In addition, you will learn about
the difference between source shaders and program binaries and how to
use each.

	 Preface	 xxxiii

Chapter 5—OpenGL ES Shading Language

Chapter 5 covers the shading language basics needed for writing shaders.
These shading language basics include variables and types, constructors,
structures, arrays, uniforms, uniform blocks, and input/output variables.
This chapter also describes some more nuanced parts of the shading
language, such as precision qualifiers and invariance.

Chapter 6—Vertex Attributes, Vertex Arrays,
and Buffer Objects

Starting with Chapter 6 (and ending with Chapter 11), we begin our walk
through the pipeline to teach you how to set up and program each part
of the graphics pipeline. This journey begins with a description of how
geometry is input into the graphics pipeline, and includes discussion of
vertex attributes, vertex arrays, and buffer objects.

Chapter 7—Primitive Assembly and Rasterization

After discussing how geometry is input into the pipeline in the previous
chapter, in Chapter 7 we consider how that geometry is assembled into
primitives. All of the primitive types available in OpenGL ES 3.0, including
point sprites, lines, triangles, triangle strips, and triangle fans, are covered.
In addition, we describe how coordinate transformations are performed on
vertices and introduce the rasterization stage of the OpenGL ES 3.0 pipeline.

Chapter 8—Vertex Shaders

The next portion of the pipeline that is covered is the vertex shader.
Chapter 8 provides an overview of how vertex shaders fit into the pipeline
and the special variables available to vertex shaders in the OpenGL
ES Shading Language. Several examples of vertex shaders, including
computation of per-vertex lighting and skinning, are covered. We also
give examples of how the OpenGL ES 1.0 (and 1.1) fixed-function pipeline
can be implemented using vertex shaders.

Chapter 9—Texturing

Chapter 9 begins the introduction to fragment shaders by describing all
of the texturing functionality available in OpenGL ES 3.0. This chapter
provides details on how to create textures, how to load them with data,

xxxiv	 Preface

and how to render with them. It describes texture wrap modes, texture
filtering, texture formats, compressed textures, sampler objects, immutable
textures, pixel unpack buffer objects, and mipmapping. This chapter
covers all of the texture types supported in OpenGL ES 3.0: 2D textures,
cubemaps, 2D texture arrays, and 3D textures.

Chapter 10—Fragment Shaders

Chapter 9 focused on how to use textures in a fragment shader;
Chapter 10 covers the rest of what you need to know to write fragment
shaders. We give an overview of fragment shaders and all of the special
built-in variables available to them. We also demonstrate how to
implement all of the fixed-function techniques that were available in
OpenGL ES 1.1 using fragment shaders. Examples of multitexturing, fog,
alpha test, and user clip planes are all implemented in fragment shaders.

Chapter 11—Fragment Operations

Chapter 11 discusses the operations that can be applied either to the
entire framebuffer, or to individual fragments after the execution of
the fragment shader in the OpenGL ES 3.0 fragment pipeline. These
operations include the scissor test, stencil test, depth test, multisampling,
blending, and dithering. This chapter covers the final phase in the
OpenGL ES 3.0 graphics pipeline.

Chapter 12—Framebuffer Objects

Chapter 12 discusses the use of framebuffer objects for rendering to
off-screen surfaces. Framebuffer objects have several uses, the most
common of which is for rendering to a texture. This chapter provides
a complete overview of the framebuffer object portion of the API.
Understanding framebuffer objects is critical for implementing many
advanced effects such as reflections, shadow maps, and postprocessing.

Chapter 13—Sync Objects and Fences

Chapter 13 provides an overview of sync objects and fences, which are
efficient primitives for synchronizing within the host application and
GPU execution in OpenGL ES 3.0. We discuss how to use sync objects and
fences and conclude with an example.

	 Preface	 xxxv

Chapter 14—Advanced Programming with OpenGL ES 3.0

Chapter 14 is the capstone chapter, tying together many of the topics
presented throughout the book. We have selected a sampling of advanced
rendering techniques and show examples that demonstrate how to
implement these features. This chapter includes rendering techniques
such as per-pixel lighting using normal maps, environment mapping,
particle systems, image postprocessing, procedural textures, shadow
mapping, terrain rendering and projective texturing.

Chapter 15—State Queries

A large number of state queries are available in OpenGL ES 3.0. For just
about everything you set, there is a corresponding way to get the current
value. Chapter 15 is provided as a reference for the various state queries
available in OpenGL ES 3.0.

Chapter 16—OpenGL ES Platforms

In the final chapter, we move away from the details of the API to talk
about how to build the OpenGL ES sample code in this book for iOS7,
Android 4.3 NDK, Android 4.3 SDK, Windows, and Linux. This chapter is
intended to serve as a reference to get you up and running with the book
sample code on the OpenGL ES 3.0 platform of your choosing.

Appendix A—GL_HALF_FLOAT_OES

Appendix A details the half-float format and provides a reference for how
to convert from IEEE floating-point values into half-floats (and back).

Appendix B—Built-In Functions

Appendix B provides a reference for all of the built-in functions available
in the OpenGL ES Shading Language.

Appendix C—ES Framework API

Appendix C provides a reference for the utility framework we developed
for the book and describes what each function does.

xxxvi	 Preface

OpenGL ES 3.0 Reference Card

Included as a color insert in the middle of the book is the OpenGL ES 3.0
Reference Card, copyrighted by Khronos and reprinted with permission.
This reference contains a complete list of all of the functions in OpenGL
ES 3.0, along with all of the types, operators, qualifiers,
built-ins, and functions in the OpenGL ES Shading Language.

Example Code and Shaders

This book is filled with example programs and shaders. You can download
the examples from the book’s website at opengles-book.com, which
provides a link to the github.com site hosting the book code. As of this
writing, the example programs have been built and tested on iOS7,
Android 4.3 NDK, Android 4.3 SDK, Windows (OpenGL ES 3.0 Emulation),
and Ubuntu Linux. Several of the advanced shader examples in the
book are implemented in PVRShaman, a shader development tool from
PowerVR available for Windows, Mac OS X, and Linux. The book’s website
(opengles-book.com) provides links through which to download any of
the required tools.

Errata

If you find something in the book that you believe is in error, please send
us a note at errors@opengles-book.com. The list of errata for the book can
be found on the book’s website: opengles-book.com.

xxxvii

Acknowledgments

I want to thank Affie Munshi and Dave Shreiner for their enormous
contributions to the first edition of this book. I am extremely grateful
to have Budi Purnomo join me to update the book for OpenGL ES 3.0.
I would also like to thank the many colleagues with whom I have worked
over the years, who have helped in my education on computer graphics,
OpenGL, and OpenGL ES. There are too many people to list all of them,
but special thanks go to Shawn Leaf, Bill Licea-Kane, Maurice Ribble, Benj
Lipchak, Roger Descheneaux, David Gosselin, Thorsten Scheuermann,
John Isidoro, Chris Oat, Jason Mitchell, Dan Gessel, and Evan Hart.

I would like to extend a special thanks to my wife, Sofia, for her support
while I worked on this book. I would also like to thank my son, Ethan,
who was born during the writing of this book. Your smile and laugh bring
me joy every single day.

— Dan Ginsburg

I would like to express my deepest gratitude to Dan Ginsburg for
providing me with an opportunity to contribute to this book. Thank you
to my manager, Callan McInally, and colleagues at AMD for supporting
this endeavor. I would also like to thank my past professors, Jonathan
Cohen, Subodh Kumar, Ching-Kuang Shene, and John Lowther, for
introducing me to the world of computer graphics and OpenGL.

I would like to thank my parents and sister for their unconditional
love. Special thanks to my wonderful wife, Liana Hadi, whose love and
support allowed me to complete this project. Thank you to my daughters,
Michelle Lo and Scarlett Lo. They are the sunshine in my life.

— Budi Purnomo

xxxviii	 Acknowledgments

We all want to thank Neil Trevett for writing the Foreword and getting
approval from the Khronos Board of Promoters to allow us to use text
from the OpenGL ES Shading Language specification in Appendix B,
as well as the OpenGL ES 3.0 Reference Card. A special thank you and
debt of gratitude go to the reviewers for their enormously valuable
feedback—Maurice Ribble, Peter Lohrmann, and Emmanuel Agu. We
also wish to acknowledge the technical reviewers from the first edition
of the book—Brian Collins, Chris Grimm, Jeremy Sandmel, Tom Olson,
and Adam Smith.

We owe a huge amount of gratitude to our editor, Laura Lewin, at
Addison-Wesley, who was enormously helpful in every aspect of
creating this book. There were many others at Addison-Wesley who were
invaluable in putting together this book and whom we would like to
thank, including Debra Williams Cauley, Olivia Basegio, Sheri Cain, and
Curt Johnson.

We want to thank our readers from the first edition who have helped
us immensely by reporting errata and improving the sample code. We
would especially like to thank our reader Javed Rabbani Shah, who ported
the OpenGL ES 3.0 sample code to the Android 4.3 SDK in Java. He also
helped us with the Android NDK port and resolving many device-specific
issues. We thank Jarkko Vatjus-Anttila for providing the Linux X11 port,
and Eduardo Pelegri-Llopart and Darryl Gough for porting the first-edition
code to the BlackBerry Native SDK.

A big thank you to the OpenGL ARB, the OpenGL ES working group, and
everyone who contributed to the development of OpenGL ES.

xxxix

About the Authors

Dan Ginsburg

Dan is the founder of Upsample Software, LLC, a software company
offering consulting services in 3D graphics and GPU computing. Dan has
coauthored several other books, including the OpenCL Programming Guide
and OpenGL Shading Language, Third Edition. In previous roles Dan has
worked on developing OpenGL drivers, desktop and handheld 3D demos,
GPU developer tools, 3D medical visualization, and games. He holds a B.S.
in computer science from Worcester Polytechnic Institute and an M.B.A.
from Bentley University.

Budirijanto Purnomo

Budi is a senior software architect at Advanced Micro Devices, Inc., where
he leads the software enablement efforts of GPU debugging and profiling
technology across multiple AMD software stacks. He collaborates with
many software and hardware architects within AMD to define future
hardware architectures for debugging and profiling GPU applications. He
has published many computer graphics technical articles at international
conferences. He received his B.S. and M.S. in computer science from
Michigan Technological University, and his M.S.E. and Ph.D. in computer
science from Johns Hopkins University.

Aaftab Munshi

Affie has been architecting GPUs for more than a decade. At ATI (now
AMD), he was a senior architect in the Handheld Group. He is the spec
editor for the OpenGL ES 1.1, OpenGL ES 2.0, and OpenCL specifications.
He currently works at Apple.

xl	 About the Authors

Dave Shreiner

Dave has been working with OpenGL for almost two decades, and more
recently with OpenGL ES. He authored the first commercial training
course on OpenGL while working at Silicon Graphics Computer Systems
(SGI), and has worked as an author on the OpenGL Programming Guide.
He has presented introductory and advanced courses on OpenGL
programming worldwide at numerous conferences, including SIGGRAPH.

Dave is now a media systems architect at ARM, Inc. He holds a B.S. in
mathematics from the University of Delaware.

1

Chapter 1

Introduction to OpenGL ES 3.0

OpenGL for Embedded Systems (OpenGL ES) is an application
programming interface (API) for advanced 3D graphics targeted at
handheld and embedded devices. OpenGL ES is the dominant graphics
API in today’s smartphones and has even extended its reach onto the
desktop. The list of platforms supporting OpenGL ES includes iOS,
Android, BlackBerry, bada, Linux, and Windows. OpenGL ES also
underpins WebGL, a web standard for browser-based 3D graphics.

Since the release of the iPhone 3GS in June 2009 and Android 2.0 in
March 2010, OpenGL ES 2.0 has been supported on iOS and Android
devices. The first edition of this book covered OpenGL ES 2.0 in detail.
The current edition focuses on OpenGL ES 3.0, the next revision of
OpenGL ES. It is almost inevitable that every handheld platform that
continues to evolve will support OpenGL ES 3.0. Indeed, OpenGL ES 3.0
is already supported on devices using Android 4.3+ and on the iPhone 5s
with iOS7. OpenGL ES 3.0 is backward compatible with OpenGL ES 2.0,
meaning that applications written for OpenGL ES 2.0 will continue to
work with OpenGL ES 3.0.

OpenGL ES is one of a set of APIs created by the Khronos Group. The
Khronos Group, founded in January 2000, is a member-funded industry
consortium that is focused on the creation of open standard and royalty-
free APIs. The Khronos Group also manages OpenGL, a cross-platform
standard 3D API for desktop systems running Linux, various flavors of
UNIX, Mac OS X, and Microsoft Windows. It is a widely accepted standard
3D API that has seen significant real-world usage.

Due to the widespread adoption of OpenGL as a 3D API, it made sense to
start with the desktop OpenGL API in developing an open standard 3D

2	 Chapter 1: Introduction to OpenGL ES 3.0

API for handheld and embedded devices and then modify it to meet the
needs and constraints of the handheld and embedded device space. In the
earlier versions of OpenGL ES (1.0, 1.1, and 2.0), the device constraints
that were considered in the design included limited processing capabilities
and memory availability, low memory bandwidth, and sensitivity to
power consumption. The working group used the following criteria in the
definition of the OpenGL ES specification(s):

•• The OpenGL API is very large and complex, and the goal of
the OpenGL ES working group was to create an API suitable for
constrained devices. To achieve this goal, the working group removed
any redundancy from the OpenGL API. In any case where the same
operation could be performed in more than one way, the most useful
method was taken and the redundant techniques were removed.
A good example of this is seen with specifying geometry, where in
OpenGL an application can use immediate mode, display lists, or
vertex arrays. In OpenGL ES, only vertex arrays exist; immediate mode
and display lists were removed.

•• Removing redundancy was an important goal, but maintaining
compatibility with OpenGL was also important. As much as possible,
OpenGL ES was designed so that applications written to the embedded
subset of functionality in OpenGL would also run on OpenGL ES.
This was an important goal because it allows developers to leverage
both APIs and to develop applications and tools that use the common
subset of functionality.

•• New features were introduced to address specific constraints of
handheld and embedded devices. For example, to reduce the power
consumption and increase the performance of shaders, precision
qualifiers were introduced to the shading language.

•• The designers of OpenGL ES aimed to ensure a minimum set of
features for image quality. In early handheld devices, the screen sizes
were limited, making it essential that the quality of the pixels drawn
on the screen was as good as possible.

•• The OpenGL ES working group wanted to ensure that any OpenGL
ES implementation would meet certain acceptable and agreed-on
standards for image quality, correctness, and robustness. This was
achieved by developing appropriate conformance tests that an
OpenGL ES implementation must pass to be considered compliant.

Khronos has released four OpenGL ES specifications so far: OpenGL ES 1.0
and ES 1.1 (referred to jointly as OpenGL ES 1.x in this book), OpenGL
ES 2.0, and OpenGL ES 3.0. The OpenGL ES 1.0 and 1.1 specifications

	 OpenGL ES 3.0	 3

implement a fixed function pipeline and are derived from the OpenGL 1.3
and 1.5 specifications, respectively.

The OpenGL ES 2.0 specification implements a programmable graphics
pipeline and is derived from the OpenGL 2.0 specification. Being derived
from a revision of the OpenGL specification means that the corresponding
OpenGL specification was used as the baseline for determining the feature
set included in the particular revision of OpenGL ES.

OpenGL ES 3.0 is the next step in the evolution of handheld graphics and
is derived from the OpenGL 3.3 specification. While OpenGL ES 2.0 was
successful in bringing capabilities similar to DirectX9 and the Microsoft
Xbox 360 to handheld devices, graphics capabilities have continued to
evolve on desktop GPUs. Significant features that enable techniques such
as shadow mapping, volume rendering, GPU-based particle animation,
geometry instancing, texture compression, and gamma correction were
missing from OpenGL ES 2.0. OpenGL ES 3.0 brings these features to
handheld devices, while continuing the philosophy of adapting to the
constraints of embedded systems.

Of course, some of the constraints that were taken into consideration
while designing previous versions of OpenGL ES are no longer relevant
today. For example, handheld devices now feature large screen sizes (some
offer a higher resolution than most desktop PC monitors). Additionally,
many handheld devices now feature high-performance multicore CPUs
and large amounts of memory. The focus for the Khronos Group in
developing OpenGL ES 3.0 shifted toward appropriate market timing of
features relevant to handheld applications rather than addressing the
limited capabilities of devices.

The following sections introduce the OpenGL ES 3.0 pipeline.

OpenGL ES 3.0

As noted earlier, OpenGL ES 3.0 is the API covered in this book. Our
goal is to cover the OpenGL ES 3.0 specification in thorough detail, give
specific examples of how to use the features in OpenGL ES 3.0, and discuss
various performance optimization techniques. After reading this book, you
should have an excellent grasp of the OpenGL ES 3.0 API, be able to easily
write compelling OpenGL ES 3.0 applications, and not have to worry
about reading multiple specifications to understand how a feature works.

OpenGL ES 3.0 implements a graphics pipeline with programmable
shading and consists of two specifications: the OpenGL ES 3.0

4	 Chapter 1: Introduction to OpenGL ES 3.0

API specification and the OpenGL ES Shading Language 3.0
Specification (OpenGL ES SL). Figure 1-1 shows the OpenGL ES 3.0
graphics pipeline. The shaded boxes in this figure indicate the
programmable stages of the pipeline in OpenGL ES 3.0. An overview of
each stage in the OpenGL ES 3.0 graphics pipeline is presented next.

Vertex Buffer/
Arrays Objects

Vertex Shader

Textures

Fragment
Shader

Primitive
Assembly

Transform
Feedback

Rasterization

Per-Fragment
Operations

Framebuffer

API

Figure 1-1	 OpenGL ES 3.0 Graphics Pipeline

Vertex Shader

This section gives a high-level overview of vertex shaders. Vertex and
fragment shaders are covered in depth in later chapters. The vertex shader
implements a general-purpose programmable method for operating on
vertices.

The inputs to the vertex shader consist of the following:

•• Shader program—Vertex shader program source code or executable
that describes the operations that will be performed on the vertex.

•• Vertex shader inputs (or attributes)—Per-vertex data supplied using
vertex arrays.

•• Uniforms—Constant data used by the vertex (or fragment) shader.

•• Samplers—Specific types of uniforms that represent textures used by
the vertex shader.

	 OpenGL ES 3.0	 5

The outputs of the vertex shader were called varying variables in OpenGL
ES 2.0, but were renamed vertex shader output variables in OpenGL ES
3.0. In the primitive rasterization stage, the vertex shader output values
are calculated for each generated fragment and are passed in as inputs to
the fragment shader. The mechanism used to generate a value for each
fragment from the vertex shader outputs that is assigned to each vertex
of the primitive is called interpolation. Additionally, OpenGL ES 3.0 adds
a new feature called transform feedback, which allows the vertex shader
outputs to be selectively written to an output buffer (in addition to, or
instead of, being passed to the fragment shader). For example, as covered
in the transform feedback example in Chapter 14, a particle system can be
implemented in the vertex shader in which particles are output to a buffer
object using transform feedback. The inputs and outputs of the vertex
shader are shown in Figure 1-2.

Vertex shaders can be used for traditional vertex-based operations such as
transforming the position by a matrix, computing the lighting equation
to generate a per-vertex color, and generating or transforming texture

gl_Position

gl_PointSize

Output (Varying) N

...

Vertex Shader

...

Input (Attribute) N

Input (Attribute) 0

Input (Attribute) 1

Input (Attribute) 2

Input (Attribute) 3

Input (Attribute) 4

Uniforms Samplers

Output (Varying) 0

Output (Varying) 1

Output (Varying) 2

Output (Varying) 3

Output (Varying) 4

Figure 1-2	 OpenGL ES 3.0 Vertex Shader

6	 Chapter 1: Introduction to OpenGL ES 3.0

coordinates. Alternatively, because the vertex shader is specified by the
application, vertex shaders can be used to perform custom math that
enables new transforms, lighting, or vertex-based effects not allowed in
more traditional fixed-function pipelines.

Example 1-1 shows a vertex shader written using the OpenGL ES shading
language. We explain vertex shaders in significant detail later in the book.
We present this shader here just to give you an idea of what a vertex
shader looks like. The vertex shader in Example 1-1 takes a position and
its associated color data as input attributes, transforms the position using
a 4 × 4 matrix, and outputs the transformed position and color.

Example 1-1	 A Vertex Shader Example

1. #version 300 es
2. uniform mat4 u_mvpMatrix; // matrix to convert a_position
3. // �from model space to normalized
4. // device space
5.
6. // attributes input to the vertex shader
7. in vec4 a_position; // position value
8. in vec4 a_color; // input vertex color
9.
10. // output of the vertex shader - input to fragment
11. // shader
12. out vec4 v_color; // output vertex color
13. void main()
14. {
15. v_color = a_color;
16. gl_Position = u_mvpMatrix * a_position;
17. }

Line 1 provides the version of the Shading Language—information
that must appear on the first line of the shader (#version 300 es
indicates the OpenGL ES Shading Language v3.00). Line 2 describes a
uniform variable u_mvpMatrix that stores the combined model view and
projection matrix. Lines 7 and 8 describe the inputs to the vertex shader
and are referred to as vertex attributes. a_position is the input vertex
position attribute and a_color is the input vertex color attribute. On
line 12, we declare the output v_color to store the output of the vertex
shader that describes the per-vertex color. The built-in variable called
gl_Position is declared automatically, and the shader must write the
transformed position to this variable. A vertex or fragment shader has
a single entry point called the main function. Lines 13–17 describe the

	 OpenGL ES 3.0	 7

vertex shader main function. In line 15, we read the vertex attribute input
a_color and write it as the vertex output color v_color. In line 16, the
transformed vertex position is output by writing it to gl_Position.

Primitive Assembly

After the vertex shader, the next stage in the OpenGL ES 3.0 graphics
pipeline is primitive assembly. A primitive is a geometric object such
as a triangle, line, or point sprite. Each vertex of a primitive is sent to
a different copy of the vertex shader. During primitive assembly, these
vertices are grouped back into the primitive.

For each primitive, it must be determined whether the primitive lies
within the view frustum (the region of 3D space that is visible on the
screen). If the primitive is not completely inside the view frustum,
it might need to be clipped to the view frustum. If the primitive is
completely outside this region, it is discarded. After clipping, the vertex
position is converted to screen coordinates. A culling operation can also
be performed that discards primitives based on whether they face forward
or backward. After clipping and culling, the primitive is ready to be passed
to the next stage of the pipeline—the rasterization stage.

Rasterization

The next stage, shown in Figure 1-3, is the rasterization phase, where the
appropriate primitive (point sprite, line, or triangle) is drawn. Rasterization
is the process that converts primitives into a set of two-dimensional
fragments, which are then processed by the fragment shader. These two-
dimensional fragments represent pixels that can be drawn on the screen.

From
Primitive
Assembly

Line
Rasterization

Point Sprite
Rasterization

Triangle
Rasterization

Output for each fragment—
screen (xw, yw) coordinate,
attributes such as color,
texture coordinates, etc.

To Fragment Shader Stage

Figure 1-3	 OpenGL ES 3.0 Rasterization Stage

8	 Chapter 1: Introduction to OpenGL ES 3.0

Fragment Shader

The fragment shader implements a general-purpose programmable
method for operating on fragments. As shown in Figure 1-4, this shader is
executed for each generated fragment by the rasterization stage and takes
the following inputs:

•• Shader program—Fragment shader program source code or executable
that describes the operations that will be performed on the fragment.

•• Input variables—Outputs of the vertex shader that are generated by
the rasterization unit for each fragment using interpolation.

•• Uniforms—Constant data used by the fragment (or vertex) shader.

•• Samplers—Specific types of uniforms that represent textures used by
the fragment shader.

The fragment shader can either discard the fragment or generate one or more
color values referred to as outputs. Typically, the fragment shader outputs just

Input (Varying) 0

Input (Varying) 1

Input (Varying) 2

Input (Varying) 3

Input (Varying) 4

Output Color 0

Output Color 1

Output Color N

gl_FragDepthgl_FragCoord

gl_FrontFacing

gl_PointCoord

Input (Varying) N

...

...
Fragment Shader

Uniforms Samplers

Figure 1-4	 OpenGL ES 3.0 Fragment Shader

	 OpenGL ES 3.0	 9

a single color value, except when rendering to multiple render targets (see
the section Multiple Render Targets in Chapter 11); in the latter case, a color
value is output for each render target. The color, depth, stencil, and screen
coordinate location (x

w
, y

w
) generated by the rasterization stage become

inputs to the per-fragment operations stage of the OpenGL ES 3.0 pipeline.

Example 1-2 describes a simple fragment shader that can be coupled with
the vertex shader described in Example 1-1 to draw a Gouraud-shaded
triangle. Again, we will go into much more detail on fragment shaders
later in the book. We present this example just to give you a basic idea of
what a fragment shader looks like.

Example 1-2	 A Fragment Shader Example

1. #version 300 es
2. precision mediump float;
3.
4. in vec4 v_color; // input vertex color from vertex shader
5.
6. out vec4 fragColor; // output fragment color
7. void main()
8. {
9. fragColor = v_color;
10. }

Just as in the vertex shader, line 1 provides the version of the Shading
Language; this information must appear on the first line of the fragment
shader (#version 300 es indicates the OpenGL ES Shading Language
v3.00). Line 2 sets the default precision qualifier, which is explained in
detail in Chapter 4, “Shaders and Programs.” Line 4 describes the input
to the fragment shader. The vertex shader must write out the same set
of variables that are read in by the fragment shader. Line 6 provides the
declaration for the output variable of the fragment shader, which will be
the color passed on to the next stage. Lines 7–10 describe the fragment
shader main function. The output color is set to the input color v_color.
The inputs to the fragment shader are linearly interpolated across the
primitive before being passed into the fragment shader.

Per-Fragment Operations

After the fragment shader, the next stage is per-fragment operations. A
fragment produced by rasterization with (x

w
, y

w
) screen coordinates can

only modify the pixel at location (x
w
, y

w
) in the framebuffer. Figure 1-5

describes the OpenGL ES 3.0 per-fragment operations stage.

10	 Chapter 1: Introduction to OpenGL ES 3.0

Pixel
Ownership

Test

Scissor
Test

Fragment
Data

Stencil
Test

Depth
Test

Blending Dithering To
Framebuffer

Figure 1-5	 OpenGL ES 3.0 Per-Fragment Operations

During the per-fragment operations stage, the following functions (and
tests) are performed on each fragment, as shown in Figure 1-5:

•• Pixel ownership test—This test determines whether the pixel at
location (x

w
, y

w
) in the framebuffer is currently owned by OpenGL

ES. This test allows the window system to control which pixels in the
framebuffer belong to the current OpenGL ES context. For example,
if a window displaying the OpenGL ES framebuffer window is
obscured by another window, the windowing system may determine
that the obscured pixels are not owned by the OpenGL ES context
and, therefore, the pixels might not be displayed at all. While the
pixel ownership test is part of OpenGL ES, it is not controlled by the
developer, but rather takes place internally inside of OpenGL ES.

•• Scissor test—The scissor test determines whether (x
w
, y

w
) lies within

the scissor rectangle defined as part of the OpenGL ES state. If the
fragment is outside the scissor region, the fragment is discarded.

•• Stencil and depth tests—These tests are performed on the stencil and
depth value of the incoming fragment to determine whether the
fragment should be rejected.

•• Blending—Blending combines the newly generated fragment color value
with the color values stored in the framebuffer at location (x

w
, y

w
).

•• Dithering—Dithering can be used to minimize the artifacts that occur as
a result of using limited precision to store color values in the framebuffer.

At the end of the per-fragment stage, either the fragment is rejected or
a fragment color(s), depth, or stencil value is written to the framebuffer
at location (x

w
, y

w
). Writing of the fragment color(s), depth, and stencil

values depends on whether the appropriate write masks are enabled.
Write masks allow finer control over the color, depth, and stencil values
written into the associated buffers. For example, the write mask for the

	 What’s New in OpenGL ES 3.0	 11

color buffer could be set such that no red values are written into the color
buffer. In addition, OpenGL ES 3.0 provides an interface to read back the
pixels from the framebuffer.

Note:	 Alpha test and LogicOp are no longer part of the per-fragment
operations stage. These two stages exist in OpenGL 2.0 and
OpenGL ES 1.x. The alpha test stage is no longer needed because
the fragment shader can discard fragments; thus the alpha test
can be performed in the fragment shader. In addition, LogicOp
was removed because it is used only rarely by applications, and
the OpenGL ES working group did not receive requests from
independent software vendors (ISVs) to support this feature in
OpenGL ES 2.0.

What’s New in OpenGL ES 3.0

OpenGL ES 2.0 ushered in the era of programmable shaders for handheld
devices and has been wildly successful in powering games, applications,
and user interfaces across a wide range of devices. OpenGL ES 3.0
extends OpenGL ES 2.0 to support many new rendering techniques,
optimizations, and visual quality enhancements. The following sections
provide a categorized overview of the major new features that have been
added to OpenGL ES 3.0. Each of these features will be described in detail
later in the book.

Texturing

OpenGL ES 3.0 introduces many new features related to texturing:

•• sRGB textures and framebuffers—Allow the application to perform
gamma-correct rendering. Textures can be stored in gamma-corrected
sRGB space, uncorrected to linear space upon being fetched in the
shader, and then converted back to sRGB gamma-corrected space on
output to the framebuffer. This enables potentially higher visual fidelity
by properly computing lighting and other calculations in linear space.

•• 2D texture arrays—A texture target that stores an array of 2D textures.
Such arrays might, for example, be used to perform texture animation.
Prior to 2D texture arrays, such animation was typically done by tiling
the frames of an animation in a single 2D texture and modifying the
texture coordinates to change animation frames. With 2D texture
arrays, each frame of the animation can be specified in a 2D slice of
the array.

12	 Chapter 1: Introduction to OpenGL ES 3.0

•• 3D textures—While some OpenGL ES 2.0 implementations supported
3D textures through an extension, OpenGL ES 3.0 has made this a
mandatory feature. 3D textures are essential in many medical imaging
applications, such as those that perform direct volume rendering of
3D voxel data (e.g., CT, MRI, or PET data).

•• Depth textures and shadow comparison—Enable the depth buffer
to be stored in a texture. The most common use for depth textures
is in rendering shadows, where a depth buffer is rendered from the
viewpoint of the light source and then used for comparison when
rendering the scene to determine whether a fragment is in shadow.
In addition to depth textures, OpenGL ES 3.0 allows the comparison
against the depth texture to be done at the time of fetch, thereby
allowing bilinear filtering to be done on depth textures (also known as
percentage closest filtering [PCF]).

•• Seamless cubemaps—In OpenGL ES 2.0, rendering with cubemaps
could produce artifacts at the boundaries between cubemap faces. In
OpenGL ES 3.0, cubemaps can be sampled such that filtering uses data
from adjacent faces and removes the seaming artifact.

•• Floating-point textures—OpenGL ES 3.0 greatly expands on the
texture formats supported. Floating-point half-float (16-bit) textures
are supported and can be filtered, whereas full-float (32-bit) textures
are supported but not filterable. The ability to access floating-point
texture data has many applications, including high dynamic range
texturing to general-purpose computation.

•• ETC2/EAC texture compression—While several OpenGL ES 2.0
implementations provided support for vendor-specific compressed
texture formats (e.g., ATC by Qualcomm, PVRTC by Imagination
Technologies, and Ericsson Texture Compression by Sony Ericsson),
there was no standard compression format that developers could rely
on. In OpenGL ES 3.0, support for ETC2/EAC is mandatory. The ETC2/
EAC formats provide compression for RGB888, RGBA8888, and one-
and two-channel signed/unsigned texture data. Texture compression
offers several advantages, including better performance (due to better
utilization of the texture cache) as well as a reduction in GPU memory
utilization.

•• Integer textures—OpenGL ES 3.0 introduces the capability to render
to and fetch from textures stored as unnormalized signed or unsigned
8-bit, 16-bit, and 32-bit integer textures.

•• Additional texture formats—In addition to those formats already
mentioned, OpenGL ES 3.0 includes support for 11-11-10 RGB

	 What’s New in OpenGL ES 3.0	 13

floating-point textures, shared exponent RGB 9-9-9-5 textures,
10-10-10-2 integer textures, and 8-bit-per-component signed
normalized textures.

•• Non-power-of-2 textures (NPOT)—Textures can now be specified with
non-power-of-2 dimensions. This is useful in many situations, such as
when texturing from a video or camera feed that is captured/recorded
at a non-power-of-2 dimension.

•• Texture level of detail (LOD) features—The texture LOD parameter
used to determine which mipmap to fetch from can now be
clamped. Additionally, the base and maximum mipmap level can
be clamped. These two features, in combination, make it possible to
stream mipmaps. As larger mipmap levels become available, the base
level can be increased and the LOD value can be smoothly increased
to provide smooth-looking streaming textures. This is very useful, for
example, when downloading texture mipmap data over a network
connection.

•• Texture swizzles—A new texture object state was introduced to allow
independent control of where each channel (R, G, B, and A) of texture
data is mapped to in the shader.

•• Immutable textures—Provide a mechanism for the application to
specify the format and size of a texture before loading it with data. In
doing so, the texture format becomes immutable and the OpenGL ES
driver can perform all consistency and memory checks up-front. This
can improve performance by allowing the driver to skip consistency
checks at draw time.

•• Increased minimum sizes—All OpenGL ES 3.0 implementations are
required to support much larger texture resources than OpenGL ES
2.0. For example, the minimum supported 2D texture dimension in
OpenGL ES 2.0 was 64 but was increased to 2048 in OpenGL ES 3.0.

Shaders

OpenGL ES 3.0 includes a major update to the OpenGL ES Shading
Language (ESSL; to v3.00) and new API features to support new shader
features:

•• Program binaries—In OpenGL ES 2.0, it was possible to store shaders
in a binary format, but it was still required to link them into program
at runtime. In OpenGL ES 3.0, the entire linked program binary
(containing the vertex and fragment shader) can be stored in an

14	 Chapter 1: Introduction to OpenGL ES 3.0

offline binary format with no link step required at runtime. This can
potentially help reduce the load time of applications. Additionally,
OpenGL ES 3.0 provides an interface to retrieve the program binary
from the driver so no offline tools are required to use program
binaries.

•• Mandatory online compiler—OpenGL ES 2.0 made it optional
whether the driver would support online compilation of shaders. The
intent was to reduce the memory requirements of the driver, but this
achievement came at a major cost to developers in terms of having to
rely on vendor-specific tools to generate shaders. In OpenGL ES 3.0, all
implementations will have an online shader compiler.

•• Non-square matrices—New matrix types other than square matrices
are supported, and associated uniform calls were added to the API to
support loading them. Non-square matrices can reduce the instruction
count required for performing transformations. For example, if
performing an affine transformation, a 4 × 3 matrix can be used in
place of a 4 × 4 where the last row is (0, 0, 0, 1), thus reducing the
instructions required to perform the transformation.

•• Full integer support—Integer (and unsigned integer) scalar and vector
types, along with full integer operations, are supported in ESSL 3.00.
There are various built-in functions such as conversion from int to
float, and from float to int, as well as the ability to read integer values
from textures and output integer values to integer color buffers.

•• Centroid sampling—To avoid rendering artifacts when multisampling,
the output variables from the vertex shader (and inputs to the
fragment shader) can be declared with centroid sampling.

•• Flat/smooth interpolators—In OpenGL ES 2.0, all interpolators were
implicitly linearly interpolated across the primitive. In ESSL 3.00,
interpolators (vertex shader outputs/fragment shader inputs) can be
explicitly declared to have either smooth or flat shading.

•• Uniform blocks—Uniform values can be grouped together into
uniform blocks. Uniform blocks can be loaded more efficiently and
also shared across multiple shader programs.

•• Layout qualifiers—Vertex shader inputs can be declared with layout
qualifiers to explicitly bind the location in the shader source without
requiring making API calls. Layout qualifiers can also be used for
fragment shader outputs to bind the outputs to each target when
rendering to multiple render targets. Further, layout qualifiers can be
used to control the memory layout for uniform blocks.

	 What’s New in OpenGL ES 3.0	 15

•• Instance and vertex ID—The vertex index is now accessible in the
vertex shader as well as the instance ID if using instance rendering.

•• Fragment depth—The fragment shader can explicitly control the
depth value for the current fragment rather than relying on the
interpolation of its depth value.

•• New built-in functions—ESSL 3.00 introduces many new built-in
functions to support new texture features, fragment derivatives, half-
float data conversion, and matrix and math operations.

•• Relaxed limitations—ESSL 3.0 greatly relaxes the restrictions on
shaders. Shaders are no longer limited in terms of instruction length,
fully support looping and branching on variables, and support
indexing on arrays.

Geometry

OpenGL ES 3.0 introduces several new features related to geometry
specification and control of primitive rendering:

•• Transform feedback—Allows the output of the vertex shader to
be captured in a buffer object. This is useful for a wide range of
techniques that perform animation on the GPU without any CPU
intervention—for example, particle animation or physics simulation
using render-to-vertex-buffer.

•• Boolean occlusion queries—Enable the application to query whether
any pixels of a draw call (or a set of draw calls) passes the depth
test. This feature can be used within a variety of techniques, such as
visibility determination for a lens flare effect as well as optimization
to avoid performing geometry processing on objects whose bounding
volume is obscured.

•• Instanced rendering—Efficiently renders objects that contain similar
geometry but differ by attributes (such as transformation matrix, color,
or size). This feature is useful in rendering large quantities of similar
objects, such as for crowd rendering.

•• Primitive restart—When using triangle strips in OpenGL ES 2.0 for a
new primitive, the application would have to insert indices into the
index buffer to represent a degenerate triangle. In OpenGL ES 3.0, a
special index value can be used that indicates the beginning of a new
primitive. This obviates the need for generating degenerate triangles
when using triangle strips.

16	 Chapter 1: Introduction to OpenGL ES 3.0

•• New vertex formats—New vertex formats, including 10-10-10-2 signed
and unsigned normalized vertex attributes; 8-bit, 16-bit, and 32-bit
integer attributes; and 16-bit half-float, are supported in OpenGL ES 3.0.

Buffer Objects

OpenGL ES 3.0 introduces many new buffer objects to increase the
efficiency and flexibility of specifying data to various parts of the graphics
pipeline:

•• Uniform buffer objects—Provide an efficient method for storing/
binding large blocks of uniforms. Uniform buffer objects can be used
to reduce the performance cost of binding uniform values to shaders,
which is a common bottleneck in OpenGL ES 2.0 applications.

•• Vertex array objects—Provide an efficient method for binding and
switching between vertex array states. Vertex array objects are
essentially container objects for vertex array states. Using them allows
an application to switch the vertex array state in a single API call
rather than making several calls.

•• Sampler objects—Separate the sampler state (texture wrap mode
and filtering) from the texture object. This provides a more efficient
method of sharing the sampler state across textures.

•• Sync objects—Provide a mechanism for the application to check on
whether a set of OpenGL ES operations has finished executing on
the GPU. A related new feature is a fence, which provides a way for
the application to inform the GPU that it should wait until a set of
OpenGL ES operations has finished executing before queuing up more
operations for execution.

•• Pixel buffer objects—Enable the application to perform asynchronous
transfer of data to pixel operations and texture transfer operations.
This optimization is primarily intended to provide faster transfer
of data between the CPU and the GPU, where the application can
continue doing work during the transfer operation.

•• Buffer subrange mapping—Allows the application to map a subregion
of a buffer for access by the CPU. This can provide better performance
than traditional buffer mapping, in which the whole buffer needs to
be available to the client.

•• Buffer object to buffer object copies—Provide a mechanism to
efficiently transfer data from one buffer object to another without
intervention on the CPU.

	 OpenGL ES 3.0 and Backward Compatibility	 17

Framebuffer

OpenGL ES 3.0 adds many new features related to off-screen rendering to
framebuffer objects:

•• Multiple render targets (MRTs)—Allow the application to render
simultaneously to several color buffers at one time. With MRTs, the
fragment shader outputs several colors, one for each attached color
buffer. MRTs are used in many advanced rendering algorithms, such as
deferred shading.

•• Multisample renderbuffers—Enable the application to render to off-
screen framebuffers with multisample anti-aliasing. The multisample
renderbuffers cannot be directly bound to textures, but they can
be resolved to single-sample textures using the newly introduced
framebuffer blit.

•• Framebuffer invalidation hints—Many implementations of OpenGL
ES 3.0 are based on GPUs that use tile-based rendering (TBR;
explained in the Framebuffer Invalidation section in Chapter 12).
It is often the case that TBR incurs a significant performance cost
when having to unnecessarily restore the contents of the tiles for
further rendering to a framebuffer. Framebuffer invalidation gives
the application a mechanism to inform the driver that the contents
of the framebuffer are no longer needed. This allows the driver
to take optimization steps to skip unnecessary restore operations
on the tiles. Such functionality is very important to achieve
peak performance in many applications, especially those that do
significant amounts of off-screen rendering.

•• New blend equations—The min/max functions are supported in
OpenGL ES 3.0 as a blend equation.

OpenGL ES 3.0 and Backward Compatibility

OpenGL ES 3.0 is backward compatible with OpenGL ES 2.0. This means
that just about any application written to use OpenGL ES 2.0 will run on
implementations of OpenGL ES 3.0. There are some very minor changes
to the later version that will affect a small number of applications in terms
of backward compatibility. Namely, framebuffer objects are no longer
shared between contexts, cubemaps are always filtered using seamless
filtering, and there are minor changes in the way signed fixed-point
numbers are converted to floating-point numbers.

18	 Chapter 1: Introduction to OpenGL ES 3.0

The fact that OpenGL ES 3.0 is backward compatible with OpenGL ES
2.0 differs from what was done for OpenGL ES 2.0 with respect to its
backward compatibility with previous versions of OpenGL ES. OpenGL ES
2.0 is not backward compatible with OpenGL ES 1.x. OpenGL ES 2.0/3.0
do not support the fixed-function pipeline that OpenGL ES 1.x supports.
The OpenGL ES 2.0/3.0 programmable vertex shader replaces the fixed-
function vertex units implemented in OpenGL ES 1.x. The fixed-function
vertex units implement a specific vertex transformation and lighting
equation that can be used to transform the vertex position, transform
or generate texture coordinates, and calculate the vertex color. Similarly,
the programmable fragment shader replaces the fixed-function texture
combine units implemented in OpenGL ES 1.x. The fixed-function texture
combine units implement a texture combine stage for each texture unit.
The texture color is combined with the diffuse color and the output of the
previous texture combine stage with a fixed set of operations such as add,
modulate, subtract, and dot.

The OpenGL ES working group decided against backward compatibility
between OpenGL ES 2.0/3.0 and OpenGL ES 1.x for the following reasons:

•• Supporting the fixed-function pipeline in OpenGL ES 2.0/3.0
implies that the API would support more than one way of
implementing a feature, in violation of one of the criteria used
by the working group in determining which features should be
supported. The programmable pipeline allows applications to
implement the fixed-function pipeline using shaders, so there
is really no compelling reason to be backward compatible with
OpenGL ES 1.x.

•• Feedback from ISVs indicated that most games do not mix
programmable and fixed-function pipelines. That is, games are written
either for a fixed-function pipeline or for a programmable pipeline.
Once you have a programmable pipeline, there is no reason to use
a fixed-function pipeline, as you have much more flexibility in the
effects that can be rendered.

•• The OpenGL ES 2.0/3.0 driver’s memory footprint would be much
larger if it had to support both the fixed-function and programmable
pipelines. For the devices targeted by OpenGL ES, minimizing
memory footprint is an important design criterion. Separating the
fixed-function support into the OpenGL ES 1.x API and placing the
programmable shader support into the OpenGL ES 2.0/3.0 APIs meant
that vendors that do not require OpenGL ES 1.x support no longer
need to include this driver.

	 EGL	 19

EGL

OpenGL ES commands require a rendering context and a drawing
surface. The rendering context stores the appropriate OpenGL ES state.
The drawing surface is the surface to which primitives will be drawn.
The drawing surface specifies the types of buffers that are required for
rendering, such as a color buffer, depth buffer, and stencil buffer. The
drawing surface also specifies the bit depths of each of the required buffers.

The OpenGL ES API does not mention how a rendering context is created
or how the rendering context gets attached to the native windowing
system. EGL is one interface between the Khronos rendering APIs such
as OpenGL ES and the native window system; there is no hard-and-fast
requirement to provide EGL when implementing OpenGL ES. Developers
should refer to the platform vendor’s documentation to determine which
interface is supported. As of this writing, the only known platform
supporting OpenGL ES that does not support EGL is iOS.

Any OpenGL ES application will need to perform the following tasks using
EGL before any rendering can begin:

•• Query the displays that are available on the device and initialize
them. For example, a flip phone might have two LCD panels, and it is
possible that we might use OpenGL ES to render to surfaces that can
be displayed on either or both panels.

•• Create a rendering surface. Surfaces created in EGL can be categorized
as on-screen surfaces or off-screen surfaces. On-screen surfaces are
attached to the native window system, whereas off-screen surfaces are
pixel buffers that do not get displayed but can be used as rendering
surfaces. These surfaces can be used to render into a texture and can
be shared across multiple Khronos APIs.

•• Create a rendering context. EGL is needed to create an OpenGL ES
rendering context. This context needs to be attached to an appropriate
surface before rendering can actually begin.

The EGL API implements the features just described as well as additional
functionality such as power management, support for multiple rendering
contexts in a process, sharing objects (such as textures or vertex buffers)
across rendering contexts in a process, and a mechanism to get function
pointers to EGL or OpenGL ES extension functions supported by a given
implementation.

The latest version of the EGL specification is EGL version 1.4.

20	 Chapter 1: Introduction to OpenGL ES 3.0

Programming with OpenGL ES 3.0

To write any OpenGL ES 3.0 application, you need to know which header
files must be included and with which libraries your application needs to
link. It is also useful to understand the syntax used by the EGL and GL
command names and command parameters.

Libraries and Include Files

OpenGL ES 3.0 applications need to link with the following libraries: the
OpenGL ES 3.0 library named libGLESv2.lib and the EGL library named
libEGL.lib.

OpenGL ES 3.0 applications also need to include the appropriate ES 3.0
and EGL header files. The following include files must be included by any
OpenGL ES 3.0 application:

#include <EGL/egl.h>
#include <GLES3/gl3.h>

egl.h is the EGL header file and gl3.h is the OpenGL ES 3.0 header file.
Applications can optionally include gl2ext.h, which is the header file that
describes the list of Khronos-approved extensions for OpenGL ES 2.0/3.0.

The header file and library names are platform dependent. The OpenGL
ES working group has tried to define the library and header names and
indicate how they should be organized, but this arrangement might not
be found on all OpenGL ES platforms. Developers should, however, refer
to the platform vendor’s documentation for information on how the
libraries and include files are named and organized. The official OpenGL
ES header files are maintained by Khronos and available from http://
khronos.org/registry/gles/. The sample code for the book also includes a
copy of the header files (working with the sample code is described in the
next chapter).

EGL Command Syntax

All EGL commands begin with the prefix egl and use an initial
capital letter for each word making up the command name (e.g.,
eglCreateWindowSurface). Similarly, EGL data types also begin with the
prefix Egl and use an initial capital letter for each word making up the
type name, except for EGLint and EGLenum.

Table 1-1 briefly describes the EGL data types used.

http://khronos.org/registry/gles/
http://khronos.org/registry/gles/

	 OpenGL ES Command Syntax	 21

OpenGL ES Command Syntax

All OpenGL ES commands begin with the prefix gl and use an initial capital
letter for each word making up the command name (e.g., glBlendEquation).
Similarly, OpenGL ES data types also begin with the prefix GL.

In addition, some commands might take arguments in different flavors.
The flavors or types vary in terms of the number of arguments taken
(one to four arguments), the data type of the arguments used (byte [b],
unsigned byte [ub], short [s], unsigned short [us], int [i], and float [f]),
and whether the arguments are passed as a vector (v). A few examples of
command flavors allowed in OpenGL ES follow.

The following two commands are equivalent except that one specifies the
uniform value as floats and the other as integers:

glUniform2f(location, l.Of, O.Of);
glUniform2i(location, 1, 0)

The following lines describe commands that are also equivalent, except
that one passes command arguments as a vector and the other does not:

GLfloat	 coord[4] = { l.Of, 0.75f, 0.25f, O.Of };
glUniform4fv(location, coord);
glUniform4f(location, coord[0], coord[l], coord[2], coord[3]);

Table 1-2 describes the command suffixes and argument data types used in
OpenGL ES.

Finally, OpenGL ES defines the type GLvoid. This type is used for OpenGL
ES commands that accept pointers.

In the rest of this book, OpenGL ES commands are referred to by their base
names only, and an asterisk is used to indicate that this base name refers

Table 1-1	 EGL Data Types

Data Type C-Language Type EGL Type

32-bit integer int EGLint

32-bit unsigned integer unsignedint EGLBoolean, EGLenum

Pointer void * EGLConfig,
EGLContext,
EGLDisplay,
EGLSurface,
EGLClientBuffer

22	 Chapter 1: Introduction to OpenGL ES 3.0

to multiple flavors of the command name. For example, glUniform*()
stands for all variations of the command you use to specify uniforms and
glUniform*v() refers to all the vector versions of the command you use
to specify uniforms. If a particular version of a command needs to be
discussed, we use the full command name with the appropriate suffixes.

Error Handling

OpenGL ES commands incorrectly used by applications generate an error
code. This error code is recorded and can be queried using glGetError.
No other errors will be recorded until the application has queried the first
error code using glGetError. Once the error code has been queried, the
current error code is reset to GL_NO_ERROR. The command that generated
the error is ignored and does not affect the OpenGL ES state except for the
GL_OUT_OF_MEMORY error described later in this section.

The glGetError command is described next.

Table 1-2	 OpenGL ES Command Suffixes and Argument Data Types

Suffix Data Type C-Language Type GL Type

b 8-bit signed integer signed char GLbyte

ub 8-bit unsigned integer unsigned char GLubyte,
GLboolean

s 16-bit signed integer short GLshort

us 16-bit unsigned integer unsigned short GLushort

i 32-bit signed integer int GLint

ui 32-bit unsigned integer unsigned int GLuint,
GLbitfield,
GLenum

x 16.16 fixed point int GLfixed

f 32-bit floating point float GLfloat,
GLclampf

i64 64-bit integer khronos_int64_t
(platform dependent)

GLint64

ui64 64-bit unsigned integer khronos_uint64_t
(platform dependent)

GLuint64

	 Basic State Management	 23

Table 1-3 lists the basic error codes and their description. Other error codes
besides the basic ones listed in this table are described in the chapters that
cover OpenGL ES commands that generate these specific errors.

Basic State Management

Figure 1-1 showed the various pipeline stages in OpenGL ES 3.0. Each
pipeline stage has a state that can be enabled or disabled and appropriate
state values that are maintained per context. Examples of states are
blending enable, blend factors, cull enable, and cull face. The state is
initialized with default values when an OpenGL ES context (EGLContext)
is initialized. The state enables can be set using the glEnable and
glDisable commands.

GLenum glGetError (void)

Returns the current error code and resets the current error code to
GL_NO_ERROR. If GL_NO_ERROR is returned, there has been no detectable
error since the last call to glGetError.

Table 1-3	 OpenGL ES Basic Error Codes

Error Code Description

GL_NO_ERROR No error has been generated since the last
call to glGetError.

GL_INVALID_ENUM A GLenum argument is out of range. The
command that generated the error is ignored.

GL_INVALID_VALUE A numeric argument is out of range. The
command that generated the error is ignored.

GL_INVALID_OPERATION The specific command cannot be performed
in the current OpenGL ES state. The
command that generated the error is ignored.

GL_OUT_OF_MEMORY There is insufficient memory to execute
this command. The state of the OpenGL ES
pipeline is considered to be undefined if this
error is encountered except for the current
error code.

24	 Chapter 1: Introduction to OpenGL ES 3.0

Later chapters will describe the specific state enables for each pipeline
stage shown in Figure 1-1. You can also check whether a state is currently
enabled or disabled by using the gIisEnabled command.

void glEnable(GLenum cap)

void glDisable(GLenum cap)

glEnable and glDisable enable and disable various capabilities. The
initial value for each capability is set to GL_FALSE except for GL_DITHER,
which is set to GL_TRUE. The error code GL_INVALID_ENUM is generated if
cap is not a valid state enum.

cap state to enable or disable, can be:
GL_BLEND

GL_CULL_FACE

GL_DEPTH_TEST

GL_DITHER

GL_POLYGON_OFFSET_FILL

GL_PRIMITIVE_RESTART_FIXED_INDEX

GL_RASTERIZER_DISCARD

GL_SAMPLE_ALPHA_TO_COVERAGE

GL_SAMPLE_COVERAGE

GL_SCISSOR_TEST

GL_STENCIL_TEST

GLboolean gIisEnabled(GLenum cap)

Returns GL_TRUE or GL_FALSE depending on whether the state being
queried is enabled or disabled. Generates the error code GL_INVALID_
ENUM if cap is not a valid state enum.

Specific state values such as blend factor, depth test values, and so on can
also be queried using appropriate glGet*** commands. These commands
are described in detail in Chapter 15, “State Queries.”

	 Further Reading	 25

Further Reading

The OpenGL ES 1.0, 1.1, 2.0, and 3.0 specifications can be found at
khronos.org/opengles/. In addition, the Khronos website (khronos.
org) has the latest information on all Khronos specifications, developer
message boards, tutorials, and examples.

•• Khronos OpenGL ES 1.1 website: http://khronos.org/opengles/1_X/

•• Khronos OpenGL ES 2.0 website: http://khronos.org/opengles/2_X/

•• Khronos OpenGL ES 3.0 website: http://khronos.org/opengles/3_X/

•• Khronos EGL website: http://khronos.org/egl/

http://khronos.org/opengles/1_X/
http://khronos.org/opengles/2_X/
http://khronos.org/opengles/3_X/
http://khronos.org/egl/

This page intentionally left blank

495

. (dot), vector access operator, 101–102
#elif directive, 116
#else directive, 116
#error directive, 116
#extension directive, 116
#if directive, 116
#pragma directive

definition, 116
enabling global invariance, 123

[] (square brackets), array subscript
operator, 101–102

2D texture arrays
loading, 260–262
new features, 11
overview, 230

2D textures
attached to framebuffer objects,

338–339
base formats, 227
overview, 226–227
in shaders, 255–257

3D textures
attached to framebuffer objects,

339–340
loading, 260–262
new features, 12
overview, 229

3D textures, noise
dust effects, 403–404
water wave simulation, 404
wispy fog, 402–404

A
abs function, 467
acos function, 465

acosh function, 466
Advanced RenderMan: Creating CGI for Motion

Pictures, 407
Aliasing artifacts. See Anti-aliasing;

Mipmapping.
all function, 473
Alpha test, 291–293
Android 4.3 (API 18), 451
Android NDK, 451
Android SDK, 451
Angles, built-in functions, 465–466
Animation, 2D images. See 2D texture

arrays.
Anti-aliasing

multi-sampled, 314–316
procedural textures, 407–410

any function, 473
Apache Ant, 451
ARM Mali OpenGL ES Emulator, 448
Array buffer objects, 140–141
Arrays, 104
Arrays of structures, 128. See also

Structures.
asin function, 465
asinh function, 466
Asynchronous objects, querying,

442–443
atan function, 465
atanh function, 466
Attributes. See also specific attributes.

active, counting, 77
active, querying, 93
getting, 92–93
largest name, getting, 77
setting, 92–93

Index

496	 Index

B
Back buffers, 41, 298
Backward compatibility, 17–18
Bias matrix, 392–393
Binaries. See Program binaries.
Binding

program objects, example, 39
renderbuffer objects, 330–331
texture objects, 231
vertex array objects, 151
vertex attributes, 137–140
vertex buffer objects, 141

Blend equations, new features, 17
Blending

colors, 311–314
per-fragment operations, 10

Blur effects, 387–390
Boolean occlusion queries, new features, 15
Buffer object to buffer object copies, new

features, 16
Buffer objects

copying, 159–160
deleting, 150
drawing with and without, 145–150
initializing, 145
updating, 145

Buffer objects, mapping
changing screen resolution, 157
data storage pointer, getting, 155–156
flushing mapped buffers, 158–159
overview, 154–155
unmapping, 155–156

Buffer objects, new features. See also
Uniform buffer objects; Vertex
buffer objects.

buffer object to buffer object
copies, 16

buffer subrange mapping, 16
pixel buffer objects, 16
sampler objects, 16
sync objects, 16
uniform buffer objects, 16
vertex array objects, 16

Buffer subrange mapping, new features, 16
Buffer write masks, 301–303
Buffers, fragments. See also Pbuffers (pixel

buffers).
back, 298
buffer write masks, 301–303
clearing, 299–301
depth of, 298

front, 298
making writable, 301–303
requesting, 299
size of, 298
swapping, 298–299
types of, 298

Built-in functions. See also Functions.
abs function, 467
acos, 465
acosh, 466
all, 473
angles, 465–466
any, 473
asin, 465
asinh, 466
atan, 465
atanh, 466
ceil, 468
clamp, 469
cos, 465
cosh, 466
cross, 473
degrees, 465
description, 107
determinant, 473
dFdx, 484
dFdy, 484
distance, 473
dot, 473
equal, 473
exp, 466
exp2, 466
exponential, 466–467
faceforward, 473
floatBitsToInt, 470
floatBitsToUInt, 470
floating-point pack and unpack,

471–472
floor, 467
fract, 468
fragment processing, 483–484
fwidth, 484
geometric, 472–473
greaterThan, 475
greaterThanEqual, 475
intBitsToFloat, 470
inverse, 474
inversesqrt, 467
isinf, 470
isnan, 470
length, 473

	 Index	 497

lessThan, 475
lessThanEqual, 475
log, 466
log2, 467
matrix, 474
matrixCompMult, 474
max, 468
min, 468
mix, 469
mod, 468
new features, 15
normalize, 473
not, 475
notEqual, 475
outerProduct, 474
packHalf2x16, 472
packSnorm2x16, 471
pow, 466
radians, 465
reflect, 473
refract, 473
round, 468
roundEven, 468
sign, 467
sin, 465
sinh, 466
smoothstep, 470
sqrt, 467
step, 470
tan, 465
tanh, 466
texture built-in, 478
texture lookup, 476–482
textureGrad, 481
textureGradOffset, 481
textureLod, 479
textureOffset, 480
textureProj built-in, 479
textureProjGrad, 482
textureProjGradOffset, 482
textureProjLod, 480
textureProjLodOffset, 480
textureSize, 478
transpose, 474
trigonometry, 465–466
trunc, 467
uintBitsToFloat, 470
unpackHalf2x16, 472
unpackSnorm2x16, 471
unpackUnorm2x16, 471–472
vector relational, 475

C
ceil function, 468
centroid keyword, 115
Centroid sampling, 14, 316
Checkerboard example, 405–407
clamp function, 469
Client space, 126
Clip panes, user, 293–295
Clipping

description, 176–177
lines, 177
point sprites, 177
triangles, 177

Color
blending, 311–314
color depth, simulating, 314
depth, simulating, 314
dithering, 314
fragments, 311–314
specifying for multiple render targets,

321–322
Color buffers

clearing, example, 39–40
fragment operations, 298–299, 302.

See also Fragments, buffers.
column_major qualifier, 110
Combining texture maps, 286–287
Command syntax, 20–21
Compiling shaders, example, 36–38
Compressing textures, 262–265
Compression formats, textures, 264–265
Conditional statements. See Control flow

statements.
Conditional tests, preprocessor directives,

115–117
const declarations, examples,

102–103
Constant store, 109
Constants, description, 102–103
Constructors. See Variable constructors.
Control flow statements, 107–108
Coordinate systems

clipping, 176–177
guard band region, 177
overview, 175

Copying
buffer objects, 159–160
pixels in framebuffer objects, 342–344
textures from the color buffer, 269–273

cos function, 465
cosh function, 466

498	 Index

Creating
EGL windows, 53–56, 64–65
EGLContexts, 60–62
fragment shaders, example, 35–36
pbuffers, 56–60
program objects, example, 38–39
renderbuffer objects, 329–330
rendering context, 60–62
shaders, example, 35–36
sync objects, 358–359
texture objects, 230
vertex array objects, 144, 151
vertex buffer objects, 141
vertex shaders, example, 35–36
windows, example, 34–35

cross function, 473
Cubemaps

example, 205–206
seamless filtering, new features,

12, 241
texturing, example, 258–260

Culling, 7, 180–181
Cygwin, 451

D
Data types

EGL, 20–21
matrix, 99–100
scalar, 99–100
type conversion, 100
vector, 99–100

Deferred shading, multiple render targets,
320–321

Degenerate triangles, 172
degrees function, 465
Deleting

buffer objects, 150
framebuffer objects, 346–347
program objects, 75
renderbuffer objects, 346–347
shaders, 70
sync objects, 358–359
texture objects, 230–231
vertex array objects, 154

Deletion status, querying, 77
Depth buffer test, 311
Depth buffers

attached to framebuffer objects,
337–338

sharing, 329

Depth buffers, fragment operations. See also
Fragments, buffers.

buffer write masks, 302–303
description, 298–299

Depth-of-field. See Rendering, to textures.
Depth test, per-fragment

operations, 10
Depth texture compare, 245–246
Depth textures, 12, 254–255
determinant function, 473
dFdx function, 484
dFdy function, 484
Directional light, example, 199–202
Directives. See Preprocessor directives.
disable behavior, 117
Displacement mapping, vertex shaders,

214–215
distance function, 473
Dithering, 10, 314
Dot (.), vector access operator, 101–102
dot function, 473
Double buffering, example, 41
Drawing fragments, example, 35–36
Drawing primitives

example, 40–41
geometry instancing, 169–172
multiple disconnected primitives,

168–169
multiple primitives, different attributes,

169–172
overview, 165–168
performance tips, 172–174
primitive restart, 168–169
provoking vertex, 168–169

Drawing surface, creating, 325–327.
See also FBOs (framebuffer
objects).

Dust effects, 403–404
Dynamic reflections. See Rendering, to

textures.

E
EGL

command syntax, 20–21
data types, 20–21
description, 19
display server, connecting to, 44–45
include files, 20
initializing, 44, 46
libraries, 20

	 Index	 499

programming with OpenGL ES 3.0, 20
rendering context, creating, 19
rendering surfaces, creating, 19

EGL error codes
EGL_BAD_ALLOC, 55, 58
EGL_BAD_ATTRIBUTE, 48, 51, 58
EGL_BAD_CONFIG, 55, 58, 61
EGL_BAD_DISPLAY, 46
EGL_BAD_MATCH, 55, 58
EGL_BAD_NATIVE_WINDOW, 55
EGL_BAD_PARAMETER, 47, 58, 67

EGL windows, creating
description, 53–56
with the esUtil library, 65–66

eglChooseConfig function, 51–53
EGLConfig data type

choosing surface configurations, 51–53
creating pbuffers, 56–60
determining available surface

configurations, 46–47
EGLConfig data type, attributes

querying, 48–50
specifying, 51–52
summary of, 49–50

EGL_CONTEXT_CLIENT_VERSION
attribute, 61

EGLContexts
associating with an EGLSurface,

62–63
creating, 60–62
making current, 62–63

EGL_CORE_NATIVE_ENGINE, 67
eglCreateContext function, 60–62
eglCreatePbufferSurface

command, 56–60
eglCreateWindowSurface function,

53–56
EGLDisplay data type, 44–45
eglGetConfigs function, 47
eglGetDisplay function, 44–45
eglGetError function, 45
EGL_HEIGHT attribute, 57
EGL_LARGEST_PBUFFER attribute, 57
eglMakeCurrent function, 62–63
EGL_MIPMAP_TEXTURE attribute, 57
EGL_NO_CONTEXT error, 58
EGL_NOT_INITIALIZED error, 46–47
EGLSurface, 62–63
eglSwapBuffers function, 41
EGL_TEXTURE_FORMAT attribute, 57

EGL_TEXTURE_TARGET attribute, 57
eglWaitClient function, 66–67
EGL_WIDTH attribute, 57
Element buffer objects, 140–141
Emulating OpenGL ES 3.0

ARM Mali OpenGL ES Emulator, 448
iOS 7, 453–455
OpenGL ES 3.0 Emulator, 447–449
PowerVR Insider SDK v 3.2+, 448
PowerVR OpenGL ES 3.0 Emulator,

449–450
Qualcomm Adreno SDK v3.4+, 447
Ubuntu Linux, 449–450
Windows, 447–449

enable behavior, 116
Entity names, querying, 429–435
Environment mapping

definition, 228, 370
example, 370
fragment shader, 372–373
vertex shader, 370–372

equal function, 473
Error checking, querying for error codes, 45
Error codes. See also specific codes.

querying for, 45
summary of, 23

Error handling, 22–23
ES Framework API

core functions, 485–489
esCreateWindow function, 34,

485–486
esFrustrum function, 198, 490
esGenCube function, 489
esGenSphere function, 488
esGenSquareGrid function, 489
esLoadProgram function, 487–488
esLoadShader function, 487
esLoadTGA function, 488
esLogMessage function, 489
esMatrixLoadIdentity function,

493
esMatrixMultiply function, 493
esOrtho function, 491
esPerspective function,

198–199, 491
esRegisterDrawFunc

function, 486
esRegisterKeyFunc function, 487
esRegisterShutdownFunc

function, 487

500	 Index

ES Framework API (cont.)
esRegisterUpdateFunc function,

486
esRotate function, 492–493
esScale function, 492
esTranslate function, 492
transformation functions, 490–494

esCreateWindow function, 34, 485–486
esFrustrum function, 198, 490
esGenCube function, 489
esGenSphere function, 488
esGenSquareGrid function, 489
esLoadProgram function, 487–488
esLoadShader function, 487
esLoadTGA function, 488
esLogMessage function, 489
esMain function, 34
esMatrixLoadIdentity

function, 493
esMatrixMultiply function, 493
esOrtho function, 491
esPerspective function, 198–199, 491
esRegisterDrawFunc function, 486
esRegisterKeyFunc function, 487
esRegisterShutdownFunc function,

487
esRegisterUpdateFunc function,

486
esRotate function, 492–493
esScale function, 492
esTranslate function, 492
esUtil library, creating EGL windows,

65–66
ETC/EAC texture compression, 12, 264–265
Example code. See also specific examples.

creating. See Hello Triangle.
downloading, 28–29

exp function, 466
exp2 function, 466
Exponential built-in functions, 466–467
Extension behaviors, 116–117
Extensions, 116–117

F
faceforward function, 473
FBOs (framebuffer objects). See also

Renderbuffer objects.
attachment points, 336–337
binding, 335–336
blits, 342–344
checking for completeness, 341–342

copying pixels, 342–344
creating, 329–330
definition, 327
deleting, 346–347
vs. EGL surfaces, 329
examples, 348–354
invalidation, 344–346
new features, 17
performance tips, 354
purpose of, 325–327
querying, 445–446
reading pixels, 347
vs. renderbuffer objects, 328
resolving multisample renderbuffers to

textures, 342–344
state values, 336
TBR GPUs, 345

FBOs (framebuffer objects), attachments
2D textures, 338–339
3D textures, 339–340
depth buffers, 337–338
renderbuffer objects, 337–338, 347

Fences, 358–361
Filtering textures. See Texture filtering.
Flat/smooth interpolators, 14, 114
floatBitsToInt function, 470
floatBitsToUInt function, 470
Floating-point

numbers. See GL_HALF_FLOAT data
type.

pack and unpack, built-in functions,
471–472

texture formats, 249–250
textures, new features, 12

floor function, 467
Fog effects. See also Particle systems.

linear fog, creating with a fragment
shader, 288–291

wispy fog, creating with noise, 402–404
fract function, 468
Fragment depth, new features, 15
Fragment processing, built-in functions,

483–484
Fragment shaders

2D texturing, 255–257
built-in constants, 284–285
built-in special variables, 283–284
creating, example, 35–36
examples, 9, 113–114
fragment depth, overriding, 284
front-facing fragments, identifying, 284
input variables, 8

	 Index	 501

inputs, 8
inputs/outputs, 111–114
maximum uniform blocks, querying, 91
MRTs (multiple render targets),

minimum/maximum number
of, 285

offsets, minimum/maximum, 285
overview, 8–9, 282–285
precision qualifiers, 285
samplers, 8
shader inputs, minimum/maximum

number of, 284
shader program, 8
Shading Language version, specifying, 9
texture coordinates for point sprites, 284
texture image units, minimum/

maximum number of, 285
uniforms, 8
vec4 uniform entries, minimum/

maximum number of, 285
window coordinates of current fragment,

283–284
Fragment shaders, fixed-function

techniques
alpha test, 291–293
combining texture maps, 286–287
fog effects, 288–291
multitexturing, 286–287
pipeline description, 280–282
transparent fragments, 291–293
user clip panes, 293–295

Fragments
blending pixel colors, 311–314
centroid sampling, 316
color depth, simulating, 314
depth, overriding, 284
dithering, 314
front-facing, identifying, 284
MRTs (multiple render targets), 320–324
multi-sampled anti-aliasing, 314–316
pixel pack buffer objects, 320
pixels, reading and writing, 316–320
rendered images, saving, 316–320
sample coverage masks, 315
transparent, 291–293
window coordinates of, 283–284

Fragments, buffers
back, 298
buffer write masks, 301–303
clearing, 299–301
depth of, 298
double buffering, example, 41

front, 298
making writable, 301–303
requesting, 299
size of, 298
swapping, 298–299
types of, 298. See also specific types.

Fragments, tests
depth buffer test, 311
overview, 303–304
scissor test, 304–305
stencil buffer test, 305–311
test enable tokens, 304

Framebuffer invalidation hints, 17, 344–345
Framebuffer objects (FBOs). See FBOs

(framebuffer objects).
Front buffers, 298
Frustrum, 7
Full integer support, new

features, 14
Functions. See also Built-in functions; ES

Framework API; specific functions.
description, 106
passing parameters to, 106
recursion, 106

fwidth function, 484

G
Gamma-correct rendering, new features, 11,

254. See also sRGB textures.
Geometric built-in functions, 472–473
Geometry, new features, 15. See also

Primitives.
Geometry instancing, 169–172
GL_ACTIVE_ATTRIBUTE_MAX_

LENGTH, 77
GL_ACTIVE_ATTRIBUTES, 77, 93
glActiveTexture function, 256
GL_ACTIVE_UNIFORM_ BLOCK_

MAX_LENGTH, 77
GL_ACTIVE_UNIFORM_BLOCKS, 77
GL_ACTIVE_UNIFORM_MAX_LENGTH,

77
GL_ACTIVE_UNIFORMS, 77
GL_ARRAY_BUFFER token, 140–141
GL_ATTACHED_SHADERS, 77
glAttachShader function, 75
glBeginQuery command, 184
glBeginTransformFeedback

command, 213
glBindAttribLocation

command, 139

502	 Index

glBindBuffer command, 142–143, 212
glBindBufferBase function, 91, 212
glBindBufferRange function, 91, 212
glBindFramebuffer, 335–336
glBindRenderbuffer function,

330–331
glBindSamplers function, 274–275
glBindTextures function, 231
glBindVertexArray function, 151
GL_BLEND token, 304
glBlendColor function, 313
glBlendEquation function, 313–314
glBlendEquationSeparate

function, 313–314
glBlendFunc function, 312–313
glBlendFuncSeparate function,

312–313
glBlitFramebuffer command,

343–344
glBufferData command, 144
GL_BUFFER_SIZE, 143
glBufferSubData command, 145
GL_BUFFER_USAGE, 143
glCheckFramebufferStatus

command, 342
GL_CLAMP_TO_EDGE mode, 243–244
glClear function, 40
glClear* functions, 299–300
glClientWaitSync function, 359–360
glColorMask function, 302
glCompileShader function, 37, 71–72
glCompresedTexImage* functions,

277–278
glCompresedTexSubImage*

functions, 277–278
glCompressedTexImage2D function,

263–264
glCompressedTexImage3D function,

263–264
glCompressedTexSubImage2D

function, 267
GL_COMPRESSED_TEXTURE_

FORMATS, 265
glCopyBufferSubData function,

159–160
glCopyTexImage2D function,

270–272
glCopyTexSubImage2D function,

270–272
glCopyTexSubImage3D function,

270–272
glCreateProgram function, 74–75

glCreateShader function, 36–37,
70–71

glCullFace command, 181
GL_CULL_FACE state, 181
GL_DECR operation, 306
GL_DECR_WRAP operation, 306–307
glDeleteBuffers command, 150
glDeleteFramebuffers command,

346–347
glDeleteProgram function, 75
glDeleteQueries command, 184
glDeleteRenderbuffers command,

346–347
glDeleteSamplers function, 273–274
glDeleteShader function, 70–71
GL_DELETE_STATUS, 77
glDeleteSync function, 359
glDeleteTextures function, 230–231
glDeleteVertexArrays

command, 154
glDepthFunc function, 311
glDepthMask function, 302
gl_DepthRange uniform type, 190
glDepthRangef command, 179
gl_DepthRangeParameters uniform

type, 190
GL_DEPTH_TEST token, 304, 311
glDetachShader function, 75
glDisable command, 23–24
glDisable function, 437–438
glDisableVertexAttribArray

command, 132–135
GL_DITHER token, 304
glDrawArrays function, 40–41,

165–168, 341
glDrawArraysInstanced command,

165–168, 170–172
glDrawBuffers function, 321–322
glDrawElements function, 165–168,

172–174, 341
glDrawElementsInstanced

command, 165–168, 170–172,
172–174

GL_DYNAMIC_COPY, 143
GL_DYNAMIC_DRAW, 143
GL_DYNAMIC_READ, 143
GL_ELEMENT_ARRAY_BUFFER token,

140–141
glEnable function, 23–24, 437–438
glEnableVertexAttribArray

command, 132–135
glEndQuery command, 184

	 Index	 503

glEndTransformFeedback
command, 213

glFenceSync function, 358
glFinish command, 358
glFlush command, 358
glFlushMappedBufferRange,

158–159
gl_FragCoord variable, 283–284
gl_FragDepth variable, 284
glFramebufferRenderbuffer

command, 337–338
glFramebufferTexture2D

command, 338–339
glFramebufferTextureLayer

command, 339–341
glFrontFace command, 180
gl_FrontFacing variable, 190, 284
glFrustrum function, see

esFrustrum function
glGenBuffers command, 142–143
glGenerateMipmap function, 242
glGenFramebuffers function, 330
glGenQueries command, 184
glGenRenderbuffers function,

329–330
glGenSamplers function, 273
glGenTextures function, 230
glGenVertexArrays function, 151
glGetActiveAttrib command,

136–137
glGetActiveAttrib function, 93
glGetActiveUniform function,

81–82
glGetActiveUniform* functions,

81–82
glGetActiveUniformBlockiv

function, 89–90
glGetActiveUniformBlockName

function, 89–90
glGetActiveUniformsiv function,

82, 87–88
glGetAttachedShaders

function, 438
glGetAttribLocation

command, 140
glGetBooleanv function, 423
glGetBufferParameter*

functions, 444
glGetBufferPointerv function,

444–446
glGetError command, 22–23
glGetFloatv function, 423

glGetFramebuffer
AttachmentParameteriv
function, 445–446

glGetInteger* functions, 423
glGetInteger64v function, 92
glGetIntegerv command, 91,

 214, 265
glGetProgramBinary function, 94
glGetProgramiv function

checking link status, 76
largest uniform name, getting, 81
number of active vertex attributes,

querying, 137–140
program compatibility, checking, 95

glGetQueryiv function, 442–443
glGetQueryObjectuiv function, 185,

213, 443
glGetRenderbufferParameteriv

function, 445–446
glGetSamplerParameter* functions,

442
glGetShaderInfoLog function, 72–73
glGetShaderiv function, 72
glGetShaderPrecisionFormat

function, 439–440
glGetShaderSource function, 439
glGetString* functions, 421–422
glGetSynciv function, 443
glGetTexParameter* functions,

441–442
glGetUniform* functions, 439
glGetUniformBlockIndex function,

89
glGetUniformLocation

function, 83
glGetVertexAttrib* functions,

440–441
GL_HALF_FLOAT data type

16-bit floating-point numbers, 458–459
converting float to half-float, 459–461
overview, 457–458

glHint function, 435–436
GL_INCR operation, 306
GL_INCR_WRAP operation, 306–307
GL_INFO_LOG_LENGTH, 77
gl_InstanceID variable, 171–172, 189
GL_INTERLEAVED_ATTRIBS, 77
glInvalidateFramebuffer

command, 345–346
glInvalidateSubFramebuffer

command, 345–346
GL_INVALID_ENUM code, 23

504	 Index

GL_INVALID_OPERATION code, 23
GL_INVALID_VALUE code, 23
GL_INVERT operation, 307
glIs* functions, 436
glIsEnabled function, 24, 437
GL_KEEP operation, 307
GL_LINE_LOOP, 163
GL_LINES, 163
GL_LINES mode, 213
GL_LINE_STRIP, 163
glLineWidth API call, 164
glLinkProgram command, 212
glLinkProgram function, 75–76
GL_LINK_STATUS, 95
glMapBufferRange command,

155–157
gl_MaxCombinedTexture

ImageUnits constant, 190
GL_MAX_COMBINED_UNIFORM_

BLOCKS, 91
gl_MaxDrawBuffers constant, 285
gl_MaxFragmentInputVectors

constant, 284
GL_MAX_FRAGMENT_UNIFORM_

BLOCKS, 91
GL_MAX_FRAGMENT_UNIFORM_

VECTORS, 109
gl_MaxFragmentUniformVectors

constant, 285
gl_MaxFragmentUniformVectors

variable, 109
gl_MaxProgramTexelOffset

constant, 285
gl_MaxTextureImageUnits

constant, 285
GL_MAX_UNIFORM_BLOCK_SIZE, 92
gl_MaxVertexAttribs constant, 190
gl_MaxVertexAttribs variable, 112
GL_MAX_VERTEX_ATTRIBS

variable, 112
GL_MAX_VERTEX_OUTPUT_

COMPONENTS variable, 113
gl_MaxVertexOutputVectors

constant, 190
gl_MaxVertexOutputVectors

variable, 113
gl_MaxVertexTextureImageUnits

constant, 190
GL_MAX_VERTEX_TEXTURE_UNITS,

213
GL_MAX_VERTEX_UNIFORM_BLOCKS,

91

GL_MAX_VERTEX_UNIFORM_
VECTORS, 109

gl_MaxVertexUniformVectors
constant, 190, 193–196

gl_MaxVertexUniformVectors
variable, 109

gl_MinProgramTexelOffset
constant, 285

GL_MIRRORED_REPEAT mode, 243–244
GL_NO_ERROR code, 23
GL_OUT_OF_MEMORY code, 23
glPixelStorei function, 235
GL_PIXEL_UNPACK_BUFFER,

277–278
gl_PointCoord variable, 164–165, 284
GL_POINTS mode, 164–165, 213
gl_PointSize variable, 164, 190
glPolygonOffset command, 182–183
gl_Position variable, 190
glProgramBinary function, 94
GL_PROGRAM_BINARY_

RETRIEVABLE_HINT, 77
GL_RASTERIZER_DISCARD, 214
glReadBuffer function, 269–270
glReadPixels function, 316–320,

346–347
GL_REFLECTION_MAP mode, 206
glReleaseShaderCompiler

function, 93
glRenderbufferStorage function,

331–332
glRenderbufferStorage

Multisample function,
331–332

GL_REPEAT mode, 243–244
GL_REPLACE operation, 306
GL_SAMPLE_ALPHA_TO_COVERAGE

token, 304
glSampleCoverage function,

315–316
GL_SAMPLE_COVERAGE token, 304
glScissor test, 304–305
GL_SEPARATE_ATTRIBS, 77
glShaderSource function, 37, 71
GL_SPHERE_MAP mode, 206
GL_STATIC_COPY, 143
GL_STATIC_DRAW, 143
GL_STATIC_READ, 143
glStencilFunc function, 305–311
glStencilFuncSeparate function,

305–306
glStencilMask function, 302–303

	 Index	 505

glStencilMaskSeparate function,
303

glStencilOp function, 306–311
glStencilOpSeparate function,

306–307
GL_STENCIL_TEST token, 304
GL_STREAM_COPY, 144
GL_STREAM_DRAW, 144
GL_STREAM_READ, 144
glTexImage* functions, 277–278
glTexImage2D function, 231–234
glTexImage3D function, 260–262
glTexParameter* commands

API overhead, 273
setting minification/magnification

filtering modes, 236, 239–240
texture coordinate wrapping, 243
texture detail level, setting, 245

glTexStorage2D function, 276–277
glTexStorage3D function, 276–277
glTexSubImage* functions, 277–278
glTexSubImage2D function, 266–267
glTexSubImage3D function, 267–269
GL_TEXTURE_BASE_LEVEL parameter,

245
GL_TEXTURE_COMPARE_FUNC

parameter, 245–246
GL_TEXTURE_COMPARE_MODE

parameter, 245–246
GL_TEXTURE_MAX_LOD parameter, 245
GL_TEXTURE_MIN_LOD parameter,

245
GL_TEXTURE_SWIZZLE_A parameter,

244–245
GL_TEXTURE_SWIZZLE_B parameter,

244–245
GL_TEXTURE_SWIZZLE_G parameter,

244–245
GL_TEXTURE_SWIZZLE_R parameter,

244–245
GL_TRANSFORM_FEEDBACK_

VARYINGS, 77
GL_TRANSFORM_FEEDBACK_BUFFER_

MODE, 77
GL_TRANSFORM_FEEDBACK_

PRIMITIVES_WRITTEN, 213
GL_TRANSFORM_FEEDBACK_

VARYING_MAX_LENGTH, 77
glTransformFeedbackVaryings

command, 212
GL_TRIANGLE_FAN, 162–163
GL_TRIANGLES, 162

GL_TRIANGLES mode, 213
GL_TRIANGLE_STRIP, 162
GL_UNIFORM_BLOCK_ACTIVE_

NUMBER_INDICES, 90
GL_UNIFORM_BLOCK_ACTIVE_

UNIFORMS, 90
GL_UNIFORM_BLOCK_BINDING, 90
glUniformBlockBinding function,

90–91
GL_UNIFORM_BLOCK_DATA_SIZE, 90
GL_UNIFORM_BLOCK_NAME_

LENGTH, 90
GL_UNIFORM_BLOCK_REFERENCED_

BY_VERTEX_SHADER, 90
GL_UNIFORM_BLOCK_REFERENCED_

BY_FRAGMENT_SHADER, 90
glUnmapBuffer command, 156–157
gluPerspective function, see

esPerspective function
glUseProgram function, 39, 78
glValidateProgram function, 78
GL_VALIDATE_STATUS, 77
glVertexAttrib* commands, 126
glVertexAttribDivisor command,

170–172
glVertexAttribPointer function,

40, 131–132
gl_VertexID variable, 189
glViewport command, 39, 178–179
GLvoid data type, 21
glWaitSync function, 360
GL_ZERO operation, 306
greaterThan function, 475
greaterThanEqual function, 475
Guard band region, 177

H
Hello Triangle

back buffer, displaying, 41
code framework, 28
color buffer, clearing, 39–40
double buffering, 41
drawing fragments, 35–36
geometry, loading, 40–41
OpenGL ES 3.0 framework, 34–35
primitives, drawing, 40–41
program objects, 38–39
source code, 29–33
transforming vertices, 35–36
viewport, setting, 39–40
windows, creating, 34–35

506	 Index

Hello Triangle, shaders
compiling and loading, 36–38
creating, 35–36
fragment, creating, 35–36
linking, 38–39
vertex, creating, 35–36

highp keyword, 120, 192–193
Hints, 77, 435–436

I
if-then-else tests. See Control flow

statements.
Images

dimensions, specifying, 331
format, specifying, 331

Images, postprocessing
blur effect, 387–390
light bloom, 389–390
render-to-texture setup, 387

Immutable textures, 13, 276–277
in qualifier, 106
Include files, EGL, 20
info logs, 77–78
Initializing

arrays, 104
buffer objects, 145
EGL, 44, 46
scalar data types, 100
structures, 103
vector data types, 100
vertex array objects, 144

inout qualifier, 106
Input variables, fragment shader, 8
Instance ID, new features, 15
Instanced rendering, new features, 15
intBitsToFloat function, 470
Integer texture formats, 250–252
Integer textures, new features, 12
Interpolation, 114–115
Interpolation qualifiers

centroid sampling, 115
default behavior, 114
flat shading, 114
smooth shading, 114

Interpolators
definition, 113
packing, 117–119

Invariance, 121–123
invariant keyword, 121–123
inverse function, 474
inversesqrt function, 467

iOS 7, 453–455
isinf function, 470
isnan function, 470

J
JDK (Java SE Development Kit) 7, 451

K
Keywords

centroid, 115
highp, 120, 192–193
invariant, 121–123
lowp, 120, 192–193
mediump, 120, 192–193

L
Latitude-longitude maps, example, 205–206
Layout qualifiers, 14, 109–110
length function, 473
Lens flare effects, 183–185
lessThan function, 475
lessThanEqual function, 475
Libraries, EGL, 20
Light bloom, 389–390
Light projection matrix, 392–393
Light view matrix, 392–393
Lighting

equations, 369–370
example, 199–205

Lighting, per fragment
lighting equations, 369–370
lighting shaders, 366–369
with a normal map, 364–365
overview, 363–364

Lighting shaders, 366–369
Lines

clipping, 177
description, 163–164
width, specifying, 164

Linking shaders, example, 38–39
Loading

2D texture arrays, 260–262
3D textures, 260–262
geometry, example, 40–41
shaders, 36–38, 73–74
shaders, example, 36–38
texture objects, 231–234
textures, 230–236
uniforms, 83–85

LoadShader function, 36–37
log function, 466

	 Index	 507

log2 function, 467
Loops. See Control flow statements.
lowp keyword, 120, 192–193

M
Macros, defining, 115–117
Magnification filtering mode, 236, 238–241
main function, vertex shader, 6–7
Mandatory online compiler, new features,

14
Mapping, texture formats to colors, 257
Mapping buffer objects

changing screen resolution, 157
data storage pointer, getting, 155–156
flushing mapped buffers, 158–159
overview, 154–155
unmapping, 155–156

Matrices
non-square, new features, 14
projective texturing, 392–393

Matrix built-in functions, 474
Matrix components, 101–102
Matrix construction, 101
Matrix data types, 99–100
Matrix transformations, example, 196–199
matrixCompMult function, 474
max function, 468
mediump keyword, 120, 192–193
Meshes, connecting, 172
min function, 468
Min/max functions, new features, 17
Minification filtering mode, 236, 238–241
Mipmap chains, 237–238
Mipmapping

automatic generation, 242
detail levels, specifying, 245
mipmap chains, 237–238
overview, 237–241

mix function, 469
mod function, 468
Model matrix, example, 197–198
Motion blur effects. See Rendering, to

textures.
MRTs (multiple render targets)

deferred shading, 320–321
in fragment shaders, 285
in fragments, 320–324
new features, 17
overview, 320
setting up, 322–324
specifying color attachments, 321–322

Multi-sampled anti-aliasing, 314–316
Multisample renderbuffers, 17, 333
Multitexturing, 286–287

N
Naming conventions, 102
Nearest sampling, 237
New features, buffer objects

buffer object to buffer object
copies, 16

buffer subrange mapping, 16
pixel buffer objects, 16
sampler objects, 16
sync objects, 16
uniform buffer objects, 16
vertex array objects, 16

New features, framebuffer
blend equations, 17
framebuffer invalidation hints, 17
min/max functions, 17
MRTs (multiple render targets), 17
multisample renderbuffers, 17
off-screen rendering, 17

New features, geometry
Boolean occlusion queries, 15
instanced rendering, 15
new vertex formats, 15
primitive restart, 15
transform feedback, 15

New features, shaders
built-in functions, 15
centroid sampling, 14
flat/smooth interpolators, 14
fragment depth, 15
full integer support, 14
instance ID, 15
layout qualifiers, 14
mandatory online compiler, 14
non-square matrices, 14
program binaries, 13–14
relaxed restrictions, 15
uniform blocks, 14
vertex ID, 15

New features, texturing
2D texture arrays, 11
3D textures, 12
depth textures, 12
ETC/EAC texture compression, 12
floating-point textures, 12
gamma-correct rendering, 11
immutable textures, 13

508	 Index

New features, texturing (cont.)
increased minimum sizes, 13
integer textures, 12
NPOT (non-power-of-2) textures, 13
seamless cubemap filtering, 12, 241
shadow comparisons, 12
sRGB textures and framebuffers, 11
texture LOD (level of detail)

features, 13
texture swizzles, 13
texturing, 11–13
vendor-specific compressed texture

formats, 12
New features, vendor-specific compressed

texture formats, 12
New vertex formats, new features, 15
Noise, 3D texture

dust effects, 403–404
example, 397
generating, 397–402
water wave simulation, 404
wispy fog, 402–404

noise3D function, 401
Non-square matrices, new features, 14
normalize function, 473
Normalized flag, 131–132
Normalized texture formats, 247–248
not function, 475
notEqual function, 475
NPOT (non-power-of-2) textures, new

features, 13

O
Occlusion queries, 183–185
Off-screen rendering, new

features, 17
Offsetting polygons, 181–183
OpenGL ES 1.0, specifications, 2
OpenGL ES 1.1

fixed-function vertex pipeline,
215–223

specifications, 2
OpenGL ES 2.0, specifications, 2–3
OpenGL ES 3.0

API specifications, 3–4
command syntax, 21–22
data types, 21–22
emulating. See Emulating OpenGL

ES 3.0.
error handling, 22–23
implementations, querying, 421–422

new features. See New features.
platforms. See Emulating OpenGL

ES 3.0.
specifications, 2–3

OpenGL ES 3.0, graphics pipeline. See also
specific components.

diagram, 4
fragment shader, 8–9
per-fragment operations, 9–11
primitive assembly, 7
rasterization, 7
vertex shader, 4–7

OpenGL ES 3.0 Emulator, 447–449.
See also Emulating OpenGL
ES 3.0.

OpenGL ES Shading Language 3.0,
specifications, 4

Operators, 104–105
out qualifier, 106
outerProduct function, 474
Overlapping polygons, 181–183

P
packed qualifier, 110
packHalf2x16 function, 472
Packing

interpolators, 117–119
uniforms, 117–119

packSnorm2x16 function, 471
Particle emissions, 381–385
Particle systems

fragment shader, 377–379
particle emissions, 381–385
point sprites, 374
rendering algorithm, 381
rendering particles, 385–386
setup, 374–375
transform feedback, 380, 381–385
vertex shader, 375–377

Pbuffers (pixel buffers)
attributes, 57
creating, 56–60
description, 56
errors, 58

PCF (percentage closest filtering), 245–246,
414

Per fragment lighting
lighting equations, 369–370
lighting shaders, 366–369
with a normal map, 364–365
overview, 363–364

	 Index	 509

Per-fragment operations
blending, 10
depth test, 10
dithering, 10
overview, 9–11
scissor test, 10
stencil test, 10

Performance
drawing primitives, 172–174
FBOs (framebuffer objects), 354
hints, 435–436
primitives, drawing, 172–174
vertex attributes, storing, 131–135

Perspective division, 178
Pixel buffer objects

new features, 16
pixel pack buffer objects, 320
pixel unpack buffer objects,

277–278
Pixel buffers (pbuffers)

attributes, 57
creating, 56–60
description, 56
errors, 59

Pixel pack buffer objects, 320
Pixel unpack buffer objects,

277–278
Pixels

copying in framebuffer objects,
342–344

in fragments, reading and writing,
316–320

reading in framebuffer objects, 347
storage options, 236
texels (texture pixels), 226–227

Point light, example, 202
Point sampling, 237
Point sprites

clipping, 177
description, 164–165
position, 164
radius, 164
texture coordinates for, 284

Point sprites in particle systems, 374
Polygons

joins, smoothing (example),
207–211

offsetting, 181–183
overlapping, 181–183

Position, point sprites, 164
Postprocessing effects. See Rendering,

to textures.

pow function, 466
PowerVR Insider SDK v 3.2+, 448
PowerVR OpenGL ES 3.0 Emulator,

449–450
Precision qualifiers

default precision, 120
variables, 119–120
vertex shaders, 119–120, 192–193

Preprocessor directives. See also specific
directives.

conditional tests, 115–117
description, 115–117

Primitive assembly
culling primitives, 7
overview, 174–175
perspective division, 178
view frustrum, 7
viewport transformation, 178–179

Primitive assembly, coordinate systems
clipping, 176–177
guard band region, 177
overview, 175

Primitive restart, 15, 168–169
Primitives. See also Geometry, new

features.
definition, 7, 161
drawing, 7. See also Rasterization.
types of, 162–165. See also specific

primitives.
Primitives, drawing

example, 40–41
geometry instancing, 169–172
multiple disconnected primitives,

168–169
multiple primitives, different attributes,

169–172
overview, 165–168
performance tips, 172–174
primitive restart, 168–169
provoking vertex, 168–169

Procedural textures
anti-aliasing, 407–410
checkerboard example, 405–407
example, 405–407
pros and cons, 404

Program binaries
compatibility check, 95
definition, 94
format, 95
getting, 94
new features, 13–14
saving, 94

510	 Index

Program objects. See also Shader objects;
Shaders.

attached shaders, counting, 77
attaching shaders, 75, 79
creating, 74–79
definition, 69–70
deleting, 75
deletion status, querying, 77
detaching shaders, 75
linking, 74–79
making active, 78
validating, 78

Projection matrix, example,
198–199

Projective texturing
basic techniques, 391–392
bias matrix, 392–393
definition, 391
light projection matrix, 392–393
light view matrix, 392–393
matrices, 392–393
overview, 390–391
spotlight shaders, 394–397

Provoking vertex, 168–169

Q
Qualcomm Adreno SDK v3.4+, 447
Qualifiers

column_major, 110
in, 106
inout, 106
out, 106
packed, 110
row_major, 110
shared, 110
std140, 110

Queries. See State queries.

R
radians function, 465
Radius, point sprites, 164
Rasterization

culling, 180–181
enabling/disabling, 214
pipeline, 179
polygon offset, 181–183

Recursion, in functions, 106
reflect function, 473
Reflective surfaces, 205–206. See also

Environment mapping; Projective
texturing; Rendering, to textures.

refract function, 473
Renderbuffer objects. See also FBOs

(framebuffer objects).
attached to framebuffer objects,

337–338, 347
binding, 330–331
creating, 329–330
default values, 331
definition, 327
deleting, 346–347
vs. FBOs (framebuffer objects), 328
formats, 333–335
image dimensions, specifying, 331
image format, specifying, 331
multisample, 333
state values, 331
vs. textures, 328

Renderbuffers
multisample, new features, 17
querying, 445–446

Rendering
from eye position with depth texture,

418–420
gamma-correct, new features, 11
instanced, new features, 15
from light position into depth texture,

415–418
off-screen area. See Pbuffers (pixel

buffers).
on-screen area. See Windows.
particles, 381, 385–386
rendered images, saving,

316–320
shadows with depth texture, 414–420
synchronizing, 66–67
terrain with vertex texture fetch,

410–414
Rendering, to off-screen surfaces.

See also FBOs (framebuffer
objects); Renderbuffer objects.

basic techniques, 326–327
new features, 17

Rendering, to textures. See also FBOs
(framebuffer objects).

basic techniques, 326–327
examples, 348–354
uses for, 326
while using the texture object in a

fragment shader, 341
Rendering context, creating, 19, 60–62,

325–327. See also EGL; FBOs
(framebuffer objects).

	 Index	 511

Rendering surfaces, creating with
EGL, 19. See also EGL.

require behavior, 116
round function, 468
roundEven function, 468
row_major qualifier, 110

S
Sample coverage masks, 315
Sampler objects, 16, 273–275
Samplers

definition, 256
fragment shader, 8
querying, 442
vertex shader, 4

Scalar data types
description, 99–100
initializing, 100
type conversion, 100

Scissor test, 10, 304–305
Screen resolution, effect on mapped buffer

objects, 157
Seamless cubemap filtering, new features,

12, 241
Shader compiler, 93
Shader objects, 69–70. See also Program

objects; Shaders.
Shaders. See also Fragment shaders; Vertex

shaders.
2D textures, 255–257
attached to programs, querying, 438–440
compiling, 70–74
creating, 70–74
deleting, 70
info log, retrieving, 72–73
linking, 70
loading, 73–74
source, providing, 71
texturing, 255–257
version specification,

declaring, 98
Shaders, new features

built-in functions, 15
centroid sampling, 14
flat/smooth interpolators, 14
fragment depth, 15
full integer support, 14
instance ID, 15
layout qualifiers, 14
mandatory online compiler, 14
non-square matrices, 14

program binaries, 13–14
relaxed restrictions, 15
uniform blocks, 14
vertex ID, 15

Shading Language version, specifying in
fragment shaders, 9

Shadow comparisons, new features, 12
Shadow mapping, 245–246. See also

Projective texturing; Rendering, to
textures.

Shadows, rendering, 414–420
Shared exponent texture formats, 252–253
shared qualifier, 110
Shimmering. See Z fighting.
Shiny surfaces, example, 205–206
sign function, 467
Signaling sync objects, 359–360
sin function, 465
sinh function, 466
Smoke effects. See Particle systems.
Smooth shading, 114
smoothstep function, 470
Specifications, OpenGL ES

1.0, 2
1.1, 2
2.0, 2–3
3.0, 2–3
3.0 API, 3–4
Shading Language 3.0, 4

Sphere maps, example, 205–206
Spotlight, example, 202–205
Spotlight shaders, 394–397
sqrt function, 467
Square brackets ([]), array subscript

operator, 101–102
sRGB textures, 11, 254. See also Gamma-

correct rendering.
Stairstep effects. See Anti-aliasing;

Mipmapping.
State management

checking current state, 24
enabling/disabling state, 23–24
overview, 23–24
querying state values, 24

State queries
application-modifiable queries,

429–435
asynchronous objects, 442–443
entity names, 429–435
framebuffer, 445–446
implementation-dependent limits,

423–428

512	 Index

State queries (cont.)
nonprogrammable operations control,

436–438
OpenGL ES 3.0 implementation string

queries, 421–422
renderbuffer, 445–446
samplers, 442
shaders attached to programs, 438–440
sync objects, 443
texture state, 441–442
vertex attributes, 440–441
vertex buffers, 444

std140 qualifier, 88–89, 110
Stencil buffer test, 305–311
Stencil buffers

buffer write masks, 303
fragment operations, 298–299, 303.

See also Fragments, buffers.
sharing, 329

Stencil test, per-fragment operations, 10
step function, 470
Structures, 103. See also Arrays of structures.
Structures of arrays, 128. See also Arrays.
Surface configurations

available, determining, 46–47
choosing with EGL, 51–53

Swapping, buffers, 298–299
Swizzles. See Texture swizzles.
Sync objects

creating, 358–359
deleting, 358–359
example, 360–361
fences, 358–361
new features, 16
overview, 357–358
querying, 443
signaling, 359–360
waiting for, 359–360

Synchronizing rendering, 66–67

T
tan function, 465
tanh function, 466
Terrain surfaces, 214–215, 410–414
Test enable tokens, 304
Tests, fragments

depth buffer test, 311
overview, 303–304
scissor test, 304–305
stencil buffer test, 305–311
test enable tokens, 304

Texels (texture pixels), 226–227
texture built-in function, 257, 260, 478
Texture coordinates

generating, example, 205–206
wrapping, 243–244

Texture filtering
magnification, 236, 238–241
minification, 236, 238–241
nearest sampling, 237
overview, 237–241
point sampling, 237
seamless cubemap filtering, 241

Texture filtering, mipmapping
automatic generation, 242
detail levels, specifying, 245
mipmap chains, 237–238
overview, 237–241

Texture formats
depth textures, 254–255
floating-point, 249–250
integer, 250–252
mapping to colors, 257
normalized, 247–248
overview, 246–247
shared exponent, 252–253
sRGB, 254
unsized, 247

Texture image units, in fragment shaders,
285

Texture LOD (level of detail) features, new
features, 13

Texture lookup built-in functions, 476–482
Texture maps, combining, 286–287
Texture objects

overview, 230–236
pixel storage options, 236

Texture pixels (texels), 226–227
Texture state, querying, 441–442
Texture swizzles

accessing vector components, 101
new features, 13
overview, 244–245

Texture units, specifying min/max number,
190

textureGrad function, 481
textureGradOffset function, 481
textureLod function, 479
textureOffset function, 480
textureProj built-in function, 391, 479
textureProjGrad function, 482
textureProjGradOffset

function, 482

	 Index	 513

textureProjLod function, 480
textureProjLodOffset

function, 480
Textures

color components, mapping. See Texture
swizzles.

combining texture maps, 286–287
compressing, 262–265
compression formats, 264–265
copying from the color buffer, 269–273
immutable, 276–277
multitexturing, 286–287
vs. renderbuffer objects, 328
subimage selection, 266–269

textureSize function, 478
Texturing

depth texture compare, 245–246
fetching from a texture map, 256
loading textures, 230–236
PCF (percentage closest filtering),

245–246
pixel unpack buffer objects,

277–278
sampler objects, 273–275
samplers, 256
in shaders, 255–257
texels (texture pixels), 226–227
volume textures. See 3D textures.

Texturing, 2D texture arrays
loading, 260–262
overview, 230

Texturing, 2D textures
attached to framebuffer objects, 338–339
base formats, 227
overview, 226–227
in shaders, 255–257

Texturing, 3D textures
attached to framebuffer objects, 339–340
loading, 260–262
overview, 229

Texturing, cubemap textures
environment mapping, 228–229
overview, 228–229

Texturing, new features
2D texture arrays, 11
3D textures, 12
depth textures, 12
ETC/EAC texture compression, 12
floating-point textures, 12
gamma-correct rendering, 11
immutable textures, 13
increased minimum sizes, 13

integer textures, 12
NPOT (non-power-of-2) textures, 13
seamless cubemap filtering, 12, 241
shadow comparisons, 12
sRGB textures and framebuffers, 11
texture LOD (level of detail) features, 13
texture swizzles, 13
texturing, 11–13
vendor-specific compressed texture

formats, 12
Texturing, texture objects

binding, 231
creating, 230
deleting, 230–231
loading, 231–234
minification/magnification filtering

modes, setting, 236
overview, 230–236
pixel storage options, 236

3D textures
attached to framebuffer objects, 339–340
loading, 260–262
new features, 12
overview, 229

3D textures, noise
dust effects, 403–404
water wave simulation, 404
wispy fog, 402–404

Transform feedback
example, 211–214
new features, 15
in particle systems, 380–385
vertex shader, 5

Transformation functions,
490–494

Transforming vertices, example,
35–36

Transparent fragments, 291–293
transpose function, 474
Triangle fans, drawing, 162–163
Triangle strips

connecting, 172–174
drawing, 162–163
generating degenerate triangles, 15
primitive restart, 15
winding order, 174

Triangles
clipping, 177
culling, 180–181
degenerate, 15, 172
description, 162–163
drawing, 162–163

514	 Index

Trigonometry built-in functions,
465–466

trunc function, 467
2D texture arrays

loading, 260–262
new features, 11
overview, 230

2D textures
attached to framebuffer objects,

338–339
base formats, 227
noise, 402
overview, 226–227
in shaders, 255–257

Type conversion, 100

U
Ubuntu Linux, emulating OpenGL ES 3.0,

449–450
uintBitsToFloat function, 470
Uniform block indexes, associating with

binding points, 90
Uniform blocks

active uniforms, counting, 90
description, 109–111
examples, 109–110
last buffer binding point, getting, 90
layout qualifiers, 109–110
maximum for all shaders, querying, 91
maximum per shader, querying, 91
minimum supported number, 91
minimum total buffer object size, 90
name length, getting, 90
new features, 14
references to, querying, 90

Uniform buffer objects. See also Buffer
objects.

available storage, querying, 92
binding, 91
new features, 16
overview, 87–92
programming limitations, 91

Uniform names
largest, counting characters, 81
largest, getting, 77, 81
maximum length, querying, 77

Uniform variables. See Uniforms.
Uniforms

active, counting, 77
active, querying, 77, 86–87
constant store, 109

description, 80, 108–109
first category, 80
fragment shader, 8
getting, 81–87
indexes, getting, 89
loading, 83–85
maximum number in vertex shaders,

193–196
maximum number of, determining, 109
named uniform blocks, 80, 88
packing, 117–119
properties, getting, 81–87
setting, 81–87
sharing, 87–92
std140 block layout, 88
vertex shader, 4

Unmapping mapped buffer objects,
155–156

unpackHalf2x16 function, 472
unpackSnorm2x16 function, 471
unpackUnorm2x16 function,

471–472
Unsized texture formats, 247
Updating, buffer objects, 145
User clip panes, 293–295

V
Validating programs, description, 78
Validation status, querying, 77
Variable constructors, 100–101
Variables, 119–120. See also specific variables.
Varying variables. See Vertex shaders, output

variables.
vec4 uniform entries, in fragment shaders,

285
Vector components

accessing, 101–102
naming conventions, 102

Vector data types
description, 99–100
initializing, 100
type conversion, 100

Vector relational built-in functions, 475
Vertex array objects

binding, 151
creating, 144, 151
deleting, 154
drawing with, 152–154
initializing, 144
new features, 16
overview, 150–151

	 Index	 515

Vertex attribute variables, declaring in
vertex shaders, 135–137

Vertex attributes
active, listing, 136–137
enabling/disabling, 132–135
minimum number required, 126
querying, 126, 440–441

Vertex attributes, binding
to attribute variables, 137–140
to locations, 139–140
querying results of, 140

Vertex attributes, specifying
client vertex arrays, 126–135
constant vertex attributes, 126
description, 126

Vertex attributes, storing. See also Arrays of
structures; Structures of arrays.

constant vertex attributes, 132–135
data conversions, 132
normalized flag, 131–132
performance tips, 131–135
selecting a data format, 131
vertex arrays, 132–135

Vertex buffer objects. See also Buffer
objects.

array buffer objects, 140–141
binding, 141
creating, 141
element buffer objects, 140–141
making current, 141
overview, 140–141
state, 143–144
types of, 140–141

Vertex buffers, querying, 444
Vertex ID, new features, 15
Vertex shaders

2D texturing, 255–257
displacement mapping, 214–215
inputs/outputs, 111–114, 188–189.

See also specific inputs/outputs.
interpolation, 114–115
interpolators, 113
maximum uniform blocks, querying, 91
min/max limits, 190–192, 193–196
output variables, 5
precision qualifiers, 119–120, 192–193
Shading Language version, specifying, 6
uniforms, maximum number of,

193–196
vertex normal, computing, 412–413
vertex textures, 214–215
water surfaces, 214–215

Vertex shaders, built-ins
constants, 190–192
special variables, 189–190
uniform state, 190

Vertex shaders, examples
creating vertex shaders, 35–36
cube maps, 205–206
directional light, 199–202
generating texture coordinates, 205–206
height value, fetching, 412–413
latitude-longitude maps, 205–206
lighting, 199–205
matrix transformations, 196–199
model matrix, 197–198
OpenGL ES 1.1 fixed-function vertex

pipeline, 215–223
point light, 202
polygon joins, smoothing, 207–211
projection matrix, 198–199
reflective surfaces, 205–206
shiny surfaces, 205–206
sphere maps, 205–206
spotlight, 202–205
terrain surfaces, 214–215
transform feedback, 211–214
vertex skinning, 207–211
view matrix, 197–198

Vertex shaders, overview
entry point, 6–7
example, 6
inputs/outputs, 4–5
main function, 6–7
samplers, 4
shader program, 4
transform feedback, 5
uniforms, 4
vertex shader output variables, 5

Vertex skinning, example, 207–211
Vertex textures, 214–215
Vertices, transforming (example), 35–36
View frustrum, 7
View matrix, example, 197–198
Viewport, setting (example), 39–40
Viewport transformation, 178–179
Visual artifacts. See Mipmapping; Z-fighting

artifacts.

W
Waiting for sync objects, 359–360
warn behavior, 117
Water surfaces, vertex shaders, 214–215

516	 Index

Water wave simulation, 404
Winding order, triangle strips, 174
Windowing systems, communicating with,

44–45
Windows, 34–35. See also EGL windows.
Windows, emulating OpenGL ES 3.0,

447–449

Wrapping, texture coordinates, 243–244

Z
Z-fighting artifacts

avoiding, 121–123
polygon offset, 181–183

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM

	Contents
	List of Figures
	List of Examples
	List of Tables
	Foreword
	Preface
	Intended Audience
	Organization of This Book
	Example Code and Shaders
	Errata

	Acknowledgments
	About the Authors
	1. Introduction to OpenGL ES 3.0
	OpenGL ES 3.0
	Vertex Shader
	Primitive Assembly
	Rasterization
	Fragment Shader
	Per-Fragment Operations

	What’s New in OpenGL ES 3.0
	Texturing
	Shaders
	Geometry
	Buffer Objects
	Framebuffer

	OpenGL ES 3.0 and Backward Compatibility
	EGL
	Programming with OpenGL ES 3.0
	Libraries and Include Files

	EGL Command Syntax
	OpenGL ES Command Syntax
	Error Handling
	Basic State Management
	Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

