
L A R R Y U L L M A N
E L I Z A B E T H C A S T R O

B R U C E H Y S L O P

HTML and CSS

Eighth Edition

 LEARN THE QUICK AND EASY WAY!

VISUAL QUICKSTART GUIDE

Peachpit Press

V I S U A L Q U I C K s ta r t G U I D E

HTML
and CSS

Eighth Edition

Elizabeth Castro  • B ruce Hyslop

Visual QuickStart Guide

HTML and CSS, Eighth Edition
Elizabeth Castro and Bruce Hyslop

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com.

Peachpit Press is a division of Pearson Education.

Copyright © 2014 by Elizabeth Castro and Bruce Hyslop

Editor: Clifford Colby
Development editor: Robyn G. Thomas
Production editor: David Van Ness
Copyeditor: Scout Festa
Technical editor: Aubrey Taylor
Compositor: David Van Ness
Indexer: Valerie Haynes Perry
Cover design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior design: Peachpit Press
Logo design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

css3generator.com screen shot courtesy of Randy Jensen.
css3please.com screen shot courtesy of Paul Irish.
dribbble.com screen shots courtesy of Dan Cederholm.
fontsquirrel.com screen shots courtesy of Ethan Dunham.
foodsense.is screen shots courtesy of Julie Lamba.
google.com/fonts screen shots courtesy of Google.
namecheap.com screen shots courtesy of Namecheap.
Silk icon set courtesy of Mark James (http://www.famfamfam.com/lab/icons/silk/).
Socialico font courtesy of Fontfabric (www.fontfabric.com).

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken
in the preparation of the book, neither the authors nor the publisher shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear
as requested by the owner of the trademark. All other product names and services identified throughout this book are
used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark.
No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13:	 978-0-321-92883-2
ISBN-10:	 0-321-92883-0

9  8  7  6  5  4  3  2  1

Printed and bound in the United States of America

http://www.peachpit.com
http://www.minesf.com
http://www.famfamfam.com/lab/icons/silk/
http://www.fontfabric.com

Dedication
To family.

To those I know who endured difficult challenges, demonstrating
courage and perseverance all the way.

Acknowledgments
One of my favorite parts of working on this
book has been the people I’ve been able to
work with. All are dedicated, professional,
good-natured, and good-humored folks who
made it a real pleasure. The book wouldn’t
be the same without their contributions.

A grateful, sincere thank you goes out to:

Nancy Aldrich-Ruenzel and Nancy Davis, for
their continued trust in me.

Cliff Colby, for his support, for bringing the
team together, and for keeping things light.

Robyn Thomas, for making the engine
go, improving copy, tracking all the
details, being flexible, and providing
encouragement.

Scout Festa, for her skill in simplifying lan-
guage, for her watchful eye, and for helping
to keep things consistent and polished.

Aubrey Taylor, for all the great suggestions
and technical feedback. They were very
helpful, and readers are better off for them.

David Van Ness, for leading the charge in
making it all look great and for all his efforts
in refining the layouts.

Valerie Haynes Perry, for compiling the
all-important index, which will be the first
destination for many readers in search of
information.

The marketing, sales, and other folks at
Peachpit, for working hard to make the book
available to readers.

Natalia Ammon, for the wonderful design
of the example webpage that adorns the
pages of Chapters 11 and 12, and other
spots. You can see more of her work at
www.nataliaammon.com.

Zach Szukala, for recommending Natalia.

Scott Boms, Ian Devlin, Seth Lemoine, Erik
Vorhes, and Brian Warren, for their contribu-
tions to the previous edition.

Victor Gavenda, for providing access to
necessary software.

Dan Cederholm, Ethan Dunham, Paul Irish,
Mark James, Randy Jensen, Julie Lamba,
Fontfabric, Google, and Namecheap, for
allowing me to use screen shots or design
assets (as the case may be).

C.R. Freer, for working her camera magic.

My family and friends, for providing inspira-
tion and breaks, for being patient, and for
not disowning me while I was holed up writ-
ing for months.

Robert Reinhardt, as always, for getting me
started in writing books and for having a
swell beard.

The Boston Bruins, for providing a lot of
playoffs thrills during my infrequent breaks.

The numerous folks in the web community
who have shared their expertise and experi-
ences for the betterment of others. (I’ve
cited many of you throughout the book.)

To you readers, for inspiring me to recall
when I began learning HTML and CSS so
that I may explain them in ways I hope you
find helpful. Thank you for choosing this
book as part of your journey in contributing
to the web. Happy reading!

And, lastly, I would like to give a special
thank you to Elizabeth Castro, who created
this title in the 1990s. She has taught count-
less readers how to build webpages over
many editions and many years. Because the
web has given me so much, I’m genuinely
appreciative of the opportunity to teach
readers via this title as well.

—Bruce

iv  Acknowledgments

http://www.nataliaammon.com

Contents at a Glance  v

Contents at a Glance

	 Introduction . xv

Chapter 1	 Webpage Building Blocks 1

Chapter 2	 Working with Webpage Files 27

Chapter 3	 Basic HTML Structure 43

Chapter 4	 Text . 87

Chapter 5	 Images . 133

Chapter 6	 Links . 157

Chapter 7	 CSS Building Blocks 169

Chapter 8	 Working with Style Sheets 189

Chapter 9	 Defining Selectors . 203

Chapter 10	 Formatting Text with Styles 229

Chapter 11	 Layout with Styles . 265

Chapter 12	 Building Responsive Webpages 309

Chapter 13	 Working with Web Fonts 335

Chapter 14	 Enhancements and Effects with CSS 361

Chapter 15	 Lists . 389

Chapter 16	 Forms . 409

Chapter 17	 Video, Audio, and Other Multimedia 449

Chapter 18	 Tables . 477

Chapter 19	 Adding JavaScript . 485

Chapter 20	 Testing & Debugging Webpages 495

Chapter 21	 Publishing Your Pages on the Web 511

Appendix	 HTML Reference . 519

	 Index . 533

This page intentionally left blank

Table of Contents  vii

Table of Contents

	 Introduction . xv

HTML and CSS in Brief xvi
Web Browsers . xvii
Web Standards and Specifications xviii
Progressive Enhancement: A Best Practice xx
Is This Book for You? . xxii
How This Book Works xxiv
Companion Website . xxvi

Chapter 1	 Webpage Building Blocks 1

Thinking in HTML . 3
A Basic HTML Page . 4
Markup: Elements, Attributes, Values, and More 8
A Webpage’s Text Content 12
Links, Images, and Other Non-Text Content 13
File and Folder Names 14
URLs . 15
HTML: Markup with Meaning 20
A Browser’s Default Display of Webpages 24
Key Takeaways . . 26

Chapter 2	 Working with Webpage Files 27

Planning Your Site . 28
Creating a New Webpage 30
Saving Your Webpage 32
Specifying a Default Page or Homepage 35
Editing Webpages . 36
Organizing Files . 37
Viewing Your Page in a Browser 38
The Inspiration of Others 40

Chapter 3	 Basic HTML Structure 43

Starting Your Webpage 44
Creating a Title . . 48

viii  Table of Contents

Creating Headings . 50
Common Page Constructs 53
Creating a Header . 54
Marking Navigation . 56
Marking the Main Area of a Webpage 59
Creating an Article . 60
Defining a Section . . 63
Specifying an Aside . 65
Creating a Footer . 70
Creating Generic Containers 73
Improving Accessibility with ARIA 78
Naming Elements with a Class or ID 82
Adding the Title Attribute to Elements 84
Adding Comments . 85

Chapter 4	 Text . 87

Adding a Paragraph . 88
Specifying Fine Print . 89
Marking Important and Emphasized Text 90
Creating a Figure . 92
Indicating a Citation or Reference 94
Quoting Text . 95
Specifying Time . 98
Explaining Abbreviations 101
Defining a Term . 103
Creating Superscripts and Subscripts 104
Adding Author Contact Information 106
Noting Edits and Inaccurate Text 108
Marking Up Code . 112
Using Preformatted Text 114
Highlighting Text . 116
Creating a Line Break . 118
Creating Spans . 120
Other Elements . 122

Chapter 5	 Images . 133

Images for the Web . 134
Getting Images . 140
Choosing an Image Editor 141
Saving Your Images . 142
Inserting Images on a Page 145

Table of Contents  ix

Offering Alternative Text 147
Specifying Image Sizes 149
Scaling Images with the Browser 152
Scaling Images with an Image Editor 154
Adding Icons for Your Website 155

Chapter 6	 Links . . 157

Creating a Link to Another Webpage
(and Other Link Basics) 158

Creating and Linking to Anchors 164
Creating Other Kinds of Links 166

Chapter 7	 CSS Building Blocks 169

Constructing a Style Rule 171
Adding Comments to Style Rules 172
Understanding Inheritance 174
The Cascade: When Rules Collide 177
A Property’s Value . 180

Chapter 8	 Working with Style Sheets 189

Creating an External Style Sheet 190
Linking to External Style Sheets 192
Creating an Embedded Style Sheet 194
Applying Inline Styles 196
The Cascade and the Order of Styles 198
Using Media-Specific Style Sheets 200
The Inspiration of Others: CSS 202

Chapter 9	 Defining Selectors . 203

Constructing Selectors 204
Selecting Elements by Name 206
Selecting Elements by Class or ID 208
Selecting Elements by Context 212
Selecting an Element That Is the First or Last Child . . 216
Selecting the First Letter or First Line of an Element . . 218
Selecting Links Based on Their State 220
Selecting Elements Based on Attributes 222
Specifying Groups of Elements 226
Combining Selectors . 227

x  Table of Contents

Chapter 10	 Formatting Text with Styles 229

Before and After . 230
Choosing a Font Family 232
Specifying Alternate Fonts 233
Creating Italics . 236
Applying Bold Formatting 238
Setting the Font Size . 240
Setting the Line Height 245
Setting All Font Values at Once 246
Setting the Color . 248
Setting the Background 250
Controlling Spacing . 257
Adding Indents . 258
Aligning Text . 259
Changing the Text Case 260
Using Small Caps . 261
Decorating Text . 262
Setting Whitespace Properties 264

Chapter 11	 Layout with Styles . 265

Considerations When Beginning a Layout 266
Structuring Your Pages 268
Styling HTML5 Elements in Older Browsers 272
Resetting or Normalizing Default Styles 274
The Box Model . 276
Controlling the Display Type and Visibility

of Elements . 278
Setting the Height or Width for an Element 282
Adding Padding Around an Element 286
Setting the Border . 288
Setting the Margins Around an Element 292
Making Elements Float 295
Controlling Where Elements Float 297
Positioning Elements Relatively 301
Positioning Elements Absolutely 302
Positioning Elements in a Stack 304
Determining How to Treat Overflow 305
Aligning Elements Vertically 306
Changing the Cursor . 308

Table of Contents  xi

Chapter 12	 Building Responsive Webpages 309

Responsive Web Design: An Overview 310
Making Images Flexible 312
Creating a Flexible Layout Grid 315
Understanding and Implementing Media Queries . . . 319
Putting It All Together 326
Accommodating Older Versions of

Internet Explorer . 333

Chapter 13	 Working with Web Fonts 335

What Is a Web Font? . 336
Where to Find Web Fonts 338
Downloading Your First Web Font 342
Understanding the @font-face Rule 345
Styling Text with a Web Font 346
Applying Italics and Bold with a Web Font 349
Using Web Fonts from Google Fonts 357

Chapter 14	 Enhancements and Effects with CSS 361

Browser Compatibility, Progressive Enhancement,
and Polyfills . 362

Understanding Vendor Prefixes 364
Rounding the Corners of Elements 365
Adding Drop Shadows to Text 368
Adding Drop Shadows to Elements 370
Applying Multiple Backgrounds 373
Using Gradient Backgrounds 376
Setting the Opacity of Elements 382
Effects with Generated Content 384
Combining Images with Sprites 387

Chapter 15	 Lists . 389

Creating Ordered and Unordered Lists 390
Choosing Your Markers 393
Using Custom Markers 394
Choosing Where to Start List Numbering 397
Controlling Where Markers Hang 398
Setting All List-Style Properties at Once 399
Styling Nested Lists . 400
Creating Description Lists 404

xii  Table of Contents

Chapter 16	 Forms . 409

Improvements to Forms in HTML5 410
Creating Forms . 413
Processing Forms . 416
Organizing the Form Elements 418
Creating Text Boxes . 422
Labeling Form Parts . 425
Creating Password Boxes 427
Creating Email, Search, Telephone, and

URL Boxes . 428
Creating Radio Buttons 432
Creating Checkboxes 434
Creating Text Areas . 436
Creating Select Boxes 437
Allowing Visitors to Upload Files 439
Creating Hidden Fields 440
Creating a Submit Button 441
Disabling Form Elements 444
Styling Forms Based on Their State 446

Chapter 17	 Video, Audio, and Other Multimedia 449

Third-Party Plugins and Going Native 450
Video File Formats . 451
Adding a Video to Your Webpage 452
Adding Controls and Autoplay to Your Video 454
Looping a Video and Specifying a Poster Image 456
Preventing a Video from Preloading 457
Using Video with Multiple Sources and

a Text Fallback . 459
Providing Accessibility 462
Audio File Formats . 463
Adding an Audio File with Controls to

Your Webpage . 464
Autoplaying, Looping, and Preloading Audio 466
Providing Multiple Audio Sources with a Fallback . . . 468
Adding Video and Audio with a Flash Fallback 470
Advanced Multimedia 475
Further Resources . 476

Table of Contents  xiii

Chapter 18	 Tables . 477

Structuring Tables . 478
Spanning Columns and Rows 482

Chapter 19	 Adding JavaScript . 485

Loading an External Script 487
Adding an Embedded Script 492
JavaScript Events . 493

Chapter 20	 Testing & Debugging Webpages 495

Validating Your Code . 496
Testing Your Pages . 498
Trying Some Debugging Techniques 502
Checking the Easy Stuff: General 504
Checking the Easy Stuff: HTML 506
Checking the Easy Stuff: CSS 508
When Images Don’t Display 510

Chapter 21	 Publishing Your Pages on the Web 511

Getting Your Own Domain Name 512
Finding a Host for Your Site 513
Transferring Files to the Server 515

Appendix	 HTML Reference . 519

	 Index . 533

This page intentionally left blank

Introduction  xv

Introduction

Whether you are just beginning your
venture into building websites or have built
some before but want to ensure that your
knowledge is current, you’ve come along
at a very exciting time.

How we code and style webpages, the
browsers in which we view the pages, and
the devices on which we visit the web have
all advanced substantially the past few
years. Once limited to browsing the web
from our desktop computers or laptops,
we can now take the web with us on any
number of devices: phones, tablets, and,
yes, laptops and desktops.

Which is as it should be, because the
web’s promise has always been the
dissolution of boundaries—the power to
share and access information from any
metropolis, rural community, or anywhere

in between and on any web-enabled
device. In short, the web’s promise lies in
its universality. And its reach continues to
expand as technology finds its way to com-
munities that were once shut out.

Better still, the web belongs to everyone,
and anyone is free to create and launch
a site. This book shows you how. It is
ideal for the beginner with no knowledge
of HTML or CSS who wants to begin
to create webpages. You’ll find clear,
easy-to-follow instructions that take you
through the process of creating pages
step by step. And the book is a helpful
guide to keep handy. You can look up
topics in the table of contents or index and
consult just those subjects about which
you need more information.

xvi  Introduction

HTML and CSS in Brief
At the root of the web’s success is a
simple, text-based markup language that
is easy to learn and that any device with a
basic web browser can read: HTML. Every
webpage requires at least some HTML; it
wouldn’t be a webpage without it.

As you will learn in greater detail as you
read this book, HTML is used to define
your content, and CSS is used to control
how your content and webpage will look.
Both HTML pages and CSS files (style
sheets) are text files, making them easy
to edit. You can see snippets of HTML and
CSS in “How This Book Works,” near the
end of this introduction.

You’ll dive into learning a basic HTML page
right off the bat in Chapter 1, and you’ll
begin to learn how to style your pages with
CSS in Chapter 7. See “What this book will
teach you” later in this introduction for an
overview of the chapters and a summary of
the primary topics covered.

The word HTML is all encompassing, rep-
resenting the language in general. HTML5
is used when referring to that specific
version of HTML, such as when discussing
a feature that is new in HTML5 and doesn’t
exist in previous versions. The same
approach applies to usage of the terms
CSS (general) and CSS3 (specific to CSS3).

HTML and HTML5
It helps to know some basics about the
origins of HTML to understand HTML5.

HTML began in the early 1990s as a short
document that detailed a handful of ele-
ments used to build webpages. Many of
those elements were for content such as
headings, paragraphs, lists, and links to
other pages. HTML’s version number has
increased as the language has evolved

with the introduction of other elements and
adjustments to its rules. The most current
version is HTML5.

HTML5 is a natural evolution of earlier
versions of HTML and strives to reflect the
needs of both current and future websites.
It inherits the vast majority of features
from its predecessors, meaning that if you
coded HTML before HTML5 came on the
scene, you already know a lot of HTML5.
This also means that much of HTML5
works in both old and new browsers; being
backward compatible is a key design
principle of HTML5 (see www.w3.org/TR/
html-design-principles/).

HTML5 also adds a bevy of new features.
Many are straightforward, such as addi-
tional elements (article, main, figure,
and many more) that are used to describe
content. Others are complex and aid in
creating powerful web applications. You’ll
need a firm grasp of creating webpages
before you can graduate to the more
complicated features that HTML5 provides,
which is why this book focuses on the for-
mer. HTML5 also introduces native audio
and video playback to your webpages,
which the book also covers.

CSS and CSS3
The first version of CSS didn’t exist until
after HTML had been around for a few
years, becoming official in 1996. Like
HTML5 and its relationship to earlier ver-
sions of HTML, CSS3 is a natural extension
of the versions of CSS that preceded it.

CSS3 is more powerful than earlier ver-
sions of CSS and introduces numerous
visual effects, such as drop shadows,
rounded corners, gradients, and much
more. (See “What this book will teach you”
for details of what’s covered.)

http://www.w3.org/TR/html-design-principles/
http://www.w3.org/TR/html-design-principles/

Introduction  xvii

Web Browsers
We all use a web browser to visit websites,
whether on a computer A, a phone, or
another device. However, the browser you
use might be different than the one some-
one else uses.

Windows comes preinstalled with Internet
Explorer, Microsoft’s browser. OS X comes
preinstalled with Safari, Apple’s browser.
There are other browsers you may down-
load for free and use instead, such as
Chrome (by Google), Firefox (by Mozilla) A,
and Opera (by Opera Software)—and that’s
just for the desktop.

On mobile devices, you’ll find the mobile
version of Safari (for iPhone, iPad, and iPod
touch); various default Android browsers;
Chrome for Android; Firefox for Android;
Opera Mini; and more.

I’ll refer to various browsers throughout the
book. For the most part, the latest version
of each one has similar support for the
HTML and CSS features you’ll learn about.
But sometimes a feature doesn’t work on
one or more browsers (or works differ-
ently). I’ll note those cases and typically
offer a way to handle them. This mostly
pertains to Internet Explorer 8, the oldest
browser that is still relevant enough to be
of concern. (Its usage is dropping, so that
could change in 2014 or so.)

“Testing Your Pages” in Chapter 20 pro-
vides information about how to acquire
various browsers, which ones are the most
important for testing your webpages, and
how to test your pages.

A The desktop version of Firefox

Browser Version Numbers
Like HTML and CSS, browsers have ver-
sion numbers. The higher the number,
the more recent it is.

For instance, Safari 7 is more recent
than Safari 6, which is more recent than
Safari 5. Internet Explorer 10 is more
recent than Internet Explorer 9. But
Internet Explorer 10 is not more recent
than Safari 7.

This is true because Microsoft, Apple,
and the other browser vendors do
not collectively coordinate either their
version numbers or when they will all
release new versions. Chrome and
Firefox release new versions every six
weeks so naturally have much higher
version numbers than the other brows-
ers, which are updated roughly once a
year at best.

Regardless of who is releasing what and
when, the latest version of a browser will
have better support for HTML and CSS
(and other) features than the previous
versions do, as you would expect.

xviii  Introduction

Web Standards and
Specifications
You might be wondering who created
HTML and CSS in the first place, and who
continues to evolve them. The World
Wide Web Consortium (W3C)—directed
by the inventor of the web and HTML, Tim
Berners-Lee—is the organization respon-
sible for shepherding the development of
web standards.

The W3C releases specifications (or
specs, for short) that document these web
standards. They define the parameters of
languages like HTML and CSS. In other
words, specs standardize the rules. Follow
the W3C’s activity at www.w3.org A.

A The W3C site is the industry’s primary source of
web standards specifications.

The W3C and WHATWG
For a variety of reasons, another organization—the Web Hypertext Application Technology Work-
ing Group (WHATWG)—is developing most of the HTML5 specification. The W3C incorporates
WHATWG’s work into its official version of the in-progress spec. You can find the WHATWG at
www.whatwg.org.

If you want to dig into various specs (recommended!), here are the latest versions:

.. HTML5 (W3C):
http://www.w3.org/TR/html5/

.. HTML5.1 (W3C):
http://www.w3.org/TR/html51/

.. HTML Living Standard (WHATWG):
http://www.whatwg.org/specs/web-apps/current-work/multipage/

The HTML Living Standard includes newer features under development (and very much in flux)
and informs the W3C’s HTML5.1 spec.

There are too many CSS specs to list, but you can see them at
http://www.w3.org/standards/techs/css#w3c_all.

http://www.w3.org
http://www.whatwg.org
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html51/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3.org/standards/techs/css#w3c_all

Introduction  xix

With standards in place, we can build our
pages from the agreed-upon set of rules,
and browsers can be built to display our
pages with those rules in mind. (On the
whole, browsers implement the standards
well. Older versions of Internet Explorer,
especially Internet Explorer 8, have some
issues.)

Specifications go through several stages of
development before they are considered
final, at which point they are dubbed a
Recommendation (www.w3.org/2005/10/
Process-20051014/tr).

Parts of the HTML5 and CSS3 specs
are still being finalized, but that doesn’t
mean you can’t use them. It just takes
time (literally years) for the standardiza-
tion process to run its course. Browsers
begin to implement a spec’s features long
before it becomes a Recommendation,
because that informs the spec develop-
ment process itself. So browsers already
include a wide variety of features in
HTML5 and CSS3, even though they aren’t
Recommendations yet.

On the whole, the features covered in this
book are well entrenched in their respec-
tive specs, so the risk of their changing
prior to becoming a Recommendation
is minimal. Developers have been using
many HTML5 and CSS3 features for some
time. So can you.

Differences Between
HTML4 and HTML5
If you have prior experience with HTML4
and are wondering what is different in
HTML5, the W3C has created just the
document for you: http://www.w3.org/TR/
html5-diff/.

I call out many of the differences at
various points in the book. They aren’t
particularly important to know for those
of you who are new to HTML, because
HTML5 is what virtually everyone uses
now. But you might find the W3C’s docu-
ment interesting to peruse regardless.

http://www.w3.org/2005/10/Process-20051014/tr
http://www.w3.org/2005/10/Process-20051014/tr
http://www.w3.org/TR/html5-diff/
http://www.w3.org/TR/html5-diff/

xx  Introduction

Progressive
Enhancement:
A Best Practice
I began the introduction by speaking of
the universality of the web—the notion
that the web should be accessible to all.
Progressive enhancement helps you build
sites with universality in mind. It is not a
language, but rather an approach to build-
ing sites that Steve Champeon promoted
beginning in 2003 (http://en.wikipedia.org/
wiki/Progressive_enhancement).

The idea is simple but powerful: Start your
site with HTML content and basic behavior
that is accessible to all visitors A. To the
same page, add your design with CSS B
and additional behavior with JavaScript
(a programming language). These compo-
nents are kept separate but work together.

A A basic HTML page with no custom CSS
applied to it. Primarily, only very old browsers
would display it this way. The page may not look
great, but the information is accessible—and that’s
what’s important.

http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Progressive_enhancement

Introduction  xxi

The result is that browsers capable of
accessing basic pages will get the simpli-
fied, default experience A. Even browsers
from the inception of the web more than
20 years ago can display this page; so
too can the oldest or simplest of mobile
phones with web browsers. And screen
readers, software that reads webpages
aloud to visually impaired visitors, will be
able to navigate it easily.

Meanwhile, modern browsers capable
of viewing more-robust sites will see the
enhanced version B. The capabilities of
yet other (somewhat older) browsers might
fall somewhere in between; so, too, could
the way they display the page. The experi-
ence on your site doesn’t have to be the
same for everyone, as long as your content
is accessible.

In essence, the idea behind progressive
enhancement is that everyone wins.

B The same page as viewed in a browser that
supports CSS. It’s the same information, just
presented differently. (The content on the right
side would be visible in A if you were to scroll
down the page.)

More Examples
Take an early peek at Chapter 12 if you’re
interested in seeing how the principle
of progressive enhancement helps you
build a website that adapts its layout
based on a device’s screen size and
browser capabilities. It can look great on
mobile, desktop, and beyond.

Or see Chapter 14 for how older brows-
ers can display simplified designs while
modern browsers display ones enhanced
with CSS3 effects.

Elsewhere in the book, you’ll learn other
techniques that allow you to build pro-
gressively enhanced webpages.

xxii  Introduction

Is This Book for You?
This book assumes no prior knowledge
of building websites. So in that sense, it
is for the absolute beginner. You will learn
both HTML and CSS from the ground up. In
the course of doing so, you will also learn
about features that are new in HTML5
and CSS3, with an emphasis on many that
designers and developers are using today
in their daily work.

But even if you are familiar with HTML and
CSS, you still stand to learn from this book,
especially if you want to get up to speed
on the new elements in HTML5, several
CSS3 effects, responsive web design, and
various best practices.

What this book will teach you
The chapters are organized like so:

n	 Chapters 1 through 6 and 15 through 18
cover the principles of creating HTML
pages and most of the HTML elements
at your disposal, with clear examples
demonstrating how and when to use
each one.

n	 Chapters 7 through 14 dive into CSS,
all the way from creating your first style
rule to applying enhanced visual effects
with CSS3.

n	 Chapter 19 shows you how to add pre-
written JavaScript to your pages.

n	 Chapter 20 tells you how to test and
debug your pages before putting them
on the web.

n	 Chapter 21 explains how to secure your
own domain name and then publish
your site on the web for all to see.

Covered topics include the following:

n	 Creating, saving, and editing HTML and
CSS files.

n	 What it means to write semantic HTML
and why it is important.

n	 How to separate your page’s HTML
content, CSS presentation, and
JavaScript behavior—a key aspect of
progressive enhancement.

n	 Structuring your content in a meaningful
way by using HTML elements that have
been around for years as well as ones
that are new in HTML5.

n	 Linking from one webpage to another, or
from one part of a page to another part.

n	 Adding images to your pages and opti-
mizing them for the web. This includes
creating images targeted for Apple’s
Retina display and other high-pixel-
density screens.

n	 Improving your site’s accessibility with
ARIA (Accessible Rich Internet Applica-
tions) landmark roles and other good
coding practices.

n	 Styling text (size, color, bold, italics, and
more) and adding background colors
and images.

n	 Implementing a multi-column webpage
layout.

n	 Building a responsive webpage. That
is, a page that shrinks or expands to fit
your visitor’s screen and with a layout
that adapts in other ways as you wish.
The result is a page that’s appropriate
for mobile phones, tablets, laptops,
desktop computers, and other web-
enabled devices.

Introduction  xxiii

Some of the topics not covered include the
following:

n	 The HTML5 details, summary, menu,
command, output, and keygen elements.
The W3C has included some of these
on their list of features that might not
make the cut when HTML5 is finalized
in 2014. The others are used infre-
quently at best.

n	 The HTML5 canvas element, which
allows you to draw graphics, create
games, and more. Also, Scalable Vector
Graphics (SVG). Both are mentioned
briefly in Chapter 17, with links to more
information.

n	 The HTML5 APIs and other advanced
features that require JavaScript knowl-
edge or are otherwise not directly
related to the new HTML5 elements.

n	 CSS3 transforms, animations, and
transitions. See www.htmlcssvqs.com/
resources/ for links to learn more.

n	 CSS3’s new layout methods, such as
FlexBox, Grid, and more. They are
poised to change the way we lay out
pages once the specs shake out and
browser support is stronger. See Zoe
Mickley Gillenwater’s presentation at
www.slideshare.net/zomigi/css3-layout,
or see Peter Gasston’s article at
www.netmagazine.com/features/
pros-guide-css-layouts.

n	 Adding custom web fonts to your
pages with @font-face and using fonts
from services like Font Squirrel and
Google Fonts.

n	 Using CSS3 effects such as opacity,
background alpha transparency, gradi-
ents, rounded corners, drop shadows,
shadows inside elements, text shadows,
and multiple background images.

n	 Taking advantage of CSS generated
content and using sprites to minimize
the number of images your page needs,
making it load faster for your visitors.

n	 Building forms to solicit input from your
visitors, including using some of the
new form input types in HTML5.

n	 Including media in your pages with the
HTML5 audio and video elements for
modern browsers, and a Flash fall-
back audio or video player for older
browsers.

n	 And more.

These topics are complemented by many
dozens of code samples that demonstrate
how to implement the features based on
best practices in the industry.

What this book won’t teach you
Alas, with so many developments in the
world of HTML and CSS in recent years,
we had to leave out some topics. With
a couple of exceptions, we stuck to omit-
ting items that you would likely have
fewer occasions to use, are still subject
to change, lack widespread browser
support, require JavaScript knowledge,
or are advanced subjects.

http://www.htmlcssvqs.com/resources/
http://www.htmlcssvqs.com/resources/
http://www.slideshare.net/zomigi/css3-layout
http://www.netmagazine.com/features/pros-guide-css-layouts
http://www.netmagazine.com/features/pros-guide-css-layouts

xxiv  Introduction

How This Book Works
Nearly every section of the book contains
practical code examples that demonstrate
real-world use (A and B). Typically, they
are coupled with screen shots that show
the results of the code when you view the
webpage in a browser C.

Most of the screen shots are of the latest
version of Firefox that was available at
the time. However, this doesn’t imply a
recommendation of Firefox over any other
browser. The code samples will look similar
in any of the latest versions of Chrome,
Internet Explorer, Opera, or Safari.

...
<body>
<header class="masthead" role="banner">
	 ...
		 <nav role="navigation">
			 <ul class="nav-main">
				 Home
				 About
				 Contact
			
		 </nav>
	 ...
</header>
...
</body>
</html>

A You’ll find a snippet of HTML code on many pages, with the pertinent sections highlighted. An ellipsis (...)
represents additional code or content that was omitted for brevity. Often, the omitted portion is shown in a
different code figure.

The code and screen shots are accompa-
nied by descriptions of the HTML elements
or CSS properties in question, both to
increase your understanding of them and
to give the samples context.

In many cases, you may find that the
descriptions and code samples are enough
for you to start using the HTML and CSS
features. But if you need explicit guidance
on how to use them, step-by-step instruc-
tions are provided as well.

Finally, most sections contain tips that
relay additional usage information, best
practices, references to related parts of the
book, links to relevant resources, and more.

Introduction  xxv

Conventions used in this book
The book uses the following conventions:

n	 Text that is a placeholder for a value
you would create yourself is italicized.
Most placeholders appear in the step-
by-step instructions. For example,
“Type padding: x;, where x is the
amount of desired space to be added.

n	 Code that you should actually type or
that represents HTML or CSS code
appears in this font.

n	 An arrow (➝) in a code figure indicates
a continuation of the previous line—the
line has been wrapped to fit in the
book’s column B. The arrow is not part
of the code itself, so it’s not something
you would type. Instead, type the line
continuously, as if it had not wrapped to
another line.

n	 The first occurrence of a word is itali-
cized when it is defined.

n	 IE is often used as a popular abbrevia-
tion of Internet Explorer. For instance,
IE9 is synonymous with Internet
Explorer 9.

n	 Modern browsers collectively refers
to the versions of browsers with solid
support for the latest HTML5 and CSS3
features. Generally, this includes recent
versions of the browsers discussed
in the “Web Browsers” section of this
introduction, but not IE8.

n	 Whenever a plus sign (+) follows a
browser version number, it means “the
version listed plus subsequent versions.”
For instance, IE8+ refers to Internet
Explorer 8 and all versions after it.

body {
	� font-family: Georgia, "Times New Roman",

➝ serif;
}

/* Site Navigation */
.nav-main {
	 list-style: none;
	 padding: .45em 0 .5em;
}

.nav-main li {
	 border-left: 1px solid #c8c8c8;
}

.nav-main a {
	 color: #292929;
	 font-size: 1.125em;
	 font-weight: bold;
}

B If CSS code is relevant to the example, it is
shown in its own box, with the pertinent sections
highlighted.

C Screen shots of one or more browsers
demonstrate how the code affects the page.

xxvi  Introduction

Companion Website
The book’s companion website contains
the table of contents, every complete code
example featured in the book (plus some
additional ones that wouldn’t fit), links to
resources cited in the book (as well as
additional ones), a list of errata, and more.

The URLs for some of the key pages on the
site follow:

n	 Home page:
www.htmlcssvqs.com

n	 Code examples:
www.htmlcssvqs.com/8ed/examples/

You can view the code examples directly
from the site or download them to your
computer—all the HTML and CSS files are
yours for the taking.

In some cases, I’ve included additional
comments in the code to explain more
about what it does or how to use it. A hand-
ful of the code samples in the book are
truncated for space considerations, but the
complete versions are on the website.

Please feel free to use the code as you
please, modifying it as needed for your
own projects.

I hope you find the site helpful!

http://www.htmlcssvqs.com
http://www.htmlcssvqs.com/8ed/examples/

4
Text

In This Chapter
Adding a Paragraph	 88

Specifying Fine Print	 89

Marking Important and Emphasized Text	 90

Creating a Figure	 92

Indicating a Citation or Reference	 94

Quoting Text	 95

Specifying Time	 98

Explaining Abbreviations	 101

Defining a Term	 103

Creating Superscripts and Subscripts	 104

Adding Author Contact Information	 106

Noting Edits and Inaccurate Text	 108

Marking Up Code	 112

Using Preformatted Text	 114

Highlighting Text	 116

Creating a Line Break	 118

Creating Spans	 120

Other Elements	 122

Unless a site is heavy on videos or photo
galleries, most content on webpages is
text. This chapter explains which HTML
semantics are appropriate for different
types of text, especially (but not solely) for
text within a sentence or phrase.

For example, the em element is specifically
designed for indicating emphasized text,
and the cite element’s purpose is to cite
works of art, movies, books, and more.

Browsers typically style many text ele-
ments differently than normal text. For
instance, both the em and cite elements
are italicized. Another element, code,
which is specifically designed for format-
ting lines of code from a script or program,
displays in a monospace font by default.

How content will look is irrelevant when
deciding how to mark it up. So, you
shouldn’t use em or cite just because you
want to italicize text. That’s the job of CSS.

Instead, focus on choosing HTML elements
that describe the content. If by default a
browser styles it as you would yourself with
CSS, that’s a bonus. If not, just override the
default formatting with your own CSS.

88  Chapter 4

Adding a Paragraph
HTML does not recognize the returns or
other extra whitespace that you enter in
your text editor. To start a new paragraph
in your webpage, you use the p element
(A and B).

To create a new paragraph:
1.	 Type <p>.

2.	 Type the contents of the new
paragraph.

3.	 Type </p> to end the paragraph.

  You can use styles to format paragraphs
(and other page text) with a particular font,
size, or color (and more). For details, consult
Chapter 10.

  To control the amount of space between
lines within a paragraph, consult “Setting
the Line Height” in Chapter 10. To control
the amount of space before or after a para-
graph, consult “Setting the Margins Around
an Element” or “Adding Padding Around an
Element,” both of which are in Chapter 11.

  You can justify paragraph text or align
it to the left, right, or center with CSS (see
“Aligning Text” in Chapter 10).

...
<body>

<h1>Antoni Gaudí</h1>
<p>Many tourists are drawn to Barcelona
➝ to see Antoni Gaudí's incredible
➝ architecture.</p>

<p>Barcelona celebrated the 150th
➝ anniversary of Gaudí's birth in
➝ 2002.</p>

<h2 lang="es">La Casa Milà</h2>
<p>Gaudí's work was essentially useful.
➝ La Casa Milà is
➝ an apartment building and real people
➝ live there.</p>

<h2 lang="es">La Sagrada Família</h2>
<p>The complicatedly named and curiously
➝ unfinished Expiatory Temple of the
➝ Sacred Family is the most visited
➝ building in Barcelona.</p>

</body>
</html>

A Unsurprisingly, p is one of the most frequently
used HTML elements. (Note: In practice, I would
wrap an article around this particular content.
I omitted it to make the example generic and to
avoid giving the impression that p elements must
always be nested in an article.)

B Here you see the typical default
rendering of paragraphs. By default,
browsers provide vertical space
between headings and paragraphs, and
between paragraphs themselves. As
with all content elements, you have full
control over the formatting with CSS.

Text  89

Specifying Fine Print
The small element represents side com-
ments such as fine print, which, according
to the HTML5 spec, “typically features
disclaimers, caveats, legal restrictions, or
copyrights. Small print is also sometimes
used for attribution or for satisfying licens-
ing requirements.”

The small element is intended for brief
portions of inline text, not for text spanning
multiple paragraphs or other elements
(A and B).

To specify fine print:
1.	 Type <small>.

2.	 Type the text that represents a legal
disclaimer, note, attribution, and so on.

3.	 Type </small>.

  Be sure to use small only because it’s
appropriate for your content, not because you
want to reduce the text size, as happens in
some browsers B. You can always adjust the
size with CSS (even making it larger if you’d
like). See “Setting the Font Size” in Chapter 10
for more information.

  The small element is a common choice
for marking up your page’s copyright notice
(A and B). It’s meant for short phrases
like that, so don’t wrap it around long legal
notices, such as your Terms of Use or Privacy
Policy pages. Those should be marked up with
paragraphs and other semantics, as necessary.

...
<body>

<p>Order now to receive free shipping.
<small>(Some restrictions may apply.)
➝ </small></p>

...

<footer role="contentinfo">
	� <p><small>© 2013 The Super

➝ Store. All Rights Reserved.
➝ </small></p>

</footer>

</body>
</html>

A The small element denotes brief legal notices
in both instances shown. The second one is a
copyright notice contained in a page-level footer,
a common convention.

B The small element may render smaller than
normal text in some browsers, but the visual size
is immaterial to whether you should mark up your
content with it.

90  Chapter 4

Marking Important
and Emphasized Text
The strong element denotes important text,
whereas em represents stress emphasis.
You can use them individually or together,
as your content requires (A and B).

To mark important text:
1.	 Type .

2.	 Type the text that you want to mark
as important.

3.	 Type .

To emphasize text:
1.	 Type .

2.	 Type the text that you want to
emphasize.

3.	 Type .

  Do not use the b and i elements as
replacements for strong and em, respectively.
Although they may look similar in a browser,
their meanings are very different (see the
sidebar “The b and i Elements: Redefined in
HTML5”).

  Just as when you emphasize words
in speech, where you place em in a sen-
tence affects its meaning. For example,
<p>Run over here.</p> and
<p>Run over here.</p> convey
different messages.

  The importance of strong text
increases each time it’s a child of another
strong. The same is true of the level of
emphasis for em text in another em. For exam-
ple, “due by April 12th” is marked as more
important semantically than the other strong
text in this sentence: <p>Remember
that entries are due by March
12th.</p>.

...
<body>

<p>Warning: Do not approach the
➝ zombies under any circumstances
➝ . They may look
➝ friendly, but that's just because they want
➝ to eat your arm.</p>

</body>
</html>

A The first sentence has both strong and em,
whereas the second has em only.

B Browsers typically display strong text in
boldface and em text in italics. If em is a child of
a strong element (see the first sentence in A),
its text will be both italicized and bold.

  You can style any text as bold or italic
with CSS, as well as negate the browser’s
default styling of elements like strong and
em B. For details, consult “Creating Italics”
and “Applying Bold Formatting” in Chapter 10.

  If you had experience with HTML
before HTML5, you may know that at that
time strong represented text with stronger
emphasis than em text. In HTML5, however,
em is the only element that indicates empha-
sis, and strong has shifted to importance.

Text  91

The b and i Elements: Redefined in HTML5
HTML5 focuses on semantics, not on an element’s presentation. The b and i elements are hold-
overs from the earliest days of HTML, when they were used to make text bold or italic (CSS didn’t
exist yet). They fell out of favor in HTML 4 and XHTML 1 because of their presentational nature.
Coders were encouraged to use strong instead of b, and em instead of i. It turns out, though,
that em and strong are not always semantically appropriate. HTML5 addresses this by redefining
b and i.

Some typographic conventions in traditional publishing fall through the cracks of available
HTML semantics. Among them are italicizing certain scientific names (for example, “The Ulmus
americana is the Massachusetts state tree.”), named vehicles (for example, “We rode the Orient
Express.”), and foreign (to English) language phrases (for example, “The couple exhibited a joie de
vivre that was infectious.”). These terms aren’t italicized for emphasis, just stylized per convention.

Rather than create several new semantic elements to address cases like these (and further muddy
the waters), HTML5 takes a practical stance by trying to make do with what is available: em for all
levels of stress emphasis, strong for importance, and b and i for the through-the-cracks cases.
HTML5 emphasizes that you use b and i only as a last resort when another element (such as
strong, em, cite, and others) won’t do.

The b Element in Brief

HTML5 redefines the b element this way:

The b element represents a span of text to which attention is being drawn for utilitarian purposes
without conveying any extra importance and with no implication of an alternate voice or mood,
such as key words in a document abstract, product names in a review, actionable words in interac-
tive text-driven software, or an article lede.

For example:

<p>The XR-5, also dubbed the Extreme Robot 5, is the best robot we've ever
➝ tested.</p>

The b element renders as bold by default.

The i Element in Brief

HTML5 redefines the i element this way:

The i element represents a span of text in an alternate voice or mood, or otherwise offset from
the normal prose in a manner indicating a different quality of text, such as a taxonomic desig-
nation, a technical term, an idiomatic phrase or short span of transliterated prose from another
language, a thought, or a ship name in Western texts.

Here are some examples:

<p>The <i lang="la">Ulmus americana</i> is the Massachusetts state tree.</p>

<p>We rode the <i>Orient Express</i>.<p>

<p>The couple exhibited a <i lang="fr">joie de vivre</i> that was infectious.<p>

The i element displays in italics by default.

92  Chapter 4

Creating a Figure
No doubt you’ve seen figures in printed
newspapers, magazines, reports, and
more. Typically, figures are referenced from
the main text on a page (like a news story).
This very book has them on most pages.

Prior to HTML5, there wasn’t an element
designed for this use, so developers
cobbled together solutions on their own.
This often involved the less-than-ideal,
non-semantic div element. HTML5 has
changed that with figure and figcaption
(A and B). A figure element may contain
a chart, a photo, a graph, an illustration,
a code segment, or similar self-contained
content.

You may refer to a figure from other
content on your page (as shown in A
and B), but it isn’t required. The optional
figcaption is a figure’s caption or leg-
end and may appear either at the begin-
ning or at the end of a figure’s content.

To create a figure and
figure caption:
1.	 Type <figure>.

2.	 Optionally, type <figcaption> to begin
the figure’s caption.

3.	 Type the caption text.

4.	 Type </figcaption> if you created a
caption in steps 2 and 3.

5.	 Create your figure by adding code for
images, videos, data tables, and so on.

6.	 If you didn’t include a figcaption
before your figure’s content, optionally
follow steps 2–4 to add one after the
content.

7.	 Type </figure>.

...
<body>
...
<article>
	 <h1>2013 Revenue by Industry</h1>

	 <p>... [report content] ...</p>

	 <figure>
		� <figcaption>Figure 3:

➝ Breakdown of Revenue by
➝ Industry</figcaption>

		� <img src="chart-revenue.png"
➝ width="180" height="143" alt=
➝ "Revenue chart: Clothing 42%,
➝ Toys 36%, Food 22%" />

	 </figure>

	 <p>As Figure 3 illustrates, ... </p>

	 <p>... [more report content] ...</p>
</article>
...
</body>
</html>

A This figure has a chart image, though more
than one image or other types of content (such
as a data table or video) are allowed as well. The
figcaption element isn’t required, but it must
be the first or last element in a figure if you do
include it. A figure doesn’t have a default styling
aside from starting on its own line in modern
browsers B. (Note: figures aren’t required to
be in an article, but it’s probably suitable in
most cases.)

Text  93

  Typically, figure is part of the content
that refers to it A, but it could also live else-
where on the page or on another page, such
as in an appendix.

  The figure element may include
multiple pieces of content. For instance, A
could include two charts: one for revenue and
another for profits. You can even nest one
figure inside another one. Keep in mind,
though, that regardless of how much con-
tent a figure has, only one figcaption is
allowed per figure.

  Don’t use figure simply as a means to
embed all instances of self-contained bits of
content within text. Oftentimes, the aside
element may be appropriate instead (see
“Specifying an Aside” in Chapter 3).

  See “Quoting Text” to learn how to use
figure with a blockquote element.

  You can’t use the figcaption element
unless it’s in a figure with other content.

  figcaption text doesn’t have to begin
with “Figure 3” or “Exhibit B.” It could just as
well be a brief description of the content, like
a photo caption.

  Modern browsers apply left and right
margins of 40px to a figure by default C.
You can change that with the margin-left
and margin-right CSS properties. For
example, margin-left: 0; would make
the figure flush left. Also, you can make
the text containing a figure wrap around
it with figure { float: left;} (so the
text will wrap around the right side) or
figure { float: right;} (so the text will
wrap around the left side). You may need
to set a width to the figure as well so it
doesn’t occupy too much horizontal real
estate. CSS coverage begins in Chapter 7,
and the float and width properties are
demonstrated in Chapter 11.

B The figure of the chart and caption
appears within the article text. The
figure is indented because of the
browser’s default styling (see the last tip).

C You can differentiate your figure from the
surrounding text with just a little bit of CSS. This
simple example is available at www.htmlcssvqs.
com/8ed/figure-styled/.

http://www.htmlcssvqs.com/8ed/figure-styled/
http://www.htmlcssvqs.com/8ed/figure-styled/

94  Chapter 4

Indicating a Citation
or Reference
Use the cite element for a citation or ref-
erence to a source. Examples include the
title of a play, script, or book; the name of a
song, movie, photo, or sculpture; a concert
or musical tour; a specification; a news
paper or legal paper; and more (A and B).

To cite a reference:
1.	 Type <cite>.

2.	 Type the reference’s name.

3.	 Type </cite>.

  For instances in which you are quoting
from the cited source, use the blockquote
or q elements, as appropriate, to mark up the
quoted text (see “Quoting Text”). To be clear,
cite is only for the source, not for what you
are quoting from it.

...
<body>

<p>He listened to <cite>Abbey Road</cite>
➝ while watching <cite>A Hard Day's Night
➝ </cite> and reading <cite>The Beatles
➝ Anthology</cite>.

<p>When he went to The Louvre, he learned
➝ that <cite>Mona Lisa</cite> is also
➝ known as <cite lang="it">La Gioconda
➝ </cite>.</p>

</body>
</html>

A In this example, the cite element marks up the
titles of an album, a movie, a book, and a work of art.
(Note: The lang="it" in the last instance declares
that the language of the cite text is Italian.)

B The cite element renders in italics by default.

HTML5 and Using the cite Element for Names
Amid a good amount of disagreement from the development community, HTML5 explicitly
declares that using cite for a reference to a person’s name is invalid, even though previous
versions of HTML allowed it and many developers and designers used it that way.

The HTML 4 spec provides the following example (I’ve changed the element names from
uppercase to lowercase):

	 As <cite>Harry S. Truman</cite> said,

	 <q lang="en-us">The buck stops here.</q>

In addition to instances like that, sites have often used cite for the name of people who leave
comments in blog postings and articles (the default WordPress theme does, too).

Many developers have made it clear that they intend to continue to use cite on names associ-
ated with quotes in their HTML5 pages, because they find the alternatives that HTML5 provides
unacceptable (namely, the span and b elements). Jeremy Keith made the case vociferously in
http://24ways.org/2009/incite-a-riot/.

http://24ways.org/2009/incite-a-riot/

Text  95

Quoting Text
There are two special elements for
marking text quoted from a source. The
blockquote element represents a stand-
alone quote (generally a longer one, but
not necessarily) (A and B) and displays
on its own line by default C. Meanwhile,
the q element is for short quotes, like those
within a sentence D.

continues on next page

...
<body>

<p>He especially enjoyed this selection from
➝ <cite>The Adventures of Huckleberry Finn
➝ </cite> by Mark Twain:</p>

<blockquote cite="http://www.
➝ marktwainbooks.edu/the-adventures-of-
➝ huckleberry-finn/">
	� <p>We said there warn't no home like a

➝ raft, after all. Other places do seem
➝ so cramped up and smothery, but a
➝ raft don't. You feel mighty free and
➝ easy and comfortable on a raft.</p>

</blockquote>

<p>It reminded him of his own youth exploring
➝ the county by river in the summertime.</p>

</body>
</html>

A A blockquote can be as short or as long as you
need. Optionally, include the cite attribute—not
to be confused with the cite element shown in
the first paragraph—to provide the location of the
quoted text.

...

<figure>
	 <blockquote>
	� I want all my senses engaged. Let

➝ me absorb the world's variety and
➝ uniqueness.

	 </blockquote>
	 <figcaption>— Maya Angelou</figcaption>
</figure>

...

B If you’d like to provide attribution, it must
be outside the blockquote. You could place
the attribution in a p, but the most explicit way
to associate a quote with its source is with
a figure and figcaption, as shown (see
“Creating a Figure”).

...
<body>

<p>And then she said, <q>Have you read
➝ Barbara Kingsolver's <cite>High Tide in
➝ Tucson</cite>? It's inspiring.</q></p>

<p>She tried again, this time in French:
➝ <q lang="fr">Avez-vous lu le livre <cite
➝ lang="en">High Tide in Tucson</cite> de
➝ Kingsolver? C'est inspirational.</q></p>

</body>
</html>

D Here we see two q examples. Add the lang
attribute to the q element if the quoted text is in
a different language than the page’s default (as
specified by the lang attribute on the html element).

C Browsers typically indent blockquote text by
default, and don’t display the cite attribute value.
(See the second tip for a related recommendation.)
The cite element, on the other hand, is supported
by all browsers and typically renders in italics, as
shown. All of these defaults can be overridden
with CSS.

96  Chapter 4

Browsers are supposed to enclose q ele-
ment text in language-specific quotation
marks automatically, but the results are
mixed E. Be sure to read the tips to learn
about alternatives to using the q element.

To quote a block of text:
1.	 Type <blockquote to begin a block

quote.

2.	 If desired, type cite="url", where
url is the address of the source of
the quote.

3.	 Type > to complete the start tag.

4.	 Type the text you wish to quote, sur-
rounding it with paragraphs and other
elements as appropriate.

5.	 Type </blockquote>.

To quote a short phrase:
1.	 Type <q to begin quoting a word or

phrase.

2.	 If desired, type cite="url", where url
is the address of the source of the
quote.

3.	 If the quote’s language is different than
the page’s default language (as speci-
fied by the lang attribute on the html
element), type lang="xx", where xx is
the code for the language the quote
will be in. This code is supposed to
determine the type of quote marks
that will be used (“” for English, «» for
many European languages, and so on),
though browser support for this render-
ing can vary.

4.	 Type > to complete the start tag.

5.	 Type the text that should be quoted.

6.	 Type </q>.

E Browsers are supposed to add language-
specific quotation marks around q elements
automatically. In this example, that means curly
double quotes for English and guillemets for
French. IE (shown on top) and Chrome do this
correctly. Firefox (shown on bottom) is correct
for English but not French. Opera and Safari
do neither, rendering straight quotes instead,
including for French. Inconsistencies like these
limit the usefulness of the q element.

Text  97

  If your blockquote contains only a
single paragraph or phrase, you don't have
to enclose it in a p within the blockquote.

  You can use the optional cite attribute
on blockquote and q to provide a URL to
the source you are quoting. Although histori-
cally browsers haven’t displayed the cite
attribute’s URL C, in theory it can be handy
for search engines or other automated tools
that gather quotes and their references. If
you would like visitors to have access to it,
you could repeat the URL in a link (via the
a element) in your content. Less effectively,
you could expose cite’s value via JavaScript
(search online for sample code).

  The q element is invalid for a quote that
extends beyond one paragraph. Instead, use
blockquote.

  Be sure you don’t use q simply because
you want quotation marks around a word or
phrase. For instance, <p>Every time I hear
the word <q>soy</q>, I jump for joy.</p>
is improper because “soy” isn’t a quote from
a source. In that case, simply type quotation
marks around the word.

  You can nest blockquote and q ele-
ments. For example, <p>The short story
began, <q>When she was a child, she
would say, <q>Howdy, stranger!</q> to
everyone she passed.</q></p>. Nested
q elements should display the appropriate
quotation marks automatically—for example,
in English the outer quotes should be double
and the inner ones should be single. Since
outer and inner quotations are treated differ-
ently in languages, add the lang attribute to
q as needed D. Unfortunately, browsers are
inconsistent with nested q elements much like
they are for non-nested ones E.

  Because of cross-browser issues
with q E, many (most likely the majority of)
coders choose to simply type the desired
quotation marks or use character entities
instead of the q element.

98  Chapter 4

Specifying Time
You can mark up a time, date, or dura-
tion with the time element, which is new
in HTML5. It allows you to represent this
information in a variety of ways (A and C).

The text content inside time (that is,
<time>text</time>) appears on the
screen for us humans (B and D), whereas
the value of the optional datetime attri-
bute is intended for the machines among
us. It requires a specific format; the sidebar
“Understanding the Valid Time Format”
covers the basics, and the first tip explains
another case when the format is required.

To specify a time, date, or duration:
1.	 Type <time to begin a time element.

2.	 If desired, type datetime="time" where
time is in the approved machine-
readable format (see the sidebar) that
represents the text you’ll enter in step 4.

3.	 Type > to complete the start tag.

4.	 Type the text that reflects the time, the
date, or the duration that you want to
display in the browser. (See the first tip if
you did not include datetime in step 2.)

5.	 Type </time>.

...
<body>

<p>The train arrives at <time>08:45</time>
➝ and <time>16:20</time> on <time>
➝ 2017-03-19</time>.</p>

<p>They made their dinner reservation for
➝ <time datetime="2013-11-20T18:30:00">
➝ tonight at 6:30</time>.</p>

<p>We began our descent from the peak of
➝ Everest on <time datetime="1952-06-12T
➝ 11:05:00">June 12, 1952 at 11:05 a.m.
➝ </time></p>

<p>The film festival is <time datetime=
➝ "2014-07-13">July 13</time>-<time
➝ datetime="2014-07-16">16</time>.</p>

<!-- Example with no year -->
<p>Her birthday is <time datetime="03-29">
➝ March 29th</time>.</p>

<!-- Example of durations -->
<p>The meeting lasted <time>2h 41m 3s
➝ </time> instead of the scheduled <time
➝ datetime="2h 30m">two hours and thirty
➝ minutes</time>.</p>

</body>
</html>

A As shown in the first example, the simplest
form of the time element lacks a datetime
attribute. But it does provide the times and date
in the valid machine-readable format as required
when datetime is omitted. The remaining
examples show that the text between the time
tags doesn’t need to match the valid format when
datetime is present (the last example shows one
case of each approach).

Text  99

  If you omit the datetime attribute,
the text content inside time must follow the
machine-friendly format rather than being
“free-form.” In other words, the first example
in A could not be coded as <p>The train
arrives at <time>8:45 a.m.</time> and
<time>4:20 p.m.</time> on <time>April
20th, 2015</time>.</p> because the time
text doesn’t follow the format in any of the
three instances. However, when you do
include datetime, you’re free to represent the
date, time, or duration in the text content as
you wish, as seen in the other examples in A.

  The datetime attribute doesn’t do any-
thing on its own but could be used for syncing
dates and times between web applications
and the like (for example, think of a calendar
application). That’s why it requires a standard,
machine-readable format; it allows these pro-
grams to share information by speaking the
same “language.”

  You may not nest a time element inside
another one or place any other elements (just
text) in a time element that lacks a datetime
attribute.

  The time element allowed an optional
attribute named pubdate in an earlier itera-
tion of HTML5 (remember that the language
is still evolving). However, pubdate is no
longer part of HTML5. I mention this in case
you come across it in an older tutorial or book
(such as the seventh edition of this book!) and
wonder if you should use it (you shouldn’t).

B Only the time text displays in browsers, not the
datetime value.

D As expected, the date is below the heading.

...
<body>

<article>
	� <h1>Cheetah and Gazelle Make Fast

➝ Friends</h1>
	� <p><time datetime="2014-10-15">October

➝ 15, 2014</time></p>

	 ... [article content] ...
</article>

</body>
</html>

C This shows how you might include a date for
a blog post or news article. As is required for all
cases of datetime, its value represents the text
content in a machine-readable format.

100  Chapter 4

Understanding the Valid Time Format
The datetime attribute—or a time element without datetime—must provide the desired date
and/or time in a specific machine-readable format. I’ve simplified it below:

YYYY-MM-DDThh:mm:ss

For example (local time):

1985-11-03T17:19:10

This means “November 3, 1985, at 10 seconds after 5:19 p.m. local time.” The hours portion uses
a 24-hour clock, hence 17 instead of 05 for 5 p.m. If you include a time, the seconds are optional.
(You may also provide time with milliseconds in the format of hh:mm.sss. Note the period before
the milliseconds.)

The format is a little different when representing a duration. There are a couple of syntax options,
but this is the simplest to follow:

nh nm ns

(Where n is the number of hours, minutes, and seconds, respectively.)

The last example in A shows it in action.

Global Dates and Times and Time Zone Offsets

If you’d like, you can represent your dates and times in a global context instead of a local one.
(Or simply the time by omitting the date.) Add a Z at the end to mark the time zone as UTC (Coor-
dinated Universal Time), the primary global time standard. (See https://en.wikipedia.org/wiki/
Coordinated_Universal_Time.)

For example (global date and time in UTC):

1985-11-03T17:19:10Z

Or, you can specify a time-zone offset from UTC by omitting Z and preceding the offset with
– (minus) or + (plus).

For example (global date and time with offset from UTC):

1985-11-03T17:19:10-03:30

This means “November 3, 1985, at 10 seconds after 5:19 p.m. Newfoundland Standard Time (NST),”
because NST is minus three and a half hours from UTC. A list of time zones by UTC offsets is avail-
able at http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset.

Just as a reminder, if you do include datetime, it doesn’t require the full complement of informa-
tion I just described, as the examples in A show.

http://en.wikipedia.org/wiki/List_of_time_zones_by_UTC_offset
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Text  101

Explaining
Abbreviations
Abbreviations abound, whether as Jr., M.D.,
or even good ol’ HTML. You can use the
abbr element to mark up abbreviations
and explain their meaning (A through C).
You don’t have to wrap every abbrevia-
tion in abbr, only when you think it would
be helpful for visitors to be given the
expanded meaning.

To explain abbreviations:
1.	 Type <abbr.

2.	 Optionally, next type title="expansion",
where expansion is the words repre-
sented by the abbreviation.

3.	 Type >.

4.	 Then type the abbreviation itself.

5.	 Finally, finish up with </abbr>.

6.	 Optionally, type a space and
(expansion), where expansion is the
words represented by the abbreviation.

  It’s common practice to include an abbre-
viation’s expansion (by way of a title or a
parenthetical) only the first time it appears on
a page.

  A parenthetical abbreviation expansion
is the most explicit way to describe an abbre-
viation, making it available to the widest set of
visitors A. For instance, users on touchscreen
devices like smartphones and tablets may not
be able to hover on an abbr element to see a
title tool tip. So if you provide an expansion,
consider putting it in parentheses whenever
possible.

  If you use an abbreviation in its plural
form, make the expansion plural as well.

continues on next page

...
<body>

<p>The <abbr title="National Football
➝ League">NFL</abbr> promised a <abbr
➝ title="light amplification by
➝ stimulated emission of radiation">
➝ laser</abbr> show at 9 p.m. after every
➝ night game.</p>

<p>But, that's nothing compared to what
➝ <abbr>MLB</abbr> (Major League
➝ Baseball) did. They gave out free
➝ <abbr title="self-contained underwater
➝ breathing apparatus">scuba</abbr> gear
➝ during rain delays.</p>

</body>
</html>

A Use the optional title attribute to provide the
expanded version of an abbreviation. Alternatively,
and arguably preferably, you could place the
expansion in parentheses after the abbreviation.
Or mix and match. Most people will be familiar
with words like laser and scuba, so marking
them up with abbr and providing titles isn’t really
necessary, but I’ve done it here for demonstration
purposes.

B When abbreviations have a title attribute,
Firefox and Opera draw attention to them with
dots underneath the text. You can instruct other
browsers C to do the same with CSS; see the tips.

102  Chapter 4

  As a visual cue to sighted users, Firefox
and Opera display abbr with a dotted bottom
border if it has a title B. If you’d like to
replicate that effect in other browsers, add the
following to your style sheet: abbr[title]
{ border-bottom: 1px dotted #000; }.
Browsers provide the title attribute’s con-
tents as a tool tip C regardless of whether
the abbr is styled with a border.

  If you don’t see the dotted bottom border
under your abbr, try adjusting the parent
element’s CSS line-height property (see
Chapter 10).

  HTML had an acronym element before
HTML5, but coders were often confused by
the difference between an abbreviation and an
acronym, so HTML5 eliminated the acronym
element in favor of abbr for all instances.

C Browsers display the title of abbreviations
as a tool tip when you hover the pointer over
text marked up with abbr. (This figure also
demonstrates an example of a browser—Chrome
in this case—that doesn’t style abbreviations with a
title any differently than regular text by default.)

Text  103

Defining a Term
In the print world, it’s customary to differ-
entiate a term visually when you define it.
Typically, this is done with italics; subse-
quent uses of the term are not italicized.

In HTML, when you define a term, you
differentiate it semantically with the dfn
element. You wrap its tags only around
the term you’re defining, not around the
definition A. And just as in print conven-
tion, subsequent uses of the term are not
marked with dfn, because you aren’t defin-
ing them again. (HTML refers to the point
where you define a term as the “defining
instance of a term.”)

To mark the defining
instance of a term:
1.	 Type <dfn>.

2.	 Type the term you wish to define.

3.	 Type </dfn>.

  You can also use dfn in a description list
(the dl element). See “Creating Description
Lists” in Chapter 15.

  Use dfn only when defining a term,
not simply because you want to italicize text.
CSS allows you to style any text in italics
(see “Creating Italics” in Chapter 10).

  dfn may also enclose another phras-
ing element, like abbr, when appropri-
ate. For example, <p>A <dfn><abbr
title="Junior">Jr.</abbr></dfn> is
a son with the same full name as his
father.</p>.

  If you use the optional title attribute
on a dfn, it should have the same value as the
dfn term. If you nest a single abbr in dfn and
the dfn has no text of its own, the optional
title should be on the abbr only, as in the
previous tip.

...
<body>

<p>The contestant was asked to spell
➝ "pleonasm." She requested the definition
➝ and was told that <dfn>pleonasm</dfn>
➝ means "a redundant word or expression"
➝ (Ref: <cite><a href="http://dictionary.
➝ reference.com/browse/pleonasm" rel=
➝ "external">dictionary.com</cite>).</p>

</body>
</html>

A Note that although pleonasm appears twice
in the example, dfn marks only the second one,
because that’s when I defined the term. Similarly,
if I were to use pleonasm subsequently in the
document, I wouldn’t use dfn. Although browsers
style dfn text differently than normal text B, what’s
important is that the term is marked up differently.
Also, you don’t have to use the cite element each
time you use dfn, just when you reference a source.

B Typically, the dfn element renders in italics by
default, as does cite.

Proximity of a Term and Its
Definition
The location of a term marked with
dfn relative to the location of its defini-
tion is important. HTML5 states, “The
paragraph, description list group, or
section that is the nearest ancestor of
the dfn element must also contain the
definition(s) for the term given by the
dfn element.” Simplified, this means that
the dfn and its definition should be near
each other, which makes sense. This
is the case in both A and the example
given in the fourth tip; the dfn and its
definition are in the same paragraph.

104  Chapter 4

Creating Superscripts
and Subscripts
Letters or numbers that are raised or
lowered slightly relative to the main body
text are called superscripts and subscripts,
respectively A. HTML includes elements
for defining both kinds of text. Com-
mon uses for superscripts include mark-
ing trademark symbols, exponents, and
footnotes B. Subscripts are common in
chemical notation.

To create superscripts or subscripts:
1.	 Type <sub> to create a subscript or

<sup> to create a superscript.

2.	 Type the characters or symbols that
represent the subscript or superscript.

3.	 Type </sub> or </sup>, depending on
what you used in step 1, to complete
the element.

  Most browsers automatically reduce the
font size of sub- or superscripted text by a few
points.

  Superscripts are the ideal way to mark
up certain foreign-language abbreviations—
such as Mlle for Mademoiselle in French or 3a
for tercera in Spanish—or to mark up numerics
like 2nd and 5th.

  One proper use of subscripts is for writ-
ing out chemical molecules, such as H20. For
example, <p>I'm parched. Could I please
have a glass of H₂O?</p>.

  Super- and subscripted characters gently
spoil the even spacing between lines. In B,
for example, notice that there is more space
between lines 4 and 5 of the first paragraph
and lines 2 and 3 of the second than between
the other lines. CSS comes to the rescue,
though; see the sidebar to learn how to fix this.

...
<body>

<article>
	 <h1>Famous Catalans</h1>
	� <p>... Actually, Pablo Casals' real

➝ name was <i>Pau</i> Casals, Pau
➝ being the Catalan equivalent of Pablo
➝ <a href="#footnote-1" title="Read
➝ footnote 1">¹.</p>

	� <p>... Pau Casals is remembered in this
➝ country for his empassioned speech
➝ against nuclear proliferation at the
➝ United Nations <a href="#footnote-2"
➝ title="Read footnote 2">²
➝ ...</p>

	 <footer>
		� <p id="footnote-1">¹It

➝ means Paul in English.</p>
		� <p id="footnote-2">²In

➝ 1963, I believe.</p>
	 </footer>
</article>

</body>
</html>

A One use of the sup element is to indicate
footnotes. I placed the footnotes in a footer within
the article rather than in the page at large because
they are associated. I also linked each footnote
number within the text to its footnote in the footer so
visitors can access them more easily. Note, too, that
the title attribute on the links provides another cue.

B The sup elements display higher than text in
the same line. In the process, unfortunately, they
change the spacing between lines (see the last tip).

Text  105

Fixing the Spacing Between Lines When Using sub or sup
With a little bit of CSS, you can fix the line height discrepancies caused by the sub and sup
elements. The code below comes from Nicolas Gallagher and Jonathan Neal’s excellent
normalize.css (http://necolas.github.com/normalize.css/). They didn’t invent the method that
follows; they borrowed it from https://gist.github.com/413930, which includes a full explanation
of what this CSS does, so I encourage you to give it a look.

I also recommend checking out normalize.css, which you can use on your own projects. It helps
you achieve a consistent baseline display of elements across browsers and is documented thor-
oughly (see “Resetting or Normalizing Default Styles” in Chapter 11).

/*

* Prevents sub and sup affecting line-height in all browsers

* gist.github.com/413930

*/

sub,

sup {

	 font-size: 75%;

	 line-height: 0;

	 position: relative;

	 vertical-align: baseline;

}

sup {

	 top: -0.5em;

}

sub {

	 bottom: -0.25em;

}

You may need to adjust this CSS a bit to level out the line heights, depending on your content’s
font size, but this should give you a very good start at the least. You’ll learn about creating style
sheets and how to add this CSS to your site in Chapter 8.

http://necolas.github.com/normalize.css/
https://gist.github.com/413930

106  Chapter 4

Adding Author
Contact Information
You might think the address element is for
marking up a postal or street address, but
it isn’t (except for one circumstance; see
the first tip). In fact, there isn’t an HTML ele-
ment explicitly designed for that purpose.

Instead, address defines the contact
information for the author, people, or
organization responsible for either a part
of a webpage (such as a news article,
product review, or report) or a whole page
(A and B). Which of those is true depends
on where address appears. The first step
describes each scenario.

To provide the author’s
contact information:
1.	 If you want to provide author contact

information for an article, place the
cursor within that article (see the first
instance in A). Alternatively, place the
cursor within the body (or, more com-
monly, the page-level footer) if you
want to provide author contact infor-
mation for the page at large (see the
second instance in A).

2.	 Type <address>.

3.	 Type the author’s email address, a link
to a page with contact information, and
so on.

4.	 Type </address>.

...
<body>
<main role="main">
<article>
	 <h1>Museum Opens on the Waterfront</h1>
	� <p>The new art museum not only

➝ introduces a range of contemporary
➝ works to the city, it's part of
➝ larger development effort on the
➝ waterfront.</p>

	 ... [rest of story content] ...

	� <!-- the article's footer with address
➝ information for the article -->

	 <footer>
		� <p>Tracey Wong has written for

➝ <cite>The Paper of Papers</cite>
➝ since receiving her MFA in art
➝ history three years ago.</p>

		 <address>
		� Email her at <a href="mailto:

➝ traceyw@thepaperofpapers.com">
➝ traceyw@thepaperofpapers.com
➝ .

		 </address>
	 </footer>
</article>
</main>

<!-- the page's footer with address
➝ information for the whole page -->
<footer role="contentinfo">
	� <p><small>© 2014 The Paper of

➝ Papers, Inc.</small></p>
	 <address>
	� Have a question or comment about the

➝ site?
➝ Contact our web team.

	 </address>
</footer>
</body>
</html>

A This page has two address elements: one for
the article’s author and the other in a page-level
footer for the people who maintain the whole
page. Note that the address for the article
contains only contact information. Although the
background information about Tracey Wong is also
in the article’s footer, it’s outside the address
element.

Text  107

  Most of the time, contact information
takes the form of the author’s email address or
a link to a page with more contact information.
The contact information could very well be the
author’s postal address, in which case mark-
ing it up with address would be valid. But if
you’re creating the Contact Us page for your
business and want to include your office loca-
tions, it would be incorrect to code those with
address. The example in “Creating a Line
Break” shows one way to mark up a postal or
street address.

  The address element pertains to the
nearest article it is contained in, or to the
page’s body if address isn’t nested within an
article. It’s customary to place address in a
footer element when noting author contact
information for the page at large, like the sec-
ond instance of address in A.

  An address in an article provides
contact information for the author of that
article A, not for any articles nested
within that article, such as user comments.

  The address element may contain only
author contact information, not anything
else such as the document or article’s last
modified date A. Additionally, HTML5 forbids
nesting any of the following elements inside
address: h1–h6, article, address, aside,
footer, header, hgroup, nav, and section.

  See Chapter 3 to learn more about the
article and footer elements.

B The address element renders in italics by
default. (The text “The Paper of Papers” is also
italicized, but it is enclosed in the cite element,
covered in “Indicating a Citation or Reference” in
this chapter.)

108  Chapter 4

Noting Edits and
Inaccurate Text
Sometimes you may want to indicate
content edits that have occurred since
the previous version of your page. There
are two elements for noting edits: the ins
element represents content that has been
added, and the del element marks content
that has been removed (A through D).
You may use them together or individually.

Meanwhile, the s element notes content
that is no longer accurate or relevant (it’s
not for edits) (E and F).

To mark newly inserted text:
1.	 Type <ins>.

2.	 Type the new content.

3.	 Type </ins>.

To mark deleted text:
1.	 Place the cursor before the text or ele-

ment you wish to mark as deleted.

2.	 Type .

3.	 Place the cursor after the text or ele-
ment you wish to mark as deleted.

4.	 Type .

...
<body>

<h1>Charitable Gifts Wishlist</h1>

<p>Please consider donating one or more
➝ of the following items to the village's
➝ community center:</p>

	 2 desks
	 1 chalkboard
	� 4 solar-powered tablets

➝
	 <ins>1 bicycle</ins>

</body>
</html>

A One item (the bicycle) has been added to this
gift list since it was previously published, and
purchased items have been removed, as noted by
the del elements. You are not required to use del
each time you use ins, or vice versa. Browsers
differentiate the contents of each element visually
by default B.

B Browsers typically display a line through
deleted text, and they typically underline inserted
text. You can change these treatments with CSS.

Text  109

...
<body>

<h1>Charitable Gifts Wishlist</h1>

	� <p>Please consider donating one or more of the following items to the village's community

➝ center:</p>

<ins>
	 <p>Please note that all gifts have been purchased.</p>
	 <p>Thank you so much for your generous donations!</p>
</ins>

	
		 2 desks
		 1 chalkboard
		 4 solar-powered tablets
		 <ins>1 bicycle</ins>
	

</body>
</html>

C Both del and ins are rare in that they can surround both phrasing content (“inline” content, in pre-HTML5
parlance) and blocks of content like entire paragraphs or lists, as shown here.

D Just as before, browsers indicate which
content has been deleted or inserted.

110  Chapter 4

To mark text that is no longer
accurate or relevant:
1.	 Place the cursor before the text you

wish to mark as no longer accurate
or relevant.

2.	 Type <s>.

3.	 Place the cursor after the text you wish
to mark.

4.	 Type </s>.

  Both del and ins support two attributes:
cite and datetime. The cite attribute (not
the same as the cite element) is for providing
a URL to a source that explains why an edit
was made. For example, <ins cite="http://
www.movienews.com/ticket-demand-high.
html">2 p.m. (this show just added!)</
ins>. Use the datetime attribute to indicate
the time of the edit. (See “Specifying Time” to
learn about datetime’s acceptable format.)
Browsers don’t display the values you assign
to either of these attributes, so their use isn’t
widespread with del and ins, but feel free to
include them to add context to your content.
The values could be extracted with JavaScript
or a program that parses through your page.

  Use del and ins anytime you want to
inform your visitors of your content’s evolution.
For instance, you’ll often see them used in a
web development or design tutorial to indicate
information that was learned since it was
initially posted, while maintaining the copy as it
originally stood for completeness. The same is
true of blogs, news sites, and so on.

...
<body>

<h1>Today's Showtimes</h1>
<p>Tickets are available for the following
➝ times today:</p>

	� <ins>2 p.m. (this show just added!)

➝ </ins>
	 <s>5 p.m.</s> SOLD OUT
	 <s>8:30 p.m.</s> SOLD OUT

</body>
</html>

E This example shows an ordered list (the ol
element) of show times. The time slots for which
ticket availability is no longer relevant have been
marked with the s element. You can use s around
any phrases, not just around text within list items
(li elements), but you cannot use it around a
whole paragraph or other “block-level” element
like you can with del and ins.

F The s element renders as a strikethrough by
default in browsers.

Text  111

  Text marked with the ins element is
generally underlined by default B. Since links
are often underlined as well (if not in your site,
then in many others), this may be confusing to
visitors. You may want to use CSS to change
how inserted passages (or links) are displayed
(see Chapter 10).

  Text marked with the del element is
generally struck out B. Why not just erase it
and be done with it? It depends on whether
you think it’s important to indicate what’s been
removed. Striking out content makes it easy
for sighted users to know what has changed.
(Also, screen readers could announce the con-
tent as having been removed, but their sup-
port for doing so has historically been lacking.)

  Only use del, ins, and s for their
semantic value. If you wish to underline or
strike out text purely for cosmetic reasons, you
can do so with CSS (see “Decorating Text” in
Chapter 10).

  HTML5 notes that “The s element is not
appropriate when indicating document edits;
to mark a span of text as having been removed
from a document, use the del element.” You
may find the distinction a little subtle at times.
It’s up to you to decide which is the appropri-
ate semantic choice for your content.

112  Chapter 4

Marking Up Code
If your content contains code samples or
file names, the code element is for you
(A and B).

The examples show code used in a sen-
tence. To show a standalone block of code
(outside of a sentence), wrap the code
element with a pre element to maintain its
formatting (see “Using Preformatted Text”
for an example).

To mark up code or a file name:
1.	 Type <code>.

2.	 Type the code or file name.

3.	 Type </code>.

  You can change the default mono-
spaced font applied to code B with CSS
(see Chapter 10).

  See “A Webpage's Text Content” in
Chapter 1 regarding character entities A.

...
<body>

<p>The <code>showPhoto()</code> function
➝ displays the full-size photo of the
➝ thumbnail in our <code><ul id=
➝ "thumbnail"></code> carousel list.</p>

<p>This CSS shorthand example applies a
➝ margin to all sides of paragraphs: <code>p
➝ { margin: 1.25em; }</code>. Take a look
➝ at <code>base.css</code> to see more
➝ examples.</p>

</body>
</html>

A The code element indicates that the text is
code or a file name. If your code needs to display
< or > signs, use the < and > character
entities, respectively (see the last tip). Here, the
second instance of code demonstrates this. If you
were to use < and >, the browser would treat your
code as an HTML element, not as text to display.

B The code element’s text even looks like code
because of the monospaced default font.

Text  113

Other Computer and Related Elements: kbd, samp, and var
The kbd, samp, and var elements see infrequent use, but you may have occasion to take advan-
tage of them in your content.

The kbd Element

Use kbd to mark up user input instructions.

<p>To log into the demo:</p>

	 Type <kbd>tryDemo</kbd> in the User Name field

	 <kbd>TAB</kbd> to the Password field and type <kbd>demoPass</kbd>

	 Hit <kbd>RETURN</kbd> or <kbd>ENTER</kbd>

Like code, kbd renders as a monospaced font by default.

The samp Element

The samp element indicates sample output from a program or system.

<p>Once the payment went through, the site returned a message reading,
➝ <samp>Thanks for your order!</samp></p>

samp also renders as a monospaced font by default.

The var Element

The var element represents a variable or placeholder value.

<p>Einstein is best known for <var>E</var>=<var>m</var><var>c</var>².</p>

var can also be a placeholder value in content, like a Mad Libs sheet in which you’d put
<var>adjective</var>, <var>verb</var>, and so on.

var renders in italics by default.

Note that you can use math and other MathML elements in your HTML5 pages for advanced math-
related markup. See http://dev.w3.org/html5/spec-author-view/mathml.html for more information.

http://dev.w3.org/html5/spec-author-view/mathml.html

114  Chapter 4

Using Preformatted
Text
Usually, browsers collapse all extra returns
and spaces and automatically break
lines of text according to the width of the
browser window. Preformatted text lets
you maintain and display the original line
breaks and spacing that you’ve inserted
in the text. It is ideal for computer code
examples A, though you can also use it
for text (hello, ASCII art!).

To use preformatted text:
1.	 Type <pre>.

2.	 Type or paste the text that you wish
to display as is, with all the necessary
spaces, returns, and line breaks. Unless
it is code, do not mark up the text with
any HTML, such as p elements.

3.	 Type </pre>.

...
<body>

<p>Add this to your style sheet if you want
➝ to display a dotted border underneath the
➝ <code>abbr</code> element whenever it has
➝ a <code>title</code> attribute.</p>

<pre>
	 <code>
	 abbr[title] {
		 border-bottom: 1px dotted #000;
	 }
	 </code>
</pre>

</body>
</html>

A The pre element is ideal for text that contains
important spaces and line breaks, like the bit of
CSS code shown here. Note, too, the use of the
code element to mark up pieces of code or code-
related text outside of pre (see “Marking Up Code”
for more details).

B Notice that the indentation and line breaks are
maintained in the pre content.

Text  115

  Preformatted text is typically displayed
with a monospaced font like Courier or Courier
New B. You can use CSS to change the font,
if you like (see Chapter 10).

  If what you want to display—such as
a code sample in a tutorial—contains HTML
elements, you’ll have to substitute each
< and > around the element name with their
appropriate character entities: < and >
respectively (see “Marking Up Code” for an
example). Otherwise the browser may try to
display those elements.

  Be sure to validate your pages to see if
you’ve nested HTML elements in pre when
you shouldn’t have (see “Validating Your
Code” in Chapter 20).

  The pre element isn’t a shortcut for
avoiding marking up your content with proper
semantics and then styling the way it looks
with CSS. For instance, if you want to post
a news article you wrote in a word proces-
sor, don’t simply copy and paste it into a pre
because you like the spacing the way it is.
Instead, wrap your content in p (and other rel-
evant text elements) and write CSS to control
the layout as desired.

  pre, like a paragraph, always displays on
a new line by default B.

Presentation Considerations
with pre
Be aware that browsers typically disable
automatic word wrapping of content
inside a pre, so if the text is too wide,
it might affect your layout or force a
horizontal scrollbar. The following CSS
rule enables wrapping within pre in
many browsers, but not in Internet
Explorer 7 and below. (In the vast major-
ity of cases, those versions are too old
to worry about.)

pre {

	 white-space: pre-wrap;

}

On a related note, in most cases I don’t
recommend you use the white-space:
pre; CSS declaration on an element
such as div as a substitute for pre.
Whitespace can be crucial to the seman-
tics of content, especially code, and only
pre always preserves it. (Also, if the user
has disabled CSS in his or her browser,
the formatting will be lost.)

Please see CSS coverage beginning in
Chapter 7. Text formatting, in particular,
is discussed in Chapter 10.

116  Chapter 4

Highlighting Text
We’ve all used a highlighter pen at some
point or another. Maybe it was when
studying for an exam or going through a
contract. Whatever the case, you used the
highlighter to mark key words or phrases.

HTML5 replicates this with the new mark
element. Think of mark as a semantic ver-
sion of a highlighter pen. In other words,
what’s important is that you’re noting
certain words; how they appear isn’t impor-
tant. Style its text with CSS as you please
(or not at all), but use mark only when it’s
pertinent to do so.

No matter when you use mark, it’s to draw
the reader’s attention to a particular text
segment. Here are some use cases for it:

n	 To highlight a search term when it
appears in a search results page or an
article. When people talk about mark,
this is the most common context. Sup-
pose you used a site’s search feature
to look for “solar panels.” The search
results or each resulting article could
use <mark>solar panels</mark> to
highlight the term throughout the text.

n	 To call attention to part of a quote that
wasn’t highlighted by the author in its
original form (A and B). This is akin
to the real-world task of highlighting
a textbook or contract.

n	 To draw attention to a code fragment
(C and D).

...
<body>

<p>So, I went back and read the instructions
➝ myself to see what I'd done wrong. They
➝ said:</p>

<blockquote>
	� <p>Remove the tray from the box. Pierce

➝ the overwrap several times with a
➝ fork and cook on High for <mark>15
➝ minutes</mark>, rotating it half way
➝ through.</p>

</blockquote>

<p>I thought he'd told me fifty. No
➝ wonder it exploded in my microwave.</p>

</body>
</html>

A Although mark may see its most widespread
use in search results, here’s another valid use of it.
The phrase “15 minutes” was not highlighted in the
instructions on the packaging. Instead, the author
of this HTML used mark to call out the phrase as
part of the story.

B Browsers with native support of the mark
element display a yellow background behind the
text by default. Older browsers don’t, but you can
tell them to do so with a simple rule in your style
sheet (see the tips).

Text  117

To highlight text:
1.	 Type <mark>.

2.	 Type the word or words to which you
want to call attention.

3.	 Type </mark>.

  The mark element is not the same as
either em (which represents stress emphasis)
or strong (which represents importance).
Both are covered earlier in this chapter.

  Since mark is new in HTML5, older
browsers don’t render a background color by
default. You can instruct them to do so by add-
ing mark { background-color: yellow; }
to your style sheet.

  Be sure not to use mark simply to give
text a background color or other visual treat-
ment. If all you’re looking for is a means to
style text and there’s no proper semantic HTML
element to contain it, use the span element
(covered later in this chapter), perhaps with
a class assigned to it, and style it with CSS.

...
<body>

<p>It's usually bad practice to use a class
➝ name that explicitly describes how an
➝ element should look, such as the
➝ highlighted portion of CSS below:</p>

<pre>
	 <code>
		 <mark>.greenText</mark> {
			 color: green;
		 }
	 </code>
</pre>

</body>
</html>

C This example uses mark to draw attention to
a code segment.

D The code noted with mark is called out.

118  Chapter 4

Creating a Line Break
Browsers automatically wrap text accord-
ing to the width of the block or window that
contains content. It’s best to let content
flow like this in most cases, but sometimes
you’ll want to force a line break manually.
You achieve this with the br element.

Using br is a last resort tactic because it
mixes presentation with your HTML instead
of leaving all display control to your CSS.
For instance, never use br to simulate
spacing between paragraphs. Instead,
mark up the two paragraphs with p ele-
ments and define the spacing between the
two with the CSS margin property (see the
second tip).

So when might br be OK? Well, the br ele-
ment is suitable for creating line breaks in
poems, in a street address (A and B), and
occasionally in other short lines of text that
should appear one after another.

...
<body>

<p>53 North Railway Street

Okotoks, Alberta

Canada T1Q 4H5</p>

<p>53 North Railway Street
Okotoks,
➝ Alberta
Canada T1Q 4H5</p>

</body>
</html>

A The same address appears twice, but I
coded them a little differently for demonstration
purposes. Remember that the returns in your code
are always ignored, so both paragraphs shown
display the same way B.

B Each br element forces the subsequent
content to a new line. Without them, the entire
address would display on one line, unless the
browser were narrow enough to force wrapping.

Text  119

To insert a line break:
Type
 (or
) where the line break
should occur. There is no separate end br
tag because it’s what’s known as an empty
(or void) element; it lacks content.

  Typing br as either
 or
 is
perfectly valid in HTML5.

  CSS allows you to control the space
between lines in a paragraph (see “Setting
the Line Height” in Chapter 10) and between
the paragraphs themselves (see “Setting the
Margins Around an Element” in Chapter 11).

  The hCard microformat (http://
microformats.org/wiki/hcard) is for represent-
ing people, companies, organizations, and
places in a semantic manner that’s human-
and machine-readable. You could use it to
represent a street address instead of using
the provided example A.

http://microformats.org/wiki/hcard
http://microformats.org/wiki/hcard

120  Chapter 4

Creating Spans
The span element, like div, has absolutely
no semantic meaning. The difference is
that span is appropriate around a word or
phrase only, whereas div is for blocks of
content (see “Creating Generic Containers”
in Chapter 3).

The span element is useful when you want
to apply any of the following to a snippet of
content for which HTML doesn’t provide an
appropriate semantic element:

n	 Attributes, like class, dir, id, lang,
title, and more (A and B)

n	 Styling with CSS

n	 Behavior with JavaScript

Because span has no semantic meaning,
use it as a last resort when no other ele-
ment will do.

...
<body>

<h1 lang="es">La Casa Milà</h1>

<p>Gaudí's work was essentially useful.
➝ La Casa Milà is
➝ an apartment building and real people
➝ live there.</p>

</body>
</html>

A In this case, I want to specify the language
of a portion of text, but there isn’t an HTML
element whose semantics are a fit for “La Casa
Milà” in the context of a sentence. The h1 that
contains “La Casa Milà” before the paragraph is
appropriate semantically because the text is the
heading for the content that follows. So for the
heading, I simply added the lang attribute to the
h1 rather than wrap a span around the heading
text unnecessarily for that purpose. (The lang
attribute allows you to declare the language of
the element’s text.)

Text  121

To add a span:
1.	 Type <span.

2.	 If desired, type id="name", where name
uniquely identifies the spanned content.

3.	 If desired, type class="name", where
name is the name of the class that the
spanned content belongs to.

4.	 If desired, type other attributes (such as
dir, lang, or title) and their values.

5.	 Type > to complete the start span tag.

6.	 Create the content you wish to contain
in the span.

7.	 Type .

  A span doesn’t have default format-
ting B, but just as with other HTML elements,
you can apply your own with CSS.

  You may apply both a class and id attri-
bute to the same span element, although it’s
more common to apply one or the other, if at
all. The principal difference is that class is for
a group of elements, whereas id is for identi-
fying individual, unique elements on a page.

  Microformats often use span to attach
semantic class names to content as a way of
filling the gaps where HTML doesn’t provide a
suitable semantic element. You can learn more
about them at http://microformats.org.

B The span element has no default styling.

http://microformats.org

122  Chapter 4

Other Elements
This section covers other elements that
you can include within your text, but which
typically have fewer occasions to be used
or have limited browser support (or both).

The u element
Like b, i, s, and small, the u element has
been redefined in HTML5 to disassociate
it from its past as a non-semantic, presen-
tational element. In those days, the u ele-
ment was for underlining text. Now, it’s for
unarticulated annotations (sounds a little
befuddling, I know). HTML5 defines it thus:

The u element represents a span of
text with an unarticulated, though
explicitly rendered, non-textual anno-
tation, such as labeling the text as
being a proper name in Chinese text
(a Chinese proper name mark), or
labeling the text as being misspelt.

Here is an example of how you could use
u to note misspelled words:

<p>When they <u class="spelling">
➝ recieved</u> the package, they put
➝ it with <u class="spelling">there
➝ </u> other ones with the intention
➝ of opening them all later.</p>

The class is entirely optional, and its value
(which can be whatever you’d like) doesn’t
render with the content to explicitly indi-
cate a spelling error. But you could use it to
style misspelled words differently (though u
still renders as underlined text by default).
Or you could add a title attribute with a
note such as “[sic]”—a convention in some
languages to indicate a misspelling.

Text  123

Use u only when an element like cite, em,
or mark doesn’t fit your desired semantics.
Also, it’s best to change its styling if u text
will be confused with linked text, which is
also underlined by default A.

The wbr element
HTML5 introduces a cousin of br named
wbr. It represents “a line break opportu-
nity.” Use it in between words or letters in
a long, unbroken phrase (or, say, a URL) to
indicate where it could wrap if necessary
to fit the text in the available space in a
readable fashion. So unlike br, wbr doesn’t
force a wrap; it just lets the browser know
where it can force a line break if needed.

Here are a couple of examples:

<p>They liked to say, "FriendlyFleas
➝ andFireFlies<wbr /> FriendlyFleasa
➝ ndFireFlies<wbr />FriendlyFleasand
➝ FireFlies<wbr />" as fast as they
➝ could over and over.</p>

<p>His favorite site is this<wbr />
➝ is<wbr />a<wbr />really<wbr />
➝ really<wbr />longurl.com.</p>

You can type wbr as either <wbr /> or
<wbr>. As you might have guessed, you
won’t find many occasions to use wbr.
Additionally, browser support is incon-
sistent as of this writing. Although wbr
works in current versions of Chrome and
Firefox, Internet Explorer and Opera simply
ignore it.

A Like links, u elements are underlined by
default, which can cause confusion unless you
change one or both with CSS.

124  Chapter 4

The ruby, rp, and rt elements
A ruby annotation is a convention in East
Asian languages, such as Chinese and
Japanese, and is typically used to show the
pronunciation of lesser-known characters.
These small annotative characters appear
either above or to the right of the charac-
ters they annotate. They are often called
simply ruby or rubi, and the Japanese ruby
characters are known as furigana.

The ruby element, as well as its rt and rp
child elements, is HTML5’s mechanism for
adding them to your content. rt specifies
the ruby characters that annotate the base
characters. The optional rp element allows
you to display parentheses around the ruby
text in browsers that don’t support ruby.

The following example demonstrates this
structure with English placeholder copy to
help you understand the arrangement of
information both in the code and in sup-
porting B and non-supporting C brows-
ers. The area for ruby text is highlighted:

<ruby>

	� base <rp>(</rp><rt>ruby chars
➝ </rt><rp>)</rp>

	� base <rp>(</rp><rt>ruby chars
➝ </rt><rp>)</rp>

</ruby>

Now, a real-world example with the two
Chinese base characters for “Beijing,” and
their accompanying ruby characters D:

<ruby>

	� 北 <rp>(</rp><rt>ㄅㄟ̌</rt><rp>)
➝ </rp>

	� 京 <rp>(</rp><rt>ㄐㄧㄥ</rt><rp>)
➝ </rp>

</ruby>

B A supporting browser will display the ruby text
above the base (or possibly on the side) without
parentheses because it ignores the rp elements.

D Now, the ruby markup for “Beijing” as seen in a
supporting browser.

C A non-supporting browser displays the rt con
tent in parentheses in the normal flow of content.

Text  125

You can see how important the parenthe-
ses are for browsers that don’t support
ruby E. Without them, the base and ruby
text would run together, clouding the
message.

  At the time of this writing, Firefox and
Opera lack basic ruby support (all the more
reason to use rp in your markup). The Firefox
add-on HTML Ruby (https://addons.mozilla.
org/en-US/firefox/addon/html-ruby/) provides
support for Firefox in the meantime.

  You can learn more about ruby char-
acters at http://en.wikipedia.org/wiki/
Ruby_character.

The bdi and bdo elements
If your HTML pages ever mix left-to-right
characters (like Latin characters in most
languages) and right-to-left characters (like
characters in Arabic or Hebrew), the bdi
and bdo elements may be of interest.

But first, a little backstory. The base
directionality of your content defaults to
left-to-right unless you set the dir attribute
on the html element to rtl. For instance,
<html dir="rtl" lang="he"> specifies that
the base directionality of your content is
right-to-left and that the base language is
Hebrew.

Just as I’ve done with lang in several exam-
ples throughout the book, you may also
set dir on elements within the page when
the content deviates from the page’s base
setting. So if the base were set to English
(<html lang="en">) and you wanted to
include a paragraph in Hebrew, you’d mark
it up as <p dir="rtl" lang="he">...</p>.

E In a non-supporting browser, the content could
be harder to understand without the parentheses.

http://en.wikipedia.org/wiki/Ruby_character
http://en.wikipedia.org/wiki/Ruby_character
https://addons.mozilla.org/en-US/firefox/addon/html-ruby/
https://addons.mozilla.org/en-US/firefox/addon/html-ruby/

126  Chapter 4

With those settings in place, the content will
display in the desired directionality most
of the time; Unicode’s bidirectional (“bidi”)
algorithm takes care of figuring it out.

The bdo (“bidirectional override”) element
is for those occasions when the algorithm
doesn’t display the content as intended,
and you need to override it. Typically,
that’s the case when the content in the
HTML source is in visual order instead of
logical order.

Visual order is just what it sounds like—
the HTML source code content is in the
same order in which you want it displayed.
Logical order is the opposite for a right-to-
left language like Hebrew; the first charac-
ter going right to left is typed first, then the
second character (in other words, the one
to the left of it), and so on.

In line with best practices, Unicode expects
bidirectional text in logical order. So if
it’s visual instead, the algorithm will still
reverse the characters, displaying them
opposite of what is intended. If you aren’t
able to change the text in the HTML source
to logical order (for instance, maybe it’s
coming from a database or a feed), your
only recourse is to wrap it in a bdo.

To use bdo, you must include the dir
attribute and set it to either ltr (left-to-right)
or rtl (right-to-left) to specify the direction
you want. Continuing our earlier example
of a Hebrew paragraph within an otherwise
English page, you would type <p lang=
"he"><bdo dir="rtl">...</bdo></p>. The
bdo element is appropriate for phrases or
sentences within a paragraph. You wouldn’t
wrap it around several paragraphs.

Text  127

The bdi element, new in HTML5, is for
cases when the content’s directionality is
unknown. You don’t have to include the
dir attribute, because it’s set to auto by
default. HTML5 provides the following
example, which I’ve modified slightly:

This element is especially use-
ful when embedding user-gen-
erated content with an unknown
directionality.

In this example, usernames are shown
along with the number of posts that the
user has submitted. If the bdi element
were not used, the username of the Arabic
user would end up confusing the text (the
bidirectional algorithm would put the colon
and the number “3” next to the word “User”
rather than next to the word “posts”).

	� User <bdi>jcranmer</bdi>:
➝ 12 posts.

	� User <bdi>hober</bdi>:
➝ 5 posts.

	� User <bdi>نايإ</bdi>:
➝ 3 posts.

  If you want to learn more on the subject
of incorporating right-to-left languages,
I recommend reading the W3C’s article
“Creating HTML Pages in Arabic, Hebrew,
and Other Right-to-Left Scripts” (www.w3.org/
International/tutorials/bidi-xhtml/).

http://www.w3.org/International/tutorials/bidi-xhtml/
http://www.w3.org/International/tutorials/bidi-xhtml/

128  Chapter 4

The meter element
The meter element is another that is new
thanks to HTML5. At first glance, it seems
very similar to the progress element,
covered next, which is for indicating “the
completion progress of a task” (to quote
the spec).

In contrast, you can use meter to indicate
a fractional value or a measurement within
a known range. In plain language, it’s the
type of gauge you use for the likes of
voting results (for example, “30% Smith,
37% Garcia, 33% Hawkins”), the number of
tickets sold (for example, “811 out of 850”),
a numerical test grade (for example, “91
out of 100”), and disk usage (for example,
“74 GB out of 256 GB”).

HTML5 suggests (but doesn’t require) that
browsers could render a meter not unlike
a thermometer on its side—a horizontal bar
with the measured value colored differently
than the maximum value (unless they’re the
same, of course). Firefox, one of the brows-
ers that supports meter so far, does just
that F. For non-supporting browsers, you
can style meter to some extent with CSS or
enhance it further with JavaScript.

Although it’s not required, it’s best to
include text inside meter that reflects the
current measurement for non-supporting
browsers to display G.

Here are some meter examples (as seen
in F and G):

<p>Project completion status: <meter
➝ value="0.80">80% completed</meter>
➝ </p>

<p>Car brake pad wear: <meter low=
➝"0.25" high="0.75" optimum="0"
➝ value="0.21">21% worn</meter></p>

<p>Miles walked during half-marathon:
➝ <meter min="0" max="13.1" value="5.5"
➝ title="Miles">4.5</meter></p>

F A browser, like Firefox, that supports meter
displays the gauge automatically, coloring it based
on the attribute values. It doesn’t display the text
in between <meter> and </meter>. As seen in the
last example, if you include title text, it displays
when you hover over the meter.

G IE9 doesn’t support meter, so instead of a
colored bar, it displays the text content inside the
meter element. You can change the look with CSS.

Text  129

The meter element doesn’t have defined
units of measure, but you can use the
title attribute to specify text of your
choosing, as in the last example. As is
usual with title text, browsers display it
as a tooltip F.

  meter supports several attributes. The
value attribute is the only one that’s required.
The min and max attributes default to 0 and
1.0, respectively, if omitted. The low, high,
and optimum attributes work together to split
the range into low, medium, and high seg-
ments. The number assigned to optimum indi-
cates the optimum position within the range,
such as “0 brake pad wear” in one of the
examples. Set optimum in between if neither
a low nor a high value is optimal.

  At the time of this writing, browser sup-
port of meter is still evolving: It’s not sup-
ported by Internet Explorer, mobile Safari (iOS
devices), or Android’s browser. This partially
explains why you don’t yet see it much in the
wild. Feel free to use it, but just understand
that these browsers will render the meter text
rather than the visual gauge by default G.
See http://caniuse.com/#feat=progressmeter
for the latest browser support.

  The style of the gauge that each support-
ing browser displays may vary.

  Some people have experimented with
styling meter CSS for both supporting and
non-supporting browsers. Search online for
“style HTML5 meter with CSS” to see some of
the results (note that some use JavaScript).

  The meter element is not for marking
up general measurements—such as height,
weight, distance, or circumference—that have
no known range. For example, you cannot use
it for the following because the number of
miles walked isn’t gauged against a range:
<p>I walked <meter value="4.5">4.5
</meter> miles yesterday.</p>.

  Be sure not to mix up your uses of the
meter and progress elements.

http://caniuse.com/#feat=progressmeter

130  Chapter 4

The progress element
The progress element is yet another of the
new elements in HTML5. As stated earlier,
it indicates the completion progress of a
task. Think of a progress bar, like the kind
you might see in a web application to indi-
cate progress while it is saving or loading
a large amount of data.

As with meter, supporting browsers auto-
matically display a progress bar based on
the values of the attributes H. And again
like meter, it’s usually best to include text
(for example, “0% saved,” as shown in the
example) inside progress to reflect the
current progress for older browsers to dis-
play I, even though it’s not required.

Here’s an example:

<p>Please wait while we save your
➝ data.</p>

<p>Current progress: <progress
➝ max="100" value="0">0% saved
➝ </progress></p>

A full discussion of progress is beyond
the scope of this book, since typically you
would dynamically update both the value
attribute and the inner text with JavaScript
as the task progresses (for example, to
indicate that it’s 37% completed). The
visual results are the same whether you
do that with JavaScript or code it that
way in the HTML initially; for example,
<progress max="100" value="37">37%
saved</progress> J. Of course, non-
supporting browsers would display it
similarly to I.

H A browser, like Firefox, that supports progress
displays the progress bar automatically, coloring
it based on the value. It doesn’t display the text in
between <progress> and </progress>. The value
attribute is set to 0 in this example, so the bar
indicates no progress.

I IE9 doesn’t support progress, so instead of a
colored bar, it displays the text content inside the
element. You can change the look with CSS.

J The progress bar in Firefox when the value
attribute is set to 37 programmatically with
JavaScript (or directly in the HTML), assuming
max="100". The blue area reflects the amount
of progress.

Text  131

  The progress element supports three
attributes, all of which are optional: max,
value, and form. The max attribute specifies
the total amount of work for the task and must
be greater than 0. The value attribute speci-
fies the amount completed relative to the task.
Assign the form attribute to the id of a form
element on the page if you want to associate
the progress element with a form it isn’t
nested within.

  Here’s a small taste of how to modify
a progress element with JavaScript. Let’s
assume that the element had been coded with
an id of your choosing, like this:

<progress max="100" value="0" id=
➝"progressBar">0% saved</progress>

JavaScript such as the following would give
you access to the element:

var bar = document.getElementById
➝ ('progressBar');

Then you could get or set the value via bar.
value as needed. For example, bar.value
= 37; would set it to 37, and the appearance
of the progress element would change
accordingly.

  The progress element is supported by
the most current version of all desktop brows-
ers as of this writing. IE9 and prior, mobile
Safari, and Android browsers don’t support it.
See http://caniuse.com/#feat=progressmeter
for the latest support information.

  The style of the progress bar that
each supporting browser displays may vary,
though you can style it yourself to some
extent with CSS.

http://caniuse.com/#feat=progressmeter

This page intentionally left blank

Index  533

Index

saving images with, 144
showing in IE versions, 188

alt attribute, 145, 442
using, 21
using effectively, 148
using for missing images, 147–148

alternative text, offering, 147–148
analytics, 513
ancestor element, 212–213
anchors, 164–165
animated images, saving, 139
Apache development server, 18
area element, 521
ARIA (Accessible Rich Internet Applications),

79–81
aria attribute, 422
Arial, showing on Windows, 235
article element, 60

with address element, 61
examples, 62
with footer element, 61
multiple, 61
nesting, 61
nesting section element in, 64
vs. section, 271
with section elements, 61
using, 20–21, 60–61

ASCII characters, 12
aside element, 65–67

examples, 68–69
vs. figure, 93

asterisk (*) wildcard, using with selectors, 207
async attribute, 528
attribute selector examples, 224–225
attributes

accepting values, 9–10
accesskey, 520
alt, 21
aria, 520
class, 520
contenteditable, 520
data, 520
dir, 520
draggable, 520

Symbols
/*, */, using for CSS comments, 172
> character entity, using, 112
< character entity, using, 112
* (asterisk) wildcard, using with selectors, 207
{} (curly braces)

using with CSS, 171
[] (square brackets)

using with attribute selectors, 205, 222
using with selectors, 205

<!-- and -->, using for HTML comments, 86
< and > signs, displaying in code, 112

A
a element, 158

using, 7, 21–22, 158
abbr element, 101
absolute positioning of elements, 302–303
absolute URLs, 16

vs. relative URLs, 19
accept attribute, 412
accept-charset attribute, 523
accessibility, 23

:focus pseudo-class, 385
color contrast, 256
form labels, 425
importance of headings (h1–h6), 50–51
improving with ARIA, 78–81
keyboard navigation, 158
progressive enhancement, xx
providing with video, 462
screen readers. See screen readers

accesskey attribute, 520
acronym element, elimination of, 102
action attribute, 414
address element, 106–107
Adobe Photoshop. See Photoshop
:after pseudo-element, 384–386
aligning

elements vertically, 306–307
text, 259

alpha transparency
defining with RGBA and HSLA, 184–188
explained, 138–139

534  Index

italics, 236–237
line height, 245
setting background, 250–256
setting color, 248–249
setting font values, 246–247
setting whitespace properties, 264
using small caps, 261
viewing, 230

base element, 521
BBEdit text editor, 31
bdi element, 125–127
bdo element, 125–127
:before pseudo-element, 384–386
block-level elements, explained, 24–25
block-level links, 161–162
blockquote element, 95–97

nesting, 97
body element, 44

adding to webpages, 45–46
basic usage, 4, 6–7
components, 20

bold formatting
applying, 238–239
applying with web fonts, 352–353
faux bold, 239
removing, 238

bold italic
applying with web fonts, 354-355
faux bold italic, 355

BOM resource, 34
Boolean attribute

explained, 10
using with videos, 455

border color, setting, 288
border properties, setting multiple, 289
border styles, 288, 291
border width, setting, 288
border-image property, 290
border-radius property, 364–367
borders, setting, 290–291
box model

border, 276
components, 276
explained, 276
height, 277
margin, 276
padding, 276–277, 286–287
width, 277

box-sizing property
applying to all elements, 283
effect on box model, width, and height, 277
usefulness with responsive webpages, 318, 326

box-shadow property, 370–372
br element, 118–119

vs. wbr, 123

attributes (continued)
dropzone, 520
of elements, 9
hidden, 520
href, 10
id, 520
lang, 520
numbers for values, 10
role, 520
selecting elements based on, 222–225
selector options, 223
spellcheck, 520
square brackets ([]), 222
src, 10
tabindex, 520
title, 520

audio attributes, 465–469
audio element, 464
audio file formats, 463–465
audio files with controls, adding to pages,

464–465
audio sources, providing with fallback, 468–469
author contact info, adding, 106–107
autocomplete attribute, 424
autofocus attribute, 423
autoplay attribute, 454, 466

B
b element, 91

redefined in HTML5, 91
vs. strong element, 90

background color, changing, 250–251. See also
colors

background images, 252–255. See also images
background properties, 255–256
background-clip property, 256
background-origin property, 256
backgrounds, 250–256

applying multiple, 373–375
fallback, 378
gradient, 376–381

background-size property, 256
banner landmark role, 79–80
Barcelona’s Architect example

adding indents, 258
aligning text, 259
alternate fonts, 233–235
bold formatting, 238–239
changing text case, 260
controlling spacing, 257
decorating text, 262–263
default page rendering, 230
font family, 232
font size, 240–244
HTML classes, 231

Index  535

Chrome’s cache, disabling, 39
circles, creating using border-radius, 367
citations, indicating, 94
cite attribute, 94, 95, 110

using with blockquote, 97
cite element, 87, 94–95, 522

using for names, 94
class attributes, 82

applying, 82–83
implementing microformats, 83
naming, 83

class names, assigning to elements, 82
class selectors. See also pseudo-classes

vs. ID selectors, 211
multiple classes on one element, 177, 210
using with inline styles, 197

clearfix method, using with float property, 299
clearing floats, 297–300
“click here” labels, avoiding, 162
Cloud.typography web font service, 339
Coda text editor, 31
code

displaying < and > signs, 112
marking up, 112
validating, 496–497

code editor, funny characters in, 47
code element, explained, 87, 112
codec, explained, 451
col element, 522
colgroup element, 522
colors. See also background color

per image formats, 136
CSS color options, 182–188
declared with hexadecimal, 183
declared with keywords, 182
declared with HSL and HSLA, 186–188
declared with RGB and RGBA, 183–185
setting for text, 248–249
specifying for borders, 288

colspan attribute, 482
“commenting out” declarations, 173
comments

/* and */ for CSS, 172
<!-- and --> for HTML, 86
adding to HTML, 85–86
adding to CSS, 172–173

complementary landmark role, 79–80
conditional comments, using with responsive

pages, 333
consistency, checking HTML for, 496
contact info, adding, 106–107
containers, creating, 73–75
content, adding to webpages, 6–7
content attribute, 527
contenteditable attribute, 520

browser developer tools
Chrome, 503
Firefox, 503
Internet Explorer, 503
Opera, 503
Safari, 503

browser support resources, 499
browsers. See also polyfills

default display of webpages, 24–25
explained and version numbers, xvii
inline, 24–25
modern browsers, xxv
-moz- prefix, 364
-ms- prefix, 364
-o- prefix, 364
obtaining for testing, 500
prefixes, 364
support for gradients, 381
testing sites in, 500
viewing pages in, 38–39
VMs (virtual machines), 500
-webkit- prefix, 364

bulleted lists, creating, 391, 393
button element, 442

using with forms, 442–443

C
canvas element, 475

using with video, 475
capitalize value, limitations of, 260
caption element, 478
captions, creating for figures, 92–93
challenge attribute, 526
character encoding, specifying, 12
characters

accenting, 12
dir attribute, 126
left-to-right, 125
right-to-left, 125

charset attribute, 45
checkboxes, creating for forms, 434–435
checked attribute, 433
checking for errors. See also debugging

techniques
CSS (Cascading Style Sheets), 508–509
general, 504–505
HTML (Hypertext Markup Language), 506–507

child element
explained, 11, 212
first and last, 216–217

Chrome
developer tool, 503
refreshing pages in, 39
undocking Developer Tools, 39
testing sites in, 500

536  Index

HSL and HSLA, 186–188
RGBA, 184–185

CSS3 features
animations, 363
background size, 256
browser compatibility, 362, 499
clipping backgrounds, 256
drop shadows, 368–372
gradient backgrounds, 376–381
multiple backgrounds, 373–375
opacity of elements, 382–383
polyfills for non-supporting browsers, 363
rounding corners of elements, 365–367
text shadows, 368–369
transforms, 363
transitions, 363

CSS3 Generator, 364
CSS3 syntax for pseudo-elements, 219
cursors, changing, 308

D
data attribute, 520
data tables. See tables
datalist element, 411
dates

local and global, 100
specifying, 98

datetime attribute, using 98–100
dd element, 404
debugging techniques, overview, 502–503. See

also checking for errors
default attribute, 530
default homepage, specifying, 35
default styles. See also styles

normalizing, 274–275
resetting, 274–275

defer attribute, 528
defining terms, 103
del element, 108–109

cite attribute, 110
datetime attribute, 110
vs. s element, 111
text marked with, 111
using with content changes, 110

deleted text, marking, 108
descendant element, defined, 212–213
details element, 523
development server, Apache, 18
dfn element, 103
dir attribute, 125

using with bdi, 125
using with bdo, 126

dirname attribute, 525
disabled attribute, 444
display type, controlling, 278–281

contentinfo landmark role, 79–80
controls attribute, 454, 464
coords attribute, 521
corners of elements

elliptical, 367
rounding, 365–367

Creative Commons licenses, 140
CSS (Cascading Style Sheets). See also CSS3

features; inheritance; selectors; style sheets
avoiding @import, 199
backgrounds, See backgrounds
benefits, 170
browser compatibility, See browser support

resources
default browser styles, 24, 274–275
debugging techniques, 508–509
generated content, 384–386
history and relationship to CSS3, xvi
images and sprites, 387–388
!important, 199
inheritance, 174–176
link element, 199
media attribute, 200
media queries, 219
order of styles, 198–199
polyfills for non-supporting browsers, 363
progressive enhancement, xx–xxi, 362–363
specificity, law of, 178–179
the cascade, 177–179, 198
treatment of class names, 177
validating to locate errors, 496
vendor prefixes, 364
viewing others’ code, 202

CSS Arrow Please! 386
CSS border shorthand property, 146
CSS color keywords, 182–183
.css extension, using with external style

sheets, 190
CSS gradients, syntax for, 376
CSS properties

bare numbers, 181
for formatting, 169
hexadecimal, 183
inherit value, 180
for layout, 169
lengths, 180–181
percentages, 180–181
predefined values, 180
for printing, 169
RGB, 183
URLs, 182

CSS validator, using, 497
CSS2, explained, 170
CSS3 colors

color keywords, 182

Index  537

relative positioning, 301
rounding corners of, 365–367
selecting based on attributes, 222–225
selecting by class, 208–210
selecting by context, 212–215
selecting by ID, 208–210
selecting by name, 206–207
selecting when first child, 216–217
selecting when last child, 216-217
specifying groups of, 226
visibility, 278–281
void, 8
wrapping text around, 295–296

em (stress emphasis) element, 90
explained, 87, 523
vs. i element, 90
and percentage font sizes, 241–243
using, 21–22, 90

em values for padding and margin, 294
email boxes, creating for forms, 428–431
embed element, 523
embedded style sheets, 194–195. See external

style sheets; style sheets
empty elements, 8
ems, using in media queries, 322
emulators, using for testing, 501
enctype attribute, 439
Espresso text editor, 31
event handlers, 494
extensions. See file extensions
external style sheets. See also embedded style

sheets; style sheets
benefits, 192
creating, 190–191
importing, 191
linking to, 191–193
loading multiple, 193
media attribute, 200–201, 319–322
naming, 191
saving with .css extension, 190
URLs in, 193
UTF-8 encoding, 190

F
fallback backgrounds, creating, 378
favicons, 155–156
fieldset element, 418

using with forms, 418–421
figcaption element, 92–93
figure element, 92–93
file extensions, using consistently, 32–34
file names

extensions, 14
lowercase, 14, 26
separating words with dashes, 14

displays, media queries for, 332
div element, 73, 125

adding around whole pages, 73
containing pages in, 77
vs. section element, 63
surrounding content, 74
using in HTML5, 76

dl (description list) element, 404
creating, 404–407
explained, 389, 523
nesting, 407

DOCTYPE declaration
including in webpages, 4–5, 44

document flow, explained, 278
document head, explained, 5, 46
document headings structure, defining, 50
domain, connecting with web host, 514
domain name, getting, 512
double vs. single quotes, 348
download attribute, 520
draggable attribute, 520
DRM (digital rights management), 450
drop shadows, adding to text, 368–369
dropzone attribute, 520
dt element, 389, 404
duration, specifying, 98

E
Edge Web Fonts service, 339
editing webpages, 36
edits, noting, 108–111
elements. See also alphabetical list of HTML

elements in Appendix; pseudo-elements;
selecting elements

aligning vertically, 306–307
ancestors, 212
assigning classes to, 82
attributes of, 9
block-level, 24
components, 8
contents, 8
descendants, 212
display type, 278–281
document flow, 278
empty, 8
floating, 295–300
inline, 24
naming with unique IDs, 82
nesting, 11
number available, 22
offsetting in natural flow, 301
parents, 11
phrasing content, 21
positioning absolutely, 302–303
positioning in stacks, 304

538  Index

form element, 413
form elements

disabling, 444–445
example, 413
fieldset element, 418–421
headings, 421
labels, 422–424
legend element, 418–421
organizing, 418–421
placeholder attribute, 422–424, 426
screen readers, 421
separating, 422
styling, 421

form fields, placing inside labels, 426
form parts, labeling, 425–426
formaction attribute, 522
formenctype attribute, 522
formmethod attribute, 522
formnovalidate attribute, 443, 522
formtarget attribute, 525
forms

accept attribute, 412
attributes, 412
autocomplete attribute, 412
autofocus attribute, 412
checkboxes, 434–435
color, 411
creating, 413–415
creating hidden fields, 440
creating text boxes, 422–424
data list, 411
date input type, 411
disabling validation features, 415
email boxes, 428–431
features-enhancement for older browsers, 412
file uploads, 439
formnovalidate attribute, 412
global date and time, 411
HTML5 inputs and elements, 411
id naming convention, 426
improvements in HTML5, 410–412
letting visitors upload files, 439
list attribute, 412
maxlength attribute, 423, 436
method="get", 415
method="post", 415
month, 411
multiple attribute, 412
name attributes, 426
for naming convention, 426
novalidate attribute, 412
number input type, 411
output element, 411
password boxes, 427
pattern attribute, 412

file uploads, handling for forms, 439
files

naming conventions, 37
organizing, 37, 193, 255, 356
transferring to server, 515–518

FileZilla FTP client
downloading, 515
using, 516–517

Firefox
developer tool, 503
testing sites in, 500

Fireworks alternatives, 141
fixed-width page

explained, 266
pixels for, 283

Flash fallback, 470–474
Flash playback, troubleshooting, 474
Flash plugin, use of, 13
Flash security settings, changing, 474
Flickr website, 140
float property, 295–300
floats, clearing, 297–300
folder names

extensions, 14
lowercase, 14, 26

folders
dividing into sub-folders, 37
naming conventions, 37

font alternates, specifying, 233–235
font family, setting, 232
font sizes

basing on parent element, 244
basing on root element, 243–244
em and percentage, 241–244
pixels, 240
rem (root em), 243–244
setting, 240

Font Squirrel, 338, 342–344
font values, setting at once, 246–247
Fontdeck web font service, 339
@font-face rule, using with web fonts, 336–337,

345, 348
fonts. See also font sizes; Google Fonts web font

service; styles for text formatting; text; web
fonts

Arial on Windows, 235
Geneva stacks, 235
Helvetica on OS X, 235
shared defaults, 234
specifying for alphabets, 235

Food Sense site, viewing, 311
footer element, 70–72
footers, creating, 71
for attribute, 425, 528
form attribute, 522

Index  539

organizing webpages with, 51–52
proper use of, 52
using, 50
using all levels of, 51

height, setting for elements, 282–285
height vs. min-height, 284
Helvetica, showing on OS X, 235
hgroup element, removal of, 52
hidden attribute, 520
hidden fields, creating for forms, 440
high, low attributes, 128
highlighting text, 116–117
homepage, specifying default, 35
hr element, 524
href attribute

contents, 10
explained, 162
including for links, 158–159

href values, including on webpages, 6, 158, 192
hreflang attribute, 520
HSL (hue, saturation, light) and HSLA, 186–188
HTML (Hypertext Markup Language), 26

checking for consistency, 496
debugging techniques, 506–507
history and relationship to HTML5, xvi
indenting, 7
rendering by browsers, 12, 24–25
semantics, 20–23
thinking in, 3
validating, 497
viewing others’ code, 40–41
writing in lowercase, 26

.html and .htm extensions, 32
html element, 44

basic usage, 4–5
including in webpages, 44–46

HTML elements. See elements
HTML markup. See markup
HTML pages. See also webpages

body element, 4, 20
common page constructs, 53
components, 44
DOCTYPE, 4–5, 44, 46
example, basic, 4
examples, larger, 60, 230–231, 269–270
head element, 4, 45
html element, 4, 44
indenting code, 7, 44
semantics, 20–23
structure, 44–46, 50–52

HTML5
DOCTYPE, 46–47
differences with HTML4, xix
document outline, 52
empty elements, 9

placeholder attribute, 412
processing, 416–417
pseudo-classes, 446
radio buttons, 432–433
range input type, 411
regular expressions, 431
required attribute, 412
search boxes, 428–431
security, 416–417
select boxes, 437–438
server-side vs. client-side, 417
start and end tags, 413–414
styling based on states, 446–448
styling with attribute selectors, 448
submit button, 441–443
telephone boxes, 428–431
text areas, 436
text boxes, 422–424
URL boxes, 428–431
validating, 417
week input type, 411

fractional values, representing, 128–129
FTP client, using, 515–517
FTP site, defining properties for, 516

G
generated content, 384–386
generic containers, creating, 73–75
GIF image format, 134–135, 138
Gimp image editor, 141
Google Fonts web font service, 339, 357–359.

See also fonts
Google Usage Rights, 140
gradient backgrounds, 376–380
gradient code, creating for old browsers, 381
groups of elements, specifying, 226

H
h1–h6 elements, 50
hCard microformat, 119
head element, 45

adding to webpages, 4, 45–46
indenting code nested in, 47

header attribute, 530
header element, 54–55

multiple, 55
with nav element, 55
page-level with navigation, 54

headers, creating, 55
headings

describing groups of form fields with, 418–421
for defining document structure, 50
importance of, 21, 50–51
levels h1–h6, 21, 50
navigating with a screen reader, 23

540  Index

resizing, 154
retaining aspect ratio, 152
saving, 139, 142–144
scaling proportionally, 313
scaling with browser, 152
simulating slow connections, 146
sizing for Retina displays and other

high-pixel-density displays, 153
storing in folders, 146
SVG (scalable vector graphics), 137
testing loading time, 146
transparency, 138
width attribute, 150–153

img element, 145
basic usage, 7, 21

indenting HTML, 7, 44
indents, adding to text with CSS, 258
index transparency, 138–139
index.html, saving as default page, 35
inheritance, 174–176. See also CSS (Cascading

Style Sheets)
inline elements, explained, 24–25
inline styles, 196–198
input element, 411, 422–424, 427–435, 439–444
ins element, 108–111
inserted text, marking, 108
inset shadow, creating, 371
Internet Explorer 8+, testing sites in, 500
Internet Explorer developer tool, 503
iOS Simulator website, 501
iPad, testing pages for, 501
iPhone, testing pages for, 501
ismap attribute, 524
ISP (Internet service provider), using as web

host, 513
italics

applying with web fonts, 350–351
creating, 236–237
real vs. faux, 237
removing, 237

J
JavaScript

adding embedded scripts, 492
inline scripts, 491
loading external scripts, 487–491
minifying, 489
Node.js, 486
organizing files, 489
overview, 485–486
performance best practices, 490–491
resources, 486
sample, 488–489
script element, 490, 492
scripting best practices, 490–491

HTML5 (continued)
event handlers, 494
styling elements in older browsers, 272–273
terminology, 2

HTML5 pages, starting, 44–45
HTML5 Please resource, 363
http-equiv attribute, 527

I
i element, 90–91
IcoMoon, creating icon fonts, 340
icon fonts, getting, 340. See also fonts; web fonts
icons, adding for websites, 155–156
id attribute, 82–83, 520
ID selectors vs. class selectors, 211
IE (Internet Explorer), older versions of and

responsive webpages, 333–334
iframe element, 163, 524
image editors

choosing, 141
scaling images with, 154

image formats
GIF, 134–135, 138
JPEG, 134–135
PNG-8, 134–135, 138
PNG-24, 134–135
PNG-32, 134–135
WebP, 135

image maps, use of, 162
image optimization, 142–144
image path, 146
image sizes, 136–137, 139

finding, 149–151
height attribute, 150–153
specifying, 149–151
width attribute, 150–153

images. See also background images
adding to pages, 145–146
animation, 139
changing alignment, 145
changing display size of, 152
combining with sprites, 387–388
creating for Retina displays and other

high-pixel-density displays, 152
Creative Commons licenses, 140
debugging problems displaying, 148, 510
dimensions, 136–137, 139
format colors, 136
getting, 140
Google Usage Rights, 140
height attribute, 150–153
making flexible, 312–314
offering alternative text, 147–148
pixels, 136
printing, 137

Index  541

making elements float, 295–300
managing overflow, 305
margins around elements, 292–293
normalizing default styles, 274–275
padding around elements, 286–287
relative positioning of elements, 301
resetting default styles, 274–275
visibility of elements, 278–281
width for elements, 282–285

legend element, 418–421
li element, 390

applying classes to, 396
placing list content in, 392

line breaks, creating, 118–119, 123
line height, setting, 245
linear gradient, 376, 378
link element, 192
linking

blocks of content, 161–162
to external style sheets, 191
thumbnail images, 168

links
a element, 158
applying style properties, 162
avoiding “click here” labels, 162
compressing files for download, 168
creating different kinds of, 166–168
creating to other webpages, 158–160
designating as navigation, 56–58
destinations, 157
to email addresses, 167
href attribute, 158–159
label lengths, 162
labels, 157
navigating with keyboard, 158
navigation, 162
to PDFS, 168
rel attribute, 160
selecting based on states, 220–221
to phone numbers, 167
tabindex attribute, 158

list attribute, 411
list numbering, starting, 397
list type, choosing, 391
lists

Boolean reversed attribute, 392
choosing markers, 393
content direction, 392
creating custom markers, 394–396
dd (description of term), 389
displaying without markers, 393
dl (description list), 389, 404–407
dt (term to describe), 389
for marking up navigation links, 390
hanging markers, 398

JavaScript events
onblur, 493
onchange, 493
onclick, 493
ondblclick, 493
onfocus, 493
onkeydown, 493
onkeypress, 494
onkeyup, 494
onload, 494
onmousedown, 494
onmousemove, 494
onmouseout, 494
onmouseover, 494
onmouseup, 494
onreset, 494
onselect, 494
onsubmit, 494

JAWS screen reader, 78
Johansson, Roger, 348
JPEG image format, 134–135
JPEGmini website, 144
JW Player Flash fallback solution, 474

K
kbd element, 113
kind attribute, 530
kerning, specifying, 257
keygen element, 526
keytype attribute, 526

L
label attribute, 438
label element, 425–426
landmark roles, 79–81
lang attribute, 44

using q element with, 95–96
using with headings, 52

language subtag lookup tool, 47
languages, right-to-left, 127
layout approaches

fixed-width pages, 266
responsive webpages, 266–267

layout grid, making flexible, 315–318
layout with styles. See also styles

absolute positioning of elements, 302–303
aligning elements vertically, 306–307
borders, 288–291
box model, 276–277
browser considerations, 267
changing cursor, 308
display type, 278–281
elements in stacks, 304
height for elements, 282–285
HTML5 in older browsers, 272–273

542  Index

media features, 319–320
for Retina displays and other high-pixel-density

displays, 332
in style sheets, 323
for style sheet for responsive webpage,

329–330
syntax, 320–322
targeting viewport widths, 330
using ems in, 322

media-specific style sheets, 200–201, 319–323
megapixels, 136
menu element, 526
meta element, 45, 324–325
meter element, 128–130
method attribute, 414
method="get" vs. method="post", 415
microformats, implementing, 83
MIME type, setting, 451
min-height vs. height, 284
Miro Video Converter, 451
missing images, fixing, 510
misspelled words, noting, 122
mobile compatibility, testing for, 501
mobile devices resources, 332
mobile first approach, following, 327
Modernizr website, 363
multimedia

native, 450
resources, 476

multiple attribute, 431, 437
muted attribute, 453, 465

N
name attribute, 413, 436, 437, 522
Namecheap website, 512
native multimedia

accessibility, 462
explained, 450

nav element, 56
links in, 56–58
with ul and ol, 57

navigation
including on pages, 162
marking, 56–58

navigation landmark role, 79–80
nested lists

styling, 400–403
using for drop-down navigation, 403

nesting elements, 11
nh nm ns duration format, 100
Node.js, 486
normalize.css, 105
noscript element, 527
Notepad text editor

displaying files in, 36

lists (continued)
indentation, 392, 396
li (list item), 389, 392, 396
nesting, 392
ol (ordered list), 389–392
padding-left indentation, 396
right-to-left, 392
styling nested, 400–403
ul (unordered list), 389–392

list-style properties, setting at once, 399
list-style-position property, setting, 398
loop attribute, 456, 466
lowercase

files and folders, 26
writing HTML in, 26

lowercase value, using, 260

M
main element, 59
main landmark role, 79–80
manifest attribute, 524
map element, 526
Marcotte, Ethan, 267
margins

em values for, 294
percentage-based values for, 318
setting around elements, 292–293

mark element, 116–117
markers

choosing for lists, 393
custom vs. default, 396
customizing, 394–396

marking up
code, 112
file names, 112

markup
attributes, 9–10
children, 11
components, 26
elements, 8–9
parents, 11
values, 9–10

mathematical markup, 113
max attribute

for meter element, 128–129
for progress element, 130–131

maxlength attribute, 423, 436
max, min attributes for input range, 525
max-width, relative, 318. See also width
media attribute, 200, 319
@media at-rule, using in style sheets, 201
MediaElement.js, 470–471
media queries

base style rules outside of, 323
examples, 320–322

Index  543

Paint.NET, 141
Paint Shop Pro, 141
Pixelmator, 141

phrasing content elements, 21
picture element, proposal of, 314
Pixelmator website, 141
pixels

measurement, 136
transparency, 138

placeholder attribute, using with forms,
422–424, 426

placeholder value, representing, 113
PNG-* image format variations, 135

comparing to other formats, 134
lossless, 135
transparency, 138

PNG-24, Transparency setting in Photoshop, 139
polyfills, using for non-supporting browsers, 363.

See also browsers
poster attribute, 456
pre element, 114–115
preformatted text, 114–115
The Principles of Beautiful Web Design, 29
printing images, 137
preload attribute, 457, 466
progress element, 128–131
PSD file layers, 144
pseudo-classes. See also class selectors

:active, 220–221
:checked, 446
:disabled, 446
:enabled, 446
explained, 219
:focus, 220–221, 385, 446
for forms, 446
:hover, 220–221
:invalid, 446, 448
:link, 220–221
:optional, 446
:required, 446
:valid, 446
:visited, 220–221

pseudo-elements. See also elements
:after, 384–386
:before, 384–386
explained, 219

PT Sans font, using, 343–345
publishing pages on web. See also webpages

domain and web host, 514
files to server, 515–518
finding site host, 513–514
getting domain name, 512
ISP as web host, 513
web analytics, 513

px (CSS pixels), 181

naming files, 33
Save as option, 33
using, 30

novalidate attribute, 415
numbered lists, starting, 397
NVDA screen reader, 78

O
object element, 527
oblique text, explained, 237
ol (ordered list) element, 390

creating, 390–392
explained, 389, 527
using with nav, 57

“One Web” presentation, 311
opacity property, setting, 382–383
open attribute, 523
Open Device Lab website, 501
Opera developer tool, 503
optgroup element, 438
optimum attribute, 128
option element, 437
output element, 411
overflow property, 300, 305

P
p (paragraph) element, 21, 88
padding

adding around elements, 286–287
em values for, 294
percentage-based values for, 318

page constructs, 53. See also webpages
pages. See webpages
Paint.NET website, 141
paragraphs

creating, 21, 88
line spacing, 88

param element, 528
parent element

basing selection on, 214
explained, 11, 212

password boxes, creating for forms, 427
pattern attribute, 428
percentages, for responsive webpage, 283
photographs, saving, 139
Photoshop

4-Up tab, 142
finding image dimensions, 151
RGB vs. CMYK, 144
Save for Web command, 142–144
scaling images with, 154
shrinking image files, 144

Photoshop alternatives
Acorn, 141
Gimp, 141

544  Index

Retina displays and other high-pixel-density
displays

creating images for, 153
icon fonts, 153
media queries for, 332
scaling images for, 152
sizing images for, 153
SVG (scalable vector graphics), 153

reversed attribute, 392
right-to-left languages, incorporating, 127
role attribute, 78,
root relative URLs, 18
rows, cols attributes, 436
rowspan attribute, 482
rp element, 124–125
rt element, 124–125
ruby element, explained, 124–125
rules. See style rules

S
s element, 108, 110–111
Safari

developer tool, 503
testing sites in, 500

samp element, 113
sandbox attribute, 524
saving

animated images, 139
external style sheets, 190
images, 139, 142–144
images with alpha transparency, 144
photographs, 139
source code, 41
webpages, 32–36

scope attribute, 478
screen readers, xxi, 23, 49, 50, 78
Screen Sizes website, 332
script element, 487
seamless attribute, 524
search boxes, creating for forms, 428–431
section element, 63–64

vs. article, 271
considering use of, 64
vs. div element, 63
nesting in article element, 64

section (the word) vs. section element, 46
select boxes, creating for forms, 437–438
select element, 437
selected attribute, 437
selecting

first letter of elements, 218–219
first line of elements, 218–219
links based on states, 220–221

Q
q element, 95

cross-browser issues, 97
using with lang attribute, 95–96

Quirksmode website, 499
quotes, single vs. double, 348
quoting text, 95–97

R
radial gradients

defining, 379–380
explained, 376

radio buttons
creating for forms, 432–433
nesting, 433

readonly attribute 440
references, citing, 94
regular expressions resource, 431
rel attribute, 192

rel values, resource, 160, 162
using with external links, 160
using when linking to external style

sheets, 192
relative positioning of elements, 301
relative URLs

vs. absolute URLs, 19
referencing files, 17–18
root, 18

rem (root em), sizing fonts with, 243
rendering webpages, 7, 24–25
required attribute, 422
resizing background images, 256, 332
resizing images, 154
Respond.js, downloading, 334
responsive webpages. See also webpages

base styling, 326
building, 331–332
components, 311
conditional comments, 333
content and HTML, 326
evolving layouts, 328–331
explained, 266–267
flexible images, 312–314
flexible layout grid, 315–318
images conundrum, 314
main navigation, 328
media queries, 319–322
media query for style sheet, 329
mobile first approach, 327
picture element, 314
scaling in proportion, 318
srcset attribute, 314
testing, 332
width, 328

Index  545

source code
saving, 41
viewing CSS, 202
viewing HTML, 40

source element, 468, 459
spacing

specifying kerning, 257
specifying tracking, 257

span attribute, 522
span element, 120–121
special characters, treatment of, 12
specificity, law of, 178–179
spellcheck attribute, 520
sprites, combining images with, 387–388
square brackets ([])

using with attributes, 222
using with selectors, 205

src attribute, 145–146, 452, 459, 464, 487
including on audio, 464
including on img, 145–146
including on video, 452

srclang attribute, 531
srcdoc attribute, 524
srcset attribute, proposal of, 314
stacks, positioning elements in, 304
start attribute, 397
step attribute, 525
strong element, 90
structure of documents, defining, 44–45, 50, 53
style element, 194, 196
style rules

adding comments to, 172–173
collision of, 177–179
constructing, 171
ignored by browsers, 448
!important, 179
law of specificity, 178–179
order of, 179

style sheets. See also CSS (Cascading Style
Sheets); embedded style sheets; external
style sheets

defined, 169
inline styles, 196–197
location of external, 193
media-specific, 200–201
saving external, 190
sources, 179

styles. See also default styles; layout with styles
applying to groups of elements, 226
order of, 198–199

styles for text formatting. See also fonts; text
adding indents, 258
aligning text, 259
alternate fonts, 233–235
backgrounds, 250–252

selecting elements. See also elements
based on attributes, 222–225
by class, 208–210
by context, 212–215
first child, 216–217
by ID, 208–210
last child, 216–217
by name, 206–207

Selectivizr, 448
selectors. See also CSS (Cascading

Style Sheets)
ancestors, 212
class vs. ID, 211
combining, 227–228
constructing, 204
descendants, 212
examples, 204–205
keeping simple, 205
pseudo-classes for forms, 446
resource, 228
sibling elements, 215
using * (asterisk) wildcard, 207
using square brackets ([]) with, 206

semantic HTML, 20–23, 26
semantics

accessibility, 23
code maintenance, 23
CSS styling, 23
importance of, 23
SEO (search engine optimization), 23

shadows, applying to elements, 372
shape attribute, 521
sibling elements, basing selections on, 215
Silk icon set, 388
simulators, using for testing, 501
single vs. double quotes, 348
sites. See also websites

getting inspiration, 29
identifying audiences, 28
mapping folder structure, 28–29
naming conventions, 28
number of pages, 28
planning, 28
reason for creating, 28
resources, 29
sketching on paper, 28

size attribute, 423, 437
sizes attribute, 526
small caps

removing, 261
using, 261

small element, 24–25, 89
Smashing Magazine website, 29
Socialico icon font, 340

546  Index

tbody element, 479
td element, 478
telephone boxes, creating for forms, 428–431
terms, defining, 103
testing

browsers, 500
with emulators, 501
for mobile compatibility, 501
obtaining browsers for, 500
with simulators, 501
webpages, 498–499

text. See also fonts; styles for text formatting
adding drop shadows to, 368–369
aligning, 259
alternative for missing images, 147–148
blank alternative, 148
character references or entities, 12
decorating, 262–263
emphasizing, 90
encoding, 12
highlighting, 116–117
marking as important, 90
marking deleted, 108–109
marking inserted, 108–109
noting inaccuracies, 108–111
preformatted, 114–115
quoting, 95–97
styling with web fonts, 346–348
wrapping around elements, 295–296

text areas, creating for forms, 436
text boxes, creating for forms, 422–424
text case

capitalize value, 260
changing, 260
lowercase value, 260
uppercase value, 260

text editors
availability, 31
BBEdit, 31
Coda, 31
creating webpages in, 31
displaying files in, 36
Espresso, 31
Notepad, 30–31
for OS X, 31
Sublime Text, 31
TextMate, 31
TextWrangler, 30–31
for Windows, 31

text formatting. See styles for
text formatting

textarea element, 436
TextMate editor, 31
text-shadow property, using, 368–371

styles for text formatting (continued)
bold, 238–239
controlling spacing, 257
decorating text, 262–263
font family, 232
font sizes, 240–244
font values at once, 246–247
italics, 236–237
line height, 245
setting color, 248–249
small caps, 261
text case, 260
whitespace properties, 264

sub element, 103–104
fixing line spacing, 105

sub-folders, creating from folders, 37
subhead element, 52
Sublime Text editor, 31
submit button, creating for forms, 441–443
subscripts, creating, 103–104
subsetting, using with web fonts, 337
summary element, 529
sup element, 103–105
superscripts, creating, 103–104
SVG (scalable vector graphics)

coupling video with, 475
explained, 137

svg element, 475

T
tabindex attribute, 158
table element, 478
tables

adding padding, 481
advanced examples, 477
caption element, 481
colspan attribute, 482–483
column headers, 479
row headers, 479
rowspan attribute, 482–483
scope attribute for th, 481
spanning columns, 482–483
spanning rows, 482–483
structuring, 478–481
tbody (table body) element, 481
td (table data) element, 478
tfoot (table footer) element 479–480
th (table header cell) element, 478, 480
thead (table header) element, 479
tr (table row) element, 478, 480

target attribute, 163
accessibility concerns, 163
best practices, 163
opening links in iframes, 163
usability concerns, 163

Index  547

mailto scheme, 15–16
paths, 15
relative, 17–18
schemes, 15–16
separating words with dashes, 14

usemap attribute, 524
user input instructions, marking up, 113
UTF-8

encoding pages in, 12, 34
saving files as, 32–34, 47, 190
without BOM, 34

V
validating code, 496–497
value attribute, 128, 130, 397, 422, 437, 443
values, including in attributes, 9–10
var element, 113
vertical alignment, applying to elements,

306–307
video element, 452

accessibility, 462
adding to webpages, 452–453
adding with Flash fallback, 470–474
autoplay, 454–455
Boolean attributes, 455
controls, 454–455
coupling with SVG (Scalable Vector

Graphics), 475
with multiple sources, 459–461
preventing from preloading, 457–458
resources, 476
using with canvas element, 475

video element attributes
autoplay, 453, 456
controls, 453
height, 453
loop, 453, 456
media attribute, 461
muted, 453
poster, 453–454
preload, 453
source, 461
src, 453
type, 461
width, 453

video file formats
converting between, 451
.m4v, 451
.mp4, 451
.ogv (Ogg Theora), 451
unsupported, 454
.webm, 451

Video.js Flash fallback solution, 474
View Source, viewing HTML code with, 40–41

TextWrangler text editor
naming files, 33
using, 30

tfoot element, 479
th element, 478
thead element, 479
third-party plugins, 450
time element, 98–99
time formats

datetime attribute, 100
nh nm ns, 100
YYYY-MM-DDThh:mm:ss, 100

time zone offsets, 100
times, global, 100
title attribute, 84, 103

adding to elements, 84
using with abbreviations, 101

title element, 45–49
touch icons, creating, 155–156
tr element, 478
track element, 84, 462
tracking, specifying, 257
transferring files to server, 515–518
transparency

alpha, 138, 144
availability of, 138
borders, 276
index, 138

triangles, creating with border styles, 386
troubleshooting. See debugging techniques;

testing
.txt extension, 32
type attribute, 393, 411, 422, 461, 523
type selector, explained, 206
Typekit web font service, 339, 344
typemustmatch attribute, 527

U
u element, 122–123
ul (unordered list) element, 390

creating, 390–392
explained, 389
using with nav, 57

Unicode, use of, 12
URL boxes, creating for forms, 428–431
URLs (uniform resource locators)

absolute, 16
absolute vs. relative, 19
components, 15
creating links to, 166–168
ftp scheme, 15–16
hosts, 15
http and https, 16
lowercase convention, 162

548  Index

using in style sheets, 346–348
using number of, 344
viewing in demo HTML, 344
.woff (Web Open Font Format), 336

web host
connecting domain with, 514
finding, 513–514
ISP as, 513

web server, creating with JavaScript, 486
WebP image format, 135
webpages. See also HTML pages; page

constructs; publishing pages on web;
responsive webpages

alt attribute, 148
ARIA spec, 81
components, 26
connection-speed simulations, 146
content, 6–7
content placement, 26
creating, 30
creating in text editors, 31
Creative Commons, 140
default missing, 35
document head, 5, 45–46
editing, 36
ending, 45
file references, 1
fixed-width, 266
getting inspiration from, 40–41
html element, 5, 44
language subtag lookup tool, 47
markup, 1
meta tag, 4
refreshing in Chrome, 39
rel value resource, 162
rendering, 7
responsive, 266
saving, 32–36
sections, 46
structuring pages, 268–271
testing, 498–499
text content, 1, 12
viewing in browsers, 38–39

websites. See also sites
Acorn, 141
Adobe Edge Inspect, 501
background properties, 256
BBEdit text editor, 31
BrowserStack, 500
Can I Use, 499
Coda text editor, 31
CSS Arrow Please! 386
CSS gradient background maker, 381
CSS Sprite Generator, 388
CSS3 Generator, 364

viewports, 324–325
meta element, 324–325
targeting with media queries, 330

visibility of elements, controlling, 278–281
visitors, allowing to upload files, 439
VMs (virtual machines), using to test

browsers, 500
VoiceOver screen reader, 78
void elements, 8

W
W3C’s validator, accessing, 497
WAI-ARIA (Web Accessibility Initiative’s Accessible

Rich Internet Applications), 78–81
wbr element, 123
web analytics, 513
web browsers. See browsers
web font services

Cloud.typography, 339
Edge Web Fonts, 339
Fontdeck, 339
Fonts.com, 339
Fontspring.com, 339
Google Fonts, 339
Typekit, 339
WebINK, 339

web fonts. See also fonts; icon fonts
applying bold italic with, 354–356
applying bold with, 352–353
applying italics with, 350–351
browser support, 336
choosing, 344
downloading, 342–344
.eot (Embedded OpenType), 336
explained, 336
file formats, 336
finding, 338–341
Font Squirrel, 338
@font-face, 336–337, 345
from Google Fonts, 357–359
The League of Moveable Type website, 338
legal issues, 336–337
managing file sizes, 337
MyFonts, 338
.otf (OpenType), 336
PT Sans, 343–345
quality and rendering, 340
self-hosting, 338
single vs. double quotes, 348
styling text with, 346–348
subsetting, 337
.svg (Scalable Vector Graphics), 336
.ttf (TrueType), 336
Typekit web font service, 344
using in Photoshop, 344

Index  549

Pixelmator, 141
Quirksmode, 499
Resources for creating, 29
Respond.js, 334
responsive website examples, 332
Retina images, 152
Screen Sizes, 332
Selectivizr, 448
selectors in CSS3, 228
Silk icon set, 388
Smashing Magazine, 29
specificity weights, 179
Sublime Text editor, 31
table examples, 477
TextMate editor, 31
TextWrangler text editor, 30
verifying in desktop browsers, 500
video resources, 476
Video.js solution, 474
VoiceOver, 78
W3C’s validator, 497
Window-Eyes, 78
X-Icon Editor, 156

WebVTT file format, 462
white-space property, 264
width, height attributes, 150, 442, 452
width. See also max-width

calculating auto value for, 284–285
setting for elements, 282–285

Window-Eyes screen reader, 78
word processors, avoiding, 31
words, noting misspellings, 122
wrap attribute, 530

X
XHTML, use of space and forward slash, 9
X-Icon Editor, 156

Z
z-index property, using, 304

CSS3 Patterns Gallery, 381
CSS3 PIE, 363
“A Dao of Web Design,” 311
DeviceAnywhere, 501
domain names, 512
Dribbble, 362
Electric Plum, 501
Espresso text editor, 31
favicons, 156
Flickr, 140
Flowplayer solution, 474
Font Squirrel, 342
@font-face generator, 337
Fontfabric, 340
FTP clients, 515, 518
Gimp, 141
Hover, 512
HTML5 Boilerplate, 156
HTML5 Please, 363
icon fonts, 340
ImageOptim, 144
IcoMoon, 340
iOS Simulator, 501
JAWS, 78
JPEGmini, 144
JW Player solution, 474
A List Apart, 29
MediaElement.js, 470–471
microformats, 119
Miro Video Converter, 451
Mobile HTML5, 332
Modernizr, 363
multimedia resources, 476
Namecheap, 512
normalize.css, 105
NVDA, 78
“One Web” presentation, 311
Open Device Lab, 501
Paint.NET, 141
Photoshop, 141

	Table of Contents
	Introduction
	HTML and CSS in Brief
	Web Browsers
	Web Standards and Specifications
	Progressive Enhancement: A Best Practice
	Is This Book for You?
	How This Book Works
	Companion Website

	Chapter 4 Text
	Adding a Paragraph
	Specifying Fine Print
	Marking Important and Emphasized Text
	Creating a Figure
	Indicating a Citation or Reference
	Quoting Text
	Specifying Time
	Explaining Abbreviations
	Defining a Term
	Creating Superscripts and Subscripts
	Adding Author Contact Information
	Noting Edits and Inaccurate Text
	Marking Up Code
	Using Preformatted Text
	Highlighting Text
	Creating a Line Break
	Creating Spans
	Other Elements

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

