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Praise for SysML Distilled

“In keeping with the outstanding tradition of Addison-Wesley’s techni-
cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. 
Lenny has done a masterful job of capturing the spirit of OMG SysML 
as a practical, standards-based modeling language to help systems engi-
neers address growing system complexity. This book is loaded with 
matter-of-fact insights, starting with basic MBSE concepts to distin-
guishing the subtle differences between use cases and scenarios to illu-
mination on namespaces and SysML packages, and even speaks to some 
of the more esoteric SysML semantics such as token flows.”

— Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory

“The power of a modeling language, such as SysML, is that it facilitates 
communication not only within systems engineering but across disci-
plines and across the development life cycle. Many languages have the 
potential to increase communication, but without an effective guide, 
they can fall short of that objective. In SysML Distilled, Lenny Delligatti 
combines just the right amount of technology with a common-sense 
approach to utilizing SysML toward achieving that communication. 
Having worked in systems and software engineering across many do-
mains for the last 30 years, and having taught computer languages, 
UML, and SysML to many organizations and within the college setting, 
I find Lenny’s book an invaluable resource. He presents the concepts 
clearly and provides useful and pragmatic examples to get you off the 
ground quickly and enables you to be an effective modeler.”

— Thomas W. Fargnoli, Lead Member of the  
Engineering Staff, Lockheed Martin

“This book provides an excellent introduction to SysML. Lenny Delli-
gatti’s explanations are concise and easy to understand; the examples 
well thought out and interesting.”

— Susanne Sherba, Senior Lecturer, Department of  
Computer Science, University of Denver

“Lenny hits the thin line between a reference book for SysML to look 
up elements and an entertaining book that could be read in its entirety 
to learn the language. A great book in the tradition of the famous UML 
Distilled.”

— Tim Weilkiens, CEO, oose



“More informative than a PowerPoint, less pedantic than an OMG Pro-
file Specification, SysML Distilled offers practicing systems engineers 
just the right level of the motivation, concepts, and notation of pure 
OMG SysML for them to attain fluency with this graphical language for 
the specification and analysis of their practical and complex systems.”

— Lonnie VanZandt, chief architect, No Magic, Inc.

“Delligatti’s SysML Distilled is a most aptly named book; it represents 
the distillation of years of experience in teaching and using SysML in 
industrial settings. The author presents a very clear and highly read-
able view of this powerful but complex modeling language, illustrating 
its use via easy-to-follow practical examples. Although intended pri-
marily as an introduction to SysML, I have no doubt that it will also 
serve as a handy reference for experienced practitioners.”

— Bran Selic, president, Malina Software Corp.

“SysML is a rather intimidating modeling language, but in this book 
Lenny makes it really easy to understand, and the advice throughout 
the book will help practitioners avoid numerous pitfalls and help them 
grasp and apply the core elements and the spirit of SysML. If you are 
planning on applying SysML, this is the book for you!”

— Celso Gonzalez, senior developer, IBM Rational

“SysML Distilled is a great book for engineers who are starting to delve 
into model-based systems engineering. The space system examples 
capture the imagination and express the concepts in a simple but effec-
tive way.”

— Matthew C. Hause, chief consulting engineer,  
Atego and chair, OMG UPDM Group

“I’ve been deeply involved with OMG since the 1990s, but my profes-
sional needs have not often taken me into the SysML realm. So I thought 
I’d be a good beta tester for Lenny’s book. To my delight, I learned a 
great deal reading through it, and I know you will too.”

— Doug Tolbert, distinguished engineer, Unisys, and member,  
OMG Board of Directors and Architecture Board
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“SysML Distilled provides a clear and comprehensive description of the 
language component of model-based systems engineering, while offer-
ing suggestions for where to find information about the tool and meth-
odology components. There is evidence throughout the book that the 
author has a deep understanding of SysML and its application in a sys-
tem development process. I will definitely be using this as a textbook in 
the MBSE courses I teach.”

— J. D. Baker, OCUP, OCSMP, member of the  
OMG Architecture Board

“SysML Distilled is the desktop companion that many SysML modelers 
have needed for their bookshelves. Lenny has the experience and certi-
fications to help you through your day-to-day modeling questions. 
This book is not a tutorial, nor is it the encyclopedic compendium of all 
things SysML. If you model using SysML, this will become your daily 
companion, as it is meant to be used regularly. I believe your copy will 
soon be dog-eared, with sticky notes throughout.”

— Dr. Robert Cloutier, Stevens Institute of Technology

“SysML is utilized today in a wide range of applications, including 
deep space robotic spacecraft and down-to-earth agricultural equip-
ment. This book concisely presents SysML in a manner that is both re-
freshingly accessible for new learners and quite handy for seasoned 
practitioners.”

— Russell Peak, MBSE branch chief,  
Aerospace Systems Design Lab, Georgia Tech

“SysML Distilled is a wonderfully written, knowledgeable, and concise 
addition to systems modeling literature. The lucid explanations lead a 
newcomer by the hand into modeling reasonably complex systems, 
and the wealth and depth of the coverage of the most-used aspects of 
the SysML modeling language stretch to even enabling advanced inter-
mediate depictions of most systems. It also serves as a handy reference. 
Kudos to Mr. Delligatti for gifting the world with this very approach-
able view of systems modeling.”

— Bobbin Teegarden, CTO/chief architect,  
OntoAge and Board Member, No Magic, Inc.
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This book is dedicated to my wife, Natalie, and my children,  
Aidan and Noelle—my greatest blessings . . . and my  
reasons for enduring the many late nights of writing.
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Foreword by Rick Steiner

Systems engineering is not an easy subject to teach. Earlier in my ca-
reer, I was emphatically told that systems engineering could not be 
taught in a classroom and that it could only be learned through experi-
ence. While that hasn’t proven to be true, there are certainly concepts 
within the practice of systems engineering that are both subtle and 
arcane. 

Expressing these concepts in models demands a suitably robust 
language, which is why a dedicated group of us began development of 
what would become SysML in early 2002. We attempted to be parsimo-
nious and direct when designing the language, specifically targeting it 
for use by practicing systems engineers. I’m convinced that the result-
ing language is both flexible and useful, and I am gratified that it has 
emerged as a dominant standard for communicating systems-related 
ideas. 

Just like the practice of systems engineering, however, SysML has 
proven difficult to teach effectively. The scope of systems engineering 
is remarkably broad, and even though SysML is a relatively compact 
language, students frequently get overwhelmed with its complexity. 
Resources for learning SysML and model-based systems engineering 
have until recently been rather limited, but it’s getting better. Formal 
MBSE and SysML courses are now regularly being taught through sev-
eral university or extension catalogs, and at least one comprehensive 
textbook is now available.

An engineer or manager who wants to casually learn the basics of 
SysML isn’t likely to want to take a class. An advanced systems engi-
neer who finds him- or herself in the middle of a project with tight 
deadlines just doesn’t have the time to take a class. It is in both of these 
situations that this book has the greatest value.

Structured in a manner similar to Martin Fowler’s popular UML 
Distilled, this book lays out the fundamentals of SysML diagrams in 
clear, concise terms. It is written in a casual, lighthearted manner, yet it 
conveys the gist of each concept and its graphical representation. What 
I like best about this book is that it keeps me reading, without getting 
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bogged down in “meta-speak” and “UML-isms.” It is sprinkled with 
humor and practical advice.

This is not a textbook or guidebook for SysML application or MBSE 
deployment, nor does it describe in detail the methodological rationale 
for each of the systems engineering concepts it describes. While it does 
use a consistent satellite example through the chapters, it does not walk 
the reader through any particular MBSE process. It is not a workbook, 
nor does it include questions or sample problems for the reader to work 
out. You as a SysML user or advanced MBSE practitioner may eventu-
ally need these other resources, but this book is an excellent start.

This book is a solid, self-paced, lightweight SysML reference guide. 
The world is ready for this book.

—Rick Steiner,
coauthor, A Practical Guide to SysML

Foreword by Rick Steiner
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Foreword by Richard Soley

Technology Take-Up Takes Time

I had the great luck to attend one of the best technologically focused 
(and entrepreneurially focused) universities in the world in the 1970s 
and 1980s. The future, as Steve Jobs might have put it, was invented 
there, not discovered. It was one of the places where “hackers stayed 
up late” and helped to create radar, flash photography, and the Inter-
net. Those technologies helped change the world; more importantly, 
economies flourished through the creation of companies and other or-
ganizations that put those technologies to work. The computing explo-
sion that started in the 1960s certainly fared well in the Massachusetts 
of 1980.

My own contributions during my initial foray into the academic 
world, eleven years at the Massachusetts Institute of Technology, 
moved and changed as my academic interests moved and changed, 
starting with the artificial intelligence field (handwriting recognition 
was an early focus), moving on in graduate school to computing sys-
tems architectures, and finally melding those two interests. Not a small 
contribution to my focus was being involved in five start-ups during 
my MIT years (though perhaps it was a large contribution to the length 
of time I spent at MIT). Artificial intelligence pioneers like Symbolics 
and Gold Hill Computer were important to my understanding of the 
application of technology; and my own start-up, A.I. Architects (with 
likely the best systems engineer I have ever met), strongly depended on 
the collision between the demands of artificial intelligence and the lim-
ited computing power of the early personal computing revolution.

Probably the most important single idea that I learned during this 
period was that the time it takes for technology to come out of the labo-
ratory and into production is far greater than any academic believes. 
The expert systems of the 1980s, now a primary fixture of diagnostic 
and other systems worldwide (though generally under the moniker of 
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“rule-based systems”), were clearly based on systems like PLANNER 
and CONNIVER from the 1960s. Twenty years seemed like the right 
rule of thumb; taking a technology through the engineering require-
ments necessary to stabilize and replicate the approach on an industrial 
scale, to the market development and integration, takes time.

OMG Objects of Awe

Nevertheless, when the Object Management Group (OMG) started up 
in 1989, the promise of object technology and distributed objects was to 
change the face of computing. As the Internet slowly changed into the 
World Wide Web, it was clear that consistent, standardized middle-
ware would make it more possible than ever to integrate not only text 
pages from around the world but also application interoperability. The 
ability to “mash up” (as we would say twenty years later) computing 
power and data sources worldwide, using standardized APIs and  
on-the-wire protocols, would be far simpler with an object-oriented 
approach.

While OMG did a good job from the beginning in controlling the 
hype, avoiding the “artificial intelligence winter” that arose from an 
overhyped AI market in the 1980s, OMG likely didn’t do a good enough 
job of recognizing that technology take-up takes time. It would be fif-
teen or twenty years before mash-ups became mash-ups, and object-
oriented languages (initially C++, itself a good twenty years after Simu-
lar; now Java, C#, and Ruby-on-Rails) would permeate the computing 
milieu. OMG’s objects of awe, as with all technologies, would become 
the quotidian tools of software developers everywhere, but it would 
take a couple of decades.

Modeling Makes Mavens

In the meantime, another opportunity would come OMG’s way, with 
the proposal in 1996 that the object-oriented analysis and design mar-
ket (as it was then called) had reached a dead end, an impasse, based 
not on the inherent technology but rather on the multitudinous ap-
proaches (and worse, notations) flooding the market. Even those tech-
nology mavens in love with the approach found themselves stymied 
by too much choice (and too little guarantee of portability and inter-
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operability, once a choice was made). The mid-1990s consolidation of 
the analysis and design market created a vendor-focused market force 
for the creation of a standard, a force that was widely accepted by the 
slow-growing user community. The creation of the Unified Modeling 
Language (UML) standard in 1997, even with only a shared notation 
and not a shared methodology, was sufficient to coax the market into 
more than 100 percent CAGR over the next decade and a half. As the 
application development life cycle is more than just analysis and de-
sign, including also development, test, implementation, and mainte-
nance, what had been just for “analysis and design” was soon called 
modeling.

And proof points for modeling, even with nascent standards like 
UML, abounded within a few years. Early scientific analysis showed  
35 percent or more productivity increases using a modeling approach 
(as opposed to low-level programming language development); per-
haps more importantly, as maintenance and support range from 80 per-
cent to 90 percent of the software development life cycle, a couple of 
key analyses showed that 35 percent productivity increases (or better) 
could be had in maintenance and integration. This acceptance—as of this 
writing, according to market analysts Gartner & Forrester, including 
more than 71 percent of all software development teams—led to an 
explosion of modeling-related standardization at OMG.

Within fifteen years of the availability of the OMG UML standard 
(and its associated and very powerful parent, the Meta Object Facility,  
MOF), a fleet of domain-specific modeling languages were standard-
ized. Languages and profiles for defining systems on a chip, for service-
oriented architectures (SoaML), for business modeling and analysis 
(BPMN), for capturing enterprise architectures (UPDM), for defining 
rule-based systems (SBVR), even for capturing the motivations behind 
systems development (BMM), all joined the OMG stable. More impor-
tantly, most work at OMG shifted to “vertical markets,” addressing the 
needs of healthcare information technology, financial services, life sci-
ences, automotive and other consumer device dependability analysis, 
and so forth—all based on a view of systems based on high-level 
models.

Servicing the Spread of Systems

One of the most important horses in that stable is the OMG Systems 
Modeling Language, SysML. Defined as a “profile” of the UML, SysML 

Foreword by Richard Soley
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took on the huge task of being the language that could integrate many 
disparate views of large-systems engineering: not only software and 
hardware but also requirements, mathematical parameterization, faci l-
ities management, design for maintenance, even the management of 
human and other resources and the behavior of the system under de-
sign. The vision I had outlined in 2001, called model driven architecture, 
could come to fruition with such an approach to integrated engineer-
ing, and not just for “software architecture,” but for the overall struc-
ture of complex systems like aircraft carriers and chemical plants. As 
the IDEF series of specifications had promised in the early 1980s, SysML 
could truly bring together the expertise necessary from many fields to 
build well-designed, fit-to-purpose, and maintainable large systems.

So here we are, a dozen years removed from the first mention of 
model driven architecture and coming up on the requisite twenty years 
since the delivery of the Unified Modeling Language, with a book in 
hand that integrates the views of experts on how to think about and 
how to use SysML to deliver real systems. Here we find SysML distilled: 
according to the dictionary, metaphorically, its essential meaning or 
most important aspects extracted and displayed for all to see.

Complex systems development is, by its nature, a team sport. No 
one person can manage even the gathering of requirements for large 
systems; the size alone makes such a project complex. Since the real 
focus of design is simplification along one or more dimensions, we 
need notations and processes that not only communicate the simplified 
vision but also allow designers, developers, and engineers to drill 
down into a system’s design and explore, in fractal fashion, the under-
lying parts of the design, the expectations and requirements, and the 
integration methodology. It’s one thing to know that a notation like 
SysML—large and complex itself, of course, and including many dif-
ferent tools in its toolbox—can support large systems development; it’s 
quite another to get past the learning curve to be able to effectively use 
those tools. My father-in-law was well known for using a screwdriver 
for every handyman task around the house (including driving nails); I 
prefer to have tools that are fit for purpose and to understand how to 
use those tools in an integrated way. Further, the SysML modeling lan-
guage is not intended only to implement large complex systems but 
also to communicate their design to users of those systems; to maintainers 
of those systems; and to those who may have to debug and integrate 
extensions, corrections, and changes to those systems.

This book presents that introduction to the toolbox; better, it ex-
plains how to use those tools together to gather requirements for, build 
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designs for, analyze designs of, and communicate that process to others in 
a design team (or future integration team). That’s what engineers do, 
and SysML is the best way to do it.

—Richard Mark Soley, Ph.D.,
chairman and chief executive officer,

Object Management Group, Inc.
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Preface

Why SysML Distilled? It’s simple: You’re busy. You need to know SysML 
now. You already have some systems modeling work to do. You don’t 
need to know every detail of the language. You just want a book that 
focuses you on those parts of SysML that are most common and most 
useful in daily practice. SysML Distilled is that book.

You may choose to use this book as a desk reference, reaching for it 
when you’re stuck and you’ve got a deadline bearing down on you. Or 
you may choose to dive deep one chapter at a time, adding new mod-
eling skills to your toolbox for the future work coming your way. Or 
you may decide to read this book cover to cover to prepare for the first 
two levels of the OMG Certified Systems Modeling Professional (OCSMP) 
certification: OCSMP Model User and OCSMP Model Builder: Fundamen-
tal. This book is designed to serve you in all these ways.

Who Should Read This Book?

SysML is a graphical modeling language that you can use to visualize 
and communicate the designs of sociotechnical systems on all scales—
systems consisting of hardware, software, data, people, and processes. 
Systems engineers are the ones who are responsible for the specifica-
tion, analysis, design, verification, and validation of sociotechnical sys-
tems. Systems engineers—and students of systems engineering—are 
therefore the target audience for this book.

But that’s an oversimplification. Many authors and teachers have 
repeated the axiom, “Everything is a system.” Allow me to add  
the corollary: “Every engineer is a systems engineer.” No matter your 
domain or job title, you’ve likely performed some or all of the sys-
tems engineering tasks I’ve mentioned. The premise of this book is  
that you can perform those activities more effectively via the stan-
dardized medium of an integrated SysML model than you can with  
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nonstan dardized modes of communication in disjoint sets of documents  
and diagrams. You are a systems engineer—and you want to do your 
job more effectively. You are therefore the target audience for this book.

What do you need to know before you dive in? You should have at 
least a conceptual understanding of system specification, analysis, de-
sign, verification, and validation. Knowing in advance what these ac-
tivities consist of will help you internalize the ways SysML can help 
you do them better. The International Council on Systems Engineering 
(INCOSE) Systems Engineering Handbook is the authoritative reference.

You do not need to have any experience with any modeling lan-
guage to benefit from this book. You may already know that SysML is 
based on the Unified Modeling Language (UML). In fact, you may have 
read Martin Fowler’s seminal book, UML Distilled. I designed SysML 
Distilled to be a companion book for systems engineers, who need to 
model a wider spectrum of systems beyond that subset—software sys-
tems—for which UML was created. With that said, you do not need to 
know UML as a prerequisite for this book. The structure and content of 
this book make it a self-sufficient primer for learning SysML.

Structure of the Book

This book contains twelve chapters and two appendixes. Chapter 1, 
“Overview of Model-Based Systems Engineering,” introduces the con-
cept of model-based systems engineering (MBSE) and provides the 
context and the business case for learning SysML. Chapter 2, “Over-
view of the Systems Modeling Language,” discusses why SysML was 
created and introduces the nine kinds of SysML diagrams that you can 
create. Chapter 2 also covers general concepts that apply to all nine 
kinds of diagrams.

Chapters 3 through 11 zoom in on the details of each of the SysML 
diagrams, introducing you to the elements and relationships you can 
display on them. Although there’s occasional overlap in the kinds of 
elements and relationships that can appear on these diagrams, I focus 
on each diagram one chapter at a time to effectively group related ideas 
and help you easily locate a particular topic when you need to. Chap-
ters 3–11 are as follows:

• Chapter 3: “Block Definition Diagrams”
• Chapter 4: “Internal Block Diagrams”
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• Chapter 5: “Use Case Diagrams”
• Chapter 6: “Activity Diagrams”
• Chapter 7: “Sequence Diagrams”
• Chapter 8: “State Machine Diagrams”
• Chapter 9: “Parametric Diagrams”
• Chapter 10: “Package Diagrams”
• Chapter 11: “Requirements Diagrams”

The last chapter, Chapter 12, “Allocations: Cross-Cutting Relation-
ships,” covers the concept of allocations—a relationship that you can 
use to relate elements across all nine kinds of SysML diagrams.

The sample diagrams in the figures present various aspects of a 
single system, the DellSat-77 Satellite System—a system I conceived of 
entirely for the purpose of writing this book (and I hereby certify that I 
have not disclosed any proprietary information of any aerospace com-
panies). I chose to focus on a satellite system to demonstrate how you 
can use SysML to model a complex, real-world sociotechnical system—
one other than the classic exemplars (ATMs and cruise control systems) 
that seem to be prevalent in modeling workshops. And I chose to use a 
single system as a running example threaded through all chapters to 
show you how the nine kinds of SysML diagrams present complemen-
tary and consistent views of an underlying system model.

The SysML model of the DellSat-77 Satellite System is available for 
download from my website, www.lennydelligatti.com, on the “Articles 
and Publications” page. I have made the data files available both in 
XMI format and in the native formats of various modeling tools. This 
resource enables self-learners as well as instructors and their students 
to get hands-on with the system model that appears throughout this 
book in the modeling tool of their choice.

Appendix A, “SysML Notation Desk Reference,” is a concise sum-
mary of the graphical notations presented in this book, along with ref-
erences to the sections where they are discussed in detail. Appendix B, 
“Changes between SysML Versions,” covers the kinds of elements that 
are introduced in SysML v1.3, the latest version of SysML at the time of 
this writing.

SysML v1.2 is the version of SysML that is currently assessed on the 
OCSMP certification exams. The biggest differences between SysML 
v1.2 and v1.3 are in ports—a kind of element that can appear on block 
definition diagrams (BDDs) and internal block diagrams (IBDs). I cover 

Preface
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BDDs in Chapter 3 and IBDs in Chapter 4. In these chapters, I focus on 
the SysML v1.2 definition of ports for three reasons:

•  They are the predominant kinds of ports in system models on 
modeling projects that started before the release of SysML 
v1.3—and many of those projects are still active.

•  Some modeling tools lag behind the changes in SysML and 
have not yet implemented the SysML v1.3 definition of ports.

•  The OCSMP certification exams have not been revised since the 
release of SysML v1.3 and still cover the SysML v1.2 definition 
of ports.

Never fear, though; I give the SysML v1.3 definition of ports full 
coverage in Appendix B. If your modeling team is about to create a new 
system model, I recommend using the new kinds of ports instead of the 
old ones (assuming your SysML modeling tool supports them).

The order of the chapters is loosely based on the typical frequency 
of use of the diagrams. It does not reflect the relative value of each kind. 
It can’t. Value is a subjective thing. Your team will determine that based 
on the modeling method you adopt and the deliverables you produce 
for your customer.

The order of the chapters also does not reflect—and should not 
suggest—any particular modeling method. Simply put, this is not a 
methodology book; rather, it’s a language book. In Chapter 1, “Over-
view of Model-Based Systems Engineering,” I discuss the distinction 
between modeling methods and modeling languages. I list a few well-
known modeling methods and point to references that discuss them 
comprehensively.

My goal in this book is to present you with concise, targeted cover-
age of the most common and most useful features of SysML—features 
that are useful no matter which modeling method your team adopts. A 
key point is that SysML is only a language; it’s method independent. I 
designed SysML Distilled to be method independent as well. I want you 
to come away knowing that SysML is a value-added medium for com-
munication no matter which processes, procedures, or tools your team 
adopts to do your work and meet your stakeholders’ needs.

I hope you find this book a valuable companion in your study of 
SysML. It’s a rich, expressive language—one with enough breadth and 
depth to let you visualize and communicate all aspects of a system’s 
design. There’s a lot to know, but you don’t need to know all of it to 
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create system models that communicate clearly and effectively. Dive in 
and get what you need. You’ll discover how quickly you can put that 
knowledge to work and deliver value to your customer.

—Lenny Delligatti
Houston, Texas

October 2013

Preface
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Chapter 3 

Block Definition 
Diagrams

The most common kind of SysML diagram is the block definition dia-
gram. You can display various kinds of model elements and relation-
ships on a BDD to express information about a system’s structure. You 
can also adopt design techniques for creating extensible system struc-
tures, a practice that reduces the time and cost to change your design as 
your stakeholders’ needs evolve.

3.1 Purpose

The model elements that you display on BDDs—blocks, actors, value 
types, constraint blocks, flow specifications, and interfaces—serve as 
types for the other model elements that appear on the other eight kinds 
of SysML diagrams. We refer to elements that appear on BDDs as ele-
ments of definition. Elements of definition, in a real sense, form the 
foundation for everything else in your system model. That’s why I’m 
covering BDDs first.

Elements of definition are important; the structural relationships 
among them—associations, generalizations, and dependencies—are 
arguably more important. You display these relationships on BDDs, 
too. With these relationships, you often create BDDs that convey sys-
tem decomposition and type classification.
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3.2 When Should You Create a BDD?

Often. You should create a BDD often.
That may seem like a glib answer, but it’s accurate. BDDs are not 

tied to any particular stage of the system life cycle or level of design. 
You and your team will create them (and refer to them) when you per-
form all the following systems engineering activities: stakeholder needs 
analysis, requirements definition, architectural design, performance 
analysis, test case development, and integration. And you often create 
a BDD in conjunction with other SysML diagrams to provide a comple-
mentary view of an aspect of your system of interest.

In short, you should—and will—create BDDs often.

3.3 The BDD Frame

The diagram kind abbreviation for a block definition diagram is bdd. 
The model element type that the diagram frame represents can be any 
of the following:

•	 package 

•	 model
•	 modelLibrary
•	 view
•	 block
•	 constraintBlock

As discussed in Section 2.4, “General Diagram Concepts,” the 
model element that the diagram represents serves as the namespace for 
the other elements shown on the diagram. A namespace is simply a 
model element that’s allowed to contain other model elements; that is, 
it can have other elements nested under it within the model hierarchy. 
A namespace, therefore, is a concept that has meaning only within your 
system model; it has no meaning within an instance of your system.

Many kinds of SysML elements can serve as namespaces. A pack-
age, however, is the most common kind of namespace for the various 
elements of definition that appear on BDDs. Therefore, the element 
that’s named in the header of a BDD typically is a package you’ve cre-
ated somewhere in the model hierarchy.
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Figure 3.1 A sample block definition diagram (BDD)
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The name of the BDD in Figure 3.1 is “DellSat-77 Satellite Structure 
and Properties.” The diagram header also tells us that this diagram 
represents the Structure package in the system model. The Structure 
package, therefore, is the namespace for the elements shown on the 
diagram.

Let’s take a look in detail at the kinds of elements and relationships 
you can display on a BDD.

3.4 Blocks

A block is the basic unit of structure in SysML. You can use a block to 
model any type of entity within your system of interest or in the sys-
tem’s external environment.

Note the distinction between definition and instantiation (which 
SysML refers to as “usage”). This distinction is one of the most funda-
mental system design concepts, and it’s a pattern that recurs often in 
SysML. Some kinds of model elements (e.g., blocks, value types, con-
straint blocks) represent definitions of types; other kinds of model ele-
ments (e.g., part properties, value properties, constraint properties) 
represent instances of those types. By analogy, a blueprint of a house 
is a definition of a type of house; each house a developer builds on a 
plot of land in accordance with that blueprint is a distinct instance of 
that type.

With that in mind, I reiterate: A block represents a type of entity, 
and not an instance. For example, you could create a block named Desk-
topWorkstation in your system model. That block would represent a 
type that defines a set of properties—such as monitor, keyboard, mouse, 
CPU, manufacturer, disk space, cost—that are common to all instances. 
Each desktop workstation that your IT department purchases for each 
office and cubicle would be a distinct instance of that DesktopWorksta-
tion block.

You can easily tell the difference between elements of definition 
and elements of usage in a system model. Elements of definition have 
a name only (e.g., DesktopWorkstation); elements of usage have a name 
and a type, separated by a colon (e.g., SDX1205LJD : Desktop Workstation).

The notation for a block is a rectangle with the stereotype «block» 
preceding the name in the name compartment (as shown in Figure 3.2). 
You’re required to display a block’s name compartment. Often you’ll 
display additional optional compartments that convey the features of 
the block.

03_0321927866_Ch03.indd           27                           Achorn International                             10/18/2013  12:12AM



3.4 Blocks 27

Features come in two varieties: structural features (also known as 
properties) and behavioral features. I discuss each category in depth in 
the next two sections.

Here are the optional compartments that you can display:

•	 Parts
•	 References
•	 Values
•	 Constraints
•	 Operations
•	 Receptions
•	 Standard ports (in SysML v1.2 and earlier)
•	 Flow ports (in SysML v1.2 and earlier)
•	 Full ports (in SysML v1.3)
•	 Proxy ports (in SysML v1.3)
•	 Flow properties (in SysML v1.3)
•	 Structure

The structure compartment is the only compartment that doesn’t 
list features. Rather, it’s a graphical compartment that displays a block’s 
internal structure; you can display in that compartment all the same 
notations you can display on an internal block diagram (IBD). Model-
ers rarely display this compartment.

Note that even though it’s legal to display a block’s ports in com-
partments, it’s much more common to display ports as small squares 
that straddle the border of a block (as shown in Figure 3.2). I discuss 
ports in detail in Section 3.4.1.5, “Ports.”

Figure 3.2 A block
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3.4.1 Structural Features

There are five kinds of structural features (also known as properties) 
that a block can own:

•	 Part properties
•	 Reference properties
•	 Value properties
•	 Constraint properties
•	 Ports

3.4.1.1 Part Properties

Part properties are listed in the parts compartment of a block (as shown 
in Figure 3.3). A part property represents a structure that’s internal to a 
block. Stated differently, a block is composed of its part properties. This 
relationship conveys ownership.

However, SysML stops short of defining the word ownership; this 
concept has different meanings in different domains. In the hardware 
domain, ownership typically refers to physical composition. For exam-
ple, Figure 3.3 conveys that a valid instance of the Communication and 
Data Handling Subsystem block is one that is physically composed of the 
required parts: flight computers, modulator, demodulator, transmitter, 
receiver, and antennas. In the software domain, however, ownership 

Figure 3.3 Blocks with part properties
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typically refers to one object’s responsibility for the creation and de-
struction of another object. When memory is allocated for a composite 
object, memory is allocated for each of its parts, too; similarly, when 
memory is freed for a composite object, memory is also freed for each 
of its parts.

But SysML states definitively that ownership means that a part prop-
erty can belong to only one composite structure at a time. However, a 
part property can be removed from one instance of a composite struc-
ture and added to another. For example, I can install a given antenna on 
only one satellite at a time, and not on two or more simultaneously. But 
that antenna can be removed from one satellite and reinstalled on an-
other at some point.

When you list a part property in the parts compartment of a block, 
it appears as a string with the following format: 

<part name> : <type> [<multiplicity>]

The part name is modeler defined. The type generally is the name 
of a block that you’ve created somewhere in the system model. The 
multiplicity is a constraint on the number of instances that the part 
property can represent within the composite, expressed either as a sin-
gle integer or as a range of integers.

For example, Figure 3.3 conveys that a valid instance of the Com-
munication and Data Handling Subsystem block must be composed of ex-
actly one instance of the Flight Computer block—an instance that serves 
in the role of primaryComputer. Additionally, it must be composed of 
either one or two more instances of Flight Computer—instances that 
serve in the role of backupComputer.

If you want a part property to represent an unconstrained number 
of instances, you can set the multiplicity to 0..*. The asterisk means that 
there’s no upper bound (or more precisely, that you’re not specifying 
an upper bound in the system model). You would read 0..* in English 
as “zero or more.” Alternatively, you can set the multiplicity to *, a 
shorthand notation for 0..*.

If no multiplicity is shown for a part property, the default is 1 (which 
is equivalent to 1..1). Note that 1 is almost always the default multiplic-
ity in SysML. There is an important exception, however, which I dis-
cuss in Section 3.5.2, “Composite Associations.”

When a part property has a multiplicity with an upper bound 
greater than 1 (e.g., 1..2, 0..10, *), we refer to that part property as a col-
lection (of instances). The key idea is that part property and instance are 
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not synonyms; a single part property may potentially represent multi-
ple instances within a composite if its specified multiplicity allows it.

3.4.1.2 Reference Properties

Reference properties are listed in the references compartment of a block 
(as shown in Figure 3.4). A reference property represents a structure 
that’s external to a block.

Unlike a part property, a reference property does not convey own-
ership. A reference property can roughly be described as a “needs” re-
lationship; a block with a reference property needs that external struc-
ture for some purpose, either to provide a service or to exchange matter, 
energy, or data. And this implies that some type of connection must 
exist between them.

Note that the presence of a reference property in a block does not by 
itself convey its purpose. If you need to convey that purpose, you could 
do so on an internal block diagram (IBD). I discuss this more in Chap-
ter 4, “Internal Block Diagrams.”

When you list a reference property in the references compartment 
of a block, it appears as a string with the following format: 

<reference name> : <type> [<multiplicity>]

The reference name is modeler defined. The type must be the name 
of a block or actor that you’ve created somewhere in the system model. 
The multiplicity is a constraint on the number of instances that the ref-
erence property can represent.

For example, Figure 3.4 shows that the Electrical Power Subsystem 
block has a reference property named cdhs. This model conveys that an 

Figure 3.4 Blocks with reference properties
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instance of Electrical Power Subsystem needs exactly one instance of 
Communication and Data Handling Subsystem (to fulfill its design pur-
pose). Again, this view alone doesn’t convey what that purpose is; it 
simply conveys that some type of connection must exist between them.

Like a part property, a reference property’s default multiplicity is 1 
(if no multiplicity is shown). And like a part property, a reference prop-
erty is referred to as a collection when its multiplicity has an upper 
bound greater than 1.

3.4.1.3 Value Properties

Value properties are listed in the values compartment of a block (as 
shown in Figure 3.5). A value property can represent a quantity (of 
some type), a Boolean, or a string. Most often, though, a value property 
is something you can assign a number to. Value properties are particu-
larly useful in conjunction with constraint properties to construct a 
mathematical model of your system (more on this in Chapter 9, “Para-
metric Diagrams”).

When you list a value property in the values compartment of a 
block, it appears as a string with the following format: 

<value name> : <type> [<multiplicity>] = <default value>

The value name is modeler defined. The type must be the name of 
a value type that you’ve created somewhere in the system model. The 
multiplicity is a constraint on the number of values that the value prop-
erty can hold. The default value is an optional piece of information; it 

Figure 3.5 A block with value properties
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represents the value assigned to the value property when an instance of 
its owning block first gets created.

Figure 3.5 shows that the DellSat-77 Satellite block has several value 
properties. The eventTimes value property can hold an unconstrained 
number of Timestamp values (as conveyed by the multiplicity 0..*). 
Timestamp is a value type that exists somewhere in the model hierarchy 
(more on value types in Section 3.9, “Value Types”).

As with a part property and a reference property, a value property’s 
default multiplicity is 1 (if no multiplicity is shown). Similarly, a value 
property is referred to as a collection when its multiplicity has an upper 
bound greater than 1.

Some value properties hold values that are assigned, and others 
hold values that are derived (calculated) from other value properties in 
the system model. To convey that a value property is derived, you put 
a forward slash (/) in front of its name. For example, Figure 3.5 shows 
that the DellSat-77 Satellite block owns two derived value properties: 
mass and period. This view of the model does not convey the equations 
used to calculate those derived values, nor does it show which other 
value properties provide inputs for those equations. You would specify 
those mathematical relationships using constraint expressions, as dis-
cussed in the next section.

3.4.1.4 Constraint Properties

Constraint properties are listed in the constraints compartment of a 
block (as shown in Figure 3.6). A constraint property generally repre-
sents a mathematical relationship (an equation or inequality) that is 
imposed on a set of value properties. This is a higher level of model fi-
delity than is required on most modeling projects. However, constraint 
properties are an essential part of constructing mathematical models of 

Figure 3.6 A block with a constraint property
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a system, which you display on parametric diagrams (more on this in 
Chapter 9).

When you list a constraint property in the constraints compartment 
of a block, it appears as a string with the following format:

<constraint name> : <type>

The constraint name is modeler defined. The type must be the name 
of a constraint block that you’ve created somewhere in the system 
model.

A constraint block is simply a special kind of block—one that you 
create to encapsulate a reusable constraint expression. Most often, a 
constraint expression is an equation or an inequality. For example, Fig-
ure 3.7 shows a constraint block named Sufficient Memory, which encap-
sulates the constraint expression

memoryCapacity >= dataPerOrbit * 3

This constraint block serves as the type for the constraint property 
sm in the Flight Computer block (shown in Figure 3.6). This conveys that 
the values held in the two value properties (memoryCapacity and data-
PerOrbit) must satisfy that mathematical relationship at all times (in a 
system that’s operating nominally).

Note that you’re not required to use constraint blocks to impose 
mathematical relationships on value properties. It’s perfectly legal to 
specify a constraint expression directly in the constraints compartment 
of a block (as shown in Figure 3.8). You would do this when only one 
block needs that constraint expression (i.e., when you don’t intend to 

Figure 3.7 A constraint block

03_0321927866_Ch03.indd           32                           Achorn International                             10/18/2013  12:12AM



  Block Definition Diagrams34

reuse it in multiple places). As a matter of best practice, though, I rec-
ommend that you always encapsulate equations and inequalities in 
constraint blocks; it enables reuse if the need arises.

I discuss constraint blocks in greater detail in Section 3.10, “Con-
straint Blocks.” Meanwhile, keep in mind these key ideas:

•	  Blocks can own constraint properties (to constrain value 
properties).

•	  Constraint properties are typed by constraint blocks, which 
generally encapsulate mathematical relationships.

3.4.1.5 Ports

A port is a kind of property that represents a distinct interaction point 
at the boundary of a structure through which external entities can in-
teract with that structure—either to provide or request a service or to 
exchange matter, energy, or data. 

When you add a port to a block, you’re modeling a structure as a 
black box with respect to its environment; the structure’s internal im-
plementation is hidden from its clients. Those clients know only the 
structure’s interface (the services it provides and requires, and the  
types of matter, energy, or data that can flow in and out). Stated differ-
ently, a port decouples a block’s clients from any particular internal 
implementation. 

Encapsulating a block with a set of ports enables you to redesign 
that block’s internal implementation later without impacting the de-
sign of the other parts of your system. This practice reduces the time it 
takes to implement system modifications when the customer’s require-

Figure 3.8 A block with a (non-reusable) constraint
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ments change later in the life cycle, and time saving translates into cost 
saving.

A port can represent any type of interaction point you need to 
model. For example, it can represent a physical object on the boundary 
of a hardware object (e.g., a spigot, an HDMI jack, a fuel nozzle, a 
gauge). It can represent an interaction point on the boundary of a soft-
ware object (e.g., a TCP/IP socket, a message queue, a shared memory 
segment, a graphical user interface, a data file). And it can represent an 
interaction point between two business organizations (e.g., a purchase 
order, a courier, a website, a mailbox). SysML imposes no constraints 
on what a port can represent.

SysML v1.2 (and earlier) defines two kinds of ports—standard 
ports and flow ports—that you can add to a block to specify different 
aspects of its interface. A standard port lets you specify an interaction 
point with a focus on the services that a block provides or requires; a 
flow port lets you specify an interaction point with a focus on the types 
of matter, energy, or data that can flow in and out of a block.

Note

SysML v1.3 no longer supports standard ports and flow ports, instead defining 
two new kinds of ports: full ports and proxy ports. I discuss these in detail in Ap-
pendix B. I focus on standard ports and flow ports in this chapter because they 
continue to be the predominant kinds of ports in system models at the time of this 
writing. Additionally, the current versions of the OCSMP certification exams cover 
the concepts of standard ports and flow ports. Moreover, some modeling tools 
continue to lag behind the changes in SysML and do not yet support full ports 
and proxy ports.

Standard Ports A standard port models the services (behaviors) that 
a block provides or requires at an interaction point on its boundary. 
Most often, you display a standard port as a small square straddling 
the border of a block (as shown in Figure 3.9). Note that it’s legal to list 
a standard port as a string in the standard ports compartment, but this 
is an uncommon notation.

A standard port can have a modeler-defined name (e.g., sp_cdhs, 
sp_eps) that is displayed as a string floating near the standard port  
(either inside or outside the block border). A standard port can have 
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one or more types; the types are the interfaces you assign to it (e.g., 
Power Generation, Status Reporting).

An interface, like a block, is an element of definition—one that de-
fines a set of operations and receptions, a behavioral contract that cli-
ents and providers will conform to. You can display an interface on a 
BDD as a rectangle with the keyword «interface» preceding the name; 
you can display its operations and receptions in the second and third 
compartments. Figure 3.10 displays the Power Generation and Status Re-
porting interfaces using this notation.

When you assign an interface to a standard port, you assign it ei-
ther as a provided interface or as a required interface. A provided inter-
face is displayed using the ball notation—the lollipop symbol attached 
to the standard port (shown in Figure 3.9). A block that provides an 
interface must implement all of the interface’s operations and recep-
tions. For example, Figure 3.9 conveys that the Communication and Data 
Handling Subsystem block provides the Status Reporting interface, and 

Figure 3.9 Blocks with standard ports

Figure 3.10 Interfaces
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this means that it implements (can perform) the two operations and the 
two receptions in that interface.

A required interface is displayed using the socket notation—the 
stick with a semicircle attached to the standard port (shown in Fig-
ure 3.9). A block that requires an interface may invoke one or more—
but not necessarily all—of its operations or receptions at some point 
during system operation. For example, Figure 3.9 conveys that the Elec-
trical Power Subsystem block requires the Status Reporting interface, and 
this means that it may invoke any (or all) of the four operations and 
receptions in that interface.

Modeling with standard ports and interfaces is a way to decouple 
clients and providers, enabling you to design to abstractions rather 
than specific implementations. This extensibility lets you add new 
providers of interfaces at any time without impacting the existing cli-
ents of those interfaces.

Flow Ports A flow port models the types of matter, energy, or data 
that can flow in or out of a block at an interaction point on its boundary. 
As with a standard port, you most often display a flow port as a small 
square straddling the border of a block (as shown in Figure 3.11). Un-
like a standard port, however, a flow port has a symbol shown inside 
the small square (more on that soon). It’s legal to list a flow port as a 
string in a compartment—one named “flow ports”—but again, this is 
an uncommon notation.

A flow port can have a modeler-defined name (e.g., dataOut, data-
 In); it can also have a type (e.g., Housekeeping Data). The name and  
type are displayed as a string floating near the flow port, separated by 
a colon in the format name : type. The type that you specify for a flow 
port and the symbol that appears inside the square depend on the kind 
of flow port you’re modeling. SysML offers two kinds of flow ports: 
non atomic flow ports and atomic flow ports.

Figure 3.11 shows examples of nonatomic flow ports. You add a 
nonatomic flow port (symbolized as < >) to a block when you need to 

Figure 3.11 Blocks with nonatomic flow ports
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model multiple types of items that could flow in or out via that port. The 
type of a nonatomic flow port must be the name of a flow specification 
that you’ve created somewhere in the system model.

Like a block, a flow specification is an element of definition—one 
that defines a set of flow properties that can flow in or out of a non-
atomic flow port. You can display a flow specification on a BDD as a 
rectangle with the stereotype «flowSpecification» preceding the name; 
you can display its flow properties in a compartment named “flow-
Properties.” Figure 3.12 displays the Housekeeping Data flow specifica-
tion using this notation.

A flow property represents a specific item that can flow in or out of 
a block via a flow port. Each flow property has a direction, a name, and 
a type, which are displayed as a string in the following format:

<direction> <name> : <type>

The direction can be in, out, or inout. The name is modeler defined. 
The type must be the name of a value type, block, or signal that you’ve 
created somewhere in your model hierarchy.

Figure 3.11 shows that the Flight Computer block owns a nonatomic 
flow port named dataIn, which is typed by the Housekeeping Data flow 
specification. This model conveys that temperature and voltage values 
can flow into an instance of Flight Computer at some point during sys-
tem operation.

Figure 3.11 also shows that the Electrical Power Subsystem block 
owns a nonatomic flow port named dataOut, which also is typed by the 
Housekeeping Data flow specification. In this case, though, the type, 
Housekeeping Data, has a tilde (~) in front of it. This symbol conveys that 
the dataOut flow port is conjugated. This means that the directions of 
the flow properties in the Housekeeping Data flow specification are re-
versed for that flow port.

Figure 3.12 A flow specification
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The other kind of flow port is an atomic flow port. Figure 3.13 
shows examples of this kind. You add an atomic flow port to a block 
when you need to model a single type of item that could flow in or out 
via that port. The symbol inside the small square is an arrow that con-
veys the direction of flow. The type of an atomic flow port must be the 
name of a value type, block, or signal that you’ve created somewhere in 
your model hierarchy.

Figure 3.13 shows that the Modulator block and the Transmitter block 
have an atomic flow port named coupler, which is typed by the same 
value type, Radio Frequency Cycle. These ports differ only in their direc-
tion of flow. This model conveys that a radio frequency signal can flow 
from a modulator to a transmitter via a coupler—an interaction point at 
their respective boundaries.

3.4.2 Behavioral Features

All the features I discuss in the preceding section are structural fea-
tures. On most modeling projects, however, it’s not sufficient to specify 
only the parts, references, constraints, value properties, and ports of a 
block. They’re important, but they convey only one aspect of the de-
sign. An equally important aspect is the set of behaviors that a block 
can perform. You convey this aspect of the design by adding behavioral 
features to a block.

SysML offers two kinds of behavioral features: operations and re-
ceptions. I discuss these briefly in the context of interfaces earlier in 
Section 3.4.1.5. However, they’re not limited to interfaces; you can also 
add operations and receptions to blocks. The decision to add a behav-
ioral feature to a block directly or to an interface (that a block provides 
or requires) is a matter of your chosen modeling methodology and de-
sign principles. SysML does not dictate either course of action, and the 
format for displaying operations and receptions is the same in either 
case.

Now let’s take a look in detail at each kind of behavioral feature.

Figure 3.13 Blocks with atomic flow ports
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3.4.2.1 Operations

An operation represents a behavior that a block performs when a client 
calls it. Stated formally, an operation is invoked by a call event.

Note

The term call event becomes more meaningful when I discuss events in detail in 
the context of behaviors in Chapter 6, “Activity Diagrams,” Chapter 7, “Sequence 
Diagrams,” and Chapter 8, “State Machine Diagrams.” I introduce the term now to 
establish its connection to the concept of operations. As you study SysML incre-
mentally, remember that diagrams are merely views of an underlying model; what 
you see on BDDs is related to what you see on other kinds of diagrams, including 
activity diagrams, sequence diagrams, and state machine diagrams.

Most often, an operation represents a synchronous behavior. This 
means that the caller waits for the behavior to complete before continu-
ing with its own execution. However, SysML doesn’t require this; 
you’re free to represent any behavior as an operation—even when the 
caller doesn’t wait for it to complete.

You display an operation on a BDD as a string in the operations 
compartment of a block (as shown in Figure 3.14). That string has the 
following format:

<operation name> ( <parameter list> ) : <return type>  
[<multiplicity>]

The operation name is modeler defined. The parameter list is a 
comma-separated list of zero or more parameters. (The format for each 
parameter is shown shortly.) The return type (if any) must be the name  
of a value type or block that you’ve created somewhere in your system 
model. The multiplicity is a constraint on the number of instances of 
the return type that the operation can return to the caller when it 
completes.

The parameters in the parameter list represent the inputs or out-
puts of the operation. Each parameter in the list is displayed with the 
following format:

<direction> <parameter name> : <type> [<multiplicity>] =  
<default value>
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The direction can be in, out, or inout. The parameter name is mod-
eler defined. The type must be the name of a value type or block that 
exists somewhere in your model. The multiplicity is a constraint on the 
number of instances of the type that the parameter can represent. The 
default value is the value assigned to the parameter if no value is speci-
fied as an argument when the operation is called.

Figure 3.14 shows that the Electrical Power Subsystem block and the 
Communication and Data Handling Subsystem block own several opera-
tions each—operations that represent behaviors that instances of these 
blocks can perform if called upon during system operation. An exam-
ple of an operation is processCommand. This model conveys that a client 
can call the communication and data handling subsystem to perform 
this operation. When it does, the client can pass one or more commands 
as an input to the operation. And when the operation completes, it will 
return a status value to the caller.

A bit of advice: It’s good practice to always use a verb phrase (such 
as processCommand ) to name an operation; an operation represents a 
behavior, after all. Also, don’t go overboard with the parameter lists; 
simply adding operations to blocks (without specifying parameters) is 
often a sufficient degree of model fidelity. If your team needs to specify 

Figure 3.14 Blocks with operations
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parameters for operations within the system model, be judicious about 
which ones you choose to display on any given BDD; the complete 
string for an operation could take up a lot of real estate on a BDD if you 
display even a few parameters.

3.4.2.2 Receptions

A reception represents a behavior that a block performs when a client 
sends a signal that triggers it. Stated formally, a reception is invoked by 
a signal event.

The key distinction between a reception and an operation is that a 
reception always represents an asynchronous behavior. This means that 
a client sends a signal—which triggers a reception upon receipt—and 
immediately continues with its own execution; it doesn’t wait for the 
reception to complete (or even, necessarily, to begin).

Another key point is that a signal is itself a model element. You can 
use a signal to represent any type of matter, energy, or data that one 
part of a system sends to another part—generally for the purpose of 
triggering a behavior on the receiving end. Like a block, a signal can 
own properties. Most often, those properties represent data that the 
signal carries from a client to a target. And when the signal arrives at 
the target and triggers a reception, the signal’s properties become in-
puts to that reception.

Figure 3.15 displays a signal named AnalogTempDataSampled. This 
signal owns two properties: temp (of type ° C) and time (of type Time-
stamp). When a client generates an instance of this signal during system 
operation, it can supply values for the two properties. The client can 
send the signal instance to a target that’s receptive to it (e.g., the Com-
munication and Data Handling Subsystem block shown in Figure 3.16).

A structure is an eligible target for a signal if it owns a reception 
that has the same name as the signal. Additionally, the reception must 

Figure 3.15 A signal
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have a parameter with a compatible type for each property of the sig-
nal. The Communication and Data Handling Subsystem block meets these 
criteria. When an instance of this block in an operational system re-
ceives an instance of the AnalogTempDataSampled signal, the reception 
behavior gets invoked, and the values held in the signal’s two proper-
ties become inputs to that behavior. 

When you display a reception in the receptions compartment of a 
block, the string has the following format:

«signal» <reception name> ( <parameter list> )

The keyword «signal» must always precede the reception name. As 
mentioned earlier, the reception name must match the name of the sig-
nal in your model that triggers it. You can display as many parameters 
as necessary in the parameter list. Each parameter in the list is dis-
played with the following format:

<parameter name> : <type> [<multiplicity>] = <default value>

The parameter name is modeler defined. The type must be the 
name of a value type or block that exists somewhere in your model. 
The multiplicity is a constraint on the number of instances of the type 
that the parameter can represent. The default value is the value as-
signed to the parameter if no value is provided in the corresponding 
property of the signal.

Unlike operations, receptions cannot have return types. Receptions 
are asynchronous; the client that sent the signal isn’t waiting for a reply. 
For the same reason, the parameters of a reception can only be inputs 
and never outputs.

Figure 3.16 A block with receptions
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3.5 Associations: Another Notation for a Property

Section 3.4, “Blocks,” focuses on blocks and the various kinds of prop-
erties that blocks can own. Blocks are an important part of a structural 
model of a system, and the relationships between the blocks are at least 
as important. 

There are three main kinds of relationships that can exist be-
tween blocks: associations, generalizations, and dependencies. I dis-
cuss generalizations and dependencies in detail in Section 3.6, “Gener-
alizations,” and Section 3.7, “Dependencies.” This section is devoted to 
associations.

In discussing reference properties and part properties in Sec-
tion 3.4.1, “Structural Features,” I implicitly address the idea of associa-
tions between blocks. To reiterate the key points: A reference property 
represents a structure that’s external to a block—a structure that the 
block needs to be connected to for some purpose. A part property in-
stead represents a structure that’s internal to a block—in other words, 
a structure that the block is composed of.

Reference properties and part properties correspond to two kinds 
of associations that you often create between blocks and display on 
BDDs: reference associations and composite associations, respectively. 
Associations are simply an alternative notation to convey these kinds 
of structural relationships within a system.

Let’s take a look in detail at the two kinds of associations.

3.5.1 Reference Associations

A reference association between two blocks means that a connection 
can exist between instances of those blocks in an operational system. 
And those instances can access each other for some purpose across the 
connection.

The notation for a reference association on a BDD is a solid line 
between two blocks. An open arrowhead on exactly one end conveys 
unidirectional access; the absence of arrowheads on either end conveys 
bidirectional access.

The upper BDD in Figure 3.17 displays a reference association be-
tween the Electrical Power Subsystem block and the Flight Computer 
block. Associations can have several labels. You can optionally display 
an association name floating near the middle of the line, and you can 
optionally display a role name and multiplicity on either end of the 
line. The association name is a modeler-defined string that describes 
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the type of connection that can exist between instances of the two 
blocks. In Figure 3.17, for example, the name of the reference associa-
tion shown is Power Cable—a name that describes the type of connec-
tion that could exist between an electrical power subsystem and a flight 
computer in a correctly assembled satellite.

Note
I use the phrase “type of connection” deliberately. An association is an element of 
definition; it can serve as the type for one or more connectors. A connector is an 
element of usage that appears on internal block diagrams (IBDs) (more on this in 
Chapter 4).

The role name shown on the end of a reference association corre-
sponds to the name of a reference property—one that belongs to the 
block at the opposite end and whose type is the block that it’s next to. In 
the upper BDD in Figure 3.17, for example, the role name eps represents 
a reference property that belongs to the Flight Computer block and whose 
type is the Electrical Power Subsystem block. The role name fc represents 
a reference property that belongs to the Electrical Power Subsystem block 
and whose type is the Flight Computer block. The lower BDD in Fig-
ure 3.17 displays an equivalent view of the same model using the refer-
ences compartment notation instead of reference associations.

Figure 3.17 Reference associations and reference properties
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Similarly, the multiplicity shown on the end of a reference associa-
tion (near a role name) corresponds to the multiplicity of that same 
reference property. This correspondence also is reflected in the two 
BDDs in Figure 3.17.

Sometimes a block has multiple reference properties of the same 
type (as shown in the references compartment of the Flight Computer 
block in Figure 3.18). You can convey this equivalently by drawing 
multiple reference associations between the same two blocks (as shown 
between the Flight Computer block and the Star Sensor block in Fig-
ure 3.18). Each reference association represents a distinct reference 
property. Showing both notations on the same diagram is redundant; 
I’m doing it here to establish the connection between these related 
concepts.

The choice to use the references compartment notation versus refer-
ence associations depends on how much information you need to ex-
pose on the BDD. In Figure 3.18, for example, the reference association 
notation lets me expose the value properties of the Star Sensor block; in 
contrast, the references compartment notation hides all features of the 
Star Sensor block.

Another factor in your decision is the need to specify a type for a 
connector on an IBD. If you intend to do this, then you need to create a 
reference association between two blocks and give it a name. The com-
partment notation would not meet your needs in this case.

Figure 3.18 Using reference associations to specify multiple reference properties of 
the same type
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3.5.2 Composite Associations

A composite association between two blocks conveys structural de-
composition. An instance of the block at the composite end is made up 
of some number of instances of the block at the part end.

The notation for a composite association on a BDD is a solid line 
between two blocks with a solid diamond on the composite end. An 
open arrowhead on the part end of the line conveys unidirectional ac-
cess from the composite to its part; the absence of an arrowhead con-
veys bidirectional access (i.e., the part will have a reference to the 
composite).

Figure 3.19 displays four examples of composite associations from 
the DellSat-77 Satellite block to the subsystem blocks. (It’s permissible 
and common practice to overlap the solid diamonds on the composite 
end.) This BDD conveys that a correctly manufactured and assembled 
DellSat-77 satellite will be composed of one electrical power subsys-
tem, one attitude and orbit control subsystem, one environmental  

Figure 3.19 Composite associations and part properties
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control subsystem, and one communication and data handling subsys-
tem. The possible numbers of instances are conveyed by the multiplici-
ties on the part ends of the four composite associations.

The role name shown on the part end of a composite association 
corresponds to the name of a part property—one that’s owned by the 
block at the composite end and whose type is the block at the part end. 
In Figure 3.19, for example, the role name aocs represents a part prop-
erty that’s owned by the DellSat-77 Satellite block and whose type is the 
Attitude and Orbit Control Subsystem block. This correspondence is 
equivalently reflected in the parts compartment of the DellSat-77 Satel-
lite block. It’s redundant to show both the parts compartment notation 
and composite associations on the same diagram; I’m doing it here to 
reinforce the connection between these concepts.

The multiplicity on the part end of a composite association is not 
restricted; a composite structure can be made up of an arbitrary num-
ber of instances of parts—however many a system requires. 

However, the multiplicity on the composite end is restricted. A 
part—by definition—can belong to only one composite at a time. There-
fore, the upper bound of the multiplicity on the composite end must 
always be 1 (as shown in Figure 3.19). The lower bound of that multi-
plicity can be either 0 (zero) or 1. A lower bound of 0 conveys that a part 
can be removed from its composite structure; a lower bound of 1 con-
veys that it cannot be removed (it must be attached to a composite 
structure at all times in a valid instance of a system).

In Section 3.4.1.1, I state that 1 is almost always the default multi-
plicity for elements in SysML. However, there is an important excep-
tion to this rule, and here it is: The default multiplicity on the composite 
end of a composite association is 0..1. (On the part end, however, the 
default multiplicity is the usual case, 1.)

Sometimes a block has multiple part properties of the same type (as 
shown in the parts compartment of the Communication and Data Han-
dling Subsystem block in Figure 3.20). You can convey this equivalently 
by drawing multiple composite associations between the same two 
blocks (as shown from the Communication and Data Handling Subsystem 
block to the Flight Computer block in Figure 3.20). Each composite as-
sociation represents a distinct part property.

The same factor that I discuss at the end of Section 3.5.1, “Reference 
Associations,” affects your choice to use either the parts compartment 
notation or a composite association. You should use a composite asso-
ciation when you need to expose the features of the block that types a 
part; you should use compartment notation instead when those fea-
tures are not the focus of the diagram.
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3.6 Generalizations

A generalization is another kind of relationship you typically display 
on BDDs. This relationship conveys inheritance between two elements: 
a more generalized element, called the supertype, and a more specialized 
element, the subtype. You use generalizations to create classification 
trees (type hierarchies) in your system model.

The notation for a generalization is a solid line with a hollow, trian-
gular arrowhead on the end of the supertype. This relationship is read 
in English as “is a type of” going from the subtype to the supertype. For 
example, the BDD in Figure 3.21 shows a generalization from the Gyro-
scope block to the Sensor block (among others). This relationship con-
veys that a gyroscope is a type of sensor.

When a supertype has more than one subtype shown on the same 
BDD, modelers often overlap the hollow, triangular arrowheads on the 
supertype end to conserve space on the diagram (as shown in Fig-
ure 3.21). Purists will tell you that overlapping the arrowheads actually 
conveys a special grouping of subtypes called a generalization set. 
This is a slightly more advanced feature of the language that you may 
find useful later. For now, feel free to overlap the arrowheads purely to 
enhance the readability of your diagrams.

One key point is that generalizations are transitive. The model dis-
played in Figure 3.21 shows that a star mapper is a type of star sensor, 
and a star sensor is a type of sensor. Therefore, a star mapper is a type 
of sensor. Type hierarchies in your model can be arbitrarily deep.

Figure 3.20 Using composite associations to specify multiple part properties of the 
same type
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A generalization conveys that a subtype inherits all the features of 
its supertype: the structural features (properties) and the behavioral 
features (operations and receptions). In addition to the features it in-
herits, a subtype may have other features that its supertype doesn’t 
have. For this reason, modelers often refer to a subtype as a specializa-
tion of its supertype.

For example, the Star Sensor block is a specialization of the Sensor 
block. It inherits the four value properties and three operations from the 

Figure 3.21 Generalization relationships between blocks
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Sensor block, and then it adds a fifth value property, resolution, that  
the Sensor block doesn’t have. Similarly, the Star Mapper block inherits 
the five value properties and three operations from the Star Sensor 
block, and then it adds two new value properties (hasAutonomousMode 
and maxNumStarsMapped), which neither of its supertypes have.

You create generalizations to define abstractions in your system 
design. A supertype (such as Sensor) is an abstraction of its subtypes; it 
factors out those features that are common among the subtypes. Ab-
stractions let you define a common feature (such as the initialize opera-
tion) in one place within the model—in the supertype—and that com-
mon feature propagates down the type hierarchy to all the subtypes. 
Then, if you later need to change that common feature, you simply go 
back to that one place in the model to make the change, and all sub-
types in the model get updated instantly.

Abstraction is a powerful design principle; it conveys substituta-
bility, meaning that a subtype will be accepted wherever its supertype 
is required. For example, Figure 3.22 shows that the Flight Computer 

Figure 3.22 Designing to an abstraction
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block has a reference property named sensorArray of type Sensor. This 
model conveys that a flight computer may need access to one or more 
of the features—structural or behavioral—that are common to all sen-
sors. Therefore, any of the five subtypes of Sensor would be acceptable 
to a flight computer, because all of them inherit those common features 
from their supertype, Sensor.

This is an example of designing to an abstraction. This practice cre-
ates extensibility in your design. When the customers’ requirements 
change later in the life cycle and you need to add a new type of sensor 
to the satellite design, you can simply define a new subtype of the Sen-
sor block within the system model, and that addition will be transpar-
ent to all clients (such as Flight Computer) that reference the Sensor block. 
For all these reasons, building generalizations into your model can sig-
nificantly reduce the time it takes to modify your system design as the 
life cycle progresses—and that capability directly translates into cost 
savings.

3.7 Dependencies

A dependency is the third kind of relationship you can display on 
BDDs. It means what it sounds like: One element in the model, the cli-
ent, depends on another element in the model, the supplier. More pre-
cisely, a dependency conveys that when the supplier element changes, 
the client element may also have to change.

Most often, you create a dependency between two model elements 
solely to establish traceability between them. A dependency relation-
ship lets you use your modeling tool to perform automated down-
stream impact analysis when you make changes to your design. When 
you make a change to one element, you can query your modeling tool 
to generate a list of the other elements in the model that may be im-
pacted by the change; the modeling tool navigates the set of dependen-
cies that you’ve created between elements to generate that list.

This is a practical reason to create dependencies in your model. 
However, you seldom have a reason to display them on BDDs. They 
are part of the structure of the model and not of the system that the 
model represents. And you will spend most of your time creating BDDs 
to convey system structure to your stakeholders. 

When a dependency appears on a BDD, the notation is a dashed 
line with an open arrowhead, which is drawn from the client to the sup-
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plier. In Figure 3.23, for example, the Attitude and Orbit Control Subsys-
tem block is the client, and the Data Handling interface is the supplier. 
This model conveys that the block depends on the interface; if the inter-
face changes, the block may need to change, too.

Note that SysML defines specialized kinds of dependency relation-
ships (e.g., package import, viewpoint conformance, and several kinds 
of requirements relationships). Although you rarely display dependen-
cies on BDDs, you often display these specialized kinds of dependen-
cies on package diagrams and requirements diagrams. I discuss these 
topics in detail in Chapter 10, “Package Diagrams,” and Chapter 11, 
“Requirements Diagrams.”

3.8 Actors

An actor represents someone or something that has an external inter-
face with your system. The name of an actor conveys a role played by 

Figure 3.23 A dependency relationship between two named elements
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a person, an organization, or another system when it interacts with 
your system.

SysML defines two notations for an actor: a stick figure and a rect-
angle with the keyword «actor» preceding the name. Figure 3.24 shows 
examples of both notations. It’s legal to use either notation for any type 
of actor—person or system. However, modelers often adopt the con-
vention of using the stick figure notation to represent a person and the 
rectangle notation to represent a system, although the language doesn’t 
require it.

You will occasionally display actors on BDDs to express the gener-
alizations between actors and the associations between actors and 
blocks (as shown in Figure 3.24). It’s far more common, though, to dis-
play actors on use case diagrams, where you express which use cases 
each actor participates in. I cover these topics in detail in Chapter 5, 
“Use Case Diagrams.”

All the key ideas about generalizations, reference associations, and 
composite associations also apply when actors are involved in these 
relationships. There are two constraints:

Figure 3.24 Actors on a BDD
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•	  You cannot define a generalization between an actor and a 
block.

•	  An actor cannot have parts; that is, it cannot appear at the com-
posite end of a composite association. (We always regard an 
actor as a “black box.”)

3.9 Value Types

Like a block, a value type is an element of definition—one that generally 
defines a type of quantity. I say “generally” because there are two value 
types in SysML—Boolean and String—that arguably are not quantities. 

You can use a value type in many places throughout your model. 
Most often, it appears as the type of a value property, which is a kind 
of structural feature of blocks. (Section 3.4.1.3, “Value Properties,” has 
more details.) But that’s not the only place where value types make an 
appearance; they’re actually ubiquitous in system models. They can 
also appear as the types of the following:

•	 Atomic flow ports on blocks and actors
•	 Flow properties in flow specifications
•	 Constraint parameters in constraint blocks
•	 Item flows and item properties on connectors
•	 Return types of operations
•	 Parameters of operations and receptions
•	 Object nodes, pins, and activity parameters within activities

There are three kinds of value types—primitive, structured, and 
enumerated—that you typically define in your system model. A primi-
tive value type has no internal structure (it doesn’t own any value 
properties). Its notation is a rectangle with the stereotype «valueType» 
preceding the name. 

SysML defines four primitive value types: String, Boolean, Integer, 
and Real. You can, of course, define your own primitive value types as 
specializations (subtypes) of these four. For example, Figure 3.25 shows 
three value types (°, V, and ° C) that are subtypes of Real.

As its name implies, a structured value type has an internal struc-
ture—generally two or more value properties. As with a primitive 
value type, the notation for a structured value type is a rectangle with 
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the stereotype «valueType» preceding the name. SysML defines one 
structured value type: Complex. Its structure consists of two value prop-
erties—realPart and imaginaryPart—that are both of type Real. One 
structured value type may, in turn, be the type of a value property 
within another structured value type. In this way, you can create arbi-
trarily complex systems of value types.

An enumerated value type—colloquially called an enumeration—
simply defines a set of literals (legal values). If a parameter of an opera-
tion (or some other kind of element shown in the earlier bulleted list) is 
typed by an enumeration, then the value it holds at any moment must 
be one of the literals in that enumeration. The BDD in Figure 3.25 shows 
an enumeration named CommandKind, which defines two literals: 
Stored and Real-Time. I could use this enumeration, for example, to type 
an input parameter named kind in an operation named buildCommand. 
When a client calls this operation (within a running system), the only 
legal values it can pass are Stored and Real-Time.

I mentioned earlier that value types can be related to one another 
by using generalizations. A value type hierarchy can be arbitrarily 
deep, and generalizations—as you may recall—are transitive. For ex-

Figure 3.25 Value types
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ample, Figure 3.25 conveys that the value types VDC and VAC are (in-
directly) subtypes of Real. The principle of substitutability applies here 
just as it does in the case of generalizations between blocks: Values of 
type VDC and VAC will be accepted wherever their supertypes (V and 
Real) are required. These supertypes are abstractions. And the principle 
of designing to an abstraction—and its consequent extensibility—also 
applies to this practice of creating a value type hierarchy. This is a 
widely used and powerful modeling practice.

3.10 Constraint Blocks

Like a block, a constraint block is an element of definition—one that 
defines a Boolean constraint expression (an expression that must eval-
uate to either true or false). Most often, the constraint expression you 
define in a constraint block is an equation or an inequality: a mathemat-
ical relationship that you use to constrain value properties of blocks. 
You would do this for two reasons:

•	  To specify assertions about valid system values in an opera-
tional system

•	  To perform engineering analyses during the design stage of the 
life cycle

The variables in a constraint expression are called constraint pa-
rameters. Generally, they represent quantities, and so they’re typed 
most often by value types. For example, Figure 3.26 shows a constraint 
block named Transfer Orbit Size, which defines a constraint expression 
that contains three constraint parameters: semimajorAxis, initialOrbit-
Radius, and finalOrbitRadius. These three constraint parameters are 
typed by the value type km.

Constraint parameters receive their values from the value prop-
erties they’re bound to—that is, the value properties that are being  
constrained. At any given moment, those values either satisfy the con-
straint expression, or they don’t; the system is either operating nomi-
nally, or it isn’t. Note, however, that a BDD by itself can’t convey which 
constraint parameters and value properties are bound to one another. 
You would express this piece of information on a parametric diagram. 
(I discuss this in detail in Chapter 9.)

The notation for a constraint block on a BDD is a rectangle with the 
stereotype «constraint» preceding the name. The constraint expression 
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always appears between curly brackets ({}) in the constraints compart-
ment. The constraint parameters in the constraint expression are listed 
individually in the parameters compartment.

You sometimes build a more complex constraint block from a set of 
simpler constraint blocks. You would do this to create a more complex 
mathematical relationship from simpler equations and inequalities. 
The more complex constraint block can display its constituent parts as 
a list of constraint properties in the constraints compartment. Recall 
from Section 3.4.1.4 that a constraint property has a name and a type in 
the format name : type. The type, as mentioned earlier, must be the name 
of a constraint block.

For example, Figure 3.26 shows that the constraint block Hohmann 
Transfer is composed of two constraint properties—ttof and tos—which 

Figure 3.26 Relationships between constraint blocks
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represent usages of the constraint blocks Transfer Time of Flight and 
Transfer Orbit Size, respectively. This model conveys that Hohmann 
Transfer defines a constraint expression that is a composite of two sim-
pler constraint expressions—in effect, defining a more complex math-
ematical relationship.

Note, though, what this BDD doesn’t (and can’t) convey: where 
those two simpler constraint expressions are specifically connected to 
each other to create the composite constraint expression. A parametric 
diagram would convey this additional piece of information (more on 
this in Chapter 9).

As an alternative to the constraints compartment notation, you can 
use composite associations to convey that one constraint block is com-
posed of other, simpler ones (as shown in Figure 3.26). Note that the 
role names shown on the part ends of the two composite associations 
correspond to the names of the constraint properties in the Hohmann 
Transfer constraint block. These are equivalent notations. You use com-
posite associations when you need to expose the details of the simpler 
constraint blocks; in contrast, you use the constraints compartment no-
tation to hide those details when they’re not the focus of the diagram.

3.11 Comments

SysML has a lot of rules (and they all exist to serve the very useful pur-
pose of giving your design unambiguous meaning from one reader to 
the next). However, you sometimes need to express information on a 
diagram in an unconstrained way as a block of text. You can do this 
with a comment.

A comment is, in fact, a model element. It consists of a single attri-
bute: a string of text called the body. You can convey any information 
you need to in the body of a comment, and you can optionally attach a 
comment to other elements on a diagram to provide additional infor-
mation about them. You can use comments on any of the nine kinds of 
SysML diagrams.

The notation for a comment is commonly referred to as a note sym-
bol: a rectangle whose upper-right corner is bent. You use a dashed line 
to attach a comment to other elements (as shown at the bottom of the 
BDD in Figure 3.27). If you need to, you can attach a comment to sev-
eral model elements simultaneously by using a separate dashed line 
for each one.

03_0321927866_Ch03.indd           58                           Achorn International                             10/18/2013  12:12AM



  Block Definition Diagrams60

Modelers sometimes put freestanding comments with hyperlinks 
on a diagram to enable readers to quickly navigate to a related diagram 
in the model (or to an external document). An example of this is shown 
in the upper-left corner of the BDD in Figure 3.27. To be clear, though, 
this capability is a function of the modeling tool you use; not all tools 
do this. And SysML itself says nothing about this capability.

SysML defines some specialized kinds of comments: rationale, 
problem, and diagram description. These appear as a note symbol with 
the respective stereotype preceding the body of the comment. Fig-
ure 3.27 shows an example of a diagram description comment in the 
upper-right corner of the BDD. Modelers often use rationale comments 
in conjunction with requirements relationships and allocations. I dis-
cuss these topics in detail in Chapters 11 and 12.

Figure 3.27 Comments on a BDD
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Summary

The BDD is the primary kind of diagram you create to communicate 
structural information about a system. A BDD enables you to express 
the types of structures that can exist internally within a system and 
externally in a system’s environment. You can also use BDDs to express 
the types of services each structure provides and requires, the types of 
constraints each structure must conform to, and the types of values that 
can exist within an operational system.

Generalization relationships between elements let you define type 
hierarchies and design to abstractions. This is a powerful design tech-
nique—one that creates extensibility in your system design by decou-
pling the clients of services from any specific implementation of a pro-
vider of those services. As your stakeholders’ requirements evolve over 
time, you can modify existing providers or add new ones with minimal 
impact on the rest of the system design.
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overview of, 166
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time events, 169–170
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Execution specifications
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sequence diagrams, 139–141
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interfaces and, 37
of use cases, 87–88
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UML, 12
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vs. internal, 164 –166, 169–170
notation, 237
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accept event actions and, 108–109
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object flows, 100–102
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notation, 113, 234
types of control nodes, 113–114
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fragments, in sequence diagrams
asynchronous messages in, 132
create message in, 137
destruction occurrence in, 138
invoking behaviors with interaction use 

element, 151–153
lifeline elements, 125, 127–129
model elements in sequence diagrams, 

125
synchronous messages in, 134

Interface blocks, 250–251
proxy ports and, 250–251

Interface definition documents (IDDs), 2
Interfaces

assigning to standard ports, 36
extensibility and, 37
notation, 229

Internal block diagrams. see IBDs (internal 
block diagrams)

Internal transitions
vs. external transition, 164 –166, 169–170
notation, 238

International Council on Systems Engineer-
ing. see INCOSE (International Council 
on Systems Engineering)

Item flow
on IBDs, 71
notation, 231
SysML v1.3 vs. SysML v1.2, 247–248
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J
Join nodes

notation, 117, 234
types of control nodes, 117–119

Junction pseudostate
notation, 238
combining multiple transitions, 173

L
Languages, viewpoint properties, 196
Lifelines

asynchronous messages, 131–133
create messages, 137–138
duration constraints, 142–143
execution specifications, 139–141
message occurrences, 130–131
message types, 131
messages and, 129–130
model elements in sequence diagrams, 

125, 127–129
notation, 127, 235
reply messages, 135–137
state invariant condition, 143–144
synchronous messages, 133–135
time constraints, 141–142
destruction occurrences, 138–139

Literals, enumerations defining set of, 56
Loop interaction operator, 148–149

M
Mathematical models, constraint properties 

used with, 32–33
Mathematical relationships, imposing fixed 

relationship on value properties, 
177–178

Matrices
of allocation relationships, 221
of requirements relationships, 211–212

MBSE (model-based systems engineering)
modeling languages, 5
modeling methods, 5–7
modeling tools, 7–9
myth regarding, 9
overview of, 1–4
summary, 9–10
three pillars of, 4 –5

Merge nodes
notation, 115, 234
types of control nodes, 115–116

Message occurrence, 130–131
Message receive, 130–131
Message send, 130–131
Messages, in sequence diagrams

asynchronous messages, 131–133
create messages, 137–138

notation, 129
occurrences, 130–131
overview of, 129–130
reply messages, 135–137
synchronous messages, 133–135
types, 131

Methods, viewpoint properties, 196
Model element name, 18–19
Model element type, 18–20
Model libraries

applying profile to, 195
notation, 239
reusing, 193
types of packages, 195

Model-based systems engineering. see MBSE 
(model-based systems engineering)

Modeling languages
overview of, 5
SysML as, 13

Modeling methods, 5–7
Modeling tools, 7–9
Models

applying profile to, 195
notation, 195, 239
types of packages, 191, 195
views, 196

N
N2 charts, 2
Namespace

defined, 190–191
defining in SysML diagram header, 19
notation for namespace containment, 

191–193, 206, 240–241
overview of, 24
requirements diagrams and, 202

Nested ports, SysML v1.3 vs. SysML v1.2,  
248

Nodes
actions, 93–95
activity final nodes, 113–114
control nodes, 112
decision nodes, 114 –115
flow final nodes, 113–114
fork nodes, 116–117
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
object nodes, 95–96

Nonatomic behavior, simple states, 159
Nonatomic flow ports, 37–38, 229
Nonstreaming behavior, 98–99
Notation

callout notation for allocations, 220–221, 
243
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callout notation of requirements relation-
ships, 210–211, 242

compartment notation for allocations, 220
compartment notation of requirements 

relationships, 209–210
direct notation for allocations, 219, 243
direct notation of requirements relation-

ships, 209, 242
dot notation for expressing structural 

hierarchy, 73–74

O
Object flows

notation, 100–102, 233
types of edges, 100–102

Object Management Group. see OMG (Object 
Management Group)

Object nodes
activity parameters, 97–98
node types in activities, 95–96
notation, 233
pins, 96–97

Object tokens
object flows, 100–101
object nodes and, 95–96
streaming vs. nonstreaming behaviors, 

98–99
types of tokens, 93

Object-Oriented Systems Engineering 
Method (OOSEM), 7

Occurrences, event types and, 166
OMG (Object Management Group)

OCSMP (OMG Certified Systems 
Modeling Professional) certification, 1

submitting issues to, 245
SysML standards and, 12

OOSEM (Object-Oriented Systems Engineer-
ing Method), 7

Opaque expressions
actions and, 94 –95
state machines and, 159

Operands, in sequence diagrams
alt operator, 146–148
loop operator, 148–149
opt operator, 145–146
overview of, 144 –145
par operator, 149–150

Operations
block behaviors, 40–42
compared with receptions, 42
interfaces defining set of, 36

Opt interaction operator, 145–146
Orthogonal relationship, between regions, 

173–175
Ownership, block part properties and, 28–29

P
Package diagrams

comparing with BDDs, 198
dependencies between packages, 193
frame, 190–191
importing packages, 193–194
models and model libraries, 195
notation, 239–240
notation for namespace containment, 

191–193
profiles, 195–196
purpose of, 16, 189–190
specialized packages, 194
summary, 198–199
views, 196–198
when to create, 190

Package import relationship, 194, 240
Packages

applying profile to, 195
dependencies between, 193
importing, 193–194
models and model libraries, 191, 195
as namespace, 24
notation, 192, 239
profiles, 195–196
specialized, 194
views, 196–198

Par interaction operator, 149–150
Parameters

activity parameters, 97–98
constraint parameters, 57

Parametric diagrams
binding connectors, 187–188
constraint parameters, 185
constraint properties, 184 –185
displaying usages of blocks and constraint 

blocks, 179–182
frame, 182, 184
illustration of, 183
notation, 238–239
purpose of, 16, 177–178
summary, 188
value properties, 185–187
when to create, 178–179

Part properties
BDD, 28–30
composite associations and, 47–49
connectors and, 69–70
IBD, 67
nested parts and references in IBD, 72–74
notation, 231

Pins
call behavior actions and, 105
notation, 233
as specialized object node, 96–97
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Planning, modeling methods and, 6
Ports

adding to blocks, 34 –35
flow ports, 37–39
IBD connectors and, 69–70
standard ports, 35–37
SysML v1.3 vs. SysML v1.2, 246–249

Primary actors, in use cases, 78
Primitive value types, 55
Profile application, 240
Profiles

notation, 239
SysML as extension of subset of UML, 12
types of packages, 195–196

Programming languages, opaque expressions 
and, 94 –95

Properties
connecting nested, 74 –75
connectors between, 68–71
constraint properties, 32–34
flow ports, 37–39
nested parts and references in IBD,  

72–74
overview of, 28
part properties, 28–30
ports, 34 –35
reference properties, 30–31
requirements, 204 –205
standard ports, 35–37
structural features as, 27
value properties, 31–32, 55

Provided interface, compared with required 
interface, 36–37

Proxy ports, SysML v1.3 vs. SysML v1.2, 
249–251

Pseudostates, 171–173
Purpose

defining for modeling approach, 6
viewpoint properties, 196

Q
Qualified name string notation, 192

R
Rationale

allocations and, 224
notation, 241, 243
requirements diagrams and, 213

Real, primitive value type, 55
Receptions

block behaviors, 42–43
interfaces defining set of, 36

Reference associations
notation, 230, 232
between two blocks, 44 –46

Reference properties
BDD, 30–31
connectors and, 69
IBD, 67–68
nested parts and, 72–74
reference associations and, 45–46

Refine relationships
notation, 242
requirements relationships, 207–208

Regions, adding to state machines, 173–175
Relative time events, wait time actions, 110
Reply messages

notation, 235
in sequence diagrams, 135–137

Required interface, compared with provided 
interface, 36–37

Requirement traceability and verification 
matrices. see RTVMS (requirement 
traceability and verification matrices)

Requirements
allocations, 219
callout notation for requirements 

relationships, 210–211
compartment notation for requirements 

relationships, 209–210
containment relationships, 205–206
derive relationships, 207
direct notation for requirements relation-

ships, 209
matrices, 211–212
notation, 204, 241
properties, 204 –205
refine relationships, 207–208
satisfy relationships, 208
specifications, 201
tables, 212–213
trace relationships, 206–207
verify relationships, 208–209

Requirements diagrams
callout notation for requirements 

relationships, 210–211
compartment notation for requirements 

relationships, 209–210
containment relationships, 205–206
derive requirement relationships, 207
direct notation for requirements relation-

ships, 209
frame, 202–204
matrices, 211–212
notation, 241–242
purpose of, 16, 201–202
rationale comments, 213
refine relationships, 207–208
requirements relationships, 205
satisfy relationships, 208
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summary, 214
tables, 212–213
trace relationships, 206–207
verify relationships, 208–209
when to create, 202

Requirements package, dependencies 
between packages, 193

Revision Task Force (RTF), 245
Roles, of actors, 53–54
RTF (Revision Task Force), 245
RTVMS (requirement traceability and 

verification matrices)
artifacts of document-based engineer-

ing, 2
requirements relationships and, 205
trace relationships and, 206–207

Run-to-completion, state transitions and,  
164

S
Satisfy relationships

notation, 208, 242
requirements relationships, 208

Scenarios, use cases compared with, 80–81
Scope, defining for modeling approach, 6–7
Secondary actors, in use cases, 78
Selector expression, lifeline elements and, 128
Self-transition

external, 169
between states, 162

Send signal actions, 107–108, 233
Sequence diagrams

alt operator, 146–148
asynchronous messages, 131–133
combined fragments, 144 –145
constraints, 141
create messages, 137–138
destruction occurrence, 138–139
duration constraints, 142–143
execution specifications, 139–141
frame, 125
illustration of, 126
interaction use, 151–153
lifeline elements, 125, 127–129
loop operator, 148–149
message occurrence, 130–131
message types, 131
messages, 129–130
notation, 235–236
opt operator, 145–146
par operator, 149–150
purpose of, 16, 123–124
reply messages, 135–137
in representation of scenarios, 81
state invariants, 143–144

summary, 153
synchronous messages, 133–135
time constraints, 141–142
when to create, 124 –125

Signals
block reception behaviors, 42–43
notation, 229
send signal actions, 107–108
in state machine diagrams, 166–167

Simple state
notation, 160, 237
overview of, 158–160

Specialization
of supertypes, 50
use cases and, 82–83

Specialized packages, 194
Specialty engineering analyses, 2
Specification

execution specification, 139–141, 235
flow specification, 38, 228, 247
requirements specification, 201
system design and test case specifica-

tions, 2
use case specification, 79–80, 90

Stakeholders
MBSE myths and, 9
viewpoint properties, 196–198

Standard ports
IBD connectors and, 69
in modeling block services (behaviors), 

35–37
notation, 229
SysML v1.3 and, 246

State invariants, constraints in sequence 
diagrams, 143–144

State machine diagrams
call events, 167–168
change events, 170–171
composite states, 160–161
event types, 166
external vs. internal transitions, 164 –166
final states, 161–162
frame, 156–157
illustration of, 157
notation, 237–238
pseudostates, 171–173
purpose of, 16, 155–156
regions, 173–175
signal events, 166–167
simple states, 158–160
states, 158
summary, 175
time events, 169–170
transitions, 162–164
when to create, 156
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State machines
adding regions to, 173–175
composite state in, 161
defined, 156
do behavior and, 160
opaque expressions and, 159
state and pseudostate vertices, 171

States
composite states, 160–161
external vs. internal transitions, 164 –166
final states, 161–162
overview of, 158
pseudostates, 171–173
simple states, 158–160
transitions, 162–164

Stereotypes
creating, 196
in profile packages, 195

Streaming behavior, 98–99
Strings, primitive value types, 55
Structure diagrams

BDDs. see BDDs (block definition 
diagrams)

IBDs. see IBDs (internal block diagrams)
parametric. see Parametric diagrams

Structured value types, 55–56
Structures

allocating behaviors to, 119–121
allocating requirements to, 218–219
features. see Properties

Subject (system boundary)
notation, 232
in use cases, 83

Substates, 161–162
Substitutability

abstraction and, 51–52
activity diagrams and, 101

Subtypes
activity diagrams and, 101
generalizations and, 49–51
use cases and, 82–83

Supertypes
activity diagrams and, 101
generalizations and, 49–51
use cases and, 82–83

Suppliers, dependencies between clients and, 
52

Synchronous behavior, in blocks, 40
Synchronous messages

notation, 235
in sequence diagrams, 133–135

SysML (Systems Modeling Language), 
overview

changes between versions, 245–251
diagram concepts, 17–21
diagram types, 14 –16

modeling languages used in MBSE, 5
notation, 12
summary, 21
UML and, 13–14
what it is and what it isn’t, 11–13

SYSMOD (System Modeling), 7
System boundary (subject)

notation, 232
in use cases, 83

System design specifications, artifacts of 
document-based engineering, 2

System model, artifacts of MBSE, 3
System Modeling (SYSMOD), 7
Systems Modeling Language. see SysML 

(Systems Modeling Language), 
overview

T
Tables

representing allocation relationships, 
221–222

of requirements relationships, 212–213
Test case

client element as, 208–209
specifications, 2

Text modeling languages, 5
Text-based requirements, 201
Time constraints

notation, 235
in sequence diagrams, 141–142

Time events, in state machine diagrams, 169–170
Tokens

activities based on concept of token flow, 
92–93

decision nodes and, 115
merge nodes and, 115–116
types of, 93

Trace relationships
notation, 242
requirements relationships, 206–207

Transitions
external vs. internal, 164 –166, 169–170
out of composite states, 161
between states, 162–164
combining multiple transitions with 

junction pseudostate, 172–173
Triggers

change events as, 165, 170–171
time events as, 169–170
for transitions, 162–163

U
UML (Unified Modeling Language)

deployment diagram, 218
SysML as extension of subset of, 12
SysML compared with, 13–14
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Unified Modeling Language. see UML 
(Unified Modeling Language)

The Unified Modeling Language Reference 
Manual (Rumbaugh, Jacobson, Booch), 
78

Use case diagrams
actors, 83–84
associating actors with use cases, 84 –85
base use cases, 85
extending use cases, 87–88
frame, 81
illustration of, 82
included use cases, 85–86
notation, 82–83, 232
purpose of, 16, 77
specifications, 79–80, 90
summary, 88
system boundary, 83
use cases compared with scenarios, 80–81
what use cases are, 78–79
when to create use cases, 77–78

Use case specification, 79–80, 90
Use cases

associating actors with, 84 –85
base use cases, 85
creating specification for, 79–80, 90
executing, 84
extending, 87–88
included use cases, 85–86
notation, 232
scenarios compared with, 80–81

what they are, 78–79
when to create, 77–78

V
Value properties

BDD, 31–32
binding constraint expression to, 177–178
notation, 238
parametric diagrams and, 185–187
value types represented by, 55

Value types
comparing UML and SysML, 14
notation, 229
overview of, 55–57

Verify relationships
notation, 208–209, 242
requirements relationships, 208–209

Versions, SysML, 245–251
Viewpoint

notation, 240
views conformed to, 196–198

Views
notation, 239
types of packages, 196–198

W
Wait time action, 110, 234
Writing Effective Use Cases (Cockburn), 78–79

X
XMI (XML Metadata Interchange), 8–9
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