
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321927866
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321927866
https://plusone.google.com/share?url=http://www.informit.com/title/9780321927866
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321927866
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321927866/Free-Sample-Chapter

Praise for SysML Distilled

“In keeping with the outstanding tradition of Addison-Wesley’s techni-
cal publications, Lenny Delligatti’s SysML Distilled does not disappoint.
Lenny has done a masterful job of capturing the spirit of OMG SysML
as a practical, standards-based modeling language to help systems engi-
neers address growing system complexity. This book is loaded with
matter-of-fact insights, starting with basic MBSE concepts to distin-
guishing the subtle differences between use cases and scenarios to illu-
mination on namespaces and SysML packages, and even speaks to some
of the more esoteric SysML semantics such as token flows.”

— Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory

“The power of a modeling language, such as SysML, is that it facilitates
communication not only within systems engineering but across disci-
plines and across the development life cycle. Many languages have the
potential to increase communication, but without an effective guide,
they can fall short of that objective. In SysML Distilled, Lenny Delligatti
combines just the right amount of technology with a common-sense
approach to utilizing SysML toward achieving that communication.
Having worked in systems and software engineering across many do-
mains for the last 30 years, and having taught computer languages,
UML, and SysML to many organizations and within the college setting,
I find Lenny’s book an invaluable resource. He presents the concepts
clearly and provides useful and pragmatic examples to get you off the
ground quickly and enables you to be an effective modeler.”

— Thomas W. Fargnoli, Lead Member of the
Engineering Staff, Lockheed Martin

“This book provides an excellent introduction to SysML. Lenny Delli-
gatti’s explanations are concise and easy to understand; the examples
well thought out and interesting.”

— Susanne Sherba, Senior Lecturer, Department of
Computer Science, University of Denver

“Lenny hits the thin line between a reference book for SysML to look
up elements and an entertaining book that could be read in its entirety
to learn the language. A great book in the tradition of the famous UML
Distilled.”

— Tim Weilkiens, CEO, oose

“More informative than a PowerPoint, less pedantic than an OMG Pro-
file Specification, SysML Distilled offers practicing systems engineers
just the right level of the motivation, concepts, and notation of pure
OMG SysML for them to attain fluency with this graphical language for
the specification and analysis of their practical and complex systems.”

— Lonnie VanZandt, chief architect, No Magic, Inc.

“Delligatti’s SysML Distilled is a most aptly named book; it represents
the distillation of years of experience in teaching and using SysML in
industrial settings. The author presents a very clear and highly read-
able view of this powerful but complex modeling language, illustrating
its use via easy-to-follow practical examples. Although intended pri-
marily as an introduction to SysML, I have no doubt that it will also
serve as a handy reference for experienced practitioners.”

— Bran Selic, president, Malina Software Corp.

“SysML is a rather intimidating modeling language, but in this book
Lenny makes it really easy to understand, and the advice throughout
the book will help practitioners avoid numerous pitfalls and help them
grasp and apply the core elements and the spirit of SysML. If you are
planning on applying SysML, this is the book for you!”

— Celso Gonzalez, senior developer, IBM Rational

“SysML Distilled is a great book for engineers who are starting to delve
into model-based systems engineering. The space system examples
capture the imagination and express the concepts in a simple but effec-
tive way.”

— Matthew C. Hause, chief consulting engineer,
Atego and chair, OMG UPDM Group

“I’ve been deeply involved with OMG since the 1990s, but my profes-
sional needs have not often taken me into the SysML realm. So I thought
I’d be a good beta tester for Lenny’s book. To my delight, I learned a
great deal reading through it, and I know you will too.”

— Doug Tolbert, distinguished engineer, Unisys, and member,
OMG Board of Directors and Architecture Board

00_0321927866_FM.indd iii Achorn International 10/18/2013 12:05AM

“SysML Distilled provides a clear and comprehensive description of the
language component of model-based systems engineering, while offer-
ing suggestions for where to find information about the tool and meth-
odology components. There is evidence throughout the book that the
author has a deep understanding of SysML and its application in a sys-
tem development process. I will definitely be using this as a textbook in
the MBSE courses I teach.”

— J. D. Baker, OCUP, OCSMP, member of the
OMG Architecture Board

“SysML Distilled is the desktop companion that many SysML modelers
have needed for their bookshelves. Lenny has the experience and certi-
fications to help you through your day-to-day modeling questions.
This book is not a tutorial, nor is it the encyclopedic compendium of all
things SysML. If you model using SysML, this will become your daily
companion, as it is meant to be used regularly. I believe your copy will
soon be dog-eared, with sticky notes throughout.”

— Dr. Robert Cloutier, Stevens Institute of Technology

“SysML is utilized today in a wide range of applications, including
deep space robotic spacecraft and down-to-earth agricultural equip-
ment. This book concisely presents SysML in a manner that is both re-
freshingly accessible for new learners and quite handy for seasoned
practitioners.”

— Russell Peak, MBSE branch chief,
Aerospace Systems Design Lab, Georgia Tech

“SysML Distilled is a wonderfully written, knowledgeable, and concise
addition to systems modeling literature. The lucid explanations lead a
newcomer by the hand into modeling reasonably complex systems,
and the wealth and depth of the coverage of the most-used aspects of
the SysML modeling language stretch to even enabling advanced inter-
mediate depictions of most systems. It also serves as a handy reference.
Kudos to Mr. Delligatti for gifting the world with this very approach-
able view of systems modeling.”

— Bobbin Teegarden, CTO/chief architect,
OntoAge and Board Member, No Magic, Inc.

00_0321927866_FM.indd ii Achorn International 10/18/2013 12:05AM

This page intentionally left blank

SysML Distilled

00_0321927866_FM.indd iv Achorn International 10/18/2013 12:05AM

This page intentionally left blank

SysML Distilled

A Brief Guide
to the Systems
Modeling Language

Lenny Delligatti

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

00_0321927866_FM.indd vi Achorn International 10/18/2013 12:05AM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Delligatti, Lenny.
 SysML distilled : a brief guide to the systems modeling language / Lenny Delligatti.
 pages cm
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-92786-6 (paperback : alk. paper)
 ISBN-10: 0-321-92786-9 (paperback : alk. paper)
 1. Systems engineering—Data processing. 2. Engineering systems—Computer
simulation. 3. SysML (Computer science) I. Title.
 TA168.D44 2014
 620.00285'5133—dc23 2013035922

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to (201) 236-3290.

ISBN-13: 978-0-321-92786-6
ISBN-10: 0-321-92786-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2013

00_0321927866_FM.indd ix Achorn International 10/18/2013 12:05AM

This book is dedicated to my wife, Natalie, and my children,
Aidan and Noelle—my greatest blessings . . . and my
reasons for enduring the many late nights of writing.

00_0321927866_FM.indd viii Achorn International 10/18/2013 12:05AM

00_0321927866_FM.indd xi Achorn International 10/18/2013 12:05AM

This page intentionally left blank

xi

Contents

Foreword by Rick Steiner xvii

Foreword by Richard Soley xix

Preface xxv

Acknowledgments xxxi

About the Author xxxiii

Chapter 1 Overview of Model-Based Systems Engineering 1

1.1 What Is MBSE? 2
1.2 The Three Pillars of MBSE 4
1.3 The Myth of MBSE 9

Chapter 2 Overview of the Systems Modeling Language 11

2.1 What SysML Is—and Isn’t 11
2.2 Yes, SysML Is Based on UML—but You Can Start

with SysML 13
2.3 SysML Diagram Overview 14
2.4 General Diagram Concepts 17

Chapter 3 Block Definition Diagrams 23

3.1 Purpose 23
3.2 When Should You Create a BDD? 24
3.3 The BDD Frame 24
3.4 Blocks 26
3.5 Associations: Another Notation for a Property 44
3.6 Generalizations 49
3.7 Dependencies 52

00_0321927866_FM.indd x Achorn International 10/18/2013 12:05AM

xii Contents

3.8 Actors 53
3.9 Value Types 55
3.10 Constraint Blocks 57
3.11 Comments 59

Chapter 4 Internal Block Diagrams 63

4.1 Purpose 63
4.2 When Should You Create an IBD? 64
4.3 Blocks, Revisited 64
4.4 The IBD Frame 65
4.5 BDDs and IBDs: Complementary Views of a Block 66
4.6 Part Properties 67
4.7 Reference Properties 67
4.8 Connectors 68
4.9 Item Flows 71
4.10 Nested Parts and References 72

Chapter 5 Use Case Diagrams 77

5.1 Purpose 77
5.2 When Should You Create a Use Case Diagram? 77
5.3 Wait! What’s a Use Case? 78
5.4 The Use Case Diagram Frame 81
5.5 Use Cases 82
5.6 System Boundary 83
5.7 Actors 83
5.8 Associating Actors with Use Cases 84
5.9 Base Use Cases 85
5.10 Included Use Cases 85
5.11 Extending Use Cases 87

Chapter 6 Activity Diagrams 89

6.1 Purpose 89
6.2 When Should You Create an Activity Diagram? 90

00_0321927866_FM.indd xiii Achorn International 10/18/2013 12:05AM

xiiiContents

6.3 The Activity Diagram Frame 90
6.4 A Word about Token Flow 92
6.5 Actions: The Basics 93
6.6 Object Nodes 95
6.7 Edges 99
6.8 Actions, Revisited 102
6.9 Control Nodes 112
6.10 Activity Partitions: Allocating Behaviors

to Structures 119

Chapter 7 Sequence Diagrams 123

7.1 Purpose 123
7.2 When Should You Create a Sequence Diagram? 124
7.3 The Sequence Diagram Frame 125
7.4 Lifelines 125
7.5 Messages 129
7.6 Destruction Occurrences 138
7.7 Execution Specifications 139
7.8 Constraints 141
7.9 Combined Fragments 144
7.10 Interaction Uses 151

Chapter 8 State Machine Diagrams 155

8.1 Purpose 155
8.2 When Should You Create a State Machine Diagram? 156
8.3 The State Machine Diagram Frame 156
8.4 States 158
8.5 Transitions 162
8.6 Pseudostates 171
8.7 Regions 173

Chapter 9 Parametric Diagrams 177

9.1 Purpose 177
9.2 When Should You Create a Parametric Diagram? 178

00_0321927866_FM.indd xii Achorn International 10/18/2013 12:05AM

xiv Contents

9.3 Blocks, Revisited 179
9.4 The Parametric Diagram Frame 182
9.5 Constraint Properties 184
9.6 Constraint Parameters 185
9.7 Value Properties 185
9.8 Binding Connectors 187

Chapter 10 Package Diagrams 189

10.1 Purpose 189
10.2 When Should You Create a Package Diagram? 190
10.3 The Package Diagram Frame 190
10.4 Notations for Namespace Containment 191
10.5 Dependencies between Packages 193
10.6 Importing Packages 193
10.7 Specialized Packages 194
10.8 Shades of Gray: Are You Looking at a Package

Diagram or a Block Definition Diagram? 198

Chapter 11 Requirements Diagrams 201

11.1 Purpose 201
11.2 When Should You Create a Requirements Diagram? 202
11.3 The Requirements Diagram Frame 202
11.4 Requirements 204
11.5 Requirements Relationships 205
11.6 Notations for Requirements Relationships 209
11.7 Rationale 213

Chapter 12 Allocations: Cross-Cutting Relationships 215

12.1 Purpose 215
12.2 There’s No Such Thing as an Allocation Diagram 216
12.3 Uses for Allocation Relationships 216
12.4 Notations for Allocation Relationships 219
12.5 Rationale 224

00_0321927866_FM.indd xv Achorn International 10/18/2013 12:05AM

xvContents

Appendix A: SysML Notation Desk Reference 227

Appendix B: Changes between SysML Versions 245

Bibliography 253

Index 255

00_0321927866_FM.indd xiv Achorn International 10/18/2013 12:05AM

This page intentionally left blank

xvii

Foreword by Rick Steiner

Systems engineering is not an easy subject to teach. Earlier in my ca-
reer, I was emphatically told that systems engineering could not be
taught in a classroom and that it could only be learned through experi-
ence. While that hasn’t proven to be true, there are certainly concepts
within the practice of systems engineering that are both subtle and
arcane.

Expressing these concepts in models demands a suitably robust
language, which is why a dedicated group of us began development of
what would become SysML in early 2002. We attempted to be parsimo-
nious and direct when designing the language, specifically targeting it
for use by practicing systems engineers. I’m convinced that the result-
ing language is both flexible and useful, and I am gratified that it has
emerged as a dominant standard for communicating systems-related
ideas.

Just like the practice of systems engineering, however, SysML has
proven difficult to teach effectively. The scope of systems engineering
is remarkably broad, and even though SysML is a relatively compact
language, students frequently get overwhelmed with its complexity.
Resources for learning SysML and model-based systems engineering
have until recently been rather limited, but it’s getting better. Formal
MBSE and SysML courses are now regularly being taught through sev-
eral university or extension catalogs, and at least one comprehensive
textbook is now available.

An engineer or manager who wants to casually learn the basics of
SysML isn’t likely to want to take a class. An advanced systems engi-
neer who finds him- or herself in the middle of a project with tight
deadlines just doesn’t have the time to take a class. It is in both of these
situations that this book has the greatest value.

Structured in a manner similar to Martin Fowler’s popular UML
Distilled, this book lays out the fundamentals of SysML diagrams in
clear, concise terms. It is written in a casual, lighthearted manner, yet it
conveys the gist of each concept and its graphical representation. What
I like best about this book is that it keeps me reading, without getting

00_0321927866_FM.indd xvi Achorn International 10/18/2013 12:05AM

 xviii

bogged down in “meta-speak” and “UML-isms.” It is sprinkled with
humor and practical advice.

This is not a textbook or guidebook for SysML application or MBSE
deployment, nor does it describe in detail the methodological rationale
for each of the systems engineering concepts it describes. While it does
use a consistent satellite example through the chapters, it does not walk
the reader through any particular MBSE process. It is not a workbook,
nor does it include questions or sample problems for the reader to work
out. You as a SysML user or advanced MBSE practitioner may eventu-
ally need these other resources, but this book is an excellent start.

This book is a solid, self-paced, lightweight SysML reference guide.
The world is ready for this book.

—Rick Steiner,
coauthor, A Practical Guide to SysML

Foreword by Rick Steiner

00_0321927866_FM.indd xix Achorn International 10/18/2013 12:05AM

xix

Foreword by Richard Soley

Technology Take-Up Takes Time

I had the great luck to attend one of the best technologically focused
(and entrepreneurially focused) universities in the world in the 1970s
and 1980s. The future, as Steve Jobs might have put it, was invented
there, not discovered. It was one of the places where “hackers stayed
up late” and helped to create radar, flash photography, and the Inter-
net. Those technologies helped change the world; more importantly,
economies flourished through the creation of companies and other or-
ganizations that put those technologies to work. The computing explo-
sion that started in the 1960s certainly fared well in the Massachusetts
of 1980.

My own contributions during my initial foray into the academic
world, eleven years at the Massachusetts Institute of Technology,
moved and changed as my academic interests moved and changed,
starting with the artificial intelligence field (handwriting recognition
was an early focus), moving on in graduate school to computing sys-
tems architectures, and finally melding those two interests. Not a small
contribution to my focus was being involved in five start-ups during
my MIT years (though perhaps it was a large contribution to the length
of time I spent at MIT). Artificial intelligence pioneers like Symbolics
and Gold Hill Computer were important to my understanding of the
application of technology; and my own start-up, A.I. Architects (with
likely the best systems engineer I have ever met), strongly depended on
the collision between the demands of artificial intelligence and the lim-
ited computing power of the early personal computing revolution.

Probably the most important single idea that I learned during this
period was that the time it takes for technology to come out of the labo-
ratory and into production is far greater than any academic believes.
The expert systems of the 1980s, now a primary fixture of diagnostic
and other systems worldwide (though generally under the moniker of

00_0321927866_FM.indd xviii Achorn International 10/18/2013 12:05AM

xx

“rule-based systems”), were clearly based on systems like PLANNER
and CONNIVER from the 1960s. Twenty years seemed like the right
rule of thumb; taking a technology through the engineering require-
ments necessary to stabilize and replicate the approach on an industrial
scale, to the market development and integration, takes time.

OMG Objects of Awe

Nevertheless, when the Object Management Group (OMG) started up
in 1989, the promise of object technology and distributed objects was to
change the face of computing. As the Internet slowly changed into the
World Wide Web, it was clear that consistent, standardized middle-
ware would make it more possible than ever to integrate not only text
pages from around the world but also application interoperability. The
ability to “mash up” (as we would say twenty years later) computing
power and data sources worldwide, using standardized APIs and
on-the-wire protocols, would be far simpler with an object-oriented
approach.

While OMG did a good job from the beginning in controlling the
hype, avoiding the “artificial intelligence winter” that arose from an
overhyped AI market in the 1980s, OMG likely didn’t do a good enough
job of recognizing that technology take-up takes time. It would be fif-
teen or twenty years before mash-ups became mash-ups, and object-
oriented languages (initially C++, itself a good twenty years after Simu-
lar; now Java, C#, and Ruby-on-Rails) would permeate the computing
milieu. OMG’s objects of awe, as with all technologies, would become
the quotidian tools of software developers everywhere, but it would
take a couple of decades.

Modeling Makes Mavens

In the meantime, another opportunity would come OMG’s way, with
the proposal in 1996 that the object-oriented analysis and design mar-
ket (as it was then called) had reached a dead end, an impasse, based
not on the inherent technology but rather on the multitudinous ap-
proaches (and worse, notations) flooding the market. Even those tech-
nology mavens in love with the approach found themselves stymied
by too much choice (and too little guarantee of portability and inter-

00_0321927866_FM.indd xxi Achorn International 10/18/2013 12:05AM

xxi

operability, once a choice was made). The mid-1990s consolidation of
the analysis and design market created a vendor-focused market force
for the creation of a standard, a force that was widely accepted by the
slow-growing user community. The creation of the Unified Modeling
Language (UML) standard in 1997, even with only a shared notation
and not a shared methodology, was sufficient to coax the market into
more than 100 percent CAGR over the next decade and a half. As the
application development life cycle is more than just analysis and de-
sign, including also development, test, implementation, and mainte-
nance, what had been just for “analysis and design” was soon called
modeling.

And proof points for modeling, even with nascent standards like
UML, abounded within a few years. Early scientific analysis showed
35 percent or more productivity increases using a modeling approach
(as opposed to low-level programming language development); per-
haps more importantly, as maintenance and support range from 80 per-
cent to 90 percent of the software development life cycle, a couple of
key analyses showed that 35 percent productivity increases (or better)
could be had in maintenance and integration. This acceptance—as of this
writing, according to market analysts Gartner & Forrester, including
more than 71 percent of all software development teams—led to an
explosion of modeling-related standardization at OMG.

Within fifteen years of the availability of the OMG UML standard
(and its associated and very powerful parent, the Meta Object Facility,
MOF), a fleet of domain-specific modeling languages were standard-
ized. Languages and profiles for defining systems on a chip, for service-
oriented architectures (SoaML), for business modeling and analysis
(BPMN), for capturing enterprise architectures (UPDM), for defining
rule-based systems (SBVR), even for capturing the motivations behind
systems development (BMM), all joined the OMG stable. More impor-
tantly, most work at OMG shifted to “vertical markets,” addressing the
needs of healthcare information technology, financial services, life sci-
ences, automotive and other consumer device dependability analysis,
and so forth—all based on a view of systems based on high-level
models.

Servicing the Spread of Systems

One of the most important horses in that stable is the OMG Systems
Modeling Language, SysML. Defined as a “profile” of the UML, SysML

Foreword by Richard Soley

00_0321927866_FM.indd xx Achorn International 10/18/2013 12:05AM

xxii Foreword by Richard Soley

took on the huge task of being the language that could integrate many
disparate views of large-systems engineering: not only software and
hardware but also requirements, mathematical parameterization, faci l-
ities management, design for maintenance, even the management of
human and other resources and the behavior of the system under de-
sign. The vision I had outlined in 2001, called model driven architecture,
could come to fruition with such an approach to integrated engineer-
ing, and not just for “software architecture,” but for the overall struc-
ture of complex systems like aircraft carriers and chemical plants. As
the IDEF series of specifications had promised in the early 1980s, SysML
could truly bring together the expertise necessary from many fields to
build well-designed, fit-to-purpose, and maintainable large systems.

So here we are, a dozen years removed from the first mention of
model driven architecture and coming up on the requisite twenty years
since the delivery of the Unified Modeling Language, with a book in
hand that integrates the views of experts on how to think about and
how to use SysML to deliver real systems. Here we find SysML distilled:
according to the dictionary, metaphorically, its essential meaning or
most important aspects extracted and displayed for all to see.

Complex systems development is, by its nature, a team sport. No
one person can manage even the gathering of requirements for large
systems; the size alone makes such a project complex. Since the real
focus of design is simplification along one or more dimensions, we
need notations and processes that not only communicate the simplified
vision but also allow designers, developers, and engineers to drill
down into a system’s design and explore, in fractal fashion, the under-
lying parts of the design, the expectations and requirements, and the
integration methodology. It’s one thing to know that a notation like
SysML—large and complex itself, of course, and including many dif-
ferent tools in its toolbox—can support large systems development; it’s
quite another to get past the learning curve to be able to effectively use
those tools. My father-in-law was well known for using a screwdriver
for every handyman task around the house (including driving nails); I
prefer to have tools that are fit for purpose and to understand how to
use those tools in an integrated way. Further, the SysML modeling lan-
guage is not intended only to implement large complex systems but
also to communicate their design to users of those systems; to maintainers
of those systems; and to those who may have to debug and integrate
extensions, corrections, and changes to those systems.

This book presents that introduction to the toolbox; better, it ex-
plains how to use those tools together to gather requirements for, build

00_0321927866_FM.indd xxiii Achorn International 10/18/2013 12:05AM

xxiiiForeword by Richard Soley

designs for, analyze designs of, and communicate that process to others in
a design team (or future integration team). That’s what engineers do,
and SysML is the best way to do it.

—Richard Mark Soley, Ph.D.,
chairman and chief executive officer,

Object Management Group, Inc.

00_0321927866_FM.indd xxii Achorn International 10/18/2013 12:05AM

00_0321927866_FM.indd xxv Achorn International 10/18/2013 12:05AM

This page intentionally left blank

xxv

Preface

Why SysML Distilled? It’s simple: You’re busy. You need to know SysML
now. You already have some systems modeling work to do. You don’t
need to know every detail of the language. You just want a book that
focuses you on those parts of SysML that are most common and most
useful in daily practice. SysML Distilled is that book.

You may choose to use this book as a desk reference, reaching for it
when you’re stuck and you’ve got a deadline bearing down on you. Or
you may choose to dive deep one chapter at a time, adding new mod-
eling skills to your toolbox for the future work coming your way. Or
you may decide to read this book cover to cover to prepare for the first
two levels of the OMG Certified Systems Modeling Professional (OCSMP)
certification: OCSMP Model User and OCSMP Model Builder: Fundamen-
tal. This book is designed to serve you in all these ways.

Who Should Read This Book?

SysML is a graphical modeling language that you can use to visualize
and communicate the designs of sociotechnical systems on all scales—
systems consisting of hardware, software, data, people, and processes.
Systems engineers are the ones who are responsible for the specifica-
tion, analysis, design, verification, and validation of sociotechnical sys-
tems. Systems engineers—and students of systems engineering—are
therefore the target audience for this book.

But that’s an oversimplification. Many authors and teachers have
repeated the axiom, “Everything is a system.” Allow me to add
the corollary: “Every engineer is a systems engineer.” No matter your
domain or job title, you’ve likely performed some or all of the sys-
tems engineering tasks I’ve mentioned. The premise of this book is
that you can perform those activities more effectively via the stan-
dardized medium of an integrated SysML model than you can with

00_0321927866_FM.indd xxv Achorn International 10/18/2013 12:05AM00_0321927866_FM.indd xxiv Achorn International 10/18/2013 12:05AM

xxvi

nonstan dardized modes of communication in disjoint sets of documents
and diagrams. You are a systems engineer—and you want to do your
job more effectively. You are therefore the target audience for this book.

What do you need to know before you dive in? You should have at
least a conceptual understanding of system specification, analysis, de-
sign, verification, and validation. Knowing in advance what these ac-
tivities consist of will help you internalize the ways SysML can help
you do them better. The International Council on Systems Engineering
(INCOSE) Systems Engineering Handbook is the authoritative reference.

You do not need to have any experience with any modeling lan-
guage to benefit from this book. You may already know that SysML is
based on the Unified Modeling Language (UML). In fact, you may have
read Martin Fowler’s seminal book, UML Distilled. I designed SysML
Distilled to be a companion book for systems engineers, who need to
model a wider spectrum of systems beyond that subset—software sys-
tems—for which UML was created. With that said, you do not need to
know UML as a prerequisite for this book. The structure and content of
this book make it a self-sufficient primer for learning SysML.

Structure of the Book

This book contains twelve chapters and two appendixes. Chapter 1,
“Overview of Model-Based Systems Engineering,” introduces the con-
cept of model-based systems engineering (MBSE) and provides the
context and the business case for learning SysML. Chapter 2, “Over-
view of the Systems Modeling Language,” discusses why SysML was
created and introduces the nine kinds of SysML diagrams that you can
create. Chapter 2 also covers general concepts that apply to all nine
kinds of diagrams.

Chapters 3 through 11 zoom in on the details of each of the SysML
diagrams, introducing you to the elements and relationships you can
display on them. Although there’s occasional overlap in the kinds of
elements and relationships that can appear on these diagrams, I focus
on each diagram one chapter at a time to effectively group related ideas
and help you easily locate a particular topic when you need to. Chap-
ters 3–11 are as follows:

• Chapter 3: “Block Definition Diagrams”
• Chapter 4: “Internal Block Diagrams”

00_0321927866_FM.indd xxvii Achorn International 10/18/2013 12:05AM

xxvii

• Chapter 5: “Use Case Diagrams”
• Chapter 6: “Activity Diagrams”
• Chapter 7: “Sequence Diagrams”
• Chapter 8: “State Machine Diagrams”
• Chapter 9: “Parametric Diagrams”
• Chapter 10: “Package Diagrams”
• Chapter 11: “Requirements Diagrams”

The last chapter, Chapter 12, “Allocations: Cross-Cutting Relation-
ships,” covers the concept of allocations—a relationship that you can
use to relate elements across all nine kinds of SysML diagrams.

The sample diagrams in the figures present various aspects of a
single system, the DellSat-77 Satellite System—a system I conceived of
entirely for the purpose of writing this book (and I hereby certify that I
have not disclosed any proprietary information of any aerospace com-
panies). I chose to focus on a satellite system to demonstrate how you
can use SysML to model a complex, real-world sociotechnical system—
one other than the classic exemplars (ATMs and cruise control systems)
that seem to be prevalent in modeling workshops. And I chose to use a
single system as a running example threaded through all chapters to
show you how the nine kinds of SysML diagrams present complemen-
tary and consistent views of an underlying system model.

The SysML model of the DellSat-77 Satellite System is available for
download from my website, www.lennydelligatti.com, on the “Articles
and Publications” page. I have made the data files available both in
XMI format and in the native formats of various modeling tools. This
resource enables self-learners as well as instructors and their students
to get hands-on with the system model that appears throughout this
book in the modeling tool of their choice.

Appendix A, “SysML Notation Desk Reference,” is a concise sum-
mary of the graphical notations presented in this book, along with ref-
erences to the sections where they are discussed in detail. Appendix B,
“Changes between SysML Versions,” covers the kinds of elements that
are introduced in SysML v1.3, the latest version of SysML at the time of
this writing.

SysML v1.2 is the version of SysML that is currently assessed on the
OCSMP certification exams. The biggest differences between SysML
v1.2 and v1.3 are in ports—a kind of element that can appear on block
definition diagrams (BDDs) and internal block diagrams (IBDs). I cover

Preface

00_0321927866_FM.indd xxvi Achorn International 10/18/2013 12:05AM

http://www.lennydelligatti.com

xxviii

BDDs in Chapter 3 and IBDs in Chapter 4. In these chapters, I focus on
the SysML v1.2 definition of ports for three reasons:

• They are the predominant kinds of ports in system models on
modeling projects that started before the release of SysML
v1.3—and many of those projects are still active.

• Some modeling tools lag behind the changes in SysML and
have not yet implemented the SysML v1.3 definition of ports.

• The OCSMP certification exams have not been revised since the
release of SysML v1.3 and still cover the SysML v1.2 definition
of ports.

Never fear, though; I give the SysML v1.3 definition of ports full
coverage in Appendix B. If your modeling team is about to create a new
system model, I recommend using the new kinds of ports instead of the
old ones (assuming your SysML modeling tool supports them).

The order of the chapters is loosely based on the typical frequency
of use of the diagrams. It does not reflect the relative value of each kind.
It can’t. Value is a subjective thing. Your team will determine that based
on the modeling method you adopt and the deliverables you produce
for your customer.

The order of the chapters also does not reflect—and should not
suggest—any particular modeling method. Simply put, this is not a
methodology book; rather, it’s a language book. In Chapter 1, “Over-
view of Model-Based Systems Engineering,” I discuss the distinction
between modeling methods and modeling languages. I list a few well-
known modeling methods and point to references that discuss them
comprehensively.

My goal in this book is to present you with concise, targeted cover-
age of the most common and most useful features of SysML—features
that are useful no matter which modeling method your team adopts. A
key point is that SysML is only a language; it’s method independent. I
designed SysML Distilled to be method independent as well. I want you
to come away knowing that SysML is a value-added medium for com-
munication no matter which processes, procedures, or tools your team
adopts to do your work and meet your stakeholders’ needs.

I hope you find this book a valuable companion in your study of
SysML. It’s a rich, expressive language—one with enough breadth and
depth to let you visualize and communicate all aspects of a system’s
design. There’s a lot to know, but you don’t need to know all of it to

00_0321927866_FM.indd xxix Achorn International 10/18/2013 12:05AM

xxix

create system models that communicate clearly and effectively. Dive in
and get what you need. You’ll discover how quickly you can put that
knowledge to work and deliver value to your customer.

—Lenny Delligatti
Houston, Texas

October 2013

Preface

00_0321927866_FM.indd xxviii Achorn International 10/18/2013 12:05AM

00_0321927866_FM.indd xxxi Achorn International 10/18/2013 12:05AM

This page intentionally left blank

xxxi

Acknowledgments

Many talented and dedicated people deserve credit for producing this
book. I would like to begin with a special thanks to Jim Thompson—
my friend, colleague, spiritual adviser, and partner in weekly sushi
catharsis. He spent many months reviewing chapters as I wrote the
original manuscript, and he provided valuable and insightful feed-
back. This book benefited greatly from his keen technical mind and his
excellent communication skills.

A special thanks also to Chris Guzikowski at Addison-Wesley. He
shepherded this project from its inception and flattened the steep learn-
ing curve for this new author. I thank him particularly for the sage ad-
vice that got me to the finish line: “Just keep choppin’ away at it.”

Chris Zahn, development editor at Addison-Wesley, and Betsy
Hardinger, copy editor extraordinaire, provided the essential support
I needed to hammer this book into its present form. They taught me
the art of turning good ideas into good writing and a well-crafted
manuscript. The quality of this book is far greater because of their
contributions.

Elizabeth Ryan, project editor at Addison-Wesley, coordinated the
work of the production team, who created the layout for the book and
brought the various pieces together in preparation for printing. They
made a complex process look easy and created a polished final prod-
uct. I’m grateful to them for their hard work.

I’d like to extend my deep appreciation to the exceptional team of
engineers and systems modelers who served as technical reviewers for
this book: Celso Gonzalez, Robert Cloutier, Susanne Sherba, John Pan-
tone, Michael Engle, and Michael Chonoles. Their expertise and insight
enabled me to turn a very rough draft into a significantly more focused
final product—one that better serves the systems engineering commu-
nity. My thanks to all of them.

I would also like to thank the following individuals who gra-
ciously agreed to review the revised manuscript and provide endorse-
ments on short notice: Jeff Estefan, Susanne Sherba, Lonnie VanZandt,

00_0321927866_FM.indd xxxi Achorn International 10/18/2013 12:05AM00_0321927866_FM.indd xxx Achorn International 10/18/2013 12:05AM

xxxii

Bran Selic, J. D. Baker, Tim Weilkiens, Tom Fargnoli, Robert Cloutier,
Matthew Hause, Russell Peak, Doug Tolbert, Celso Gonzalez, and Bob-
bin Teegarden. These extraordinary people have made significant con-
tributions to the systems modeling community as modeling language
developers, modeling certification developers, systems architects,
teachers, and expert practitioners in the field. I am honored and hum-
bled to receive their endorsements.

A special thanks to Rick Steiner for writing a foreword for this book.
Rick is one of the original creators of SysML, and he continues to serve
on the SysML Revision Task Force (RTF)—the team that evolves and
improves the SysML specification over time in response to feedback
from the systems modeling community. Our profession is richer be-
cause of his experience and contributions. My thanks to him for all he’s
done.

A special thanks also to Richard Soley for his foreword. Richard has
led the Object Management Group (OMG) since its inception in 1989.
The mark that the OMG has left in the engineering world cannot be
overstated. Richard, the OMG staff, and the pantheon of expert engi-
neers who have served as volunteer members of OMG working groups
have—without hyperbole—transformed the way we do engineering.
The creation of the model-based engineering paradigm and its infusion
into the work we do in our profession have enriched those of us who
love and practice engineering as well as the customers we serve. My
thanks to Richard for his vision and leadership as our community con-
tinues to navigate this sea change.

Many brilliant, experienced engineers have contributed to the de-
velopment of SysML for more than a decade. Any attempt on my part
to give each of them due credit individually would fail. I have to resign
myself to thanking them collectively for their efforts. It’s because of
their hard work that we have this rich medium called SysML to com-
municate our system design ideas to one another. I’ve strived to make
this book a worthy representative of that product.

I am most thankful to my wife, Natalie, and my children, Noelle
and Aidan. For two years, they were extraordinarily patient and under-
standing when I spent long hours on the computer in the evenings and
on weekends. They give my life purpose, and I’m deeply grateful to
them for their love and support.

 Acknowledgments

00_0321927866_FM.indd xxxiii Achorn International 10/18/2013 12:05AM

xxxiii

About the Author

Lenny Delligatti received his B.S. in electrical and computer engineer-
ing from Carnegie Mellon University and his M.S. in computer science
systems engineering from the University of Denver. He holds the OMG
Certified Systems Modeling Professional (OCSMP) Model Builder: Advanced
certification, the highest level of certification in SysML and model-
based systems engineering (MBSE) methodology. Additionally, he
holds the OMG Certified UML Professional (OCUP): Advanced certifica-
tion, the highest level of certification in UML.

Lenny is a senior systems engineer with Lockheed Martin, creating
SysML models and serving as the MBSE lead for NASA’s Mission Con-
trol Center: 21st Century (MCC-21) project at Johnson Space Center. He
previously served as an embedded software engineer on NASA’s Air-
craft Simulation Program (ASP), building VxWorks kernels and devel-
oping flight software for NASA’s fleet of Gulfstream II in-flight space
shuttle simulators. He also served as a software engineer on the Nomad
project at Carnegie Mellon University’s Field Robotics Center, design-
ing and developing the Sensor Manager subsystem for the Nomad Au-
tonomous Rover.

Lenny is a member of the Object Management Group (OMG) SysML
Revision Task Force (RTF) and the OCUP2 Certification Development
Team. He also serves as the Education and Outreach Director for the
Texas Gulf Coast Chapter (TGCC) of the International Council on Sys-
tems Engineering (INCOSE), supporting the professional development
of the Houston-area systems engineering community.

In addition to his engineering experience, Lenny served as a Sur-
face Warfare Officer in the U.S. Navy, completing a deployment in sup-
port of Operation: Enduring Freedom and two tours of duty in Sasebo,
Japan, and Norfolk, Virginia. Following his Navy service, he received
formal training in pedagogy at Old Dominion University and earned a
license to teach mathematics in the state of Virginia. He served as a
mathematics teacher and department head in the Fairfax County pub-
lic school system before transitioning back into engineering upon his
move to Houston, Texas.

00_0321927866_FM.indd xxxii Achorn International 10/18/2013 12:05AM

xxxiv

Lenny is passionate about engineering and helping engineers de-
velop more effective ways to do engineering. He has created and deliv-
ered hundreds of hours of classroom instruction to hundreds of sys-
tems and software engineers on the topics of UML, SysML, and MBSE,
enabling many to earn OMG certifications and lead MBSE efforts
on their projects. He has delivered SysML and MBSE presentations at
INCOSE meetings and at American Institute of Aeronautics and Astro-
nautics (AIAA) Technical Symposia at Johnson Space Center.

This page intentionally left blank

23

Chapter 3

Block Definition
Diagrams

The most common kind of SysML diagram is the block definition dia-
gram. You can display various kinds of model elements and relation-
ships on a BDD to express information about a system’s structure. You
can also adopt design techniques for creating extensible system struc-
tures, a practice that reduces the time and cost to change your design as
your stakeholders’ needs evolve.

3.1 Purpose

The model elements that you display on BDDs—blocks, actors, value
types, constraint blocks, flow specifications, and interfaces—serve as
types for the other model elements that appear on the other eight kinds
of SysML diagrams. We refer to elements that appear on BDDs as ele-
ments of definition. Elements of definition, in a real sense, form the
foundation for everything else in your system model. That’s why I’m
covering BDDs first.

Elements of definition are important; the structural relationships
among them—associations, generalizations, and dependencies—are
arguably more important. You display these relationships on BDDs,
too. With these relationships, you often create BDDs that convey sys-
tem decomposition and type classification.

 Block Definition Diagrams24

3.2 When Should You Create a BDD?

Often. You should create a BDD often.
That may seem like a glib answer, but it’s accurate. BDDs are not

tied to any particular stage of the system life cycle or level of design.
You and your team will create them (and refer to them) when you per-
form all the following systems engineering activities: stakeholder needs
analysis, requirements definition, architectural design, performance
analysis, test case development, and integration. And you often create
a BDD in conjunction with other SysML diagrams to provide a comple-
mentary view of an aspect of your system of interest.

In short, you should—and will—create BDDs often.

3.3 The BDD Frame

The diagram kind abbreviation for a block definition diagram is bdd.
The model element type that the diagram frame represents can be any
of the following:

•	 package

•	 model
•	 modelLibrary
•	 view
•	 block
•	 constraintBlock

As discussed in Section 2.4, “General Diagram Concepts,” the
model element that the diagram represents serves as the namespace for
the other elements shown on the diagram. A namespace is simply a
model element that’s allowed to contain other model elements; that is,
it can have other elements nested under it within the model hierarchy.
A namespace, therefore, is a concept that has meaning only within your
system model; it has no meaning within an instance of your system.

Many kinds of SysML elements can serve as namespaces. A pack-
age, however, is the most common kind of namespace for the various
elements of definition that appear on BDDs. Therefore, the element
that’s named in the header of a BDD typically is a package you’ve cre-
ated somewhere in the model hierarchy.

03_0321927866_Ch03.indd 25 Achorn International 10/18/2013 12:12AM

3.3 The BDD Frame 25

Figure 3.1 A sample block definition diagram (BDD)

03_0321927866_Ch03.indd 24 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams26

The name of the BDD in Figure 3.1 is “DellSat-77 Satellite Structure
and Properties.” The diagram header also tells us that this diagram
represents the Structure package in the system model. The Structure
package, therefore, is the namespace for the elements shown on the
diagram.

Let’s take a look in detail at the kinds of elements and relationships
you can display on a BDD.

3.4 Blocks

A block is the basic unit of structure in SysML. You can use a block to
model any type of entity within your system of interest or in the sys-
tem’s external environment.

Note the distinction between definition and instantiation (which
SysML refers to as “usage”). This distinction is one of the most funda-
mental system design concepts, and it’s a pattern that recurs often in
SysML. Some kinds of model elements (e.g., blocks, value types, con-
straint blocks) represent definitions of types; other kinds of model ele-
ments (e.g., part properties, value properties, constraint properties)
represent instances of those types. By analogy, a blueprint of a house
is a definition of a type of house; each house a developer builds on a
plot of land in accordance with that blueprint is a distinct instance of
that type.

With that in mind, I reiterate: A block represents a type of entity,
and not an instance. For example, you could create a block named Desk-
topWorkstation in your system model. That block would represent a
type that defines a set of properties—such as monitor, keyboard, mouse,
CPU, manufacturer, disk space, cost—that are common to all instances.
Each desktop workstation that your IT department purchases for each
office and cubicle would be a distinct instance of that DesktopWorksta-
tion block.

You can easily tell the difference between elements of definition
and elements of usage in a system model. Elements of definition have
a name only (e.g., DesktopWorkstation); elements of usage have a name
and a type, separated by a colon (e.g., SDX1205LJD : Desktop Workstation).

The notation for a block is a rectangle with the stereotype «block»
preceding the name in the name compartment (as shown in Figure 3.2).
You’re required to display a block’s name compartment. Often you’ll
display additional optional compartments that convey the features of
the block.

03_0321927866_Ch03.indd 27 Achorn International 10/18/2013 12:12AM

3.4 Blocks 27

Features come in two varieties: structural features (also known as
properties) and behavioral features. I discuss each category in depth in
the next two sections.

Here are the optional compartments that you can display:

•	 Parts
•	 References
•	 Values
•	 Constraints
•	 Operations
•	 Receptions
•	 Standard ports (in SysML v1.2 and earlier)
•	 Flow ports (in SysML v1.2 and earlier)
•	 Full ports (in SysML v1.3)
•	 Proxy ports (in SysML v1.3)
•	 Flow properties (in SysML v1.3)
•	 Structure

The structure compartment is the only compartment that doesn’t
list features. Rather, it’s a graphical compartment that displays a block’s
internal structure; you can display in that compartment all the same
notations you can display on an internal block diagram (IBD). Model-
ers rarely display this compartment.

Note that even though it’s legal to display a block’s ports in com-
partments, it’s much more common to display ports as small squares
that straddle the border of a block (as shown in Figure 3.2). I discuss
ports in detail in Section 3.4.1.5, “Ports.”

Figure 3.2 A block

03_0321927866_Ch03.indd 26 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams28

3.4.1 Structural Features

There are five kinds of structural features (also known as properties)
that a block can own:

•	 Part properties
•	 Reference properties
•	 Value properties
•	 Constraint properties
•	 Ports

3.4.1.1 Part Properties

Part properties are listed in the parts compartment of a block (as shown
in Figure 3.3). A part property represents a structure that’s internal to a
block. Stated differently, a block is composed of its part properties. This
relationship conveys ownership.

However, SysML stops short of defining the word ownership; this
concept has different meanings in different domains. In the hardware
domain, ownership typically refers to physical composition. For exam-
ple, Figure 3.3 conveys that a valid instance of the Communication and
Data Handling Subsystem block is one that is physically composed of the
required parts: flight computers, modulator, demodulator, transmitter,
receiver, and antennas. In the software domain, however, ownership

Figure 3.3 Blocks with part properties

03_0321927866_Ch03.indd 29 Achorn International 10/18/2013 12:12AM

3.4 Blocks 29

typically refers to one object’s responsibility for the creation and de-
struction of another object. When memory is allocated for a composite
object, memory is allocated for each of its parts, too; similarly, when
memory is freed for a composite object, memory is also freed for each
of its parts.

But SysML states definitively that ownership means that a part prop-
erty can belong to only one composite structure at a time. However, a
part property can be removed from one instance of a composite struc-
ture and added to another. For example, I can install a given antenna on
only one satellite at a time, and not on two or more simultaneously. But
that antenna can be removed from one satellite and reinstalled on an-
other at some point.

When you list a part property in the parts compartment of a block,
it appears as a string with the following format:

<part name> : <type> [<multiplicity>]

The part name is modeler defined. The type generally is the name
of a block that you’ve created somewhere in the system model. The
multiplicity is a constraint on the number of instances that the part
property can represent within the composite, expressed either as a sin-
gle integer or as a range of integers.

For example, Figure 3.3 conveys that a valid instance of the Com-
munication and Data Handling Subsystem block must be composed of ex-
actly one instance of the Flight Computer block—an instance that serves
in the role of primaryComputer. Additionally, it must be composed of
either one or two more instances of Flight Computer—instances that
serve in the role of backupComputer.

If you want a part property to represent an unconstrained number
of instances, you can set the multiplicity to 0..*. The asterisk means that
there’s no upper bound (or more precisely, that you’re not specifying
an upper bound in the system model). You would read 0..* in English
as “zero or more.” Alternatively, you can set the multiplicity to *, a
shorthand notation for 0..*.

If no multiplicity is shown for a part property, the default is 1 (which
is equivalent to 1..1). Note that 1 is almost always the default multiplic-
ity in SysML. There is an important exception, however, which I dis-
cuss in Section 3.5.2, “Composite Associations.”

When a part property has a multiplicity with an upper bound
greater than 1 (e.g., 1..2, 0..10, *), we refer to that part property as a col-
lection (of instances). The key idea is that part property and instance are

03_0321927866_Ch03.indd 28 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams30

not synonyms; a single part property may potentially represent multi-
ple instances within a composite if its specified multiplicity allows it.

3.4.1.2 Reference Properties

Reference properties are listed in the references compartment of a block
(as shown in Figure 3.4). A reference property represents a structure
that’s external to a block.

Unlike a part property, a reference property does not convey own-
ership. A reference property can roughly be described as a “needs” re-
lationship; a block with a reference property needs that external struc-
ture for some purpose, either to provide a service or to exchange matter,
energy, or data. And this implies that some type of connection must
exist between them.

Note that the presence of a reference property in a block does not by
itself convey its purpose. If you need to convey that purpose, you could
do so on an internal block diagram (IBD). I discuss this more in Chap-
ter 4, “Internal Block Diagrams.”

When you list a reference property in the references compartment
of a block, it appears as a string with the following format:

<reference name> : <type> [<multiplicity>]

The reference name is modeler defined. The type must be the name
of a block or actor that you’ve created somewhere in the system model.
The multiplicity is a constraint on the number of instances that the ref-
erence property can represent.

For example, Figure 3.4 shows that the Electrical Power Subsystem
block has a reference property named cdhs. This model conveys that an

Figure 3.4 Blocks with reference properties

03_0321927866_Ch03.indd 31 Achorn International 10/18/2013 12:12AM

3.4 Blocks 31

instance of Electrical Power Subsystem needs exactly one instance of
Communication and Data Handling Subsystem (to fulfill its design pur-
pose). Again, this view alone doesn’t convey what that purpose is; it
simply conveys that some type of connection must exist between them.

Like a part property, a reference property’s default multiplicity is 1
(if no multiplicity is shown). And like a part property, a reference prop-
erty is referred to as a collection when its multiplicity has an upper
bound greater than 1.

3.4.1.3 Value Properties

Value properties are listed in the values compartment of a block (as
shown in Figure 3.5). A value property can represent a quantity (of
some type), a Boolean, or a string. Most often, though, a value property
is something you can assign a number to. Value properties are particu-
larly useful in conjunction with constraint properties to construct a
mathematical model of your system (more on this in Chapter 9, “Para-
metric Diagrams”).

When you list a value property in the values compartment of a
block, it appears as a string with the following format:

<value name> : <type> [<multiplicity>] = <default value>

The value name is modeler defined. The type must be the name of
a value type that you’ve created somewhere in the system model. The
multiplicity is a constraint on the number of values that the value prop-
erty can hold. The default value is an optional piece of information; it

Figure 3.5 A block with value properties

03_0321927866_Ch03.indd 30 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams32

represents the value assigned to the value property when an instance of
its owning block first gets created.

Figure 3.5 shows that the DellSat-77 Satellite block has several value
properties. The eventTimes value property can hold an unconstrained
number of Timestamp values (as conveyed by the multiplicity 0..*).
Timestamp is a value type that exists somewhere in the model hierarchy
(more on value types in Section 3.9, “Value Types”).

As with a part property and a reference property, a value property’s
default multiplicity is 1 (if no multiplicity is shown). Similarly, a value
property is referred to as a collection when its multiplicity has an upper
bound greater than 1.

Some value properties hold values that are assigned, and others
hold values that are derived (calculated) from other value properties in
the system model. To convey that a value property is derived, you put
a forward slash (/) in front of its name. For example, Figure 3.5 shows
that the DellSat-77 Satellite block owns two derived value properties:
mass and period. This view of the model does not convey the equations
used to calculate those derived values, nor does it show which other
value properties provide inputs for those equations. You would specify
those mathematical relationships using constraint expressions, as dis-
cussed in the next section.

3.4.1.4 Constraint Properties

Constraint properties are listed in the constraints compartment of a
block (as shown in Figure 3.6). A constraint property generally repre-
sents a mathematical relationship (an equation or inequality) that is
imposed on a set of value properties. This is a higher level of model fi-
delity than is required on most modeling projects. However, constraint
properties are an essential part of constructing mathematical models of

Figure 3.6 A block with a constraint property

03_0321927866_Ch03.indd 33 Achorn International 10/18/2013 12:12AM

3.4 Blocks 33

a system, which you display on parametric diagrams (more on this in
Chapter 9).

When you list a constraint property in the constraints compartment
of a block, it appears as a string with the following format:

<constraint name> : <type>

The constraint name is modeler defined. The type must be the name
of a constraint block that you’ve created somewhere in the system
model.

A constraint block is simply a special kind of block—one that you
create to encapsulate a reusable constraint expression. Most often, a
constraint expression is an equation or an inequality. For example, Fig-
ure 3.7 shows a constraint block named Sufficient Memory, which encap-
sulates the constraint expression

memoryCapacity >= dataPerOrbit * 3

This constraint block serves as the type for the constraint property
sm in the Flight Computer block (shown in Figure 3.6). This conveys that
the values held in the two value properties (memoryCapacity and data-
PerOrbit) must satisfy that mathematical relationship at all times (in a
system that’s operating nominally).

Note that you’re not required to use constraint blocks to impose
mathematical relationships on value properties. It’s perfectly legal to
specify a constraint expression directly in the constraints compartment
of a block (as shown in Figure 3.8). You would do this when only one
block needs that constraint expression (i.e., when you don’t intend to

Figure 3.7 A constraint block

03_0321927866_Ch03.indd 32 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams34

reuse it in multiple places). As a matter of best practice, though, I rec-
ommend that you always encapsulate equations and inequalities in
constraint blocks; it enables reuse if the need arises.

I discuss constraint blocks in greater detail in Section 3.10, “Con-
straint Blocks.” Meanwhile, keep in mind these key ideas:

•	 Blocks can own constraint properties (to constrain value
properties).

•	 Constraint properties are typed by constraint blocks, which
generally encapsulate mathematical relationships.

3.4.1.5 Ports

A port is a kind of property that represents a distinct interaction point
at the boundary of a structure through which external entities can in-
teract with that structure—either to provide or request a service or to
exchange matter, energy, or data.

When you add a port to a block, you’re modeling a structure as a
black box with respect to its environment; the structure’s internal im-
plementation is hidden from its clients. Those clients know only the
structure’s interface (the services it provides and requires, and the
types of matter, energy, or data that can flow in and out). Stated differ-
ently, a port decouples a block’s clients from any particular internal
implementation.

Encapsulating a block with a set of ports enables you to redesign
that block’s internal implementation later without impacting the de-
sign of the other parts of your system. This practice reduces the time it
takes to implement system modifications when the customer’s require-

Figure 3.8 A block with a (non-reusable) constraint

03_0321927866_Ch03.indd 35 Achorn International 10/18/2013 12:12AM

3.4 Blocks 35

ments change later in the life cycle, and time saving translates into cost
saving.

A port can represent any type of interaction point you need to
model. For example, it can represent a physical object on the boundary
of a hardware object (e.g., a spigot, an HDMI jack, a fuel nozzle, a
gauge). It can represent an interaction point on the boundary of a soft-
ware object (e.g., a TCP/IP socket, a message queue, a shared memory
segment, a graphical user interface, a data file). And it can represent an
interaction point between two business organizations (e.g., a purchase
order, a courier, a website, a mailbox). SysML imposes no constraints
on what a port can represent.

SysML v1.2 (and earlier) defines two kinds of ports—standard
ports and flow ports—that you can add to a block to specify different
aspects of its interface. A standard port lets you specify an interaction
point with a focus on the services that a block provides or requires; a
flow port lets you specify an interaction point with a focus on the types
of matter, energy, or data that can flow in and out of a block.

Note

SysML v1.3 no longer supports standard ports and flow ports, instead defining
two new kinds of ports: full ports and proxy ports. I discuss these in detail in Ap-
pendix B. I focus on standard ports and flow ports in this chapter because they
continue to be the predominant kinds of ports in system models at the time of this
writing. Additionally, the current versions of the OCSMP certification exams cover
the concepts of standard ports and flow ports. Moreover, some modeling tools
continue to lag behind the changes in SysML and do not yet support full ports
and proxy ports.

Standard Ports A standard port models the services (behaviors) that
a block provides or requires at an interaction point on its boundary.
Most often, you display a standard port as a small square straddling
the border of a block (as shown in Figure 3.9). Note that it’s legal to list
a standard port as a string in the standard ports compartment, but this
is an uncommon notation.

A standard port can have a modeler-defined name (e.g., sp_cdhs,
sp_eps) that is displayed as a string floating near the standard port
(either inside or outside the block border). A standard port can have

03_0321927866_Ch03.indd 34 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams36

one or more types; the types are the interfaces you assign to it (e.g.,
Power Generation, Status Reporting).

An interface, like a block, is an element of definition—one that de-
fines a set of operations and receptions, a behavioral contract that cli-
ents and providers will conform to. You can display an interface on a
BDD as a rectangle with the keyword «interface» preceding the name;
you can display its operations and receptions in the second and third
compartments. Figure 3.10 displays the Power Generation and Status Re-
porting interfaces using this notation.

When you assign an interface to a standard port, you assign it ei-
ther as a provided interface or as a required interface. A provided inter-
face is displayed using the ball notation—the lollipop symbol attached
to the standard port (shown in Figure 3.9). A block that provides an
interface must implement all of the interface’s operations and recep-
tions. For example, Figure 3.9 conveys that the Communication and Data
Handling Subsystem block provides the Status Reporting interface, and

Figure 3.9 Blocks with standard ports

Figure 3.10 Interfaces

03_0321927866_Ch03.indd 37 Achorn International 10/18/2013 12:12AM

3.4 Blocks 37

this means that it implements (can perform) the two operations and the
two receptions in that interface.

A required interface is displayed using the socket notation—the
stick with a semicircle attached to the standard port (shown in Fig-
ure 3.9). A block that requires an interface may invoke one or more—
but not necessarily all—of its operations or receptions at some point
during system operation. For example, Figure 3.9 conveys that the Elec-
trical Power Subsystem block requires the Status Reporting interface, and
this means that it may invoke any (or all) of the four operations and
receptions in that interface.

Modeling with standard ports and interfaces is a way to decouple
clients and providers, enabling you to design to abstractions rather
than specific implementations. This extensibility lets you add new
providers of interfaces at any time without impacting the existing cli-
ents of those interfaces.

Flow Ports A flow port models the types of matter, energy, or data
that can flow in or out of a block at an interaction point on its boundary.
As with a standard port, you most often display a flow port as a small
square straddling the border of a block (as shown in Figure 3.11). Un-
like a standard port, however, a flow port has a symbol shown inside
the small square (more on that soon). It’s legal to list a flow port as a
string in a compartment—one named “flow ports”—but again, this is
an uncommon notation.

A flow port can have a modeler-defined name (e.g., dataOut, data-
 In); it can also have a type (e.g., Housekeeping Data). The name and
type are displayed as a string floating near the flow port, separated by
a colon in the format name : type. The type that you specify for a flow
port and the symbol that appears inside the square depend on the kind
of flow port you’re modeling. SysML offers two kinds of flow ports:
non atomic flow ports and atomic flow ports.

Figure 3.11 shows examples of nonatomic flow ports. You add a
nonatomic flow port (symbolized as < >) to a block when you need to

Figure 3.11 Blocks with nonatomic flow ports

03_0321927866_Ch03.indd 36 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams38

model multiple types of items that could flow in or out via that port. The
type of a nonatomic flow port must be the name of a flow specification
that you’ve created somewhere in the system model.

Like a block, a flow specification is an element of definition—one
that defines a set of flow properties that can flow in or out of a non-
atomic flow port. You can display a flow specification on a BDD as a
rectangle with the stereotype «flowSpecification» preceding the name;
you can display its flow properties in a compartment named “flow-
Properties.” Figure 3.12 displays the Housekeeping Data flow specifica-
tion using this notation.

A flow property represents a specific item that can flow in or out of
a block via a flow port. Each flow property has a direction, a name, and
a type, which are displayed as a string in the following format:

<direction> <name> : <type>

The direction can be in, out, or inout. The name is modeler defined.
The type must be the name of a value type, block, or signal that you’ve
created somewhere in your model hierarchy.

Figure 3.11 shows that the Flight Computer block owns a nonatomic
flow port named dataIn, which is typed by the Housekeeping Data flow
specification. This model conveys that temperature and voltage values
can flow into an instance of Flight Computer at some point during sys-
tem operation.

Figure 3.11 also shows that the Electrical Power Subsystem block
owns a nonatomic flow port named dataOut, which also is typed by the
Housekeeping Data flow specification. In this case, though, the type,
Housekeeping Data, has a tilde (~) in front of it. This symbol conveys that
the dataOut flow port is conjugated. This means that the directions of
the flow properties in the Housekeeping Data flow specification are re-
versed for that flow port.

Figure 3.12 A flow specification

03_0321927866_Ch03.indd 39 Achorn International 10/18/2013 12:12AM

3.4 Blocks 39

The other kind of flow port is an atomic flow port. Figure 3.13
shows examples of this kind. You add an atomic flow port to a block
when you need to model a single type of item that could flow in or out
via that port. The symbol inside the small square is an arrow that con-
veys the direction of flow. The type of an atomic flow port must be the
name of a value type, block, or signal that you’ve created somewhere in
your model hierarchy.

Figure 3.13 shows that the Modulator block and the Transmitter block
have an atomic flow port named coupler, which is typed by the same
value type, Radio Frequency Cycle. These ports differ only in their direc-
tion of flow. This model conveys that a radio frequency signal can flow
from a modulator to a transmitter via a coupler—an interaction point at
their respective boundaries.

3.4.2 Behavioral Features

All the features I discuss in the preceding section are structural fea-
tures. On most modeling projects, however, it’s not sufficient to specify
only the parts, references, constraints, value properties, and ports of a
block. They’re important, but they convey only one aspect of the de-
sign. An equally important aspect is the set of behaviors that a block
can perform. You convey this aspect of the design by adding behavioral
features to a block.

SysML offers two kinds of behavioral features: operations and re-
ceptions. I discuss these briefly in the context of interfaces earlier in
Section 3.4.1.5. However, they’re not limited to interfaces; you can also
add operations and receptions to blocks. The decision to add a behav-
ioral feature to a block directly or to an interface (that a block provides
or requires) is a matter of your chosen modeling methodology and de-
sign principles. SysML does not dictate either course of action, and the
format for displaying operations and receptions is the same in either
case.

Now let’s take a look in detail at each kind of behavioral feature.

Figure 3.13 Blocks with atomic flow ports

03_0321927866_Ch03.indd 38 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams40

3.4.2.1 Operations

An operation represents a behavior that a block performs when a client
calls it. Stated formally, an operation is invoked by a call event.

Note

The term call event becomes more meaningful when I discuss events in detail in
the context of behaviors in Chapter 6, “Activity Diagrams,” Chapter 7, “Sequence
Diagrams,” and Chapter 8, “State Machine Diagrams.” I introduce the term now to
establish its connection to the concept of operations. As you study SysML incre-
mentally, remember that diagrams are merely views of an underlying model; what
you see on BDDs is related to what you see on other kinds of diagrams, including
activity diagrams, sequence diagrams, and state machine diagrams.

Most often, an operation represents a synchronous behavior. This
means that the caller waits for the behavior to complete before continu-
ing with its own execution. However, SysML doesn’t require this;
you’re free to represent any behavior as an operation—even when the
caller doesn’t wait for it to complete.

You display an operation on a BDD as a string in the operations
compartment of a block (as shown in Figure 3.14). That string has the
following format:

<operation name> (<parameter list>) : <return type>
[<multiplicity>]

The operation name is modeler defined. The parameter list is a
comma-separated list of zero or more parameters. (The format for each
parameter is shown shortly.) The return type (if any) must be the name
of a value type or block that you’ve created somewhere in your system
model. The multiplicity is a constraint on the number of instances of
the return type that the operation can return to the caller when it
completes.

The parameters in the parameter list represent the inputs or out-
puts of the operation. Each parameter in the list is displayed with the
following format:

<direction> <parameter name> : <type> [<multiplicity>] =
<default value>

03_0321927866_Ch03.indd 41 Achorn International 10/18/2013 12:12AM

3.4 Blocks 41

The direction can be in, out, or inout. The parameter name is mod-
eler defined. The type must be the name of a value type or block that
exists somewhere in your model. The multiplicity is a constraint on the
number of instances of the type that the parameter can represent. The
default value is the value assigned to the parameter if no value is speci-
fied as an argument when the operation is called.

Figure 3.14 shows that the Electrical Power Subsystem block and the
Communication and Data Handling Subsystem block own several opera-
tions each—operations that represent behaviors that instances of these
blocks can perform if called upon during system operation. An exam-
ple of an operation is processCommand. This model conveys that a client
can call the communication and data handling subsystem to perform
this operation. When it does, the client can pass one or more commands
as an input to the operation. And when the operation completes, it will
return a status value to the caller.

A bit of advice: It’s good practice to always use a verb phrase (such
as processCommand) to name an operation; an operation represents a
behavior, after all. Also, don’t go overboard with the parameter lists;
simply adding operations to blocks (without specifying parameters) is
often a sufficient degree of model fidelity. If your team needs to specify

Figure 3.14 Blocks with operations

03_0321927866_Ch03.indd 40 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams42

parameters for operations within the system model, be judicious about
which ones you choose to display on any given BDD; the complete
string for an operation could take up a lot of real estate on a BDD if you
display even a few parameters.

3.4.2.2 Receptions

A reception represents a behavior that a block performs when a client
sends a signal that triggers it. Stated formally, a reception is invoked by
a signal event.

The key distinction between a reception and an operation is that a
reception always represents an asynchronous behavior. This means that
a client sends a signal—which triggers a reception upon receipt—and
immediately continues with its own execution; it doesn’t wait for the
reception to complete (or even, necessarily, to begin).

Another key point is that a signal is itself a model element. You can
use a signal to represent any type of matter, energy, or data that one
part of a system sends to another part—generally for the purpose of
triggering a behavior on the receiving end. Like a block, a signal can
own properties. Most often, those properties represent data that the
signal carries from a client to a target. And when the signal arrives at
the target and triggers a reception, the signal’s properties become in-
puts to that reception.

Figure 3.15 displays a signal named AnalogTempDataSampled. This
signal owns two properties: temp (of type ° C) and time (of type Time-
stamp). When a client generates an instance of this signal during system
operation, it can supply values for the two properties. The client can
send the signal instance to a target that’s receptive to it (e.g., the Com-
munication and Data Handling Subsystem block shown in Figure 3.16).

A structure is an eligible target for a signal if it owns a reception
that has the same name as the signal. Additionally, the reception must

Figure 3.15 A signal

03_0321927866_Ch03.indd 43 Achorn International 10/18/2013 12:12AM

3.4 Blocks 43

have a parameter with a compatible type for each property of the sig-
nal. The Communication and Data Handling Subsystem block meets these
criteria. When an instance of this block in an operational system re-
ceives an instance of the AnalogTempDataSampled signal, the reception
behavior gets invoked, and the values held in the signal’s two proper-
ties become inputs to that behavior.

When you display a reception in the receptions compartment of a
block, the string has the following format:

«signal» <reception name> (<parameter list>)

The keyword «signal» must always precede the reception name. As
mentioned earlier, the reception name must match the name of the sig-
nal in your model that triggers it. You can display as many parameters
as necessary in the parameter list. Each parameter in the list is dis-
played with the following format:

<parameter name> : <type> [<multiplicity>] = <default value>

The parameter name is modeler defined. The type must be the
name of a value type or block that exists somewhere in your model.
The multiplicity is a constraint on the number of instances of the type
that the parameter can represent. The default value is the value as-
signed to the parameter if no value is provided in the corresponding
property of the signal.

Unlike operations, receptions cannot have return types. Receptions
are asynchronous; the client that sent the signal isn’t waiting for a reply.
For the same reason, the parameters of a reception can only be inputs
and never outputs.

Figure 3.16 A block with receptions

03_0321927866_Ch03.indd 42 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams44

3.5 Associations: Another Notation for a Property

Section 3.4, “Blocks,” focuses on blocks and the various kinds of prop-
erties that blocks can own. Blocks are an important part of a structural
model of a system, and the relationships between the blocks are at least
as important.

There are three main kinds of relationships that can exist be-
tween blocks: associations, generalizations, and dependencies. I dis-
cuss generalizations and dependencies in detail in Section 3.6, “Gener-
alizations,” and Section 3.7, “Dependencies.” This section is devoted to
associations.

In discussing reference properties and part properties in Sec-
tion 3.4.1, “Structural Features,” I implicitly address the idea of associa-
tions between blocks. To reiterate the key points: A reference property
represents a structure that’s external to a block—a structure that the
block needs to be connected to for some purpose. A part property in-
stead represents a structure that’s internal to a block—in other words,
a structure that the block is composed of.

Reference properties and part properties correspond to two kinds
of associations that you often create between blocks and display on
BDDs: reference associations and composite associations, respectively.
Associations are simply an alternative notation to convey these kinds
of structural relationships within a system.

Let’s take a look in detail at the two kinds of associations.

3.5.1 Reference Associations

A reference association between two blocks means that a connection
can exist between instances of those blocks in an operational system.
And those instances can access each other for some purpose across the
connection.

The notation for a reference association on a BDD is a solid line
between two blocks. An open arrowhead on exactly one end conveys
unidirectional access; the absence of arrowheads on either end conveys
bidirectional access.

The upper BDD in Figure 3.17 displays a reference association be-
tween the Electrical Power Subsystem block and the Flight Computer
block. Associations can have several labels. You can optionally display
an association name floating near the middle of the line, and you can
optionally display a role name and multiplicity on either end of the
line. The association name is a modeler-defined string that describes

03_0321927866_Ch03.indd 45 Achorn International 10/18/2013 12:12AM

3.5 Associations: Another Notation for a Property 45

the type of connection that can exist between instances of the two
blocks. In Figure 3.17, for example, the name of the reference associa-
tion shown is Power Cable—a name that describes the type of connec-
tion that could exist between an electrical power subsystem and a flight
computer in a correctly assembled satellite.

Note
I use the phrase “type of connection” deliberately. An association is an element of
definition; it can serve as the type for one or more connectors. A connector is an
element of usage that appears on internal block diagrams (IBDs) (more on this in
Chapter 4).

The role name shown on the end of a reference association corre-
sponds to the name of a reference property—one that belongs to the
block at the opposite end and whose type is the block that it’s next to. In
the upper BDD in Figure 3.17, for example, the role name eps represents
a reference property that belongs to the Flight Computer block and whose
type is the Electrical Power Subsystem block. The role name fc represents
a reference property that belongs to the Electrical Power Subsystem block
and whose type is the Flight Computer block. The lower BDD in Fig-
ure 3.17 displays an equivalent view of the same model using the refer-
ences compartment notation instead of reference associations.

Figure 3.17 Reference associations and reference properties

03_0321927866_Ch03.indd 44 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams46

Similarly, the multiplicity shown on the end of a reference associa-
tion (near a role name) corresponds to the multiplicity of that same
reference property. This correspondence also is reflected in the two
BDDs in Figure 3.17.

Sometimes a block has multiple reference properties of the same
type (as shown in the references compartment of the Flight Computer
block in Figure 3.18). You can convey this equivalently by drawing
multiple reference associations between the same two blocks (as shown
between the Flight Computer block and the Star Sensor block in Fig-
ure 3.18). Each reference association represents a distinct reference
property. Showing both notations on the same diagram is redundant;
I’m doing it here to establish the connection between these related
concepts.

The choice to use the references compartment notation versus refer-
ence associations depends on how much information you need to ex-
pose on the BDD. In Figure 3.18, for example, the reference association
notation lets me expose the value properties of the Star Sensor block; in
contrast, the references compartment notation hides all features of the
Star Sensor block.

Another factor in your decision is the need to specify a type for a
connector on an IBD. If you intend to do this, then you need to create a
reference association between two blocks and give it a name. The com-
partment notation would not meet your needs in this case.

Figure 3.18 Using reference associations to specify multiple reference properties of
the same type

03_0321927866_Ch03.indd 47 Achorn International 10/18/2013 12:12AM

3.5 Associations: Another Notation for a Property 47

3.5.2 Composite Associations

A composite association between two blocks conveys structural de-
composition. An instance of the block at the composite end is made up
of some number of instances of the block at the part end.

The notation for a composite association on a BDD is a solid line
between two blocks with a solid diamond on the composite end. An
open arrowhead on the part end of the line conveys unidirectional ac-
cess from the composite to its part; the absence of an arrowhead con-
veys bidirectional access (i.e., the part will have a reference to the
composite).

Figure 3.19 displays four examples of composite associations from
the DellSat-77 Satellite block to the subsystem blocks. (It’s permissible
and common practice to overlap the solid diamonds on the composite
end.) This BDD conveys that a correctly manufactured and assembled
DellSat-77 satellite will be composed of one electrical power subsys-
tem, one attitude and orbit control subsystem, one environmental

Figure 3.19 Composite associations and part properties

03_0321927866_Ch03.indd 46 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams48

control subsystem, and one communication and data handling subsys-
tem. The possible numbers of instances are conveyed by the multiplici-
ties on the part ends of the four composite associations.

The role name shown on the part end of a composite association
corresponds to the name of a part property—one that’s owned by the
block at the composite end and whose type is the block at the part end.
In Figure 3.19, for example, the role name aocs represents a part prop-
erty that’s owned by the DellSat-77 Satellite block and whose type is the
Attitude and Orbit Control Subsystem block. This correspondence is
equivalently reflected in the parts compartment of the DellSat-77 Satel-
lite block. It’s redundant to show both the parts compartment notation
and composite associations on the same diagram; I’m doing it here to
reinforce the connection between these concepts.

The multiplicity on the part end of a composite association is not
restricted; a composite structure can be made up of an arbitrary num-
ber of instances of parts—however many a system requires.

However, the multiplicity on the composite end is restricted. A
part—by definition—can belong to only one composite at a time. There-
fore, the upper bound of the multiplicity on the composite end must
always be 1 (as shown in Figure 3.19). The lower bound of that multi-
plicity can be either 0 (zero) or 1. A lower bound of 0 conveys that a part
can be removed from its composite structure; a lower bound of 1 con-
veys that it cannot be removed (it must be attached to a composite
structure at all times in a valid instance of a system).

In Section 3.4.1.1, I state that 1 is almost always the default multi-
plicity for elements in SysML. However, there is an important excep-
tion to this rule, and here it is: The default multiplicity on the composite
end of a composite association is 0..1. (On the part end, however, the
default multiplicity is the usual case, 1.)

Sometimes a block has multiple part properties of the same type (as
shown in the parts compartment of the Communication and Data Han-
dling Subsystem block in Figure 3.20). You can convey this equivalently
by drawing multiple composite associations between the same two
blocks (as shown from the Communication and Data Handling Subsystem
block to the Flight Computer block in Figure 3.20). Each composite as-
sociation represents a distinct part property.

The same factor that I discuss at the end of Section 3.5.1, “Reference
Associations,” affects your choice to use either the parts compartment
notation or a composite association. You should use a composite asso-
ciation when you need to expose the features of the block that types a
part; you should use compartment notation instead when those fea-
tures are not the focus of the diagram.

03_0321927866_Ch03.indd 49 Achorn International 10/18/2013 12:12AM

3.6 Generalizations 49

3.6 Generalizations

A generalization is another kind of relationship you typically display
on BDDs. This relationship conveys inheritance between two elements:
a more generalized element, called the supertype, and a more specialized
element, the subtype. You use generalizations to create classification
trees (type hierarchies) in your system model.

The notation for a generalization is a solid line with a hollow, trian-
gular arrowhead on the end of the supertype. This relationship is read
in English as “is a type of” going from the subtype to the supertype. For
example, the BDD in Figure 3.21 shows a generalization from the Gyro-
scope block to the Sensor block (among others). This relationship con-
veys that a gyroscope is a type of sensor.

When a supertype has more than one subtype shown on the same
BDD, modelers often overlap the hollow, triangular arrowheads on the
supertype end to conserve space on the diagram (as shown in Fig-
ure 3.21). Purists will tell you that overlapping the arrowheads actually
conveys a special grouping of subtypes called a generalization set.
This is a slightly more advanced feature of the language that you may
find useful later. For now, feel free to overlap the arrowheads purely to
enhance the readability of your diagrams.

One key point is that generalizations are transitive. The model dis-
played in Figure 3.21 shows that a star mapper is a type of star sensor,
and a star sensor is a type of sensor. Therefore, a star mapper is a type
of sensor. Type hierarchies in your model can be arbitrarily deep.

Figure 3.20 Using composite associations to specify multiple part properties of the
same type

03_0321927866_Ch03.indd 48 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams50

A generalization conveys that a subtype inherits all the features of
its supertype: the structural features (properties) and the behavioral
features (operations and receptions). In addition to the features it in-
herits, a subtype may have other features that its supertype doesn’t
have. For this reason, modelers often refer to a subtype as a specializa-
tion of its supertype.

For example, the Star Sensor block is a specialization of the Sensor
block. It inherits the four value properties and three operations from the

Figure 3.21 Generalization relationships between blocks

03_0321927866_Ch03.indd 51 Achorn International 10/18/2013 12:12AM

3.6 Generalizations 51

Sensor block, and then it adds a fifth value property, resolution, that
the Sensor block doesn’t have. Similarly, the Star Mapper block inherits
the five value properties and three operations from the Star Sensor
block, and then it adds two new value properties (hasAutonomousMode
and maxNumStarsMapped), which neither of its supertypes have.

You create generalizations to define abstractions in your system
design. A supertype (such as Sensor) is an abstraction of its subtypes; it
factors out those features that are common among the subtypes. Ab-
stractions let you define a common feature (such as the initialize opera-
tion) in one place within the model—in the supertype—and that com-
mon feature propagates down the type hierarchy to all the subtypes.
Then, if you later need to change that common feature, you simply go
back to that one place in the model to make the change, and all sub-
types in the model get updated instantly.

Abstraction is a powerful design principle; it conveys substituta-
bility, meaning that a subtype will be accepted wherever its supertype
is required. For example, Figure 3.22 shows that the Flight Computer

Figure 3.22 Designing to an abstraction

03_0321927866_Ch03.indd 50 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams52

block has a reference property named sensorArray of type Sensor. This
model conveys that a flight computer may need access to one or more
of the features—structural or behavioral—that are common to all sen-
sors. Therefore, any of the five subtypes of Sensor would be acceptable
to a flight computer, because all of them inherit those common features
from their supertype, Sensor.

This is an example of designing to an abstraction. This practice cre-
ates extensibility in your design. When the customers’ requirements
change later in the life cycle and you need to add a new type of sensor
to the satellite design, you can simply define a new subtype of the Sen-
sor block within the system model, and that addition will be transpar-
ent to all clients (such as Flight Computer) that reference the Sensor block.
For all these reasons, building generalizations into your model can sig-
nificantly reduce the time it takes to modify your system design as the
life cycle progresses—and that capability directly translates into cost
savings.

3.7 Dependencies

A dependency is the third kind of relationship you can display on
BDDs. It means what it sounds like: One element in the model, the cli-
ent, depends on another element in the model, the supplier. More pre-
cisely, a dependency conveys that when the supplier element changes,
the client element may also have to change.

Most often, you create a dependency between two model elements
solely to establish traceability between them. A dependency relation-
ship lets you use your modeling tool to perform automated down-
stream impact analysis when you make changes to your design. When
you make a change to one element, you can query your modeling tool
to generate a list of the other elements in the model that may be im-
pacted by the change; the modeling tool navigates the set of dependen-
cies that you’ve created between elements to generate that list.

This is a practical reason to create dependencies in your model.
However, you seldom have a reason to display them on BDDs. They
are part of the structure of the model and not of the system that the
model represents. And you will spend most of your time creating BDDs
to convey system structure to your stakeholders.

When a dependency appears on a BDD, the notation is a dashed
line with an open arrowhead, which is drawn from the client to the sup-

03_0321927866_Ch03.indd 53 Achorn International 10/18/2013 12:12AM

3.8 Actors 53

plier. In Figure 3.23, for example, the Attitude and Orbit Control Subsys-
tem block is the client, and the Data Handling interface is the supplier.
This model conveys that the block depends on the interface; if the inter-
face changes, the block may need to change, too.

Note that SysML defines specialized kinds of dependency relation-
ships (e.g., package import, viewpoint conformance, and several kinds
of requirements relationships). Although you rarely display dependen-
cies on BDDs, you often display these specialized kinds of dependen-
cies on package diagrams and requirements diagrams. I discuss these
topics in detail in Chapter 10, “Package Diagrams,” and Chapter 11,
“Requirements Diagrams.”

3.8 Actors

An actor represents someone or something that has an external inter-
face with your system. The name of an actor conveys a role played by

Figure 3.23 A dependency relationship between two named elements

03_0321927866_Ch03.indd 52 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams54

a person, an organization, or another system when it interacts with
your system.

SysML defines two notations for an actor: a stick figure and a rect-
angle with the keyword «actor» preceding the name. Figure 3.24 shows
examples of both notations. It’s legal to use either notation for any type
of actor—person or system. However, modelers often adopt the con-
vention of using the stick figure notation to represent a person and the
rectangle notation to represent a system, although the language doesn’t
require it.

You will occasionally display actors on BDDs to express the gener-
alizations between actors and the associations between actors and
blocks (as shown in Figure 3.24). It’s far more common, though, to dis-
play actors on use case diagrams, where you express which use cases
each actor participates in. I cover these topics in detail in Chapter 5,
“Use Case Diagrams.”

All the key ideas about generalizations, reference associations, and
composite associations also apply when actors are involved in these
relationships. There are two constraints:

Figure 3.24 Actors on a BDD

03_0321927866_Ch03.indd 55 Achorn International 10/18/2013 12:12AM

3.9 Value Types 55

•	 You cannot define a generalization between an actor and a
block.

•	 An actor cannot have parts; that is, it cannot appear at the com-
posite end of a composite association. (We always regard an
actor as a “black box.”)

3.9 Value Types

Like a block, a value type is an element of definition—one that generally
defines a type of quantity. I say “generally” because there are two value
types in SysML—Boolean and String—that arguably are not quantities.

You can use a value type in many places throughout your model.
Most often, it appears as the type of a value property, which is a kind
of structural feature of blocks. (Section 3.4.1.3, “Value Properties,” has
more details.) But that’s not the only place where value types make an
appearance; they’re actually ubiquitous in system models. They can
also appear as the types of the following:

•	 Atomic flow ports on blocks and actors
•	 Flow properties in flow specifications
•	 Constraint parameters in constraint blocks
•	 Item flows and item properties on connectors
•	 Return types of operations
•	 Parameters of operations and receptions
•	 Object nodes, pins, and activity parameters within activities

There are three kinds of value types—primitive, structured, and
enumerated—that you typically define in your system model. A primi-
tive value type has no internal structure (it doesn’t own any value
properties). Its notation is a rectangle with the stereotype «valueType»
preceding the name.

SysML defines four primitive value types: String, Boolean, Integer,
and Real. You can, of course, define your own primitive value types as
specializations (subtypes) of these four. For example, Figure 3.25 shows
three value types (°, V, and ° C) that are subtypes of Real.

As its name implies, a structured value type has an internal struc-
ture—generally two or more value properties. As with a primitive
value type, the notation for a structured value type is a rectangle with

03_0321927866_Ch03.indd 54 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams56

the stereotype «valueType» preceding the name. SysML defines one
structured value type: Complex. Its structure consists of two value prop-
erties—realPart and imaginaryPart—that are both of type Real. One
structured value type may, in turn, be the type of a value property
within another structured value type. In this way, you can create arbi-
trarily complex systems of value types.

An enumerated value type—colloquially called an enumeration—
simply defines a set of literals (legal values). If a parameter of an opera-
tion (or some other kind of element shown in the earlier bulleted list) is
typed by an enumeration, then the value it holds at any moment must
be one of the literals in that enumeration. The BDD in Figure 3.25 shows
an enumeration named CommandKind, which defines two literals:
Stored and Real-Time. I could use this enumeration, for example, to type
an input parameter named kind in an operation named buildCommand.
When a client calls this operation (within a running system), the only
legal values it can pass are Stored and Real-Time.

I mentioned earlier that value types can be related to one another
by using generalizations. A value type hierarchy can be arbitrarily
deep, and generalizations—as you may recall—are transitive. For ex-

Figure 3.25 Value types

03_0321927866_Ch03.indd 57 Achorn International 10/18/2013 12:12AM

3.10 Constraint Blocks 57

ample, Figure 3.25 conveys that the value types VDC and VAC are (in-
directly) subtypes of Real. The principle of substitutability applies here
just as it does in the case of generalizations between blocks: Values of
type VDC and VAC will be accepted wherever their supertypes (V and
Real) are required. These supertypes are abstractions. And the principle
of designing to an abstraction—and its consequent extensibility—also
applies to this practice of creating a value type hierarchy. This is a
widely used and powerful modeling practice.

3.10 Constraint Blocks

Like a block, a constraint block is an element of definition—one that
defines a Boolean constraint expression (an expression that must eval-
uate to either true or false). Most often, the constraint expression you
define in a constraint block is an equation or an inequality: a mathemat-
ical relationship that you use to constrain value properties of blocks.
You would do this for two reasons:

•	 To specify assertions about valid system values in an opera-
tional system

•	 To perform engineering analyses during the design stage of the
life cycle

The variables in a constraint expression are called constraint pa-
rameters. Generally, they represent quantities, and so they’re typed
most often by value types. For example, Figure 3.26 shows a constraint
block named Transfer Orbit Size, which defines a constraint expression
that contains three constraint parameters: semimajorAxis, initialOrbit-
Radius, and finalOrbitRadius. These three constraint parameters are
typed by the value type km.

Constraint parameters receive their values from the value prop-
erties they’re bound to—that is, the value properties that are being
constrained. At any given moment, those values either satisfy the con-
straint expression, or they don’t; the system is either operating nomi-
nally, or it isn’t. Note, however, that a BDD by itself can’t convey which
constraint parameters and value properties are bound to one another.
You would express this piece of information on a parametric diagram.
(I discuss this in detail in Chapter 9.)

The notation for a constraint block on a BDD is a rectangle with the
stereotype «constraint» preceding the name. The constraint expression

03_0321927866_Ch03.indd 56 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams58

always appears between curly brackets ({}) in the constraints compart-
ment. The constraint parameters in the constraint expression are listed
individually in the parameters compartment.

You sometimes build a more complex constraint block from a set of
simpler constraint blocks. You would do this to create a more complex
mathematical relationship from simpler equations and inequalities.
The more complex constraint block can display its constituent parts as
a list of constraint properties in the constraints compartment. Recall
from Section 3.4.1.4 that a constraint property has a name and a type in
the format name : type. The type, as mentioned earlier, must be the name
of a constraint block.

For example, Figure 3.26 shows that the constraint block Hohmann
Transfer is composed of two constraint properties—ttof and tos—which

Figure 3.26 Relationships between constraint blocks

03_0321927866_Ch03.indd 59 Achorn International 10/18/2013 12:12AM

3.11 Comments 59

represent usages of the constraint blocks Transfer Time of Flight and
Transfer Orbit Size, respectively. This model conveys that Hohmann
Transfer defines a constraint expression that is a composite of two sim-
pler constraint expressions—in effect, defining a more complex math-
ematical relationship.

Note, though, what this BDD doesn’t (and can’t) convey: where
those two simpler constraint expressions are specifically connected to
each other to create the composite constraint expression. A parametric
diagram would convey this additional piece of information (more on
this in Chapter 9).

As an alternative to the constraints compartment notation, you can
use composite associations to convey that one constraint block is com-
posed of other, simpler ones (as shown in Figure 3.26). Note that the
role names shown on the part ends of the two composite associations
correspond to the names of the constraint properties in the Hohmann
Transfer constraint block. These are equivalent notations. You use com-
posite associations when you need to expose the details of the simpler
constraint blocks; in contrast, you use the constraints compartment no-
tation to hide those details when they’re not the focus of the diagram.

3.11 Comments

SysML has a lot of rules (and they all exist to serve the very useful pur-
pose of giving your design unambiguous meaning from one reader to
the next). However, you sometimes need to express information on a
diagram in an unconstrained way as a block of text. You can do this
with a comment.

A comment is, in fact, a model element. It consists of a single attri-
bute: a string of text called the body. You can convey any information
you need to in the body of a comment, and you can optionally attach a
comment to other elements on a diagram to provide additional infor-
mation about them. You can use comments on any of the nine kinds of
SysML diagrams.

The notation for a comment is commonly referred to as a note sym-
bol: a rectangle whose upper-right corner is bent. You use a dashed line
to attach a comment to other elements (as shown at the bottom of the
BDD in Figure 3.27). If you need to, you can attach a comment to sev-
eral model elements simultaneously by using a separate dashed line
for each one.

03_0321927866_Ch03.indd 58 Achorn International 10/18/2013 12:12AM

 Block Definition Diagrams60

Modelers sometimes put freestanding comments with hyperlinks
on a diagram to enable readers to quickly navigate to a related diagram
in the model (or to an external document). An example of this is shown
in the upper-left corner of the BDD in Figure 3.27. To be clear, though,
this capability is a function of the modeling tool you use; not all tools
do this. And SysML itself says nothing about this capability.

SysML defines some specialized kinds of comments: rationale,
problem, and diagram description. These appear as a note symbol with
the respective stereotype preceding the body of the comment. Fig-
ure 3.27 shows an example of a diagram description comment in the
upper-right corner of the BDD. Modelers often use rationale comments
in conjunction with requirements relationships and allocations. I dis-
cuss these topics in detail in Chapters 11 and 12.

Figure 3.27 Comments on a BDD

03_0321927866_Ch03.indd 61 Achorn International 10/18/2013 12:12AM

Summary 61

Summary

The BDD is the primary kind of diagram you create to communicate
structural information about a system. A BDD enables you to express
the types of structures that can exist internally within a system and
externally in a system’s environment. You can also use BDDs to express
the types of services each structure provides and requires, the types of
constraints each structure must conform to, and the types of values that
can exist within an operational system.

Generalization relationships between elements let you define type
hierarchies and design to abstractions. This is a powerful design tech-
nique—one that creates extensibility in your system design by decou-
pling the clients of services from any specific implementation of a pro-
vider of those services. As your stakeholders’ requirements evolve over
time, you can modify existing providers or add new ones with minimal
impact on the rest of the system design.

03_0321927866_Ch03.indd 60 Achorn International 10/18/2013 12:12AM

This page intentionally left blank

255

Index

A
Absolute time events, 110
Abstractions

activity diagrams and, 101
generalization in defining, 51–52

Accept event actions
notation, 108, 234
overview of, 107–108
wait time actions as, 112

Actions
accept event actions, 107–110
call behavior actions, 104 –107
node types in activities, 93–95
notation, 94, 233
overview of, 102–103
send signal actions, 107–108
startup, 103–104
wait time actions, 110–112

Activities. see also Activity diagrams
as behavior type, 92
edges. see Edges
nodes. see Nodes
token flow and, 92–93

Activity diagrams
accept event actions, 107–110
action startup, 103–104
actions, 93–95, 102–103
activity parameters, 97–98
activity partitions, 119–121
call behavior actions, 104 –107
control flows, 102
control nodes, 112
decision nodes, 114 –115
edges, 99
flow final nodes and activity final nodes,

113–114
fork nodes, 116–117
frame, 90–92
illustration of, 91
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
notation, 233–234
object flows, 100–102

object nodes, 95–96
pins, 96–97
purpose of, 16, 89–90
send signal actions, 107–108
streaming vs. nonstreaming behaviors,

98–99
summary, 119–121
token flow and, 92–93
for use case specifications, 79–80
wait time actions, 110–112
when to create, 90

Activity final nodes
notation, 113, 234
types of control nodes, 113–114

Activity parameters
notation, 233
as specialized object node, 97–98

Activity partitions
allocating behaviors to structures,

119–121
allocation activity partitions, 222–224
notation, 234

Actors
associating with use cases, 84 –85
BDD, 53–55
notation, 54, 83–84, 228, 232
in use cases, 78–79, 83–84

Actual gate, 153
ADDs (architecture description documents), 2
Allocation activity partitions, 222–224, 243
Allocations

activity partitions and, 222–224, 243
behavioral, 217–218
callout notation, 220–221
compartment notation, 220
cutting across all types of diagrams, 216
direct notation, 219
matrices in representation of, 221
notation, 243
purpose of, 215–216
rationale comments and, 224
of requirements, 219
structural, 218–219
summary, 224 –225

Index256

Allocations, continued
tables and, 221–222
when to use, 216–217

Alt interaction operator, 146–148
Analysis, activity diagrams as analysis tool, 90
Architecture description documents (ADDs), 2
Associations

of actors with use cases, 84 –85
composite associations, 47–49
IBD connectors and, 68
reference associations, 44 –46
types of BDD relationships, 44

Asynchronous messages, 131–133, 235
Atomic flow ports, 39, 229

B
Base use cases, 85
BDDs (block definition diagrams)

actors, 53–55
associations, 44
BDD and IBD views of a block, 66–67
behavioral features, 39
blocks, 26–27
comments, 59–60
composite associations, 47–49
constraint blocks, 57–59
constraint properties, 32–34, 184 –185
dependencies, 52–53
flow ports, 37–39
frame, 24 –26
generalizations, 49–52
illustration of, 25
notation, 228–230
operations, 40–42
package diagrams compared with, 198
parametric diagrams and, 179–180
part properties, 28–30
ports, 34 –35
purpose of, 15, 23–24
receptions, 42–43
reference associations, 44 –46
reference properties, 30–31
standard ports, 35–37
structural features or properties, 28
summary, 61
value properties, 31–32
value types, 55–57
when to create, 24

Behavior diagrams
activity diagrams. see Activity diagrams
sequence diagrams. see Sequence diagrams
state machine diagrams. see State machine

diagrams
Behavior execution start occurrence, 139–141
Behavior execution termination occurrence,

139–141

Behavioral (functional) allocations, 119–121,
217–218

Behaviors
activities as, 92
allocating, 119–121, 217–218
behavioral features in BDDs, 27
blocks, 39
classifier behavior for blocks, 155–156
expressing dynamic. see Activity diagrams
invoking with interaction use element,

151–153
operations, 40–42
receptions, 42–43
streaming vs. nonstreaming, 98–99
use cases and, 78

Binding connectors
notation, 239
parametric diagrams and, 187–188

Block definition diagrams. see BDDs (block
definition diagrams)

Blocks. see also BDDs (block definition
diagrams); IBDs (internal block
diagrams)

activity partitions representing, 119
in BDD (block definition diagram), 26–27
BDD and IBD views of, 66–67
behavioral allocations, 217
behaviors, 39
classifier behavior for, 155–156
composite associations, 47–49
constraint blocks, 57–59
flow ports, 37–39
IBD and, 64 –65
notation, 228
operations, 40–42
parametric diagram frame types, 182, 184
parametric diagrams displaying usages

of, 179–182
part properties and, 28–29
ports added to, 34 –35
receptions, 42–43
reference associations, 44 –46
standard ports, 35–37

Body
of comments, 59
of opaque expressions, 94 –95

Boolean values/Boolean expressions
change events defined as, 170
constraint expressions, 57
primitive value types, 55

C
Call behavior actions, 104 –107, 233
Call events

block behaviors, 40
in state machine diagrams, 167–168

16_0321927866_Index.indd 257 Achorn International 10/18/2013 12:01AM

Index 257

Callout notation
of allocation relationships, 220–221, 243
of requirements relationships, 210–211, 242

Change events
in state machine diagrams, 170–171
triggers and, 165

Classifier behavior, block instantiation and,
155–156

Clients
client element as test case, 208–209
dependencies between client and supplier,

52
Collection (of instances), part properties and,

29–30
Combined fragments, in sequence diagrams

alt operator, 146–148
loop operator, 148–149
notation, 236
opt operator, 145–146
overview of, 144 –145
par operator, 149–150

Comments
BDD, 59–60
notation, 59, 229
rationale comments, 213

Compartment notation
of allocation relationships, 220
of requirements relationships, 209–210

Composite associations
notation, 230
between two blocks, 47–49

Composite states, 160–161, 237
Concept of operations (ConOps)

artifacts of document-based engineering, 2
use cases and, 77

Concerns, viewpoint properties, 196–197
Conform, notation of, 240
Conjugated flow ports, 38
Connectors

binding connectors, 187–188, 239
between IBD properties, 68–71
notation, 231

ConOps (concept of operations)
artifacts of document-based engineering, 2
use cases and, 77

Constraint blocks
in BDD, 57–59
notation, 228
parametric diagram frame types, 182, 184
parametric diagrams displaying usages

of, 179–182
Constraint expressions

applying to blocks, 177
binding to value properties, 177–178, 182
Boolean values and, 57
constraint parameter variable, 185

defining, 179–180
equality/inequality and, 33

Constraint parameters
binding connectors and, 187–188
binding constraint expression to value

properties, 177–178, 182
Boolean values and, 57
notation, 238
parametric diagrams and, 185
variable in constraint expressions, 185

Constraint properties
BDD and, 32–34, 184 –185
noncausal nature of, 188
parametric diagrams and, 184 –185
value properties used in conjunction with,

31
Constraints, in sequence diagrams

duration constraints, 142–143
overview of, 141
state invariants, 143–144
time constraints, 141–142

Containment relationships, requirements
and, 205–206

Contents area, SysML diagram concepts, 17
Control flows

action startup and, 103–104
edges and, 102
notation, 102, 233

Control logic, combined fragments for. see
Com bined fragments, in sequence
diagrams

Control nodes
decision nodes, 114 –115
flow final nodes and activity final nodes,

113–114
fork nodes, 116–117
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
overview of, 112

Control tokens
action startup and, 103–104
flow final nodes and activity final nodes

marking flow of, 113–114
types of tokens, 93

Create messages, in sequence diagrams,
137–138

D
Data types, comparing UML and SysML, 13–14
Decision nodes

notation, 114, 234
types of control nodes, 114 –115

Decoupling, ports and, 34 –35
Default namespace, notations for namespace

containment, 191–193

16_0321927866_Index.indd 256 Achorn International 10/18/2013 12:01AM

Index258

Definitions, contrasted with instantiation, 26
Dependencies

«conform» relationships as, 196
derive requirement relationships as, 207
direct notation of requirements relation-

ships, 209
matrices in representation of, 211
notation, 230, 240
between packages, 193
refine relationships as, 207–208
satisfy relationships as, 208
trace relationships as, 206–207
types of BDD relationships, 52–53
verify relationships as, 208–209

Derive requirement relationships
notation, 207, 242
types of requirements relationships, 207

Destruction occurrences
notation, 235
sequence diagrams, 138–139

Diagram kind, in format of diagram header,
18

Diagram name, in format of diagram header,
17–18

Diagramming tools, 8
Diagrams, SysML. see also by individual type

concepts in use of, 17–21
types of, 14 –16

Direct notation
of allocation relationships, 219, 243
of requirements relationships, 209, 242

Do behavior, state machines and, 160
Document-based system engineering, 2–4
Dot notation, in expressing structural

hierarchy, 72–74
Duration constraints

notation, 236
in sequence diagrams, 142–143

Dynamic behavior, expressing. see Activity
diagrams

E
Eclipse Public License (EPL), 8
Edges

accept event actions and, 110
control flows, 102
fork nodes and, 116–117
join nodes and, 119
object flows, 100–102
types of activity elements, 99

Effects, behaviors during state transitions, 163
Encapsulation, as design principle, 74 –75
Entry behavior, simple states and, 159
Enumerations (enumerated value types)

notation, 230
overview of, 56

EPL (Eclipse Public License), 8
Equality/inequality

binding connectors and, 187–188
constraint expressions and, 33

Event occurrence, triggers for state transi-
tions, 163

Event types, in state machine diagrams
call events, 167–168
change events, 170–171
overview of, 166
signal events, 166–167
time events, 169–170

Execution, of use cases, 84
Execution specifications

notation, 235
sequence diagrams, 139–141

Exit behavior, simple states, 159
Extend relationship

notation, 232
use cases and, 87

Extensibility
interfaces and, 37
of use cases, 87–88

Extension, SysML as extension of subset of
UML, 12

External transitions
vs. internal, 164 –166, 169–170
notation, 237

F
Final state, 161–162, 237
Flow, in activity diagrams

accept event actions and, 108–109
control flows, 102
object flows, 100–102

Flow final nodes
notation, 113, 234
types of control nodes, 113–114

Flow ports
in BDD (block definition diagram), 37–39
IBD connectors and, 69
SysML v1.3 and, 246

Flow properties, 38
Flow specification

flow ports and, 38
notation, 228
SysML v1.3 vs. SysML v1.2, 247

Fork nodes
notation, 116, 234
types of control nodes, 116–117

Formal gate, 153
Frames

activity diagrams, 90–92
BDD, 24 –26
IBD, 65–66
package diagrams, 190–191

16_0321927866_Index.indd 259 Achorn International 10/18/2013 12:01AM

Index 259

parametric diagrams, 182, 184
requirements diagrams, 202–204
sequence diagrams, 125
state machine diagrams, 156–157
SysML diagram concepts, 17
use case diagrams, 81–82

Full ports, SysML v1.3 vs. SysML v1.2, 249
Fully qualified names, 193
Functional (Behavioral) allocations, 119–121,

217–218

G
Gates, interaction use at, 153
General Public License (GPL), 8
Generalizations

activity diagrams and, 101
notation, 230, 232
types of BDD relationships, 49–52
use cases and, 82–83

GPL (General Public License), 8
Grammar

of modeling languages, 5
SysML, 12

Graphical modeling languages
SysML as, 11–12
used in MBSE, 5

Guards, state transitions and, 163

H
Header, SysML diagram concepts, 17–18

I
IBD item flow, 71
IBDs (internal block diagrams)

BDD and IBD views of a block, 66–67
blocks and, 64 –65
connecting nested properties, 72–74
connectors, 68–71
dot notation, 72–74
frame, 65–66
item flow, 71
nested parts and references, 72
notation, 231
parametric diagram as special type of, 178
part properties, 67
purpose of, 15, 63–64
reference properties, 67–68
summary, 75
when to create, 64

IBM Telelogic Harmony-SE, 7
IDDs (interface definition documents), 2
Importing packages, 193–194
Include relationship

notation, 85, 232
use cases and, 85

Included use cases, 85–86

INCOSE (International Council on Systems
Engineering)

INCOSE Systems Engineering Handbook, 2,
215

OOSEM (Object-Oriented Systems
Engineering Method), 7

Inequality/equality
binding connectors and, 187–188
constraint expressions and, 33

Inheritance
generalizations and, 49
use cases and, 82–83

Initial nodes
notation, 234
types of control nodes, 112–113

Initial pseudostate
notation, 238
in state machines, 171–172

Instances, part properties and, 29–30
Instantiation, definition contrasted with, 26
Integers, primitive value types, 55
Interaction operators, 144
Interaction use

invoking behavior with, 151–153
notation, 151, 236

Interactions
adding control logic to. see Combined

fragments, in sequence diagrams
asynchronous messages in, 132
create message in, 137
destruction occurrence in, 138
invoking behaviors with interaction use

element, 151–153
lifeline elements, 125, 127–129
model elements in sequence diagrams,

125
synchronous messages in, 134

Interface blocks, 250–251
proxy ports and, 250–251

Interface definition documents (IDDs), 2
Interfaces

assigning to standard ports, 36
extensibility and, 37
notation, 229

Internal block diagrams. see IBDs (internal
block diagrams)

Internal transitions
vs. external transition, 164 –166, 169–170
notation, 238

International Council on Systems Engineer-
ing. see INCOSE (International Council
on Systems Engineering)

Item flow
on IBDs, 71
notation, 231
SysML v1.3 vs. SysML v1.2, 247–248

16_0321927866_Index.indd 258 Achorn International 10/18/2013 12:01AM

Index260

J
Join nodes

notation, 117, 234
types of control nodes, 117–119

Junction pseudostate
notation, 238
combining multiple transitions, 173

L
Languages, viewpoint properties, 196
Lifelines

asynchronous messages, 131–133
create messages, 137–138
duration constraints, 142–143
execution specifications, 139–141
message occurrences, 130–131
message types, 131
messages and, 129–130
model elements in sequence diagrams,

125, 127–129
notation, 127, 235
reply messages, 135–137
state invariant condition, 143–144
synchronous messages, 133–135
time constraints, 141–142
destruction occurrences, 138–139

Literals, enumerations defining set of, 56
Loop interaction operator, 148–149

M
Mathematical models, constraint properties

used with, 32–33
Mathematical relationships, imposing fixed

relationship on value properties,
177–178

Matrices
of allocation relationships, 221
of requirements relationships, 211–212

MBSE (model-based systems engineering)
modeling languages, 5
modeling methods, 5–7
modeling tools, 7–9
myth regarding, 9
overview of, 1–4
summary, 9–10
three pillars of, 4 –5

Merge nodes
notation, 115, 234
types of control nodes, 115–116

Message occurrence, 130–131
Message receive, 130–131
Message send, 130–131
Messages, in sequence diagrams

asynchronous messages, 131–133
create messages, 137–138

notation, 129
occurrences, 130–131
overview of, 129–130
reply messages, 135–137
synchronous messages, 133–135
types, 131

Methods, viewpoint properties, 196
Model element name, 18–19
Model element type, 18–20
Model libraries

applying profile to, 195
notation, 239
reusing, 193
types of packages, 195

Model-based systems engineering. see MBSE
(model-based systems engineering)

Modeling languages
overview of, 5
SysML as, 13

Modeling methods, 5–7
Modeling tools, 7–9
Models

applying profile to, 195
notation, 195, 239
types of packages, 191, 195
views, 196

N
N2 charts, 2
Namespace

defined, 190–191
defining in SysML diagram header, 19
notation for namespace containment,

191–193, 206, 240–241
overview of, 24
requirements diagrams and, 202

Nested ports, SysML v1.3 vs. SysML v1.2,
248

Nodes
actions, 93–95
activity final nodes, 113–114
control nodes, 112
decision nodes, 114 –115
flow final nodes, 113–114
fork nodes, 116–117
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
object nodes, 95–96

Nonatomic behavior, simple states, 159
Nonatomic flow ports, 37–38, 229
Nonstreaming behavior, 98–99
Notation

callout notation for allocations, 220–221,
243

16_0321927866_Index.indd 261 Achorn International 10/18/2013 12:01AM

Index 261

callout notation of requirements relation-
ships, 210–211, 242

compartment notation for allocations, 220
compartment notation of requirements

relationships, 209–210
direct notation for allocations, 219, 243
direct notation of requirements relation-

ships, 209, 242
dot notation for expressing structural

hierarchy, 73–74

O
Object flows

notation, 100–102, 233
types of edges, 100–102

Object Management Group. see OMG (Object
Management Group)

Object nodes
activity parameters, 97–98
node types in activities, 95–96
notation, 233
pins, 96–97

Object tokens
object flows, 100–101
object nodes and, 95–96
streaming vs. nonstreaming behaviors,

98–99
types of tokens, 93

Object-Oriented Systems Engineering
Method (OOSEM), 7

Occurrences, event types and, 166
OMG (Object Management Group)

OCSMP (OMG Certified Systems
Modeling Professional) certification, 1

submitting issues to, 245
SysML standards and, 12

OOSEM (Object-Oriented Systems Engineer-
ing Method), 7

Opaque expressions
actions and, 94 –95
state machines and, 159

Operands, in sequence diagrams
alt operator, 146–148
loop operator, 148–149
opt operator, 145–146
overview of, 144 –145
par operator, 149–150

Operations
block behaviors, 40–42
compared with receptions, 42
interfaces defining set of, 36

Opt interaction operator, 145–146
Orthogonal relationship, between regions,

173–175
Ownership, block part properties and, 28–29

P
Package diagrams

comparing with BDDs, 198
dependencies between packages, 193
frame, 190–191
importing packages, 193–194
models and model libraries, 195
notation, 239–240
notation for namespace containment,

191–193
profiles, 195–196
purpose of, 16, 189–190
specialized packages, 194
summary, 198–199
views, 196–198
when to create, 190

Package import relationship, 194, 240
Packages

applying profile to, 195
dependencies between, 193
importing, 193–194
models and model libraries, 191, 195
as namespace, 24
notation, 192, 239
profiles, 195–196
specialized, 194
views, 196–198

Par interaction operator, 149–150
Parameters

activity parameters, 97–98
constraint parameters, 57

Parametric diagrams
binding connectors, 187–188
constraint parameters, 185
constraint properties, 184 –185
displaying usages of blocks and constraint

blocks, 179–182
frame, 182, 184
illustration of, 183
notation, 238–239
purpose of, 16, 177–178
summary, 188
value properties, 185–187
when to create, 178–179

Part properties
BDD, 28–30
composite associations and, 47–49
connectors and, 69–70
IBD, 67
nested parts and references in IBD, 72–74
notation, 231

Pins
call behavior actions and, 105
notation, 233
as specialized object node, 96–97

16_0321927866_Index.indd 260 Achorn International 10/18/2013 12:01AM

Index262

Planning, modeling methods and, 6
Ports

adding to blocks, 34 –35
flow ports, 37–39
IBD connectors and, 69–70
standard ports, 35–37
SysML v1.3 vs. SysML v1.2, 246–249

Primary actors, in use cases, 78
Primitive value types, 55
Profile application, 240
Profiles

notation, 239
SysML as extension of subset of UML, 12
types of packages, 195–196

Programming languages, opaque expressions
and, 94 –95

Properties
connecting nested, 74 –75
connectors between, 68–71
constraint properties, 32–34
flow ports, 37–39
nested parts and references in IBD,

72–74
overview of, 28
part properties, 28–30
ports, 34 –35
reference properties, 30–31
requirements, 204 –205
standard ports, 35–37
structural features as, 27
value properties, 31–32, 55

Provided interface, compared with required
interface, 36–37

Proxy ports, SysML v1.3 vs. SysML v1.2,
249–251

Pseudostates, 171–173
Purpose

defining for modeling approach, 6
viewpoint properties, 196

Q
Qualified name string notation, 192

R
Rationale

allocations and, 224
notation, 241, 243
requirements diagrams and, 213

Real, primitive value type, 55
Receptions

block behaviors, 42–43
interfaces defining set of, 36

Reference associations
notation, 230, 232
between two blocks, 44 –46

Reference properties
BDD, 30–31
connectors and, 69
IBD, 67–68
nested parts and, 72–74
reference associations and, 45–46

Refine relationships
notation, 242
requirements relationships, 207–208

Regions, adding to state machines, 173–175
Relative time events, wait time actions, 110
Reply messages

notation, 235
in sequence diagrams, 135–137

Required interface, compared with provided
interface, 36–37

Requirement traceability and verification
matrices. see RTVMS (requirement
traceability and verification matrices)

Requirements
allocations, 219
callout notation for requirements

relationships, 210–211
compartment notation for requirements

relationships, 209–210
containment relationships, 205–206
derive relationships, 207
direct notation for requirements relation-

ships, 209
matrices, 211–212
notation, 204, 241
properties, 204 –205
refine relationships, 207–208
satisfy relationships, 208
specifications, 201
tables, 212–213
trace relationships, 206–207
verify relationships, 208–209

Requirements diagrams
callout notation for requirements

relationships, 210–211
compartment notation for requirements

relationships, 209–210
containment relationships, 205–206
derive requirement relationships, 207
direct notation for requirements relation-

ships, 209
frame, 202–204
matrices, 211–212
notation, 241–242
purpose of, 16, 201–202
rationale comments, 213
refine relationships, 207–208
requirements relationships, 205
satisfy relationships, 208

16_0321927866_Index.indd 263 Achorn International 10/18/2013 12:01AM

Index 263

summary, 214
tables, 212–213
trace relationships, 206–207
verify relationships, 208–209
when to create, 202

Requirements package, dependencies
between packages, 193

Revision Task Force (RTF), 245
Roles, of actors, 53–54
RTF (Revision Task Force), 245
RTVMS (requirement traceability and

verification matrices)
artifacts of document-based engineer-

ing, 2
requirements relationships and, 205
trace relationships and, 206–207

Run-to-completion, state transitions and,
164

S
Satisfy relationships

notation, 208, 242
requirements relationships, 208

Scenarios, use cases compared with, 80–81
Scope, defining for modeling approach, 6–7
Secondary actors, in use cases, 78
Selector expression, lifeline elements and, 128
Self-transition

external, 169
between states, 162

Send signal actions, 107–108, 233
Sequence diagrams

alt operator, 146–148
asynchronous messages, 131–133
combined fragments, 144 –145
constraints, 141
create messages, 137–138
destruction occurrence, 138–139
duration constraints, 142–143
execution specifications, 139–141
frame, 125
illustration of, 126
interaction use, 151–153
lifeline elements, 125, 127–129
loop operator, 148–149
message occurrence, 130–131
message types, 131
messages, 129–130
notation, 235–236
opt operator, 145–146
par operator, 149–150
purpose of, 16, 123–124
reply messages, 135–137
in representation of scenarios, 81
state invariants, 143–144

summary, 153
synchronous messages, 133–135
time constraints, 141–142
when to create, 124 –125

Signals
block reception behaviors, 42–43
notation, 229
send signal actions, 107–108
in state machine diagrams, 166–167

Simple state
notation, 160, 237
overview of, 158–160

Specialization
of supertypes, 50
use cases and, 82–83

Specialized packages, 194
Specialty engineering analyses, 2
Specification

execution specification, 139–141, 235
flow specification, 38, 228, 247
requirements specification, 201
system design and test case specifica-

tions, 2
use case specification, 79–80, 90

Stakeholders
MBSE myths and, 9
viewpoint properties, 196–198

Standard ports
IBD connectors and, 69
in modeling block services (behaviors),

35–37
notation, 229
SysML v1.3 and, 246

State invariants, constraints in sequence
diagrams, 143–144

State machine diagrams
call events, 167–168
change events, 170–171
composite states, 160–161
event types, 166
external vs. internal transitions, 164 –166
final states, 161–162
frame, 156–157
illustration of, 157
notation, 237–238
pseudostates, 171–173
purpose of, 16, 155–156
regions, 173–175
signal events, 166–167
simple states, 158–160
states, 158
summary, 175
time events, 169–170
transitions, 162–164
when to create, 156

16_0321927866_Index.indd 262 Achorn International 10/18/2013 12:01AM

Index264

State machines
adding regions to, 173–175
composite state in, 161
defined, 156
do behavior and, 160
opaque expressions and, 159
state and pseudostate vertices, 171

States
composite states, 160–161
external vs. internal transitions, 164 –166
final states, 161–162
overview of, 158
pseudostates, 171–173
simple states, 158–160
transitions, 162–164

Stereotypes
creating, 196
in profile packages, 195

Streaming behavior, 98–99
Strings, primitive value types, 55
Structure diagrams

BDDs. see BDDs (block definition
diagrams)

IBDs. see IBDs (internal block diagrams)
parametric. see Parametric diagrams

Structured value types, 55–56
Structures

allocating behaviors to, 119–121
allocating requirements to, 218–219
features. see Properties

Subject (system boundary)
notation, 232
in use cases, 83

Substates, 161–162
Substitutability

abstraction and, 51–52
activity diagrams and, 101

Subtypes
activity diagrams and, 101
generalizations and, 49–51
use cases and, 82–83

Supertypes
activity diagrams and, 101
generalizations and, 49–51
use cases and, 82–83

Suppliers, dependencies between clients and,
52

Synchronous behavior, in blocks, 40
Synchronous messages

notation, 235
in sequence diagrams, 133–135

SysML (Systems Modeling Language),
overview

changes between versions, 245–251
diagram concepts, 17–21
diagram types, 14 –16

modeling languages used in MBSE, 5
notation, 12
summary, 21
UML and, 13–14
what it is and what it isn’t, 11–13

SYSMOD (System Modeling), 7
System boundary (subject)

notation, 232
in use cases, 83

System design specifications, artifacts of
document-based engineering, 2

System model, artifacts of MBSE, 3
System Modeling (SYSMOD), 7
Systems Modeling Language. see SysML

(Systems Modeling Language),
overview

T
Tables

representing allocation relationships,
221–222

of requirements relationships, 212–213
Test case

client element as, 208–209
specifications, 2

Text modeling languages, 5
Text-based requirements, 201
Time constraints

notation, 235
in sequence diagrams, 141–142

Time events, in state machine diagrams, 169–170
Tokens

activities based on concept of token flow,
92–93

decision nodes and, 115
merge nodes and, 115–116
types of, 93

Trace relationships
notation, 242
requirements relationships, 206–207

Transitions
external vs. internal, 164 –166, 169–170
out of composite states, 161
between states, 162–164
combining multiple transitions with

junction pseudostate, 172–173
Triggers

change events as, 165, 170–171
time events as, 169–170
for transitions, 162–163

U
UML (Unified Modeling Language)

deployment diagram, 218
SysML as extension of subset of, 12
SysML compared with, 13–14

16_0321927866_Index.indd 265 Achorn International 10/18/2013 12:01AM

Index 265

Unified Modeling Language. see UML
(Unified Modeling Language)

The Unified Modeling Language Reference
Manual (Rumbaugh, Jacobson, Booch),
78

Use case diagrams
actors, 83–84
associating actors with use cases, 84 –85
base use cases, 85
extending use cases, 87–88
frame, 81
illustration of, 82
included use cases, 85–86
notation, 82–83, 232
purpose of, 16, 77
specifications, 79–80, 90
summary, 88
system boundary, 83
use cases compared with scenarios, 80–81
what use cases are, 78–79
when to create use cases, 77–78

Use case specification, 79–80, 90
Use cases

associating actors with, 84 –85
base use cases, 85
creating specification for, 79–80, 90
executing, 84
extending, 87–88
included use cases, 85–86
notation, 232
scenarios compared with, 80–81

what they are, 78–79
when to create, 77–78

V
Value properties

BDD, 31–32
binding constraint expression to, 177–178
notation, 238
parametric diagrams and, 185–187
value types represented by, 55

Value types
comparing UML and SysML, 14
notation, 229
overview of, 55–57

Verify relationships
notation, 208–209, 242
requirements relationships, 208–209

Versions, SysML, 245–251
Viewpoint

notation, 240
views conformed to, 196–198

Views
notation, 239
types of packages, 196–198

W
Wait time action, 110, 234
Writing Effective Use Cases (Cockburn), 78–79

X
XMI (XML Metadata Interchange), 8–9

16_0321927866_Index.indd 264 Achorn International 10/18/2013 12:01AM

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

/HDrnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• �(7 7,36)520 (;3(57 %/2*6 $7 informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 3 Block Definition Diagrams
	3.1 Purpose
	3.2 When Should You Create a BDD?
	3.3 The BDD Frame
	3.4 Blocks
	3.5 Associations: Another Notation for a Property
	3.6 Generalizations
	3.7 Dependencies
	3.8 Actors
	3.9 Value Types
	3.10 Constraint Blocks
	3.11 Comments

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

