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Preface

Who This Book Is For 
Clojure Recipes is for people who have started on their journey into Clojure but haven’t 
quite found their feet. Ideally, you are aware that Clojure has lots of parentheses, but the 
prospect of integrating some libraries to build a working project is still a bit daunting. 

If you’re comfortable with Clojure and feel like you could easily build a project in 
a weekend without assistance, then this book is still useful. This is the book you give 
to someone in the office who is just curious, or who has seen Clojure and wants to get 
started but needs a helping hand. 

Finally, if you’re a pragmatist who just needs to get some working code running, 
then this book is for you. There are lots of examples for you to copy and paste to get 
your project working. 

What This Book Is Not
Clojure Recipes is not an “introduction to Clojure” book. There are some really brilliant 
books and online resources that cover this topic area. If you want an in-depth explana-
tion of Clojure, then read one of those. This is a “learn by doing” type of book. 

What This Book Is About
Clojure Recipes is about “the weekend project.” It’s about getting something running 
in a short amount of time. The book makes no assumptions about background knowl-
edge of Clojure, but provides all you need in packaged bites. 

The aim of the book is to provide self-contained projects that would have “just 
enough” for you to get running and see all the pieces hang together. The idea is that 
you can tweak and extend these projects for your needs. 

Why Clojure?
So why should you use Clojure for your next project? Here are a few reasons:

nn Clojure focuses on isolating side effects. Whether it is regular business logic or a 
concurrency scenario, immutability makes your program easier to reason about 
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and cancels out a whole class of bugs due to state mutation. You can still modify 
state, but the language encourages you to use it only where necessary.

nn Clojure was one of the first languages to make serious use of the ideas in Chris 
Okasaki’s book Purely Functional Data Structures (Cambridge University Press, 
1999). The big revelation in that book was that data structures implemented in 
a functional way could be done with an upper bound of time O(n) on costs for 
reads and writes. 

nn The benefit of these purely functional data structures was to enable another way 
to think about Software Transactional Memory (STM) in your program. Clojure 
introduces constructs like Multiversion Concurrency Control (MVCC) at the 
application level that previously developers typically only relied upon at the data-
base level.

nn Clojure is great at concurrency. In Clojure it is easy to reason about how your 
program will behave in a concurrency scenario even when there are multiple 
processes making changes to the one data structure. 

nn Clojure is pragmatic. Clojure runs on the JVM (in addition to the .NET CLR 
and JavaScript execution environments). This brings a wealth of libraries from 
the Java world that can be reused. What’s more, when you deploy it, it can look 
like a jar file so there is no need to tell anyone you’re using Clojure at all!

nn Clojure has great tooling. Because Clojure runs on the JVM, much of the tool-
ing associated with the JVM for deployment and monitoring is still available to 
you in the Clojure domain. 

nn Clojure is a Lisp—one of the oldest programming languages around. This  
brings a rich heritage of distinctive problem-solving styles and the wisdom of 
many graybeards who have been chipping away at computing problems for  
many years.

nn Clojure is great at Domain Specific Languages (DSLs). Clojure makes it easy to 
define languages specifically targeted to the problem you’re dealing with. You 
can easily represent your problem in a completely new way. 

nn Clojure is fast for developing an end product. Clojure gives you the ability to 
incrementally compile your program at the REPL, to experiment with it, and to 
interact with it. With hundreds of functions in the Core libraries, plus access to 
all the JDK libraries, developers can get a lot done. 

nn Clojure enables Lean Software Development because, more than other languages, 
it allows you to delay making decisions about the structure of your program. 
This comes from a focus on Composition over Inheritance in its idiomatic style, 
as well as from being able to start writing your program without tying yourself 
down to a particular expression of the core data. 

nn Clojure is dynamically typed. Clojure keeps track of the type at run time, so the 
programmer doesn’t have to. This point is enormously controversial at present 
for three reasons:
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1.	 Types enable you to reason about the behavior of your program in a large sys-
tem at Compile time. For this reason Clojure enables gradual typing via the 
core.typed library. This way you can add types to your Clojure program as 
you need it. 

2.	 Clojure is built to interact with Java, which is typed. The Clojure interop 
with Java allows type hints and type inference. 

3.	 Much talk is still being made about Philip Wadler’s papers from the early 1990s 
on Types and Monads. In particular, proponents claim that Wadler’s ideas 
enable a compiler-based approach to Edsger Dijkstra’s claim that “[m]uch of 
the essence of building a program is in fact the debugging of the specification.” 
Clojure answers this third reason for controversy in two ways. First, Clojure 
borrows much from the Haskell language and so in a way pays it great hom-
age. Second, the Clojure community values simplicity, probably to the extent 
that you should know what you want your program to do and whether it is 
correct, rather than relying on a Compiler to tell you that. (But of course 
Clojure has a limited ability to use Monads if that’s what you really want.) 

nn Clojure has the REPL, which is an enormously powerful tool for rapid proto-
typing, testing, and making changes to your program while it is running. 

nn Clojure has uniform syntax (S-expressions), where the primary representation 
of the program is a data structure in the language itself (sometimes called homo
iconic). This might not seem like a big deal, or you might find all the parentheses 
enormously obnoxious. (Regarding the latter point, several people have sug-
gested that Clojure has fewer parentheses than Java for the equivalent code!) The 
real benefit of uniform syntax is macros. You can transform and generate Clo-
jure code at Compile time or at run time. One might wonder at the fuss being 
made over “code as data” until you contrast it with other languages and see the 
excitement that comes when a new language syntax feature is introduced. Nine 
times out of ten, that language syntax feature could be implemented as a macro 
in Clojure. (A key example being core.async.) 

nn Clojure is highly expressive and extensible. What does the expressiveness of a 
programming language even refer to? The claim is that you can achieve more 
with fewer lines of code. Paul Graham made particularly high claims with 
his Arc challenge. Whether his Arc language was superior was never really 
answered, but his broader point was that homoiconic languages have a natural 
advantage in being able to express more ideas in fewer lines of code with the 
power of homoiconic syntax and macros. 

nn The Clojure community has been enormously innovative. Particular projects of 
note have been the following:

–	Cascalog—a DSL to generate Hadoop queries with far fewer lines of code.

–	Storm—a highly available, distributed system for processing real-time data.

–	Datomic—a distributed, no-SQL database with point-in-time reproduction of 
all data, even after “updates.”
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–	ClojureScript—a JavaScript generator using Clojure syntax enabling DOM 
transformations and better ways to solve the “callback hell” problem. This is 
now self-hosting.

–	core.typed—enables “gradual typing” for your application so you can add 
types as required in order to reason about your program.

–	core.async—restructures code to provide an inversion of the calling para-
digm, allowing the developer to avoid “callback hell,” to better enable the 
processing of multiple real-time threads of information, and complement-
ing the Clojure implementation with similar syntax and functionality in the 
browser with ClojureScript.

nn Clojure allows lots of different programming styles. Of course, it is idiomatic 
to write immutable functional code in Clojure. But you could write in a stack-
based coding style like FORTH if you wanted. Clojure does have some ability 
to provide compile-time guarantees via Monads. It is even possible to write pro-
cedural blocks of code that mutate state. Clojure is f lexible. 

So take a look at Clojure! It will be great for your next project. 

Coding Conventions Used in This Book
Sometimes we run a command on the command line. It looks like this:

lein new myproject

Then sometimes we show the result of running a command on the command line. 
It looks like this:

Generating a project called myproject based on the 'default' template.

Sometimes we show some code in a Clojure file. It looks like this: 

(ns myproject)

(defn -main[& args]

 (prn "running"))

Sometimes we show a command run on a Clojure REPL. It looks like like this:

user=> (prn "Hello World")

Then sometimes we show the result of running a command on the Clojure REPL. 
It looks like this:

"Hello World"

Errata
There is an errata page on the Clojure Recipes website here: 
http://clojurerecipes.net/errata.html

http://clojurerecipes.net/errata.html


About the Author

Julian Gamble is a software engineer who has worked in the financial services indus-
try for more than a decade. When he’s not enabling billions of dollars to orbit the 
globe, he writes and presents on all things software related at juliangamble.com/blog. 
He lives in Sydney, Australia.
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3
Creating a REST Server in 

Compojure

In this chapter we will build the first of two REST servers. This is a simple one to 
do in Compojure. The REST server we build will receive a REST call over http. We 
will test it using a command line tool, curl. 

Assumptions 
In this chapter we assume the following:

nn You have Leiningen installed and on your path on the command line.
nn You know how to use curl (whether on a Mac or a PC) and have it on your 

path.
nn You understand the concept of http parameters being passed via a GET request 

URI and via a POST form parameters request.

Benefits
IT organizations now are filled with demands to build backend services implemented 
in JavaScript for mobile devices like iPhones and rich web clients. Both mobile and 
rich JavaScript clients work very well with services that implement REST. A great 
opportunity for you to get Clojure into your organization is by whipping up a REST 
service in Clojure. 

The Recipe—Code
	 1.	 Create the project using Leiningen and the Compojure template:

lein new compojure rest-demo
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	 2.	 Modify the project.clj to have the following contents:
(defproject rest-demo "0.1.0-SNAPSHOT"

  :min-lein-version "2.0.0"

  :dependencies [[org.clojure/clojure "1.7.0-beta2"]

                 [compojure "1.3.4"]

                 [ring/ring-defaults "0.1.5"]]

  :plugins [[lein-ring "0.9.5"]]

  :ring {:handler rest-demo.handler/app}

  :profiles

  {:dev {:dependencies [[javax.servlet/servlet-api "2.5"]

                        [ring/ring-mock "0.2.0"]]}})

	 3.	 Ensure that the file rest-demo/src/rest_demo/handler.clj looks like 
this:
(ns rest-demo.handler

  (:require [compojure.core :refer :all]

            [compojure.route :as route]

            [ring.middleware.defaults 

            :refer [wrap-defaults site-defaults]]))

(defn handle-http []

  (context "/:id" [id]

    (defroutes api-routes

      (GET    "/" [] (str "get called: " id "\n"))

      (POST   "/" {form-params :form-params} 

      	 (str "post called: " id "\n" form-params " \n"))

      (PUT    "/" req (str "put called with params: " req))

      (DELETE "/" [] (str "delete called: " id "\n")))))

(defroutes app-routes

  (handle-http)

  (route/not-found (str 

  	"This is the default page - try " 

  	"<a href='http://localhost:4000/33'>this</a>\n")))

(def app

  (wrap-defaults app-routes 

    (assoc-in site-defaults [:security :anti-forgery] false)))

Testing the Solution
Let’s give it a run. 

	 1.	 In the command prompt, change back to the parent directory of your project 
and start the server using Leiningen:
lein ring server-headless 4000
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Note that we are using the server-headless parameter to the lein ring 
command. This starts the server without opening a web browser. Had we merely 
run (as a hypothetical) lein ring server 4000, a new web browser would 
have opened. (But because we’re about to use curl to interact with the website, 
a browser would have gotten in the way.)

	 2.	 Open a new command window and type:
curl http://localhost:4000/1

You should get a response like:
get called: 1

	 3.	 Now enter:
curl -X DELETE http://localhost:4000/4

You should get a response like:
delete called: 4

	 4.	 Now enter:
curl -X POST -d "id=2" http://localhost:4000/3

You should get a response like:
post called: 3

{"id" "2"}

	 5.	 Now enter:
curl -X PUT -d "id=2" http://localhost:4000/3

You should now get something similar to:
put called with params: {:ssl-client-cert nil, :remote-addr 

"0:0:0:0:0:0:0:1%0", :scheme :http, :query-params {}, :context "/3",  

:form-params {"id" "2"}, :request-method :put, :query-string nil,  

:route-params {:id "3"}, :content-type "application/x-www-form-urlencoded", 

:path-info "/", :uri "/3", :server-name "localhost", :params {:id "3", "id" 

"2"}, :headers {"user-agent" "curl/7.27.0", "content-type" "application/

x-www-form-urlencoded", "content-length" "4", "accept" "*/*", "host" 

"localhost:4000"}, :content-length 4, :server-port 4000, :character-encoding 

nil, :body #<HttpInput org.eclipse.jetty.server.HttpInput@cfefc0>} 

Julians-MacBook-Pro:~

You can see a large amount of information is in the parameter map req. This 
also demonstrates the powerful, dynamic, interactive nature of running Compo-
jure with the Leiningen plug-in. You can modify the file and save it, and your 
changes are accessible instantly to the web browser. (We could also have done all 
of this on the REPL—but we’ll save that for another day.)
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Notes on the Recipe
The Compojure library is designed to make RESTful URIs easy to work with. Note 
in particular the project.clj file:

            [ring/ring-defaults "0.1.5"]]

  :plugins [[lein-ring "0.9.5"]]

  :ring {:handler rest-demo.handler/app}

Notice the ring-defaults library. We’ll use this when we examine parameters 
passed in. Also note the lein-ring plug-in. This enables us to start the app from the 
command line. It will also enable us to modify the app when it is running and to see 
the results without restarting the server. 

Also note the :ring {:handler... syntax. This points to the part of the applica-
tion that will handle the incoming requests. 

Now look at the file handler.clj, in particular the namespace:

(ns rest-demo.handler

  (:require [compojure.core :refer :all]

            [compojure.route :as route]

            [ring.middleware.defaults 

            :refer [wrap-defaults site-defaults]]))

Note that we load the Compojure libraries for handling routes, and we use the  
ring.middleware for parameter handling. 

Now observe the handle-http function definition: 

(defn handle-http []

  (context "/:id" [id]

    (defroutes api-routes

      (GET    "/" [] (str "get called: " id "\n"))

      (POST   "/" {form-params :form-params} 

      	 (str "post called: " id "\n" form-params " \n"))

      (PUT    "/" req (str "put called with params: " req))

      (DELETE "/" [] (str "delete called: " id "\n"))))) 

This function handles the parameters for the particular http request type. Here we  
just do simple handlers for the different http request types. This handles requests in  
the format:

http://servername/2

Now note the following function:

(defroutes app-routes

  (handle-http)

  (route/not-found (str 

  "This is the default page - try " 

  "<a href='http://localhost:4000/33'>this</a>\n"))) 

http://servername/2
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This is the main route-handler function. It delegates most of its responsibilities to our 
handle-http function above. If that returns nil, then it displays a "Not Found" 
response. 

Now note the following symbol:

(def app

  (wrap-defaults app-routes 

    (assoc-in site-defaults [:security :anti-forgery] false)))

This is the application hook. We point to this in the project.clj file. It takes 
the route definitions in app-routes and feeds that into the function result of 
wrap‑defaults. The wrap-defaults function adds middleware to the route to 
enable URI parameter input. We switch off the anti-forgery middleware so our 
simple curl tests will work. You shouldn’t do this in your production application. 

Conclusion
We’ve seen an example of generating RESTful HTTP requests from the command 
line using the curl command, and we implemented handlers for these requests in 
Compojure.
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