
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321927736
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321927736
https://plusone.google.com/share?url=http://www.informit.com/title/9780321927736
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321927736
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321927736/Free-Sample-Chapter

Clojure
Recipes

This page intentionally left blank

Clojure
Recipes

Julian Gamble

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Gamble, Julian, author.
   Clojure recipes / Julian Gamble.
        pages cm
   Includes index.
   ISBN 978-0-321-92773-6 (pbk. : alk. paper) —ISBN 0-321-92773-7
  1. Clojure (Computer program language) 2. Software patterns. I. Title.
  QA76.73.C565G36 2015
  005.1— dc23
	 2015028332

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-321-92773-6
ISBN-10: 0-321-92773-7
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, October 2015

❖

To my amazing wife Jo-Ann . . .

. . . You Rock!

❖

This page intentionally left blank

Contents

		 Preface   xv

	 1	 Starting Your Project with Leiningen   1

Assumptions   1

Benefits   1

The Recipe — Windows   1

The Recipe — Mac   3

Conclusion   4

Postscript — Setting Up a JDK on a Mac   4

Postscript — Setting Up a JDK on Windows   6

	 2	 Packaging Clojure for a Java EE Environment   11
Assumptions   11

Benefits   11

The Recipe — Common   11

Conclusion   14

Postscript — Setting Up Tomcat on a Mac   14

Postscript — Setting Up Tomcat on Windows   16

	 3	 Creating a REST Server in Compojure   19
Assumptions   19

Benefits   19

The Recipe — Code   19

Testing the Solution   20

Notes on the Recipe   22

Conclusion   23

	 4	 Creating a REST Server with Liberator   25
Assumptions   25

Benefits   25

The Recipe — Code   25

Testing the Solution   28

Notes on the Recipe   29

Contentsviii

Context   32

Origins   33

REST Hypermedia   33

Conclusion   33

	 5	 A REST Client in ClojureScript   35
Assumptions   35

Benefits   35

The Recipe — Code   36

Testing the Solution   38

Notes on the Recipe   39

Conclusion   40

	 6	 A Simple JSON Server   41
Assumptions   41

Benefits   41

The Recipe — Code   41

Testing the Solution   44

Notes on the Recipe   45

Conclusion   47

	 7	 A Simple Server Using the Pedestal
Framework   49
Assumptions   49

Benefits   49

Context   49

The Recipe — Code   50

Testing the Solution   52

Notes on the Recipe   53

Conclusion   54

	 8	 A Stock Ticker on the Pedestal Framework
Server   55
Assumptions   55

Benefits   55

The Recipe — Code   55

Testing the Solution   60

Notes on the Recipe   62

Conclusion   67

Contents ix

	 9	 Simplifying Logging with a Macro   69
Assumptions   69

Benefits   69

The Recipe — Code   70

Testing the Solution   72

Notes on the Recipe   74

Conclusion   76

	10	 Extending the Compiler with a Macro   79
Assumptions   79

Benefits   79

The Recipe — Code   79

Testing the Solution   81

Notes on the Recipe   82

Conclusion   85

	11	 Simplifying Datomic Syntax by Writing a DSL   87
Assumptions   87

Benefits   87

The Recipe — Code   88

Testing the Solution   97

Testing Create Schema   97

Testing Add Datom   98

Testing Create Nested Schema   100

Testing Add Nested Datom   101

Notes on the Recipe   103

create.clj   103

create_test.clj   104

add.clj   104

add_test.clj   104

create_nested.clj   104

create_nested_test.clj   105

add_nested.clj   105

add_nested_test.clj   106

Conclusion   106

Contentsx

	12	 Reading the SASS DSL and Generating CSS
with Clojure Zippers   107
Assumptions   107

Benefits   107

Outline — Features of SASS   107

The Recipe — Code   109

Testing the Solution   121

Notes on the Recipe   122

Conclusion   133

	13	 Introduction to Cascalog   135
Assumptions   135

Benefits   135

The Recipe — Code   135

Testing the Solution   137

Notes on the Recipe   139

Conclusion   141

	14	 Cascalog and Hadoop   143
Assumptions   143

Benefits   143

The Recipe — Code   143

Testing the Solution   145

Conclusion   146

Postscript — Setting Up Hadoop on a Mac   146

Postscript — Setting Up Hadoop on a Windows
Machine   147

	15	 Loading a Data File into Cascalog   149
Assumptions   149

Benefits   149

The Recipe — Code   149

Testing the Solution   150

Conclusion   151

	16	 Writing Out a Data File with Cascalog   153
Assumptions   153

Benefits   153

Contents xi

The Recipe — Code   153

Testing the Solution   154

Notes on the Recipe   155

Conclusion   155

	17	 Cascalog and Structured Data   157
Assumptions   157

Benefits   157

The Recipe — Code   157

Testing the Recipe   159

Notes on the Solution   160

Conclusion   161

	18	 Loading Custom Data Formats into Cascalog   163
Assumptions   163

Benefits   163

The Recipe — Code   163

Testing the Recipe   175

Notes on the Solution   176

Conclusion   177

	19	 Connecting to Datomic from Your Application   179
Assumptions   179

Benefits   179

The Recipe — Code   179

Getting Set Up   179

Connecting to Datomic in the Shell   180

Loading Schema and Data   181

Connecting to Datomic from Clojure   181

Connecting to Datomic from Java   182

Connecting to Datomic from a REST Client   185

Conclusion   188

	20	 Getting Started with Storm   189
Assumptions   189

Benefits   189

The Recipe — Code   190

Contentsxii

Testing the Recipe   192

Notes on the Recipe   192

Conclusion   195

	21	 Getting Started with JMS in Clojure  197
Assumptions   197

Benefits   197

The Recipe — Code   197

Testing the Recipe   200

Notes on the Recipe   200

Conclusion   201

	22	 Integrating Storm and JMS   203
Assumptions   203

Benefits   203

The Recipe — Code   203

Testing the Recipe   213

Notes on the Recipe   213

Conclusion   215

	23	 A CSV Reader   217
Assumptions   217

Benefits   217

The Recipe — Code   217

Testing the Solution   219

Notes on the Recipe   219

Conclusion   220

	24	 Detecting Errors with a Log Monitoring
Application   221
Assumptions   221

Benefits   221

The Recipe — Code   221

Testing the Solution   223

Notes on the Recipe   223

Conclusion   224

Contents xiii

	25	 Bundling Clojure as an Ant Plug-in   225
Assumptions   225

Benefits   225

The Recipe — Code   225

Testing the Recipe   227

Notes on the Recipe   228

Conclusion   228

Postscript — Installing Ant on a Mac   229

	26	 Bundling Clojure as a Maven Plug-in   231
Assumptions   231

Benefits   231

The Recipe — Code   231

Testing the Recipe   239

Notes on the Recipe   240

Conclusion   240

	27	 Integrating Clojure by Scripting Web Tests   241
Assumptions   241

Benefits   241

The Recipe — Code   241

Testing the Recipe   242

Notes on the Recipe   243

Conclusion   243

	28	 Monitoring Availability with a Website Status
Checker   245
Assumptions   245

Benefits   245

The Recipe — Code   246

Testing the Recipe   247

Notes on the Recipe   249

Conclusion   249

	 A	 Debugging Macros   251
Assumptions   251

Benefits   251

Contentsxiv

The Recipe   251

A Simple Approach — Expansion-Time and
Evaluation-Time stdout   252

Some Macro Helper Functions   253

Read and Evaluate — A More Developed
Mental Model   254

Reading   255

Evaluating   257

Conclusion   259

Index   261

Preface

Who This Book Is For
Clojure Recipes is for people who have started on their journey into Clojure but haven’t
quite found their feet. Ideally, you are aware that Clojure has lots of parentheses, but the
prospect of integrating some libraries to build a working project is still a bit daunting.

If you’re comfortable with Clojure and feel like you could easily build a project in
a weekend without assistance, then this book is still useful. This is the book you give
to someone in the office who is just curious, or who has seen Clojure and wants to get
started but needs a helping hand.

Finally, if you’re a pragmatist who just needs to get some working code running,
then this book is for you. There are lots of examples for you to copy and paste to get
your project working.

What This Book Is Not
Clojure Recipes is not an “introduction to Clojure” book. There are some really brilliant
books and online resources that cover this topic area. If you want an in-depth explana-
tion of Clojure, then read one of those. This is a “learn by doing” type of book.

What This Book Is About
Clojure Recipes is about “the weekend project.” It’s about getting something running
in a short amount of time. The book makes no assumptions about background knowl-
edge of Clojure, but provides all you need in packaged bites.

The aim of the book is to provide self-contained projects that would have “just
enough” for you to get running and see all the pieces hang together. The idea is that
you can tweak and extend these projects for your needs.

Why Clojure?
So why should you use Clojure for your next project? Here are a few reasons:

nn Clojure focuses on isolating side effects. Whether it is regular business logic or a
concurrency scenario, immutability makes your program easier to reason about

Prefacexvi

and cancels out a whole class of bugs due to state mutation. You can still modify
state, but the language encourages you to use it only where necessary.

nn Clojure was one of the first languages to make serious use of the ideas in Chris
Okasaki’s book Purely Functional Data Structures (Cambridge University Press,
1999). The big revelation in that book was that data structures implemented in
a functional way could be done with an upper bound of time O(n) on costs for
reads and writes.

nn The benefit of these purely functional data structures was to enable another way
to think about Software Transactional Memory (STM) in your program. Clojure
introduces constructs like Multiversion Concurrency Control (MVCC) at the
application level that previously developers typically only relied upon at the data-
base level.

nn Clojure is great at concurrency. In Clojure it is easy to reason about how your
program will behave in a concurrency scenario even when there are multiple
processes making changes to the one data structure.

nn Clojure is pragmatic. Clojure runs on the JVM (in addition to the .NET CLR
and JavaScript execution environments). This brings a wealth of libraries from
the Java world that can be reused. What’s more, when you deploy it, it can look
like a jar file so there is no need to tell anyone you’re using Clojure at all!

nn Clojure has great tooling. Because Clojure runs on the JVM, much of the tool-
ing associated with the JVM for deployment and monitoring is still available to
you in the Clojure domain.

nn Clojure is a Lisp—one of the oldest programming languages around. This
brings a rich heritage of distinctive problem-solving styles and the wisdom of
many graybeards who have been chipping away at computing problems for
many years.

nn Clojure is great at Domain Specific Languages (DSLs). Clojure makes it easy to
define languages specifically targeted to the problem you’re dealing with. You
can easily represent your problem in a completely new way.

nn Clojure is fast for developing an end product. Clojure gives you the ability to
incrementally compile your program at the REPL, to experiment with it, and to
interact with it. With hundreds of functions in the Core libraries, plus access to
all the JDK libraries, developers can get a lot done.

nn Clojure enables Lean Software Development because, more than other languages,
it allows you to delay making decisions about the structure of your program.
This comes from a focus on Composition over Inheritance in its idiomatic style,
as well as from being able to start writing your program without tying yourself
down to a particular expression of the core data.

nn Clojure is dynamically typed. Clojure keeps track of the type at run time, so the
programmer doesn’t have to. This point is enormously controversial at present
for three reasons:

Preface xvii

1.	 Types enable you to reason about the behavior of your program in a large sys-
tem at Compile time. For this reason Clojure enables gradual typing via the
core.typed library. This way you can add types to your Clojure program as
you need it.

2.	 Clojure is built to interact with Java, which is typed. The Clojure interop
with Java allows type hints and type inference.

3.	 Much talk is still being made about Philip Wadler’s papers from the early 1990s
on Types and Monads. In particular, proponents claim that Wadler’s ideas
enable a compiler-based approach to Edsger Dijkstra’s claim that “[m]uch of
the essence of building a program is in fact the debugging of the specification.”
Clojure answers this third reason for controversy in two ways. First, Clojure
borrows much from the Haskell language and so in a way pays it great hom-
age. Second, the Clojure community values simplicity, probably to the extent
that you should know what you want your program to do and whether it is
correct, rather than relying on a Compiler to tell you that. (But of course
Clojure has a limited ability to use Monads if that’s what you really want.)

nn Clojure has the REPL, which is an enormously powerful tool for rapid proto-
typing, testing, and making changes to your program while it is running.

nn Clojure has uniform syntax (S-expressions), where the primary representation
of the program is a data structure in the language itself (sometimes called homo
iconic). This might not seem like a big deal, or you might find all the parentheses
enormously obnoxious. (Regarding the latter point, several people have sug-
gested that Clojure has fewer parentheses than Java for the equivalent code!) The
real benefit of uniform syntax is macros. You can transform and generate Clo-
jure code at Compile time or at run time. One might wonder at the fuss being
made over “code as data” until you contrast it with other languages and see the
excitement that comes when a new language syntax feature is introduced. Nine
times out of ten, that language syntax feature could be implemented as a macro
in Clojure. (A key example being core.async.)

nn Clojure is highly expressive and extensible. What does the expressiveness of a
programming language even refer to? The claim is that you can achieve more
with fewer lines of code. Paul Graham made particularly high claims with
his Arc challenge. Whether his Arc language was superior was never really
answered, but his broader point was that homoiconic languages have a natural
advantage in being able to express more ideas in fewer lines of code with the
power of homoiconic syntax and macros.

nn The Clojure community has been enormously innovative. Particular projects of
note have been the following:

–	Cascalog—a DSL to generate Hadoop queries with far fewer lines of code.

–	Storm—a highly available, distributed system for processing real-time data.

–	Datomic—a distributed, no-SQL database with point-in-time reproduction of
all data, even after “updates.”

Prefacexviii

–	ClojureScript—a JavaScript generator using Clojure syntax enabling DOM
transformations and better ways to solve the “callback hell” problem. This is
now self-hosting.

–	core.typed—enables “gradual typing” for your application so you can add
types as required in order to reason about your program.

–	core.async—restructures code to provide an inversion of the calling para-
digm, allowing the developer to avoid “callback hell,” to better enable the
processing of multiple real-time threads of information, and complement-
ing the Clojure implementation with similar syntax and functionality in the
browser with ClojureScript.

nn Clojure allows lots of different programming styles. Of course, it is idiomatic
to write immutable functional code in Clojure. But you could write in a stack-
based coding style like FORTH if you wanted. Clojure does have some ability
to provide compile-time guarantees via Monads. It is even possible to write pro-
cedural blocks of code that mutate state. Clojure is f lexible.

So take a look at Clojure! It will be great for your next project.

Coding Conventions Used in This Book
Sometimes we run a command on the command line. It looks like this:

lein new myproject

Then sometimes we show the result of running a command on the command line.
It looks like this:

Generating a project called myproject based on the 'default' template.

Sometimes we show some code in a Clojure file. It looks like this:

(ns myproject)

(defn -main[& args]

 (prn "running"))

Sometimes we show a command run on a Clojure REPL. It looks like like this:

user=> (prn "Hello World")

Then sometimes we show the result of running a command on the Clojure REPL.
It looks like this:

"Hello World"

Errata
There is an errata page on the Clojure Recipes website here:
http://clojurerecipes.net/errata.html

http://clojurerecipes.net/errata.html

About the Author

Julian Gamble is a software engineer who has worked in the financial services indus-
try for more than a decade. When he’s not enabling billions of dollars to orbit the
globe, he writes and presents on all things software related at juliangamble.com/blog.
He lives in Sydney, Australia.

This page intentionally left blank

3
Creating a REST Server in

Compojure

In this chapter we will build the first of two REST servers. This is a simple one to
do in Compojure. The REST server we build will receive a REST call over http. We
will test it using a command line tool, curl.

Assumptions
In this chapter we assume the following:

nn You have Leiningen installed and on your path on the command line.
nn You know how to use curl (whether on a Mac or a PC) and have it on your

path.
nn You understand the concept of http parameters being passed via a GET request

URI and via a POST form parameters request.

Benefits
IT organizations now are filled with demands to build backend services implemented
in JavaScript for mobile devices like iPhones and rich web clients. Both mobile and
rich JavaScript clients work very well with services that implement REST. A great
opportunity for you to get Clojure into your organization is by whipping up a REST
service in Clojure.

The Recipe—Code
	 1.	 Create the project using Leiningen and the Compojure template:

lein new compojure rest-demo

20 Chapter 3  Creating a REST Server in Compojure

	 2.	 Modify the project.clj to have the following contents:
(defproject rest-demo "0.1.0-SNAPSHOT"

 :min-lein-version "2.0.0"

 :dependencies [[org.clojure/clojure "1.7.0-beta2"]

 [compojure "1.3.4"]

 [ring/ring-defaults "0.1.5"]]

 :plugins [[lein-ring "0.9.5"]]

 :ring {:handler rest-demo.handler/app}

 :profiles

 {:dev {:dependencies [[javax.servlet/servlet-api "2.5"]

 [ring/ring-mock "0.2.0"]]}})

	 3.	 Ensure that the file rest-demo/src/rest_demo/handler.clj looks like
this:
(ns rest-demo.handler

 (:require [compojure.core :refer :all]

 [compojure.route :as route]

 [ring.middleware.defaults

 :refer [wrap-defaults site-defaults]]))

(defn handle-http []

 (context "/:id" [id]

 (defroutes api-routes

 (GET "/" [] (str "get called: " id "\n"))

 (POST "/" {form-params :form-params}

 	 (str "post called: " id "\n" form-params " \n"))

 (PUT "/" req (str "put called with params: " req))

 (DELETE "/" [] (str "delete called: " id "\n")))))

(defroutes app-routes

 (handle-http)

 (route/not-found (str

 	"This is the default page - try "

 	"this\n")))

(def app

 (wrap-defaults app-routes

 (assoc-in site-defaults [:security :anti-forgery] false)))

Testing the Solution
Let’s give it a run.

	 1.	 In the command prompt, change back to the parent directory of your project
and start the server using Leiningen:
lein ring server-headless 4000

Testing the Solution 21

Note that we are using the server-headless parameter to the lein ring
command. This starts the server without opening a web browser. Had we merely
run (as a hypothetical) lein ring server 4000, a new web browser would
have opened. (But because we’re about to use curl to interact with the website,
a browser would have gotten in the way.)

	 2.	 Open a new command window and type:
curl http://localhost:4000/1

You should get a response like:
get called: 1

	 3.	 Now enter:
curl -X DELETE http://localhost:4000/4

You should get a response like:
delete called: 4

	 4.	 Now enter:
curl -X POST -d "id=2" http://localhost:4000/3

You should get a response like:
post called: 3

{"id" "2"}

	 5.	 Now enter:
curl -X PUT -d "id=2" http://localhost:4000/3

You should now get something similar to:
put called with params: {:ssl-client-cert nil, :remote-addr

"0:0:0:0:0:0:0:1%0", :scheme :http, :query-params {}, :context "/3",

:form-params {"id" "2"}, :request-method :put, :query-string nil,

:route-params {:id "3"}, :content-type "application/x-www-form-urlencoded",

:path-info "/", :uri "/3", :server-name "localhost", :params {:id "3", "id"

"2"}, :headers {"user-agent" "curl/7.27.0", "content-type" "application/

x-www-form-urlencoded", "content-length" "4", "accept" "*/*", "host"

"localhost:4000"}, :content-length 4, :server-port 4000, :character-encoding

nil, :body #<HttpInput org.eclipse.jetty.server.HttpInput@cfefc0>}

Julians-MacBook-Pro:~

You can see a large amount of information is in the parameter map req. This
also demonstrates the powerful, dynamic, interactive nature of running Compo-
jure with the Leiningen plug-in. You can modify the file and save it, and your
changes are accessible instantly to the web browser. (We could also have done all
of this on the REPL—but we’ll save that for another day.)

22 Chapter 3  Creating a REST Server in Compojure

Notes on the Recipe
The Compojure library is designed to make RESTful URIs easy to work with. Note
in particular the project.clj file:

 [ring/ring-defaults "0.1.5"]]

 :plugins [[lein-ring "0.9.5"]]

 :ring {:handler rest-demo.handler/app}

Notice the ring-defaults library. We’ll use this when we examine parameters
passed in. Also note the lein-ring plug-in. This enables us to start the app from the
command line. It will also enable us to modify the app when it is running and to see
the results without restarting the server.

Also note the :ring {:handler... syntax. This points to the part of the applica-
tion that will handle the incoming requests.

Now look at the file handler.clj, in particular the namespace:

(ns rest-demo.handler

 (:require [compojure.core :refer :all]

 [compojure.route :as route]

 [ring.middleware.defaults

 :refer [wrap-defaults site-defaults]]))

Note that we load the Compojure libraries for handling routes, and we use the
ring.middleware for parameter handling.

Now observe the handle-http function definition:

(defn handle-http []

 (context "/:id" [id]

 (defroutes api-routes

 (GET "/" [] (str "get called: " id "\n"))

 (POST "/" {form-params :form-params}

 	 (str "post called: " id "\n" form-params " \n"))

 (PUT "/" req (str "put called with params: " req))

 (DELETE "/" [] (str "delete called: " id "\n")))))

This function handles the parameters for the particular http request type. Here we
just do simple handlers for the different http request types. This handles requests in
the format:

http://servername/2

Now note the following function:

(defroutes app-routes

 (handle-http)

 (route/not-found (str

 "This is the default page - try "

 "this\n")))

http://servername/2

Conclusion 23

This is the main route-handler function. It delegates most of its responsibilities to our
handle-http function above. If that returns nil, then it displays a "Not Found"
response.

Now note the following symbol:

(def app

 (wrap-defaults app-routes

 (assoc-in site-defaults [:security :anti-forgery] false)))

This is the application hook. We point to this in the project.clj file. It takes
the route definitions in app-routes and feeds that into the function result of
wrap‑defaults. The wrap-defaults function adds middleware to the route to
enable URI parameter input. We switch off the anti-forgery middleware so our
simple curl tests will work. You shouldn’t do this in your production application.

Conclusion
We’ve seen an example of generating RESTful HTTP requests from the command
line using the curl command, and we implemented handlers for these requests in
Compojure.

This page intentionally left blank

Index

A
Ant

downloading, 228
installing on a Mac, 229

Ant plug-in, 225–229
assumptions before beginning, 225
benefits of, 225
notes on the recipe for, 228
recipe—code for, 225–227
testing the recipe for, 227–228

Aspect Orientation, in Object-Oriented languages,
76–77

B
Big data, 139
Blocking code, macro converting to non-blocking

code, 79–85
Bolts, in Storm

creating, 190–192
description of, 191, 192–193, 194–195
integrating Storm and JMS using, 204, 205, 206,

208–209, 213–214, 215
Bootstrap, 56, 59, 62

C
Cascading library in Hadoop

introduction of, 141
Java class dependency relationships with, 177
preformatted data needed for, 160–161
reading files in, 174–175, 177

Cascalog, introduction to, xvii, 135–141
background concepts for, 140–141
benefits of Cascalog, 135
notes on the recipe for running basic queries in,

137–141
recipe—code for running basic queries in,

135–137
testing the solution in, 137–139

Cascalog, compiling to a jar f ile and running, 143–148
assumptions before beginning, 143
benefits of, 143
recipe—code for, 143–145
testing the solution in, 145–146

Cascalog, loading custom data formats into, 163–177
assumptions before beginning, 163
benefits of, 163
notes on the solution for, 176–177

recipe—code for, 163–176
testing the recipe for, 175–176

Cascalog, loading data f ile into, 149–151
assumptions before beginning, 149
benefits of, 149
recipe—code for, 149–150
testing the solution in, 150–151

Cascalog, loading structured data into, 157–161
assumptions before beginning, 157
benefits of, 157
notes on solution for, 160–161
preformatting data for, 160–161
recipe—code for, 157–159
testing the recipe for, 159–160

Cascalog, structuring a f ile to load into, 149–151
assumptions before beginning, 149
benefits of, 149
recipe—code for, 149–150
testing the solution in, 150–151

Cascalog, writing out a data f ile with, 153–155
assumptions before beginning, 153
benefits of, 153
notes on the recipe for, 155
recipe—code for, 153–154
testing the solution in, 154–155

Clojure, reasons for using, xv–xvii
clojure.csv library, 219
clojure.data.json library, in Compojure, 30
ClojureScript, xvii

compiled to JavaScript, 35, 39–40
JSON server built in, 41–46
Pedestal server instead of, 50

ClojureScript REST client, 35–40
assumptions before beginning, 35
benefits of, 35
notes on the recipe for, 39–40
recipe—code for, 36–38
testing the solution in, 38–39

ClojureWerkz money library, 70, 74
Coding conventions in text, xviii
Comma-separated value (CSV) files. See CSV reader
Compiler extension using macros, 79–85

assumptions before beginning, 79
benefits of, 79
notes on the recipe for, 82–85
recipe—code for, 79–81
testing the solution in, 81–82

262 Index

E
EDN, 47
Error log monitoring application, 221–224

assumptions before beginning, 221
benefits of, 221
notes on the recipe for, 223–224
recipe—code for, 221–223
testing the solution for, 223

EventSource, 55, 60–61, 63, 65–66
Excel, and CSV files, 217, 219, 220

F
Fielding, Roy, 33
Firefox, 241, 243
future, with compiler extension macro, 81, 82, 83–84

G
Google Closure libraries, 35, 39
Google MapReduce, 139

H
Hadoop

as a batch processing system, 149
Cascading library in, 141
downloading, 146, 147
MapReduce concept and, 140
Pig analysis tool with, 140
setting up on a Mac, 146–147
setting up on Windows, 147–148

handle-http function, 22–23
Haskell language, xvi
Hickey, Rich, 26, 50
Homoiconic language, xvii, 69
Hornet libraries, with JMS, 197, 198, 200, 213,

214–215
HTML5, and EventSource, 55, 60–61, 63, 65–66
http requests

JSON server and, 41–47
Pedestal stock ticker application using, 55–67
REST server and, 22–23

http specification, and REST, 32–33

I
Interceptors, 51, 54

J
Java

checking for on a Mac, 3
checking for on Windows, 2
Clojure macro use and, 76–77
Datomic connection from, 182–185
Swing library in, 240

Java Development Kit. See JDK

Conventions in text, xviii
core.async library, 85
CSS in Clojure, 107–133

mapping of SASS constants into CSS data structure
using, 129–133

process of going from SASS to CSS in, 108–109
SASS for reuse and manageability of, 107–108
transformation of tree representation of, 126–128

CSV reader, 217–220
assumptions before beginning, 217
benefits of, 217
notes on the recipe for, 219–220
recipe—code for, 217–218
testing the solution for, 219

curl, and REST servers, 20–21, 23, 25, 29, 179, 187

D
data.csv library, 219
data.json library, 29, 30
Datalog, 138, 141
Datomic, xvii

downloading, 180
setting up, 179–180

Datomic connections, 179–188
assumptions before beginning, 179
benefits of, 179
from Clojure, 181–182
getting set up for, 179–180
from Java, 182–185
loading schema and data in, 181
recipe—code for, 179–180
from REST client, 185–188
in the shell, 180–181

Datomic syntax, and DSL, 87–106
assumptions before beginning, 87
benefits of, 87–88
notes on the recipe for, 103–106
recipe—code for, 88–97
relational database mindset applied to, 88
testing add datom in, 98–100
testing add nested datom in, 101–104
testing create nested schema in, 100–101
testing create schema in, 97–98

Debugging macros, 251–259
assumptions before beginning, 251
benefits of, 251
helper functions and, 253–254
logging application with, 71–72, 73, 74–75
read and evaluate approach for, 254–259
simple approach for, 252–253

Dijkstra, Edsger, xvi
DSL (domain-specific language)

Clojure with, xvi
Datomic syntax and, 87–106
SASS and, 107–133

263Index

Pedestal stock ticker application using, 55, 56, 60
Pedestal web server using, 50, 52
recipe (Mac) for, 3–4
recipe (Windows) for, 1–3
starting a project with, 1–9

Liberator REST server, 25–33
assumptions before beginning, 25
benefits of, 25
context of http specification for, 32–33
notes on the recipe for, 29–32
recipe—code for, 25–27
testing the solution in, 28–29

Liberator library, in Compojure, 29, 30–31, 32
Lisp, xv
Log monitoring application, 221–224

assumptions before beginning, 221
benefits of, 221
notes on the recipe for, 223–224
recipe—code for, 221–224
testing the solution for, 223

Logging application macro, 69–77
assumptions before beginning, 69
benefits of, 69
debug macros in, 71–72, 73, 74–75
notes on the recipe for, 74–77
recipe—code for, 70–72
testing the solution in, 72–73

M
Macro compiler extension, 79–85

assumptions before beginning, 79
benefits of, 79
notes on the recipe for, 82–85
recipe—code for, 79–81
testing the solution in, 81–82

Macro debugging, 251–259
assumptions before beginning, 251
benefits of, 251
helper functions and, 253–254
logging application with, 71–72, 73, 74–75
read and evaluate approach for, 254–259
simple approach for, 252–253

Macro logging application, 69–77
assumptions before beginning, 69
benefits of, 69
debug macros in, 71–72, 73, 74–75
notes on the recipe for, 74–77
recipe—code for, 70–72
testing the solution in, 72–73

Macros
trace1, 77
uses of, in Clojure, 76–77

MapReduce
Google introduction of, 139
Yahoo’s MapReduce and, 140

Java EE (Java Platform, Enterprise Edition), 11–18
assumptions before beginning, 11
benefits of, 11
packaging Clojure to work in a Java EE

environment and, 11–12
recipe (common part) for, 11–14
setting up Tomcat on a Mac and, 14–15
setting up Tomcat on Windows and, 16–18

Java Platform, Enterprise Edition. See Java EE
javac, checking for, on a Mac, 4
JavaScript, xv, 35, 39–40
JDK (Java Development Kit), xvi

downloading, 2, 3
setting up Hadoop on a Windows machine and, 148
setting up on a Mac, 4–5
setting up on Windows, 5–8

JMS feeds, and Storm, 203–214
assumptions before beginning, 203
benefits of, 203
notes on the recipe for, 213–215
recipe—code for, 203–213
testing the recipe for, 213

JMS server, setting up and messaging, 197–201
assumptions before beginning, 197
benefits of, 197
notes on the recipe for, 200–201
recipe—code for, 197–200
testing the recipe for, 200

JQuery, 41, 46, 55, 62
JRE (Java Runtime Environment), checking for and

adding, on a Mac, 4–5
JSON server, 41–46

assumptions before beginning, 41
benefits of, 41
notes on the recipe for, 45–46
recipe—code for, 41–44
testing the solution in, 44–45
Transit used with, 47

JVM, xv

K
Kay, Alan, 69

L
Lean Software Development, xvi
lein-ring library, 45
Leiningen

assumptions before beginning, 1
benefits of, 1
creating new project in projects directory (Mac)

with, 2–3
creating new project in projects directory

(Windows) with, 4
description of, 1
new project directory in, 11

264 Index

REPL (Read Eval Print Loop), xvi, 4, 137
REST (Representational State Transfer)

http specification and, 32–33
origins of, 33
Richardson Maturity Model for, 33

REST clients
connecting to Datomic from, 185–188
documentation for, 185

REST server in Compojure, 19–23
assumptions before beginning, 19
benefits of, 19
http requests with, 22–23
notes on the recipe for, 22–23
recipe—code for, 19–20
testing the solution in, 20–21

REST server in Liberator, 25–33
assumptions before beginning, 25
benefits of, 25
http specification and, 32–33
notes on the recipe for, 29–32
recipe—code for, 25–27
testing the solution in, 28–29

RESTful HTTP requests, 22–23
Richardson Maturity Model for REST, 33
ring.json library, 45
Ruby, 107, 133

S
S-expressions, xvi–xvii
SASS

constants in, 108
features of, 107–108
larger process of going from SASS to CSS in,

108–109
mapping of constants into data structure using,

129–133
nesting in, 108, 125–126
reuse and manageability of CSS using, 107–108
transformation of tree representation in,

126–128
SASS DSL with Clojure zippers, 107–133

assumptions before beginning, 107
benefits of, 107
features of SASS and, 107–108
mapping of constants into data structure using,

129–133
notes on the recipe for, 122–133
recipe—code for, 109–121
tasks accomplished in, 109
testing the solution in, 121–122
transformation of tree representation in, 126–128

Selenium WebDriver tests, 241–243
assumptions before beginning, 241
benefits of, 241
notes on the recipe for, 243

Marz, Nathan, 141, 192
Maven, 182–183

debugging a Leiningen project as, 164
Datomic connection from Java and, 182–185
Leiningen setup and, 1, 4

Maven plug-in, 231–240
assumptions before beginning, 231
benefits of, 231
notes on the recipe for, 240
recipe—code for, 231–239
testing the recipe for, 239

Middleware
in Ring, 54
using interceptors instead of, 54
wrap-default function for, 23, 39

Monads, xvii
money library, ClojureWerkz, 70, 74
Monitoring applications

log monitoring application, 221–224
website status checker, 245–249

Multiversion Concurrency Control (MVCC), xv

N
.NET CLR, xv

O
Object-Oriented languages, and Aspect Orientation,

76–77
Okasaki, Chris, xv

P
Pedestal simple server, 49–54

assumptions before beginning, 49
benefits of, 49
context for, 49–50
notes on the recipe for, 53–54
reasons for using instead of Compojure, 50
recipe—code for, 50–52
testing the solution in, 52–53

Pedestal stock ticker application, 55–67
assumptions before beginning, 55
benefits of, 55
notes on the recipe for, 62–67
recipe—code for, 55–60
testing the solution in, 60–62

Pig analysis tool, with Hadoop, 140
Production applications

Clojure as Ant plug-in in, 225–229
log monitoring with, 221–224
WebDriver tests with, 241–243
website status checker with, 245–249

R
Reducers, 139–140
Regex, 223–224

265Index

packaging Clojure to work in a Java EE
environment and, 11–12

setting up, 16–18
tools.trace library, 77
Topologies, in Storm

description of, 192, 193, 195
integrating Storm and JMS using, 203, 204–205,

206, 208–209, 214, 215
trace1 macro, 77
Transit, 47
Tuples, in Storm

description of, 192, 193, 194–195
integrating Storm and JMS using, 205–206, 214

Twitter
Backtype, 141n, 192
Bootstrap and, 56, 59, 62

Types, xvii

W
Wadler, Philip, xvi
WebDriver tests, 241–243

assumptions before beginning, 241
benefits of, 241
notes on the recipe for, 243
recipe–code for, 241–242
testing the recipe for, 242–243

Website status checker, 245–249
assumptions before beginning, 245
benefits of, 245
notes on the recipe for, 249
recipe—code for, 246–247
testing the recipe for, 247–249

WebSockets, 55
wget.exe, 2
wrap-default function, 23

Y
Yahoo, 140

Z
Zippers

custom zipper for maps in Datomic syntax, 91–94,
104

notes on the recipe for SASS DSL on using, 122–133
parsing a DSL using, 107
recipe—code for generating CSS with, 109–121
traverse idiom for, 123, 126

recipe—code for, 241–242
testing the recipe for, 242–243

Servers. See JMS server; JSON server; Pedestal simple
server; REST server in Compojure; REST
server in Liberator

Software Transactional Memory (STM), xv
Spouts, in Storm

creating, 190–192
description of, 192–193, 195
integrating Storm and JMS using, 203, 208–209,

214, 215
Stock ticker application, Pedestal, 55–67

assumptions before beginning, 55
benefits of, 55
notes on the recipe for, 62–67
recipe—code for, 55–60
testing the solution in, 60–62

Storm, and JMS feeds, 203–214
assumptions before beginning, 203
benefits of, 203
notes on the recipe for, 213–215
recipe—code for, 203–213
testing the recipe for, 213

Storm apps, xvii
components of, 192–193
getting started with, 189–190
assumptions before beginning, 189
benefits of, 189
notes on the recipe for, 192–195
recipe—code for, 190–192
testing the recipe in, 192

Swing
with Ant, 226, 228
with Maven, 232, 240

T
Test suites, 241–243
Tomcat on a Mac

assumptions before setting up, 14
downloading, 14
notes on installing, 14
packaging Clojure to work in a Java EE

environment and, 11–12
setting up, 14–15

Tomcat on Windows
assumptions before setting up, 16
downloading, 16

This page intentionally left blank

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking timely
and relevant information and tutorials. Looking for expert opinions, advice, and tips?
InformIT has a solution.

� Learn about new releases and special promotions by subscribing to a wide
variety of monthly newsletters. Visit informit.com/newsletters.

�� FREE Podcasts from experts at informit.com/podcasts.

�� Read the latest author ar ticles and sample chapters at
informit.com/articles.

� Access thousands of books and videos in the Safari Books Online
digital library. safari.informit.com.

� Get Advice and tips from expert blogs at informit.com/blogs.

Visit informit.com�XS�½RH�SYX�EPP�XLI�[E]W�]SY�GER�EGGIWW�XLI�LSXXIWX�XIGLRSPSK]�GSRXIRX�

Are you part of the IT crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook, Twitter, YouTube
and more! Visit informit.com/socialconnect .

 InformIT is a brand of Pearson and the online presence for the world’s
PIEHMRK� XIGLRSPSK]�TYFPMWLIVW�� -X´W�]SYV� WSYVGI� JSV� VIPMEFPI�ERH�UYEPM½IH

content and knowledge, providing access to the leading brands, authors, and contributors
from the tech community.

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

	Contents
	Preface
	3 Creating a REST Server in Compojure
	Assumptions
	Benefits
	The Recipe — Code
	Testing the Solution
	Notes on the Recipe
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Y
	Z

