
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321926968
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321926968
https://plusone.google.com/share?url=http://www.informit.com/title/9780321926968
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321926968
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321926968/Free-Sample-Chapter

Cyber-Physical Systems

Cyber-Physical
Systems

Raj Rajkumar

Dionisio de Niz

Mark Klein

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
 letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon,
CERT, and CERT Coordination Center are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk
Evaluation; CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems;
Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE;
Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis
for Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP;
SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software
Process; and TSP are service marks of Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
 omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016953412

Copyright © 2017 Pearson Education, Inc.

Cover images by Xavier MARCHANT/Fotolia; Small Town Studio/Fotolia; Josemaria
Toscano/Fotolia; Mario Beauregard/Fotolia; Algre/Fotolia; Antiksu/Fotolia; and James
Steidl/ShutterStock.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-92696-8
ISBN-10: 0-321-92696-X

1 16

http://www.pearsoned.com/permissions/

To our families

This page intentionally left blank

vii

Contents

Introduction xiii

Emergence of CPS xiv
CPS Drivers xvi

Applications xvi
Theoretical Foundations xvii

Target Audience xix

PART I Cyber-Physical System Application Domains 1

Chapter 1 Medical Cyber-Physical Systems 3

1.1 Introduction and Motivation 4
1.2 System Description and Operational Scenarios 5

1.2.1 Virtual Medical Devices 7
1.2.2 Clinical Scenarios 8

1.3 Key Design Drivers and Quality Attributes 9
1.3.1 Trends 9
1.3.2 Quality Attributes and Challenges of the MCPS

Domain 12
1.3.3 High-Confidence Development of MCPS 14
1.3.4 On-Demand Medical Devices and Assured Safety 21
1.3.5 Smart Alarms and Clinical Decision Support

Systems 28
1.3.6 Closed-Loop System 34
1.3.7 Assurance Cases 40

1.4 Practitioners’ Implications 48
1.4.1 MCPS Developer Perspective 49

Contentsviii

1.4.2 MCPS Administrator Perspective 50
1.4.3 MCPS User Perspective 50
1.4.4 Patient Perspective 51
1.4.5 MCPS Regulatory Perspective 51

1.5. Summary and Open Challenges 52
References 53

Chapter 2 Energy Cyber-Physical Systems 61

2.1 Introduction and Motivation 62
2.2 System Description and Operational Scenarios 63
2.3 Key Design Drivers and Quality Attributes 65

2.3.1 Key Systems Principles 67
2.3.2 Architecture 1 Performance Objectives 73
2.3.3 A Possible Way Forward 78

2.4 Cyber Paradigm for Sustainable SEES 79
2.4.1 Physics-Based Composition of CPS for an SEES 82
2.4.2 DyMonDS-Based Standards for CPS of an SEES 86
2.4.3 Interaction Variable–Based Automated

Modeling and Control 94
2.5 Practitioners’ Implications 96

2.5.1 IT-Enabled Evolution of Performance Objectives 96
2.5.2 Distributed Optimization 96

2.6 Summary and Open Challenges 97
References 100

Chapter 3 Cyber-Physical Systems Built on Wireless
Sensor Networks 103

3.1 Introduction and Motivation 104
3.2 System Description and Operational Scenarios 105

3.2.1 Medium Access Control 107
3.2.2 Routing 109
3.2.3 Node Localization 111
3.2.4 Clock Synchronization 113
3.2.5 Power Management 114

Contents ix

3.3 Key Design Drivers and Quality Attributes 115
3.3.1 Physically Aware 115
3.3.2 Real-Time Aware 116
3.3.3 Runtime Validation Aware 118
3.3.4 Security Aware 120

3.4 Practitioners’ Implications 122
3.5 Summary and Open Challenges 124
References 125

PART II Foundations 131

Chapter 4 Symbolic Synthesis for
Cyber-Physical Systems 133

4.1 Introduction and Motivation 134
4.2 Basic Techniques 135

4.2.1 Preliminaries 135
4.2.2 Problem Definition 135
4.2.3 Solving the Synthesis Problem 144
4.2.4 Construction of Symbolic Models 148

4.3 Advanced Techniques 152
4.3.1 Construction of Symbolic Models 154
4.3.2 Continuous-Time Controllers 156
4.3.3 Software Tools 157

4.4 Summary and Open Challenges 158
References 159

Chapter 5 Software and Platform Issues in
Feedback Control Systems 165

5.1 Introduction and Motivation 166
5.2 Basic Techniques 167

5.2.1 Controller Timing 167
5.2.2 Control Design for Resource Efficiency 169

5.3 Advanced Techniques 171
5.3.1 Reducing the Computation Time 171

Contentsx

5.3.2 Less Frequent Sampling 172
5.3.3 Event-Based Control 173
5.3.4 Controller Software Structures 174
5.3.5 Sharing of Computing Resources 176
5.3.6 Analysis and Simulation of

Feedback Control Systems 178
5.4 Summary and Open Challenges 192
References 193

Chapter 6 Logical Correctness for Hybrid Systems 197

6.1 Introduction and Motivation 198
6.2 Basic Techniques 200

6.2.1 Discrete Verification 200
6.3 Advanced Techniques 221

6.3.1 Real-Time Verification 221
6.3.2 Hybrid Verification 227

6.4 Summary and Open Challenges 231
References 232

Chapter 7 Security of Cyber-Physical Systems 237

7.1 Introduction and Motivation 238
7.2 Basic Techniques 239

7.2.1 Cyber Security Requirements 239
7.2.2 Attack Model 240
7.2.3 Countermeasures 245

7.3 Advanced Techniques 248
7.3.1 System Theoretic Approaches 248

7.4 Summary and Open Challenges 256
References 256

Chapter 8 Synchronization in Distributed
Cyber-Physical Systems 259

8.1 Introduction and Motivation 259
8.1.1 Challenges in Cyber-Physical Systems 261

Contents xi

8.1.2 A Complexity-Reducing Technique for
Synchronization 261

8.2 Basic Techniques 262
8.2.1 Formal Software Engineering 263
8.2.2 Distributed Consensus Algorithms 264
8.2.3 Synchronous Lockstep Executions 266
8.2.4 Time-Triggered Architecture 267
8.2.5 Related Technology 268

8.3 Advanced Techniques 270
8.3.1 Physically Asynchronous,

Logically Synchronous Systems 270
8.4 Summary and Open Challenges 282
References 283

Chapter 9 Real-Time Scheduling for Cyber-Physical Systems 289

9.1 Introduction and Motivation 290
9.2 Basic Techniques 291

9.2.1 Scheduling with Fixed Timing Parameters 291
9.2.2 Memory Effects 300

9.3 Advanced Techniques 301
9.3.1 Multiprocessor/Multicore Scheduling 301
9.3.2 Accommodating Variability and Uncertainty 313
9.3.3 Managing Other Resources 318
9.3.4 Rhythmic Tasks Scheduling 323

9.4 Summary and Open Challenges 325
References 325

Chapter 10 Model Integration in Cyber-Physical Systems 331

10.1 Introduction and Motivation 332
10.2 Basic Techniques 333

10.2.1 Causality 334
10.2.2 Semantic Domains for Time 335
10.2.3 Interaction Models for

Computational Processes 336

Contentsxii

10.2.4 Semantics of CPS DSMLs 337
10.3 Advanced Techniques 338

10.3.1 ForSpec 339
10.3.2 The Syntax of CyPhyML 342
10.3.3 Formalization of Semantics 344
10.3.4 Formalization of Language Integration 349

10.4 Summary and Open Challenges 356
References 357

About the Authors 361

About the Contributing Authors 363

Index 371

xiii

Introduction

Ragunathan (Raj) Rajkumar, Dionisio de Niz, and Mark Klein

The National Science Foundation defines cyber-physical systems (CPS) as
“engineered systems that are built from, and depend upon, the seamless
integration of computational algorithms and physical components”—that
is, cyber and physical components. In practical terms, this integration
means that, to understand CPS behavior, we cannot focus only on the
cyber part or only on the physical part. Instead, we need to consider both
parts working together. For instance, if we try to verify the behavior of the
airbag of a car, it is not enough to ensure that the correct instructions to
inflate the airbag are executed when the system detects that a crash is
occurring. We also need to verify that the execution of such instructions is
completed in sync with the physical process—for example, within 20 ms—
so as to ensure that the airbag is fully inflated before the driver hits the
steering wheel. The seamless integration between the cyber and physical
parts of a CPS involves an understanding across multiple aspects that, in
this simple example, include software logic, software execution timing,
and physical forces.

While the airbag example already contains important elements of a
CPS, we must note that it is one of the simplest examples and does not
involve the most significant challenges for CPS. In particular, both the
cyber components and the physical components are very simple in this
case, and their interaction can be reduced to worst-case differences between
the software execution completion time and the time it takes the driver to
hit the steering wheel in a crash. However, as the complexity of both the
software and the physical processes grows, the complexity of their integra-
tion also increases significantly. In a large CPS—for example, one of the
latest commercial aircraft—the integration of multiple physical and cyber
components and the tradeoffs between their multiple aspects become very
challenging. For instance, the simple use of additional lithium ion batteries

Introductionxiv

in the Boeing 787 Dreamliner brings a combination of multiple constraints
that must be satisfied. In particular, we not only need to be able to satisfy
the power consumption requirements under different operating modes
with a specific configuration of batteries (interacting with software that is
run at a specific processor speed and voltage), but we also need to manage
when and how battery cells are charged and discharge while preserving
the required voltage and verify that the charge/discharge configurations
do not overheat the battery (causing it to burst into flames, as occurred
during the first few flights of the 787), which interacts with the thermal
dissipation design of the system. More importantly, all of these aspects,
and more, must be certified under the strict safety standards from the
Federal Aviation Administration (FAA).

CPS, however, are facing even more challenges than the increased
complexity coming from single systems. Notably, they are being devel-
oped to interact with other CPS without human intervention. This phe-
nomenon resembles the way the Internet began. Specifically, the Internet
started as a simple connection between two computers. However, the
real revolution happened when computers all over the world were con-
nected seamlessly and a large number of services were developed on top
of this worldwide network. Such connectivity not only allowed services
to be delivered all over the globe, but also enabled the collection and
processing of massive amounts of information in what is now known as
“Big Data.” Big Data allow us to explore trends among groups of people,
or even explore trends in real time when they are combined with social
media such as Facebook and Twitter. In CPS, this revolution is just start-
ing. We can already observe services that collect driving information
through global positioning system (GPS) applications on smartphones
and allow us to select routes with low traffic congestion, thereby taking
us in the direction of a smart highway, even if it is still mediated by
humans. More significant steps in this direction are occurring every day,
such as in the multiple projects involving autonomous cars. Most of
these cars not only know how to drive a route autonomously, but also
correctly interact with other non-autonomous cars on the route.

Emergence of CPS

Before CPS emerged as a specific, yet evolving discipline, systems com-
posed of physical and cyber components already existed. However, the
interactions between these two types of components were very simple,

Introduction xv

and the supporting theoretical foundations were mostly partitioned into
silos. Specifically, the theoretical foundations for computer science and
physical sciences where developed independently and ignored each
other. As a result, techniques to, say, verify properties in one discipline
such as thermal resilience, aerodynamics, and mechanical stress were
developed independently from advances in computer science such as
logical clocks, model checking, type systems, and so on. These advances,
in fact, abstracted away behaviors that could be important in one disci-
pline but were not relevant in the other. This is the case, for instance, with
the timeless nature of programming languages and logical verification
models in which only sequences of instructions are considered. This
nature contrasts with the importance of time in the evolution of physical
processes such as the movement of a car and maintenance of the tem-
perature of a room that we are trying to control.

The early realization of the interactions between computational and
physical science gave birth to some simple and mostly pairwise interac-
tion models. This is the case with real-time scheduling theory and control
theory, for example. On the one hand, scheduling theory adds time to
computational elements and allows us to verify the response time of com-
putations that interact with physical processes, thereby ensuring that such
a process does not deviate beyond what the computational part expects
and is capable of correcting. On the other hand, control theory allows us to
put together a control algorithm and a physical process and analyze
whether it would be possible for the algorithm to keep the system within
a desired region around a specific setpoint. While control theory uses a
continuous time model in which computations happen instantaneously, it
allows the addition of delays to take into account the computation time
(including scheduling), making it possible to specify the periodicity of
computations and provide a clean interface with scheduling.

As the complexity of the interactions between domains increases,
new techniques are developed to model such interactions. This is the
case, for instance, with hybrid systems—a type of state machine in which
the states model computational and physical states and the transitions
model computational actions and physical evolutions. While these tech-
niques enhance the capacity to describe complex interactions, their anal-
ysis is, more often than not, intractable. In general, the complexity of
these models prevents the analysis of systems of practical dimensions.
As the number of scientific disciplines that need to be considered grows
(e.g., functional, thermal, aerodynamics, mechanical, fault tolerance),
their interactions need to be analyzed to ensure that the assumptions of
each discipline and its models are not invalidated by the other

Introductionxvi

disciplines’ models. For instance, the speed of a processor assumed by a
real-time scheduling algorithm may be invalidated if the dynamic ther-
mal management (DTM) system of the processor decreases the speed of
this processor to prevent it from overheating.

CPS Drivers

While CPS are already being built today, the challenge is to be able to
understand their behavior and develop techniques to verify their relia-
bility, security, and safety. This is, indeed, the core motivation of the sci-
entific community around CPS. As a result, CPS has been driven by two
mutually reinforcing drivers: applications and theoretical foundations.

Applications

CPS applications have allowed researchers to team up with practition-
ers to better understand the problems and challenges and provide solu-
tions that can be tested in practical settings. This is the case with medical
devices, for example: CPS researchers have teamed up with medical
doctors to understand the origin and challenges of medical device-
based errors. For instance, some errors associated with infusion pumps
were caused by incorrect assumptions about how the human body pro-
cesses different drugs, how to implement the safeguards to avoid over-
dose, and how to ensure that a nurse enters the correct information.
Furthermore, the current generation of medical devices are certified
only as individual devices and are not allowed to be connected to one
another. As a result, health practitioners are required to coordinate the
use of these devices and ensure the safety of their interactions. For
instance, if an X ray of the chest is taken during an operation, it is neces-
sary to ensure that the respirator is disabled (if one is in used). However,
once the X rays are taken, the respirator needs to be re-enabled within
a safe interval of time to prevent the patient from suffocating. While
this invariant could be implemented in software, the current certifica-
tion techniques and policies prevent this kind of integration from hap-
pening. Researchers working in this area are developing techniques to
enable the certification of these interactions. This issue is discussed at
length in Chapter 1, “Medical Cyber-Physical Systems.”

The electric grid is another important application area due to its
national importance as a critical infrastructure. A key challenge in this

Introduction xvii

area is the uncoordinated nature of the actions that affect the consump-
tion and generation of electricity by a large number of consumers and
providers, respectively. In particular, each individual household is able
to change its consumption with the flip of a switch; the consequences
of these decisions then have an aggregate effect on the grid that needs
to be balanced with the supply. Similarly, renewable power-generation
sources, such as wind and solar energy, provide sporadic and unpre-
dictable bursts of energy, making the balance of supply and demand
very challenging with such systems. More importantly, the interactions
between these elements are both cyber and physical in nature. On the
one hand, some level of computer-mediated coordination happens
between suppliers. On the other hand, the interactions with the con-
sumer occur mostly through the physical consumption of electricity.
Today, a number of techniques are already being used for the develop-
ment and control of power grids to prevent damage to the infrastruc-
ture and improve reliability. However, new challenges require a new
combination of cyber and physical elements that can support efficient
markets, renewable energy sources, and cheaper energy prices.
Chapter 2, “Energy Cyber-Physical Systems,” discusses the challenges
and advances in the electric grid domain.

Perhaps one of the most interesting application areas that has cre-
ated its own technical innovations is sensor networks. The develop-
ment and deployment of sensor networks faces challenges of space,
time, energy, and reliability that are very particular to this area. The
challenges facing sensor networks as well as the main technical innova-
tions in this area are discussed in Chapter 3, “Cyber-Physical Systems
Built on Wireless Sensor Networks.”

Other application areas have their own momentum, and yet other
emerging areas may soon appear on the horizon. This book discusses
some of the most influential areas that are defining the CPS discipline.

Theoretical Foundations

The theoretical advances in CPS have largely focused on the challenges
imposed by the interactions between multiple scientific domains. This is
the case, for instance, with real-time scheduling. A few trends in this area
are worth mentioning. First, new scheduling models to accommodate exe-
cution overloads have appeared. These models combine multiple execu-
tion budgets with a criticality classification to guarantee that during a
normal operation all tasks will meet their deadlines; if an overload occurs,
however, the high-criticality tasks meet their deadlines by stealing

Introductionxviii

processor cycles from low-criticality tasks. The second trend comes from
variations in periodicity. The so-called rhythmic task model allows tasks to
continuously vary their periodicity following physical events of variable
frequency. This is the case, for instance, with tasks triggered by the angular
position of the crankshaft in the engine of a car: New scheduling analysis
techniques were developed to verify the timing aspect of these systems.
The real-time scheduling foundations and innovations are discussed in
Chapter 9, “Real-Time Scheduling for Cyber-Physical Systems.”

Cross-cutting innovations between model checking and control
theory for control synthesis are among the recent noteworthy develop-
ments. In this scheme, hybrid state machine models are used to describe
the behavior of the physical plant and the requirements of the compu-
tational algorithm. Then, this model is used to automatically synthe-
size the controller algorithm enforcing the desired specifications. This
scheme is discussed at length in Chapter 4, “Symbolic Synthesis for
Cyber-Physical Systems.” Similarly, a number of new techniques have
been developed to analyze the timing effects of a scheduling discipline
in control algorithms. These issues are discussed in Chapter 5, “Software
and Platform Issues in Feedback Control Systems.”

Another area of interaction that has been explored is the relation-
ship between model checking and scheduling. In this case, a new model
checker called REK was developed to take advantage of the constraints
that the rate-monotonic scheduler and periodic task model imposes on
task inter-leavings in an effort to reduce the verification efforts. These
new interactions are discussed in Chapter 6, “Logical Correctness for
Hybrid Systems.”

Security is another big area that is significantly affected by the pres-
ence of physical processes. In particular, the interactions between soft-
ware and physical processes present new opportunities for potential
attackers that make CPS security different from software-only security.
This difference arises because attacks against, say, sensors to provide
false sensor readings can sometimes be very difficult to distinguish
from genuine readings from the physical processes. A number of inno-
vations to prevent this kind of man-in-the-middle attack, as well as
other significant techniques, are presented in Chapter 7, “Security of
Cyber-Physical Systems.”

For distributed systems, new techniques to enforce synchronized com-
munication between distributed agents have proved very useful to reduce
the effort needed to produce formal proofs of functional correctness in dis-
tributed real-time systems. This issue is discussed at length in Chapter 8,
“Synchronization in Distributed Cyber-Physical Systems.”

Introduction xix

CPS analysis techniques rely on models, and the formal semantics
of these models is a key challenge that must be addressed. Chapter 10,
“Model Integration in Cyber-Physical Systems,” presents the latest
developments in the definition of formal semantics for models in what
are called model-integration languages.

A large number of theoretical advances are discussed in this book,
along with the open challenges in each area. While some advances stem
from specific challenges in application areas, others expose new
opportunities.

Target Audience

This book is aimed at both practitioners and researchers. For practition-
ers, the book profiles both the current application areas that are benefit-
ing from CPS perspectives and the current techniques that had proved
successful for the development of the current generation of CPS. For
the researcher, this book provides a survey of application areas and
highlights their current achievements and open challenges as well as
the current scientific advances and their challenges.

The book is divided into two parts. Part I, “Cyber-Physical System
Application Domains,” presents the current CPS application areas that
are driving the CPS revolution. Part II, “Foundations,” presents the
current theoretical foundations from the multiple scientific disciplines
used in the development of CPS.

Register your copy of Cyber-Physical Systems at informit.com for con-
venient access to downloads, updates, and corrections as they
become available. To start the registration process, go to informit.
com/register and log in or create an account. Enter the product ISBN
(9780321926968) and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

This page intentionally left blank

1

Part I

Cyber-Physical
System
Application
Domains

This page intentionally left blank

3

Chapter 1

Medical Cyber-
Physical Systems1

Medical cyber-physical systems (MCPS) are life-critical, context-aware,
networked systems of medical devices that are collectively involved in
treating a patient. These systems are increasingly used in hospitals to
provide high-quality continuous care for patients in complex clinical
scenarios. The need to design complex MCPS that are both safe and
effective has presented numerous challenges, inclulding achieving
high levels of assurance in system software, interoperability, context-
aware decision support, autonomy, security and privacy, and certifica-
tion. This chapter discusses these challenges in developing MCPS,
provides case studies that illustrate these challenges and suggests ways
to address them, and highlights several open research and develop-
ment issues. It concludes with a discussion of the implications of MCPS
for stakeholders and practitioners.

1. Research is supported in part by NSF grants CNS-1035715, IIS-1231547, and ACI-
1239324, and NIH grant 1U01EB012470-01.

Insup Lee, Anaheed Ayoub, Sanjian Chen, Baekgyu Kim,
Andrew King, Alexander Roederer, and Oleg Sokolsky

Chapter 1 Medical Cyber-Physical Systems4

1.1 Introduction and Motivation

The two most significant transformations in the field of medical devices
in recent times are the high degree of reliance on software-defined
functionality and the wide availability of network connectivity. The
former development means that software plays an ever more signifi-
cant role in the overall device safety. The latter implies that, instead of
stand-alone devices that can be designed, certified, and used indepen-
dently of each other to treat patients, networked medical devices will
work as distributed systems that simultaneously monitor and control
multiple aspects of the patient’s physiology. The combination of the
embedded software controlling the devices, the new networking capa-
bilities, and the complicated physical dynamics of the human body
makes modern medical device systems a distinct class of cyber-physical
systems (CPS).

The goal of MCPS is to improve the effectiveness of patient care by
providing personalized treatment through sensing and patient model
matching while ensuring safety. However, the increased scope and
complexity of MCPS relative to traditional medical systems present
numerous developmental challenges. These challenges need to be sys-
tematically addressed through the development of new design, com-
position, verification, and validation techniques. The need for these
techniques presents new opportunities for researchers in MCPS and,
more broadly, embedded technologies and CPS. One of the primary
concerns in MCPS development is the assurance of patient safety. The
new capabilities of future medical devices and the new techniques for
developing MCPS with these devices will, in turn, require new regula-
tory procedures to approve their use for treating patients. The tradi-
tional process-based regulatory regime used by the U.S. Food and Drug
Administration (FDA) to approve medical devices is becoming lengthy
and prohibitively expensive owing to the increased MCPS complexity,
and there is an urgent need to ease this often onerous process without
compromising the level of safety it delivers.

In this chapter, we advocate a systematic approach to analysis and
design of MCPS for coping with their inherent complexity. Consequently,
we suggest that model-based design techniques should play a larger
role in MCPS design. Models should cover not only devices and com-
munications between them, but also, of equal importance, patients and
caregivers. The use of models will allow developers to assess system
properties early in the development process and build confidence in

1.2 System Description and Operational Scenarios 5

the safety and effectiveness of the system design, well before the sys-
tem is built. Analysis of system safety and effectiveness performed at
the modeling level needs to be complemented by generative imple-
mentation techniques that preserve properties of the model during the
implementation stage. Results of model analysis, combined with the
guarantees of the generation process, can form the basis for evidence-
based regulatory approval. The ultimate goal is to use model-based
development as the foundation for building safe and effective MCPS.

This chapter describes some of the research directions being taken
to address the various challenges involved in building MCPS:

• Stand-alone device: A model-based high-assurance software devel-
opment scheme is described for stand-alone medical devices such
as patient-controlled analgesia (PCA) pumps and pacemakers.

• Device interconnection: A medical device interoperability framework
is presented for describing, instantiating, and validating clinical
interaction scenarios.

• Adding intelligence: A smart alarm system is presented that takes
vital signs data from various interacting devices to inform caregiv-
ers of potential patient emergencies and non-operational issues
about the devices.

• Automated actuation/delivery: A model-based closed-loop care deliv-
ery system is presented, which can autonomously deliver care to
the patients based on the current state of the patient.

• Assurance cases: The use of assurance cases is described for organ-
izing collections of claims, arguments, and evidence to establish the
safety of a medical device system.

MCPS are viewed in a bottom-up manner in this chapter. That is, we
first describe issues associated with individual devices, and then pro-
gressively increase their complexity by adding communication, intelli-
gence, and feedback control. Preliminary discussion of some of these
challenges has appeared in [Lee12].

1.2 System Description and Operational Scenarios

MCPS are safety-critical, smart systems of interconnected medical
devices that are collectively involved in treating a patient within a spe-
cific clinical scenario. The clinical scenario determines which treatment

Chapter 1 Medical Cyber-Physical Systems6

options can be chosen and which adjustments of treatment settings
need to be made in response to changes in the patient’s condition.

Traditionally, decisions about the treatment options and settings
have been made by the attending caregiver, who makes them by mon-
itoring patient state using individual devices and performing manual
adjustments. Thus, clinical scenarios can be viewed as closed-loop
systems in which caregivers are the controllers, medical devices act as
sensors and actuators, and patients are the “plants.” MCPS alter this
view by introducing additional computational entities that aid the
caregiver in controlling the “plant.” Figure 1.1 presents a conceptual
overview of MCPS.

Devices used in MCPS can be categorized into two large groups
based on their primary functionality:

• Monitoring devices, such as bedside heart rate and oxygen level
monitors and sensors, which provide different kinds of clinic-
relevant information about patients

• Delivery devices, such as infusion pumps and ventilators, which
actuate therapy that is capable of changing the patient’s physiologi-
cal state

Monitoring
Medical
Devices

Patient

Treatment Delivery
Medical Devices

Administrative
Support

Smart
Controller

−Setpoint Error I

P

Process Output

Kpe(t)

D

Decision Support

Smart
Alarm

Caregiver

+

−

Σ ΣKi e (τ)dτ
t

0
∫

Kd
de(t)
dt

Figure 1.1: A conceptual overview of medical cyber-physical systems

© 2012 IEEE. Reprinted, with permission, from Proceedings of the IEEE (vol. 100, no. 1,
January 2012).

1.2 System Description and Operational Scenarios 7

In MCPS, interconnected monitoring devices can feed collected data
to decision support or administrative support entities, each of which
serves a different, albeit complementary, purpose. For example, care-
givers can analyze the information provided by these devices and
then use delivery devices to initiate treatment, thereby bringing the
caregiver into the control loop around the patient. Alternatively,
the decision support entities might utilize a smart controller to ana-
lyze the data received from the monitoring devices, estimate the state
of the patient’s health, and automatically initiate treatment (e.g., drug
infusion) by issuing commands to delivery devices, thereby closing
the loop.

Most medical devices rely on software components for carrying out
their tasks. Ensuring the safety of these devices and their interopera-
tion is crucial. One of the more effective strategies to do so is to use
model-based development methods, which can ensure device safety by
enabling medical device verification. This strategy also opens the door
for eventually certifying the devices to meet certain safety standards.

1.2.1 Virtual Medical Devices

Given the high complexity of MCPS, any such system has to be user-
centric; that is, it must be easy to set up and use, in a largely auto-
mated manner. One way to accomplish this is to develop a description
of the MCPS workflow and then enforce it on physical devices. MCPS
workflow can be described in terms of the number and types of devices
involved, their mutual interconnections, and the clinical supervisory
algorithm needed for coordination and analysis of data collected by the
system. Such a description defines virtual medical device (VMD). VMDs
are used by a VMD app and instantiated during the setup of actual
medical devices—that is, as part of a virtual medical device instance.

The devices in a VMD instance are usually interconnected using
some form of interoperability middleware, which is responsible for
ensuring that the inter-device connections are correctly configured.
The principal task of the VMD app, therefore, is to find the medical
devices in a VMD instance (which may be quite large), establish net-
work connections between them, and install the clinical algorithm into
the supervisor module of the middleware for managing the interac-
tions of the clinical workflow and the reasoning about the data pro-
duced. Basically, when the VMD app is started, the supervisor reads
the VMD app specification and tries to couple all involved devices
according to the specification. Once the workflow has run its course,

Chapter 1 Medical Cyber-Physical Systems8

the VMD app can perform the necessary cleanup to allow another
workflow to be specified using a different combination of medical
devices in the VMD instance.

1.2.2 Clinical Scenarios

Each VMD supports a specific clinical scenario with a detailed descrip-
tion of how devices and clinical staff work together in a clinical situa-
tion or event. Here, we describe two such scenarios: one for X ray and
ventilator coordination and another for a patient-controlled analgesia
(PCA) safety interlock system.

One example that illustrates how patient safety can be improved by
MCPS is the development of a VMD that coordinates the interaction
between an X-ray machine and a ventilator. Consider the scenario
described by [Lofsky04]. X-ray images are often taken during surgical
procedures. If the surgery is being performed under general anesthe-
sia, the patient breathes with the help of a ventilator during the proce-
dure. Because the patient on ventilator cannot hold his or her breath to
let the X-ray image be taken without the blur caused by moving lungs,
the ventilator has to be paused and later restarted. In some unfortunate
cases, the ventilator was not restarted, leading to the death of the
patient.

Interoperation of the two devices can be used in several ways to
ensure that patient safety is not compromised, as discussed in
[Arney09]. One possibility is to let the X-ray machine pause and
restart the ventilator automatically. A safer alternative, albeit one pre-
senting tighter timing constraints, is to let the ventilator transmit its
internal state to the X-ray machine. There typically is enough time to
take an X-ray image at the end of the breathing cycle, between the
time when the patient has finished exhaling and the time he or she
starts the next inhalation. This approach requires the X-ray machine
to know precisely the instance when the air flow rate becomes close
enough to zero and the time when the next inhalation starts. Then, it
can decide to take a picture if enough time—taking transmission
delays into account—is available.

Another clinical scenario that can easily benefit from the closed-
loop approach of MCPS is patient-controlled analgesia. PCA infusion
pumps are commonly used to deliver opioids for pain management—
for instance, after surgery. Patients have very different reactions to
the medications and require distinct dosages and delivery schedules.
PCA pumps allow patients to press a button to request a dose when

1.3 Key Design Drivers and Quality Attributes 9

they decide they want it, rather than using a dosing schedule fixed by
a caregiver. Some patients may decide they prefer a higher level of
pain to the nausea that the drugs may cause and, therefore, press the
button less often; others, who need a higher dose, can press the but-
ton more often.

A major problem with opioid medications in general is that an
excessive dose can cause respiratory failure. A properly programmed
PCA system should prevent an overdose by limiting how many doses
it will deliver, regardless of how often the patient pushes the button.
However, this safety mechanism is not sufficient to protect all patients.
Some patients may still receive overdoses if the pump is mispro-
grammed, if the pump programmer overestimates the maximum dose
that a patient can receive, if the wrong concentration of drug is loaded
into the pump, or if someone other than the patient presses the button
(PCA-by-proxy), among other causes. PCA infusion pumps are cur-
rently associated with a large number of adverse events, and existing
safeguards such as drug libraries and programmable limits are not
adequate to address all the scenarios seen in clinical practice
[Nuckols08].

1.3 Key Design Drivers and Quality Attributes

While software-intensive medical devices such as infusion pumps,
ventilators, and patient monitors have been used for a long time, the
field of medical devices is currently undergoing a rapid transforma-
tion. The changes under way are raising new challenges in the develop-
ment of high-confidence medical devices, yet are simultaneously
opening up new opportunities for the research community [Lee06].
This section begins by reviewing the main trends that have emerged
recently, then identifies quality attributes and challenges, and finally
provides a detailed discussion of several MCPS-specific topics.

1.3.1 Trends

Four trends in MCPS are critical in the evolution of the field: software
as the main driver of new features, device interconnection, closed loops
that automatically adjust to physiological response, and a new focus on
continuous monitoring and care. The following subsections discuss
each of these trends.

Chapter 1 Medical Cyber-Physical Systems10

1.3.1.1 New Software-Enabled Functionality

Following the general trend in the field of embedded systems, and
more broadly in cyber-physical systems, introduction of new function-
ality is largely driven by the new possibilities that software-based
development of medical device systems is offering. A prime example of
the new functionality is seen in the area of robotic surgery, which
requires real-time processing of high-resolution images and haptic
feedback.

Another example is proton therapy treatment. One of the most
technology-intensive medical procedures, it requires one of the largest-
scale medical device systems. To deliver its precise doses of radiation to
patients with cancer, the treatment requires precise guiding of a proton
beam from a cyclotron to patients, but must be able to adapt to even
minor shifts in the patient’s position. Higher precision of the treatment,
compared to conventional radiation therapy, allows higher radiation
doses to be applied. This, in turn, places more stringent requirements
on patient safety. Control of proton beams is subject to very tight tim-
ing constraints, with much less tolerance than for most medical devices.
To further complicate the problem, the same beam is applied to multi-
ple locations in the patient’s body and needs to be switched from loca-
tion to location, opening up the possibility of interference between
beam scheduling and application. In addition to controlling the proton
beam, a highly critical function of software in a proton treatment sys-
tem is real-time image processing to determine the precise position of
the patient and detect any patient movement. In [Rae03], the authors
analyzed the safety of proton therapy machines, but their analysis con-
centrated on a single system, the emergency shutdown. In general,
proper analysis and validation of such large and complex systems
remains one of the biggest challenges facing the medical device
industry.

As further evidence of the software-enabled functionality trend,
even in simpler devices, such as pacemakers and infusion pumps, more
and more software-based features are being added, making their device
software more complex and error prone [Jeroeno4]. Rigorous
approaches are required to make sure that the software in these devices
operates correctly. Because these devices are relatively simple, they are
good candidates for case studies of challenges and experimental devel-
opment techniques. Some of these devices, such as pacemakers, are
being used as challenge problems in the formal methods research com-
munity [McMaster13].

1.3 Key Design Drivers and Quality Attributes 11

1.3.1.2 Increased Connectivity of Medical Devices

In addition to relying on software to a greater extent, medical devices
are increasingly being equipped with network interfaces. In essence,
interconnected medical devices form a distributed medical device sys-
tem of a larger scale and complexity that must be properly designed
and validated to ensure effectiveness and patient safety. Today, the net-
working capabilities of medical devices are primarily exploited for
patient monitoring purposes (through local connection of individual
devices to integrated patient monitors or for remote monitoring in a
tele-ICU [Sapirstein09] setting) and for interaction with electronic
health records to store patient data.

The networking capabilities of most medical devices today are lim-
ited in functionality and tend to rely on proprietary communication
protocols offered by major vendors. There is, however, a growing reali-
zation among clinical professionals that open interoperability between
different medical devices will lead to improved patient safety and new
treatment procedures. The Medical Device Plug-and-Play (MD PnP)
Interoperability initiative [Goldman05, MDPNP] is a relatively recent
effort that aims to provide an open standards framework for safe and
flexible interconnectivity of medical devices, with the ultimate goal of
improving patient safety and health care efficiency. In addition to
developing interoperability standards, the MD PnP initiative collects
and demonstrates clinical scenarios in which interoperability leads to
improvement over the existing practice.

1.3.1.3 Physiological Closed-Loop Systems

Traditionally, most clinical scenarios have a caregiver—and often more
than one—controlling the process. For example, an anesthesiologist
monitors sedation of a patient during a surgical procedure and decides
when an action to adjust the flow of sedative needs to be taken. There
is a concern in the medical community that such reliance on humans
being in the loop may compromise patient safety. Caregivers, who are
often overworked and operate under severe time pressures, may miss
a critical warning sign. Nurses, for example, typically care for multiple
patients at a time and can become distracted. Using an automatic con-
troller to provide continuous monitoring of the patient state and han-
dling of routine situations would relieve some of the pressure on the
caregiver and might potentially improve patient care and safety.
Although the computer will probably never replace the caregiver

Chapter 1 Medical Cyber-Physical Systems12

completely, it can significantly reduce the workload, calling the care-
giver’s attention only when something out of the ordinary happens.

Scenarios based on physiological closed-loop control have been
used in the medical device industry for some time. However, their
application has been mostly limited to implantable devices that cover
relatively well-understood body organs—for example, the heart, in the
case of pacemakers and defibrillators. Implementing closed-loop sce-
narios in distributed medical device systems is a relatively new idea
that has not made its way into mainstream practice as yet.

1.3.1.4 Continuous Monitoring and Care

Due to the high costs associated with in-hospital care, there has been
increasing interest in alternatives such as home care, assisted living,
telemedicine, and sport-activity monitoring. Mobile monitoring and
home monitoring of vital signs and physical activities allow health to
be assessed remotely at all times. Also, sophisticated technologies such
as body sensor networks to measure training effectiveness and athletic
performance based on physiological data such as heart rate, breathing
rate, blood sugar level, stress level, and skin temperature are becoming
more popular. However, most of the current systems operate in store-
and-forward mode, with no real-time diagnostic capability.
Physiological closed-loop technology will allow diagnostic evaluation
of vital signs in real time and make constant care possible.

1.3.2 Quality Attributes and Challenges of the MCPS Domain

Building MCPS applications requires ensuring the following quality
attributes, which in turn pose significant challenges:

• Safety: Software is playing an increasingly important role in medi-
cal devices. Many functions traditionally implemented in hard-
ware—including safety interlocks—are now being implemented in
software. Thus high-confidence software development is critical to
ensure the safety and effectiveness of MCPS. We advocate the use
of model-based development and analysis as a means of ensuring
the safety of MCPS.

• Interoperability: Many modern medical devices are equipped with net-
work interfaces, enabling us to build MCPS with new capabilities by
combining existing devices. Key to such systems is the concept of inter-
operability, wherein individual devices can exchange information

1.3 Key Design Drivers and Quality Attributes 13

facilitated by an application deployment platform. It is essential to
ensure that the MCPS built from interoperable medical devices are
safe, effective, and secure, and can eventually be certified as such.

• Context-awareness: Integration of patient information from multiple
sources can provide a better understanding of the state of the
patient’s health, with the combined data then being used to enable
early detection of ailments and generate effective alarms in the
event of emergency. However, given the complexity of human
physiology and the many variations of physiological parameters
over patient populations, developing such computational intelli-
gence is a nontrivial task.

• Autonomy: The computational intelligence that MCPS possess can
be applied to increase the autonomy of the system by enabling
actuation of therapies based on the patient’s current health state.
Closing the loop in this manner must be done safely and effectively.
Safety analysis of autonomous decisions in the resulting closed-
loop system is a major challenge, primarily due to the complexity
and variability of human physiology.

• Security and privacy: Medical data collected and managed by MCPS
are very sensitive. Unauthorized access or tampering with this
information can have severe consequences to the patient in the
form of privacy loss, discrimination, abuse, and physical harm.
Network connectivity enables new MCPS functionality by exchang-
ing patient data from multiple sources; however, it also increases
the vulnerability of the system to security and privacy violations.

• Certification: A report by the U.S. National Academy of Science, titled
“Software for Dependable Systems: Sufficient Evidence?,” recom-
mends an evidence-based approach to the certification of high-
confidence systems such as MCPS using explicit claims, evidence,
and expertise [Jackson07]. The complex and safety-critical nature of
MCPS requires a cost-effective way to demonstrate medical device
software dependability. Certification, therefore, is both an essential
requirement for the eventual viability of MCPS and an important
challenge to be addressed. An assurance case is a structured argu-
ment supported by a documented body of evidence that provides a
convincing and consistent argument that a system is adequately safe
(or secure) [Menon09]. The notion of assurance cases holds the prom-
ise of providing an objective, evidence-based approach to software
certification. Assurance cases are increasingly being used as a means

Chapter 1 Medical Cyber-Physical Systems14

of demonstrating safety in industries such as nuclear power, trans-
portation, and automotive systems, and are mentioned in the recent
IEC 62304 development standard for medical software.

1.3.3 High-Confidence Development of MCPS

The extreme market pressures faced by the medical devices industry
has forced many companies to reduce their development cycles as
much as possible. The challenge is to find a development process that
will deliver a high degree of safety assurance under these conditions.
Model-based development can be a significant part of such a develop-
ment process. The case study discussed in this section illustrates the
steps of the high-assurance development process using a simple medi-
cal device. Each of the steps can be implemented in a variety of ways.
The choice of modeling, verification, and code generation technologies
depends on factors such as complexity and criticality level of the appli-
cation. Nevertheless, the process itself is general enough to accommo-
date a wide variety of rigorous development technologies.

1.3.3.1 Mitigation of Hazards

Most of the new functionality in medical devices is software based, and
many functions traditionally implemented in hardware—including
safety interlocks—are now being relegated to software. Thus, high-
confidence software development is very important for the safety and
effectiveness of MCPS.

Figure 1.2 depicts a relatively conventional approach to high-
assurance development of safety-critical systems based on the mitiga-
tion of hazards. The process starts with the identification of the desired
functionality and the hazards associated with the system’s operation.
The chosen functionality yields the system functional requirements,
while hazard mitigation strategies yield the system safety requirements.

Behavioral
model

Safety
properties

Model-based development

ValidationVerification
Code

generation

Functional
requirements

elicitation

Hazard
analysis and

mitigation

Figure 1.2: High-assurance development process for embedded software

1.3 Key Design Drivers and Quality Attributes 15

The functional requirements are used to build detailed behavioral mod-
els of the software modules, while the safety requirements are turned
into properties that these models should satisfy. Models and their desired
properties are the inputs to the model-based software development,
which consists of verification, code generation, and validation phases.

Model-based development has emerged as a means of raising the
level of assurance in software systems. In this approach, developers
start with declarative models of the system and perform a rigorous
model verification with respect to safety and functional requirements;
they then use systematic code generation techniques to derive code
that preserves the verified properties of the model. Such a develop-
ment process allows the developers to detect problems with the design
and fix them at the model level, early in the design cycle, when changes
are easier and cheaper to make. More importantly, it holds the promise
of improving the safety of the system through verification. Model-
based techniques currently used in the medical device industry rely on
semi-formal approaches such as UML and Simulink [Becker09], so they
do not allow developers to fully utilize the benefits of model-based
design. The use of formal modeling facilitates making mathematically
sound conclusions about the models and generating code from them.

1.3.3.2 Challenges of Model-Driven Development of MCPS

Several challenges arise when developing MCPS through the model-
driven implementation process. The first challenge is choosing the
right level of abstraction for the modeling effort. A highly abstract
model makes the verification step relatively easy to perform, but a
model that is too abstract is difficult to use in the code generation pro-
cess, since too many implementation decisions have to be guessed by
the code generator. Conversely, a very detailed model makes code gen-
eration relatively straightforward, but pushes the limits of the currently
available verification tools.

Many modeling approaches rely on the separation of the platform-
independent and platform-dependent aspects of development. From
the modeling and verification perspective, there are several reasons to
separate the platform-independent aspects from the platform-
dependent aspects.

First, hiding platform-dependent details reduces the modeling and
verification complexity. Consider, for example, the interaction between a
device and its sensors. For code generation, one may need to specify the
details of how the device retrieves data from sensors. A sampling-based

Chapter 1 Medical Cyber-Physical Systems16

mechanism with a particular sampling interval will yield a very different
generated code compared to an interrupt-based mechanism. However,
exposing such details in the model adds another level of complexity to the
model, which may increase verification time to an unacceptable duration.

In addition, abstracting away from a particular platform allows us to
use the model across different target platforms. Different platforms may
have different kinds of sensors that supply the same value. For example,
consider an empty-reservoir alarm, such as that implemented on many
infusion pumps. Some pumps may not have a physical sensor for that
purpose and simply estimate the remaining amount of medication based
on the infusion rate and elapsed time. Other pumps may have a sensor
based on syringe position or pressure in the tube. Abstracting away these
details would allow us to implement the same pump control code on dif-
ferent pump hardware. At the same time, such separation leads to inte-
gration challenges at the implementation level. The code generated by
the platform-independent model needs to be integrated with the code
from the various target platforms in such a way that the verified proper-
ties of the platform-independent model are preserved.

Second, there is often a semantic gap between the model and the
implementation. A system is modeled using the formal semantics pro-
vided by the chosen modeling language. However, some of the model
semantics may not match well with the implementation. For example, in
UPPAAL and Stateflow, the interaction between the PCA pump and the
environment (e.g., user or pump hardware) can be modeled by using
instantaneous channel synchronization or event broadcasting that has a
zero time delay. Such semantics simplifies modeling input and output of
the system so that the modeling/verification complexity is reduced.
Unfortunately, the correct implementation of such semantics is hardly
realizable at the implementation level, because execution of those actions
requires interactions among components that have a non-zero time delay.

The following case study concentrates on the development of a
PCA infusion pump system and considers several approaches to
address these challenges.

1.3.3.3 Case Study: PCA Infusion Pumps

A PCA infusion pump primarily delivers pain relievers, and is equipped
with a feature that allows for additional limited delivery of medication,
called a bolus, upon patient demand. This type of infusion pump is
widely used for pain control of postoperative patients. If the pump
overdoses opioid drugs, however, the patient can be at risk of

1.3 Key Design Drivers and Quality Attributes 17

respiratory depression and death. Therefore, these medical devices are
subject to stringent safety requirements that aim to prevent overdose.

According to the FDA’s Infusion Pump Improvement Initiative
[FDA10a], the FDA received more than 56,000 reports of adverse events
associated with the use of infusion pumps from 2005 through 2009. In
the same period, 87 recalls of infusion pumps were conducted by the
FDA, affecting all major pump manufacturers. The prevalence of the
problems clearly indicates the need for better development techniques.

The Generic PCA Project
The Generic PCA (GPCA) project, a joint effort between the PRECISE
Center at the University of Pennsylvania and researchers at the FDA,
aims to develop a series of publicly available artifacts that can be used as
guidance for manufacturers of PCA infusion pumps. In the first phase of
the project, a collection of documents has been developed, including a
hazard analysis report [UPenn-b], a set of safety requirements [UPenn-a],
and a reference model of PCA infusion pump systems [UPenn]. Based on
these documents, companies can develop PCA infusion pump controller
software following a model-driven implementation.

In the case study, software for the PCA pump controller is devel-
oped by using the model-driven implementation approach starting
from the reference model and the safety requirements. A detailed
account of this effort is presented in [Kim11].

The development approach follows the process outlined in Figure
1.2. The detailed steps are shown in Figure 1.3. In addition, the case
study included the construction of an assurance case—a structured
argument based on the evidence collected during the development
process, which aims to convince evaluators that the GPCA-reference
implementation complies with its safety requirements. The assurance
case development is discussed in more detail in Section 1.3.7.

Modeling
The reference model of the GPCA pump implemented in Simulink/
Stateflow is used as the source of functional requirements and converted
to UPPAAL [Behrmann04] via a manual but systematic translation pro-
cess. The model structure follows the overall architecture of the reference
model, which is shown in Figure 1.4. The software is organized into two
state machines: the state controller and the alarm-detecting component.
The user interface has been considered in a follow-up case study
[Masci13]. Both state machines interact with sensors and actuators on the
pump platform.

Chapter 1 Medical Cyber-Physical Systems18

The state machines are organized as a set of modes, with each mode
captured as a separate submachine. In particular, the state controller
contains four modes:

• Power-on self-test (POST) mode is the initial mode that checks sys-
tem components on start-up.

Manual translation Manual translation

External channels,

Manual
implementation

Code synthesis
(TIMES tool)

Code-interfacing
compilation

Executable image
for the target platform

Implementation trace

Model trace

Test sequences

Test sequences

Platform-dependent
glue code

Platform-independent
code Simulation

clock source

GPCA model
(Simulink/Stateflow)

GPCA safety
requirements

UPPAAL model UPPAAL queries

Formal verification

Verification result

Validation resultValidation

Figure 1.3: The model-driven development for the GPCA prototype

Current Failure Condition
State Controller

Infusion
Session

Submachine

Drug Library
Information

Bolus Status
Basal Infusion

Status

Current State
Alarm/Warning

Notification

User Data Input
User Action

Vector

U
se

r I
nt

er
fa

ce
Infusion

Configuration
Routine

POST

Check Drug
Routine

Pump Ready/Not Ready

Infusion In Progress

Clear Alarm

Alarm Detecting
Component

GPCA Model

Failure/Anomaly
Flags

System Model

D
ru

g
Li

br
ar

y
In

fo
rm

at
io

n

Bo
lu

s
St

at
us

Ba
sa

l I
nf

us
io

n
St

at
us

In
fu

si
on

 C
on

tro
l

Si
gn

al
s

In
fu

si
on

Pr
og

ra
m

Alarm/Warning Notification

Figure 1.4: The system architecture of the GPCA model

1.3 Key Design Drivers and Quality Attributes 19

• The check-drug mode represents a series of checks that the care-
giver performs to validate the drug loaded into the pump.

• The infusion configuration mode represents interactions with the
caregiver to configure infusion parameters such as infusion rate
and volume to be infused (VTBI) and validate them against the lim-
its encoded in the drug library.

• The infusion session is where the pump controls delivery of the
drug according to the configuration and the patient’s bolus
requests.

Model Verification
GPCA safety requirements are expressed in English as “shall” state-
ments. Representative requirements are “No normal bolus doses shall
be administered when the pump is alarming” and “The pump shall
issue an alert if paused for more than t minutes.”

Before verification can be performed, requirements need to be for-
malized as properties to be checked. We can categorize the require-
ments according to their precision and level of abstraction:

• Category A: Requirements that are detailed enough to be formalized
and verified against the model

• Category B: Requirements that are beyond the scope of the model
• Category C: Requirements that are too imprecise to be formalized

Only requirements in Category A can be readily used in verifica-
tion. Just 20 out of the 97 GPCA requirements fell into this category.

Most of the requirements in Category B concern the functional
aspects of the system that are abstracted away at the modeling level.
For example, consider the requirement “If the suspend occurs due to a
fault condition, the pump shall be stopped immediately without com-
pleting the current pump stroke.” There is another requirement to com-
plete the current stroke under other kinds of alarms. Thus, the motor
needs to be stopped in different ways in different circumstances. These
requirements fall into Category B, since the model does not detail the
behavior of the pump stroke. Handling of properties in this category
can be done in several ways.

One approach is to introduce additional platform-specific details
into the model, increasing complexity of the model. However, this
would blur the distinction between platform-independent and
platform-specific models—a distinction that is useful in the

Chapter 1 Medical Cyber-Physical Systems20

model-based development. An alternative approach is to handle
these requirements outside of the model-based process—for exam-
ple, validating by testing. In this case, however, the benefits of for-
mal modeling are lost.

A better approach is to match the level of detail by further decom-
posing the requirements. At the platform-independent level, we might
check that the system performs two different stop actions in response
to different alarm conditions (which would be a Category A require-
ment). Then, at the platform-specific level, we might check that one
stop action corresponds to immediate stopping of the motor, while the
other stop action lets the motor complete the current stroke.

An example requirement from Category C is “Flow discontinuity at
low flows should be minimal,” which does not specify what is a low
flow or which discontinuity can be accepted as minimal. This case is a
simple example of a deficiency in the requirement specification uncov-
ered during formalization.

Once the categorization of the requirements is complete, require-
ments in Category A are formalized and verified using a model checker.
In the case study, the requirements were converted into UPPAAL que-
ries. Queries in UPPAAL use a subset of timed computation tree logic
(CTL) temporal logic and can be verified using the UPPAAL model
checker.

Code Generation and System Integration
Once the model is verified, a code generation tool is used to produce
the code in a property-reserving manner. An example of such a tool is
TIMES [Amnell03] for UPPAAL timed automata. Since the model is
platform independent, the resulting code is also platform independent.
For example, the model does not specify how the actual infusion pump
interacts with sensors and actuators attached to the specific target plat-
form. Input and output actions (e.g., a bolus request by a patient or
triggering of the occlusion alarm from the pump hardware) are
abstracted as instantaneous transitions subject to input/output syn-
chronization with their environment. On a particular platform, the
underlying operating system schedules the interactions, thereby affect-
ing the timing of their execution.

Several approaches may be used to address this issue at the integra-
tion stage. In [Henzinger07], higher-level programming abstraction is
proposed as a means to model the timing aspects and generate code
that is independent from the scheduling algorithms of a particular

1.3 Key Design Drivers and Quality Attributes 21

platform. The platform integration is then performed by verifying
time-safety—that is, checking whether the platform-independent code
can be scheduled on the particular platform. Another approach is to
systematically generate an I/O interface that helps the platform-
independent and -dependent code to be integrated in a traceable man-
ner [Kim12]. From a code generation perspective, [Lublinerman09]
proposed a way to generate code for a given composite block of the
model independently from context and using minimal information
about the internals of the block.

Validation of the Implementation
Unless the operation of an actual platform is completely formalized,
inevitably some assumptions will be made during the verification and
code generation phases that cannot be formally guaranteed. The vali-
dation phase is meant to check that these assumptions do not break the
behavior of the implementation. In the case study, a test harness sys-
tematically exercises the code using test cases derived from the model.
A rich literature on model-based test generation exists; see [Dias07] for
a survey of the area. The goal of such testing-based validation is to sys-
tematically detect deviations of the system behavior from that of the
verified model.

1.3.4 On-Demand Medical Devices and Assured Safety

On-demand medical systems represent a new paradigm for safety-
critical systems: The final system is assembled by the user instead of
the manufacturer. Research into the safety assessment of these systems
is actively under way. The projects described in this section represent a
first step toward understanding the engineering and regulatory chal-
lenges associated with such systems. The success and safety of these
systems will depend not only on new engineering techniques, but also
on new approaches to regulation and the willingness of industry mem-
bers to adopt appropriate interoperability standards.

1.3.4.1 Device Coordination

Historically, medical devices have been used as individual tools for
patient therapy. To provide complex therapy, caregivers (i.e., physi-
cians and nurses) must coordinate the activities of the various medical
devices manually. This is burdensome for the caregiver, and prone to
errors and accidents.

Chapter 1 Medical Cyber-Physical Systems22

One example of manual device coordination in current practice is
the X ray and ventilator coordination mentioned in Section 1.2; another
example is trachea or larynx surgery performed with a laser scalpel. In
this type of surgery, the patient is placed under general anesthesia
while the surgeon makes cuts on the throat using a high-intensity laser.
Because the patient is under anesthesia, his or her breathing is sup-
ported by an anesthesia ventilator that supplies a high concentration of
oxygen to the patient. This situation presents a serious hazard: If the
surgeon accidentally cuts into the breathing tube using the laser, the
increased concentration of oxygen can lead to rapid combustion, burn-
ing the patient from the inside out. To mitigate this hazard, the surgeon
and the anesthesiologist must be in constant communication: When the
surgeon needs to cut, he or she signals the anesthesiologist, who
reduces or stops the oxygen being supplied to the patient. If the patient’s
oxygenation level drops too low, the anesthesiologist signals the sur-
geon to stop cutting so oxygen can be supplied again.

If medical devices could coordinate their actions, then the surgeon
and the anesthesiologist would not have to expend their concentration
and effort to ensure that the activities of the medical devices are safely
synchronized. Furthermore, the patient would not be exposed to the
potential for human error.

Many other clinical scenarios might benefit from this kind of auto-
mated medical device coordination. These scenarios involve either
device synchronization, data fusion, or closed-loop control. The laser scalpel
ventilator safety interlock epitomizes device synchronization: Each
device must always be in a correct state relative to the other devices. In
data fusion, physiologic readings from multiple separate devices are
considered as a collective. Examples of such applications include smart
alarms and clinical decision support systems (see Section 1.3.5). Finally,
closed-loop control of therapy can be achieved by collecting data from
devices that sense the patient’s physiological state and then using those
data to control actuators such as infusion pumps (see Section 1.3.6).

1.3.4.2 Definition: Virtual Medical Devices

Let us now clarify the concept of virtual medical devices, including
why they are considered a different entity. A collection of devices work-
ing in unison to implement a given clinical scenario is, in essence, a
new medical device. Such collections have been referred to as virtual
medical devices (VMDs) because no single manufacturer is producing
this device and delivering it fully formed to the clinician. A VMD does

1.3 Key Design Drivers and Quality Attributes 23

not exist until assembled at the patient’s bedside. A VMD instance is
created each time the clinician assembles a particular set of devices for
the VMD and connects them together.

1.3.4.3 Standards and Regulations

Several existing standards are designed to enable medical device inter-
connectivity and interoperability. These standards include the Health
Level 7 standards [Dolin06], IEEE-11073 [Clarke07, ISO/IEEE11073],
and the IHE profiles [Carr03]. While these standards enable medical
devices to exchange and interpret data, they do not adequately address
more complex interactions between medical devices, such as the inter-
device coordination and control needed with the laser scalpel and ven-
tilator combination. The notion of a VMD poses one major fundamental
question: How does one assure safety in systems that are assembled by
their users? Traditionally, most safety-critical cyber-physical systems,
such as aircraft, nuclear power plants, and medical devices, are evalu-
ated for safety by regulators before they can be used.

The state of the art in safety assessment is to consider the complete
system. This is possible because the complete system is manufactured by
a single systems integrator. Virtual medical devices, in contrast, are con-
structed at bedside, based on the needs of an individual patient and from
available devices. This means that a caregiver may instantiate a VMD
from a combination of medical devices (i.e., varying in terms of make,
model, or feature set) that have never been combined into an integrated
system for that particular clinical scenario. Finally, “on-demand” instan-
tiation of the VMD confounds the regulatory pathways for medical
devices that are currently available. In particular, there is no consensus on
the role of the regulator when it comes to VMDs. Should regulators man-
date specific standards? Do regulators need to adopt component-wise
certification regimes? What is the role, if any, of third-party certifiers?

1.3.4.4 Case Studies

The subject of safety assessment of on-demand medical systems has
been the focus of a number of research projects. These projects have
explored different aspects of on-demand medical systems, their safety,
and possible mechanisms for regulatory oversight. The Medical Device
Plug-and-Play project articulated the need for on-demand medical sys-
tems, documented specific clinical scenarios that would benefit, and
developed the Integrated Clinical Environment (ICE) architecture,
which has been codified as an ASTM standard (ASTM F2761-2009)

Chapter 1 Medical Cyber-Physical Systems24

[ASTM09]. ICE proposes to approach the engineering and regulatory
challenges by building medical systems around a system architecture
that supports compositional certification. In such an architecture, each
medical system would be composed out of a variety of components
(clinical applications, a medical application platform, and medical
devices), which would be regulated, certified, and then obtained by the
healthcare organization separately [Hatcliff12].

Integrated Clinical Environment
Figure 1.5 shows the primary components of the integrated clinical
environment (ICE) architecture. This case study summarizes the
intended functionality and goals for each of these components. Note

ICE Equipment
Interface (EI)

I1

ICE EI Interface Description Language

ICE App Code Language / Virtual Machine

App
A1

App
A2

...

Supervisor

Network Controller (NC)

App
An

I3

EI
Adapter

EI
Adapter

Physical
Device

Physical
Device

Native
EI-Compliant

Physical
Device

ICE Equipment
Interface (EI)

Figure 1.5: ICE architecture

1.3 Key Design Drivers and Quality Attributes 25

that ASTM F2761-2009 does not provide detailed requirements for
these components, as it is purely an architectural standard. Nevertheless,
the roles of each of the components in the architecture imply certain
informal requirements:

• Apps: Applications are software programs that provide the coordi-
nation algorithm for a specific clinical scenario (i.e., smart alarms,
closed-loop control of devices). In addition to executable code,
these applications contain device requirements declarations—that
is, a description of the medical devices they need to operate cor-
rectly. These apps would be validated and verified against their
requirements specification before they are marketed.

• Devices: Symmetrical to the applications, medical devices used in
the ICE architecture would implement an interoperability standard
and carry a self-descriptive model, known as a capabilities specifi-
cation. Each medical device would be certified that it conforms to
its specification before it is marketed and sold to end users.

• Supervisor: The supervisor provides a secure isolation kernel and
virtual machine (VM) execution environment for clinical applica-
tions. It would be responsible for ensuring that apps are partitioned
in both data and time from each other.

• Network controller: The network controller is the primary conduit for
physiologic signal data streams and device control messages. The
network controller would be responsible for maintaining a list of
connected devices and ensuring proper quality of service guarantees
in terms of time and data partitioning of data streams, as well as
security services for device authentication and data encryption.

• ICE interface description language: The description language is the
primary mechanism for ICE-compliant devices to export their capa-
bilities to the network controller. These capabilities may include
which sensors and actuators are present on the device, and which
command set it supports.

Medical Device Coordination Framework
The Medical Device Coordination Framework (MDCF) [King09,
MDCF] is an open-source project that aims to provide a software imple-
mentation of a medical application platform that conforms to the ICE
standard. The modular framework is envisioned as enabling research-
ers to rapidly prototype systems and explore implementation and
engineering issues associated with on-demand medical systems.

Chapter 1 Medical Cyber-Physical Systems26

The MDCF is implemented as a collection of services that work
together to provide some of the capabilities required by ICE as essential
for a medical application platform. The functionality of these services
also may be decomposed along the architectural boundaries defined in
the ICE architecture (see Figure 1.6); that is, the MDCF consists of net-
work controller services, supervisor services, and a global resource
management service.

Network controller services are as follows:

• Message bus: Abstracts the low-level networking implementation
(e.g., TCP/IP) and provides a publish/subscribe messaging service.
All communication between medical devices and the MDCF occurs
via the message bus, including protocol control messages, exchanges
of patient physiologic data, and commands sent from apps to devices.
The message bus also provides basic real-time guarantees (e.g.,
bounded end-to-end message transmission delays) that apps can
take as assumptions. Additionally, the message bus supports various
fine-grained message and stream access control and isolation

Supervisor

Network controllerResource
service

Data
logger

Message bus

Device
manager

Device
database

App
manager

App
database

Clinician
service

Admin
service

Medical
device 1

Medical
device n ...

Key
Pub/Sub interface

Private API interface

Figure 1.6: MDCF services decomposed along ICE architectural boundaries

1.3 Key Design Drivers and Quality Attributes 27

policies. While the current implementation of the message bus
encodes messages using XML, the actual encoding strategy is
abstracted away from the apps and devices by the message bus API,
which exposes messages as structured objects in memory.

• Device manager: Maintains a registry of all medical devices cur-
rently connected with the MDCF. The device manager implements
the server side of the MDCF device connection protocol (medical
devices implement the client side) and tracks the connectivity of
those devices, notifying the appropriate apps if a device goes
offline unexpectedly. The device manager also serves another
important role: It validates the trustworthiness of any connecting
device by determining whether the connecting device has a valid
certificate.

• Device database: Maintains a list of all specific medical devices that
the healthcare provider’s bioengineering staff has approved for
use. In particular, the database lists each allowed device’s unique
identifier (e.g., an Ethernet MAC address), the manufacturer of the
device, and any security keys or certificates that the device man-
ager will use to authenticate connecting devices against.

• Data logger: Taps into the flows of messages moving across the mes-
sage bus and selectively logs them. The logger can be configured
with a policy specifying which messages should be recorded.
Because the message bus carries every message in the system, the
logger can be configured to record any message or event that prop-
agates through the MDCF. Logs must be tamper resistant and tam-
per evident; access to logs must itself be logged, and be physically
and electronically controlled by a security policy.

Supervisor services are as follows:

• Application manager: Provides a virtual machine for apps to execute
in. In addition to simply executing program code, the application
manager checks that the MDCF can guarantee the app’s require-
ments at runtime and provides resource and data isolation, as well
as access control and other security services. If the app requires a
certain medical device, communications latency, or response time
from app tasks, but the MDCF cannot currently make those guaran-
tees (e.g., due to system load or because the appropriate medical
device has not been connected), then the app manager will not let
the clinician start the app in question. If the resources are available,
the application manager will reserve those resources so as to

Chapter 1 Medical Cyber-Physical Systems28

guarantee the required performance to the app. The application
manager further detects and flags potential medically meaningful
app interactions, since individual apps are isolated and may not be
aware which other apps are associated with a given patient.

• Application database: Stores the applications installed in the MDCF.
Each application contains executable code and requirement meta-
data used by the application manager to allocate the appropriate
resources for app execution.

• Clinician service: Provides an interface for the clinician console
GUI to check the status of the system, start apps, and display app
GUI elements. Since this interface is exposed as a service, the clini-
cian console can be run locally (on the same machine) that is run-
ning the supervisor, or it can be run remotely (e.g., at a nurse’s
station).

• Administrator service: Provides an interface for the administrator’s
console. System administrators can use the administrator’s con-
sole to install new applications, remove applications, add devices
to the device database, and monitor the performance of the
system.

1.3.5 Smart Alarms and Clinical Decision Support Systems

Fundamentally, clinical decision support (CDS) systems are a special-
ized form of MCPS with physical actuation limited to visualization.
They take as inputs multiple data streams, such as vital signs, lab test
values, and patient history; they then subject those inputs to some form
of analysis, and output the results of that analysis to a clinician. A smart
alarm is the simplest form of decision support system, in which multi-
ple data streams are analyzed to produce a single alarm for the clini-
cian. More complex systems may use trending, signal analysis, online
statistical analysis, or previously constructed patient models, and may
produce detailed visualizations.

As more medical devices become capable of recording continuous
vital signs, and as medical systems become increasingly interopera-
ble, CDS systems will evolve into essential tools that allow clinicians
to process, interpret, and analyze patient data. While widespread
adoption of CDS systems in clinical environments faces some chal-
lenges, the current efforts to build these systems promise to expose
their clinical utility and provide impetus for overcoming those
challenges.

1.3 Key Design Drivers and Quality Attributes 29

1.3.5.1 The Noisy Intensive Care Environment

Hospital intensive care units (ICUs) utilize a wide array of medical devices
in patient care. A subset of these medical devices comprises sensors that
detect the intensity of various physical and chemical signals in the body.
These sensors allow clinicians (doctors, nurses, and other clinical caretak-
ers) to better understand the patient’s current state. Examples of such sen-
sors include automatic blood pressure cuffs, thermometers, heart rate
monitors, pulse oximeters, electroencephalogram meters, automatic glu-
cometers, electrocardiogram meters, and so on. These sensors range from
very simple to very complex in terms of their technology. Additionally,
along with the traditional techniques, digital technologies have enabled
new sensors to be developed and evaluated for clinical use.

The vast majority of these medical devices act in isolation, reading
a particular signal and outputting the result of that signal to some form
of visualization technology so it may be accessed by clinicians. Some
devices stream data to a centralized visualization system (such as a
bedside monitor or nursing station [Phillips10, Harris13]) for ease of
use. Each of the signals is still displayed independently, however, so it
is up to the clinician to synthesize the presented information to deter-
mine the patient’s actual condition.

Many of these devices can be configured to alert clinicians to a dete-
rioration in the patient’s condition. Most sensors currently in use can
be configured with only threshold alarms, which activate when the
particular vital sign being measured crosses a predefined threshold.
While threshold alarms can certainly be critical in the timely detection
of emergency states, they have been shown to be not scientifically
derived [Lynn11] and have a high rate of false alarms [Clinical07], often
attributable to insignificant random fluctuations in the patient’s vital
signs or noise caused by external stimuli. For example, patient move-
ment can cause sensors to move, be compressed, or fall off. The large
number of erroneous alarms generated by such devices causes alarm
fatigue—a desensitization to the presence of these alarms that causes
clinicians to ignore them [Commission13]. In an effort to reduce the
number of false alarms, clinicians may sometimes improperly readjust
settings on the monitor or turn off alarms entirely [Edworthy06]. Both
of these actions can lead to missed true alarms and a decrease in quality
of care [Clinical07, Donchin02, Imhoff06].

Various efforts have been made to reduce alarm fatigue. These
strategies usually focus on improving workflow, establishing appropri-
ate patient-customized thresholds, and identifying situations where

Chapter 1 Medical Cyber-Physical Systems30

alarms are not clinically relevant [Clifford09, EBMWG92, Oberli99,
Shortliffe79]. However, isolated threshold alarms cannot capture suffi-
cient nuance in patient state to completely eliminate false alarms. Also,
these alarms simply alert clinicians to the fact that some threshold was
crossed; they fail to provide any physiologic or diagnostic information
about the current state of the patient that might help reveal the under-
lying cause of the patient’s distress.

Clinicians most often use multiple vital signs in concert to under-
stand the patient’s state. For example, a low heart rate (bradycardia)
can be normal and healthy. However, if a low heart rate occurs in con-
junction with an abnormal blood pressure or a low blood oxygen level,
this collection of findings can be cause for concern. Thus, it seems per-
tinent to develop smart alarm systems that would consider multiple
vital signs in concert before raising an alarm. This would reduce false
alarms, improving the alarm precision and reducing alarm fatigue,
thereby leading to improved care.

Such a smart alarm system would be a simple version of a CDS
system [Garg05]. Clinical decision support systems combine multiple
sources of patient information with preexisting health knowledge to
help clinicians make more informed decisions. It has repeatedly been
shown that well-designed CDS systems have the potential to dramati-
cally improve patient care, not just by reducing alarm fatigue, but by
allowing clinicians to better utilize data to assess patient state.

1.3.5.2 Core Feature Difficulties

As CDS systems are a specialized form of MCPS, the development of
CDS systems requires satisfying the core features of cyber-physical sys-
tem development. In fact, without these features, CDS system develop-
ment is impossible. The current lack of widespread use of CDS systems
in part reflects the difficulty that has been encountered in establishing
these features in a hospital setting.

One of the most fundamental of these requirements is the achieve-
ment of device interoperability. Even the simplest CDS system (such as
a smart alarm system) must obtain access to the real-time vital signs
data being collected by a number of different medical devices attached
to the patient. To obtain these data, the devices collecting the required
vital signs must be able to interoperate—if not with each other, then
with a central data repository. In this repository, data could be collected,
time synchronized, analyzed, and visualized.

1.3 Key Design Drivers and Quality Attributes 31

In the past, achieving interoperability of medical devices has been
a major hurdle. Due to increased costs, the exponential increase in reg-
ulatory difficulty, and the lucrative potential from selling a suite of
devices with limited interoperability, individual device manufacturers
currently have few incentives to make their devices interoperate.
Development of an interoperable platform for device communication
would enable MCPS to stream real-time medical information from dif-
ferent devices.

Many other challenges exist. For example, the safety and
effectiveness of CDS systems depend on other factors, such as network
reliability and real-time guarantees for message delivery. As networks
in current hospital systems are often ad hoc, highly complex, and built
over many decades, such reliability is rare.

Another challenge is related to data storage. To achieve high accu-
racy, the parameters of the computational intelligence at the heart of a
CDS system must often be tuned using large quantities of retrospective
data. Dealing with Big Data, therefore, is a vital component of the
development of CDS systems. Addressing this problem will require
hospitals to recognize the value of capturing and storing patients’ data
and to develop a dedicated hospital infrastructure to store and access
data as part of routine workflow.

CDS systems require some level of context-aware computational
intelligence. Information from multiple medical device data streams
must be extracted and filtered, and used in concert with a patient model
to create a context-aware clinical picture of the patient. There are three
major ways in which context-aware computational intelligence can be
achieved: by encoding hospital guidelines, by capturing clinicians’
mental models, and by creating models based on machine learning of
medical data.

While the majority of hospital guidelines can usually be encoded as
a series of simple rules, they are often vague or incomplete. Thus, while
they may serve as a useful baseline, such guidelines are often insuffi-
cient on their own to realize context-aware computational intelligence.
Capturing clinicians’ mental models involves interviewing a large
number of clinicians about their decision-making processes and then
hand-building an algorithm based on the knowledge gleaned from the
interviews. This process can be laborious, it can be difficult to quantify
in software how a clinician thinks, and the results from different clini-
cians can be difficult to reconcile. Creating models using machine
learning is often the most straightforward approach. However, training

Chapter 1 Medical Cyber-Physical Systems32

such models requires large amounts of retrospective patient data and
clear outcome labels, both of which can be difficult to acquire. When
such data sets are available, they often prove to be noisy, with many
missing values. The choice of learning technique can be a difficult one,
too. While algorithm transparency is a good metric (to empower clini-
cians to understand the underlying process and avoid opaque black-
box algorithms), there is no single choice of learning technique that is
most appropriate for all scenarios.

1.3.5.3 Case Study: A Smart Alarm System for CABG Patients

Patients who have undergone coronary artery bypass graft (CABG)
surgery are at particular risk of physiologic instability, so continuous
monitoring of their vital signs is routine practice. The hope is that
detection of physiologic changes will allow practitioners to intervene
in a timely manner and prevent postsurgery complications. As previ-
ously discussed, the continuous vital signs monitors are usually
equipped only with simple threshold-based alarms, which, in combi-
nation with the rapidly evolving post-surgical state of such patients,
can lead to a large number of false alarms. For example, it is common
for the finger-clip sensors attached to pulse oximeters to fall off
patients as they get situated in their ICU bed, or for changes in the
artificial lighting of the care environment to produce erroneous
readings.

To reduce these and other erroneous alarms, a smart alarm system
was developed that combines four main vital signs routinely collected
in the surgical ICU (SICU): blood pressure (BP), heart rate (HR), res-
piratory rate (RR), and blood oxygen saturation (SpO2). ICU nurses
were interviewed to determine appropriate ranges for binning each
vital sign into a number of ordinal sets (e.g., “low,” “normal,” “high,”
and “very high,” leading to classifying, for example, a blood pressure
greater than 107 mm Hg as “high”). Binning vital signs in this way
helped overcome the difficulty of establishing a rule set customized to
each patient’s baseline vital signs. The binning criteria can be modified
to address a specific patient with, for example, a very low “normal”
resting heart rate, without rewriting the entire rule set.

Afterward, a set of rules was developed in conjunction with nurses to
identify combinations of these vital signs statuses that would be cause for
concern. The smart alarm monitors a patient’s four vital signs, categorizes
them according to which ordinal set they belong in, and searches the rule

1.3 Key Design Drivers and Quality Attributes 33

table for the corresponding alarm level to output. To deal with missing
data (due to network or sensor faults), rapid drops to zero for a vital sign
are conservatively classified as “low” for the duration of the signal drop.

This smart alarm avoided many of the challenges that CDS systems
normally face in the clinical environment. The set of vital signs
employed was very limited and included only those commonly col-
lected and synchronized by the same medical device. As the “intelli-
gence” of the smart alarm system was a simple rule table based on
clinician mental models, it did not require large amounts of retrospec-
tive data to calibrate, and it was transparent and easy for clinicians to
understand. While network reliability would be a concern for such a
system running in the ICU, the classification of missing values as “low”
provided a conservative fallback in case of a brief network failure.
Additionally, running the system on a real-time middleware product
would provide the necessary data delivery guarantees to ensure sys-
tem safety.

To evaluate the performance of this system, 27 patients were
observed while they convalesced in the ICU immediately after their
CABG procedure. Of these 27 patients, 9 had the requisite vital signs
samples stored in the hospital IT system during the time period of the
observation. Each of these patients was observed for between 26 and
127 minutes, totaling 751 minutes of observation. To compare monitor
alarm performance with the CABG smart alarm, the minute-by-minute
samples of these patients’ physiologic state were retroactively retrieved
(after the observations) from the UPHS data store. The smart alarm
algorithm was applied to the retrieved data streams, resulting in a trace
of the smart alarm outputs that would have been produced if the smart
alarm were active at the patient’s bedside. Because of the relatively
slow rate at which a patient can deteriorate and the expected response
time of the care staff, an intervention alarm was considered to be cov-
ered by a smart alarm if the alarm occurred within 10 minutes of the
intervention.

Overall, the smart alarm system produced fewer alarms. During
the study, the smart alarm was active 55% of the time that the standard
monitor alarms were active, and of the 10 interventions during the
observation time period, 9 were covered by the smart alarm. The sig-
nificant alarm was likely deemed “significant” not due to the absolute
values of the vital signs being observed, but rather by their trend. An
improved version of this smart alarm system would include rules con-
cerning the trend of each of the vital signs.

Chapter 1 Medical Cyber-Physical Systems34

1.3.6 Closed-Loop System

Given that medical devices are aimed at controlling a specific physio-
logical process in a human, they can be viewed as a closed loop between
the device and the patient. In this section, we discuss clinical scenarios
from this point of view.

1.3.6.1 A Higher Level of Intelligence

A clinical scenario can be viewed as a control loop: The patient is the
plant, and the controller collects information from sensors (e.g., bed-
side monitors) and sends configuration commands to actuators (e.g.,
infusion pumps) [Lee12]. Traditionally, caregivers act as the controller
in most scenarios. This role imposes a significant decision-making bur-
den on them, as one caregiver is usually caring for several patients and
can check on each patient only sporadically. Continuous monitoring,
whereby the patient’s condition is under constant surveillance, is an
active area of research [Maddox08]. However, to improve patient safety
further, the system should be able to continuously react to changes in
patient condition as well.

The smart alarm systems and decision support systems, discussed in
the previous section, facilitate the integration and interpretation of clini-
cal information, helping caregivers make decisions more efficiently.
Closed-loop systems aim to achieve a higher level of intelligence: In such
systems, a software-based controller automatically collects and inter-
prets physiological data, and controls the therapeutic delivery devices.
Many safety-critical systems utilize automatic controllers—for example,
autopilots in airplanes and adaptive cruise control in vehicles. In patient
care, the controller can continuously monitor the patient’s state and
automatically reconfigure the actuators when the patient’s condition
stays within a predefined operation region. It will alert and hand control
back to caregivers if the patient’s state starts veering out of the safe range.
Such physiological closed-loop systems can assume part of the caregiv-
ers’ workload, enabling them to better focus on handling critical events,
which would ultimately improve patient safety. In addition, software
controllers can run advanced decision-making algorithms (e.g., model-
predictive control in blood glucose regulation [Hovorka04]) that are too
computationally complicated for human caregivers to apply, which may
improve both the safety and the effectiveness of patient care.

The concept of closed-loop control has already been introduced in
medical applications—for example, in implantable devices such as

1.3 Key Design Drivers and Quality Attributes 35

cardioverter defibrillators and other special-purpose stand-alone
devices. A physiological closed-loop system can also be built by net-
working multiple existing devices, such as infusion pumps and vital
sign monitors. The networked physiological closed-loop system can be
modeled as a VMD.

1.3.6.2 Hazards of Closed-Loop Systems

The networked closed-loop setting introduces new hazards that could
compromise patient safety. These hazards need to be identified and
mitigated in a systematic way. Closed-loop MCPS, in particular, raise
several unique challenges for safety engineering.

First, the plant (i.e., the patient) is an extremely complex system
that usually exhibits significant variability and uncertainty.
Physiological modeling has been a decade-long challenge for biomedi-
cal engineers and medical experts, and the area remains at the frontier
of science. Unlike in many other engineering disciplines, such as
mechanical engineering or electronic circuit design, where high-fidelity
first-principle models are usually directly applicable to theoretical con-
troller design, the physiological models are usually nonlinear and
contain parameters that are highly individual dependent, time vary-
ing, and not easily identifiable given the technologies available. This
imposes a major burden on control design as well as system-level safety
reasoning.

Second, in the closed-loop medical device system, complex interac-
tions occur between the continuous physiology of the patient and the
discrete behavior of the control software and network. Since most
closed-loop systems require supervision from users (either caregivers
or patients themselves), the human behavior must be considered in the
safety arguments.

Third, the control loop is subject to uncertainties caused by sensors,
actuators, and communication networks. For example, some body sen-
sors are very sensitive to patient movements—vital signs monitors
may alert faulty readings due to a dropped finger-clip—and due to
technological constraints, some biosensors have non-negligible error
even when they are used correctly (e.g., the continuous glucose moni-
tor) [Ginsberg09]. The network behavior also has a critical impact on
patient safety: Patients can be harmed by the actuators if packets that
carry critical control commands are dropped as they travel across the
network.

Chapter 1 Medical Cyber-Physical Systems36

1.3.6.3 Case Study: Closed-Loop PCA Infusion Pump

One way to systematically address the challenges faced by closed-loop
systems is to employ a model-based approach similar to the one out-
lined in Section 1.3.3. This effort involves extending the high-confidence
approach based on hazard identification and mitigation from individual
devices to a system composed of a collection of devices and a patient.

This section briefly describes a case study of the use of physiological
closed loop in pain control using a PCA infusion pump, introduced in
Section 1.3.3.3. The biggest safety concern that arises with the use of PCA
pumps for pain control is the risk of overdose of an opioid analgesic,
which can cause respiratory failure. Existing safety mechanisms built into
PCA pumps include limits on bolus amounts, which are programmed by
a caregiver before the infusion starts, and minimum time intervals between
consecutive bolus doses. In addition, nursing manuals prescribe periodic
checks of the patient condition by a nurse, although these mechanisms are
considered insufficient to cover all possible scenarios [Nuckols08].

The case study [Pajic12] presents a safety interlock design for PCA
infusion, implemented as an on-demand MCPS as described in Section
1.3.4. The pulse oximeter continuously monitors heart rate and blood
oxygen saturation. The controller receives measurements from the
pulse oximeter, and it may stop the PCA infusion if the HR/SpO2 read-
ings indicate a dangerous decrease in respiratory activity, thereby pre-
venting overdosing.

Safety requirements for this system are based on two regions in the
space of possible patient states as reported by the two sensors, as illus-
trated in Figure 1.7. The critical region represents imminent danger to
the patient and must be avoided at all times; the alarming region is not
immediately dangerous but raises clinical concerns.

The control policy for the safety interlock may be to stop the infu-
sion as soon as the patient state enters the alarming region. The imme-
diate challenge is to define the alarming region to be large enough so
that the pump can always be stopped before the patient enters the criti-
cal region. At the same time, the region should not be too large, so as to
avoid false alarms that would decrease the effectiveness of pain control
unnecessarily. Finding the right balance and defining exact boundaries
of the two regions was beyond the scope of the case study.

The goal of the case study was to verify that the closed-loop system
satisfies its patient requirements. To achieve this goal, one needs mod-
els of the infusion pump, the pulse oximeter, the control algorithm, and
the physiology of the patient.

1.3 Key Design Drivers and Quality Attributes 37

Patient modeling is the critical aspect in this case. Both pharma-
cokinetic and pharmacodynamics aspects of physiology should be con-
sidered [Mazoit07]. Pharmacokinetics specifies how the internal state
of the patient, represented by the drug concentration in the blood, is
affected by the rate of infusion. Pharmacodynamics specifies how the
patient’s internal state affects observable outputs of the model—that is,
the relationship between the drug concentration and oxygen saturation
levels measured by the pulse oximeter. The proof-of-concept approach
taken in the case study relies on the simplified pharmacokinetic model
of [Bequette03]. To make the model applicable to a diverse patient

Figure 1.7: PCA safety interlock design

PCA pump
PCA request Pump commands

PCA infusion

Physiological signals SpO2/HR measurements

Patient model

Pulse oximeter

PCA supervisor

(a) Closed-loop PCA system

Critical

Alarming

Safe

(b) Regions of patient’s possible conditions

Chapter 1 Medical Cyber-Physical Systems38

population, parameters of the model were taken to be ranges, rather
than fixed values. To avoid the complexity of pharmacodynamics, a
linear relationship between the drug concentration and the patient’s
vital signs was assumed.

Verification efforts concentrated on the timing of the control loop.
After a patient enters the alarming region, it takes time for the controller
to detect the danger and act on it. There are delays involved in obtaining
sensor readings, delivering the readings from the pulse oximeter to the
controller, calculating the control signal, delivering the signal to the
pump, and finally stopping the pump motor. To strengthen confidence
in the verification results, the continuous dynamics of the patient model
were used to derive tcrit, the minimum time over all combinations of
parameter values in the patient model that can pass from the moment
the patient state enters the alarming region to the moment it enters the
critical region. With this approach, the verification can abstract away
from the continuous dynamics, significantly simplifying the problem.
Using a timing model of the components in the system, one can verify
that the time it takes to stop the pump is always smaller than tcrit.

1.3.6.4 Additional Challenging Factors

The PCA system is a relatively simple but useful use case of closed-
loop medical devices. Other types of closed-loop systems, by compari-
son, may introduce new engineering challenges due to their
functionalities and requirements. For example, blood glucose control
for patients with diabetes has garnered a lot of attention from both the
engineering and clinical communities, and various concepts of closed-
loop or semi-closed-loop systems have been proposed [Cobelli09,
Hovorka04, Kovatchev09]. Compared to the PCA system, the closed-
loop glucose control system is substantially more complex and opens
up many opportunities for new research.

The fail-safe mode in the PCA system is closely related to the
clinical objective: Overdosing is the major concern. While the patient
may suffer from more pain when PCA is stopped, stopping the infu-
sion is considered a safe action, at least for a reasonable time dura-
tion. This kind of fail-safe mode may not exist in other clinical
scenarios. For example, in the glucose control system, the goal is to
keep the glucose level within a target range. In this case, stopping
the insulin pump is not a default safe action, because high glucose
level is also harmful.

1.3 Key Design Drivers and Quality Attributes 39

The safety criteria in the PCA system are defined by delineating a
region in the state space of the patient model (such as the critical region
in the previous case study). Safety violations are then detected as
threshold crossings in the stream of patient vital signs. Such crisp,
threshold-based rules are often crude simplifications. Physiological
systems have a certain level of resilience, and the true relationship
between health risks and physiological variables is still not completely
understood. Time of exposure is also important: A short spike in the
drug concentration may be less harmful than a lower-level concentra-
tion that persists over a longer interval.

The pulse oximeter—the sensor used in the PCA system—is rela-
tively accurate with respect to the ranges that clinicians would consider
in their decision making. In some other scenarios, however, sensor accu-
racy is a non-negligible factor. For example, a glucose sensor can have a
relative error of as much as 15% [Ginsberg09]; given that the target range
is relatively narrow, such an error may significantly impact system oper-
ation and must be explicitly considered in the safety arguments.

Even if the sensor is perfectly accurate, it may not be predictive
enough. While oxygen saturation can be used to detect respiratory fail-
ure, for example, this value may not decline until a relatively late point,
after harm to the patient is already done. Capnography data, which
measure levels of carbon dioxide exhaled by the patient, can be used to
detect the problem much sooner, but this technique is more expensive
and involves invasive technology compared to pulse oximetry. This
example highlights the need to include more accurate pharmacody-
namics data into the patient model, which can be used to account for
the detection delay.

Another important factor in the closed-loop medical system is the
human user’s behavior. In the PCA system, the user behavior is rela-
tively simple: The clinicians are alerted when certain conditions arise,
and most of the times they do not need to intervene in the operation of
the control loop. In other applications with more complicated require-
ments, however, the user may demand a more hands-on role in the
control. For example, in the glucose control application, a user will
need to take back the control authority when the glucose level is signifi-
cantly out of range; even when the automatic controller is running, the
user may choose to reject certain control actions for various reasons
(e.g., the patient is not comfortable with a large insulin dose). This kind
of more complicated user interaction pattern introduces new chal-
lenges to the model-based validation and verification efforts.

Chapter 1 Medical Cyber-Physical Systems40

1.3.7 Assurance Cases

Recently, safety cases have become popular and acceptable ways for
communicating ideas and information about the safety-critical systems
among the system stakeholders. In the medical devices domain, the
FDA issued draft guidance for medical infusion pump manufacturers
indicating that they should provide a safety case with their premarket
submissions [FDA10]. In this section, we briefly introduce the concept
of safety cases and the notations used to describe them. Three aspects
of safety cases that can be manipulated to make them practically useful
are discussed—namely, facilitating safety case construction, justifying
the existence of sufficient trust in safety arguments and cited evidence,
and providing a framework for safety case assessment for regulation
and certification.

Safety case patterns can help both device manufacturers and regu-
lators to construct and review the safety cases more efficiently while
improving confidence and shortening the period in which a device’s
application is in FDA-approval limbo. Qualitative reasoning for having
confidence in a device is believed to be more consistent with the inher-
ited subjectivity in safety cases than the quantitative reasoning. The
separation between safety and confidence arguments reduces the size
of the core safety argument. Consequently, this structure is believed to
facilitate the development and reviewing processes for safety cases.
The constructed confidence arguments should be used in the appraisal
process for assurance arguments as illustrated in [Ayoub13, Cyra08,
Kelly07].

Given the subjective nature of safety cases, the review methods
cannot hope to replace the human reviewer. Instead, they form frame-
works that lead safety case reviewers through the evaluation process.
Consequently, the result of the safety case review process is always
subjective.

1.3.7.1 Safety Assurance Cases

The safety of medical systems is of great public concern—a concern
that is reflected in the fact that many such systems must adhere to gov-
ernment regulations or be certified by licensing bodies [Isaksen97]. For
example, medical devices sold in the United States are regulated by the
FDA. Some of these medical devices, such as infusion pumps, cannot
be commercially distributed before receiving an approval from the
FDA. There is a need to communicate, review, and debate the

1.3 Key Design Drivers and Quality Attributes 41

trustworthiness of systems with a range of stakeholders (e.g., medical
device manufacturers, regulatory authorities).

Assurance cases can be used to justify the adequacy of medical
device systems. The assurance case is a method for arguing that a body
of evidence justifies a claim. An assurance case addressing safety is
called a safety case. A safety assurance case presents an argument, sup-
ported by a body of evidence, that a system is acceptably safe when
used in a given context [Menon09]. The notion of safety cases is cur-
rently embraced by several European industry sectors (e.g., aircraft,
trains, nuclear power). More recently in the United States, the FDA
issued draft guidance indicating that medical infusion pump manufac-
turers should provide a safety case with their premarket submissions
[FDA10]. Thus, an infusion pump manufacturer is expected not only to
achieve safety, but also to convince regulators that it has been achieved
[Ye05] through the submitted safety case. The manufacturer’s role is to
develop and submit a safety case to regulators showing that its product
is acceptably safe to operate in the intended context [Kelly98]. The reg-
ulator’s role, in turn, is to assess the submitted safety case and make
sure that the system is really safe.

Many different approaches are possible for the organization and
presentation of safety cases. Goal Structuring Notation (GSN) is one
description technique that has proved useful for constructing safety
cases [Kelly04]. GSN is a graphical argumentation notation developed
at the University of York. A GSN diagram includes elements that repre-
sent goals, argument strategies, contexts, assumptions, justifications,
and evidence. The principal purpose of any goal structure in GSN is to
show how goals—that is, claims about the system specified with text
within rectangular elements—are supported by valid and convincing
arguments. To this end, goals are successively decomposed into sub-
goals through implicit or explicit strategies. Strategies, specified with
text within parallelograms, explicitly define how goals are decomposed
into subgoals. The decomposition continues until a point is reached
where claims are supported by direct reference to available evidence,
and the solution specified with text within circles. Assumptions/justi-
fications, which define the rationale of the decomposition approach,
are represented with ellipses. The context in which goals are stated is
given in rectangles with rounded sides.

Another popular description technique is called Claims–
Arguments–Evidence (CAE) notation [Adelard13]. While this notation
is less standardized than GSN, it shares the same element types as GSN.

Chapter 1 Medical Cyber-Physical Systems42

The primary difference is that strategy elements are replaced with
argument elements. In this work, we use GSN notation in presenting
safety cases.

1.3.7.2 Justification and Confidence

The objective of a safety case development process is to provide a justifi-
able rationale for the design and engineering decisions and to instill con-
fidence in those design decisions (in the context of system behavior) in
stakeholders (e.g., manufacturers and regulatory authorities). Adopting
assurance cases necessarily requires the existence of proper reviewing
mechanisms. These mechanisms address the main aspects of assurance
cases—that is, building, trusting, and reviewing assurance cases.

All three aspects of assurance cases bring own challenges. These
challenges need to be addressed to make safety cases practically
useful:

• Building assurance cases: The Six-Step method [Kelly98a] is a widely
used method for systematically constructing safety cases. Following
the Six-Step method or any other method does not prevent safety
case developers from making some common mistakes, such as
leaping from claims to evidence. Even so, capturing successful (i.e.,
convincing, sound) arguments used in safety cases and reusing
them in constructing new safety cases can minimize the mistakes
that may be made during the safety case development. The need
for argument reusability motivates the use of the pattern concept
(where pattern means a model or original used as an archetype) in
the safety case constructions. Predefined patterns can often provide
an inspiration or a starting point for new safety case developments.
Using patterns may also help improve the maturity and complete-
ness of safety cases. Consequently, patterns can help medical device
manufacturers to construct safety cases in a more efficient way in
terms of completeness, thereby shortening the development period.
The concept of safety case patterns is defined in [Kelly97] as a way
to capture and reuse “best practices” in safety cases. Best practices
incorporate company expertise, successfully certified approaches,
and other recognized means of assuring quality. For example, pat-
terns extracted from a safety case built for a specific product can be
reused in constructing safety cases for other products that are
developed via similar processes. Many safety case patterns were
introduced in [Alexander07, Ayoub12, Hawkins09, Kelly98,
Wagner10, Weaver03] to capture best practices.

1.3 Key Design Drivers and Quality Attributes 43

• Trusting assurance cases: Although a structured safety case explicitly
explains how the available evidence supports the overall claim of
acceptable safety, it cannot ensure that the argument itself is good
(i.e., sufficient for its purpose) or that the evidence is sufficient. Safety
arguments typically have some weaknesses, so they cannot be fully
trusted on their own. In other words, there is always a question about
the level of trust for the safety arguments and cited evidence, which
makes a justification for the sufficiency of confidence in safety cases
essential. Several attempts have been to quantitatively measure con-
fidence in safety cases, such as in [Bloomfield07, Denney11].

 A new approach for creating clear safety cases was introduced in
[Hawkins11] to facilitate their development and increase confidence
in the constructed cases. This approach basically separates the major
components of safety cases into a safety argument and a confidence
argument. A safety argument is limited to arguments and evidence
that directly target the system safety—for example, explaining why a
specific hazard is sufficiently unlikely to occur and arguing this claim
by testing results as evidence. A confidence argument is given sepa-
rately; it seeks to justify the sufficiency of confidence in the safety
argument. For example, questions about the level of confidence in
the given testing result evidence (e.g., whether that testing was
exhaustive) should be addressed in the confidence argument. These
two components, while presented explicitly and separately, are inter-
linked so that the justification for having sufficient confidence in
individual aspects of the safety component is clear and readily avail-
able but not confused with the safety component itself.

 Any gap that prohibits perfect confidence in safety arguments is
referred to as an assurance deficit [Hawkins11]. Argument patterns
for confidence arguments are given in [Hawkins11]. Those patterns
are defined based on identifying and managing the assurance defi-
cits so as to show sufficient confidence in the safety argument. To
this end, it is necessary to identify the assurance deficits as com-
pletely as practicable. Following a systematic approach (such as the
one proposed by [Ayoub12a]) would help in effectively identifying
assurance deficits. In [Menon09, Weaver03], lists of major factors
that should be considered in determining the confidence in argu-
ments are defined. Questions to be considered when determining
the sufficiency of each factor are given as well.

 To show sufficient confidence in a safety argument, the developer of a
confidence argument first explores all concerns about the level of

Chapter 1 Medical Cyber-Physical Systems44

confidence in this argument, and then makes claims that these con-
cerns are addressed. If a claim cannot be supported by convincing
evidence, then a deficit is identified. The list of the recognized assur-
ance deficits can be then used when instantiating the confidence pat-
tern given in [Hawkins11] to show that the residual deficits are
acceptable.

• Reviewing assurance cases: Safety case arguments are rarely provable
deductive arguments, but rather are more commonly inductive. In
turn, safety cases are, by their nature, often subjective [Kelly07].
The objective of safety case evaluation, therefore, is to assess
whether there is a mutual acceptance of the subjective position. The
human mind does not deal well with complex inferences based on
uncertain sources of knowledge [Cyra08], which are common in
safety arguments. Therefore, reviewers should be required to
express their opinions about only the basic elements in the safety
case. A mechanism should then provide a way to aggregate the
reviewers’ opinions about the basic elements in the safety case so as
to communicate a message about its overall sufficiency.

Several approaches to assessing assurance cases have been proposed.
The work in [Kelly07] presents a structured approach to assurance case
review by focusing primarily on assessment of the level of assurance
offered by the assurance case argument. The work in [Goodenough12]
outlines a framework for justifying confidence in the truth of assurance
case claims. This framework is based on the notion of eliminative
induction—the principle that confidence in the truth of a claim increases
as reasons for doubting its truth are identified and eliminated. Defeaters,
in contrast, offer possible reasons for doubting. The notion of Baconian
probability is then used to provide a measure of confidence in assurance
cases based on how many defeaters have been identified and eliminated.

A structured method for assessing the level of sufficiency and insuf-
ficiency of safety arguments was outlined in [Ayoub13]. The reviewer
assessments and the results of their aggregation are represented in the
Dempster-Shafer model [Sentz02]. The assessing mechanism given in
[Ayoub13] can be used in conjunction with the step-by-step review
approach proposed in [Kelly07] to answer the question given in the last
step of this reviewing approach, which deals with the overall suffi-
ciency of the safety argument. In other words, the approach in [Kelly07]
provides a skeleton for a systematic review process; by comparison, the
mechanism in [Ayoub13] provides a systematic procedure to measure
the sufficiency and insufficiency of the safety arguments. An appraisal

1.3 Key Design Drivers and Quality Attributes 45

mechanism is proposed in [Cyra08] to assess the trust cases using the
Dempster-Shafer model.

Finally, linguistic scales are introduced in [Cyra08] as a means to
express the expert opinions of reviewers and the aggregation results.
Linguistic scales are appealing in this context, as they are closer to
human nature than are numbers. They are based on qualitative values
such as “high,” “low,” and “very low” and are mapped into the inter-
val for evaluation.

1.3.7.3 Case Study: GPCA Safety

This section builds on the case study of the GPCA infusion pump,
which was presented in Section 1.3.3.3. Assurance cases for medical
devices have been discussed in [Weinstock09]. The work in
[Weinstock09] can be used as starting point for the GPCA safety case
construction. A safety case given in [Jee10] is constructed for a pace-
maker that is developed following a model-based approach similar to
the one used in the GPCA case study.

Safety Case Patterns
Similarities in development approach are likely to lead to similarities in
safety arguments. In keeping with this understanding, safety case pat-
terns [Kelly97] have been proposed as means of capturing similarities
between arguments. Patterns allow the common argument structure to
be elaborated with device-specific details. To capture the common
argument structure for systems developed in a model-based fashion, a
safety case pattern, called the from_to pattern, has been proposed in
[Ayoub12]. In this section, the from_to pattern is illustrated and instan-
tiated for the GPCA reference implementation.

A safety case for the GPCA reference implementation would claim
that the PCA implementation software does not contribute to the sys-
tem hazards when used in the intended environment. To address this
claim, one needs to show that the PCA implementation software satis-
fies the GPCA safety requirements in the intended environment. This
is the starting point for the pattern. The context for this claim is that
GPCA safety requirements are defined to mitigate the GPCA hazards,
which would be argued separately in another part of the safety case.

Figure 1.8 shows the GSN structure of the proposed from_to pattern.
Here, {to} refers to the system implementation and {from} refers to a
model of this system. The claim (G1) about the implementation correct-
ness (i.e., satisfaction of some property [referenced in C1.3]) is justified

Chapter 1 Medical Cyber-Physical Systems46

not only by validation (G4 through S1.2), but also by arguing over the
model correctness (G2 through S1.1), and the consistency between the
model and the implementation created based on it (G3 through S1.1).
The model correctness (i.e., further development for G2) is guaranteed
through the model verification (i.e., the second step of the model-based
approach). The consistency between the model and the implementation
(i.e., further development for G3) is supported by the code generation
from the verified model (i.e., the third step of the model-based approach).
Only part of the property of concern (referenced in C2.1) can be verified
at the model level due to the differing abstraction levels between the
model and the implementation. However, the validation argument
(S1.2) covers the entire property of concern (referenced in C1.3). The
additional justification (given in S1.1) increases the assurance in the top-
level claim (G1).

Figure 1.9 shows an instantiation of this pattern that is part of the
PCA safety case. Based on [Kim11], for this pattern instance, the {to}
part is the PCA implementation software (referenced in C1.1), the
{from} part is the GPCA timed automata model (referenced in C1.1.1),
and the GPCA safety requirements (referenced in C1.3) represent the

S1.1
Argument over the
{from} and the
development
mechanism

J

J1.1.1

Justify this strategy by
defining the mechanism that
was used to develop {to}
from {from}

C1.1.1

Define the
{from}

G2
The {from} satisfies
{part of the specific
property}

G3

The used development
mechanism guarantees the
consistency between the
{from} part and the {to} part

G4

The {to} is validated
against the {specific
property}

S1.2
Argument by
validation

G1

The {to} satisfies {specific
property} in {intended
environment}

C1.1

Define the {to}

C1.3

Define the
{specific
property} C1.2

Define the
{intended
environment}

C2.1

Define the {part of
the specific
property}

Figure 1.8: The proposed from_to pattern

A. Ayoub, B. Kim, I. Lee, O. Sokolsky. Proceedings of NASA Formal Methods: 45th
International Symposium, pp. 141–146. With permission from Springer.

1.3 Key Design Drivers and Quality Attributes 47

concerned property. In this case, correct PCA implementation means it
satisfies the GPCA safety requirements that were defined to guarantee
the PCA safety. The satisfaction of the GPCA safety requirements in the
implementation level (G1) is decomposed by two strategies (S1.1 and
S1.2). The argument in S1.1 is supported by the correctness of the GPCA
timed automata model (G2) as well as by the consistency between the
model and the implementation (G3). The correctness of the GPCA
timed automata model (i.e., further development for G2) is proved by
applying the UPPAAL model-checker against the GPCA safety require-
ments, which can be formalized (referenced in C2.1). The consistency
between the model and the implementation (i.e., further development
for G3) is supported by the code synthesis from the verified GPCA
timed automata model.

Note that not all of the GPCA safety requirements (referenced in
C1.3) can be verified against the GPCA timed automata model [Kim11].

S1.1

Argument over the GPCA
timed automata model and
the development
mechanism

J1.1.1

The model-based approach
is used to develop the PCA
implementation software
based on the GPCA timed
automata model

C1.1.1

Link to the GPCA
timed automata
model

G2

The GPCA timed automata
model satisfies the GPCA
safety requirements that
can be formalized and
verified on the model level

G3

The used development
mechanism guarantees the
consistency between the GPCA
timed automata model and the
PCA implementation software

G4

The PCA implementation
software is validated against
the GPCA safety
requirements

S1.2

Argument by validating the
PCA implementation
software againt the GPCA
safety requirements

C1.1

C1.3

Link to the GPCA
safety requirements
document C1.2

Define the intended environment
based on the environment-related
GPCA safety requirements
(sections 2, 6, and 4) and the
environment interface as defined
by the GPCA reference model

C2.1

Link to the GPCA safety
requirements that can be
formalized and verified
on the model level

The PCA implementation
software means the software
code generated from the GPCA
reference model, and extended
to interface with the target
platform

G1

The PCA implementation
software satisfies the GPCA
safety requirements in the
intended environment

Figure 1.9: An instance of the from_to pattern.

A. Ayoub, B. Kim, I. Lee, O. Sokolsky. Proceedings of NASA Formal Methods: 45th
International Symposium, pp. 141–146. With permission from Springer.

Chapter 1 Medical Cyber-Physical Systems48

Only the part referenced in C2.1 can be formalized and verified in the
model level (e.g., “No bolus dose shall be possible during the power-on
self-test”). Other requirements cannot be formalized or verified against
the model given its level of detail (e.g., “The flow rate for the bolus
dose shall be programmable” cannot be formalized meaningfully and
then verified on the model level).

Assurance Deficit Example
As discussed in Section 1.3.3.3 and shown in Figure 1.3, the GPCA
Simulink/Stateflow model was transformed into an equivalent GPCA
timed automata model. Although it is relatively straightforward to
translate the original GPCA model written in Simulink/Stateflow into
a UPPAAL timed automata model, there is no explicit evidence to show
the equivalence between the two models at the semantic level. A poten-
tial assurance deficit associated with the GPCA timed automata model
(context C1.1.1 in Figure 1.9) can be stated as “There are semantic dif-
ferences between the Simulink/Stateflow and the UPPAAL timed
automata model.” To mitigate this residual assurance deficit, exhaus-
tive conformance testing between the GPCA Simulink/Stateflow
model and the GPCA timed automata model may suffice.

1.4 Practitioners’ Implications

One can distinguish the following groups of stakeholders in MCPS:

• MCPS developers, including manufacturers of medical devices and
integrators of medical information technologies

• MCPS administrators—typically clinical engineers in hospitals,
who are tasked with deploying and maintaining MCPS

Note

Generally, using safety case patterns does not necessarily guarantee that the con-
structed safety case will be sufficiently compelling. Thus, when instantiating the
from_to pattern, it is necessary to justify each instantiation decision to guarantee that
the constructed safety case is sufficiently compelling. Assurance deficits should be
identified throughout the construction of a safety argument. Where an assurance
deficit is identified, it is necessary to demonstrate that the deficit is either acceptable
or addressed such that it becomes acceptable. An explicit justification should be
provided as to why the residual assurance deficit is considered acceptable. This can
be done by adopting appropriate approaches such as ACARP (As Confident As
Reasonably Practical) [Hawkins09a].

1.4 Practitioners’ Implications 49

• MCPS users—clinicians who perform treatment using MCPS
• MCPS subjects—patients
• MCPS regulators, who certify the safety of MCPS or approve their

use for clinical purposes

In the United States, the FDA is the regulatory agency charged with
assessing the safety and effectiveness of medical devices and approv-
ing them for specific uses.

All of the stakeholder groups have a vested interest in MCPS safety.
However, each group has additional drivers that need to be taken into
account when designing or deploying MCPS in a clinical setting. In this
section we consider each group of stakeholders and identify specific
concerns that apply to them as well as unique challenges that they
pose.

1.4.1 MCPS Developer Perspective

Dependence of MCPS on software, as well as complexity of software
used in medical devices, has been steadily increasing over the past
three decades. In recent years, the medical device industry has been
plagued with software-related recalls, with 19% of all recalls of medical
devices in the United States being related to software problems
[Simone13].

Many other safety-regulated industries, such as avionics and
nuclear power, operate on relatively long design cycles. By contrast,
medical device companies are under intense market pressure to
quickly introduce additional features into their products. At the same
time, medical devices are often developed by relatively small compa-
nies that lack the resources for extensive validation and verification of
each new feature they introduce. Model-based development tech-
niques, such as the ones described in Section 1.3.3, hold the promise
of more efficient verification and validation, leading to shorter devel-
opment cycles.

At the same time, many medical device companies complain about
the heavy regulatory burden imposed by the FDA and similar regula-
tory agencies in other countries. Formal models and verification results,
introduced by the model-based development approaches, provide evi-
dence that MCPS is safe. Combined with the assurance cases that
organize this evidence into a safety argument, these rigorous develop-
ment methods may help reduce the regulatory burden for MCPS
developers.

Chapter 1 Medical Cyber-Physical Systems50

1.4.2 MCPS Administrator Perspective

Clinical engineers in hospitals are charged with maintaining the wide
variety of medical devices that constitute the MCPS used in patient
treatment. Most clinical scenarios today involve multiple medical
devices. A clinical engineer needs to ensure that the devices used in
treating a patient can all work together. If an incompatibility is discov-
ered after treatment commences, the patient may be harmed.
Interoperability techniques, described in Section 1.3.4, may help to
ensure that more devices are compatible with one another, making the
job of maintaining the inventory and the assembly of clinical scenarios
easier. This, in turn, reduces treatment errors and improves patient out-
comes and, at the same time, saves the hospital money.

1.4.3 MCPS User Perspective

Clinicians use MCPS as part of delivering patient treatments. A specific
treatment can, in most cases, be performed with different MCPS imple-
mentations using similar devices from different vendors. A primary con-
cern, then, is ensuring that clinicians are equally familiar with the
different implementations. The concepts of clinical scenarios and virtual
medical devices, introduced in Section 1.3.4, can help establish a com-
mon user interface for the MCPS, regardless of the specific devices used
to implement it. Such an interface would help to reduce clinical errors
when using these devices. Furthermore, the user interface can be verified
as part of the analysis of the MCPS model, as suggested by [Masci13].

MCPS development must take existing standards of care into con-
sideration. Clinical personnel need to be involved in the analysis of the
scenario models to ensure that they are consistent with extant clinical
guidelines for the respective treatment and are intuitive for caregivers
to use.

A particular challenge in modern health care is the high workload
faced by caregivers. Each healthcare provider is likely to be caring for
multiple patients and must keep track of multiple sources of informa-
tion about each patient. On-demand MCPS have the potential to con-
trol cognitive overload in caregivers by offering virtual devices that
deliver intelligent presentation of clinical information or smart alarm
functionality. Smart alarms, which can correlate or prioritize alarms
from individual devices, can be of great help to caregivers, by giving a
more accurate picture of the patient’s condition and reducing the rate
of false alarms [Imhoff09].

1.4 Practitioners’ Implications 51

1.4.4 Patient Perspective

Of all the various stakeholder groups, patients stand to gain the most
from the introduction of MCPS. In addition to the expected improve-
ments in the safety of treatments achieved through higher reliability of
individual devices and their bedside assemblies, patients would get
the benefit of improvements in treatments themselves. These improve-
ments may come from several sources.

On the one hand, MCPS can offer continuous monitoring that care-
givers, who normally must attend to multiple patients as part of their
workload, cannot provide by themselves. Clinical guidelines often require
caregivers to obtain patient data at fixed intervals—for example, every 15
minutes. An MCPS may collect patient data as frequently as allowed by
each sensor and alert caregivers to changes in the patient’s condition ear-
lier, thereby enabling them to intervene before the change leads to a seri-
ous problem. Furthermore, continuous monitoring, combined with
support for predictive decision making, similar to the system discussed in
Section 1.3.5, will allow treatment to be proactive rather than reactive.

Probably the biggest improvement in the quality of care for patients
will come with the transition from general guidelines meant to apply to
all patients within a certain population to personalized approaches, in
which treatment is customized to the individual needs of the patient
and takes into account his or her specific characteristics. Personalized
treatments, however, cannot be effected without detailed patient mod-
els. Such models can be stored in patient records and interpreted by the
MCPS during treatment.

1.4.5 MCPS Regulatory Perspective

Regulators of the medical devices industry are tasked with assessing
the safety and effectiveness of MCPS. The two main concerns that these
regulators face are improving the quality of the assessment and making
the best use of the limited resources that agencies have available for
performing the assessment. These two concerns are not independent,
because more efficient ways of performing assessments would allow
regulators more time to conduct deeper evaluations. The safety case
technologies discussed in Section 1.3.7 may help address both. The
move toward evidence-based assessment may allow regulators to per-
form more accurate and reliable assessments. At the same time, organ-
izing evidence into a coherent argument will help them perform these
assessments more efficiently.

Chapter 1 Medical Cyber-Physical Systems52

1.5 Summary and Open Challenges

This chapter presented a broad overview of trends in MCPS and the
design challenges that these trends present. It also discussed possible
approaches to address these challenges, based on recent results in
MCPS research.

The first challenge is related to the prevalence of software-enabled
functionality in modern MCPS, which makes assurance of patient
safety a much harder task. Model-based development techniques pro-
vide one way to ensure the safety of a system. Increasingly, model-
based development is embraced by the medical devices industry. Even
so, the numerous recalls of medical devices that have occurred in recent
years demonstrate that the problem of device safety is far from being
solved.

The next-level challenge arises from the need to organize individ-
ual devices into a system of interconnected devices that collectively
treat the patient in a complex clinical scenario. Such multi-device MCPS
can provide new modes of treatment, give enhanced feedback to the
clinician, and improve patient safety. At the same time, additional haz-
ards can arise from communication failures and lack of interoperability
between devices. Reasoning about safety of such on-demand MCPS,
which are assembled at the bedside from available devices, creates new
regulatory challenges and requires medical application platforms—
that is, trusted middleware that can ensure correct interactions between
the devices. Research prototypes of such middleware are currently
being developed, but their effectiveness needs to be further evaluated.
Furthermore, interoperability standards for on-demand MCPS need to
be further improved and gain wider acceptance.

To fully utilize the promise inherent in multi-device MCPS, new
algorithms need to be developed to process and integrate patient data
from multiple sensors, provide better decision support for clinicians,
produce more accurate and informative alarms, and so on. This need
gives rise to two kinds of open challenges. On the one hand, additional
clinical research as well as data analysis needs to be performed to deter-
mine the best ways of using the new information made available
through combining multiple rich data sources. On the other hand, new
software tools are needed to facilitate fast prototyping and deployment
of new decision support and visualization algorithms.

MCPS promises to enable a wide array of physiological closed-
loop systems, in which information about the patient’s condition,

References 53

collected from multiple sensors, can be used to adjust the treatment
process or its parameters. Research on such closed-loop control algo-
rithms is gaining prominence, especially as means to improve glyce-
mic control in patients with diabetes. However, much research needs
to be performed to better understand patient physiology and develop
adaptive control algorithms that can deliver personalized treatment
to each patient.

In all of these applications, patient safety and effectiveness of treat-
ment are the two paramount concerns. MCPS manufacturers need to
convince regulators that systems they build are safe and effective. The
growing complexity of MCPS, the high connectivity, and the preva-
lence of software-enabled functionality make evaluation of such sys-
tems’ safety quite difficult. Construction of effective assurance cases for
MCPS, as well as for CPS in general, remains a challenge in need of
further research.

References

[Adelard13]. Adelard. “Claims, Arguments and Evidence (CAE).”
http://www.adelard.com/asce/choosing-asce/cae.html, 2013.

[Alexander07]. R. Alexander, T. Kelly, Z. Kurd, and J. Mcdermid.
“Safety Cases for Advanced Control Software: Safety Case
Patterns.” Technical Report, University of York, 2007.

[Amnell03]. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W.
Yi. “TIMES: A Tool for Schedulability Analysis and Code
Generation of Real-Time Systems.” In Formal Modeling and Analysis
of Timed Systems. Springer, 2003.

[Arney09]. D. Arney, J. M. Goldman, S. F. Whitehead, and I. Lee.
“Synchronizing an X-Ray and Anesthesia Machine Ventilator: A
Medical Device Interoperability Case Study.” Biodevices, pages
52–60, January 2009.

[ASTM09]. ASTM F2761-2009. “Medical Devices and Medical Systems—
Essential Safety Requirements for Equipment Comprising the
Patient-Centric Integrated Clinical Environment (ICE), Part 1:
General Requirements and Conceptual Model.” ASTM
International, 2009.

[Ayoub13]. A. Ayoub, J. Chang, O. Sokolsky, and I. Lee. “Assessing the
Overall Sufficiency of Safety Arguments.” Safety Critical System
Symposium (SSS), 2013.

http://www.adelard.com/asce/choosing-asce/cae.html

Chapter 1 Medical Cyber-Physical Systems54

[Ayoub12]. A. Ayoub, B. Kim, I. Lee, and O. Sokolsky. “A Safety Case
Pattern for Model-Based Development Approach.” In NASA
Formal Methods, pages 223–243. Springer, 2012.

[Ayoub12a]. A. Ayoub, B. Kim, I. Lee, and O. Sokolsky. “A Systematic
Approach to Justifying Sufficient Confidence in Software Safety
Arguments.” International Conference on Computer Safety,
Reliability and Security (SAFECOMP), Magdeburg, Germany,
2012.

[Becker09]. U. Becker. “Model-Based Development of Medical Devices.”
Proceedings of the Workshop on Computer Safety, Reliability, and
Security (SAFECERT), Lecture Notes in Computer Science, vol.
5775, pages 4–17, 2009.

[Behrmann04]. G. Behrmann, A. David, and K. Larsen. “A Tutorial on
UPPAAL.” In Formal Methods for the Design of Real-Time Systems,
Lecture Notes in Computer Science, pages 200–237. Springer, 2004.

[Bequette03]. B. Bequette. Process Control: Modeling, Design, and
Simulation. Prentice Hall, 2003.

[Bloomfield07]. R. Bloomfield, B. Littlewood, and D. Wright. “Confidence:
Its Role in Dependability Cases for Risk Assessment.” 37th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 338–346, 2007.

[Carr03]. C. D. Carr and S. M. Moore. “IHE: A Model for Driving
Adoption of Standards.” Computerized Medical Imaging and
Graphics, vol. 27, no. 2–3, pages 137–146, 2003.

[Clarke07]. M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan,
and D. Ayyagari. “Developing a Standard for Personal Health
Devices Based on 11073.” 29th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pages
6174–6176, 2007.

[Clifford09]. G. Clifford, W. Long, G. Moody, and P. Szolovits. “Robust
Parameter Extraction for Decision Support Using Multimodal
Intensive Care Data.” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 367, pages
411–429, 2009.

[Clinical07]. Clinical Alarms Task Force. “Impact of Clinical Alarms on
Patient Safety.” Journal of Clinical Engineering, vol. 32, no. 1, pages
22–33, 2007.

[Cobelli09]. C. Cobelli, C. D. Man, G. Sparacino, L. Magni, G. D. Nicolao,
and B. P. Kovatchev. “Diabetes: Models, Signals, and Control.”
IEEE Reviews in Biomedical Engineering, vol. 2, 2009.

References 55

[Commission13]. The Joint Commission. “Medical Device Alarm Safety
in Hospitals.” Sentinel Event Alert, no. 50, April 2013.

[Cyra08]. L. Cyra and J. Górski. “Expert Assessment of Arguments: A
Method and Its Experimental Evaluation.” International
Conference on Computer Safety, Reliability and Security
(SAFECOMP), 2008.

[Denney11]. E. Denney, G. Pai, and I. Habli. “Towards Measurement of
Confidence in Safety Cases.” International Symposium on
Empirical Software Engineering and Measurement (ESEM),
Washington, DC, 2011.

[Dias07]. A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H.
Travassos. “A Survey on Model-Based Testing Approaches: A
Systematic Review.” Proceedings of the ACM International Workshop
on Empirical Assessment of Software Engineering Languages and
Technologies, pages 31–36, 2007.

[Dolin06]. R. H. Dolin, L. Alschuler, S. Boyer, C. Beebe, F. M. Behlen,
P. V. Biron, and A. Shvo. “HL7 Clinical Document Architecture,
Release 2.” Journal of the American Medical Informatics Association,
vol. 13, no. 1, pages 30–39, 2006.

[Donchin02]. Y. Donchin and F. J. Seagull. “The Hostile Environment of
the Intensive Care Unit.” Current Opinion in Critical Care, vol. 8,
pages 316–320, 2002.

[Edworthy06]. J. Edworthy and E. Hellier. “Alarms and Human
Behaviour: Implications for Medical Alarms.” British Journal of
Anaesthesia, vol. 97, pages 12–17, 2006.

[EBMWG92]. Evidence-Based Medicine Working Group. “Evidence-
Based Medicine: A New Approach to Teaching the Practice of
Medicine.” Journal of the American Medical Association, vol. 268,
pages 2420–2425, 1992.

[FDA10]. U.S. Food and Drug Administration, Center for Devices and
Radiological Health. “Infusion Pumps Total Product Life Cycle:
Guidance for Industry and FDA Staff.” Premarket Notification
[510(k)] Submissions, April 2010.

[FDA10a]. U.S. Food and Drug Administration, Center for Devices and
Radiological Health. “Infusion Pump Improvement Initiative.”
White Paper, April 2010.

[Garg05]. A. X. Garg, N. K. J. Adhikari, H. McDonald, M. P. Rosas-
Arellano, P. J. Devereaux, J. Beyene, J. Sam, and R. B. Haynes.
“Effects of Computerized Clinical Decision Support Systems on
Practitioner Performance and Patient Outcomes: A Systematic

Chapter 1 Medical Cyber-Physical Systems56

Review.” Journal of the American Medical Association, vol. 293, pages
1223–1238, 2005.

[Ginsberg09]. B. H. Ginsberg. “Factors Affecting Blood Glucose
Monitoring: Sources of Errors in Measurement.” Journal of Diabetes
Science and Technology, vol. 3, no. 4, pages 903–913, 2009.

[Goldman05]. J. Goldman, R. Schrenker, J. Jackson, and S. Whitehead.
“Plug-and-Play in the Operating Room of the Future.” Biomedical
Instrumentation and Technology, vol. 39, no. 3, pages 194–199, 2005.

[Goodenough12]. J. Goodenough, C. Weinstock, and A. Klein. “Toward
a Theory of Assurance Case Confidence.” Technical Report CMU/
SEI-2012-TR-002, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2012.

[Harris13]. Harris Healthcare (formerly careFX). www.harris.com.
[Hatcliff12]. J. Hatcliff, A. King, I. Lee, A. Macdonald, A. Fernando, M.

Robkin, E. Vasserman, S. Weininger, and J. M. Goldman. “Rationale
and Architecture Principles for Medical Application Platforms.”
Proceedings of the IEEE/ACM 3rd International Conference on Cyber-
Physical Systems (ICCPS), pages 3–12, Washington, DC, 2012.

[Hawkins09]. R. Hawkins and T. Kelly. “A Systematic Approach for
Developing Software Safety Arguments.” Journal of System Safety,
vol. 46, pages 25–33, 2009.

[Hawkins09a]. R. Hawkins and T. Kelly. “Software Safety Assurance:
What Is Sufficient?” 4th IET International Conference of System
Safety, 2009.

[Hawkins11]. R. Hawkins, T. Kelly, J. Knight, and P. Graydon. “A New
Approach to Creating Clear Safety Arguments.” In Advances in
Systems Safety, pages 3–23. Springer, 2011.

[Henzinger07]. T. A. Henzinger and C. M. Kirsch. “The Embedded
Machine: Predictable, Portable Real-Time Code.” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 29, no. 6,
page 33, 2007.

[Hovorka04]. R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter, M.
Massi-Benedetti, M. O. Federici, T. R. Pieber, H. C. Schaller, L.
Schaupp, T. Vering, and M. E. Wilinska. “Nonlinear Model
Predictive Control of Glucose Concentration in Subjects with
Type 1 Diabetes.” Physiological Measurement, vol. 25, no. 4, page
905, 2004.

[Imhoff06]. M. Imhoff and S. Kuhls. “Alarm Algorithms in Critical Care
Monitoring.” Anesthesia and Analgesia, vol. 102, no. 5, pages 1525–
1536, 2006.

http://www.harris.com

References 57

[Imhoff09]. M. Imhoff, S. Kuhls, U. Gather, and R. Fried. “Smart Alarms
from Medical Devices in the OR and ICU.” Best Practice and
Research in Clinical Anaesthesiology, vol. 23, no. 1, pages 39–50, 2009.

[Isaksen97]. U. Isaksen, J. P. Bowen, and N. Nissanke. “System and
Software Safety in Critical Systems.” Technical Report RUCS/97/
TR/062/A, University of Reading, UK, 1997.

[ISO/IEEE11073]. ISO/IEEE 11073 Committee. “Health Informatics—
Point-of-Care Medical Device Communication Part 10103:
Nomenclature—Implantable Device, Cardiac.” http://standards.
ieee.org/findstds/standard/11073-10103-2012.html.

[Jackson07]. D. Jackson, M. Thomas, and L. I. Millett, editors. Software
for Dependable Systems: Sufficient Evidence? Committee on
Certifiably Dependable Software Systems, National Research
Council. National Academies Press, May 2007.

[Jee10]. E. Jee, I. Lee, and O. Sokolsky. “Assurance Cases in Model-
Driven Development of the Pacemaker Software.” 4th Inter-
national Conference on Leveraging Applications of Formal
Methods, Verification, and Validation, Volume 6416, Part II,
ISoLA’10, pages 343–356. Springer-Verlag, 2010.

[Jeroeno4]. J. Levert and J. C. H. Hoorntje. “Runaway Pacemaker Due
to Software-Based Programming Error.” Pacing and Clinical
Electrophysiology, vol. 27, no. 12, pages 1689–1690, December 2004.

[Kelly98]. T. Kelly. “Arguing Safety: A Systematic Approach to
Managing Safety Cases.” PhD thesis, Department of Computer
Science, University of York, 1998.

[Kelly98a]. T. Kelly. “A Six-Step Method for Developing Arguments in
the Goal Structuring Notation (GSN).” Technical Report, York
Software Engineering, UK, 1998.

[Kelly07]. T. Kelly. “Reviewing Assurance Arguments: A Step-by-Step
Approach.” Workshop on Assurance Cases for Security: The Metrics
Challenge, Dependable Systems and Networks (DSN), 2007.

[Kelly97]. T. Kelly and J. McDermid. “Safety Case Construction and
Reuse Using Patterns.” International Conference on Computer
Safety, Reliability and Security (SAFECOMP), pages 55–96.
Springer-Verlag, 1997.

[Kelly04]. T. Kelly and R. Weaver. “The Goal Structuring Notation: A
Safety Argument Notation.” DSN 2004 Workshop on Assurance
Cases, 2004.

[Kim11]. B. Kim, A. Ayoub, O. Sokolsky, P. Jones, Y. Zhang, R. Jetley,
and I. Lee. “Safety-Assured Development of the GPCA Infusion

http://standards.ieee.org/findstds/standard/11073-10103-2012.html
http://standards.ieee.org/findstds/standard/11073-10103-2012.html

Chapter 1 Medical Cyber-Physical Systems58

Pump Software.” Embedded Software (EMSOFT), pages 155–164,
Taipei, Taiwan, 2011.

[Kim12]. B. G. Kim, L. T. Phan, I. Lee, and O. Sokolsky. “A Model-Based
I/O Interface Synthesis Framework for the Cross-Platform
Software Modeling.” 23rd IEEE International Symposium on
Rapid System Prototyping (RSP), pages 16–22, 2012.

[King09]. A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren, W.
Spees, R. Jetley, P. Jones, and S. Weininger. “An Open Test Bed for
Medical Device Integration and Coordination.” Proceedings of the
31st International Conference on Software Engineering, 2009.

[Kovatchev09]. B. P. Kovatchev, M. Breton, C. D. Man, and C. Cobelli.
“In Silico Preclinical Trials: A Proof of Concept in Closed-Loop
Control of Type 1 Diabetes.” Diabetes Technology Society, vol. 3, no.
1, pages 44–55, 2009.

[Lee06]. I. Lee, G. J. Pappas, R. Cleaveland, J. Hatcliff, B. H. Krogh, P.
Lee, H. Rubin, and L. Sha. “High-Confidence Medical Device
Software and Systems.” Computer, vol. 39, no. 4, pages 33–38, April
2006.

[Lee12]. I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M.
Mullen-Fortino, S. Park, A. Roederer, and K. Venkatasubramanian.
“Challenges and Research Directions in Medical Cyber-Physical
Systems.” Proceedings of the IEEE, vol. 100, no. 1, pages 75–90,
January 2012.

[Lofsky04]. A. S. Lofsky. “Turn Your Alarms On.” APSF Newsletter, vol.
19, no. 4, page 43, 2004.

[Lublinerman09]. R. Lublinerman, C. Szegedy, and S. Tripakis.
“Modular Code Generation from Synchronous Block Diagrams:
Modularity vs. Code Size.” Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2009), pages 78–89, New York, NY, 2009.

[Lynn11]. L. A. Lynn and J. P. Curry. “Patterns of Unexpected In-Hospital
Deaths: A Root Cause Analysis.” Patient Safety in Surgery, vol. 5,
2011.

[Maddox08]. R. Maddox, H. Oglesby, C. Williams, M. Fields, and S.
Danello. “Continuous Respiratory Monitoring and a ‘Smart’
Infusion System Improve Safety of Patient-Controlled Analgesia
in the Postoperative Period.” In K. Henriksen, J. Battles, M. Keyes,
and M. Grady, editors, Advances in Patient Safety: New Directions
and Alternative Approaches, Volume 4 of Advances in Patient Safety,
Agency for Healthcare Research and Quality, August 2008.

References 59

[Masci13]. P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H.
Thimbleby. “Model-Based Development of the Generic PCA
Infusion Pump User Interface Prototype in PVS.” Proceedings of the
32nd International Conference on Computer Safety, Reliability and
Security (SAFECOMP), 2013.

[Mazoit07]. J. X. Mazoit, K. Butscher, and K. Samii. “Morphine in
Postoperative Patients: Pharmacokinetics and Pharmacodynamics
of Metabolites.” Anesthesia and Analgesia, vol. 105, no. 1, pages
70–78, 2007.

[McMaster13]. Software Quality Research Laboratory, McMaster
University. Pacemaker Formal Methods Challenge. http://sqrl.
mcmaster.ca/pacemaker.htm.

[MDCF]. Medical Device Coordination Framework (MDCF). http://
mdcf.santos.cis.ksu.edu.

[MDPNP]. MD PnP: Medical Device “Plug-and-Play” Interoperability
Program. http://www.mdpnp.org.

[Menon09]. C. Menon, R. Hawkins, and J. McDermid. Defence “Standard
00-56 Issue 4: Towards Evidence-Based Safety Standards.” In Safety-
Critical Systems: Problems, Process and Practice, pages 223–243.
Springer, 2009.

[Nuckols08]. T. K. Nuckols, A. G. Bower, S. M. Paddock, L. H. Hilborne,
P. Wallace, J. M. Rothschild, A. Griffin, R. J. Fairbanks, B. Carlson,
R. J. Panzer, and R. H. Brook. “Programmable Infusion Pumps in
ICUs: An Analysis of Corresponding Adverse Drug Events.”
Journal of General Internal Medicine, vol. 23 (Supplement 1), pages
41–45, January 2008.

[Oberli99]. C. Oberli, C. Saez, A. Cipriano, G. Lema, and C. Sacco. “An
Expert System for Monitor Alarm Integration.” Journal of Clinical
Monitoring and Computing, vol. 15, pages 29–35, 1999.

[Pajic12]. M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. Goldman, and
I. Lee. “Model-Driven Safety Analysis of Closed-Loop Medical
Systems.” IEEE Transactions on Industrial Informatics, PP(99):1–1, 2012.

[Phillips10]. Phillips eICU Program. http://www.usa.philips.com/
healthcare/solutions/patient-monitoring.

[Rae03]. A. Rae, P. Ramanan, D. Jackson, J. Flanz, and D. Leyman.
“Critical Feature Analysis of a Radiotherapy Machine.”
International Conference of Computer Safety, Reliability and
Security (SAFECOMP), September 2003.

[Sapirstein09]. A. Sapirstein, N. Lone, A. Latif, J. Fackler, and P. J.
Pronovost. “Tele ICU: Paradox or Panacea?” Best Practice and

http://sqrl.mcmaster.ca/pacemaker.htm
http://sqrl.mcmaster.ca/pacemaker.htm
http://mdcf.santos.cis.ksu.edu
http://mdcf.santos.cis.ksu.edu
http://www.mdpnp.org
http://www.usa.philips.com/healthcare/solutions/patient-monitoring
http://www.usa.philips.com/healthcare/solutions/patient-monitoring

Chapter 1 Medical Cyber-Physical Systems60

Research Clinical Anaesthesiology, vol. 23, no. 1, pages 115–126,
March 2009.

[Sentz02]. K. Sentz and S. Ferson. “Combination of Evidence in
Dempster-Shafer Theory.” Technical report, Sandia National
Laboratories, SAND 2002-0835, 2002.

[Shortliffe79]. E. H. Shortliffe, B. G. Buchanan, and E. A. Feigenbaum.
“Knowledge Engineering for Medical Decision Making: A Review
of Computer-Based Clinical Decision Aids.” Proceedings of the
IEEE, vol. 67, pages 1207–1224, 1979.

[Simone13]. L. K. Simone. “Software Related Recalls: An Analysis of
Records.” Biomedical Instrumentation and Technology, 2013.

[UPenn]. The Generic Patient Controlled Analgesia Pump Model.
http://rtg.cis.upenn.edu/gip.php3.

[UPenn-a]. Safety Requirements for the Generic Patient Controlled
Analgesia Pump. http://rtg.cis.upenn.edu/gip.php3.

[UPenn-b]. The Generic Patient Controlled Analgesia Pump Hazard
Analysis. http://rtg.cis.upenn.edu/gip.php3.

[Wagner10]. S. Wagner, B. Schatz, S. Puchner, and P. Kock. “A Case
Study on Safety Cases in the Automotive Domain: Modules,
Patterns, and Models.” International Symposium on Software
Reliability Engineering, pages 269–278, 2010.

[Weaver03]. R. Weaver. “The Safety of Software: Constructing and
Assuring Arguments.” PhD thesis, Department of Computer
Science, University of York, 2003.

[Weinstock09]. C. Weinstock and J. Goodenough. “Towards an
Assurance Case Practice for Medical Devices.” Technical Report,
CMU/SEI-2009-TN-018, 2009.

[Ye05]. F. Ye and T. Kelly. “Contract-Based Justification for COTS
Component within Safety-Critical Applications.” PhD thesis,
Department of Computer Science, University of York, 2005.

http://rtg.cis.upenn.edu/gip.php3
http://rtg.cis.upenn.edu/gip.php3
http://rtg.cis.upenn.edu/gip.php3

Index

371

A
AADL (Architecture Analysis and

Design Language)
applying PALS AADL specification,

278–279
PALS modeling tools, 281–282
PALS specification, 275–276
synchronous design languages and

tools, 263
synchronous specification, 274–275

ABD (asynchronous bound delay), 266
Abstraction of time, semantic domains

for, 335–336
ACE (area control error), standards for

dynamic energy systems, 87
ACKs (acknowledgments), in B-MAC

protocol, 108
Actuation, controller operations, 167
Actuators

in CPS, 133
hazards of closed-loop systems, 35

Ad hoc networks, routing in, 109–110
Ad hoc, on demand vector routing

(AODV), 117
Adaptive load management (ALM),

cyber capabilities in Architecture 1
systems, 76

Administrators
MDCF supervisor services, 28
perspective of MCPS stakeholders, 50

Advanced metering infrastructures
(AMIs), cyber capabilities in
Architecture 1 systems, 75–76

Adversary. See also Attacks
actions, 242
model in CPS security, 251–252

AGC (automatic generation control)
balancing power demand deviations,

64–65
system issues of SEES Architecture 1,

75
Aggregation, data-driven in SEES,

87–88
ALM (adaptive load management),

cyber capabilities in Architecture 1
systems, 76

AMIs (advanced metering infrastruc-
tures), cyber capabilities in
Architecture 1 systems, 75–76

Anytime approach, to reducing compu-
tation time, 171–172

AODV (ad hoc, on demand vector
routing), 117

Application control, 166
Application database, MDCF supervisor

services, 28
Application manager, MDCF supervisor

services, 27–28
Apps

ICE, 25
VMD app, 7–8

Architecture Analysis and Design
Language. See AADL
(Architecture Analysis and Design
Language)

Architecture, PALS
middleware architecture, 276–277,

282
specification of, 274

Architecture, SEES
critical system-level characteristics,

71–72

Index372

Architecture, SEES (continued)
cyber capabilities in Architecture 1

systems, 75–76
design challenges for Architecture 1

systems, 76
design challenges for Architecture 2

systems, 77
design challenges for Architecture

3–5 systems, 77–78
overview of, 68–70
performance objectives, 71, 73–74
system issues of Architecture 1, 74–75

Area control error (ACE), standards for
dynamic energy systems, 87

ASIIST tool, for PALS system modeling,
281

Assurance cases
building, 42
case study (GPCA infusion pump),

45–48
challenges in MCPS, 5
example of assurance deficit, 48
justifying and confidence in, 42–45
reviewing/assessing, 44–45
safety cases, 40–42
trusting, 43–44

ASTM F2761-2009. See also ICE
(Integrated Clinical Environment),
23–24

Asynchronous bound delay (ABD), 266
Asynchronous events/architectures

discrete events over time, 200
distributed systems and, 259
globally asynchronous, locally

synchronous. See GALS (globally
asynchronous, locally
synchronous)

implementing synchronous model
onto, 266

model checking and, 219
physically asynchronous, logically

synchronous systems. See PALS
(physically asynchronous,
logically synchronous systems)

simulating asynchronous behavior in
synchronous design language, 263

synchronous lockstep executions,
266–267

Attacks
actions, 242
attacker model, 240
cyber consequences, 242–244
entry points, 240–242
motivations for, 237
physical consequences, 244

Attestation, for remote code verification,
247

Authentication
countermeasures in CPS security,

254–256
key management and, 245

Automatic generation control (AGC)
balancing power demand deviations,

64–65
system issues of Architecture 1, 75

Automatic voltage regulators (AVRs), in
coordination among power
systems, 89

Automation
in coordinating medical devices, 22
interaction variable-based automated

modeling and control in SEES,
94–95

properties of timed automata, 224–226
synchronizing timed automata,

223–224
Autonomy, challenges in MCPS, 13
Availability

as cyber security requirement, 239–240
types of threats related to, 242

AVRs (automatic voltage regulators), in
coordination among power
systems, 89

B
B-MAC protocol, for WSNs, 108–109
Backdoors, as attack entry point, 241

Index 373

Backus-Naur form (BNF), describing
programming languages, 337

Bandwidth
real-time scheduling, 318–319
reducing in control systems, 172

Bank coloring, in scheduling, 313
Batteries, power management issues in

WSNs, 114–115
BET (bounded execution time), in

abstraction of time, 336
BIP, interaction models for computa-

tional processes, 337
BNF (Backus-Naur form), describing

programming languages, 337
Bond graphs

acausal physical systems modeling,
334–335

defining semantics of power ports,
352–354

overview of, 349–350
Bouncing ball, examples of verification

of hybrid systems, 228–229
Bounded execution time (BET), in

abstraction of time, 336
Broadcasting, securing communication

architecture, 246
Bundle, limitations of group abstrac-

tions in WSNs, 123–124

C
C++ API, for PALS applications,

279–281
CABG (coronary artery bypass graft),

smart alarm case study, 32–33
Cache coloring, 312–313
Cache, memory effects on scheduling,

300–301
Cache-related preemption program

(CRPD), determining WCET, 292
CAE (Claims-Arguments-Evidence), in

building safety cases, 41–42
Calculate Output segment, reducing

input-output latency, 175

CAN (Controller Area Network)
protocol

in network scheduling and band-
width allocation, 319

sharing computing resources, 176
Caregivers, physiological closed-loop

systems and, 11–12
Causality, modeling and, 334–335
CBS (Constant Bandwidth Server), for

reservation-based scheduling, 177
CCA (clear channel assessment), in

B-MAC protocol, 108
CDS (clinical decision support systems).

See also Smart alarms
closed-loop systems compared with,

34
difficulties with core features, 30–32
overview of, 28
reducing alarm fatigue related to

noisy intensive care environment,
29–30

Certification, challenges in MCPS, 13–14
Chandra-Toueg’s algorithm, for

distributed consensus, 265
Claims-Arguments-Evidence (CAE), in

building safety cases, 41–42
Clear channel assessment (CCA), in

B-MAC protocol, 108
Clear to send (CTS), use by MAC

protocols, 109
Clinical decision support systems. See

CDS (clinical decision support
systems)

Clinician service, MDCF supervisor
services, 28

Clock
in power management, 320–322
synchronization in WSNs, 113–114
timing constraints in PALS, 272

Closed-loop systems, medical
achieving higher level of intelligence,

34–35
automating actuation and delivery

by medical devices, 5

Index374

Closed-loop systems, medical (continued)
automating coordination of medical

devices, 22
case study (PCA infusion pump), 36–38
engineering challenges, 38–39
hazards of, 35
overview of, 34
physiological closed-loop systems in

MCPS, 11–12
CoD (curse of dimensionality), in

controller synthesis, 155–156
Code generation, PCA infusion pump,

20–21
Code System from Maria (CoSyMA),

software tools for symbolic
modeling, 157

Collisions (packet). See Contention
Communication architecture, counter-

measures in CPS security, 246–247
Communication equipment, security

compromised by, 243
Communication protocol, example of

modeling systems, 136–137
Computation

controller operations, 167
interaction models for, 336–337
pattern extension for multirate

computations in PALS, 273–274
reducing time in control systems,

171–172
sharing resources, 176–177
synchronizing distributed. See

Synchronization, in distributed
CPS

Computation tree logic (CTL), verifying
GPCA model, 20

Confidentiality
as cyber security requirement,

239–240
types of threats related to, 242

Connectivity, of medical devices
increasing functionality of intercon-

nected devices, 11
overview of, 5

standards and regulations
controlling, 23

Constant Bandwidth Server (CBS), for
reservation-based scheduling, 177

Constructors, for data types in ForSpec,
339–340

Contention
MAC (medium access control) and,

107–108
memory effects on, 312–313

Context-awareness
challenges in MCPS, 13
difficulties with core features of CDS

systems, 31
Contingency analysis, countermeasures

in CPS security, 252–253
Continuous systems, symbolic models

of, 134
Continuous time

designing controller for resource
efficiency, 169–170

semantic domains for time, 335
symbolic models of continuous-time

controllers, 156–157
Control server, in feedback control

systems, 177–178
Control systems. See Feedback control

systems
Control theory, 165
Controller Area Network (CAN)

protocol
in network scheduling and band-

width allocation, 319
sharing computing resources, 176

Controller synthesis, symbolic approach
to

advanced algorithms, 155–156
advanced techniques, 152–154
basic algorithms, 154–155
basic techniques, 135
communication protocol example,

136–137
constructing symbolic model for

DC-DC boost converter, 151–152

Index 375

constructing symbolic models, 148,
150–151, 154

continuous-time controllers, 156–157
DC-DC boost converter example,

137–139, 142
defining synthesis problem, 142–144
LTL (linear temporal logic) for

specifying system behavior,
139–140

modeling systems, 136
motivations for, 134
overview of, 133–134
reachability and termination

properties, 141
references, 159–164
safety properties, 140–141
software tools, 157–158
solving synthesis problem, 144–148
stability assumptions, 149
stability property, 141
summary and open challenges,

158–159
Controllers

analysis and simulation of feedback
control systems, 188–189

designing for resource efficiency,
169–170

execution model for, 190–192
minimizing frequency of sampling,

172–173
reducing computation time, 171–172
sharing computing resources,

176–177
simulating temporal behavior of,

186–188
software controllers, 174–176
timing, 167–169

CORBA, distributed middleware,
268

Coronary artery bypass graft (CABG),
smart alarm case study, 32–33

CoSyMA (Code System from Maria),
software tools for symbolic
modeling, 157

Countermeasures
advanced techniques, 252
basic techniques, 245
communication architecture and,

246–247
contingency analysis, 252–253
fault detection and isolation, 253–254
key management, 245
physical watermarking and authenti-

cation, 254–256
robust control, 254
system security and device security,

247
CPS (cyber-physical systems)

building on wireless sensors net-
works. See WSNs (wireless sensor
networks)

energy CPS. See Energy CPS
feedback control systems. See

Feedback control systems
hybrid systems. See Hybrid systems,

logical correctness for
medical CPS. See MCPS (medical

cyber-physical systems)
model integration. See Model

integration, in CPS
real-time scheduling. See Real-time

scheduling
securing. See Security, of CPS
symbolic approach to controller

synthesis. See Controller synthesis,
symbolic approach to

synchronizing distributed computa-
tions. See Synchronization, in
distributed CPS

CPUs
control servers and, 177–178
memory effects on scheduling,

312–313
mixed-criticality scheduling, 315–318
multiprocessor/multicore scheduling,

301–302
partitioned, job-static priority

scheduling, 309–310

Index376

CPUs (continued)
partitioned scheduling, 307
partitioned, task-static priority

scheduling, 307–309
power management, 319–323
reducing computation time impacting

resource use, 171–172
resource allocation tradeoff with

Q-RAM, 313–315
time-division scheduling, 177

Critical system-level characteristics,
energy CPS, 71–72

CRPD (cache-related preemption
program), determining WCET, 292

Cryptography, 245
CTL (computation tree logic), verifying

GPCA model, 20
CTS (clear to send), use by MAC

protocols, 109
Curse of dimensionality (CoD), in

controller synthesis, 155–156
Cyber consequences, of attacks, 242–244
Cyber-Physical Systems Modeling

Language. See CyPhyML (Cyber-
Physical Systems Modeling
Language)

CyPhyML (Cyber-Physical Systems
Modeling Language)

defining semantics for structural
integration, 350–352

defining semantics of bond graph
power ports, 352–354

defining semantics of Modelica
power ports, 354–355

defining semantics of signal-flow
integration, 355–356

formalizing denotational semantics,
346–347

formalizing language integration,
349–350

formalizing structural semantics,
344–346

overview of, 338–339
syntax of, 342–344

D
Data centers, in SEES architecture, 69
Data-driven dynamic aggregation, 87–88
Data fusion, automating coordination of

medical devices, 22
Data logger, MDCF network controller

services, 27
Data storage, difficulties with core

features of CDS systems, 31
Data types, in ForSpec, 339–340
Database links, as attack vector, 242
DC-DC boost converter

constructing symbolic model for,
151–152

as example of use of modeling
systems, 137–139

regulating state in, 142
sampled-data dynamics of, 143–144

DDoS (Distributed DoS), 239, 244
Delivery devices, types of MCPS

devices, 6
Dempster-Shafer method, assessing

assurance cases, 44–45
Denial-of-service attacks. See DoS

(denial-of-service) attacks
DERs (distributed energy resources)

equipping with cyber smarts, 67
in SEES architecture, 69–70
synchronizing with existing power

grid, 78–79
system issues of Architecture 1, 75

Design patterns, as synchronization
technique, 263

Design Verifier
combining observations with

Simulink, 219–220
formalizing claims in system, 212–218

Developers, perspective of MCPS
stakeholders, 49

Development, in MCPS
challenges in model-driven

development, 15–16
mitigating hazards, 14–15
need for high-confidence, 14

Index 377

Device database, MDCF network
controller services, 27

Device manager, MDCF network
controller services, 27

Devices. See also Medical devices
automating coordination of medical

devices, 22
countermeasures in CPS security, 247
cyber consequences of attacks, 242
malicious media as attack entry

point, 240
Direct memory access (DMA), memory

effects on scheduling, 301
Directed diffusion, WSN routing

paradigms, 110
Discrete time, semantic domains for

time, 335
Discrete verification, of hybrid systems,

200–201
Distributed algorithms, verifying

formally, 269
Distributed consensus algorithms

overview of, 264–266
verifying formally, 269

Distributed control, types of control
systems, 166

Distributed convergence, 269
Distributed DoS (DDoS), 239, 244
Distributed energy resources. See DERs

(distributed energy resources)
Distributed optimization, energy CPS,

96–97
Distributed software, verifying formally,

269
Distributed systems, synchronization of

distributed computations. See
Synchronization, in distributed
CPS

DMA (direct memory access), memory
effects on scheduling, 301

Domain-specific modeling languages
(DSMLs)

interconnecting, 332–333
semantics of, 337–338

DoS (denial-of-service) attacks
characterization of adversary models,

251–252
cyber security requirements and, 239
physical consequences of attacks, 244
securing communication architecture,

246–247
security awareness attribute in WSNs

and, 121
DPM-Clock (Dynamic PM-clock), in

power management, 320, 322
DRAM (dynamic random access

memory), 312–313
DSMLs (domain-specific modeling

languages)
interconnecting, 332–333
semantics of, 337–338

DSR (dynamic source routing), SPEED
protocol compared with, 117

Dual-redundant control system example,
PALS, 278–281

Duty cycle, power management issues
in WSNs, 115

DyMonDS (Dynamic Monitoring and
Decision System)

coordination with predefined
subsystems, 88–94

CPS electric energy system with, 80
data-driven dynamic aggregation

and, 87–88
distributed optimization, 96–97
interaction variable-based automated

modeling and control, 94–95
paradigm for sustainable SEES,

79–82
physics-based approach to SEES,

82–86
standards for CPS of an SEES, 86–87
for sustainable end-to-end CPS for

electric energy systems, 61–62
Dynamic PM-clock (DPM-Clock), in

power management, 320, 322
Dynamic-priority assignment, in

real-time scheduling, 297–298

Index378

Dynamic random access memory
(DRAM), 312–313

Dynamic source routing (DSR), SPEED
protocol compared with, 117

E
Earliest-deadline-first. See EDF

(earliest-deadline-first)
Eavesdropping attacks

characterization of adversary models,
251

entry points, 243
EcosimPro, acausal physical systems

modeling, 334–335
EDF (earliest-deadline-first)

job-based priority assignment,
297–298

job-static priority scheduling,
305–306

multiprocessor/multicore scheduling,
301

partitioned, job-static priority
scheduling, 309–310

sharing computing resources among
controllers, 176–177

EDF-WM, task-splitting-based algo-
rithms, 312

EESG (Electric Energy Systems Group),
at Carnegie Melon University, 79

Ehd2-SIP, task-splitting-based algorithms,
312

EHV (extra-high-voltage) transmission,
64

Electric Energy Systems Group (EESG),
at Carnegie Mellon University, 79

Electric power grids. See Energy CPS
Electric vehicles (EVs)

design challenges for Architecture
3–5 SEES systems, 78

power storage and, 70
Embedded Systems Modeling

Language. See ESMoL (Embedded
Systems Modeling Language)

End-to-end communication, securing
communication architecture, 246

Energy CPS
coordination with predefined

subsystems, 88–94
critical system-level characteristics,

71–72
data-driven dynamic aggregation

and, 87–88
design challenges for Architecture 1

systems, 76
design challenges for Architecture 2

systems, 77
design challenges for Architecture

3–5 systems, 77–78
design drivers and quality attributes,

65–67
distributed optimization, 96–97
DyMonDS-based standards for SEES,

86–87
enhanced cyber capabilities in

Architecture 1 systems, 75–76
finding the way forward, 78–79
interaction variable-based automated

modeling and control, 94–95
IT-enabled evolution of performance

objectives, 96
key systems principles, 67
motivations for, 62–63
overview of, 61–62
paradigm for sustainable SEES, 79–82
performance objectives of

Architecture 1, 73–74
physics-based approach to SEES,

82–86
references, 100–102
securing smart grids, 248
summary and open challenges,

97–100
sustainable SEES (socio-ecological

energy systems), 67–70
system description and operational

scenarios, 63–65
system issues of Architecture 1, 74–75

Index 379

Energy service providers (ESPs), design
challenges for SEES Architectures
3–5, 77–78

Environment
physical awareness attribute in

WSNs, 115–116
uncertainty in physical world and

CPS systems, 104–105
Environment input synchronizer,

interface constraints in PALS, 272
Environmental science, operational

scenarios for WSNs, 106
ESMoL (Embedded Systems Modeling

Language)
defining semantics of signal-flow

integration, 355–356
overview of, 350
for periodic, discrete-time systems,

351
ESPs (energy service providers), design

challenges for SEES Architectures
3-5, 77–78

Event-based control, as alternative to
periodic sampling, 173–174

EVs (electric vehicles)
design challenges for Architecture

3–5 SEES systems, 78
power storage and, 70

Execution model, for controllers,
190–192

Extra-high-voltage (EHV) transmission, 64

F
FACTS (Flexible AC Transmission

Systems), in coordination among
power systems, 89

Fairness-based algorithms, in real-time
scheduling, 310

Fault tolerance
basic synchronization techniques

and, 269
runtime validation awareness

attribute of WSNs, 118

FDA (Food and Drug Administration)
regulation of infusion pumps, 40
regulation of medical devices, 4
safety assurances cases, 40–42

FDI (fault detection and isolation),
countermeasures in CPS security,
253–254

Feedback control systems
advanced algorithms, 171
analysis and simulation of, 178–179
basic techniques, 167
control server, 177–178
controller timing, 167–169
designing controller for resource

efficiency, 169–170
event-based control, 173–174
execution model, 190–192
Jitter Margin, 183–186
Jitterbug computing performance

criteria for, 179–180
Jitterbug example, 182–183
Jitterbug models, 180–182
kernel block, 188–189
minimizing frequency of sampling,

172–173
motivations for, 166–167
network block, 190
overview of, 165
reducing computation time, 171–172
references, 193–195
sharing computing resources,

176–177
software controllers, 174–176
summary and open challenges,

192–193
True Time, 186–188

FFP (finite FIFO), 266
Fixed-priority assignment, in real-time

scheduling, 294–297
Fixed timing parameters, in real-time

scheduling, 291
Flexible AC Transmission Systems

(FACTS), in coordination among
power systems, 89

Index380

Flooding Time Synchronization Protocol
(FTSP), clock synchronization in
WSNs, 113–114

Food and Drug Administration. See FDA
(Food and Drug Administration)

Formalism, in model description,
292–294

FORMULA, 339, 341–342
ForSpec, for model specification, 339–342
Forwarding protocols, 246
FTSP (Flooding Time Synchronization

Protocol), clock synchronization in
WSNs, 113–114

G
GALS (globally asynchronous, locally

synchronous)
logically equivalent GALS and PALS

systems, 270
overview of, 260
space explosion problem in, 261

General PCA infusion pump (GPCA
infusion pump). See also PCA
(patient-controlled analgesia)
infusion pumps, 45–48

Generic PCA. See GPCA (Generic PCA)
GF (geographic forwarding), WSN

routing algorithm, 110
Global positioning system (GPS), node

localization in WSNs and, 112
Global scheduling

job-static priority scheduling,
305–306

overview of, 302
task migration in, 306
task-static priority scheduling,

302–305
U-LLREF, 322

Globally asynchronous, locally synchro-
nous. See GALS (globally asyn-
chronous, locally synchronous)

GMF (Growing Minimum Frequency),
in power management, 322–323

Goal Structuring Notation (GSN), in
building safety cases, 41–42

GPCA (Generic PCA)
code generation and system

integration, 20–21
example of assurance deficit, 48
modeling, 17–19
overview of GPCA project, 17
verifying model, 19–20

GPS (global positioning system), node
localization in WSNs and, 112

GPSR (greedy perimeter stateless
routing)

physical awareness in WSNs and, 116
resolving void issue in WSN routing, 111
SPEED protocol compared with, 117

GR(1), software tools for symbolic
modeling, 157

Greedy perimeter stateless routing. See
GPSR (greedy perimeter stateless
routing)

Group abstraction, limitations of group
abstractions in WSNs, 122–123

Growing Minimum Frequency (GMF),
in power management, 322–323

GSN (Goal Structuring Notation), in
building safety cases, 41–42

H
Hashes, security awareness attribute in

WSNs and, 121–122
Health care, operational scenarios for

WSNs, 105–106
Helicopter flight control

functionality of helicopter stabilizer,
206–207

generating claims regarding system
operation, 207–208

verification example, 204–205
verifying operational requirements,

205–206
Hood, limitations of group abstractions

in WSNs, 122–123

Index 381

Horus, solutions for distributed
consensus, 264

Hybrid control, types of control systems,
166

Hybrid systems, logical correctness for
advanced techniques, 221
basic techniques, 200
bouncing ball example, 228–229
detailed state charts, 212
discrete verification, 200–201
formalizing claims in system Design

Verifier, 212–218
functionality of helicopter stabilizer,

206–207
generating claims regarding system

operation, 207–208
helicopter flight control verification

example, 204–205
limitations and challenges in

verifying hybrid systems, 230–231
LTL (linear temporal logic), 202–204
motivations for, 198–200
observations from combining

Simulink and Design Verifier,
219–220

overview of, 197
properties of timed automata,

224–226
real-time verification, 221
references, 232–235
running model-checking engine,

218–219
simple light control example, 222–223
summary and open challenges, 231
synchronizing timed automata,

223–224
thermostat example, 230
tools for checking models and

associated logic, 201–202
tools for practitioners and research-

ers, 220–221
tools for verification of real-time

systems, 226–227
top-level state charts, 208–211

verification of hybrid systems,
227–228

verifying operational requirements
for helicopter flight control
example, 205–206

Hydropower, in SEES architecture, 70
Hyper-dense time, semantic domains

for time, 335

I
I/O (input/output)

memory effects on scheduling, 301
reducing input-output latency, 175

IBA (intelligent balancing authority),
coordination among power
systems, 89–90

ICE (Integrated Clinical Environment)
approach to medical standards and

regulations, 23–24
overview of, 24–25

ICUs (intensive care units)
CABG case study, 32–33
reducing alarm fatigue, 29–30

IEE (inadvertent energy exchange),
developing standards for dynamic
energy systems, 87

Infusion pumps. See also PCA
(patient-controlled analgesia)
infusion pumps

examples of software-enabled
functionality in MCPS, 10

FDA regulation of medical devices,
40

Input/output (I/O)
controller timing and input-output

latency, 169
memory effects on scheduling, 301
reducing input-output latency, 175

Insiders, attack entry points, 242
Integrated Clinical Environment (ICE)

approach to medical standards and
regulations, 23–24

overview of, 24–25

Index382

Integration. See also Model integration,
in CPS

integrated clinical environment, 24–25
MD PnP Interoperability initiative, 11
standards and regulations controlling

medical devices, 23
system integration (PCA infusion

pump case study), 20–21
Integrity

as cyber security requirement, 239–240
types of threats related to, 242

Intelligent balancing authority (IBA),
coordination among power
systems, 89–90

Intensive care units (ICUs)
CABG case study, 32–33
reducing alarm fatigue, 29–30

Interfaces
external interface constraints in

PALS, 272–273
interface description language, 25

Interoperability. See also Integration
challenges in MCPS, 12–13
difficulties with core features of CDS

systems, 30–31
ISIS/ISIS2, solutions for distributed

consensus, 264

J
Jamming attacks, 247
JIP (just-in-place), cyber capabilities in

SEES Architecture 1 systems, 76
JIT (just-in-time), cyber capabilities in

SEES Architecture 1 systems, 76
Jitter, controller timing and, 168
Jitter Margin

example, 186
models, 184–186
overcoming limitations in Jitterbug

timing model, 183–184
Jitterbug

computing performance criteria,
179–180

drawbacks, 183–184
example, 182–183
signal and timing models, 180–182

Jobs
job-based priority assignment,

297–298
job-static priority scheduling,

305–306
periodic execution of tasks, 293

Just-in-place (JIP), cyber capabilities in
SEES Architecture 1 systems, 76

Just-in-time (JIT), cyber capabilities in
SEES Architecture 1 systems, 76

K
Kerberos, 245
Kerchhoff’s principle, applied to key

management, 239
Kernel block, MATLABS-function,

188–189
Key management

countermeasures in CPS security,
245

Kerchhoff’s principle, 239
KeYmaera verification tools, 228

L
Lamport’s Paxos algorithm, for distrib-

uted consensus, 265
Latency

control performance and, 179
reducing input-output latency, 169,

175
LET (logical execution time), abstraction

of time, 336
Light control, example of hybrid system,

222–223
Linear temporal logic. See LTL (linear

temporal logic)
Linear Temporal Mission Planning

(LTLMoP), software tools for
symbolic modeling, 157

Index 383

Linear time-invariant (LTI)
continuous-time dynamic system, 169
state space model for CPS, 249–251

Load-serving entities (LSEs), design
challenges for SEES Architecture
2, 77

Lockstep synchronization
execution, 266–267
timing constraints in PALS and, 272

Logical execution time (LET), abstrac-
tion of time, 336

Logical time, semantic domains for time,
335

Loosely Time-Triggered Architecture
(LTTA), implementing synchro-
nous model onto asynchronous
architectures, 266

LQC control, for latency distribution, 179
LSEs (load-serving entities), design chal-

lenges for SEES Architecture 2, 77
LTI (linear time-invariant)

continuous-time dynamic system, 169
state space model for CPS, 249–251

LTL (linear temporal logic)
overview of, 202–204
specifying safety properties, 140–141
for specifying system behavior in

modeling, 139–140
LTLCon, software tools for symbolic

modeling, 157
LTLMoP (Linear Temporal Mission

Planning), software tools for
symbolic modeling, 157

LTTA (Loosely Time-Triggered
Architecture), implementing
synchronous model onto asyn-
chronous architectures, 266

Lustre, 263

M
MAC (medium access control)

CAN and, 319
in WSNs, 107–109

Machine learning, modeling CDS
systems, 31–32

Malicious insiders, attack entry points, 242
Malware. See also Attacks

cyber consequences of, 242
physical consequences of, 244
remote code verification, 247
Stuxnet malware, 237–238

MANET (wireless mobile ad hoc
network) systems

physical awareness attribute in
WSNs, 116

routing and, 109
MATLAB

Jitterbug, 179
kernel block, 188–189
True Time, 187

MCPS (medical cyber-physical systems)
administrator perspective, 50
challenges in model-driven

development, 15–16
clinical scenarios supported by

VMDs, 8–9
connectivity of medical devices, 11
continuous monitoring and care, 12
description and operational scenarios,

5–7
developer perspective, 49
development with high-confidence, 14
mitigating hazards in development

process, 14–15
motivations for, 4–5
on-demand medical devices. See

On-demand medical devices
overview of, 3
patient perspective, 51
PCA infusion pump case study. See

PCA (patient-controlled analgesia)
infusion pumps

physiological closed-loop systems, 11–12
quality attributes and challenges in,

12–14
references, 53–56
regulatory perspective, 51–52

Index384

MCPS (medical cyber-physical systems)
(continued)

software-enabled functionality, 10
stakeholder groups, 48–49
summary and open challenges, 52–53
trends in, 9
user perspective, 50
virtual medical devices in, 7–8

MD PnP (Medical Device
Plug-and-Play)

documenting need for on-demand
medical devices, 23

interoperability initiative, 11
MDCF (Medical Device Coordination

Framework)
network controller services, 26–27
overview of, 25–26
supervisor services, 27–28

Medical cyber-physical systems. See
MCPS (medical cyber-physical
systems)

Medical Device Plug-and-Play (MD PnP)
documenting need for on-demand

medical devices, 23
interoperability initiative, 11

Medical devices
automating coordination of, 22
ICE (Integrated Clinical

Environment), 25
increasing functionality of intercon-

nected medical devices, 11
on-demand devices. See On-demand

medical devices
significant transformations, 4
types of MCPS devices, 6
uses of implantable devices in

closed-loop systems, 34–35
virtual devices. See VMDs (virtual

medical devices)
Medium access control (MAC)

CAN and, 319
in WSNs, 107–109

Memory effects, scheduling and,
300–301, 312–313

Message bus, MDCF network controller
services, 26–27

Meta-modeling
CyPhyML and, 342
DSML and, 333
syntax of, 338

Micro grids
design challenges for SEES

Architecture 3–5, 77–78
in stand-alone energy distribution, 69

Middleware
for PALS, 276–277, 282
real-time networking, 268

Mixed-criticality scheduling, 315–318
MMSN (multifrequency media access

control for wireless sensor
networks), 109

Mobile ad hoc network (MANET)
systems

physical awareness attribute in
WSNs, 116

routing and, 109
MoCs (models of computation), 336–337
Modbus protocol, 243–244
Model-driven development

development challenges in MCPS,
15–16

need for high-confidence in MCPS,
14–15

Model integration, in CPS
advanced techniques, 338–339
basic techniques, 333–334
causality, 334–335
CyPhyML syntax, 342–344
defining semantics for power ports,

347–348
defining semantics for signal ports,

348–349
defining semantics for structural

integration, 350–352
defining semantics of bond graph

power ports, 352–354
defining semantics of Modelica

power ports, 354–355

Index 385

defining semantics of signal-flow
integration, 355–356

formalizing denotational semantics,
346–347

formalizing language integration,
349–350

formalizing structural semantics,
344–346

ForSpec used for specification,
339–342

interaction models for computational
processes, 336–337

motivations for, 332–333
overview of, 331
references, 357–360
semantics of DSMLs, 337–338
sematic time domains, 335–336
summary and open challenges, 356–357

Model-predictive control (MPC), for
reducing computation time, 171–172

Modelica
acausal physical systems modeling,

334–335
defining semantics of power ports,

354–355
overview of, 350

Modeling languages
for cyber-physical systems. See

CyPhyML (Cyber-Physical
Systems Modeling Language)

defined, 337
domain-specific. See DSMLs

(domain-specific modeling
languages)

for embedded systems. See ESMoL
(Embedded Systems Modeling
Language)

Models/modeling
adversary model, 251–252
approach to system modeling, 136
attacker model, 240
causality and, 334–335
closed-loop PCA infusion pump case

study, 36–38

constructing symbolic models, 148,
150–152, 154

difficulties with core features of CDS
systems, 31–32

DyMonDS-based standards for SEES,
86–87

formalism in model description,
292–294

interaction models for computational
processes, 336–337

Jitter Margin, 184–186
Jitterbug example, 182–183
LTI state space model in CPS security,

249–251
model-based approach to event-

based control, 174
ODSS frequency modeling in

physics-based approach to SEES,
84–86

PALS modeling tools, 281–282
PCA infusion pump case study, 17–19
running model-checking engine,

218–219
signal and timing models in

Jitterbug, 180–182
stability assumptions in constructing

symbolic models, 149
system issues of Architecture 1, 74–75
tools for checking models and logic

of hybrid systems, 201–202
verifying PCA infusion pump model,

19–20
Models of computation (MoCs), 336–337
Monitoring

smart alarm case study, 32–33
surveillance and tracking scenarios

and WSNs, 106
trends in MCPS, 12

Monitoring devices, types of MCPS
devices, 6

MPC (model-predictive control), for
reducing computation time,
171–172

Multi-hop routing, in WSNs, 109

Index386

Multifrequency media access control
for wireless sensor networks
(MMSN), 109

Multiprocessor/multicore. See also CPUs
memory effects on scheduling, 312–313
real-time scheduling, 301–302

Multirate PALS system, pattern exten-
sion for multirate computations,
273–274

N
Network-based intrusion, attack entry

points, 241
Network block, analysis and simulation

of feedback control systems, 190
Network controllers

ICE, 25
MDCF services, 26–27

Network scanning, vulnerabilities in
Modbus protocol, 244

Network Time Protocol (NTP), clock
synchronization in WSNs, 113

Networks
building CPS on wireless sensors

networks. See WSNs (wireless
sensor networks)

increasing functionality of intercon-
nected medical devices, 11

real-time networking middleware,
268

real-time scheduling, 318–319
securing topology design, 246

Nodes, WSNs
localization, 111–113
routing and, 109–111

Notation
formalizing denotational semantics,

346–347
modeling systems and, 136

NTP (Network Time Protocol), clock
synchronization in WSNs, 113

Nuclear energy plants, in SEES
architecture, 68

O
ODSS (observation-decoupled state

space), frequency modeling, 84–86
On-demand medical devices

assurance cases. See Assurance cases
case studies, 23–24
clinical decision support. See CDS

(clinical decision support systems)
closed-loop systems. See Closed-loop

systems, medical
coordinating devices, 21–22
integrated clinical environment,

24–25
Medical Device Coordination

Framework, 25–28
overview of, 21
smart alarms. See Smart alarms
standards and regulations, 23
virtual medical devices, 22–23

Opioid medication, clinical scenarios
supported by VMDs, 9

Opt-Clock (optimal clock frequency
assignment), in power manage-
ment, 320, 322

P
Pacemakers, examples of software-

enabled functionality in MCPS, 10
PALS (physically asynchronous,

logically synchronous systems)
AADL modeling tools, 281–282
architectural specifications, 274
C++ API for PALS applications,

279–281
comparing with TTA, 268
complementing synchronous design

languages and tools, 263
complexity-reducing techniques, 262
dual-redundant control system

example, 278–281
external interface constraints, 272–273
middleware architecture, 276–277
middleware for, 282

Index 387

overview of, 270–271
pattern extension for multirate

computations, 273–274
synchronous AADL specification,

274–276
system context assumptions, 271–272
timing constraints, 272

PALSware
applying PALS AADL specification,

278–279
C++ API for PALS applications,

279–281
features, 282
PALS middleware architecture,

276–277
Partitioned scheduling

job-static priority scheduling,
309–310

overview of, 307
task-static priority scheduling,

307–309
Patient-controlled analgesia infusion

pumps. See PCA (patient-controlled
analgesia) infusion pumps

Patients, perspective of MCPS
stakeholders, 51

PBR (performance-based regulation),
providing incentives for
innovation, 74

PCA (patient-controlled analgesia)
infusion pumps

clinical scenarios supported by
VMDs, 8–9

in closed-loop system, 36–38
code generation and system

integration, 20–21
engineering challenges of closed-loop

systems, 38–39
GPCA project, 17
modeling, 17–19
overview of, 16–17
stand-alone medical devices, 5
validating implementation, 21
verifying model, 19–20

PCP (priority-ceiling protocol), 299–300
PDMS_HPTS_DS, task-splitting-based

algorithm, 312
Performance-based regulation (PBR),

providing incentives for innova-
tion, 74

Performance objectives, in SEES
for architecture 1, 73–74
for architectures generally, 71
IT-enabled evolution of, 96

Pessoa tools, for symbolic modeling,
158

Photovoltaics (PVs)
DyMonDS-based standards for SEES,

86–87
in SEES architecture, 70

Physical consequences, of attacks, 244
Physical layer, security awareness

attribute in WSNs and, 120–121
Physical watermarking, countermeasures

in CPS security, 254–256
Physical world

environmental uncertainties impacting
CPS systems, 104–105

physical awareness attribute in
WSNs, 115–116

Physically asynchronous, logically
synchronous systems. See PALS
(physically asynchronous,
logically synchronous systems)

Physics-based approach, to SEES, 82–86
PIP (priority-inheritance protocol), 299
PM-Clock (priority monotonic clock

frequency assignment), in power
management, 320, 322

Ports, in CyPhyML
power ports. See Power ports,

CyPhyML
signal ports. See Signal ports,

CyPhyML
Power grids. See Energy CPS
Power management

real-time scheduling, 319–323
in WSNs, 114–115

Index388

Power ports, CyPhyML
defining semantics, 347–348
defining semantics for structural

integration, 350–352
defining semantics of bond graph

power ports, 352–354
defining semantics of Modelica

power ports, 354–355
formalizing denotational semantics,

346–347
formalizing structural semantics,

345–346
overview of, 342–344

Power system stabilizers (PSSs),
coordination among power
systems, 89

Prioritization, in real-time scheduling
dynamic-priority assignment,

297–298
fixed-priority assignment, 294–297
job-static priorities, 305–306
partitioned, job-static priority

scheduling, 309–310
partitioned, task-static priority

scheduling, 307–309
task-static priorities, 302–305
for task synchronization, 298–300

Priority-ceiling protocol (PCP),
299–300

Priority-inheritance protocols, 299–300
Priority monotonic clock frequency

assignment (PM-Clock), in power
management, 320, 322

Privacy, challenges in MCPS, 13
Processors/multiprocessors. See CPUs
Proton therapy, example of software-

enabled functionality in MCPS, 10
PSSs (power system stabilizers),

coordination among power
systems, 89

Ptolemy II, interaction models for
computational processes, 336–337

Publish-subscribe, real-time networking
middleware, 268

PVs (photovoltaics)
DyMonDS-based standards for SEES,

86–87
in SEES architecture, 70

Q
Q-RAM (Quality-of-Service Resource

Allocation Model), 313–315
QoS (Quality of Service), 313–315

R
Range-based/range-free systems, for

node localization in WSNs, 112
Rate-monotonic priority assignment. See

RM (rate-monotonic) priority
assignment

Rate-monotonic scheduling (RMS),
294–297

RBS (Reference Broadcast
Synchronization), 113

Reachability properties, specifying
system behavior, 141

Real-time awareness, quality attributes
of WSNs, 116–118

Real-time networking middleware,
267–268

Real-time operating system (RTOS)
implementing controllers as tasks, 175
priority-inheritance protocols,

299–300
Real-time scheduling

accommodating variability and
uncertainty, 313

advanced techniques, 301
basic techniques, 291
dynamic-priority assignment,

297–298
fairness-based algorithms, 310
fixed-priority assignment, 294–297
formalism in model description,

292–294
global scheduling, 302

Index 389

job-static priority scheduling,
305–306

memory effects, 300–301, 312–313
mixed-criticality scheduling, 315–318
motivations for, 290–291
multiprocessor/multicore scheduling,

301–302
network scheduling and bandwidth

allocation, 318–319
overview of, 289
partitioned, job-static priority

scheduling, 309–310
partitioned scheduling, 307
partitioned, task-static priority

scheduling, 307–309
power management, 319–323
references, 325–330
resource allocation tradeoff with

Q-RAM, 313–315
rhythmic tasks scheduling, 323–324
summary and open challenges, 325
synchronization and, 298–300
task-splitting-based algorithms,

310–312
task-static priority scheduling,

302–305
using fixed timing parameters, 291
WCET (worst-case execution time),

292
Real-time verification

of hybrid systems, 221
tools for use with real-time systems,

226–227
Reconnaissance attacks, vulnerabilities

in Modbus protocol, 244
Regulations

on-demand medical devices, 23
FDA role in, 4

Regulators, perspective of MCPS
stakeholders, 51–52

Reliability
CPS issues in WSN routing, 111
runtime validation awareness

attribute of WSNs, 118

Replay attacks
characterization of adversary models,

251–252
physical watermarking and authenti-

cation and, 254–255
vulnerabilities in Modbus protocol, 243

Request to send (RTS), use by MAC
protocols, 109

Reservation-based scheduling, 176–177
Resource allocation tradeoff, with

Q-RAM, 313–315
Resource-aware control, 166–167
Resource scheduling, for SEES power

systems, 74–75
Response delay, vulnerabilities in

Modbus protocol, 244
Rhythmic tasks, scheduling, 323–324
RI-EDF (robust implicit earliest deadline

first), real-time awareness in
WSNs, 117

RM (rate-monotonic) priority
assignment

developing model for periodic tasks,
294

partitioned, task-static priority
scheduling, 307–309

task-static priority scheduling,
303–305

RMS (rate-monotonic scheduling),
294–297

Robust control, countermeasures in CPS
security, 254

Robust implicit earliest deadline first
(RI-EDF), real-time awareness in
WSNs, 117

Rockwell Collins META Toolset, for
PALS system modeling, 281

Rogue interloper, vulnerabilities in
Modbus protocol, 244

Round-based synchronous execution, in
TTA, 267

Routing
securing routing protocols, 246
in WSNs, 109–111

Index390

RTA (runtime assurance), WSNs,
119–120

RTOS (real-time operating system)
implementing controllers as tasks,

175
priority-inheritance protocols,

299–300
RTS (request to send), use by MAC

protocols, 109
RUN, scheduling algorithms using

fairness, 310
Runtime validation awareness, WSNs,

118–120

S
SAFEbus, synchronizing distributed

computations, 261
Safety

assured safety of on-demand medical
devices, 21

challenges in MCPS, 12
difficulties with core features of CDS

systems, 31
hazards of closed-loop systems, 35
mitigating hazards in development

process, 14–15
standards and regulations controlling

medical devices, 23
Safety cases. See also Assurance cases

overview of, 40–42
patterns, 45–48

Safety properties
regulating state in DC-DC boost

converter, 142
specifying system behavior, 140–141

Sampling
controller operations, 167–168
event-based control as alternative to

periodic, 173–174
minimizing frequency in control

systems, 172–173
static, 175
techniques in controller synthesis, 156

SCADA (System Control and Data
Acquisition System). See also
DyMonDS (Dynamic Monitoring
and Decision System)

in cyber network for an SEES, 84
design challenges for Architecture 1

SEES systems, 76
new and old approaches in SEES, 96
physical consequences of attacks,

244
SCADE, 263
Scheduling

in real-time. See Real-time scheduling
for resource sharing, 176–177

Secure Implicit Geographic Forwarding
(SIGF), 121

Security, of CPS
advanced techniques, 248
adversary model, 251–252
adversary or attack actions, 242
attack entry points, 240–242
attacker model, 240
basic techniques, 239
challenges in MCPS, 13
communication architecture and,

246–247
contingency analysis, 252–253
countermeasures, 245, 252
cyber consequences of attacks,

242–244
fault detection and isolation, 253–254
key management and, 245
motivations for, 238–239
overview of, 237
physical consequences of attacks, 244
physical watermarking and authenti-

cation, 254–256
references, 256–258
requirements, 239–240
robust control, 254
security awareness attribute in

WSNs, 120–122
state space model, 249–251
summary and open challenges, 256

Index 391

system security and device security,
247

system theoretic approaches, 248
Security requirements, Cyber security,

239–240
SEES (socio-ecological energy systems)

DyMonDS standards for, 86–87
paradigm for sustainable, 79–82
physics-based approach to, 82–86
sustainable, 67–70

Self-triggered control, as alternative to
event-based control, 174

Semantics
defining for bond graph power ports,

352–354
defining for Modelica power ports,

354–355
defining for power ports, 347–348
defining for signal-flow integration,

355–356
defining for signal ports, 348–349
defining for structural integration,

350–352
of DSMLs, 337–338
formalizing denotational semantics,

346–347
formalizing language integration,

349–350
formalizing structural semantics,

344–346
Sematic time domains, 335–336
Sensors. See also WSNs (wireless sensor

networks)
in CPS, 133
environmental science and, 106–107
hazards of closed-loop systems, 35
impact of compromised sensor on

security, 238
Sentries, 115
SES (socio-ecological systems). See also

SEES (socio-ecological energy
systems)

framework for analyzing, 81
sustainability and, 68

Side-channel attacks, WSNs, 121
SIGF (Secure Implicit Geographic

Forwarding), 121
Signal ports, CyPhyML

defining semantics, 348–349
defining signal-flow integration

semantics, 355–356
defining structural integration

semantics, 350–352
formalizing denotational semantics,

346–347
formalizing structural semantics,

345–346
overview of, 342–344

Simscape, for modeling acausal physical
systems, 334–335

Simulation
approximate in solving synthesis

problem, 144–146
in feedback control systems, 178–179
in symbolic approach to controller

synthesis, 134
Simulink

combining observations with Design
Verifier, 219–220

synchronous design languages and
tools, 263

Six-Step method, building assurance
cases, 42

Slave control, vulnerabilities in Modbus
protocol, 243

Slot-based split task dispatching,
task-splitting-based algorithms, 311

Smart alarms. See also CDS (clinical
decision support systems)

adding intelligence to medical
devices, 5

CABG case study, 32–33
closed-loop systems compared with,

34
difficulties with core features, 30–32
overview of, 28
reducing alarm fatigue in intensive

care environment, 29–30

Index392

Smart grids. See Energy CPS
Socio-ecological energy systems. See

SEES (socio-ecological energy
systems)

Software controllers, 174–176
Software-enabled functionality, trends in

MCPS, 10
Software engineering, 263
Software tools, for controller synthesis,

157–158
Software, verifying distributed, 269
SpaceEx State Space Explorer tool

analyzing hybrid automata, 228
bouncing ball example, 228–229
thermostat example, 230–231

SPEED protocol, for real-time awareness
in WSNs, 117

Spoofing attacks, vulnerabilities in
Modbus protocol, 243

Sporadic-EKG, task-splitting-based
algorithm, 311

Stability assumptions, controllers, 149
Stability property, specifying system

behavior in modeling, 141
Stakeholder groups, MCPS

administrator perspective, 50
developer perspective, 49
overview of, 48–49
patient perspective, 51
regulatory perspective, 51–52
user perspective, 50

Standards, on-demand medical devices,
23

State charts, for hybrid system
detailed state charts, 212
top-level state charts, 208–211

State space model, in CPS security,
249–251

Static checker tool, for PALS system
modeling, 281

Structure
defining structural integration

semantics, 350–352

formalizing structural semantics,
344–346

Stuxnet malware, 237–238
Super-dense time, semantic domains for

time, 335
Supervisor services, MDCF, 27–28
Supervisors, ICE, 25
Supervisory control techniques, in

approach to controller synthesis,
134

Supply chain attacks, attack entry
points, 241

Surveillance and tracking, operational
scenarios for WSNs, 106–107

Suspension-based split-task dispatching,
312

Sybil attacks, in WSNs, 121
Symbolic models. See also Controller

synthesis, symbolic approach to
algorithms for constructing, 154–156
constructing, 148, 150–151
of continuous systems, 134
of continuous-time controllers,

156–157
for DC-DC boost converter, 151–152
software tools, 157–158
stability assumptions in constructing,

149
SynchAADL2Maude tools, for PALS

system modeling, 281
Synchronization, in distributed CPS

AADL tools for PALS system
modeling, 281–282

architectural specifications for PALS,
274

basic techniques, 262
challenges, 261
complexity-reducing techniques,

261–262
distributed consensus algorithms,

264–266
dual-redundant control system,

278–281

Index 393

external interface constraints in
PALS, 272–273

fault-tolerant system design, 269
formal software engineering, 263
middleware for PALS, 276–277, 282
motivations for, 259–260
overview of, 259
PALS in, 270–271
pattern extension for multirate

computations, 273–274
real-time networking middleware,

267–268
references, 283–288
summary and open challenges,

282–283
synchronous AADL specification for

PALS, 274–276
synchronous lockstep executions,

266–267
system context PALS assumptions,

271–272
time-triggered architecture, 267–268
timing constraints in PALS, 272
verifying distributed algorithms,

269
Synchronization, of tasks in real-time

scheduling, 298–300
Synchronous lockstep executions,

266–267
Syntax. See Semantics
Synthesis. See Controller synthesis,

symbolic approach to
Sys-Clock (System clock frequency

assignment), in power manage-
ment, 320–321

System context assumptions, PALS,
271–272

System Control and Data Acquisition
System. See SCADA (System
Control and Data Acquisition
System)

System integration, PCA infusion pump
case study, 20–21

System knowledge attacks
adversary models, 251
fault detection and isolation, 253–254

System security, countermeasures in
CPS security, 247

System theoretic approaches, to security,
248

T
T&D (transmission and distribution)

systems, electric power
design challenges for Architecture 1

systems, 76
design challenges for Architecture

3–5 systems, 78
innovations needed in SEES, 66
IT protocols for balancing energy

supply and demand, 63
motivations for SEES, 63
power scheduling and, 64–65
system issues of Architecture 1, 75

Task-splitting-based algorithms, in
real-time scheduling, 310–312

Task-static priority scheduling, in
real-time scheduling, 302–305

Tasks
developing model for periodic,

293–294
scheduling in real-time. See Real-time

scheduling
scheduling rhythmic, 323–324
synchronization and, 298–300

Termination properties, specifying
system behavior, 141

Thermostat example, verification of
hybrid systems, 230

Time
clock synchronization in WSNs, 113–114
continuous. See Continuous time
real-time awareness attribute of

WSNs, 116–118
semantic domains, 335–336

Index394

Time-triggered Ethernet (TTP), 319
Timed automata

properties of, 224–226
synchronizing, 223–224

TIMES tool, for UPPAAL timed
automation, 20

Timing constraints, PALS, 272
TPSN (Timing-Sync Protocol for System

Networks), 113
Transmission and distribution systems. See

T&D (transmission and distribution)
systems, electric power

True Time, simulating temporal behavior
of controllers, 186–188

TTA (time-triggered architecture)
overview of, 267–268
round-based synchronous execution

in, 267
synchronizing distributed

computations, 261
TTP (time-triggered Ethernet), 319

U
U-LLREF, global scheduling algorithm,

322
Uncertainty, accommodating in real-time

scheduling, 313
Update State segment, reducing

input-output latency, 176
USB, malicious media as attack entry

point, 240–241
Users

interaction challenges with closed-loop
systems, 39

perspective of MCPS stakeholders, 50
Utilities (energy). See Energy CPS

V
Validation

challenges with closed-loop systems, 39
of implementation of PCA infusion

pump case study, 21

runtime validation awareness
attribute of WSNs, 118–120

Variability, accommodating in real-time
scheduling, 313

Verification, of hybrid systems
bouncing ball example, 228–229
combining observations of Simulink

with Design Verifier, 219–220
discrete verification, 200–201
examples, 227–228
examples of verification of hybrid

systems, 230
formalizing claims in system Design

Verifier, 212–218
helicopter flight control verification

example, 204–205
limitations and challenges in, 230–231
real-time verification, 221
running model-checking engine,

218–219
tools for use with real-time systems,

226–227
verifying operational requirements

for helicopter flight control
example, 205–206

Virtual medical devices. See VMDs
(virtual medical devices)

Virtual memory, memory effects on
scheduling, 300–301

Virtual synchronization, solutions for
distributed consensus, 264

Visualization, in CDS, 28
VMD app, 7–8
VMDs (virtual medical devices)

clinical scenarios supported by, 8–9
defined, 22–23
overview of, 7–8

Voids, CPS issues in WSN routing, 111

W
Watermarking, authentication and, 254–255
WCET (worst-case execution time)

in real-time scheduling, 292

Index 395

of rhymic tasks, 324
scheduling with fixed timing

parameters, 291
Web services, real-time networking

middleware, 268
Wind power generation

physics-based approach to SEES, 82
in SEES architecture, 70

Window-based split-task dispatching,
task-splitting-based algorithms,
312

Wireless networks, preventing jamming
attacks, 246–247

Wireless sensor networks. See WSNs
(wireless sensor networks)

Worst-case execution time. See WCET
(worst-case execution time)

WSNs (wireless sensor networks)
clock synchronization, 113–114
implications for practitioners, 122–124
key design drivers and attributes, 115
medium access control, 107–109
motivations for, 104–105
node localization, 111–113
overview of, 103–104

physical awareness attribute of,
115–116

power management, 114–115
real-time awareness attribute of,

116–118
references, 125–130
routing, 109–111
runtime validation awareness

attribute of, 118–120
security awareness attribute of,

120–122
summary and open challenges,

124–125
system description and operational

scenarios, 105–107

Z
Zero-dynamics attacks

characterization of adversary models,
251–252

fault detection and isolation, 253–254
ZET (zero execution time), 336
ZSRM (Zero-Slack Rate Monotonic),

316–318

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Emergence of CPS
	CPS Drivers
	Applications
	Theoretical Foundations

	Target Audience

	PART I: Cyber-Physical System Application Domains
	Chapter 1 Medical Cyber-Physical Systems
	1.1 Introduction and Motivation
	1.2 System Description and Operational Scenarios
	1.2.1 Virtual Medical Devices
	1.2.2 Clinical Scenarios

	1.3 Key Design Drivers and Quality Attributes
	1.3.1 Trends
	1.3.2 Quality Attributes and Challenges of the MCPS Domain
	1.3.3 High-Confidence Development of MCPS
	1.3.4 On-Demand Medical Devices and Assured Safety
	1.3.5 Smart Alarms and Clinical Decision Support Systems
	1.3.6 Closed-Loop System
	1.3.7 Assurance Cases

	1.4 Practitioners’ Implications
	1.4.1 MCPS Developer Perspective
	1.4.2 MCPS Administrator Perspective
	1.4.3 MCPS User Perspective
	1.4.4 Patient Perspective
	1.4.5 MCPS Regulatory Perspective

	1.5. Summary and Open Challenges
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

