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Introduction

Ragunathan (Raj) Rajkumar, Dionisio de Niz, and Mark Klein

The National Science Foundation defines cyber-physical systems (CPS) as 
“engineered systems that are built from, and depend upon, the seamless 
integration of computational algorithms and physical components”—that 
is, cyber and physical components. In practical terms, this integration 
means that, to understand CPS behavior, we cannot focus only on the 
cyber part or only on the physical part. Instead, we need to consider both 
parts working together. For instance, if we try to verify the behavior of the 
airbag of a car, it is not enough to ensure that the correct instructions to 
inflate the airbag are executed when the system detects that a crash is 
occurring. We also need to verify that the execution of such instructions is 
completed in sync with the physical  process—for example, within 20 ms—
so as to ensure that the airbag is fully inflated before the driver hits the 
steering wheel. The seamless integration between the cyber and physical 
parts of a CPS involves an understanding across multiple aspects that, in 
this simple example, include software logic, software execution timing, 
and physical forces.

While the airbag example already contains important elements of a 
CPS, we must note that it is one of the simplest examples and does not 
involve the most significant challenges for CPS. In particular, both the 
cyber components and the physical components are very simple in this 
case, and their interaction can be reduced to worst-case differences between 
the software execution completion time and the time it takes the driver to 
hit the steering wheel in a crash. However, as the complexity of both the 
software and the physical processes grows, the complexity of their integra-
tion also increases significantly. In a large CPS—for example, one of the 
latest commercial aircraft—the integration of multiple physical and cyber 
components and the tradeoffs between their multiple aspects become very 
challenging. For instance, the simple use of additional lithium ion batteries 
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in the Boeing 787 Dreamliner brings a combination of multiple constraints 
that must be satisfied. In particular, we not only need to be able to satisfy 
the power consumption requirements under different operating modes 
with a specific configuration of batteries (interacting with software that is 
run at a specific processor speed and voltage), but we also need to manage 
when and how battery cells are charged and discharge while preserving 
the required voltage and verify that the charge/discharge configurations 
do not overheat the battery (causing it to burst into flames, as occurred 
during the first few flights of the 787), which interacts with the thermal 
dissipation design of the system. More importantly, all of these aspects, 
and more, must be certified under the strict safety standards from the 
Federal Aviation Administration (FAA).

CPS, however, are facing even more challenges than the increased 
complexity coming from single systems. Notably, they are being devel-
oped to interact with other CPS without human intervention. This phe-
nomenon resembles the way the Internet began. Specifically, the Internet 
started as a simple connection between two computers. However, the 
real revolution happened when computers all over the world were con-
nected seamlessly and a large number of services were developed on top 
of this worldwide network. Such connectivity not only allowed services 
to be delivered all over the globe, but also enabled the collection and 
processing of massive amounts of information in what is now known as 
“Big Data.” Big Data allow us to explore trends among groups of people, 
or even explore trends in real time when they are combined with social 
media such as Facebook and Twitter. In CPS, this revolution is just start-
ing. We can already observe services that collect driving information 
through global positioning system (GPS) applications on smartphones 
and allow us to select routes with low traffic congestion, thereby taking 
us in the direction of a smart highway, even if it is still mediated by 
humans. More significant steps in this direction are occurring every day, 
such as in the multiple projects involving autonomous cars. Most of 
these cars not only know how to drive a route autonomously, but also 
correctly interact with other non-autonomous cars on the route.

Emergence of CPS

Before CPS emerged as a specific, yet evolving discipline, systems com-
posed of physical and cyber components already existed. However, the 
interactions between these two types of components were very simple, 
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and the supporting theoretical foundations were mostly partitioned into 
silos. Specifically, the theoretical foundations for computer science and 
physical sciences where developed independently and ignored each 
other. As a result, techniques to, say, verify properties in one discipline 
such as thermal resilience, aerodynamics, and mechanical stress were 
developed independently from advances in computer science such as 
logical clocks, model checking, type systems, and so on. These advances, 
in fact, abstracted away behaviors that could be important in one disci-
pline but were not relevant in the other. This is the case, for instance, with 
the timeless nature of programming languages and logical verification 
models in which only sequences of instructions are considered. This 
nature contrasts with the importance of time in the evolution of physical 
processes such as the movement of a car and maintenance of the tem-
perature of a room that we are trying to control.

The early realization of the interactions between computational and 
physical science gave birth to some simple and mostly pairwise interac-
tion models. This is the case with real-time scheduling theory and control 
theory, for example. On the one hand, scheduling theory adds time to 
computational elements and allows us to verify the response time of com-
putations that interact with physical processes, thereby ensuring that such 
a process does not deviate beyond what the computational part expects 
and is capable of correcting. On the other hand, control theory allows us to 
put together a control algorithm and a physical process and analyze 
whether it would be possible for the algorithm to keep the system within 
a desired region around a specific setpoint. While control theory uses a 
continuous time model in which computations happen instantaneously, it 
allows the addition of delays to take into account the computation time 
(including scheduling), making it possible to specify the periodicity of 
computations and provide a clean interface with scheduling.

As the complexity of the interactions between domains increases, 
new techniques are developed to model such interactions. This is the 
case, for instance, with hybrid systems—a type of state machine in which 
the states model computational and physical states and the transitions 
model computational actions and physical evolutions. While these tech-
niques enhance the capacity to describe complex interactions, their anal-
ysis is, more often than not, intractable. In general, the complexity of 
these models prevents the analysis of systems of practical dimensions. 
As the number of scientific disciplines that need to be considered grows 
(e.g., functional, thermal, aerodynamics, mechanical, fault tolerance), 
their interactions need to be analyzed to ensure that the assumptions of 
each discipline and its models are not invalidated by the other 
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disciplines’ models. For instance, the speed of a processor assumed by a 
real-time scheduling algorithm may be invalidated if the dynamic ther-
mal management (DTM) system of the processor decreases the speed of 
this processor to prevent it from overheating.

CPS Drivers

While CPS are already being built today, the challenge is to be able to 
understand their behavior and develop techniques to verify their relia-
bility, security, and safety. This is, indeed, the core motivation of the sci-
entific community around CPS. As a result, CPS has been driven by two 
mutually reinforcing drivers: applications and theoretical foundations.

Applications

CPS applications have allowed researchers to team up with practition-
ers to better understand the problems and challenges and provide solu-
tions that can be tested in practical settings. This is the case with medical 
devices, for example: CPS researchers have teamed up with medical 
doctors to understand the origin and challenges of medical device-
based errors. For instance, some errors associated with infusion pumps 
were caused by incorrect assumptions about how the human body pro-
cesses different drugs, how to implement the safeguards to avoid over-
dose, and how to ensure that a nurse enters the correct information. 
Furthermore, the current generation of medical devices are certified 
only as individual devices and are not allowed to be connected to one 
another. As a result, health practitioners are required to coordinate the 
use of these devices and ensure the safety of their interactions. For 
instance, if an X ray of the chest is taken during an operation, it is neces-
sary to ensure that the respirator is disabled (if one is in used). However, 
once the X rays are taken, the respirator needs to be re-enabled within 
a safe interval of time to prevent the patient from suffocating. While 
this invariant could be implemented in software, the current certifica-
tion techniques and policies prevent this kind of integration from hap-
pening. Researchers working in this area are developing techniques to 
enable the certification of these interactions. This issue is discussed at 
length in Chapter 1, “Medical Cyber-Physical Systems.”

The electric grid is another important application area due to its 
national importance as a critical infrastructure. A key challenge in this 
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area is the uncoordinated nature of the actions that affect the consump-
tion and generation of electricity by a large number of consumers and 
providers, respectively. In particular, each individual household is able 
to change its consumption with the flip of a switch; the consequences 
of these decisions then have an aggregate effect on the grid that needs 
to be balanced with the supply. Similarly, renewable power-generation 
sources, such as wind and solar energy, provide sporadic and unpre-
dictable bursts of energy, making the balance of supply and demand 
very challenging with such systems. More importantly, the interactions 
between these elements are both cyber and physical in nature. On the 
one hand, some level of computer-mediated coordination happens 
between suppliers. On the other hand, the interactions with the con-
sumer occur mostly through the physical consumption of electricity. 
Today, a number of techniques are already being used for the develop-
ment and control of power grids to prevent damage to the infrastruc-
ture and improve reliability. However, new challenges require a new 
combination of cyber and physical elements that can support efficient 
markets, renewable energy sources, and cheaper energy prices. 
Chapter 2, “Energy Cyber-Physical Systems,” discusses the challenges 
and advances in the electric grid domain.

Perhaps one of the most interesting application areas that has cre-
ated its own technical innovations is sensor networks. The develop-
ment and deployment of sensor networks faces challenges of space, 
time, energy, and reliability that are very particular to this area. The 
challenges facing sensor networks as well as the main technical innova-
tions in this area are discussed in Chapter 3, “Cyber-Physical Systems 
Built on Wireless Sensor Networks.”

Other application areas have their own momentum, and yet other 
emerging areas may soon appear on the horizon. This book discusses 
some of the most influential areas that are defining the CPS discipline.

Theoretical Foundations

The theoretical advances in CPS have largely focused on the challenges 
imposed by the interactions between multiple scientific domains. This is 
the case, for instance, with real-time scheduling. A few trends in this area 
are worth mentioning. First, new scheduling models to accommodate exe-
cution overloads have appeared. These models combine multiple execu-
tion budgets with a criticality classification to guarantee that during a 
normal operation all tasks will meet their deadlines; if an overload occurs, 
however, the high-criticality tasks meet their deadlines by stealing 
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processor cycles from low-criticality tasks. The second trend comes from 
variations in periodicity. The so-called rhythmic task model allows tasks to 
continuously vary their periodicity following physical events of variable 
frequency. This is the case, for instance, with tasks triggered by the angular 
position of the crankshaft in the engine of a car: New scheduling analysis 
techniques were developed to verify the timing aspect of these systems. 
The real-time scheduling foundations and innovations are discussed in 
Chapter 9, “Real-Time Scheduling for Cyber-Physical Systems.”

Cross-cutting innovations between model checking and control 
theory for control synthesis are among the recent noteworthy develop-
ments. In this scheme, hybrid state machine models are used to describe 
the behavior of the physical plant and the requirements of the compu-
tational algorithm. Then, this model is used to automatically synthe-
size the controller algorithm enforcing the desired specifications. This 
scheme is discussed at length in Chapter 4, “Symbolic Synthesis for 
Cyber-Physical Systems.” Similarly, a number of new techniques have 
been developed to analyze the timing effects of a scheduling discipline 
in control algorithms. These issues are discussed in Chapter 5, “Software 
and Platform Issues in Feedback Control Systems.”

Another area of interaction that has been explored is the relation-
ship between model checking and scheduling. In this case, a new model 
checker called REK was developed to take advantage of the constraints 
that the rate-monotonic scheduler and periodic task model imposes on 
task inter-leavings in an effort to reduce the verification efforts. These 
new interactions are discussed in Chapter 6, “Logical Correctness for 
Hybrid Systems.”

Security is another big area that is significantly affected by the pres-
ence of physical processes. In particular, the interactions between soft-
ware and physical processes present new opportunities for potential 
attackers that make CPS security different from software-only security. 
This difference arises because attacks against, say, sensors to provide 
false sensor readings can sometimes be very difficult to distinguish 
from genuine readings from the physical processes. A number of inno-
vations to prevent this kind of man-in-the-middle attack, as well as 
other significant techniques, are presented in Chapter 7, “Security of 
Cyber-Physical Systems.”

For distributed systems, new techniques to enforce synchronized com-
munication between distributed agents have proved very useful to reduce 
the effort needed to produce formal proofs of functional correctness in dis-
tributed real-time systems. This issue is discussed at length in Chapter 8, 
“Synchronization in Distributed Cyber-Physical Systems.”
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CPS analysis techniques rely on models, and the formal semantics 
of these models is a key challenge that must be addressed. Chapter 10, 
“Model Integration in Cyber-Physical Systems,” presents the latest 
developments in the definition of formal semantics for models in what 
are called model-integration languages.

A large number of theoretical advances are discussed in this book, 
along with the open challenges in each area. While some advances stem 
from specific challenges in application areas, others expose new 
opportunities.

Target Audience

This book is aimed at both practitioners and researchers. For practition-
ers, the book profiles both the current application areas that are benefit-
ing from CPS perspectives and the current techniques that had proved 
successful for the development of the current generation of CPS. For 
the researcher, this book provides a survey of application areas and 
highlights their current achievements and open challenges as well as 
the current scientific advances and their challenges.

The book is divided into two parts. Part I, “Cyber-Physical System 
Application Domains,” presents the current CPS application areas that 
are driving the CPS revolution. Part II, “Foundations,” presents the 
current theoretical foundations from the multiple scientific disciplines 
used in the development of CPS.

Register your copy of Cyber-Physical Systems at informit.com for con-
venient access to downloads, updates, and corrections as they 
become available. To start the registration process, go to informit.
com/register and log in or create an account. Enter the product ISBN 
(9780321926968) and click Submit. Once the process is complete, you 
will find any available bonus content under “Registered Products.”
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Chapter 1

Medical Cyber-
Physical Systems1

Medical cyber-physical systems (MCPS) are life-critical, context-aware, 
networked systems of medical devices that are collectively involved in 
treating a patient. These systems are increasingly used in hospitals to 
provide high-quality continuous care for patients in complex clinical 
scenarios. The need to design complex MCPS that are both safe and 
effective has presented numerous challenges, inclulding achieving 
high levels of assurance in system software, interoperability, context-
aware decision support, autonomy, security and privacy, and certifica-
tion. This chapter discusses these challenges in developing MCPS, 
provides case studies that illustrate these challenges and suggests ways 
to address them, and highlights several open research and develop-
ment issues. It concludes with a discussion of the implications of MCPS 
for stakeholders and practitioners.

1. Research is supported in part by NSF grants CNS-1035715, IIS-1231547, and ACI-
1239324, and NIH grant 1U01EB012470-01.

Insup Lee, Anaheed Ayoub, Sanjian Chen, Baekgyu Kim, 
Andrew King, Alexander Roederer, and Oleg Sokolsky 
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1.1 Introduction and Motivation

The two most significant transformations in the field of medical devices 
in recent times are the high degree of reliance on software-defined 
functionality and the wide availability of network connectivity. The 
former development means that software plays an ever more signifi-
cant role in the overall device safety. The latter implies that, instead of 
stand-alone devices that can be designed, certified, and used indepen-
dently of each other to treat patients, networked medical devices will 
work as distributed systems that simultaneously monitor and control 
multiple aspects of the patient’s physiology. The combination of the 
embedded software controlling the devices, the new networking capa-
bilities, and the complicated physical dynamics of the human body 
makes modern medical device systems a distinct class of cyber-physical 
systems (CPS).

The goal of MCPS is to improve the effectiveness of patient care by 
providing personalized treatment through sensing and patient model 
matching while ensuring safety. However, the increased scope and 
complexity of MCPS relative to traditional medical systems present 
numerous developmental challenges. These challenges need to be sys-
tematically addressed through the development of new design, com-
position, verification, and validation techniques. The need for these 
techniques presents new opportunities for researchers in MCPS and, 
more broadly, embedded technologies and CPS. One of the primary 
concerns in MCPS development is the assurance of patient safety. The 
new capabilities of future medical devices and the new techniques for 
developing MCPS with these devices will, in turn, require new regula-
tory procedures to approve their use for treating patients. The tradi-
tional process-based regulatory regime used by the U.S. Food and Drug 
Administration (FDA) to approve medical devices is becoming lengthy 
and prohibitively expensive owing to the increased MCPS complexity, 
and there is an urgent need to ease this often onerous process without 
compromising the level of safety it delivers.

In this chapter, we advocate a systematic approach to analysis and 
design of MCPS for coping with their inherent complexity. Consequently, 
we suggest that model-based design techniques should play a larger 
role in MCPS design. Models should cover not only devices and com-
munications between them, but also, of equal importance, patients and 
caregivers. The use of models will allow developers to assess system 
properties early in the development process and build confidence in 
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the safety and effectiveness of the system design, well before the sys-
tem is built. Analysis of system safety and effectiveness performed at 
the modeling level needs to be complemented by generative imple-
mentation techniques that preserve properties of the model during the 
implementation stage. Results of model analysis, combined with the 
guarantees of the generation process, can form the basis for evidence-
based regulatory approval. The ultimate goal is to use model-based 
development as the foundation for building safe and effective MCPS.

This chapter describes some of the research directions being taken 
to address the various challenges involved in building MCPS:

• Stand-alone device: A model-based high-assurance software devel-
opment scheme is described for stand-alone medical devices such 
as patient-controlled analgesia (PCA) pumps and pacemakers.

• Device interconnection: A medical device interoperability framework 
is presented for describing, instantiating, and validating clinical 
interaction scenarios.

• Adding intelligence: A smart alarm system is presented that takes 
vital signs data from various interacting devices to inform caregiv-
ers of potential patient emergencies and non-operational issues 
about the devices.

• Automated actuation/delivery: A model-based closed-loop care deliv-
ery system is presented, which can autonomously deliver care to 
the patients based on the current state of the patient.

• Assurance cases: The use of assurance cases is described for organ-
izing collections of claims, arguments, and evidence to establish the 
safety of a medical device system.

MCPS are viewed in a bottom-up manner in this chapter. That is, we 
first describe issues associated with individual devices, and then pro-
gressively increase their complexity by adding communication, intelli-
gence, and feedback control. Preliminary discussion of some of these 
challenges has appeared in [Lee12].

1.2 System Description and Operational Scenarios

MCPS are safety-critical, smart systems of interconnected medical 
devices that are collectively involved in treating a patient within a spe-
cific clinical scenario. The clinical scenario determines which treatment 
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options can be chosen and which adjustments of treatment settings 
need to be made in response to changes in the patient’s condition.

Traditionally, decisions about the treatment options and settings 
have been made by the attending caregiver, who makes them by mon-
itoring patient state using individual devices and performing manual 
adjustments. Thus, clinical scenarios can be viewed as closed-loop 
systems in which caregivers are the controllers, medical devices act as 
sensors and actuators, and patients are the “plants.” MCPS alter this 
view by introducing additional computational entities that aid the 
caregiver in controlling the “plant.” Figure 1.1 presents a conceptual 
overview of MCPS.

Devices used in MCPS can be categorized into two large groups 
based on their primary functionality:

• Monitoring devices, such as bedside heart rate and oxygen level 
monitors and sensors, which provide different kinds of clinic-
relevant information about patients

• Delivery devices, such as infusion pumps and ventilators, which 
actuate therapy that is capable of changing the patient’s physiologi-
cal state
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Figure 1.1: A conceptual overview of medical cyber-physical systems

© 2012 IEEE. Reprinted, with permission, from Proceedings of the IEEE (vol. 100, no. 1, 
January 2012).



1.2 System Description and Operational Scenarios 7

In MCPS, interconnected monitoring devices can feed collected data 
to decision support or administrative support entities, each of which 
serves a different, albeit complementary, purpose. For example, care-
givers can analyze the information provided by these devices and 
then use delivery devices to initiate treatment, thereby bringing the 
caregiver into the control loop around the patient. Alternatively, 
the decision support entities might utilize a smart controller to ana-
lyze the data received from the monitoring devices, estimate the state 
of the patient’s health, and automatically initiate treatment (e.g., drug 
infusion) by issuing commands to delivery devices, thereby closing 
the loop.

Most medical devices rely on software components for carrying out 
their tasks. Ensuring the safety of these devices and their interopera-
tion is crucial. One of the more effective strategies to do so is to use 
model-based development methods, which can ensure device safety by 
enabling medical device verification. This strategy also opens the door 
for eventually certifying the devices to meet certain safety standards.

1.2.1 Virtual Medical Devices

Given the high complexity of MCPS, any such system has to be user-
centric; that is, it must be easy to set up and use, in a largely auto-
mated manner. One way to accomplish this is to develop a description 
of the MCPS workflow and then enforce it on physical devices. MCPS 
workflow can be described in terms of the number and types of devices 
involved, their mutual interconnections, and the clinical supervisory 
algorithm needed for coordination and analysis of data collected by the 
system. Such a description defines virtual medical device (VMD). VMDs 
are used by a VMD app and instantiated during the setup of actual 
medical devices—that is, as part of a virtual medical device instance.

The devices in a VMD instance are usually interconnected using 
some form of interoperability middleware, which is responsible for 
ensuring that the inter-device connections are correctly configured. 
The principal task of the VMD app, therefore, is to find the medical 
devices in a VMD instance (which may be quite large), establish net-
work connections between them, and install the clinical algorithm into 
the supervisor module of the middleware for managing the interac-
tions of the clinical workflow and the reasoning about the data pro-
duced. Basically, when the VMD app is started, the supervisor reads 
the VMD app specification and tries to couple all involved devices 
according to the specification. Once the workflow has run its course, 
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the VMD app can perform the necessary cleanup to allow another 
workflow to be specified using a different combination of medical 
devices in the VMD instance.

1.2.2 Clinical Scenarios

Each VMD supports a specific clinical scenario with a detailed descrip-
tion of how devices and clinical staff work together in a clinical situa-
tion or event. Here, we describe two such scenarios: one for X ray and 
ventilator coordination and another for a patient-controlled analgesia 
(PCA) safety interlock system.

One example that illustrates how patient safety can be improved by 
MCPS is the development of a VMD that coordinates the interaction 
between an X-ray machine and a ventilator. Consider the scenario 
described by [Lofsky04]. X-ray images are often taken during surgical 
procedures. If the surgery is being performed under general anesthe-
sia, the patient breathes with the help of a ventilator during the proce-
dure. Because the patient on ventilator cannot hold his or her breath to 
let the X-ray image be taken without the blur caused by moving lungs, 
the ventilator has to be paused and later restarted. In some unfortunate 
cases, the ventilator was not restarted, leading to the death of the 
patient.

Interoperation of the two devices can be used in several ways to 
ensure that patient safety is not compromised, as discussed in 
[Arney09]. One possibility is to let the X-ray machine pause and 
restart the ventilator automatically. A safer alternative, albeit one pre-
senting tighter timing constraints, is to let the ventilator transmit its 
internal state to the X-ray machine. There typically is enough time to 
take an X-ray image at the end of the breathing cycle, between the 
time when the patient has finished exhaling and the time he or she 
starts the next inhalation. This approach requires the X-ray machine 
to know precisely the instance when the air flow rate becomes close 
enough to zero and the time when the next inhalation starts. Then, it 
can decide to take a picture if enough time—taking transmission 
delays into account—is available.

Another clinical scenario that can easily benefit from the closed-
loop approach of MCPS is patient-controlled analgesia. PCA infusion 
pumps are commonly used to deliver opioids for pain management—
for instance, after surgery. Patients have very different reactions to 
the medications and require distinct dosages and delivery schedules. 
PCA pumps allow patients to press a button to request a dose when 
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they decide they want it, rather than using a dosing schedule fixed by 
a caregiver. Some patients may decide they prefer a higher level of 
pain to the nausea that the drugs may cause and, therefore, press the 
button less often; others, who need a higher dose, can press the but-
ton more often.

A major problem with opioid medications in general is that an 
excessive dose can cause respiratory failure. A properly programmed 
PCA system should prevent an overdose by limiting how many doses 
it will deliver, regardless of how often the patient pushes the button. 
However, this safety mechanism is not sufficient to protect all patients. 
Some patients may still receive overdoses if the pump is mispro-
grammed, if the pump programmer overestimates the maximum dose 
that a patient can receive, if the wrong concentration of drug is loaded 
into the pump, or if someone other than the patient presses the button 
(PCA-by-proxy), among other causes. PCA infusion pumps are cur-
rently associated with a large number of adverse events, and existing 
safeguards such as drug libraries and programmable limits are not 
adequate to address all the scenarios seen in clinical practice 
[Nuckols08].

1.3 Key Design Drivers and Quality Attributes

While software-intensive medical devices such as infusion pumps, 
ventilators, and patient monitors have been used for a long time, the 
field of medical devices is currently undergoing a rapid transforma-
tion. The changes under way are raising new challenges in the develop-
ment of high-confidence medical devices, yet are simultaneously 
opening up new opportunities for the research community [Lee06]. 
This section begins by reviewing the main trends that have emerged 
recently, then identifies quality attributes and challenges, and finally 
provides a detailed discussion of several MCPS-specific topics.

1.3.1 Trends

Four trends in MCPS are critical in the evolution of the field: software 
as the main driver of new features, device interconnection, closed loops 
that automatically adjust to physiological response, and a new focus on 
continuous monitoring and care. The following subsections discuss 
each of these trends.



Chapter  1  Medical Cyber-Physical Systems10

1.3.1.1 New Software-Enabled Functionality

Following the general trend in the field of embedded systems, and 
more broadly in cyber-physical systems, introduction of new function-
ality is largely driven by the new possibilities that software-based 
development of medical device systems is offering. A prime example of 
the new functionality is seen in the area of robotic surgery, which 
requires real-time processing of high-resolution images and haptic 
feedback.

Another example is proton therapy treatment. One of the most 
technology-intensive medical procedures, it requires one of the largest-
scale medical device systems. To deliver its precise doses of radiation to 
patients with cancer, the treatment requires precise guiding of a proton 
beam from a cyclotron to patients, but must be able to adapt to even 
minor shifts in the patient’s position. Higher precision of the treatment, 
compared to conventional radiation therapy, allows higher radiation 
doses to be applied. This, in turn, places more stringent requirements 
on patient safety. Control of proton beams is subject to very tight tim-
ing constraints, with much less tolerance than for most medical devices. 
To further complicate the problem, the same beam is applied to multi-
ple locations in the patient’s body and needs to be switched from loca-
tion to location, opening up the possibility of interference between 
beam scheduling and application. In addition to controlling the proton 
beam, a highly critical function of software in a proton treatment sys-
tem is real-time image processing to determine the precise position of 
the patient and detect any patient movement. In [Rae03], the authors 
analyzed the safety of proton therapy machines, but their analysis con-
centrated on a single system, the emergency shutdown. In general, 
proper analysis and validation of such large and complex systems 
remains one of the biggest challenges facing the medical device 
industry.

As further evidence of the software-enabled functionality trend, 
even in simpler devices, such as pacemakers and infusion pumps, more 
and more software-based features are being added, making their device 
software more complex and error prone [Jeroeno4]. Rigorous 
approaches are required to make sure that the software in these devices 
operates correctly. Because these devices are relatively simple, they are 
good candidates for case studies of challenges and experimental devel-
opment techniques. Some of these devices, such as pacemakers, are 
being used as challenge problems in the formal methods research com-
munity [McMaster13].
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1.3.1.2 Increased Connectivity of Medical Devices

In addition to relying on software to a greater extent, medical devices 
are increasingly being equipped with network interfaces. In essence, 
interconnected medical devices form a distributed medical device sys-
tem of a larger scale and complexity that must be properly designed 
and validated to ensure effectiveness and patient safety. Today, the net-
working capabilities of medical devices are primarily exploited for 
patient monitoring purposes (through local connection of individual 
devices to integrated patient monitors or for remote monitoring in a 
tele-ICU [Sapirstein09] setting) and for interaction with electronic 
health records to store patient data.

The networking capabilities of most medical devices today are lim-
ited in functionality and tend to rely on proprietary communication 
protocols offered by major vendors. There is, however, a growing reali-
zation among clinical professionals that open interoperability between 
different medical devices will lead to improved patient safety and new 
treatment procedures. The Medical Device Plug-and-Play (MD PnP) 
Interoperability initiative [Goldman05, MDPNP] is a relatively recent 
effort that aims to provide an open standards framework for safe and 
flexible interconnectivity of medical devices, with the ultimate goal of 
improving patient safety and health care efficiency. In addition to 
developing interoperability standards, the MD PnP initiative collects 
and demonstrates clinical scenarios in which interoperability leads to 
improvement over the existing practice.

1.3.1.3 Physiological Closed-Loop Systems

Traditionally, most clinical scenarios have a caregiver—and often more 
than one—controlling the process. For example, an anesthesiologist 
monitors sedation of a patient during a surgical procedure and decides 
when an action to adjust the flow of sedative needs to be taken. There 
is a concern in the medical community that such reliance on humans 
being in the loop may compromise patient safety. Caregivers, who are 
often overworked and operate under severe time pressures, may miss 
a critical warning sign. Nurses, for example, typically care for multiple 
patients at a time and can become distracted. Using an automatic con-
troller to provide continuous monitoring of the patient state and han-
dling of routine situations would relieve some of the pressure on the 
caregiver and might potentially improve patient care and safety. 
Although the computer will probably never replace the caregiver 
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completely, it can significantly reduce the workload, calling the care-
giver’s attention only when something out of the ordinary happens.

Scenarios based on physiological closed-loop control have been 
used in the medical device industry for some time. However, their 
application has been mostly limited to implantable devices that cover 
relatively well-understood body organs—for example, the heart, in the 
case of pacemakers and defibrillators. Implementing closed-loop sce-
narios in distributed medical device systems is a relatively new idea 
that has not made its way into mainstream practice as yet.

1.3.1.4 Continuous Monitoring and Care

Due to the high costs associated with in-hospital care, there has been 
increasing interest in alternatives such as home care, assisted living, 
telemedicine, and sport-activity monitoring. Mobile monitoring and 
home monitoring of vital signs and physical activities allow health to 
be assessed remotely at all times. Also, sophisticated technologies such 
as body sensor networks to measure training effectiveness and athletic 
performance based on physiological data such as heart rate, breathing 
rate, blood sugar level, stress level, and skin temperature are becoming 
more popular. However, most of the current systems operate in store-
and-forward mode, with no real-time diagnostic capability. 
Physiological closed-loop technology will allow diagnostic evaluation 
of vital signs in real time and make constant care possible.

1.3.2 Quality Attributes and Challenges of the MCPS Domain

Building MCPS applications requires ensuring the following quality 
attributes, which in turn pose significant challenges:

• Safety: Software is playing an increasingly important role in medi-
cal devices. Many functions traditionally implemented in hard-
ware—including safety interlocks—are now being implemented in 
software. Thus high-confidence software development is critical to 
ensure the safety and effectiveness of MCPS. We advocate the use 
of model-based development and analysis as a means of ensuring 
the safety of MCPS.

• Interoperability: Many modern medical devices are equipped with net-
work interfaces, enabling us to build MCPS with new capabilities by 
combining existing devices. Key to such systems is the concept of inter-
operability, wherein individual devices can exchange information 
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facilitated by an application deployment platform. It is essential to 
ensure that the MCPS built from interoperable medical devices are 
safe, effective, and secure, and can eventually be certified as such.

• Context-awareness: Integration of patient information from multiple 
sources can provide a better understanding of the state of the 
patient’s health, with the combined data then being used to enable 
early detection of ailments and generate effective alarms in the 
event of emergency. However, given the complexity of human 
physiology and the many variations of physiological parameters 
over patient populations, developing such computational intelli-
gence is a nontrivial task.

• Autonomy: The computational intelligence that MCPS possess can 
be applied to increase the autonomy of the system by enabling 
actuation of therapies based on the patient’s current health state. 
Closing the loop in this manner must be done safely and effectively. 
Safety analysis of autonomous decisions in the resulting closed-
loop system is a major challenge, primarily due to the complexity 
and variability of human physiology.

• Security and privacy: Medical data collected and managed by MCPS 
are very sensitive. Unauthorized access or tampering with this 
information can have severe consequences to the patient in the 
form of privacy loss, discrimination, abuse, and physical harm. 
Network connectivity enables new MCPS functionality by exchang-
ing patient data from multiple sources; however, it also increases 
the vulnerability of the system to security and privacy violations.

• Certification: A report by the U.S. National Academy of Science, titled 
“Software for Dependable Systems: Sufficient Evidence?,” recom-
mends an evidence-based approach to the certification of high-
confidence systems such as MCPS using explicit claims, evidence, 
and expertise [Jackson07]. The complex and safety-critical nature of 
MCPS requires a cost-effective way to demonstrate medical device 
software dependability. Certification, therefore, is both an essential 
requirement for the eventual viability of MCPS and an important 
challenge to be addressed. An assurance case is a structured argu-
ment supported by a documented body of evidence that provides a 
convincing and consistent argument that a system is adequately safe 
(or secure) [Menon09]. The notion of assurance cases holds the prom-
ise of providing an objective, evidence-based approach to software 
certification. Assurance cases are increasingly being used as a means 
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of demonstrating safety in industries such as nuclear power, trans-
portation, and automotive systems, and are mentioned in the recent 
IEC 62304 development standard for medical software.

1.3.3 High-Confidence Development of MCPS

The extreme market pressures faced by the medical devices industry 
has forced many companies to reduce their development cycles as 
much as possible. The challenge is to find a development process that 
will deliver a high degree of safety assurance under these conditions. 
Model-based development can be a significant part of such a develop-
ment process. The case study discussed in this section illustrates the 
steps of the high-assurance development process using a simple medi-
cal device. Each of the steps can be implemented in a variety of ways. 
The choice of modeling, verification, and code generation technologies 
depends on factors such as complexity and criticality level of the appli-
cation. Nevertheless, the process itself is general enough to accommo-
date a wide variety of rigorous development technologies.

1.3.3.1 Mitigation of Hazards

Most of the new functionality in medical devices is software based, and 
many functions traditionally implemented in hardware—including 
safety interlocks—are now being relegated to software. Thus, high-
confidence software development is very important for the safety and 
effectiveness of MCPS.

Figure 1.2 depicts a relatively conventional approach to high-
assurance development of safety-critical systems based on the mitiga-
tion of hazards. The process starts with the identification of the desired 
functionality and the hazards associated with the system’s operation. 
The chosen functionality yields the system functional requirements, 
while hazard mitigation strategies yield the system safety requirements. 
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Figure 1.2: High-assurance development process for embedded software
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The functional requirements are used to build detailed behavioral mod-
els of the software modules, while the safety requirements are turned 
into properties that these models should satisfy. Models and their desired 
properties are the inputs to the model-based software development, 
which consists of verification, code generation, and validation phases.

Model-based development has emerged as a means of raising the 
level of assurance in software systems. In this approach, developers 
start with declarative models of the system and perform a rigorous 
model verification with respect to safety and functional requirements; 
they then use systematic code generation techniques to derive code 
that preserves the verified properties of the model. Such a develop-
ment process allows the developers to detect problems with the design 
and fix them at the model level, early in the design cycle, when changes 
are easier and cheaper to make. More importantly, it holds the promise 
of improving the safety of the system through verification. Model-
based techniques currently used in the medical device industry rely on 
semi-formal approaches such as UML and Simulink [Becker09], so they 
do not allow developers to fully utilize the benefits of model-based 
design. The use of formal modeling facilitates making mathematically 
sound conclusions about the models and generating code from them.

1.3.3.2 Challenges of Model-Driven Development of MCPS

Several challenges arise when developing MCPS through the model-
driven implementation process. The first challenge is choosing the 
right level of abstraction for the modeling effort. A highly abstract 
model makes the verification step relatively easy to perform, but a 
model that is too abstract is difficult to use in the code generation pro-
cess, since too many implementation decisions have to be guessed by 
the code generator. Conversely, a very detailed model makes code gen-
eration relatively straightforward, but pushes the limits of the currently 
available verification tools.

Many modeling approaches rely on the separation of the platform-
independent and platform-dependent aspects of development. From 
the modeling and verification perspective, there are several reasons to 
separate the platform-independent aspects from the platform-
dependent aspects.

First, hiding platform-dependent details reduces the modeling and 
verification complexity. Consider, for example, the interaction between a 
device and its sensors. For code generation, one may need to specify the 
details of how the device retrieves data from sensors. A sampling-based 
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mechanism with a particular sampling interval will yield a very different 
generated code compared to an interrupt-based mechanism. However, 
exposing such details in the model adds another level of complexity to the 
model, which may increase verification time to an unacceptable duration.

In addition, abstracting away from a particular platform allows us to 
use the model across different target platforms. Different platforms may 
have different kinds of sensors that supply the same value. For example, 
consider an empty-reservoir alarm, such as that implemented on many 
infusion pumps. Some pumps may not have a physical sensor for that 
purpose and simply estimate the remaining amount of medication based 
on the infusion rate and elapsed time. Other pumps may have a sensor 
based on syringe position or pressure in the tube. Abstracting away these 
details would allow us to implement the same pump control code on dif-
ferent pump hardware. At the same time, such separation leads to inte-
gration challenges at the implementation level. The code generated by 
the platform-independent model needs to be integrated with the code 
from the various target platforms in such a way that the verified proper-
ties of the platform-independent model are preserved.

Second, there is often a semantic gap between the model and the 
implementation. A system is modeled using the formal semantics pro-
vided by the chosen modeling language. However, some of the model 
semantics may not match well with the implementation. For example, in 
UPPAAL and Stateflow, the interaction between the PCA pump and the 
environment (e.g., user or pump hardware) can be modeled by using 
instantaneous channel synchronization or event broadcasting that has a 
zero time delay. Such semantics simplifies modeling input and output of 
the system so that the modeling/verification complexity is reduced. 
Unfortunately, the correct implementation of such semantics is hardly 
realizable at the implementation level, because execution of those actions 
requires interactions among components that have a non-zero time delay.

The following case study concentrates on the development of a 
PCA infusion pump system and considers several approaches to 
address these challenges.

1.3.3.3 Case Study: PCA Infusion Pumps

A PCA infusion pump primarily delivers pain relievers, and is equipped 
with a feature that allows for additional limited delivery of medication, 
called a bolus, upon patient demand. This type of infusion pump is 
widely used for pain control of postoperative patients. If the pump 
overdoses opioid drugs, however, the patient can be at risk of 
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respiratory depression and death. Therefore, these medical devices are 
subject to stringent safety requirements that aim to prevent overdose.

According to the FDA’s Infusion Pump Improvement Initiative 
[FDA10a], the FDA received more than 56,000 reports of adverse events 
associated with the use of infusion pumps from 2005 through 2009. In 
the same period, 87 recalls of infusion pumps were conducted by the 
FDA, affecting all major pump manufacturers. The prevalence of the 
problems clearly indicates the need for better development techniques.

The Generic PCA Project
The Generic PCA (GPCA) project, a joint effort between the PRECISE 
Center at the University of Pennsylvania and researchers at the FDA, 
aims to develop a series of publicly available artifacts that can be used as 
guidance for manufacturers of PCA infusion pumps. In the first phase of 
the project, a collection of documents has been developed, including a 
hazard analysis report [UPenn-b], a set of safety requirements [UPenn-a], 
and a reference model of PCA infusion pump systems [UPenn]. Based on 
these documents, companies can develop PCA infusion pump controller 
software following a model-driven implementation.

In the case study, software for the PCA pump controller is devel-
oped by using the model-driven implementation approach starting 
from the reference model and the safety requirements. A detailed 
account of this effort is presented in [Kim11].

The development approach follows the process outlined in Figure 
1.2. The detailed steps are shown in Figure 1.3. In addition, the case 
study included the construction of an assurance case—a structured 
argument based on the evidence collected during the development 
process, which aims to convince evaluators that the GPCA-reference 
implementation complies with its safety requirements. The assurance 
case development is discussed in more detail in Section 1.3.7.

Modeling
The reference model of the GPCA pump implemented in Simulink/
Stateflow is used as the source of functional requirements and converted 
to UPPAAL [Behrmann04] via a manual but systematic translation pro-
cess. The model structure follows the overall architecture of the reference 
model, which is shown in Figure 1.4. The software is organized into two 
state machines: the state controller and the alarm-detecting component. 
The user interface has been considered in a follow-up case study 
[Masci13]. Both state machines interact with sensors and actuators on the 
pump platform.
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The state machines are organized as a set of modes, with each mode 
captured as a separate submachine. In particular, the state controller 
contains four modes:

• Power-on self-test (POST) mode is the initial mode that checks sys-
tem components on start-up.
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• The check-drug mode represents a series of checks that the care-
giver performs to validate the drug loaded into the pump.

• The infusion configuration mode represents interactions with the 
caregiver to configure infusion parameters such as infusion rate 
and volume to be infused (VTBI) and validate them against the lim-
its encoded in the drug library.

• The infusion session is where the pump controls delivery of the 
drug according to the configuration and the patient’s bolus 
requests.

Model Verification
GPCA safety requirements are expressed in English as “shall” state-
ments. Representative requirements are “No normal bolus doses shall 
be administered when the pump is alarming” and “The pump shall 
issue an alert if paused for more than t minutes.”

Before verification can be performed, requirements need to be for-
malized as properties to be checked. We can categorize the require-
ments according to their precision and level of abstraction:

• Category A: Requirements that are detailed enough to be formalized 
and verified against the model

• Category B: Requirements that are beyond the scope of the model
• Category C: Requirements that are too imprecise to be formalized

Only requirements in Category A can be readily used in verifica-
tion. Just 20 out of the 97 GPCA requirements fell into this category.

Most of the requirements in Category B concern the functional 
aspects of the system that are abstracted away at the modeling level. 
For example, consider the requirement “If the suspend occurs due to a 
fault condition, the pump shall be stopped immediately without com-
pleting the current pump stroke.” There is another requirement to com-
plete the current stroke under other kinds of alarms. Thus, the motor 
needs to be stopped in different ways in different circumstances. These 
requirements fall into Category B, since the model does not detail the 
behavior of the pump stroke. Handling of properties in this category 
can be done in several ways.

One approach is to introduce additional platform-specific details 
into the model, increasing complexity of the model. However, this 
would blur the distinction between platform-independent and 
platform-specific models—a distinction that is useful in the 
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model-based development. An alternative approach is to handle 
these requirements outside of the model-based process—for exam-
ple, validating by testing. In this case, however, the benefits of for-
mal modeling are lost.

A better approach is to match the level of detail by further decom-
posing the requirements. At the platform-independent level, we might 
check that the system performs two different stop actions in response 
to different alarm conditions (which would be a Category A require-
ment). Then, at the platform-specific level, we might check that one 
stop action corresponds to immediate stopping of the motor, while the 
other stop action lets the motor complete the current stroke.

An example requirement from Category C is “Flow discontinuity at 
low flows should be minimal,” which does not specify what is a low 
flow or which discontinuity can be accepted as minimal. This case is a 
simple example of a deficiency in the requirement specification uncov-
ered during formalization.

Once the categorization of the requirements is complete, require-
ments in Category A are formalized and verified using a model checker. 
In the case study, the requirements were converted into UPPAAL que-
ries. Queries in UPPAAL use a subset of timed computation tree logic 
(CTL) temporal logic and can be verified using the UPPAAL model 
checker.

Code Generation and System Integration
Once the model is verified, a code generation tool is used to produce 
the code in a property-reserving manner. An example of such a tool is 
TIMES [Amnell03] for UPPAAL timed automata. Since the model is 
platform independent, the resulting code is also platform independent. 
For example, the model does not specify how the actual infusion pump 
interacts with sensors and actuators attached to the specific target plat-
form. Input and output actions (e.g., a bolus request by a patient or 
triggering of the occlusion alarm from the pump hardware) are 
abstracted as instantaneous transitions subject to input/output syn-
chronization with their environment. On a particular platform, the 
underlying operating system schedules the interactions, thereby affect-
ing the timing of their execution.

Several approaches may be used to address this issue at the integra-
tion stage. In [Henzinger07], higher-level programming abstraction is 
proposed as a means to model the timing aspects and generate code 
that is independent from the scheduling algorithms of a particular 



1.3 Key Design Drivers and Quality Attributes 21

platform. The platform integration is then performed by verifying 
time-safety—that is, checking whether the platform-independent code 
can be scheduled on the particular platform. Another approach is to 
systematically generate an I/O interface that helps the platform-
independent and -dependent code to be integrated in a traceable man-
ner [Kim12]. From a code generation perspective, [Lublinerman09] 
proposed a way to generate code for a given composite block of the 
model independently from context and using minimal information 
about the internals of the block.

Validation of the Implementation
Unless the operation of an actual platform is completely formalized, 
inevitably some assumptions will be made during the verification and 
code generation phases that cannot be formally guaranteed. The vali-
dation phase is meant to check that these assumptions do not break the 
behavior of the implementation. In the case study, a test harness sys-
tematically exercises the code using test cases derived from the model. 
A rich literature on model-based test generation exists; see [Dias07] for 
a survey of the area. The goal of such testing-based validation is to sys-
tematically detect deviations of the system behavior from that of the 
verified model.

1.3.4 On-Demand Medical Devices and Assured Safety

On-demand medical systems represent a new paradigm for safety-
critical systems: The final system is assembled by the user instead of 
the manufacturer. Research into the safety assessment of these systems 
is actively under way. The projects described in this section represent a 
first step toward understanding the engineering and regulatory chal-
lenges associated with such systems. The success and safety of these 
systems will depend not only on new engineering techniques, but also 
on new approaches to regulation and the willingness of industry mem-
bers to adopt appropriate interoperability standards.

1.3.4.1 Device Coordination

Historically, medical devices have been used as individual tools for 
patient therapy. To provide complex therapy, caregivers (i.e., physi-
cians and nurses) must coordinate the activities of the various medical 
devices manually. This is burdensome for the caregiver, and prone to 
errors and accidents.
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One example of manual device coordination in current practice is 
the X ray and ventilator coordination mentioned in Section 1.2; another 
example is trachea or larynx surgery performed with a laser scalpel. In 
this type of surgery, the patient is placed under general anesthesia 
while the surgeon makes cuts on the throat using a high-intensity laser. 
Because the patient is under anesthesia, his or her breathing is sup-
ported by an anesthesia ventilator that supplies a high concentration of 
oxygen to the patient. This situation presents a serious hazard: If the 
surgeon accidentally cuts into the breathing tube using the laser, the 
increased concentration of oxygen can lead to rapid combustion, burn-
ing the patient from the inside out. To mitigate this hazard, the surgeon 
and the anesthesiologist must be in constant communication: When the 
surgeon needs to cut, he or she signals the anesthesiologist, who 
reduces or stops the oxygen being supplied to the patient. If the patient’s 
oxygenation level drops too low, the anesthesiologist signals the sur-
geon to stop cutting so oxygen can be supplied again.

If medical devices could coordinate their actions, then the surgeon 
and the anesthesiologist would not have to expend their concentration 
and effort to ensure that the activities of the medical devices are safely 
synchronized. Furthermore, the patient would not be exposed to the 
potential for human error.

Many other clinical scenarios might benefit from this kind of auto-
mated medical device coordination. These scenarios involve either 
device synchronization, data fusion, or closed-loop control. The laser scalpel 
ventilator safety interlock epitomizes device synchronization: Each 
device must always be in a correct state relative to the other devices. In 
data fusion, physiologic readings from multiple separate devices are 
considered as a collective. Examples of such applications include smart 
alarms and clinical decision support systems (see Section 1.3.5). Finally, 
closed-loop control of therapy can be achieved by collecting data from 
devices that sense the patient’s physiological state and then using those 
data to control actuators such as infusion pumps (see Section 1.3.6).

1.3.4.2 Definition: Virtual Medical Devices

Let us now clarify the concept of virtual medical devices, including 
why they are considered a different entity. A collection of devices work-
ing in unison to implement a given clinical scenario is, in essence, a 
new medical device. Such collections have been referred to as virtual 
medical devices (VMDs) because no single manufacturer is producing 
this device and delivering it fully formed to the clinician. A VMD does 
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not exist until assembled at the patient’s bedside. A VMD instance is 
created each time the clinician assembles a particular set of devices for 
the VMD and connects them together.

1.3.4.3 Standards and Regulations

Several existing standards are designed to enable medical device inter-
connectivity and interoperability. These standards include the Health 
Level 7 standards [Dolin06], IEEE-11073 [Clarke07, ISO/IEEE11073], 
and the IHE profiles [Carr03]. While these standards enable medical 
devices to exchange and interpret data, they do not adequately address 
more complex interactions between medical devices, such as the inter-
device coordination and control needed with the laser scalpel and ven-
tilator combination. The notion of a VMD poses one major fundamental 
question: How does one assure safety in systems that are assembled by 
their users? Traditionally, most safety-critical cyber-physical systems, 
such as aircraft, nuclear power plants, and medical devices, are evalu-
ated for safety by regulators before they can be used.

The state of the art in safety assessment is to consider the complete 
system. This is possible because the complete system is manufactured by 
a single systems integrator. Virtual medical devices, in contrast, are con-
structed at bedside, based on the needs of an individual patient and from 
available devices. This means that a caregiver may instantiate a VMD 
from a combination of medical devices (i.e., varying in terms of make, 
model, or feature set) that have never been combined into an integrated 
system for that particular clinical scenario. Finally, “on-demand” instan-
tiation of the VMD confounds the regulatory pathways for medical 
devices that are currently available. In particular, there is no consensus on 
the role of the regulator when it comes to VMDs. Should regulators man-
date specific standards? Do regulators need to adopt component-wise 
certification regimes? What is the role, if any, of third-party certifiers?

1.3.4.4 Case Studies

The subject of safety assessment of on-demand medical systems has 
been the focus of a number of research projects. These projects have 
explored different aspects of on-demand medical systems, their safety, 
and possible mechanisms for regulatory oversight. The Medical Device 
Plug-and-Play project articulated the need for on-demand medical sys-
tems, documented specific clinical scenarios that would benefit, and 
developed the Integrated Clinical Environment (ICE) architecture, 
which has been codified as an ASTM standard (ASTM F2761-2009) 
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[ASTM09]. ICE proposes to approach the engineering and regulatory 
challenges by building medical systems around a system architecture 
that supports compositional certification. In such an architecture, each 
medical system would be composed out of a variety of components 
(clinical applications, a medical application platform, and medical 
devices), which would be regulated, certified, and then obtained by the 
healthcare organization separately [Hatcliff12].

Integrated Clinical Environment
Figure 1.5 shows the primary components of the integrated clinical 
environment (ICE) architecture. This case study summarizes the 
intended functionality and goals for each of these components. Note 
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that ASTM F2761-2009 does not provide detailed requirements for 
these components, as it is purely an architectural standard. Nevertheless, 
the roles of each of the components in the architecture imply certain 
informal requirements:

• Apps: Applications are software programs that provide the coordi-
nation algorithm for a specific clinical scenario (i.e., smart alarms, 
closed-loop control of devices). In addition to executable code, 
these applications contain device requirements declarations—that 
is, a description of the medical devices they need to operate cor-
rectly. These apps would be validated and verified against their 
requirements specification before they are marketed.

• Devices: Symmetrical to the applications, medical devices used in 
the ICE architecture would implement an interoperability standard 
and carry a self-descriptive model, known as a capabilities specifi-
cation. Each medical device would be certified that it conforms to 
its specification before it is marketed and sold to end users.

• Supervisor: The supervisor provides a secure isolation kernel and 
virtual machine (VM) execution environment for clinical applica-
tions. It would be responsible for ensuring that apps are partitioned 
in both data and time from each other.

• Network controller: The network controller is the primary conduit for 
physiologic signal data streams and device control messages. The 
network controller would be responsible for maintaining a list of 
connected devices and ensuring proper quality of service guarantees 
in terms of time and data partitioning of data streams, as well as 
security services for device authentication and data encryption.

• ICE interface description language: The description language is the 
primary mechanism for ICE-compliant devices to export their capa-
bilities to the network controller. These capabilities may include 
which sensors and actuators are present on the device, and which 
command set it supports.

Medical Device Coordination Framework
The Medical Device Coordination Framework (MDCF) [King09, 
MDCF] is an open-source project that aims to provide a software imple-
mentation of a medical application platform that conforms to the ICE 
standard. The modular framework is envisioned as enabling research-
ers to rapidly prototype systems and explore implementation and 
engineering issues associated with on-demand medical systems.
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The MDCF is implemented as a collection of services that work 
together to provide some of the capabilities required by ICE as essential 
for a medical application platform. The functionality of these services 
also may be decomposed along the architectural boundaries defined in 
the ICE architecture (see Figure 1.6); that is, the MDCF consists of net-
work controller services, supervisor services, and a global resource 
management service.

Network controller services are as follows:

• Message bus: Abstracts the low-level networking implementation 
(e.g., TCP/IP) and provides a publish/subscribe messaging service. 
All communication between medical devices and the MDCF occurs 
via the message bus, including protocol control messages, exchanges 
of patient physiologic data, and commands sent from apps to devices. 
The message bus also provides basic real-time guarantees (e.g., 
bounded end-to-end message transmission delays) that apps can 
take as assumptions. Additionally, the message bus supports various 
fine-grained message and stream access control and isolation 
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policies. While the current implementation of the message bus 
encodes messages using XML, the actual encoding strategy is 
abstracted away from the apps and devices by the message bus API, 
which exposes messages as structured objects in memory.

• Device manager: Maintains a registry of all medical devices cur-
rently connected with the MDCF. The device manager implements 
the server side of the MDCF device connection protocol (medical 
devices implement the client side) and tracks the connectivity of 
those devices, notifying the appropriate apps if a device goes 
offline unexpectedly. The device manager also serves another 
important role: It validates the trustworthiness of any connecting 
device by determining whether the connecting device has a valid 
certificate.

• Device database: Maintains a list of all specific medical devices that 
the healthcare provider’s bioengineering staff has approved for 
use. In particular, the database lists each allowed device’s unique 
identifier (e.g., an Ethernet MAC address), the manufacturer of the 
device, and any security keys or certificates that the device man-
ager will use to authenticate connecting devices against.

• Data logger: Taps into the flows of messages moving across the mes-
sage bus and selectively logs them. The logger can be configured 
with a policy specifying which messages should be recorded. 
Because the message bus carries every message in the system, the 
logger can be configured to record any message or event that prop-
agates through the MDCF. Logs must be tamper resistant and tam-
per evident; access to logs must itself be logged, and be physically 
and electronically controlled by a security policy.

Supervisor services are as follows:

• Application manager: Provides a virtual machine for apps to execute 
in. In addition to simply executing program code, the application 
manager checks that the MDCF can guarantee the app’s require-
ments at runtime and provides resource and data isolation, as well 
as access control and other security services. If the app requires a 
certain medical device, communications latency, or response time 
from app tasks, but the MDCF cannot currently make those guaran-
tees (e.g., due to system load or because the appropriate medical 
device has not been connected), then the app manager will not let 
the clinician start the app in question. If the resources are available, 
the application manager will reserve those resources so as to 
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guarantee the required performance to the app. The application 
manager further detects and flags potential medically meaningful 
app interactions, since individual apps are isolated and may not be 
aware which other apps are associated with a given patient.

• Application database: Stores the applications installed in the MDCF. 
Each application contains executable code and requirement meta-
data used by the application manager to allocate the appropriate 
resources for app execution.

• Clinician service: Provides an interface for the clinician console 
GUI to check the status of the system, start apps, and display app 
GUI elements. Since this interface is exposed as a service, the clini-
cian console can be run locally (on the same machine) that is run-
ning the supervisor, or it can be run remotely (e.g., at a nurse’s 
station).

• Administrator service: Provides an interface for the administrator’s 
console. System administrators can use the administrator’s con-
sole to install new applications, remove applications, add devices 
to the device database, and monitor the performance of the 
system.

1.3.5 Smart Alarms and Clinical Decision Support Systems

Fundamentally, clinical decision support (CDS) systems are a special-
ized form of MCPS with physical actuation limited to visualization. 
They take as inputs multiple data streams, such as vital signs, lab test 
values, and patient history; they then subject those inputs to some form 
of analysis, and output the results of that analysis to a clinician. A smart 
alarm is the simplest form of decision support system, in which multi-
ple data streams are analyzed to produce a single alarm for the clini-
cian. More complex systems may use trending, signal analysis, online 
statistical analysis, or previously constructed patient models, and may 
produce detailed visualizations.

As more medical devices become capable of recording continuous 
vital signs, and as medical systems become increasingly interopera-
ble, CDS systems will evolve into essential tools that allow clinicians 
to process, interpret, and analyze patient data. While widespread 
adoption of CDS systems in clinical environments faces some chal-
lenges, the current efforts to build these systems promise to expose 
their clinical utility and provide impetus for overcoming those 
challenges.
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1.3.5.1 The Noisy Intensive Care Environment

Hospital intensive care units (ICUs) utilize a wide array of medical devices 
in patient care. A subset of these medical devices comprises sensors that 
detect the intensity of various physical and chemical signals in the body. 
These sensors allow clinicians (doctors, nurses, and other clinical caretak-
ers) to better understand the patient’s current state. Examples of such sen-
sors include automatic blood pressure cuffs, thermometers, heart rate 
monitors, pulse oximeters, electroencephalogram meters, automatic glu-
cometers, electrocardiogram meters, and so on. These sensors range from 
very simple to very complex in terms of their technology. Additionally, 
along with the traditional techniques, digital technologies have enabled 
new sensors to be developed and evaluated for clinical use.

The vast majority of these medical devices act in isolation, reading 
a particular signal and outputting the result of that signal to some form 
of visualization technology so it may be accessed by clinicians. Some 
devices stream data to a centralized visualization system (such as a 
bedside monitor or nursing station [Phillips10, Harris13]) for ease of 
use. Each of the signals is still displayed independently, however, so it 
is up to the clinician to synthesize the presented information to deter-
mine the patient’s actual condition.

Many of these devices can be configured to alert clinicians to a dete-
rioration in the patient’s condition. Most sensors currently in use can 
be configured with only threshold alarms, which activate when the 
particular vital sign being measured crosses a predefined threshold. 
While threshold alarms can certainly be critical in the timely detection 
of emergency states, they have been shown to be not scientifically 
derived [Lynn11] and have a high rate of false alarms [Clinical07], often 
attributable to insignificant random fluctuations in the patient’s vital 
signs or noise caused by external stimuli. For example, patient move-
ment can cause sensors to move, be compressed, or fall off. The large 
number of erroneous alarms generated by such devices causes alarm 
fatigue—a desensitization to the presence of these alarms that causes 
clinicians to ignore them [Commission13]. In an effort to reduce the 
number of false alarms, clinicians may sometimes improperly readjust 
settings on the monitor or turn off alarms entirely [Edworthy06]. Both 
of these actions can lead to missed true alarms and a decrease in quality 
of care [Clinical07, Donchin02, Imhoff06].

Various efforts have been made to reduce alarm fatigue. These 
strategies usually focus on improving workflow, establishing appropri-
ate patient-customized thresholds, and identifying situations where 
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alarms are not clinically relevant [Clifford09, EBMWG92, Oberli99, 
Shortliffe79]. However, isolated threshold alarms cannot capture suffi-
cient nuance in patient state to completely eliminate false alarms. Also, 
these alarms simply alert clinicians to the fact that some threshold was 
crossed; they fail to provide any physiologic or diagnostic information 
about the current state of the patient that might help reveal the under-
lying cause of the patient’s distress.

Clinicians most often use multiple vital signs in concert to under-
stand the patient’s state. For example, a low heart rate (bradycardia) 
can be normal and healthy. However, if a low heart rate occurs in con-
junction with an abnormal blood pressure or a low blood oxygen level, 
this collection of findings can be cause for concern. Thus, it seems per-
tinent to develop smart alarm systems that would consider multiple 
vital signs in concert before raising an alarm. This would reduce false 
alarms, improving the alarm precision and reducing alarm fatigue, 
thereby leading to improved care.

Such a smart alarm system would be a simple version of a CDS 
system [Garg05]. Clinical decision support systems combine multiple 
sources of patient information with preexisting health knowledge to 
help clinicians make more informed decisions. It has repeatedly been 
shown that well-designed CDS systems have the potential to dramati-
cally improve patient care, not just by reducing alarm fatigue, but by 
allowing clinicians to better utilize data to assess patient state.

1.3.5.2 Core Feature Difficulties

As CDS systems are a specialized form of MCPS, the development of 
CDS systems requires satisfying the core features of cyber-physical sys-
tem development. In fact, without these features, CDS system develop-
ment is impossible. The current lack of widespread use of CDS systems 
in part reflects the difficulty that has been encountered in establishing 
these features in a hospital setting.

One of the most fundamental of these requirements is the achieve-
ment of device interoperability. Even the simplest CDS system (such as 
a smart alarm system) must obtain access to the real-time vital signs 
data being collected by a number of different medical devices attached 
to the patient. To obtain these data, the devices collecting the required 
vital signs must be able to interoperate—if not with each other, then 
with a central data repository. In this repository, data could be collected, 
time synchronized, analyzed, and visualized.
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In the past, achieving interoperability of medical devices has been 
a major hurdle. Due to increased costs, the exponential increase in reg-
ulatory difficulty, and the lucrative potential from selling a suite of 
devices with limited interoperability, individual device manufacturers 
currently have few incentives to make their devices interoperate. 
Development of an interoperable platform for device communication 
would enable MCPS to stream real-time medical information from dif-
ferent devices.

Many other challenges exist. For example, the safety and 
effectiveness of CDS systems depend on other factors, such as network 
reliability and real-time guarantees for message delivery. As networks 
in current hospital systems are often ad hoc, highly complex, and built 
over many decades, such reliability is rare.

Another challenge is related to data storage. To achieve high accu-
racy, the parameters of the computational intelligence at the heart of a 
CDS system must often be tuned using large quantities of retrospective 
data. Dealing with Big Data, therefore, is a vital component of the 
development of CDS systems. Addressing this problem will require 
hospitals to recognize the value of capturing and storing patients’ data 
and to develop a dedicated hospital infrastructure to store and access 
data as part of routine workflow.

CDS systems require some level of context-aware computational 
intelligence. Information from multiple medical device data streams 
must be extracted and filtered, and used in concert with a patient model 
to create a context-aware clinical picture of the patient. There are three 
major ways in which context-aware computational intelligence can be 
achieved: by encoding hospital guidelines, by capturing clinicians’ 
mental models, and by creating models based on machine learning of 
medical data.

While the majority of hospital guidelines can usually be encoded as 
a series of simple rules, they are often vague or incomplete. Thus, while 
they may serve as a useful baseline, such guidelines are often insuffi-
cient on their own to realize context-aware computational intelligence. 
Capturing clinicians’ mental models involves interviewing a large 
number of clinicians about their decision-making processes and then 
hand-building an algorithm based on the knowledge gleaned from the 
interviews. This process can be laborious, it can be difficult to quantify 
in software how a clinician thinks, and the results from different clini-
cians can be difficult to reconcile. Creating models using machine 
learning is often the most straightforward approach. However, training 
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such models requires large amounts of retrospective patient data and 
clear outcome labels, both of which can be difficult to acquire. When 
such data sets are available, they often prove to be noisy, with many 
missing values. The choice of learning technique can be a difficult one, 
too. While algorithm transparency is a good metric (to empower clini-
cians to understand the underlying process and avoid opaque black-
box algorithms), there is no single choice of learning technique that is 
most appropriate for all scenarios.

1.3.5.3 Case Study: A Smart Alarm System for CABG Patients

Patients who have undergone coronary artery bypass graft (CABG) 
surgery are at particular risk of physiologic instability, so continuous 
monitoring of their vital signs is routine practice. The hope is that 
detection of physiologic changes will allow practitioners to intervene 
in a timely manner and prevent postsurgery complications. As previ-
ously discussed, the continuous vital signs monitors are usually 
equipped only with simple threshold-based alarms, which, in combi-
nation with the rapidly evolving post-surgical state of such patients, 
can lead to a large number of false alarms. For example, it is common 
for the finger-clip sensors attached to pulse oximeters to fall off 
patients as they get situated in their ICU bed, or for changes in the 
artificial lighting of the care environment to produce erroneous 
readings.

To reduce these and other erroneous alarms, a smart alarm system 
was developed that combines four main vital signs routinely collected 
in the surgical ICU (SICU): blood pressure (BP), heart rate (HR), res-
piratory rate (RR), and blood oxygen saturation (SpO2). ICU nurses 
were interviewed to determine appropriate ranges for binning each 
vital sign into a number of ordinal sets (e.g., “low,” “normal,” “high,” 
and “very high,” leading to classifying, for example, a blood pressure 
greater than 107 mm Hg as “high”). Binning vital signs in this way 
helped overcome the difficulty of establishing a rule set customized to 
each patient’s baseline vital signs. The binning criteria can be modified 
to address a specific patient with, for example, a very low “normal” 
resting heart rate, without rewriting the entire rule set.

Afterward, a set of rules was developed in conjunction with nurses to 
identify combinations of these vital signs statuses that would be cause for 
concern. The smart alarm monitors a patient’s four vital signs, categorizes 
them according to which ordinal set they belong in, and searches the rule 
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table for the corresponding alarm level to output. To deal with missing 
data (due to network or sensor faults), rapid drops to zero for a vital sign 
are conservatively classified as “low” for the duration of the signal drop.

This smart alarm avoided many of the challenges that CDS systems 
normally face in the clinical environment. The set of vital signs 
employed was very limited and included only those commonly col-
lected and synchronized by the same medical device. As the “intelli-
gence” of the smart alarm system was a simple rule table based on 
clinician mental models, it did not require large amounts of retrospec-
tive data to calibrate, and it was transparent and easy for clinicians to 
understand. While network reliability would be a concern for such a 
system running in the ICU, the classification of missing values as “low” 
provided a conservative fallback in case of a brief network failure. 
Additionally, running the system on a real-time middleware product 
would provide the necessary data delivery guarantees to ensure sys-
tem safety.

To evaluate the performance of this system, 27 patients were 
observed while they convalesced in the ICU immediately after their 
CABG procedure. Of these 27 patients, 9 had the requisite vital signs 
samples stored in the hospital IT system during the time period of the 
observation. Each of these patients was observed for between 26 and 
127 minutes, totaling 751 minutes of observation. To compare monitor 
alarm performance with the CABG smart alarm, the minute-by-minute 
samples of these patients’ physiologic state were retroactively retrieved 
(after the observations) from the UPHS data store. The smart alarm 
algorithm was applied to the retrieved data streams, resulting in a trace 
of the smart alarm outputs that would have been produced if the smart 
alarm were active at the patient’s bedside. Because of the relatively 
slow rate at which a patient can deteriorate and the expected response 
time of the care staff, an intervention alarm was considered to be cov-
ered by a smart alarm if the alarm occurred within 10 minutes of the 
intervention.

Overall, the smart alarm system produced fewer alarms. During 
the study, the smart alarm was active 55% of the time that the standard 
monitor alarms were active, and of the 10 interventions during the 
observation time period, 9 were covered by the smart alarm. The sig-
nificant alarm was likely deemed “significant” not due to the absolute 
values of the vital signs being observed, but rather by their trend. An 
improved version of this smart alarm system would include rules con-
cerning the trend of each of the vital signs.
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1.3.6 Closed-Loop System

Given that medical devices are aimed at controlling a specific physio-
logical process in a human, they can be viewed as a closed loop between 
the device and the patient. In this section, we discuss clinical scenarios 
from this point of view.

1.3.6.1 A Higher Level of Intelligence

A clinical scenario can be viewed as a control loop: The patient is the 
plant, and the controller collects information from sensors (e.g., bed-
side monitors) and sends configuration commands to actuators (e.g., 
infusion pumps) [Lee12]. Traditionally, caregivers act as the controller 
in most scenarios. This role imposes a significant decision-making bur-
den on them, as one caregiver is usually caring for several patients and 
can check on each patient only sporadically. Continuous monitoring, 
whereby the patient’s condition is under constant surveillance, is an 
active area of research [Maddox08]. However, to improve patient safety 
further, the system should be able to continuously react to changes in 
patient condition as well.

The smart alarm systems and decision support systems, discussed in 
the previous section, facilitate the integration and interpretation of clini-
cal information, helping caregivers make decisions more efficiently. 
Closed-loop systems aim to achieve a higher level of intelligence: In such 
systems, a software-based controller automatically collects and inter-
prets physiological data, and controls the therapeutic delivery devices. 
Many safety-critical systems utilize automatic controllers—for example, 
autopilots in airplanes and adaptive cruise control in vehicles. In patient 
care, the controller can continuously monitor the patient’s state and 
automatically reconfigure the actuators when the patient’s condition 
stays within a predefined operation region. It will alert and hand control 
back to caregivers if the patient’s state starts veering out of the safe range. 
Such physiological closed-loop systems can assume part of the caregiv-
ers’ workload, enabling them to better focus on handling critical events, 
which would ultimately improve patient safety. In addition, software 
controllers can run advanced decision-making algorithms (e.g., model-
predictive control in blood glucose regulation [Hovorka04]) that are too 
computationally complicated for human caregivers to apply, which may 
improve both the safety and the effectiveness of patient care.

The concept of closed-loop control has already been introduced in 
medical applications—for example, in implantable devices such as 
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cardioverter defibrillators and other special-purpose stand-alone 
devices. A physiological closed-loop system can also be built by net-
working multiple existing devices, such as infusion pumps and vital 
sign monitors. The networked physiological closed-loop system can be 
modeled as a VMD.

1.3.6.2 Hazards of Closed-Loop Systems

The networked closed-loop setting introduces new hazards that could 
compromise patient safety. These hazards need to be identified and 
mitigated in a systematic way. Closed-loop MCPS, in particular, raise 
several unique challenges for safety engineering.

First, the plant (i.e., the patient) is an extremely complex system 
that usually exhibits significant variability and uncertainty. 
Physiological modeling has been a decade-long challenge for biomedi-
cal engineers and medical experts, and the area remains at the frontier 
of science. Unlike in many other engineering disciplines, such as 
mechanical engineering or electronic circuit design, where high-fidelity 
first-principle models are usually directly applicable to theoretical con-
troller design, the physiological models are usually nonlinear and 
contain parameters that are highly individual dependent, time vary-
ing, and not easily identifiable given the technologies available. This 
imposes a major burden on control design as well as system-level safety 
reasoning.

Second, in the closed-loop medical device system, complex interac-
tions occur between the continuous physiology of the patient and the 
discrete behavior of the control software and network. Since most 
closed-loop systems require supervision from users (either caregivers 
or patients themselves), the human behavior must be considered in the 
safety arguments.

Third, the control loop is subject to uncertainties caused by sensors, 
actuators, and communication networks. For example, some body sen-
sors are very sensitive to patient movements—vital signs monitors 
may alert faulty readings due to a dropped finger-clip—and due to 
technological constraints, some biosensors have non-negligible error 
even when they are used correctly (e.g., the continuous glucose moni-
tor) [Ginsberg09]. The network behavior also has a critical impact on 
patient safety: Patients can be harmed by the actuators if packets that 
carry critical control commands are dropped as they travel across the 
network.
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1.3.6.3 Case Study: Closed-Loop PCA Infusion Pump

One way to systematically address the challenges faced by closed-loop 
systems is to employ a model-based approach similar to the one out-
lined in Section 1.3.3. This effort involves extending the high-confidence 
approach based on hazard identification and mitigation from individual 
devices to a system composed of a collection of devices and a patient.

This section briefly describes a case study of the use of physiological 
closed loop in pain control using a PCA infusion pump, introduced in 
Section 1.3.3.3. The biggest safety concern that arises with the use of PCA 
pumps for pain control is the risk of overdose of an opioid analgesic, 
which can cause respiratory failure. Existing safety mechanisms built into 
PCA pumps include limits on bolus amounts, which are programmed by 
a caregiver before the infusion starts, and minimum time intervals between 
consecutive bolus doses. In addition, nursing manuals prescribe periodic 
checks of the patient condition by a nurse, although these mechanisms are 
considered insufficient to cover all possible scenarios [Nuckols08].

The case study [Pajic12] presents a safety interlock design for PCA 
infusion, implemented as an on-demand MCPS as described in Section 
1.3.4. The pulse oximeter continuously monitors heart rate and blood 
oxygen saturation. The controller receives measurements from the 
pulse oximeter, and it may stop the PCA infusion if the HR/SpO2 read-
ings indicate a dangerous decrease in respiratory activity, thereby pre-
venting overdosing.

Safety requirements for this system are based on two regions in the 
space of possible patient states as reported by the two sensors, as illus-
trated in Figure 1.7. The critical region represents imminent danger to 
the patient and must be avoided at all times; the alarming region is not 
immediately dangerous but raises clinical concerns.

The control policy for the safety interlock may be to stop the infu-
sion as soon as the patient state enters the alarming region. The imme-
diate challenge is to define the alarming region to be large enough so 
that the pump can always be stopped before the patient enters the criti-
cal region. At the same time, the region should not be too large, so as to 
avoid false alarms that would decrease the effectiveness of pain control 
unnecessarily. Finding the right balance and defining exact boundaries 
of the two regions was beyond the scope of the case study.

The goal of the case study was to verify that the closed-loop system 
satisfies its patient requirements. To achieve this goal, one needs mod-
els of the infusion pump, the pulse oximeter, the control algorithm, and 
the physiology of the patient.
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Patient modeling is the critical aspect in this case. Both pharma-
cokinetic and pharmacodynamics aspects of physiology should be con-
sidered [Mazoit07]. Pharmacokinetics specifies how the internal state 
of the patient, represented by the drug concentration in the blood, is 
affected by the rate of infusion. Pharmacodynamics specifies how the 
patient’s internal state affects observable outputs of the model—that is, 
the relationship between the drug concentration and oxygen saturation 
levels measured by the pulse oximeter. The proof-of-concept approach 
taken in the case study relies on the simplified pharmacokinetic model 
of [Bequette03]. To make the model applicable to a diverse patient 

Figure 1.7: PCA safety interlock design
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population, parameters of the model were taken to be ranges, rather 
than fixed values. To avoid the complexity of pharmacodynamics, a 
linear relationship between the drug concentration and the patient’s 
vital signs was assumed.

Verification efforts concentrated on the timing of the control loop. 
After a patient enters the alarming region, it takes time for the controller 
to detect the danger and act on it. There are delays involved in obtaining 
sensor readings, delivering the readings from the pulse oximeter to the 
controller, calculating the control signal, delivering the signal to the 
pump, and finally stopping the pump motor. To strengthen confidence 
in the verification results, the continuous dynamics of the patient model 
were used to derive tcrit, the minimum time over all combinations of 
parameter values in the patient model that can pass from the moment 
the patient state enters the alarming region to the moment it enters the 
critical region. With this approach, the verification can abstract away 
from the continuous dynamics, significantly simplifying the problem. 
Using a timing model of the components in the system, one can verify 
that the time it takes to stop the pump is always smaller than tcrit.

1.3.6.4 Additional Challenging Factors

The PCA system is a relatively simple but useful use case of closed-
loop medical devices. Other types of closed-loop systems, by compari-
son, may introduce new engineering challenges due to their 
functionalities and requirements. For example, blood glucose control 
for patients with diabetes has garnered a lot of attention from both the 
engineering and clinical communities, and various concepts of closed-
loop or semi-closed-loop systems have been proposed [Cobelli09, 
Hovorka04, Kovatchev09]. Compared to the PCA system, the closed-
loop glucose control system is substantially more complex and opens 
up many opportunities for new research.

The fail-safe mode in the PCA system is closely related to the 
clinical objective: Overdosing is the major concern. While the patient 
may suffer from more pain when PCA is stopped, stopping the infu-
sion is considered a safe action, at least for a reasonable time dura-
tion. This kind of fail-safe mode may not exist in other clinical 
scenarios. For example, in the glucose control system, the goal is to 
keep the glucose level within a target range. In this case, stopping 
the insulin pump is not a default safe action, because high glucose 
level is also harmful.
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The safety criteria in the PCA system are defined by delineating a 
region in the state space of the patient model (such as the critical region 
in the previous case study). Safety violations are then detected as 
threshold crossings in the stream of patient vital signs. Such crisp, 
threshold-based rules are often crude simplifications. Physiological 
systems have a certain level of resilience, and the true relationship 
between health risks and physiological variables is still not completely 
understood. Time of exposure is also important: A short spike in the 
drug concentration may be less harmful than a lower-level concentra-
tion that persists over a longer interval.

The pulse oximeter—the sensor used in the PCA system—is rela-
tively accurate with respect to the ranges that clinicians would consider 
in their decision making. In some other scenarios, however, sensor accu-
racy is a non-negligible factor. For example, a glucose sensor can have a 
relative error of as much as 15% [Ginsberg09]; given that the target range 
is relatively narrow, such an error may significantly impact system oper-
ation and must be explicitly considered in the safety arguments.

Even if the sensor is perfectly accurate, it may not be predictive 
enough. While oxygen saturation can be used to detect respiratory fail-
ure, for example, this value may not decline until a relatively late point, 
after harm to the patient is already done. Capnography data, which 
measure levels of carbon dioxide exhaled by the patient, can be used to 
detect the problem much sooner, but this technique is more expensive 
and involves invasive technology compared to pulse oximetry. This 
example highlights the need to include more accurate pharmacody-
namics data into the patient model, which can be used to account for 
the detection delay.

Another important factor in the closed-loop medical system is the 
human user’s behavior. In the PCA system, the user behavior is rela-
tively simple: The clinicians are alerted when certain conditions arise, 
and most of the times they do not need to intervene in the operation of 
the control loop. In other applications with more complicated require-
ments, however, the user may demand a more hands-on role in the 
control. For example, in the glucose control application, a user will 
need to take back the control authority when the glucose level is signifi-
cantly out of range; even when the automatic controller is running, the 
user may choose to reject certain control actions for various reasons 
(e.g., the patient is not comfortable with a large insulin dose). This kind 
of more complicated user interaction pattern introduces new chal-
lenges to the model-based validation and verification efforts.
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1.3.7 Assurance Cases

Recently, safety cases have become popular and acceptable ways for 
communicating ideas and information about the safety-critical systems 
among the system stakeholders. In the medical devices domain, the 
FDA issued draft guidance for medical infusion pump manufacturers 
indicating that they should provide a safety case with their premarket 
submissions [FDA10]. In this section, we briefly introduce the concept 
of safety cases and the notations used to describe them. Three aspects 
of safety cases that can be manipulated to make them practically useful 
are discussed—namely, facilitating safety case construction, justifying 
the existence of sufficient trust in safety arguments and cited evidence, 
and providing a framework for safety case assessment for regulation 
and certification.

Safety case patterns can help both device manufacturers and regu-
lators to construct and review the safety cases more efficiently while 
improving confidence and shortening the period in which a device’s 
application is in FDA-approval limbo. Qualitative reasoning for having 
confidence in a device is believed to be more consistent with the inher-
ited subjectivity in safety cases than the quantitative reasoning. The 
separation between safety and confidence arguments reduces the size 
of the core safety argument. Consequently, this structure is believed to 
facilitate the development and reviewing processes for safety cases. 
The constructed confidence arguments should be used in the appraisal 
process for assurance arguments as illustrated in [Ayoub13, Cyra08, 
Kelly07].

Given the subjective nature of safety cases, the review methods 
cannot hope to replace the human reviewer. Instead, they form frame-
works that lead safety case reviewers through the evaluation process. 
Consequently, the result of the safety case review process is always 
subjective.

1.3.7.1 Safety Assurance Cases

The safety of medical systems is of great public concern—a concern 
that is reflected in the fact that many such systems must adhere to gov-
ernment regulations or be certified by licensing bodies [Isaksen97]. For 
example, medical devices sold in the United States are regulated by the 
FDA. Some of these medical devices, such as infusion pumps, cannot 
be commercially distributed before receiving an approval from the 
FDA. There is a need to communicate, review, and debate the 
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trustworthiness of systems with a range of stakeholders (e.g., medical 
device manufacturers, regulatory authorities).

Assurance cases can be used to justify the adequacy of medical 
device systems. The assurance case is a method for arguing that a body 
of evidence justifies a claim. An assurance case addressing safety is 
called a safety case. A safety assurance case presents an argument, sup-
ported by a body of evidence, that a system is acceptably safe when 
used in a given context [Menon09]. The notion of safety cases is cur-
rently embraced by several European industry sectors (e.g., aircraft, 
trains, nuclear power). More recently in the United States, the FDA 
issued draft guidance indicating that medical infusion pump manufac-
turers should provide a safety case with their premarket submissions 
[FDA10]. Thus, an infusion pump manufacturer is expected not only to 
achieve safety, but also to convince regulators that it has been achieved 
[Ye05] through the submitted safety case. The manufacturer’s role is to 
develop and submit a safety case to regulators showing that its product 
is acceptably safe to operate in the intended context [Kelly98]. The reg-
ulator’s role, in turn, is to assess the submitted safety case and make 
sure that the system is really safe.

Many different approaches are possible for the organization and 
presentation of safety cases. Goal Structuring Notation (GSN) is one 
description technique that has proved useful for constructing safety 
cases [Kelly04]. GSN is a graphical argumentation notation developed 
at the University of York. A GSN diagram includes elements that repre-
sent goals, argument strategies, contexts, assumptions, justifications, 
and evidence. The principal purpose of any goal structure in GSN is to 
show how goals—that is, claims about the system specified with text 
within rectangular elements—are supported by valid and convincing 
arguments. To this end, goals are successively decomposed into sub-
goals through implicit or explicit strategies. Strategies, specified with 
text within parallelograms, explicitly define how goals are decomposed 
into subgoals. The decomposition continues until a point is reached 
where claims are supported by direct reference to available evidence, 
and the solution specified with text within circles. Assumptions/justi-
fications, which define the rationale of the decomposition approach, 
are represented with ellipses. The context in which goals are stated is 
given in rectangles with rounded sides.

Another popular description technique is called Claims–
Arguments–Evidence (CAE) notation [Adelard13]. While this notation 
is less standardized than GSN, it shares the same element types as GSN. 
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The primary difference is that strategy elements are replaced with 
argument elements. In this work, we use GSN notation in presenting 
safety cases.

1.3.7.2 Justification and Confidence

The objective of a safety case development process is to provide a justifi-
able rationale for the design and engineering decisions and to instill con-
fidence in those design decisions (in the context of system behavior) in 
stakeholders (e.g., manufacturers and regulatory authorities). Adopting 
assurance cases necessarily requires the existence of proper reviewing 
mechanisms. These mechanisms address the main aspects of assurance 
cases—that is, building, trusting, and reviewing assurance cases.

All three aspects of assurance cases bring own challenges. These 
challenges need to be addressed to make safety cases practically 
useful:

• Building assurance cases: The Six-Step method [Kelly98a] is a widely 
used method for systematically constructing safety cases. Following 
the Six-Step method or any other method does not prevent safety 
case developers from making some common mistakes, such as 
leaping from claims to evidence. Even so, capturing successful (i.e., 
convincing, sound) arguments used in safety cases and reusing 
them in constructing new safety cases can minimize the mistakes 
that may be made during the safety case development. The need 
for argument reusability motivates the use of the pattern concept 
(where pattern means a model or original used as an archetype) in 
the safety case constructions. Predefined patterns can often provide 
an inspiration or a starting point for new safety case developments. 
Using patterns may also help improve the maturity and complete-
ness of safety cases. Consequently, patterns can help medical device 
manufacturers to construct safety cases in a more efficient way in 
terms of completeness, thereby shortening the development period. 
The concept of safety case patterns is defined in [Kelly97] as a way 
to capture and reuse “best practices” in safety cases. Best practices 
incorporate company expertise, successfully certified approaches, 
and other recognized means of assuring quality. For example, pat-
terns extracted from a safety case built for a specific product can be 
reused in constructing safety cases for other products that are 
developed via similar processes. Many safety case patterns were 
introduced in [Alexander07, Ayoub12, Hawkins09, Kelly98, 
Wagner10, Weaver03] to capture best practices.
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• Trusting assurance cases: Although a structured safety case explicitly 
explains how the available evidence supports the overall claim of 
acceptable safety, it cannot ensure that the argument itself is good 
(i.e., sufficient for its purpose) or that the evidence is sufficient. Safety 
arguments typically have some weaknesses, so they cannot be fully 
trusted on their own. In other words, there is always a question about 
the level of trust for the safety arguments and cited evidence, which 
makes a justification for the sufficiency of confidence in safety cases 
essential. Several attempts have been to quantitatively measure con-
fidence in safety cases, such as in [Bloomfield07, Denney11].

 A new approach for creating clear safety cases was introduced in 
[Hawkins11] to facilitate their development and increase confidence 
in the constructed cases. This approach basically separates the major 
components of safety cases into a safety argument and a confidence 
argument. A safety argument is limited to arguments and evidence 
that directly target the system safety—for example, explaining why a 
specific hazard is sufficiently unlikely to occur and arguing this claim 
by testing results as evidence. A confidence argument is given sepa-
rately; it seeks to justify the sufficiency of confidence in the safety 
argument. For example, questions about the level of confidence in 
the given testing result evidence (e.g., whether that testing was 
exhaustive) should be addressed in the confidence argument. These 
two components, while presented explicitly and separately, are inter-
linked so that the justification for having sufficient confidence in 
individual aspects of the safety component is clear and readily avail-
able but not confused with the safety component itself.

 Any gap that prohibits perfect confidence in safety arguments is 
referred to as an assurance deficit [Hawkins11]. Argument patterns 
for confidence arguments are given in [Hawkins11]. Those patterns 
are defined based on identifying and managing the assurance defi-
cits so as to show sufficient confidence in the safety argument. To 
this end, it is necessary to identify the assurance deficits as com-
pletely as practicable. Following a systematic approach (such as the 
one proposed by [Ayoub12a]) would help in effectively identifying 
assurance deficits. In [Menon09, Weaver03], lists of major factors 
that should be considered in determining the confidence in argu-
ments are defined. Questions to be considered when determining 
the sufficiency of each factor are given as well.

 To show sufficient confidence in a safety argument, the developer of a 
confidence argument first explores all concerns about the level of 
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confidence in this argument, and then makes claims that these con-
cerns are addressed. If a claim cannot be supported by convincing 
evidence, then a deficit is identified. The list of the recognized assur-
ance deficits can be then used when instantiating the confidence pat-
tern given in [Hawkins11] to show that the residual deficits are 
acceptable.

• Reviewing assurance cases: Safety case arguments are rarely provable 
deductive arguments, but rather are more commonly inductive. In 
turn, safety cases are, by their nature, often subjective [Kelly07]. 
The objective of safety case evaluation, therefore, is to assess 
whether there is a mutual acceptance of the subjective position. The 
human mind does not deal well with complex inferences based on 
uncertain sources of knowledge [Cyra08], which are common in 
safety arguments. Therefore, reviewers should be required to 
express their opinions about only the basic elements in the safety 
case. A mechanism should then provide a way to aggregate the 
reviewers’ opinions about the basic elements in the safety case so as 
to communicate a message about its overall sufficiency.

Several approaches to assessing assurance cases have been proposed. 
The work in [Kelly07] presents a structured approach to assurance case 
review by focusing primarily on assessment of the level of assurance 
offered by the assurance case argument. The work in [Goodenough12] 
outlines a framework for justifying confidence in the truth of assurance 
case claims. This framework is based on the notion of eliminative 
induction—the principle that confidence in the truth of a claim increases 
as reasons for doubting its truth are identified and eliminated. Defeaters, 
in contrast, offer possible reasons for doubting. The notion of Baconian 
probability is then used to provide a measure of confidence in assurance 
cases based on how many defeaters have been identified and eliminated.

A structured method for assessing the level of sufficiency and insuf-
ficiency of safety arguments was outlined in [Ayoub13]. The reviewer 
assessments and the results of their aggregation are represented in the 
Dempster-Shafer model [Sentz02]. The assessing mechanism given in 
[Ayoub13] can be used in conjunction with the step-by-step review 
approach proposed in [Kelly07] to answer the question given in the last 
step of this reviewing approach, which deals with the overall suffi-
ciency of the safety argument. In other words, the approach in [Kelly07] 
provides a skeleton for a systematic review process; by comparison, the 
mechanism in [Ayoub13] provides a systematic procedure to measure 
the sufficiency and insufficiency of the safety arguments. An appraisal 
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mechanism is proposed in [Cyra08] to assess the trust cases using the 
Dempster-Shafer model.

Finally, linguistic scales are introduced in [Cyra08] as a means to 
express the expert opinions of reviewers and the aggregation results. 
Linguistic scales are appealing in this context, as they are closer to 
human nature than are numbers. They are based on qualitative values 
such as “high,” “low,” and “very low” and are mapped into the inter-
val for evaluation.

1.3.7.3 Case Study: GPCA Safety

This section builds on the case study of the GPCA infusion pump, 
which was presented in Section 1.3.3.3. Assurance cases for medical 
devices have been discussed in [Weinstock09]. The work in 
[Weinstock09] can be used as starting point for the GPCA safety case 
construction. A safety case given in [Jee10] is constructed for a pace-
maker that is developed following a model-based approach similar to 
the one used in the GPCA case study.

Safety Case Patterns
Similarities in development approach are likely to lead to similarities in 
safety arguments. In keeping with this understanding, safety case pat-
terns [Kelly97] have been proposed as means of capturing similarities 
between arguments. Patterns allow the common argument structure to 
be elaborated with device-specific details. To capture the common 
argument structure for systems developed in a model-based fashion, a 
safety case pattern, called the from_to pattern, has been proposed in 
[Ayoub12]. In this section, the from_to pattern is illustrated and instan-
tiated for the GPCA reference implementation.

A safety case for the GPCA reference implementation would claim 
that the PCA implementation software does not contribute to the sys-
tem hazards when used in the intended environment. To address this 
claim, one needs to show that the PCA implementation software satis-
fies the GPCA safety requirements in the intended environment. This 
is the starting point for the pattern. The context for this claim is that 
GPCA safety requirements are defined to mitigate the GPCA hazards, 
which would be argued separately in another part of the safety case.

Figure 1.8 shows the GSN structure of the proposed from_to pattern. 
Here, {to} refers to the system implementation and {from} refers to a 
model of this system. The claim (G1) about the implementation correct-
ness (i.e., satisfaction of some property [referenced in C1.3]) is justified 
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not only by validation (G4 through S1.2), but also by arguing over the 
model correctness (G2 through S1.1), and the consistency between the 
model and the implementation created based on it (G3 through S1.1). 
The model correctness (i.e., further development for G2) is guaranteed 
through the model verification (i.e., the second step of the model-based 
approach). The consistency between the model and the implementation 
(i.e., further development for G3) is supported by the code generation 
from the verified model (i.e., the third step of the model-based approach). 
Only part of the property of concern (referenced in C2.1) can be verified 
at the model level due to the differing abstraction levels between the 
model and the implementation. However, the validation argument 
(S1.2) covers the entire property of concern (referenced in C1.3). The 
additional justification (given in S1.1) increases the assurance in the top-
level claim (G1).

Figure 1.9 shows an instantiation of this pattern that is part of the 
PCA safety case. Based on [Kim11], for this pattern instance, the {to} 
part is the PCA implementation software (referenced in C1.1), the 
{from} part is the GPCA timed automata model (referenced in C1.1.1), 
and the GPCA safety requirements (referenced in C1.3) represent the 
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Figure 1.8: The proposed from_to pattern

A. Ayoub, B. Kim, I. Lee, O. Sokolsky. Proceedings of NASA Formal Methods: 45th 
International Symposium, pp. 141–146. With permission from Springer.
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concerned property. In this case, correct PCA implementation means it 
satisfies the GPCA safety requirements that were defined to guarantee 
the PCA safety. The satisfaction of the GPCA safety requirements in the 
implementation level (G1) is decomposed by two strategies (S1.1 and 
S1.2). The argument in S1.1 is supported by the correctness of the GPCA 
timed automata model (G2) as well as by the consistency between the 
model and the implementation (G3). The correctness of the GPCA 
timed automata model (i.e., further development for G2) is proved by 
applying the UPPAAL model-checker against the GPCA safety require-
ments, which can be formalized (referenced in C2.1). The consistency 
between the model and the implementation (i.e., further development 
for G3) is supported by the code synthesis from the verified GPCA 
timed automata model.

Note that not all of the GPCA safety requirements (referenced in 
C1.3) can be verified against the GPCA timed automata model [Kim11]. 
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Figure 1.9: An instance of the from_to pattern.

A. Ayoub, B. Kim, I. Lee, O. Sokolsky. Proceedings of NASA Formal Methods: 45th 
International Symposium, pp. 141–146. With permission from Springer.
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Only the part referenced in C2.1 can be formalized and verified in the 
model level (e.g., “No bolus dose shall be possible during the power-on 
self-test”). Other requirements cannot be formalized or verified against 
the model given its level of detail (e.g., “The flow rate for the bolus 
dose shall be programmable” cannot be formalized meaningfully and 
then verified on the model level).

Assurance Deficit Example
As discussed in Section 1.3.3.3 and shown in Figure 1.3, the GPCA 
Simulink/Stateflow model was transformed into an equivalent GPCA 
timed automata model. Although it is relatively straightforward to 
translate the original GPCA model written in Simulink/Stateflow into 
a UPPAAL timed automata model, there is no explicit evidence to show 
the equivalence between the two models at the semantic level. A poten-
tial assurance deficit associated with the GPCA timed automata model 
(context C1.1.1 in Figure 1.9) can be stated as “There are semantic dif-
ferences between the Simulink/Stateflow and the UPPAAL timed 
automata model.” To mitigate this residual assurance deficit, exhaus-
tive conformance testing between the GPCA Simulink/Stateflow 
model and the GPCA timed automata model may suffice.

1.4 Practitioners’ Implications

One can distinguish the following groups of stakeholders in MCPS:

• MCPS developers, including manufacturers of medical devices and 
integrators of medical information technologies

• MCPS administrators—typically clinical engineers in hospitals, 
who are tasked with deploying and maintaining MCPS

Note

Generally, using safety case patterns does not necessarily guarantee that the con-
structed safety case will be sufficiently compelling. Thus, when instantiating the 
from_to pattern, it is necessary to justify each instantiation decision to guarantee that 
the constructed safety case is sufficiently compelling. Assurance deficits should be 
identified throughout the construction of a safety argument. Where an assurance 
deficit is identified, it is necessary to demonstrate that the deficit is either acceptable 
or addressed such that it becomes acceptable. An explicit justification should be 
provided as to why the residual assurance deficit is considered acceptable. This can 
be done by adopting appropriate approaches such as ACARP (As Confident As 
Reasonably Practical) [Hawkins09a].
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• MCPS users—clinicians who perform treatment using MCPS
• MCPS subjects—patients
• MCPS regulators, who certify the safety of MCPS or approve their 

use for clinical purposes

In the United States, the FDA is the regulatory agency charged with 
assessing the safety and effectiveness of medical devices and approv-
ing them for specific uses.

All of the stakeholder groups have a vested interest in MCPS safety. 
However, each group has additional drivers that need to be taken into 
account when designing or deploying MCPS in a clinical setting. In this 
section we consider each group of stakeholders and identify specific 
concerns that apply to them as well as unique challenges that they 
pose.

1.4.1 MCPS Developer Perspective

Dependence of MCPS on software, as well as complexity of software 
used in medical devices, has been steadily increasing over the past 
three decades. In recent years, the medical device industry has been 
plagued with software-related recalls, with 19% of all recalls of medical 
devices in the United States being related to software problems 
[Simone13].

Many other safety-regulated industries, such as avionics and 
nuclear power, operate on relatively long design cycles. By contrast, 
medical device companies are under intense market pressure to 
quickly introduce additional features into their products. At the same 
time, medical devices are often developed by relatively small compa-
nies that lack the resources for extensive validation and verification of 
each new feature they introduce. Model-based development tech-
niques, such as the ones described in Section 1.3.3, hold the promise 
of more efficient verification and validation, leading to shorter devel-
opment cycles.

At the same time, many medical device companies complain about 
the heavy regulatory burden imposed by the FDA and similar regula-
tory agencies in other countries. Formal models and verification results, 
introduced by the model-based development approaches, provide evi-
dence that MCPS is safe. Combined with the assurance cases that 
organize this evidence into a safety argument, these rigorous develop-
ment methods may help reduce the regulatory burden for MCPS 
developers.
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1.4.2 MCPS Administrator Perspective

Clinical engineers in hospitals are charged with maintaining the wide 
variety of medical devices that constitute the MCPS used in patient 
treatment. Most clinical scenarios today involve multiple medical 
devices. A clinical engineer needs to ensure that the devices used in 
treating a patient can all work together. If an incompatibility is discov-
ered after treatment commences, the patient may be harmed. 
Interoperability techniques, described in Section 1.3.4, may help to 
ensure that more devices are compatible with one another, making the 
job of maintaining the inventory and the assembly of clinical scenarios 
easier. This, in turn, reduces treatment errors and improves patient out-
comes and, at the same time, saves the hospital money.

1.4.3 MCPS User Perspective

Clinicians use MCPS as part of delivering patient treatments. A specific 
treatment can, in most cases, be performed with different MCPS imple-
mentations using similar devices from different vendors. A primary con-
cern, then, is ensuring that clinicians are equally familiar with the 
different implementations. The concepts of clinical scenarios and virtual 
medical devices, introduced in Section 1.3.4, can help establish a com-
mon user interface for the MCPS, regardless of the specific devices used 
to implement it. Such an interface would help to reduce clinical errors 
when using these devices. Furthermore, the user interface can be verified 
as part of the analysis of the MCPS model, as suggested by [Masci13].

MCPS development must take existing standards of care into con-
sideration. Clinical personnel need to be involved in the analysis of the 
scenario models to ensure that they are consistent with extant clinical 
guidelines for the respective treatment and are intuitive for caregivers 
to use.

A particular challenge in modern health care is the high workload 
faced by caregivers. Each healthcare provider is likely to be caring for 
multiple patients and must keep track of multiple sources of informa-
tion about each patient. On-demand MCPS have the potential to con-
trol cognitive overload in caregivers by offering virtual devices that 
deliver intelligent presentation of clinical information or smart alarm 
functionality. Smart alarms, which can correlate or prioritize alarms 
from individual devices, can be of great help to caregivers, by giving a 
more accurate picture of the patient’s condition and reducing the rate 
of false alarms [Imhoff09].
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1.4.4 Patient Perspective

Of all the various stakeholder groups, patients stand to gain the most 
from the introduction of MCPS. In addition to the expected improve-
ments in the safety of treatments achieved through higher reliability of 
individual devices and their bedside assemblies, patients would get 
the benefit of improvements in treatments themselves. These improve-
ments may come from several sources.

On the one hand, MCPS can offer continuous monitoring that care-
givers, who normally must attend to multiple patients as part of their 
workload, cannot provide by themselves. Clinical guidelines often require 
caregivers to obtain patient data at fixed intervals—for example, every 15 
minutes. An MCPS may collect patient data as frequently as allowed by 
each sensor and alert caregivers to changes in the patient’s condition ear-
lier, thereby enabling them to intervene before the change leads to a seri-
ous problem. Furthermore, continuous monitoring, combined with 
support for predictive decision making, similar to the system discussed in 
Section 1.3.5, will allow treatment to be proactive rather than reactive.

Probably the biggest improvement in the quality of care for patients 
will come with the transition from general guidelines meant to apply to 
all patients within a certain population to personalized approaches, in 
which treatment is customized to the individual needs of the patient 
and takes into account his or her specific characteristics. Personalized 
treatments, however, cannot be effected without detailed patient mod-
els. Such models can be stored in patient records and interpreted by the 
MCPS during treatment.

1.4.5 MCPS Regulatory Perspective

Regulators of the medical devices industry are tasked with assessing 
the safety and effectiveness of MCPS. The two main concerns that these 
regulators face are improving the quality of the assessment and making 
the best use of the limited resources that agencies have available for 
performing the assessment. These two concerns are not independent, 
because more efficient ways of performing assessments would allow 
regulators more time to conduct deeper evaluations. The safety case 
technologies discussed in Section 1.3.7 may help address both. The 
move toward evidence-based assessment may allow regulators to per-
form more accurate and reliable assessments. At the same time, organ-
izing evidence into a coherent argument will help them perform these 
assessments more efficiently.
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1.5 Summary and Open Challenges

This chapter presented a broad overview of trends in MCPS and the 
design challenges that these trends present. It also discussed possible 
approaches to address these challenges, based on recent results in 
MCPS research.

The first challenge is related to the prevalence of software-enabled 
functionality in modern MCPS, which makes assurance of patient 
safety a much harder task. Model-based development techniques pro-
vide one way to ensure the safety of a system. Increasingly, model-
based development is embraced by the medical devices industry. Even 
so, the numerous recalls of medical devices that have occurred in recent 
years demonstrate that the problem of device safety is far from being 
solved.

The next-level challenge arises from the need to organize individ-
ual devices into a system of interconnected devices that collectively 
treat the patient in a complex clinical scenario. Such multi-device MCPS 
can provide new modes of treatment, give enhanced feedback to the 
clinician, and improve patient safety. At the same time, additional haz-
ards can arise from communication failures and lack of interoperability 
between devices. Reasoning about safety of such on-demand MCPS, 
which are assembled at the bedside from available devices, creates new 
regulatory challenges and requires medical application platforms—
that is, trusted middleware that can ensure correct interactions between 
the devices. Research prototypes of such middleware are currently 
being developed, but their effectiveness needs to be further evaluated. 
Furthermore, interoperability standards for on-demand MCPS need to 
be further improved and gain wider acceptance.

To fully utilize the promise inherent in multi-device MCPS, new 
algorithms need to be developed to process and integrate patient data 
from multiple sensors, provide better decision support for clinicians, 
produce more accurate and informative alarms, and so on. This need 
gives rise to two kinds of open challenges. On the one hand, additional 
clinical research as well as data analysis needs to be performed to deter-
mine the best ways of using the new information made available 
through combining multiple rich data sources. On the other hand, new 
software tools are needed to facilitate fast prototyping and deployment 
of new decision support and visualization algorithms.

MCPS promises to enable a wide array of physiological closed-
loop systems, in which information about the patient’s condition, 
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collected from multiple sensors, can be used to adjust the treatment 
process or its parameters. Research on such closed-loop control algo-
rithms is gaining prominence, especially as means to improve glyce-
mic control in patients with diabetes. However, much research needs 
to be performed to better understand patient physiology and develop 
adaptive control algorithms that can deliver personalized treatment 
to each patient.

In all of these applications, patient safety and effectiveness of treat-
ment are the two paramount concerns. MCPS manufacturers need to 
convince regulators that systems they build are safe and effective. The 
growing complexity of MCPS, the high connectivity, and the preva-
lence of software-enabled functionality make evaluation of such sys-
tems’ safety quite difficult. Construction of effective assurance cases for 
MCPS, as well as for CPS in general, remains a challenge in need of 
further research.
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