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F O R E W O R D

PEOPLE who analyze algorithms have double happiness. First of all they
experience the sheer beauty of elegant mathematical patterns that sur-

round elegant computational procedures. Ļen they receive a practical payoff
when their theories make it possible to get other jobs done more quickly and
more economically.

Mathematical models have been a crucial inspiration for all scientiŀc
activity, even though they are only approximate idealizations of real-world
phenomena. Inside a computer, such models are more relevant than ever be-
fore, because computer programs create artiŀcial worlds in which mathemat-
ical models often apply precisely. I think that’s why I got hooked on analysis
of algorithms when I was a graduate student, and why the subject has been
my main life’s work ever since.

Until recently, however, analysis of algorithms has largely remained the
preserve of graduate students and post-graduate researchers. Its concepts are
not really esoteric or difficult, but they are relatively new, so it has taken awhile
to sort out the best ways of learning them and using them.

Now, after more than 40 years of development, algorithmic analysis has
matured to the point where it is ready to take its place in the standard com-
puter science curriculum. Ļe appearance of this long-awaited textbook by
Sedgewick and Flajolet is therefore most welcome. Its authors are not only
worldwide leaders of the ŀeld, they also are masters of exposition. I am sure
that every serious computer scientist will ŀnd this book rewarding in many
ways.

D. E. Knuth
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P R E F A C E

THIS book is intended to be a thorough overview of the primary tech-
niques used in the mathematical analysis of algorithms. Ļe material

covered draws from classical mathematical topics, including discrete mathe-
matics, elementary real analysis, and combinatorics, as well as from classical
computer science topics, including algorithms and data structures. Ļe focus
is on “average-case” or “probabilistic” analysis, though the basic mathematical
tools required for “worst-case” or “complexity” analysis are covered as well.

We assume that the reader has some familiarity with basic concepts in
both computer science and real analysis. In a nutshell, the reader should be
able to both write programs and prove theorems. Otherwise, the book is
intended to be self-contained.

Ļe book is meant to be used as a textbook in an upper-level course on
analysis of algorithms. It can also be used in a course in discrete mathematics
for computer scientists, since it covers basic techniques in discrete mathemat-
ics as well as combinatorics and basic properties of important discrete struc-
tures within a familiar context for computer science students. It is traditional
to have somewhat broader coverage in such courses, but many instructors may
ŀnd the approach here to be a useful way to engage students in a substantial
portion of the material. Ļe book also can be used to introduce students in
mathematics and applied mathematics to principles from computer science
related to algorithms and data structures.

Despite the large amount of literature on the mathematical analysis of
algorithms, basic information on methods and models in widespread use has
not been directly accessible to students and researchers in the ŀeld. Ļis book
aims to address this situation, bringing together a body of material intended
to provide readers with both an appreciation for the challenges of the ŀeld and
the background needed to learn the advanced tools being developed to meet
these challenges. Supplemented by papers from the literature, the book can
serve as the basis for an introductory graduate course on the analysis of algo-
rithms, or as a reference or basis for self-study by researchers in mathematics
or computer science who want access to the literature in this ŀeld.
Preparation. Mathematical maturity equivalent to one or two years’ study
at the college level is assumed. Basic courses in combinatorics and discrete
mathematics may provide useful background (and may overlap with some
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material in the book), as would courses in real analysis, numerical methods,
or elementary number theory. We draw on all of these areas, but summarize
the necessary material here, with reference to standard texts for people who
want more information.

Programming experience equivalent to one or two semesters’ study at
the college level, including elementary data structures, is assumed. We do
not dwell on programming and implementation issues, but algorithms and
data structures are the central object of our studies. Again, our treatment is
complete in the sense that we summarize basic information, with reference
to standard texts and primary sources.

Related books. Related texts include Ļe Art of Computer Programming by
Knuth; Algorithms, Fourth Edition, by Sedgewick and Wayne; Introduction
to Algorithms by Cormen, Leiserson, Rivest, and Stein; and our own Analytic
Combinatorics. Ļis book could be considered supplementary to each of these.

In spirit, this book is closest to the pioneering books by Knuth. Our fo-
cus is on mathematical techniques of analysis, though, whereas Knuth’s books
are broad and encyclopedic in scope, with properties of algorithms playing a
primary role and methods of analysis a secondary role. Ļis book can serve as
basic preparation for the advanced results covered and referred to in Knuth’s
books. We also cover approaches and results in the analysis of algorithms that
have been developed since publication of Knuth’s books.

We also strive to keep the focus on covering algorithms of fundamen-
tal importance and interest, such as those described in Sedgewick’s Algorithms
(now in its fourth edition, coauthored by K. Wayne). Ļat book surveys classic
algorithms for sorting and searching, and for processing graphs and strings.
Our emphasis is on mathematics needed to support scientiŀc studies that can
serve as the basis of predicting performance of such algorithms and for com-
paring different algorithms on the basis of performance.

Cormen, Leiserson, Rivest, and Stein’s Introduction to Algorithms has
emerged as the standard textbook that provides access to the research litera-
ture on algorithm design. Ļe book (and related literature) focuses on design
and the theory of algorithms, usually on the basis of worst-case performance
bounds. In this book, we complement this approach by focusing on the anal-
ysis of algorithms, especially on techniques that can be used as the basis for
scientiŀc studies (as opposed to theoretical studies). Chapter 1 is devoted
entirely to developing this context.
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Ļis book also lays the groundwork for our Analytic Combinatorics, a
general treatment that places the material here in a broader perspective and
develops advanced methods and models that can serve as the basis for new
research, not only in the analysis of algorithms but also in combinatorics and
scientiŀc applications more broadly. A higher level of mathematical matu-
rity is assumed for that volume, perhaps at the senior or beginning graduate
student level. Of course, careful study of this book is adequate preparation.
It certainly has been our goal to make it sufficiently interesting that some
readers will be inspired to tackle more advanced material!
How to use this book. Readers of this book are likely to have rather diverse
backgrounds in discrete mathematics and computer science. With this in
mind, it is useful to be aware of the implicit structure of the book: nine chap-
ters in all, an introductory chapter followed by four chapters emphasizing
mathematical methods, then four chapters emphasizing combinatorial struc-
tures with applications in the analysis of algorithms, as follows:

ANALYSIS OF ALGORITHMS

RECURRENCE RELATIONS

GENERATING FUNCTIONS

ASYMPTOTIC APPROXIMATIONS

ANALYTIC COMBINATORICS

TREES

PERMUTATIONS

STRINGS AND TRIES

WORDS AND MAPPINGS

INTRODUCTION

 

DISCRETE MATHEMATICAL METHODS

ALGORITHMS AND COMBINATORIAL STRUCTURES

ONE

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

Chapter 1 puts the material in the book into perspective, and will help all
readers understand the basic objectives of the book and the role of the re-
maining chapters in meeting those objectives. Chapters 2 through 4 cover
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methods from classical discrete mathematics, with a primary focus on devel-
oping basic concepts and techniques. Ļey set the stage for Chapter 5, which
is pivotal, as it covers analytic combinatorics, a calculus for the study of large
discrete structures that has emerged from these classical methods to help solve
the modern problems that now face researchers because of the emergence of
computers and computational models. Chapters 6 through 9 move the fo-
cus back toward computer science, as they cover properties of combinatorial
structures, their relationships to fundamental algorithms, and analytic results.

Ļough the book is intended to be self-contained, this structure sup-
ports differences in emphasis when teaching the material, depending on the
background and experience of students and instructor. One approach, more
mathematically oriented, would be to emphasize the theorems and proofs in
the ŀrst part of the book, with applications drawn from Chapters 6 through 9.
Another approach, more oriented towards computer science, would be to
brieły cover the major mathematical tools in Chapters 2 through 5 and em-
phasize the algorithmic material in the second half of the book. But our
primary intention is that most students should be able to learn new mate-
rial from both mathematics and computer science in an interesting context
by working carefully all the way through the book.

Supplementing the text are lists of references and several hundred ex-
ercises, to encourage readers to examine original sources and to consider the
material in the text in more depth.

Our experience in teaching this material has shown that there are nu-
merous opportunities for instructors to supplement lecture and reading ma-
terial with computation-based laboratories and homework assignments. Ļe
material covered here is an ideal framework for students to develop exper-
tise in a symbolic manipulation system such as Mathematica, MAPLE, or
SAGE. More important, the experience of validating the mathematical stud-
ies by comparing them against empirical studies is an opportunity to provide
valuable insights for students that should not be missed.

Booksite. An important feature of the book is its relationship to the booksite
aofa.cs.princeton.edu. Ļis site is freely available and contains supple-
mentary material about the analysis of algorithms, including a complete set
of lecture slides and links to related material, including similar sites for Algo-
rithms and Analytic Combinatorics. Ļese resources are suitable both for use
by any instructor teaching the material and for self-study.
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N O T E O N T H E S E C O N D E D I T I O N

IN March 2011, I was traveling with my wife Linda in a beautiful but some-
what remote area of the world. Catching up with my mail after a few days

offline, I found the shocking news that my friend and colleague Philippe had
passed away, suddenly, unexpectedly, and far too early. Unable to travel to
Paris in time for the funeral, Linda and I composed a eulogy for our dear
friend that I would now like to share with readers of this book.

Sadly, I am writing from a distant part of the world to pay my respects to my
longtime friend and colleague, Philippe Flajolet. I am very sorry not to be there
in person, but I know that there will be many opportunities to honor Philippe in
the future and expect to be fully and personally involved on these occasions.
Brilliant, creative, inquisitive, and indefatigable, yet generous and charming,
Philippe’s approach to life was contagious. He changed many lives, including
my own. As our research papers led to a survey paper, then to a monograph, then
to a book, then to two books, then to a life’s work, I learned, as many students
and collaborators around the world have learned, that working with Philippe
was based on a genuine and heartfelt camaraderie. We met and worked together
in cafes, bars, lunchrooms, and lounges all around the world. Philippe’s routine
was always the same. We would discuss something amusing that happened to one
friend or another and then get to work. After a wink, a hearty but quick laugh,
a puff of smoke, another sip of a beer, a few bites of steak frites, and a drawn
out “Well...” we could proceed to solve the problem or prove the theorem. For so
many of us, these moments are frozen in time.
Ļe world has lost a brilliant and productive mathematician. Philippe’s un-
timely passing means that many things may never be known. But his legacy is
a coterie of followers passionately devoted to Philippe and his mathematics who
will carry on. Our conferences will include a toast to him, our research will build
upon his work, our papers will include the inscription “Dedicated to the memory
of Philippe Flajolet ,” and we will teach generations to come. Dear friend, we
miss you so very much, but rest assured that your spirit will live on in our work.

Ļis second edition of our book An Introduction to the Analysis of Algorithms
was prepared with these thoughts in mind. It is dedicated to the memory of
Philippe Flajolet, and is intended to teach generations to come.

Jamestown RI, October 2012 R. S.
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N O T A T I O N

⌊x⌋ łoor function
largest integer less than or equal to x

⌈x⌉ ceiling function
smallest integer greater than or equal to x

{x} fractional part
x− ⌊x⌋

lgN binary logarithm
log2N

lnN natural logarithm
logeN(

n

k

)
binomial coefficient

number of ways to choose k out of n items[
n

k

]
Stirling number of the ŀrst kind

number of permutations of n elements that have k cycles{
n

k

}
Stirling number of the second kind

number of ways to partition n elements into k nonempty subsets

ϕ golden ratio
(1 +

√
5)/2 = 1.61803 · · ·

γ Euler’s constant
.57721 · · ·

σ Stirling’s constant√
2π = 2.50662 · · ·
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C H A P T E R O N E

A N A L Y S I S O F A L G O R I T H M S

M ATHEMATICAL studies of the properties of computer algorithms
have spanned a broad spectrum, from general complexity studies to

speciŀc analytic results. In this chapter, our intent is to provide perspective
on various approaches to studying algorithms, to place our ŀeld of study into
context among related ŀelds and to set the stage for the rest of the book.
To this end, we illustrate concepts within a fundamental and representative
problem domain: the study of sorting algorithms.

First, we will consider the general motivations for algorithmic analysis.
Why analyze an algorithm? What are the beneŀts of doing so? How can we
simplify the process? Next, we discuss the theory of algorithms and consider
as an example mergesort, an “optimal” algorithm for sorting. Following that,
we examine the major components of a full analysis for a sorting algorithm of
fundamental practical importance, quicksort. Ļis includes the study of vari-
ous improvements to the basic quicksort algorithm, as well as some examples
illustrating how the analysis can help one adjust parameters to improve per-
formance.

Ļese examples illustrate a clear need for a background in certain areas
of discrete mathematics. In Chapters 2 through 4, we introduce recurrences,
generating functions, and asymptotics—basic mathematical concepts needed
for the analysis of algorithms. In Chapter 5, we introduce the symbolic method,
a formal treatment that ties together much of this book’s content. In Chap-
ters 6 through 9, we consider basic combinatorial properties of fundamental
algorithms and data structures. Since there is a close relationship between
fundamental methods used in computer science and classical mathematical
analysis, we simultaneously consider some introductory material from both
areas in this book.

1.1 WhyAnalyze anAlgorithm? Ļere are several answers to this basic ques-
tion, depending on one’s frame of reference: the intended use of the algo-
rithm, the importance of the algorithm in relationship to others from both
practical and theoretical standpoints, the difficulty of analysis, and the accu-
racy and precision of the required answer.

Ț
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Ļe most straightforward reason for analyzing an algorithm is to dis-
cover its characteristics in order to evaluate its suitability for various appli-
cations or compare it with other algorithms for the same application. Ļe
characteristics of interest are most often the primary resources of time and
space, particularly time. Put simply, we want to know how long an imple-
mentation of a particular algorithm will run on a particular computer, and
how much space it will require. We generally strive to keep the analysis inde-
pendent of particular implementations—we concentrate instead on obtaining
results for essential characteristics of the algorithm that can be used to derive
precise estimates of true resource requirements on various actual machines.

In practice, achieving independence between an algorithm and char-
acteristics of its implementation can be difficult to arrange. Ļe quality of
the implementation and properties of compilers, machine architecture, and
other major facets of the programming environment have dramatic effects on
performance. We must be cognizant of such effects to be sure the results of
analysis are useful. On the other hand, in some cases, analysis of an algo-
rithm can help identify ways for it to take full advantage of the programming
environment.

Occasionally, some property other than time or space is of interest, and
the focus of the analysis changes accordingly. For example, an algorithm on
a mobile device might be studied to determine the effect upon battery life,
or an algorithm for a numerical problem might be studied to determine how
accurate an answer it can provide. Also, it is sometimes appropriate to address
multiple resources in the analysis. For example, an algorithm that uses a large
amount of memory may use much less time than an algorithm that gets by
with very little memory. Indeed, one prime motivation for doing a careful
analysis is to provide accurate information to help in making proper tradeoff
decisions in such situations.

Ļe term analysis of algorithms has been used to describe two quite differ-
ent general approaches to putting the study of the performance of computer
programs on a scientiŀc basis. We consider these two in turn.

Ļe ŀrst, popularized by Aho, Hopcroft, and Ullman [2] and Cormen,
Leiserson, Rivest, and Stein [6], concentrates on determining the growth of
the worst-case performance of the algorithm (an “upper bound”). A prime
goal in such analyses is to determine which algorithms are optimal in the sense
that a matching “lower bound” can be proved on the worst-case performance
of any algorithm for the same problem. We use the term theory of algorithms
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to refer to this type of analysis. It is a special case of computational complexity,
the general study of relationships between problems, algorithms, languages,
and machines. Ļe emergence of the theory of algorithms unleashed an Age
of Design where multitudes of new algorithms with ever-improving worst-
case performance bounds have been developed for multitudes of important
problems. To establish the practical utility of such algorithms, however, more
detailed analysis is needed, perhaps using the tools described in this book.

Ļe second approach to the analysis of algorithms, popularized by Knuth
[17][18][19][20][22], concentrates on precise characterizations of the best-
case, worst-case, and average-case performance of algorithms, using a method-
ology that can be reŀned to produce increasingly precise answers when de-
sired. A prime goal in such analyses is to be able to accurately predict the
performance characteristics of particular algorithms when run on particular
computers, in order to be able to predict resource usage, set parameters, and
compare algorithms. Ļis approach is scientiŀc: we build mathematical mod-
els to describe the performance of real-world algorithm implementations,
then use these models to develop hypotheses that we validate through ex-
perimentation.

We may view both these approaches as necessary stages in the design
and analysis of efficient algorithms. When faced with a new algorithm to
solve a new problem, we are interested in developing a rough idea of how
well it might be expected to perform and how it might compare to other
algorithms for the same problem, even the best possible. Ļe theory of algo-
rithms can provide this. However, so much precision is typically sacriŀced
in such an analysis that it provides little speciŀc information that would al-
low us to predict performance for an actual implementation or to properly
compare one algorithm to another. To be able to do so, we need details on
the implementation, the computer to be used, and, as we see in this book,
mathematical properties of the structures manipulated by the algorithm. Ļe
theory of algorithms may be viewed as the ŀrst step in an ongoing process of
developing a more reŀned, more accurate analysis; we prefer to use the term
analysis of algorithms to refer to the whole process, with the goal of providing
answers with as much accuracy as necessary.

Ļe analysis of an algorithm can help us understand it better, and can
suggest informed improvements. Ļe more complicated the algorithm, the
more difficult the analysis. But it is not unusual for an algorithm to become
simpler and more elegant during the analysis process. More important, the
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careful scrutiny required for proper analysis often leads to better and more ef-
ŀcient implementation on particular computers. Analysis requires a far more
complete understanding of an algorithm that can inform the process of pro-
ducing a working implementation. Indeed, when the results of analytic and
empirical studies agree, we become strongly convinced of the validity of the
algorithm as well as of the correctness of the process of analysis.

Some algorithms are worth analyzing because their analyses can add to
the body of mathematical tools available. Such algorithms may be of limited
practical interest but may have properties similar to algorithms of practical
interest so that understanding them may help to understand more important
methods in the future. Other algorithms (some of intense practical inter-
est, some of little or no such value) have a complex performance structure
with properties of independent mathematical interest. Ļe dynamic element
brought to combinatorial problems by the analysis of algorithms leads to chal-
lenging, interesting mathematical problems that extend the reach of classical
combinatorics to help shed light on properties of computer programs.

To bring these ideas into clearer focus, we next consider in detail some
classical results ŀrst from the viewpoint of the theory of algorithms and then
from the scientiŀc viewpoint that we develop in this book. As a running
example to illustrate the different perspectives, we study sorting algorithms,
which rearrange a list to put it in numerical, alphabetic, or other order. Sort-
ing is an important practical problem that remains the object of widespread
study because it plays a central role in many applications.

1.2 Ļeory of Algorithms. Ļe prime goal of the theory of algorithms
is to classify algorithms according to their performance characteristics. Ļe
following mathematical notations are convenient for doing so:
Deŀnition Given a function f(N),

O(f(N)) denotes the set of all g(N) such that |g(N)/f(N)| is bounded
from above as N →∞.


(f(N)) denotes the set of all g(N) such that |g(N)/f(N)| is bounded
from below by a (strictly) positive number as N →∞.

�(f(N)) denotes the set of all g(N) such that |g(N)/f(N)| is bounded
from both above and below as N →∞.

Ļese notations, adapted from classical analysis, were advocated for use in
the analysis of algorithms in a paper by Knuth in 1976 [21]. Ļey have come
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into widespread use for making mathematical statements about bounds on
the performance of algorithms. Ļe O-notation provides a way to express an
upper bound; the 
-notation provides a way to express a lower bound; and
the �-notation provides a way to express matching upper and lower bounds.

In mathematics, the most common use of the O-notation is in the con-
text of asymptotic series. We will consider this usage in detail in Chapter 4.
In the theory of algorithms, the O-notation is typically used for three pur-
poses: to hide constants that might be irrelevant or inconvenient to compute,
to express a relatively small “error” term in an expression describing the run-
ning time of an algorithm, and to bound the worst case. Nowadays, the 
-
and�- notations are directly associated with the theory of algorithms, though
similar notations are used in mathematics (see [21]).

Since constant factors are being ignored, derivation of mathematical re-
sults using these notations is simpler than if more precise answers are sought.
For example, both the “natural” logarithm lnN ≡ logeN and the “binary”
logarithm lgN ≡ log2N often arise, but they are related by a constant factor,
so we can refer to either as being O(logN) if we are not interested in more
precision. More to the point, we might say that the running time of an al-
gorithm is �(N logN) seconds just based on an analysis of the frequency of
execution of fundamental operations and an assumption that each operation
takes a constant number of seconds on a given computer, without working
out the precise value of the constant.
Exercise 1.1 Show that f(N) = N lgN +O(N) implies that f(N) = Θ(N logN).

As an illustration of the use of these notations to study the performance
characteristics of algorithms, we consider methods for sorting a set of num-
bers in an array. Ļe input is the numbers in the array, in arbitrary and un-
known order; the output is the same numbers in the array, rearranged in as-
cending order. Ļis is a well-studied and fundamental problem: we will con-
sider an algorithm for solving it, then show that algorithm to be “optimal” in
a precise technical sense.

First, we will show that it is possible to solve the sorting problem ef-
ŀciently, using a well-known recursive algorithm called mergesort. Merge-
sort and nearly all of the algorithms treated in this book are described in
detail in Sedgewick and Wayne [30], so we give only a brief description here.
Readers interested in further details on variants of the algorithms, implemen-
tations, and applications are also encouraged to consult the books by Cor-
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men, Leiserson, Rivest, and Stein [6], Gonnet and Baeza-Yates [11], Knuth
[17][18][19][20], Sedgewick [26], and other sources.

Mergesort divides the array in the middle, sorts the two halves (recur-
sively), and then merges the resulting sorted halves together to produce the
sorted result, as shown in the Java implementation in Program 1.1. Merge-
sort is prototypical of the well-known divide-and-conquer algorithm design
paradigm, where a problem is solved by (recursively) solving smaller sub-
problems and using the solutions to solve the original problem. We will an-
alyze a number of such algorithms in this book. Ļe recursive structure of
algorithms like mergesort leads immediately to mathematical descriptions of
their performance characteristics.

To accomplish the merge, Program 1.1 uses two auxiliary arrays b and
c to hold the subarrays (for the sake of efficiency, it is best to declare these
arrays external to the recursive method). Invoking this method with the call
mergesort(0, N-1) will sort the array a[0...N-1]. After the recursive

private void mergesort(int[] a, int lo, int hi)
{

if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
mergesort(a, lo, mid);
mergesort(a, mid + 1, hi);
for (int k = lo; k <= mid; k++)

b[k-lo] = a[k];
for (int k = mid+1; k <= hi; k++)

c[k-mid-1] = a[k];
b[mid-lo+1] = INFTY; c[hi - mid] = INFTY;
int i = 0, j = 0;
for (int k = lo; k <= hi; k++)

if (c[j] < b[i]) a[k] = c[j++];
else a[k] = b[i++];

}

Program 1.1 Mergesort
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calls, the two halves of the array are sorted. Ļen we move the ŀrst half of
a[] to an auxiliary array b[] and the second half of a[] to another auxiliary
array c[]. We add a “sentinel” INFTY that is assumed to be larger than all
the elements to the end of each of the auxiliary arrays, to help accomplish the
task of moving the remainder of one of the auxiliary arrays back to a after the
other one has been exhausted. With these preparations, the merge is easily
accomplished: for each k, move the smaller of the elements b[i] and c[j]
to a[k], then increment k and i or j accordingly.
Exercise 1.2 In some situations, deŀning a sentinel value may be inconvenient or
impractical. Implement a mergesort that avoids doing so (see Sedgewick [26] for
various strategies).
Exercise 1.3 Implement a mergesort that divides the array into three equal parts,
sorts them, and does a three-way merge. Empirically compare its running time with
standard mergesort.

In the present context, mergesort is signiŀcant because it is guaranteed
to be as efficient as any sorting method can be. To make this claim more
precise, we begin by analyzing the dominant factor in the running time of
mergesort, the number of compares that it uses.
Ļeorem 1.1 (Mergesort compares). Mergesort usesN lgN +O(N) com-
pares to sort an array of N elements.
Proof. If CN is the number of compares that the Program 1.1 uses to sort N
elements, then the number of compares to sort the ŀrst half is C⌊N/2⌋, the
number of compares to sort the second half is C⌈N/2⌉, and the number of
compares for the merge is N (one for each value of the index k). In other
words, the number of compares for mergesort is precisely described by the
recurrence relation

CN = C⌊N/2⌋ + C⌈N/2⌉ +N for N ≥ 2 with C1 = 0. (1)

To get an indication for the nature of the solution to this recurrence, we con-
sider the case when N is a power of 2:

C2n = 2C2n−1 + 2n for n ≥ 1 with C1 = 0.

Dividing both sides of this equation by 2n, we ŀnd that
C2n

2n
=
C2n−1

2n−1 + 1 =
C2n−2

2n−2 + 2 =
C2n−3

2n−3 + 3 = . . . =
C20

20 + n = n.
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Ļis proves that CN = N lgN when N = 2n; the theorem for general
N follows from (1) by induction. Ļe exact solution turns out to be rather
complicated, depending on properties of the binary representation of N . In
Chapter 2 we will examine how to solve such recurrences in detail.

Exercise 1.4 Develop a recurrence describing the quantity CN+1 −CN and use this
to prove that

CN =
∑

1≤k<N

(⌊lgk⌋+ 2).

Exercise 1.5 Prove that CN = N⌈lgN⌉+N − 2⌈lgN⌉.
Exercise 1.6 Analyze the number of compares used by the three-way mergesort pro-
posed in Exercise 1.2.

For most computers, the relative costs of the elementary operations used
Program 1.1 will be related by a constant factor, as they are all integer mul-
tiples of the cost of a basic instruction cycle. Furthermore, the total running
time of the program will be within a constant factor of the number of com-
pares. Ļerefore, a reasonable hypothesis is that the running time of merge-
sort will be within a constant factor of N lgN .

From a theoretical standpoint, mergesort demonstrates that N logN is
an “upper bound” on the intrinsic difficulty of the sorting problem:

Ļere exists an algorithm that can sort any
N-element ŀle in time proportional toN logN .

A full proof of this requires a careful model of the computer to be used in terms
of the operations involved and the time they take, but the result holds under
rather generous assumptions. We say that the “time complexity of sorting is
O(N logN).”
Exercise 1.7 Assume that the running time of mergesort is cN lgN + dN , where c
and d are machine-dependent constants. Show that if we implement the program on
a particular machine and observe a running time tN for some value of N , then we
can accurately estimate the running time for 2N by 2tN (1 + 1/lgN), independent of
the machine.
Exercise 1.8 Implement mergesort on one or more computers, observe the running
time forN = 1,000,000, and predict the running time forN = 10,000,000 as in the
previous exercise. Ļen observe the running time for N = 10,000,000 and calculate
the percentage accuracy of the prediction.
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Ļe running time of mergesort as implemented here depends only on
the number of elements in the array being sorted, not on the way they are
arranged. For many other sorting methods, the running time may vary sub-
stantially as a function of the initial ordering of the input. Typically, in the
theory of algorithms, we are most interested in worst-case performance, since
it can provide a guarantee on the performance characteristics of the algorithm
no matter what the input is; in the analysis of particular algorithms, we are
most interested in average-case performance for a reasonable input model,
since that can provide a path to predict performance on “typical” input.

We always seek better algorithms, and a natural question that arises is
whether there might be a sorting algorithm with asymptotically better per-
formance than mergesort. Ļe following classical result from the theory of
algorithms says, in essence, that there is not.
Ļeorem 1.2 (Complexity of sorting). Every compare-based sorting pro-
gram uses at least ⌈lgN !⌉ > N lgN −N/(ln2) compares for some input.
Proof. A full proof of this fact may be found in [30] or [19]. Intuitively the
result follows from the observation that each compare can cut down the num-
ber of possible arrangements of the elements to be considered by, at most, only
a factor of 2. Since there are N ! possible arrangements before the sort and
the goal is to have just one possible arrangement (the sorted one) after the
sort, the number of compares must be at least the number of timesN ! can be
divided by 2 before reaching a number less than unity—that is, ⌈lgN !⌉. Ļe
theorem follows from Stirling’s approximation to the factorial function (see
the second corollary to Ļeorem 4.3).

From a theoretical standpoint, this result demonstrates that N logN is
a “lower bound” on the intrinsic difficulty of the sorting problem:

All compare-based sorting algorithms require time
proportional toN logN to sort some N-element input ŀle.

Ļis is a general statement about an entire class of algorithms. We say that
the “time complexity of sorting is 
(N logN).” Ļis lower bound is sig-
niŀcant because it matches the upper bound of Ļeorem 1.1, thus showing
that mergesort is optimal in the sense that no algorithm can have a better
asymptotic running time. We say that the “time complexity of sorting is
�(N logN).” From a theoretical standpoint, this completes the “solution” of
the sorting “problem:” matching upper and lower bounds have been proved.
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Again, these results hold under rather generous assumptions, though
they are perhaps not as general as it might seem. For example, the results say
nothing about sorting algorithms that do not use compares. Indeed, there
exist sorting methods based on index calculation techniques (such as those
discussed in Chapter 9) that run in linear time on average.
Exercise 1.9 Suppose that it is known that each of the items in an N-item array has
one of two distinct values. Give a sorting method that takes time proportional to N .
Exercise 1.10 Answer the previous exercise for three distinct values.

We have omitted many details that relate to proper modeling of comput-
ers and programs in the proofs of Ļeorem 1.1 and Ļeorem 1.2. Ļe essence
of the theory of algorithms is the development of complete models within
which the intrinsic difficulty of important problems can be assessed and “ef-
ŀcient” algorithms representing upper bounds matching these lower bounds
can be developed. For many important problem domains there is still a sig-
niŀcant gap between the lower and upper bounds on asymptotic worst-case
performance. Ļe theory of algorithms provides guidance in the development
of new algorithms for such problems. We want algorithms that can lower
known upper bounds, but there is no point in searching for an algorithm that
performs better than known lower bounds (except perhaps by looking for one
that violates conditions of the model upon which a lower bound is based!).

Ļus, the theory of algorithms provides a way to classify algorithms
according to their asymptotic performance. However, the very process of
approximate analysis (“within a constant factor”) that extends the applicability
of theoretical results often limits our ability to accurately predict the perfor-
mance characteristics of any particular algorithm. More important, the theory
of algorithms is usually based on worst-case analysis, which can be overly pes-
simistic and not as helpful in predicting actual performance as an average-case
analysis. Ļis is not relevant for algorithms like mergesort (where the running
time is not so dependent on the input), but average-case analysis can help us
discover that nonoptimal algorithms are sometimes faster in practice, as we
will see. Ļe theory of algorithms can help us to identify good algorithms,
but then it is of interest to reŀne the analysis to be able to more intelligently
compare and improve them. To do so, we need precise knowledge about the
performance characteristics of the particular computer being used and math-
ematical techniques for accurately determining the frequency of execution of
fundamental operations. In this book, we concentrate on such techniques.
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1.3 Analysis of Algorithms. Ļough the analysis of sorting and merge-
sort that we considered in §1.2 demonstrates the intrinsic “difficulty” of the
sorting problem, there are many important questions related to sorting (and
to mergesort) that it does not address at all. How long might an implemen-
tation of mergesort be expected to run on a particular computer? How might
its running time compare to other O(N logN) methods? (Ļere are many.)
How does it compare to sorting methods that are fast on average, but per-
haps not in the worst case? How does it compare to sorting methods that are
not based on compares among elements? To answer such questions, a more
detailed analysis is required. In this section we brieły describe the process of
doing such an analysis.

To analyze an algorithm, we must ŀrst identify the resources of primary
interest so that the detailed analysis may be properly focused. We describe the
process in terms of studying the running time since it is the resource most rel-
evant here. A complete analysis of the running time of an algorithm involves
the following steps:
• Implement the algorithm completely.
• Determine the time required for each basic operation.
• Identify unknown quantities that can be used to describe the frequency

of execution of the basic operations.
• Develop a realistic model for the input to the program.
• Analyze the unknown quantities, assuming the modeled input.
• Calculate the total running time by multiplying the time by the fre-

quency for each operation, then adding all the products.
Ļe ŀrst step in the analysis is to carefully implement the algorithm on a
particular computer. We reserve the term program to describe such an imple-
mentation. One algorithm corresponds to many programs. A particular im-
plementation not only provides a concrete object to study, but also can give
useful empirical data to aid in or to check the analysis. Presumably the im-
plementation is designed to make efficient use of resources, but it is a mistake
to overemphasize efficiency too early in the process. Indeed, a primary appli-
cation for the analysis is to provide informed guidance toward better imple-
mentations.

Ļe next step is to estimate the time required by each component in-
struction of the program. In principle and in practice, we can often do so
with great precision, but the process is very dependent on the characteristics
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of the computer system being studied. Another approach is to simply run
the program for small input sizes to “estimate” the values of the constants, or
to do so indirectly in the aggregate, as described in Exercise 1.7. We do not
consider this process in detail; rather we focus on the “machine-independent”
parts of the analysis in this book.

Indeed, to determine the total running time of the program, it is neces-
sary to study the branching structure of the program in order to express the
frequency of execution of the component instructions in terms of unknown
mathematical quantities. If the values of these quantities are known, then we
can derive the running time of the entire program simply by multiplying the
frequency and time requirements of each component instruction and adding
these products. Many programming environments have tools that can sim-
plify this task. At the ŀrst level of analysis, we concentrate on quantities that
have large frequency values or that correspond to large costs; in principle the
analysis can be reŀned to produce a fully detailed answer. We often refer
to the “cost” of an algorithm as shorthand for the “value of the quantity in
question” when the context allows.

Ļe next step is to model the input to the program, to form a basis for
the mathematical analysis of the instruction frequencies. Ļe values of the
unknown frequencies are dependent on the input to the algorithm: the prob-
lem size (usually we name thatN ) is normally the primary parameter used to
express our results, but the order or value of input data items ordinarily af-
fects the running time as well. By “model,” we mean a precise description of
typical inputs to the algorithm. For example, for sorting algorithms, it is nor-
mally convenient to assume that the inputs are randomly ordered and distinct,
though the programs normally work even when the inputs are not distinct.
Another possibility for sorting algorithms is to assume that the inputs are
random numbers taken from a relatively large range. Ļese two models can
be shown to be nearly equivalent. Most often, we use the simplest available
model of “random” inputs, which is often realistic. Several different models
can be used for the same algorithm: one model might be chosen to make the
analysis as simple as possible; another model might better rełect the actual
situation in which the program is to be used.

Ļe last step is to analyze the unknown quantities, assuming the mod-
eled input. For average-case analysis, we analyze the quantities individually,
then multiply the averages by instruction times and add them to ŀnd the run-
ning time of the whole program. For worst-case analysis, it is usually difficult
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to get an exact result for the whole program, so we can only derive an upper
bound, by multiplying worst-case values of the individual quantities by in-
struction times and summing the results.

Ļis general scenario can successfully provide exact models in many sit-
uations. Knuth’s books [17][18][19][20] are based on this precept. Unfortu-
nately, the details in such an exact analysis are often daunting. Accordingly,
we typically seek approximate models that we can use to estimate costs.

Ļe ŀrst reason to approximate is that determining the cost details of all
individual operations can be daunting in the context of the complex architec-
tures and operating systems on modern computers. Accordingly, we typically
study just a few quantities in the “inner loop” of our programs, implicitly
hypothesizing that total cost is well estimated by analyzing just those quan-
tities. Experienced programmers regularly “proŀle” their implementations to
identify “bottlenecks,” which is a systematic way to identify such quantities.
For example, we typically analyze compare-based sorting algorithms by just
counting compares. Such an approach has the important side beneŀt that it
is machine independent. Carefully analyzing the number of compares used by
a sorting algorithm can enable us to predict performance on many different
computers. Associated hypotheses are easily tested by experimentation, and
we can reŀne them, in principle, when appropriate. For example, we might
reŀne comparison-based models for sorting to include data movement, which
may require taking caching effects into account.

Exercise 1.11 Run experiments on two different computers to test the hypothesis
that the running time of mergesort divided by the number of compares that it uses
approaches a constant as the problem size increases.

Approximation is also effective for mathematical models. Ļe second
reason to approximate is to avoid unnecessary complications in the mathe-
matical formulae that we develop to describe the performance of algorithms.
A major theme of this book is the development of classical approximation
methods for this purpose, and we shall consider many examples. Beyond
these, a major thrust of modern research in the analysis of algorithms is meth-
ods of developing mathematical analyses that are simple, sufficiently precise
that they can be used to accurately predict performance and to compare algo-
rithms, and able to be reŀned, in principle, to the precision needed for the
application at hand. Such techniques primarily involve complex analysis and
are fully developed in our book [10].
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1.4 Average-Case Analysis. Ļe mathematical techniques that we con-
sider in this book are not just applicable to solving problems related to the
performance of algorithms, but also to mathematical models for all manner
of scientiŀc applications, from genomics to statistical physics. Accordingly,
we often consider structures and techniques that are broadly applicable. Still,
our prime motivation is to consider mathematical tools that we need in or-
der to be able to make precise statements about resource usage of important
algorithms in practical applications.

Our focus is on average-case analysis of algorithms: we formulate a rea-
sonable input model and analyze the expected running time of a program
given an input drawn from that model. Ļis approach is effective for two
primary reasons.

Ļe ŀrst reason that average-case analysis is important and effective in
modern applications is that straightforward models of randomness are often
extremely accurate. Ļe following are just a few representative examples from
sorting applications:
• Sorting is a fundamental process in cryptanalysis, where the adversary has

gone to great lengths to make the data indistinguishable from random
data.

• Commercial data processing systems routinely sort huge ŀles where keys
typically are account numbers or other identiŀcation numbers that are
well modeled by uniformly random numbers in an appropriate range.

• Implementations of computer networks depend on sorts that again involve
keys that are well modeled by random ones.

• Sorting is widely used in computational biology, where signiŀcant devi-
ations from randomness are cause for further investigation by scientists
trying to understand fundamental biological and physical processes.

As these examples indicate, simple models of randomness are effective, not
just for sorting applications, but also for a wide variety of uses of fundamental
algorithms in practice. Broadly speaking, when large data sets are created by
humans, they typically are based on arbitrary choices that are well modeled
by random ones. Random models also are often effective when working with
scientiŀc data. We might interpret Einstein’s oft-repeated admonition that
“God does not play dice” in this context as meaning that random models are
effective, because if we discover signiŀcant deviations from randomness, we
have learned something signiŀcant about the natural world.
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Ļe second reason that average-case analysis is important and effective
in modern applications is that we can often manage to inject randomness
into a problem instance so that it appears to the algorithm (and to the ana-
lyst) to be random. Ļis is an effective approach to developing efficient algo-
rithms with predictable performance, which are known as randomized algo-
rithms. M. O. Rabin [25] was among the ŀrst to articulate this approach, and
it has been developed by many other researchers in the years since. Ļe book
by Motwani and Raghavan [23] is a thorough introduction to the topic.

Ļus, we begin by analyzing random models, and we typically start with
the challenge of computing the mean—the average value of some quantity
of interest for N instances drawn at random. Now, elementary probability
theory gives a number of different (though closely related) ways to compute
the average value of a quantity. In this book, it will be convenient for us to
explicitly identify two different approaches to doing so.
Distributional. Let �N be the number of possible inputs of sizeN and �Nk

be the number of inputs of size N that cause the algorithm to have cost k, so
that �N =

∑
k �Nk. Ļen the probability that the cost is k is �Nk/�N and

the expected cost is
1

�N

∑
k

k�Nk.

Ļe analysis depends on “counting.” How many inputs are there of size N
and how many inputs of size N cause the algorithm to have cost k? Ļese
are the steps to compute the probability that the cost is k, so this approach is
perhaps the most direct from elementary probability theory.
Cumulative. Let �N be the total (or cumulated) cost of the algorithm on
all inputs of size N . (Ļat is, �N =

∑
k k�Nk, but the point is that it is

not necessary to compute �N in that way.) Ļen the average cost is simply
�N/�N . Ļe analysis depends on a less speciŀc counting problem: what is
the total cost of the algorithm, on all inputs? We will be using general tools
that make this approach very attractive.

Ļe distributional approach gives complete information, which can be
used directly to compute the standard deviation and other moments. Indi-
rect (often simpler) methods are also available for computing moments when
using the cumulative approach, as we will see. In this book, we consider
both approaches, though our tendency will be toward the cumulative method,
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which ultimately allows us to consider the analysis of algorithms in terms of
combinatorial properties of basic data structures.

Many algorithms solve a problem by recursively solving smaller sub-
problems and are thus amenable to the derivation of a recurrence relationship
that the average cost or the total cost must satisfy. A direct derivation of a
recurrence from the algorithm is often a natural way to proceed, as shown in
the example in the next section.

No matter how they are derived, we are interested in average-case results
because, in the large number of situations where random input is a reasonable
model, an accurate analysis can help us:
• Compare different algorithms for the same task.
• Predict time and space requirements for speciŀc applications.
• Compare different computers that are to run the same algorithm.
• Adjust algorithm parameters to optimize performance.

Ļe average-case results can be compared with empirical data to validate the
implementation, the model, and the analysis. Ļe end goal is to gain enough
conŀdence in these that they can be used to predict how the algorithm will
perform under whatever circumstances present themselves in particular appli-
cations. If we wish to evaluate the possible impact of a new machine archi-
tecture on the performance of an important algorithm, we can do so through
analysis, perhaps before the new architecture comes into existence. Ļe suc-
cess of this approach has been validated over the past several decades: the
sorting algorithms that we consider in the section were ŀrst analyzed more
than 50 years ago, and those analytic results are still useful in helping us eval-
uate their performance on today’s computers.
1.5 Example: Analysis of Quicksort. To illustrate the basic method just
sketched, we examine next a particular algorithm of considerable importance,
the quicksort sorting method. Ļis method was invented in 1962 by C. A. R.
Hoare, whose paper [15] is an early and outstanding example in the analysis
of algorithms. Ļe analysis is also covered in great detail in Sedgewick [27]
(see also [29]); we give highlights here. It is worthwhile to study this analysis
in detail not just because this sorting method is widely used and the analytic
results are directly relevant to practice, but also because the analysis itself is
illustrative of many things that we will encounter later in the book. In partic-
ular, it turns out that the same analysis applies to the study of basic properties
of tree structures, which are of broad interest and applicability. More gen-
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erally, our analysis of quicksort is indicative of how we go about analyzing a
broad class of recursive programs.

Program 1.2 is an implementation of quicksort in Java. It is a recursive
program that sorts the numbers in an array by partitioning it into two inde-
pendent (smaller) parts, then sorting those parts. Obviously, the recursion
should terminate when empty subarrays are encountered, but our implemen-
tation also stops with subarrays of size 1. Ļis detail might seem inconse-
quential at ŀrst blush, but, as we will see, the very nature of recursion ensures
that the program will be used for a large number of small ŀles, and substantial
performance gains can be achieved with simple improvements of this sort.

Ļe partitioning process puts the element that was in the last position
in the array (the partitioning element) into its correct position, with all smaller
elements before it and all larger elements after it. Ļe program accomplishes
this by maintaining two pointers: one scanning from the left, one from the
right. Ļe left pointer is incremented until an element larger than the parti-

private void quicksort(int[] a, int lo, int hi)
{

if (hi <= lo) return;
int i = lo-1, j = hi;
int t, v = a[hi];
while (true)
{

while (a[++i] < v) ;
while (v < a[--j]) if (j == lo) break;
if (i >= j) break;
t = a[i]; a[i] = a[j]; a[j] = t;

}
t = a[i]; a[i] = a[hi]; a[hi] = t;
quicksort(a, lo, i-1);
quicksort(a, i+1, hi);

}

Program 1.2 Quicksort
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tioning element is found; the right pointer is decremented until an element
smaller than the partitioning element is found. Ļese two elements are ex-
changed, and the process continues until the pointers meet, which deŀnes
where the partitioning element is put. After partitioning, the program ex-
changes a[i] with a[hi] to put the partitioning element into position. Ļe
call quicksort(a, 0, N-1) will sort the array.

Ļere are several ways to implement the general recursive strategy just
outlined; the implementation described above is taken from Sedgewick and
Wayne [30] (see also [27]). For the purposes of analysis, we will be assuming
that the array a contains randomly ordered, distinct numbers, but note that
this code works properly for all inputs, including equal numbers. It is also
possible to study this program under perhaps more realistic models allowing
equal numbers (see [28]), long string keys (see [4]), and many other situations.

Once we have an implementation, the ŀrst step in the analysis is to
estimate the resource requirements of individual instructions for this program.
Ļis depends on characteristics of a particular computer, so we sketch the
details. For example, the “inner loop” instruction

while (a[++i] < v) ;

might translate, on a typical computer, to assembly language instructions such
as the following:

LOOP INC I,1 # increment i
CMP V,A(I) # compare v with A(i)
BL LOOP # branch if less

To start, we might say that one iteration of this loop might require four time
units (one for each memory reference). On modern computers, the precise
costs are more complicated to evaluate because of caching, pipelines, and
other effects. Ļe other instruction in the inner loop (that decrements j)
is similar, but involves an extra test of whether j goes out of bounds. Since
this extra test can be removed via sentinels (see [26]), we will ignore the extra
complication it presents.

Ļe next step in the analysis is to assign variable names to the frequency
of execution of the instructions in the program. Normally there are only a few
true variables involved: the frequencies of execution of all the instructions can
be expressed in terms of these few. Also, it is desirable to relate the variables to
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the algorithm itself, not any particular program. For quicksort, three natural
quantities are involved:

A – the number of partitioning stages
B – the number of exchanges
C – the number of compares

On a typical computer, the total running time of quicksort might be expressed
with a formula, such as

4C + 11B + 35A. (2)

Ļe exact values of these coefficients depend on the machine language pro-
gram produced by the compiler as well as the properties of the machine being
used; the values given above are typical. Such expressions are quite useful in
comparing different algorithms implemented on the same machine. Indeed,
the reason that quicksort is of practical interest even though mergesort is “op-
timal” is that the cost per compare (the coefficient of C) is likely to be sig-
niŀcantly lower for quicksort than for mergesort, which leads to signiŀcantly
shorter running times in typical practical applications.

Ļeorem 1.3 (Quicksort analysis). Quicksort uses, on the average,

(N − 1)/2 partitioning stages,

2(N + 1) (HN+1 − 3/2) ≈ 2N lnN − 1.846N compares, and
(N + 1) (HN+1 − 3) /3 + 1 ≈ .333N lnN − .865N exchanges

to sort an array of N randomly ordered distinct elements.

Proof. Ļe exact answers here are expressed in terms of the harmonic numbers

HN =
∑

1≤k≤N

1/k,

the ŀrst of many well-known “special” number sequences that we will encoun-
ter in the analysis of algorithms.

As with mergesort, the analysis of quicksort involves deŀning and solv-
ing recurrence relations that mirror directly the recursive nature of the al-
gorithm. But, in this case, the recurrences must be based on probabilistic
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statements about the inputs. If CN is the average number of compares to sort
N elements, we have C0 = C1 = 0 and

CN = N + 1 +
1

N

∑
1≤j≤N

(Cj−1 + CN−j), for N > 1. (3)

To get the total average number of compares, we add the number of compares
for the ŀrst partitioning stage (N+1) to the number of compares used for the
subarrays after partitioning. When the partitioning element is the jth largest
(which occurs with probability 1/N for each 1 ≤ j ≤ N ), the subarrays after
partitioning are of size j − 1 and N − j.

Now the analysis has been reduced to a mathematical problem (3) that
does not depend on properties of the program or the algorithm. Ļis recur-
rence relation is somewhat more complicated than (1) because the right-hand
side depends directly on the history of all the previous values, not just a few.
Still, (3) is not difficult to solve: ŀrst change j to N − j + 1 in the second
part of the sum to get

CN = N + 1 +
2

N

∑
1≤j≤N

Cj−1 for N > 0.

Ļen multiply byN and subtract the same formula forN−1 to eliminate the
sum:

NCN − (N − 1)CN−1 = 2N + 2CN−1 for N > 1.

Now rearrange terms to get a simple recurrence

NCN = (N + 1)CN−1 + 2N for N > 1.

Ļis can be solved by dividing both sides by N(N + 1):

CN

N + 1
=
CN−1
N

+
2

N + 1
for N > 1.

Iterating, we are left with the sum

CN

N + 1
=
C1
2

+ 2
∑

3≤k≤N+1
1/k
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which completes the proof, since C1 = 0.
As implemented earlier, every element is used for partitioning exactly

once, so the number of stages is always N ; the average number of exchanges
can be found from these results by ŀrst calculating the average number of
exchanges on the ŀrst partitioning stage.

Ļe stated approximations follow from the well-known approximation
to the harmonic number HN ≈ lnN + .57721 · · · . We consider such ap-
proximations below and in detail in Chapter 4.

Exercise 1.12 Give the recurrence for the total number of compares used by quicksort
on all N ! permutations of N elements.

Exercise 1.13 Prove that the subarrays left after partitioning a random permutation
are themselves both random permutations. Ļen prove that this is not the case if, for
example, the right pointer is initialized at j:=r+1 for partitioning.

Exercise 1.14 Follow through the steps above to solve the recurrence

AN = 1 +
2

N

∑
1≤j≤N

Aj−1 for N > 0.
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2N lnN
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Black dot: mean for 100 experiments 
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Figure 1.1 Quicksort compare counts: empirical and analytic
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Exercise 1.15 Show that the average number of exchanges used during the ŀrst par-
titioning stage (before the pointers cross) is (N − 2)/6. (Ļus, by linearity of the
recurrences, BN = 1

6CN − 1
2AN .)

Figure 1.1 shows how the analytic result of Ļeorem 1.3 compares to
empirical results computed by generating random inputs to the program and
counting the compares used. Ļe empirical results (100 trials for each value
of N shown) are depicted with a gray dot for each experiment and a black
dot at the mean for each N . Ļe analytic result is a smooth curve ŀtting the
formula given in Ļeorem 1.3. As expected, the ŀt is extremely good.

Ļeorem 1.3 and (2) imply, for example, that quicksort should take
about 11.667N lnN − .601N steps to sort a random permutation of N el-
ements for the particular machine described previously, and similar formulae
for other machines can be derived through an investigation of the properties of
the machine as in the discussion preceding (2) and Ļeorem 1.3. Such formu-
lae can be used to predict (with great accuracy) the running time of quicksort
on a particular machine. More important, they can be used to evaluate and
compare variations of the algorithm and provide a quantitative testimony to
their effectiveness.

Secure in the knowledge that machine dependencies can be handled
with suitable attention to detail, we will generally concentrate on analyzing
generic algorithm-dependent quantities, such as “compares” and “exchanges,”
in this book. Not only does this keep our focus on major techniques of anal-
ysis, but it also can extend the applicability of the results. For example, a
slightly broader characterization of the sorting problem is to consider the
items to be sorted as records containing other information besides the sort
key, so that accessing a record might be much more expensive (depending on
the size of the record) than doing a compare (depending on the relative size
of records and keys). Ļen we know from Ļeorem 1.3 that quicksort com-
pares keys about 2N lnN times and moves records about .667N lnN times,
and we can compute more precise estimates of costs or compare with other
algorithms as appropriate.

Quicksort can be improved in several ways to make it the sorting method
of choice in many computing environments. We can even analyze compli-
cated improved versions and derive expressions for the average running time
that match closely observed empirical times [29]. Of course, the more intri-
cate and complicated the proposed improvement, the more intricate and com-
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plicated the analysis. Some improvements can be handled by extending the
argument given previously, but others require more powerful analytic tools.
Small subarrays. Ļe simplest variant of quicksort is based on the observation
that it is not very efficient for very small ŀles (for example, a ŀle of size 2 can
be sorted with one compare and possibly one exchange), so that a simpler
method should be used for smaller subarrays. Ļe following exercises show
how the earlier analysis can be extended to study a hybrid algorithm where
“insertion sort” (see §7.6) is used for ŀles of size less than M . Ļen, this
analysis can be used to help choose the best value of the parameter M .
Exercise 1.16 How many subarrays of size 2 or less are encountered, on the average,
when sorting a random ŀle of size N with quicksort?
Exercise 1.17 If we change the ŀrst line in the quicksort implementation above to

if r-l<=M then insertionsort(l,r) else

(see §7.6), then the total number of compares to sort N elements is described by the
recurrence

CN =


N + 1 +

1

N

∑
1≤j≤N

(Cj−1 + CN−j) for N > M ;

1
4N(N − 1) for N ≤M .

Solve this exactly as in the proof of Ļeorem 1.3.
Exercise 1.18 Ignoring small terms (those signiŀcantly less than N ) in the answer
to the previous exercise, ŀnd a function f(M) so that the number of compares is
approximately

2N lnN + f(M)N.

Plot the function f(M), and ŀnd the value of M that minimizes the function.
Exercise 1.19 As M gets larger, the number of compares increases again from the
minimum just derived. How large must M get before the number of compares ex-
ceeds the original number (at M = 0)?

Median-of-three quicksort. A natural improvement to quicksort is to use
sampling: estimate a partitioning element more likely to be near the middle
of the ŀle by taking a small sample, then using the median of the sample. For
example, if we use just three elements for the sample, then the average number
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of compares required by this “median-of-three” quicksort is described by the
recurrence

CN = N+1+
∑

1≤k≤N

(N − k)(k − 1)(N
3
) (Ck−1+CN−k) for N > 3 (4)

where
(N

3
)

is the binomial coefficient that counts the number of ways to
choose 3 out of N items. Ļis is true because the probability that the kth
smallest element is the partitioning element is now (N − k)(k − 1)/

(N
3
)

(as
opposed to 1/N for regular quicksort). We would like to be able to solve re-
currences of this nature to be able to determine how large a sample to use and
when to switch to insertion sort. However, such recurrences require more
sophisticated techniques than the simple ones used so far. In Chapters 2
and 3, we will see methods for developing precise solutions to such recur-
rences, which allow us to determine the best values for parameters such as the
sample size and the cutoff for small subarrays. Extensive studies along these
lines have led to the conclusion that median-of-three quicksort with a cutoff
point in the range 10 to 20 achieves close to optimal performance for typical
implementations.
Radix-exchange sort. Another variant of quicksort involves taking advan-
tage of the fact that the keys may be viewed as binary strings. Rather than
comparing against a key from the ŀle for partitioning, we partition the ŀle
so that all keys with a leading 0 bit precede all those with a leading 1 bit.
Ļen these subarrays can be independently subdivided in the same way using
the second bit, and so forth. Ļis variation is referred to as “radix-exchange
sort” or “radix quicksort.” How does this variation compare with the basic
algorithm? To answer this question, we ŀrst have to note that a different
mathematical model is required, since keys composed of random bits are es-
sentially different from random permutations. Ļe “random bitstring” model
is perhaps more realistic, as it rełects the actual representation, but the mod-
els can be proved to be roughly equivalent. We will discuss this issue in more
detail in Chapter 8. Using a similar argument to the one given above, we
can show that the average number of bit compares required by this method is
described by the recurrence

CN = N +
1

2N

∑
k

(
N

k

)
(Ck + CN−k) for N > 1 with C0 = C1 = 0.
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Ļis turns out to be a rather more difficult recurrence to solve than the one
given earlier—we will see in Chapter 3 how generating functions can be used
to transform the recurrence into an explicit formula for CN , and in Chapters
4 and 8, we will see how to develop an approximate solution.

One limitation to the applicability of this kind of analysis is that all of
the preceding recurrence relations depend on the “randomness preservation”
property of the algorithm: if the original ŀle is randomly ordered, it can be
shown that the subarrays after partitioning are also randomly ordered. Ļe
implementor is not so restricted, and many widely used variants of the algo-
rithm do not have this property. Such variants appear to be extremely difficult
to analyze. Fortunately (from the point of view of the analyst), empirical stud-
ies show that they also perform poorly. Ļus, though it has not been analyt-
ically quantiŀed, the requirement for randomness preservation seems to pro-
duce more elegant and efficient quicksort implementations. More important,
the versions that preserve randomness do admit to performance improve-
ments that can be fully quantiŀed mathematically, as described earlier.

Mathematical analysis has played an important role in the development
of practical variants of quicksort, and we will see that there is no shortage
of other problems to consider where detailed mathematical analysis is an
important part of the algorithm design process.

1.6 Asymptotic Approximations. Ļe derivation of the average running
time of quicksort given earlier yields an exact result, but we also gave a more
concise approximate expression in terms of well-known functions that still can
be used to compute accurate numerical estimates. As we will see, it is often
the case that an exact result is not available, or at least an approximation is far
easier to derive and interpret. Ideally, our goal in the analysis of an algorithm
should be to derive exact results; from a pragmatic point of view, it is perhaps
more in line with our general goal of being able to make useful performance
predications to strive to derive concise but precise approximate answers.

To do so, we will need to use classical techniques for manipulating such
approximations. In Chapter 4, we will examine the Euler-Maclaurin sum-
mation formula, which provides a way to estimate sums with integrals. Ļus,
we can approximate the harmonic numbers by the calculation

HN =
∑

1≤k≤N

1

k
≈
∫ N

1

1

x
dx = lnN.
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But we can be much more precise about the meaning of ≈, and we can con-
clude (for example) that HN = lnN + γ + 1/(2N) + O(1/N2) where
γ = .57721 · · · is a constant known in analysis as Euler’s constant. Ļough the
constants implicit in the O-notation are not speciŀed, this formula provides
a way to estimate the value ofHN with increasingly improving accuracy asN
increases. Moreover, if we want even better accuracy, we can derive a formula
for HN that is accurate to within O(N−3) or indeed to within O(N−k) for
any constant k. Such approximations, called asymptotic expansions, are at the
heart of the analysis of algorithms, and are the subject of Chapter 4.

Ļe use of asymptotic expansions may be viewed as a compromise be-
tween the ideal goal of providing an exact result and the practical requirement
of providing a concise approximation. It turns out that we are normally in the
situation of, on the one hand, having the ability to derive a more accurate
expression if desired, but, on the other hand, not having the desire, because
expansions with only a few terms (like the one forHN above) allow us to com-
pute answers to within several decimal places. We typically drop back to using
the ≈ notation to summarize results without naming irrational constants, as,
for example, in Ļeorem 1.3.

Moreover, exact results and asymptotic approximations are both subject
to inaccuracies inherent in the probabilistic model (usually an idealization of
reality) and to stochastic łuctuations. Table 1.1 shows exact, approximate,
and empirical values for number of compares used by quicksort on random
ŀles of various sizes. Ļe exact and approximate values are computed from
the formulae given in Ļeorem 1.3; the “empirical” is a measured average,
taken over 100 ŀles consisting of random positive integers less than 106; this
tests not only the asymptotic approximation that we have discussed, but also
the “approximation” inherent in our use of the random permutation model,
ignoring equal keys. Ļe analysis of quicksort when equal keys are present is
treated in Sedgewick [28].

Exercise 1.20 How many keys in a ŀle of 104 random integers less than 106 are likely
to be equal to some other key in the ŀle? Run simulations, or do a mathematical
analysis (with the help of a system for mathematical calculations), or do both.

Exercise 1.21 Experiment with ŀles consisting of random positive integers less than
M forM = 10,000, 1000, 100 and other values. Compare the performance of quick-
sort on such ŀles with its performance on random permutations of the same size.
Characterize situations where the random permutation model is inaccurate.
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Exercise 1.22 Discuss the idea of having a table similar to Table 1.1 for mergesort.

In the theory of algorithms, O-notation is used to suppress detail of
all sorts: the statement that mergesort requires O(N logN) compares hides
everything but the most fundamental characteristics of the algorithm, imple-
mentation, and computer. In the analysis of algorithms, asymptotic expan-
sions provide us with a controlled way to suppress irrelevant details, while
preserving the most important information, especially the constant factors
involved. Ļe most powerful and general analytic tools produce asymptotic
expansions directly, thus often providing simple direct derivations of concise
but accurate expressions describing properties of algorithms. We are some-
times able to use asymptotic estimates to provide more accurate descriptions
of program performance than might otherwise be available.

ŀle size exact solution approximate empirical

10,000 175,771 175,746 176,354
20,000 379,250 379,219 374,746
30,000 593,188 593,157 583,473
40,000 813,921 813,890 794,560
50,000 1,039,713 1,039,677 1,010,657
60,000 1,269,564 1,269,492 1,231,246
70,000 1,502,729 1,502,655 1,451,576
80,000 1,738,777 1,738,685 1,672,616
90,000 1,977,300 1,977,221 1,901,726

100,000 2,218,033 2,217,985 2,126,160

Table 1.1 Average number of compares used by quicksort
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1.7 Distributions. In general, probability theory tells us that other facts
about the distribution �Nk of costs are also relevant to our understanding
of performance characteristics of an algorithm. Fortunately, for virtually all
of the examples that we study in the analysis of algorithms, it turns out that
knowing an asymptotic estimate for the average is enough to be able to make
reliable predictions. We review a few basic ideas here. Readers not familiar
with probability theory are referred to any standard text—for example, [9].

Ļe full distribution for the number of compares used by quicksort for
smallN is shown in Figure 1.2. For each value ofN , the points CNk/N ! are
plotted: the proportion of the inputs for which quicksort uses k compares.
Each curve, being a full probability distribution, has area 1. Ļe curves move
to the right, since the average 2N lnN + O(N) increases with N . A slightly
different view of the same data is shown in Figure 1.3, where the horizontal
axes for each curve are scaled to put the mean approximately at the center and
shifted slightly to separate the curves. Ļis illustrates that the distribution
converges to a “limiting distribution.”

For many of the problems that we study in this book, not only do lim-
iting distributions like this exist, but also we are able to precisely characterize
them. For many other problems, including quicksort, that is a signiŀcant
challenge. However, it is very clear that the distribution is concentrated near

0 100 200 300 400

.1

.05

0

Figure 1.2 Distributions for compares in quicksort, 15 ≤ N ≤ 50
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the mean. Ļis is commonly the case, and it turns out that we can make pre-
cise statements to this effect, and do not need to learn more details about the
distribution.

As discussed earlier, if �N is the number of inputs of size N and �Nk

is the number of inputs of sizeN that cause the algorithm to have cost k, the
average cost is given by

µ =
∑
k

k�Nk/�N .

Ļe variance is deŀned to be

σ2 =
∑
k

(k − µ)2�Nk/�N =
∑
k

k2�Nk/�N − µ2.

Ļe standard deviation σ is the square root of the variance. Knowing the
average and standard deviation ordinarily allows us to predict performance

Figure 1.3

2N lnN − .846N

Distributions for compares in quicksort, 15 ≤ N ≤ 50
(scaled and translated to center and separate curves)
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reliably. Ļe classical analytic tool that allows this is the Chebyshev inequal-
ity: the probability that an observation will be more than c multiples of the
standard deviation away from the mean is less than 1/c2. If the standard devi-
ation is signiŀcantly smaller than the mean, then, asN gets large, an observed
value is very likely to be quite close to the mean. Ļis is often the case in the
analysis of algorithms.
Exercise 1.23 What is the standard deviation of the number of compares for the
mergesort implementation given earlier in this chapter?

Ļe standard deviation of the number of compares used by quicksort is√
(21− 2π2)/3N ≈ .6482776N

(see §3.9) so, for example, referring to Table 1.1 and taking c =
√
10 in

Chebyshev’s inequality, we conclude that there is more than a 90% chance
that the number of compares whenN = 100,000 is within 205,004 (9.2%) of
2,218,033. Such accuracy is certainly adequate for predicting performance.

AsN increases, the relative accuracy also increases: for example, the dis-
tribution becomes more localized near the peak in Figure 1.3 as N increases.
Indeed, Chebyshev’s inequality underestimates the accuracy in this situation,
as shown in Figure 1.4. Ļis ŀgure plots a histogram showing the number
of compares used by quicksort on 10,000 different random ŀles of 1000 el-
ements. Ļe shaded area shows that more than 94% of the trials fell within
one standard deviation of the mean for this experiment.

11,000 12,000 13,000 14,000 15,000 16,000

Figure 1.4 Empirical histogram for quicksort compare counts
(10,000 trials with N=1000)
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For the total running time, we can sum averages (multiplied by costs)
of individual quantities, but computing the variance is an intricate calculation
that we do not bother to do because the variance of the total is asymptotically
the same as the largest variance. Ļe fact that the standard deviation is small
relative to the average for largeN explains the observed accuracy of Table 1.1
and Figure 1.1. Cases in the analysis of algorithms where this does not happen
are rare, and we normally consider an algorithm “fully analyzed” if we have
a precise asymptotic estimate for the average cost and knowledge that the
standard deviation is asymptotically smaller.

1.8 Randomized Algorithms. Ļe analysis of the average-case perfor-
mance of quicksort depends on the input being randomly ordered. Ļis as-
sumption is not likely to be strictly valid in many practical situations. In gen-
eral, this situation rełects one of the most serious challenges in the analysis
of algorithms: the need to properly formulate models of inputs that might
appear in practice.

Fortunately, there is often a way to circumvent this difficulty: “random-
ize” the inputs before using the algorithm. For sorting algorithms, this simply
amounts to randomly permuting the input ŀle before the sort. (See Chapter 7
for a speciŀc implementation of an algorithm for this purpose.) If this is done,
then probabilistic statements about performance such as those made earlier
are completely valid and will accurately predict performance in practice, no
matter what the input.

Often, it is possible to achieve the same result with less work, by making
a random choice (as opposed to a speciŀc arbitrary choice) whenever the algo-
rithm could take one of several actions. For quicksort, this principle amounts
to choosing the element to be used as the partitioning element at random,
rather than using the element at the end of the array each time. If this is
implemented with care (preserving randomness in the subarrays) then, again,
it validates the probabilistic analysis given earlier. (Also, the cutoff for small
subarrays should be used, since it cuts down the number of random numbers
to generate by a factor of about M .) Many other examples of randomized
algorithms may be found in [23] and [25]. Such algorithms are of interest
in practice because they take advantage of randomness to gain efficiency and
to avoid worst-case performance with high probability. Moreover, we can
make precise probabilistic statements about performance, further motivating
the study of advanced techniques for deriving such results.
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THE example of the analysis of quicksort that we have been considering
perhaps illustrates an idealized methodology: not all algorithms can be

as smoothly dealt with as this. A full analysis like this one requires a fair
amount of effort that should be reserved only for our most important algo-
rithms. Fortunately, as we will see, there are many fundamental methods that
do share the basic ingredients that make analysis worthwhile, where we can
• Specify realistic input models.
• Derive mathematical models that describe costs.
• Develop concise, accurate solutions.
• Use the solutions to compare variants and compare with other algo-

rithms, and help adjust values of algorithm parameters.
In this book, we consider a wide variety of such methods, concentrating on
mathematical techniques validating the second and third of these points.

Most often, we skip the parts of the methodology outlined above that are
program-speciŀc (dependent on the implementation), to concentrate either
on algorithm design, where rough estimates of the running time may suffice,
or on the mathematical analysis, where the formulation and solution of the
mathematical problem involved are of most interest. Ļese are the areas in-
volving the most signiŀcant intellectual challenge, and deserve the attention
that they get.

As we have already mentioned, one important challenge in analysis of
algorithms in common use on computers today is to formulate models that re-
alistically represent the input and that lead to manageable analysis problems.
We do not dwell on this problem because there is a large class of combinatorial
algorithms for which the models are natural. In this book, we consider ex-
amples of such algorithms and the fundamental structures upon which they
operate in some detail. We study permutations, trees, strings, tries, words,
and mappings because they are all both widely studied combinatorial struc-
tures and widely used data structures and because “random” structures are
both straightforward and realistic.

In Chapters 2 through 5, we concentrate on techniques of mathemat-
ical analysis that are applicable to the study of algorithm performance. Ļis
material is important in many applications beyond the analysis of algorithms,
but our coverage is developed as preparation for applications later in the book.
Ļen, in Chapters 6 through 9 we apply these techniques to the analysis of
some fundamental combinatorial algorithms, including several of practical
interest. Many of these algorithms are of basic importance in a wide variety
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of computer applications, and so are deserving of the effort involved for de-
tailed analysis. In some cases, algorithms that seem to be quite simple can
lead to quite intricate mathematical analyses; in other cases, algorithms that
are apparently rather complicated can be dealt with in a straightforward man-
ner. In both situations, analyses can uncover signiŀcant differences between
algorithms that have direct bearing on the way they are used in practice.

It is important to note that we teach and present mathematical deriva-
tions in the classical style, even though modern computer algebra systems
such as Maple, Mathematica, or Sage are indispensable nowadays to check
and develop results. Ļe material that we present here may be viewed as
preparation for learning to make effective use of such systems.

Much of our focus is on effective methods for determining performance
characteristics of algorithm implementations. Ļerefore, we present pro-
grams in a widely used programming language ( Java). One advantage of this
approach is that the programs are complete and unambiguous descriptions of
the algorithms. Another is that readers may run empirical tests to validate
mathematical results. Generally our programs are stripped-down versions of
the full Java implementations in the Sedgewick and Wayne Algorithms text
[30]. To the extent possible, we use standard language mechanisms, so peo-
ple familiar with other programming environments may translate them. More
information about many of the programs we cover may be found in [30].

Ļe basic methods that we cover are, of course, applicable to a much
wider class of algorithms and structures than we are able to discuss in this
introductory treatment. We cover only a few of the large number of combi-
natorial algorithms that have been developed since the advent of computers in
mid-20th century. We do not touch on the scores of applications areas, from
image processing to bioinformatics, where algorithms have proved effective
and have been investigated in depth. We mention only brieły approaches
such as amortized analysis and the probabilistic method, which have been
successfully applied to the analysis of a number of important algorithms. Still,
it is our hope that mastery of the introductory material in this book is good
preparation for appreciating such material in the research literature in the
analysis of algorithms. Beyond the books by Knuth, Sedgewick and Wayne,
and Cormen, Leiserson, Rivest, and Stein cited earlier, other sources of in-
formation about the analysis of algorithms and the theory of algorithms are
the books by Gonnet and Baeza-Yates [11], by Dasgupta, Papadimitriou, and
Vazirani [7], and by Kleinberg and Tardos [16].
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Equally important, we are led to analytic problems of a combinatorial
nature that allow us to develop general mechanisms that may help to ana-
lyze future, as yet undiscovered, algorithms. Ļe methods that we use are
drawn from the classical ŀelds of combinatorics and asymptotic analysis, and
we are able to apply classical methods from these ŀelds to treat a broad vari-
ety of problems in a uniform way. Ļis process is described in full detail in
our book Analytic Combinatorics [10]. Ultimately, we are not only able to
directly formulate combinatorial enumeration problems from simple formal
descriptions, but also we are able to directly derive asymptotic estimates of
their solution from these formulations.

In this book, we cover the important fundamental concepts while at the
same time developing a context for the more advanced treatment in [10] and
in other books that study advanced methods, such as Szpankowski’s study of
algorithms on words [32] or Drmota’ study of trees [8]. Graham, Knuth, and
Patashnik [12] is a good source of more material relating to the mathematics
that we use; standard references such as Comtet [5] (for combinatorics) and
Henrici [14] (for analysis) also have relevant material. Generally, we use el-
ementary combinatorics and real analysis in this book, while [10] is a more
advanced treatment from a combinatorial point of view, and relies on complex
analysis for asymptotics.

Properties of classical mathematical functions are an important part of
our story. Ļe classic Handbook of Mathematical Functions by Abramowitz and
Stegun [1] was an indispensable reference for mathematicians for decades and
was certainly a resource for the development of this book. A new reference
that is intended to replace it was recently published, with associated online
material [24]. Indeed, reference material of this sort is increasingly found on-
line, in resources such as Wikipedia and Mathworld [35]. Another important
resource is Sloane’s On-Line Encyclopedia of Integer Sequences [31].

Our starting point is to study characteristics of fundamental algorithms
that are in widespread use, but our primary purpose in this book is to pro-
vide a coherent treatment of the combinatorics and analytic methods that we
encounter. When appropriate, we consider in detail the mathematical prob-
lems that arise naturally and may not apply to any (currently known!) algo-
rithm. In taking such an approach we are led to problems of remarkable scope
and diversity. Furthermore, in examples throughout the book we see that the
problems we solve are directly relevant to many important applications.
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(EGF)

bivariate, 242
cumulative, 372
deŀnition, 97
mapping, 527–528
operations, 99–101
permutation involutions, 369–371

symbolic methods for labelled
classes, 233–234

table, 98–99
Exponential sequence, 111
Exponentially small terms

asymptotic approximations, 156–
157

Ramanujan Q-function, 190, 204–
205

Expressions
evaluation, 278–280
register allocation, 62, 280, 309
regular, 432–436, 440

External nodes
binary trees, 123, 258–259
tries, 448–456, 459

External path length for binary trees,
272–273

Extremal parameters for permuta-
tions, 406–410

Faà di Bruno’s formula, 116
Factorials

asymptotics, 168
deŀnition, 140

Factorization of integers, 532–536
Falls in permutations, 350–351
Fibonacci numbers (FN)

asymptotics, 168
deŀnition, 44
generating functions, 103–104,
114–115, 140

golden ratio, 58
recurrences, 57–59, 64
and strings, 424

Fibonacci polynomials, 305
Find operations, union-ŀnd, 316
Finite asymptotic expansions, 161
Finite function. See Mapping
Finite-state automata (FSA)
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description, 416
and string searching, 437–440
trie-based, 456–457

Finite sums in asymptotic approxima-
tions, 176–178

First constructions
cumulative generating functions,
373

occupancy problems, 485
First-order recurrences, 48–51
Floyd’s cycle detection algorithm in

mapping, 532–533
Foata’s correspondence in permuta-

tions, 349, 358–359, 402
Footnote, 518
Forests

deŀnition, 261–262
enumerating, 263
labelled trees, 330
Lagrange inversion, 314–315
parenthesis systems, 265
unordered, 315

Formal languages, 224
deŀnitions, 441
and generating functions, 467
regular expressions, 432–433

Formal objects, 146
Formal power series, 92
Fractals, 71, 77, 86
Fractional part (x)

binary searches, 73
divide-and-conquer methods, 82
Euler-Maclaurin summation, 179
tries, 460

Free trees, 318–321, 323, 327–328
Frequency of instruction execution, 7,

20
Frequency of letters

table, 497–499
in words, 473

Fringe analysis, 51
FSA. See Finite-state automata (FSA)
Full tables in hashing, 510–511
Functional equations

binary Catalan trees, 287–291
binary search trees, 294, 303
binary trees, 125
context-free grammars, 442–444
expectations for trees, 310–311
generating functions, 117–119
in situ permutation, 405
labelled trees, 329–331
radix-exchange sort, 213
rooted unordered trees, 324
tries, 213

Functional inverse of Lagrange
inversion, 312–313

Fundamental correspondence. See
Foata’s correspondence

Gambler’s ruin
lattice paths, 268
regular expressions, 435–436
sequence of operations, 446

Gamma function, 186
General trees. See Trees
Generalized derangements, 239–240,

250–251
Generalized Fibonacci numbers and

strings, 424
Generalized harmonic numbers

(H(2)
N ), 96, 186

Generating functions (GF), 43, 91
bivariate. See Bivariate generating
functions (BGF)

for Catalan trees, 302–303
coefficient asymptotics, 247–253
counting with, 123–128
cumulative. See Cumulative gener-
ating functions (CGF)
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Dirichlet, 144–146
expansion, 111–114
exponential. See Exponential gen-
erating functions (EGF)

functional equations, 117–119
mapping, 527–531
ordinary. See Ordinary generating
functions (OGF)

probability. See Probability generat-
ing functions (PGF)

recurrences, 101–110, 146
regular expression, 433–435
special functions, 141–146
summary, 146–147
transformations, 114–116

Geometric asymptotic expansion, 162
Geometric sequence, 111
GF. See Generating functions (GF)
Golden ratio (ϕ = (1 +

√
5)/2), 58

Grammars, context-free, 441–447
Graphs, 532

deŀnitions, 318–320
permutations, 358
2-regular, 252

Gröbner basis algorithms, 442–445

Harmonic numbers, 21
approximating, 27–28
asymptotics, 168, 183–186
deŀnition, 140
generalized, 96, 186
ordinary generating functions, 95–
96

in permutations, 396
Hash functions, 474
Hashing algorithms, 473

birthday problem, 485–488
coalesced, 509
collisions, 474, 486–488, 494, 509,
512

coupon collector problem, 488–495
empty urns, 503–505, 510
linear probing, 509–518
longest list, 500
open addressing, 509–518
separate chaining, 474–476, 505–
509

uniform hashing, 511–512
Heap-ordered trees (HOT)

construction, 375
node types, 380–384
permutations, 362–365

Height
expectations for trees, 310–312
in binary trees, 302–303
in binary search trees, 308–309
in general trees, 304–307
in random walk, 435–436
stack height, 308–309

Height-restricted trees, 336–340
Hierarchy of trees, 321–325
High-order linear recurrences, 104
Higher-order recurrences, 55–60
Homogeneous recurrences, 47
Horizontal expansion of BGFs, 134–

136
Horse kicks in Prussian Army, 199
HOT. See Heap-ordered trees (HOT)
Huffman encoding, 455
Hydrocarbon modeling, 326

Image cardinality, 519–522
Implementation, analysis for, 6
In situ permutations, 401–405
Increasing subsequences of permuta-

tions, 351–352, 379–384
Inŀx expressions, 267
Information retrieval, 473
Inorder traversal of trees, 277
Input
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models, 16, 33
random, 16–17

Insertion into binary search trees,
283–286

Insertion sort, 384–388
In situ permutation (rearrangement),

401–402
Integer factorization, 532–536
Integer partitions, 248
Integrals in asymptotic approxima-

tions, 177–178
Integration factor in differential equa-

tions, 109
Internal nodes

binary trees, 123, 259, 301
tries, 449–450, 459–462

Internal path length for binary trees,
272–274

Inversions
bubble sorts, 406
distributions, 386–388
Lagrange. See Lagrange inversion
permutations, 347, 350, 384–388,
391

tables, 347, 359, 394, 407–408
Involutions

minimal occupancy, 498
in permutations, 350, 369–371

Isomorphism of trees, 324
Iterations

functional equations, 118
in recurrences, 48, 63–64, 81

K-forests of binary trees, 314
Keys

binary search trees, 293
hashes, 474–476
search, 281
sort, 24, 355

Kleene’s theorem, 433

Knuth, Donald
analysis of algorithms, 5, 512–513
hashing algorithms, 473

Knuth-Morris-Pratt algorithm
(KMP), 420, 437–440, 456

Kraft equality, 275
Kruskal’s algorithm, 320

Labelled cycle construction, 526
Labelled combinatorial classes, 229–

240
Cayley trees, 329–331
derangements, 239–240, 367–368
generalized derangements, 239–
240, 251

increasing subsequences, 380
cycles, 230–231, 527
trees, 327–331, 341
permutations, 234–236, 369
sets of cycles, 235–236
surjections, 492–493
unordered labelled trees, 329–331
urns, 229–231
words, 478

Labelled objects, 97, 229–240
Lagrange inversion theorem, 113,

312–313
binary trees, 313–315
labelled trees, 330–331
mappings, 528
t-ary trees, 333
ternary trees, 313–314

Lambert series, 145
Languages, 224

context-free grammars, 441–447
deŀnitions, 441
and generating functions, 467
regular expressions, 432–436
strings. See Strings
words. See Words
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Laplace method
increasing subsequences, 380
involutions, 369
for sums, 153, 203–207

Laplace transform, 101
Largest constructions

permutations, 373
occupancy problems, 485

Last constructions
permutations, 373, 395
occupancy problems, 485

Lattice paths
ballot problem, 445
gambler’s ruin, 268–269
permutations, 390–392

Lattice representation for permuta-
tions, 360

Leader election, 464
Leaves

binary search trees, 300–301
binary trees, 244–246, 259, 261,
273

heap-ordered trees, 382
Left-to-right maxima and minima in

permutations, 348–349, 393–398
Lempel-Ziv-Welch (LZW) data

compression, 466–467
Letters (characters). See Strings;

Words
Level (of a node in a tree), 273
Level order traversal, 272, 278
L’Hôpital’s rule, 158
Limiting distributions, 30–31
Linear functional equations, 117
Linear probing in hashing, 509–518
Linear recurrences

asymptotics, 157–159
constant coefficients, 55–56
generating functions, 102, 104–108
scaling, 46–47

Linear recurrences in applications
fringe analysis, 51
tree height, 305

Linked lists in hashing, 474–475, 500
Lists in hashing, 474–475, 500
Logarithmic asymptotic expansion,

162
Longest cycles in permutations, 409–

410
Longest lists in hashing, 500
Longest runs in strings, 426–427
Lower bounds

in theory of algorithms, 4, 12
divide-and-conquer recurrences, 80,
85

notation, 7
for sorting, 11
tree height, 302

M-ary strings, 415
Machine-independent algorithms, 15
Mappings, 474

connected components, 522–532
cycles in, 522–534
deŀnition, 519
generating functions, 527–531
image cardinality, 519–522
path length, 522–527
random, 519–522, 535–537
and random number generators,
520–522

summary, 536–538
and trees, 523–531

Maxima in permutations, 348–349,
393–398

Maximal cycle lengths in permuta-
tions, 368

Maximal occupancy in words, 496–
500
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Maximum inversion table entry, 407–
408

Means
and probability generating func-
tions, 129–132

unnormalized, 135
Median-of-three quicksort, 25–26

ordinary generating functions for,
120–123

recurrences, 66
Mellin transform, 462
Mergesort algorithm, 7–11

program, 9–10
recurrences, 9–10, 43, 70–71, 73–
74

theorem, 74–75
Middle square generator method, 521
Minima in permutations, 348–349,

393–398
Minimal cycle lengths in permuta-

tions, 367–368
Minimal occupancy of words, 498–

499
Minimal spanning trees, 320
Models

balls-and-urns. See Balls-and-urns
model

Catalan. See Catalan models and
trees

costs, 15
inputs, 16, 33
random map, 531–532, 535–537
random permutation, 345–346, 511
random string, 415, 419–422
random trie, 457–458

Moments of distributions, 17
and probability generating func-
tions, 130

vertical computation, 136–138
Motzkin numbers, 334

Multiple roots in linear recurrences,
107–108

Multiple search patterns, 455–456
Multiplication in asymptotic series,

171–172
Multiset construction, 325
Multiset operations, 228
Multiway tries, 465

Natural numbers, 222–223
Neutral class (E), 221
Neutral object (ϵ), 221
Newton series, 145
Newton’s algorithm, 52–53
Newton’s theorem, 111–112, 125
Nodes

binary trees, 123, 258–259
heap-ordered trees, 380–384
rooted unordered trees, 322–323,
327–328

tries, 448–456, 459–462
Nonconvergence in asymptotic series,

164
Nonlinear ŀrst-order recurrences, 52–

54
Nonlinear functional equations, 117
Nonplane trees, 321
Nonterminal symbols, 441–447
Nonvoid trie nodes, 449–456
Normal approximation

and analysis of algorithms, 207–
211

binomial distribution, 195–198,
474

and hashing, 502–505
Normal distribution, 153, 168, 194–

195
Notation of asymptotic approxima-

tions, 153–159
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Number representations, 71–72, 86

o-notation (o), 153–159
O-notation (O), 6–7, 153–159, 169–

175
Occupancy distributions, 198, 501–

510
Occupancy problems, 474, 478–484,

495–500. See also Hashing algo-
rithms; Words

Occurrences of string patterns, 416–
420

Odd-even merge, 208–209
Omega-notation (Ω), 6–7
Open addressing hashing, 509–518
Ordered trees

enumerating, 328–329
heap-ordered. See Heap-ordered
trees (HOT)

hierarchy, 321
labelled, 315, 327–328
nodes, 322–323

Ordinary bivariate generating func-
tions (OBGF), 241–242

Ordinary generating functions
(OGF), 92

birthday problem, 489–490
context-free grammars, 442–443
linear recurrences, 104–105
median-of-three quicksort, 120–
123

operations, 95–97
quicksort recurrences, 109–110
table, 93–94
unlabelled objects, 222–223, 225

Oriented trees, 321–322
Oscillation, 70–75, 82, 213, 340, 426,

462–464

Pachinko machine, 510

Page references (caching), 494
Paradox, birthday, 485–487, 509
Parameters

additive, 297–301
permutations, 406–410
symbolic methods for, 241–246

Parent links in rooted unordered
trees, 317

Parent nodes in binary trees, 259
Parenthesis systems for trees, 265–

267
Parse trees of expressions, 278
Partial fractions, 103, 113
Partial mappings, 531
Partial sums, 95
Partitioning, 19–20, 23–24, 120–123,

139, 295, 454
Path length

binary search trees, 293–297
binary trees, 257–258, 272–276
mapping, 522–527
Catalan trees, 287–293
table, 310
tries, 459–462

Paths
graphs, 319
lattice, 268–269
permutations, 390–392

Patricia tries, 454
Pattern-matching. See String searches
Patterns

arbitrary, 428–431
autocorrelation, 428–430
multiple, 455–456
occurrences, 416–420

Peaks in permutations, 350–351, 362,
380–384

Periodicities
binary numbers, 70–75
complex roots, 107
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divide-and-conquer, 71–72, 82
mergesort, 70–75
tries, 460–464

Permutations
algorithms, 355–358
basic properties, 352–354
binary search trees, 284, 361
cumulative generating functions,
372–384

cycles. See Cycles in permutations
decompositions, 375
enumerating, 366–371
extremal parameters, 406–410
Foata’s correspondence, 349
heap-ordered trees, 361–365
in situ, 401–405
increasing subsequences, 351–352,
379–384

inversion tables, 347, 359, 394
inversions in, 347, 350, 384–388,
407–408

labelled objects, 229–231, 234–235
lattice representation, 360
left-to-right minima, 348–349,
393–398

local properties, 382–384
overview, 345–346
peaks and valleys, 350–351, 362,
380–384

random, 23–24, 357–359
rearrangements, 347, 355–358, 401
representation, 358–365
rises and falls, 350–351
runs, 350
selection sorts, 397–400
shellsort, 389–393
summary, 410–411
symbolic methods for parameters,
243–244

table of properties, 383

two-line representation, 237
2-ordered, 208, 389–393, 443–444

Perturbation method for recurrences,
61, 68–69

PGF. See Probability generating func-
tions (PGF)

Planar subdivisions, 269–270
Plane trees, 321
Poincaré series, 161
Poisson approximation

analysis of algorithms, 153
binomial distribution, 198–202,
474

and hashing, 502–505
Poisson distribution, 405

analysis of algorithms, 211–214
asymptotics, 168
binomial distribution, 201–202,
474

image cardinality, 519
Poisson law, 199
Poles of recurrences, 157–158
Pollard rho method, 522, 532–536
Polya, Darboux-Polya method, 326
Polygon triangulation, 269–271
Polynomials

Bernoulli, 143–144, 179–180
in context-free grammars, 442–444
Fibonacci, 305

Population count function, 76
Postŀx tree traversal, 266–267, 277–

279
Power series, 92
Preŀx codes, 454
Preŀx-free property, 449
Preŀx tree traversal, 266–267, 277–

278
Preŀxes for strings, 419
Preservation of randomness, 27
Priority queues, 358, 362
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Probabilistic algorithm, 33
Probability distributions. See Distri-

butions
Probability generating functions

(PGF)
binary search trees, 296–297
binomial, 131–132
birthday problem, 489–490
bivariate, 132–140
mean and variance, 129–130
and permutations, 386, 395
uniform discrete distribution, 130–
131

Probes
in hashing, 476
linear probing, 509–518

Prodinger’s algorithm, 464
Product

Cartesian (unlabelled), 224, 228
Star (labelled), 231–235

Proŀles for binary trees, 273
Program vs. algorithm, 13–14
Prussian Army, horse kicks in, 199
Pushdown stacks, 277, 308, 446

Q-function. See Ramanujan Q-
function

Quad trees, 333
Quadratic convergence, 52–53
Quadratic mapping, 535
Quadratic random number genera-

tors, 521–522
Quadratic recurrences, 62
Queues, priority, 358, 362
Quicksort

algorithm analysis, 18–27
asymptotics table, 161
and binary search trees, 294–295
bivariate generating functions, 138–
139

compares in, 29
distributions, 30–32
empirical complexity, 23
median-of-three, 25–26, 66, 120–
123

ordinary generating functions for,
109–110

partitioning, 19–20, 23–24
probability generating function,
131–132

radix-exchange, 26–27, 211–213,
454, 459–460, 463

recurrences, 21–22, 43, 66, 109–
110

subarrays, 25
variance, 138–139

Radius of convergence bounds, 248–
250

Radix-exchange sorts, 26–27
analysis, 211–213
and tries, 454, 459–460, 463

Ramanujan distributions (P , Q, R)
bivariate asymptotics, 187–193
maximum inversion tables, 407

Ramanujan-Knuth Q-function, 153
Ramanujan Q-function

and birthday problem, 487
LaPlace method for, 204–207
and mapping, 527, 529

Ramanujan R-distribution, 191–193
Random bitstrings, 26
Random input, 16–17
Random mappings, 519–522, 531–

532, 535–537
Random number generators, 520–

522, 533–535
Random permutations, 23–24, 345–

346, 357–359, 511
Random strings
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alphabets, 431, 465
binomial distributions, 131
bitstrings, 420
leader election, 464
regular expressions, 432

Random trees
additive parameters, 297–301
binary search tree, 293–295
analysis of algorithms, 275–276
Catalan models, 280, 287–291
path length, 311–312

Random trie models, 457–458
Random variables, 129–132
Random walks, 435–436
Random words, 474, 478
Randomization in leader election, 464
Randomized algorithms, 33
Randomness preservation, 27
Rational functions, 104, 157

generating function coefficients,
247–248

and regular expression, 433
and runs in strings, 423

Rearrangement of permutations, 347,
355–358, 401

Records
in permutations, 348, 355–356
priority queues, 358
sorting, 24, 387, 397, 407

Recurrences, 18
asymptotics, 157–159
basic properties, 43–47
bootstrapping, 67
calculations, 45–46
change of variables method, 61–64
classiŀcation, 44–45
divide-and-conquer. See Divide-
and-conquer recurrences

Fibonacci numbers, 57–59, 64
ŀrst-order, 48–51

fringe analysis, 51
generating functions, 101–110, 146
higher-order, 55–60
iteration, 81
linear. See Linear recurrences
linear constant coefficient, 55–56
median-of-three quicksort, 26
mergesort, 9–10, 43, 70–71, 73–74
nonlinear ŀrst-order, 52–54
overview, 41–43
perturbation, 61, 68–69
quadratic, 62
quicksort, 21–22, 43, 66
radix-exchange sort, 26–27
repertoire, 61, 65–66
scaling, 46–47
summary, 86–87
tree height, 303–305

Recursion, 18, 257, 295
binary trees, 123–126, 220, 228,
257–260, 273–275

binary search trees, 282–283, 361
context-free grammars, 443
divide-and-conquer, 80
distributed leader election, 457
expression evaluation, 278–279
forests, 261
heap-ordered trees, 362–364
mergesort, 7–9, 75–80
parenthesis systems, 265
quad trees, 333
quicksort, 19–21
radix-exchange sort, 454
and recurrences, 41, 45–46
rooted trees, 323
t-ary trees, 333
triangulated N-gons, 269–270
tree algorithms, 277–278
tree properties, 273–274, 290, 291,
297–312
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trees, 261, 340
tries, 449–451

Register allocation, 62, 280, 309
Regular expressions, 432–436

and automata, 433, 440
gambler’s ruin, 435–436
and generating function, 433–435

Relabelling objects, 231
Relative errors in asymptotics, 166–

167
Repertoire method in recurrences, 61,

65–66
Representation of permutations, 358–

365
Reversion in asymptotic series, 175
Rewriting rules, 442
Rho length, mapping, 522–527
Rho method, Pollard, 522, 532–536
Riemann sum, 179, 182
Riemann zeta function, 145
Right-left string searching, 466
Rises in permutations, 350–351, 375–

379
Root nodes in binary trees, 259, 261
Rooted unordered trees, 315

deŀnition, 315–316
enumerating, 325–327
graphs, 318–320
hierarchy, 321–325
Kruskal’s algorithm, 320
nodes, 322–323, 327–328
overview, 315
representing, 324
sample application, 316–318

Rotation correspondence between
trees, 264–265, 309

Ruler function, 76
Running time, 7
Runs

in permutations, 350, 375–379

in strings, 420–426, 434

Saddle point method, 499
Scales, asymptotic, 160
Scaling recurrences, 46
Search costs in binary search trees,

293, 295–296
Search problem, 281
Searching algorithms. See Binary

search; Binary search trees; Hash-
ing algorithms; String searches;
Tries

Seeds for random number generators,
521

Selection sort, 397–400
Sentinels, 416–417
Separate chaining hashing algorithms,

474–476, 505–509
Sequence construction, 224, 228
Sequences, 95–97

ternary trees, 314
rooted unordered trees, 325
free trees, 327
ordered labelled trees, 329
unordered labelled trees, 330
runs and rises in permutations, 375
Stirling cycle numbers, 397
maximum inversion table entry,
406–407

3-words tieh restrictions, 495
Series, asymptotic, 160
Set construction, 228
Sets of cycles, 235–237, 527
Sets of strings, 416, 448–452
Shellsort, 389–393
Shifting recurrences, 46
Shortest cycles in permutations, 409–

410
Sim-notation (∼), 153–159
Simple convergence, 52



I Ś Ő ő Ť ȜȝȠ

Simple paths in graphs, 319
Singleton cycles in permutations, 369,

403–405
Singularities of generating functions,

113
Singularity analysis, 252, 335
Size in combinatorial classes, 221,

223
Slow convergence, 53–54
Smallest construction, 373
Sorting

algorithms, 6–12
bubble, 406–407
comparison-based, 345
complexity, 11–12
insertion, 384–388
mergesort. See Mergesort algo-
rithm

permutations, 355–356, 397–400
quicksort. See Quicksort
radix-exchange, 26–27, 211–213,
454, 459–460, 463

selection, 397–400
Spanning trees of graphs, 319
Special number sequences, 139

asymptotics, 167–168
Bernoulli numbers, 142–143
Bernoulli polynomials, 143–144
binomial coefficients, 142
Dirichlet generating functions,
144–146

harmonic numbers, 21
overview, 141–142
Stirling numbers, 142
tables, 140

Stacks, 277
ballot problem, 446–447
height, 308–309

Standard deviation, 17
bivariate generating functions, 138

distributions, 31–32
probability generating functions,
129–130

Star operations
labelled classes, 231–232
on languages, 432

Stirling numbers, overview, 142
Stirling numbers of the ŀrst kind

([nk ]), 140
asymptotics, 168
counting cycles, 402–403
counting minima/maxima, 396–398

Stirling numbers of the second kind
({nk }), 140

asymptotics, 168
and coupon collector, 491
subset numbers, 491
surjections, 492–493

Stirling’s constant (σ =
√
2π), 183–

184, 210
Stirling’s formula

asymptotic expansion, 164–165
asymptotics, 173, 185
and Laplace method, 207
table, 166
and trees, 168

String searches
KMP algorithm, 437–440
right-left, 466
and tries, 416–420, 448, 455–458

Strings
arbitrary patterns, 428–431
autocorrelation, 428–430
larger alphabets, 465–467
overview, 415–416
runs, 420–426, 434
sets of. See Languages; Tries
summary, 467–468
words. See Words

Subset numbers, 491
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Subtrees, 123, 258–259, 261
Successful searches, 295, 476, 508–

509, 511, 515–518
Suffix tries, 455, 459
Summation factors, 50, 59
Sums

asymptotic approximations, 176–
178

Euler-Maclaurin. See Euler-
Maclaurin summation

Laplace method for, 203–207
Superleaves, 228
Surjections

enumerating, 492–493, 495
image cardinality, 519
maximal occupancy, 499
minimal occupancy, 497–498

Symbol tables
binary search trees, 281, 466
hashing, 474–476
rooted unordered trees, 317
tries, 448, 453, 459, 465

Symbolic method, 219, 221, 229. See
Combinatorial constructions.

t-ary trees, 331–333
deŀnition, 333
enumerating, 333–334

t-restricted trees, 334–336
Tails

asymptotic approximations, 176–
177

binomial distribution, 196–197
Laplace method, 203–205
in mapping, 523–524

Taylor expansions
asymptotic, 162–163
table, 162

Taylor theorem, 111–113, 220, 247
Telescoping recurrences, 86
Terminal symbols, 441–442

Ternary trees, 313–314
Ternary tries, 465–466
Text searching. See String searching
Ļeory of algorithms, 4–12
Ļeta notation (Θ), 6–7
Time complexity of sorting, 10–11
Toll function, 297–298
Transfer theorems, 219–220

bitstrings, 228
derangements, 251
involutions, 369
labelled objects, 232, 240
Lagrange inversion, 312
radius of convergence, 249–250
Taylor’s theorem, 247
universal, 443
unlabelled objects, 228–229

Transformations for generating func-
tions, 114–116

Transitions
ŀnite-state automata, 437–439, 456
state transition tables, 438–440

Traversal of trees
algorithms, 277–278
binary trees, 267, 278–280
labelled trees, 328
parenthesis system, 265
preorder and postorder, 266–267
stacks for, 308

Trees
algorithm examples, 277–280
average path length, 287–293
binary. See Binary search trees;
Binary trees

Catalan. See Catalan models and
trees

combinatorial equivalences, 264–
272

enumerating, 322, 331
expectations for trees, 310–312



I Ś Ő ő Ť ȜȞȘ

expression evaluation, 278–280
heap-ordered trees, 362–365, 375,
380–384

height. See Height of trees
height-restricted, 336–340
hierarchy, 321–325
isomorphism, 324
labelled, 327–331
Lagrange inversion, 312–315
and mapping, 523–531
nomenclature, 321
ordered. See Ordered trees
parenthesis systems, 265–267
properties, 272–276
random. See Random trees
in random walk, 435–436
rooted unordered. See Rooted un-
ordered trees

rotation correspondence, 264–265
summary, 340–341
t-ary, 331–334
t-restricted, 334–336
traversal. See Traversal of trees
unlabelled, 322, 328–329
unrooted, 318–321, 323, 327–328

Triangulation of polygons, 269–271
Tries

combinatorial properties, 459–464
context-free languages, 416
deŀnitions, 449–451
encoding, 454–455
ŀnite-state automata, 456–457
vs. hashing, 476
multiway, 465
nodes, 448–456, 459–462
overview, 448–449
path length and size, 459–462
Patricia, 454
pattern matching, 455–458

radix-exchange sorts, 211–214,
454, 459–460, 463

random, 457–458
string searching, 416–420
suffix, 455
sum, 211–214
summary, 467–468
ternary, 465–466

Trigonometric asymptotic expansion,
162

Two-line representation of permuta-
tions, 237

2-ordered permutations, 208, 389–
393, 443–444

2-regular graphs, 252
2-3 trees, 336

fringe analysis, 51
functional equations, 118

2-3-4 trees, 336
2D-trees, 270

Unambiguous languages, 441–447
Unambiguous regular expressions,

432–433
Uniform discrete distributions, 130–

131
Uniform hashing, 511–512
Union-ŀnd problem, 316, 324
Union operations, 224, 228
Unlabelled combinatorial classes,

221–229
AVL trees, 332, 336, 338
B-trees, 332, 336, 338
binary trees, 228, 251, 260
bitstrings, 226, 420–426
bytestrings, 478
context-free grammars, 441–443
Motzkin trees, 341
ordered trees, 328–329
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rooted unordered trees, 318–320,
322–323
t-ary trees, 333–334, 341
t-restricted trees, 334–336, 341
trees, 263, 341
unrooted trees, 318–321, 323, 327–
328

2-3 trees, 338
Unlabelled objects, 97, 221–229
Unnormalized mean (cumulated cost),

17, 135–137
Unordered trees

labelled, 329–331
rooted. See Rooted unordered trees

Unrooted trees, 318–321, 323, 327–
328

Unsuccessful searches, 295, 476, 505,
508, 511–515, 517–518

Upper bounds
analysis of algorithms, 4
cycle length in permutations, 368
divide-and-conquer recurrences, 80,
85

notation, 7, 154
and performance, 12
sorts, 10–11
tree height, 302

Urns, 474
labelled objects, 229–230
occupancy distributions, 474, 501–
510

Poisson approximation, 198–199
and word properties, 476–485

Valleys in permutations, 350–351,
362, 380–384

Vandermonde’s convolution, 114
Variance, 31–33

binary search trees, 294, 296, 311

bivariate generating functions, 136–
138

coupon collector problem, 490–491
inversions in permutations, 386
left-to-right minima in permuta-
tions, 394–395

occupancy distribution, 504–505
Poisson distribution, 202
probability generating functions,
129–130

runs in permutations, 378
singleton cycles in permutations,
404

selection sort, 399
quicksort, 138–139

Variations in unlabelled objects, 226–
227

Vertical expansion of bivariate gener-
ating functions, 136–138

Void nodes in tries, 449–456

Words
balls-and-urns model, 476–485
birthday problem, 485–488
caching algorithms, 494
coupon collector problem, 488–495
frequency restrictions, 497–499
hashing algorithms, 474–476
and mappings. See Mappings
maximal occupancy, 496–500
minimal occupancy, 498–499
occupancy distributions, 501–509
occupancy problems, 478–484
overview, 473–474

Worst-case analysis, 78

Zeta function of Riemann, 145
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