
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321905635
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321905635
https://plusone.google.com/share?url=http://www.informit.com/title/9780321905635
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321905635
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321905635/Free-Sample-Chapter

Python in Practice

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Python in Practice

Create Better Programs Using
Concurrency, Libraries, and Patterns

Mark Summerfield

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco

p New York · Toronto ·Montreal · London ·Munich · Paris ·Madrid p

Capetown · Sydney · Tokyo · Singapore ·Mexico City

Many of the designations used by manufacturersand sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2013942956

Copyright © 2014 Qtrac Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-90563-5
ISBN-10: 0-321-90563-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2013

This book is dedicated to
free and open-source software contributors
everywhere—your generosity benefits us all.

This page intentionally left blank

Contents at a Glance

Contents . ix

Foreword . xiii

Introduction . 1

Chapter 1. Creational Design Patterns in Python 5

Chapter 2. Structural Design Patterns in Python 29

Chapter 3. Behavioral Design Patterns in Python 73

Chapter 4. High-Level Concurrency in Python 141

Chapter 5. Extending Python . 179

Chapter 6. High-Level Networking in Python . 203

Chapter 7. Graphical User Interfaces with Python and Tkinter 231

Chapter 8. OpenGL 3D Graphics in Python . 263

Appendix A. Epilogue . 283

Appendix B. Selected Bibliography . 285

Index . 289

www.qtrac.eu/pipbook.html

http://www.qtrac.eu/pipbook.html

This page intentionally left blank

Contents

Foreword . xiii

Introduction . 1
Acknowledgments . 3

Chapter 1. Creational Design Patterns in Python 5
1.1. Abstract Factory Pattern . 5

1.1.1. A Classic Abstract Factory . 6
1.1.2. A More Pythonic Abstract Factory . 9

1.2. Builder Pattern . 11
1.3. Factory Method Pattern . 17
1.4. Prototype Pattern . 24
1.5. Singleton Pattern . 26

Chapter 2. Structural Design Patterns in Python 29
2.1. Adapter Pattern . 29
2.2. Bridge Pattern . 34
2.3. Composite Pattern . 40

2.3.1. A Classic Composite/Noncomposite Hierarchy 41
2.3.2. A Single Class for (Non)composites . 45

2.4. Decorator Pattern . 48
2.4.1. Function and Method Decorators . 48
2.4.2. Class Decorators . 54

2.4.2.1. Using a Class Decorator to Add Properties 57
2.4.2.2. Using a Class Decorator Instead of Subclassing 58

2.5. Façade Pattern . 59
2.6. Flyweight Pattern . 64
2.7. Proxy Pattern . 67

Chapter 3. Behavioral Design Patterns in Python 73
3.1. Chain of Responsibility Pattern . 74

3.1.1. A Conventional Chain . 74
3.1.2. A Coroutine-Based Chain . 76

3.2. Command Pattern . 79

ix

3.3. Interpreter Pattern . 83
3.3.1. Expression Evaluation with eval() . 84
3.3.2. Code Evaluation with exec() . 88
3.3.3. Code Evaluation Using a Subprocess . 91

3.4. Iterator Pattern . 95
3.4.1. Sequence Protocol Iterators . 95
3.4.2. Two-Argument iter() Function Iterators 96
3.4.3. Iterator Protocol Iterators . 97

3.5. Mediator Pattern . 100
3.5.1. A Conventional Mediator . 101
3.5.2. A Coroutine-Based Mediator . 104

3.6. Memento Pattern . 106
3.7. Observer Pattern . 107
3.8. State Pattern . 111

3.8.1. Using State-Sensitive Methods . 114
3.8.2. Using State-Specific Methods . 115

3.9. Strategy Pattern . 116
3.10. Template Method Pattern . 119
3.11. Visitor Pattern . 123
3.12. Case Study: An Image Package . 124

3.12.1. The Generic Image Module . 125
3.12.2. An Overview of the XpmModule . 135
3.12.3. The PNG Wrapper Module . 137

Chapter 4. High-Level Concurrency in Python 141
4.1. CPU-Bound Concurrency . 144

4.1.1. Using Queues and Multiprocessing . 147
4.1.2. Using Futures and Multiprocessing . 152

4.2. I/O-Bound Concurrency . 155
4.2.1. Using Queues and Threading . 156
4.2.2. Using Futures and Threading . 161

4.3. Case Study: A Concurrent GUI Application . 164
4.3.1. Creating the GUI . 165
4.3.2. The ImageScale Worker Module . 173
4.3.3. How the GUI Handles Progress . 175
4.3.4. How the GUI Handles Termination . 177

x

Chapter 5. Extending Python . 179
5.1. Accessing C Libraries with ctypes . 180
5.2. Using Cython . 187

5.2.1. Accessing C Libraries with Cython . 188
5.2.2. Writing Cython Modules for Greater Speed 193

5.3. Case Study: An Accelerated Image Package . 198

Chapter 6. High-Level Networking in Python . 203
6.1. Writing XML-RPCApplications . 204

6.1.1. A Data Wrapper . 205
6.1.2. Writing XML-RPC Servers . 208
6.1.3. Writing XML-RPCClients . 210

6.1.3.1. A Console XML-RPCClient . 210
6.1.3.2. A GUI XML-RPCClient . 214

6.2. Writing RPyC Applications . 219
6.2.1. A Thread-Safe Data Wrapper . 220

6.2.1.1. A Simple Thread-Safe Dictionary 221
6.2.1.2. The Meter Dictionary Subclass . 224

6.2.2. Writing RPyC Servers . 225
6.2.3. Writing RPyC Clients . 227

6.2.3.1. A Console RPyC Client . 227
6.2.3.2. A GUI RPyC Client . 228

Chapter 7. Graphical User Interfaces with Python and Tkinter 231
7.1. Introduction to Tkinter . 233
7.2. Creating Dialogs with Tkinter . 235

7.2.1. Creating a Dialog-Style Application . 237
7.2.1.1. The Currency Application’s main() Function 238
7.2.1.2. The Currency Application’sMain.Window Class 239

7.2.2. Creating Application Dialogs . 244
7.2.2.1. Creating Modal Dialogs . 245
7.2.2.2. Creating Modeless Dialogs . 250

7.3. Creating Main-Window Applications with Tkinter 253
7.3.1. Creating a Main Window . 255
7.3.2. Creating Menus . 257

7.3.2.1. Creating a File Menu . 258
7.3.2.2. Creating a Help Menu . 259

7.3.3. Creating a Status Bar with Indicators . 260

xi

Chapter 8. OpenGL 3D Graphics in Python . 263
8.1. A Perspective Scene . 264

8.1.1. Creating a Cylinder with PyOpenGL . 265
8.1.2. Creating a Cylinder with pyglet . 270

8.2. An Orthographic Game . 272
8.2.1. Drawing the Board Scene . 275
8.2.2. Handling Scene Object Selection . 277
8.2.3. Handling User Interaction . 280

Appendix A. Epilogue . 283

Appendix B. Selected Bibliography . 285

Index . 289

xii

Foreword to Python in Practice

I have been building software with Python for 15 years in various application
areas. Over that time I have seen our community mature and grow consider-
ably. We are long past the days of having to “sell” Python to our managers in
order to be able to use it in work-related projects. Today’s job market for Python
programmers is strong. Attendance at Python-related conferences is at an all
time high, for regional conferences as well as the big national and international
events. Projects like OpenStack are pushing the language into new arenas and
attracting new talent to the community at the same time. As a result of the ro-
bust and expanding community,wehavemoreandbetter options for booksabout
Python than ever before.

Mark Summerfield is well known in the Python community for his techni-
cal writing about Qt and Python. Another of Mark’s books, Programming in
Python 3, is at the top of my short list of recommendations for learning Python,
a question I am asked frequently as the organizer of the user group in Atlanta,
Georgia. This new book will also go on my list, but for a somewhat different
audience.

Most programming books fall at either end of a spectrum that ranges from basic
introductionsto a language (or programming in general) tomoreadvancedbooks
on very focused topics likewebdevelopment,GUIapplications,or bioinformatics.
As I was writing The Python Standard Library by Example, I wanted to appeal
to readers who fall into the gap between those extremes—established program-
mers and generalists, both familiar with the language but who want to enhance
their skills by going beyond the basics without being restricted to a specific ap-
plication area. Whenmy editor askedme to review the proposal forMark’sbook,
I was pleased to see that Python in Practice is designed for the same types of
readers.

It has been a long time since I have encountered an idea in a book that was im-
mediately applicable to one of my own projects,without it being tied to a specific
framework or library. For the past year I have been working on a system forme-
tering OpenStack cloud services. Along theway, the team realized that the data
we are collecting for billing could be useful for other purposes, like reporting and
monitoring, so we designed the system to send it to multiple consumers by pass-
ing the samples through a pipeline of reusable transformations and publishers.
At about the same time that the code for the pipeline was being finalized, I was
also involved in the technical review for this book. After reading the first few
sections of the draft for Chapter 3, it became clear that our pipeline implemen-
tationwasmuchmore complicated thannecessary. The coroutine chaining tech-
nique Mark demonstrates is so much more elegant and easy to understand that

xiii

I immediately added a task to our roadmap to change the design during the next
release cycle.

Python in Practice is full of similarly useful advice and examples to help you
improve your craft. Generalists like me will find introductions to several inter-
esting tools that may not have been encountered before. And whether you are
already an experienced programmer or are making the transition out of the
beginner phase of your career, this book will help you think about problems
from different perspectives and give you techniques to create more effective so-
lutions.

Doug Hellmann
Senior Developer, DreamHost

May 2013

xiv

Introduction to Python in Practice

This book is aimed at Python programmers who want to broaden and deepen
their Python knowledge so that they can improve the quality, reliability, speed,
maintainability, and usability of their Python programs. The book presents
numerous practical examples and ideas for improved Python programming.

The book has four key themes: design patterns for coding elegance, improved
processing speeds using concurrency and compiled Python (Cython), high-level
networking, and graphics.

The book Design Patterns: Elements of Reusable Object-Oriented Software (see
the Selected Bibliography for details; ➤ 285) was published way back in 1995,
yet still exerts a powerful influence over object-oriented programming practices.
Python in Practice looks at all of the design patterns in the context of Python,
providing Python examples of those that are useful, as well as explaining why
some are irrelevant to Python programmers. These patterns are covered in
Chapter 1, Chapter 2, and Chapter 3.

Python’s GIL (Global Interpreter Lock) prevents Python code from executing on
more than one processor core at a time.★ This has led to the myth that Python
can’t do threading or take advantage of multi-core hardware. For CPU-bound
processing, concurrency can be done using the multiprocessing module, which
is not limited by the GIL and can take full advantage of all the available cores.
This can easily achieve the speedupswe would expect (i.e., roughly proportional
to the number of cores). For I/O-bound processing we can also use the multipro-

cessing module—or we can use the threading module or the concurrent.futures

module. If we use threading for I/O-bound concurrency, the GIL’s overhead is
usually dominated by network latency and so may not be an issue in practice.

Unfortunately, low- andmedium-level approaches to concurrency are very error-
prone (in any language).We can avoid such problems by avoiding the use of ex-
plicit locks, and by making use of Python’s high-level queue and multiprocessing

modules’ queues, or the concurrent.futures module. We will see how to achieve
significant performance improvements using high-level concurrency in Chap-
ter 4.

Sometimes programmers use C, C++, or some other compiled language because
of another myth—that Python is slow. While Python is in general slower
than compiled languages, on modern hardware Python is often more than fast

★This limitation applies to CPython—the reference implementation thatmost Python programmers
use. Some Python implementations don’t have this constraint, most notably, Jython (Python
implemented in Java).

1

2 Introduction

enough for most applications. And in those cases where Python really isn’t fast
enough, we can still enjoy the benefits of programming in Python—and at the
same time have our code run faster.

To speed up long-running programs we can use the PyPy Python interpreter
(pypy.org). PyPy has a just-in-time compiler that can deliver significant
speedups. Another way to increase performance is to use code that runs as fast
as compiled C; for CPU-bound processing this can comfortably give us 100×

speedups. The easiest way to achieve C-like speed is to use Python modules
that are already written in C under the hood: for example, use the standard
library’s array module or the third-party numpy module for incredibly fast and
memory-efficient array processing (including multi-dimensional arrays with
numpy). Another way is to profile using the standard library’s cProfile module
to discover where the bottlenecks are, and then write any speed-critical code in
Cython—this essentially provides an enhanced Python syntax that compiles
into pure C for maximum runtime speed.

Of course, sometimes the functionality we need is already available in a C or
C++ library, or a library in another language that uses the C calling convention.
In most such cases there will be a third-party Python module that provides ac-
cess to the library we require—these can be found on the Python Package In-
dex (PyPI; pypi.python.org). But in the uncommon case that such a module isn’t
available, the standard library’s ctypes module can be used to access C library
functionality—as can the third-party Cython package. Using preexisting C li-
braries can significantly reduce development times, aswell as usually providing
very fast processing. Both ctypes and Cython are covered in Chapter 5.

The Python standard library provides a variety of modules for networking,
from the low-level socket module, to the mid-level socketserver module, up
to the high-level xmlrpclib module. Although low- and mid-level networking
makes sense when porting code from another language, if we are starting out in
Python we can often avoid the low-level detail and just focus on what we want
our networking applications to do by using high-level modules. In Chapter 6
we will see how to do this using the standard library’s xmlrpclib module and the
powerful and easy-to-use third-party RPyC module.

Almost every program must provide some kind of user interface so that the
program can determine what work it must do. Python programs can be writ-
ten to support command-line user interfaces, using the argparse module, and
full-terminal user interfaces (e.g., on Unix using the third-party urwid pack-
age; excess.org/urwid). There are also a great many web frameworks—from
the lightweight bottle (bottlepy.org) to heavyweights like Django (www.django-
project.com) and Pyramid (www.pylonsproject.org)—all of which can be used to
provide applicationswith a web interface. And, of course,Python can be used to
create GUI (graphical user interface) applications.

http://www.djangoproject.com
http://www.djangoproject.com
http://www.pylonsproject.org

Introduction 3

The death of GUI applications in favor of web applications is often reported—
and still hasn’t happened. In fact, people seem to prefer GUI applications to
webapplications. For example,when smartphonesbecamevery popular early in
the twenty-first century, users invariably preferred to use a purpose-built “app”
rather than a web browser and web page for things they did regularly. There
aremanyways to doGUIprogrammingwithPythonusing third-party packages.
However, in Chapter 7 we will see how to create modern-looking GUI applica-
tions using Tkinter, which is supplied as part of Python’s standard library.

Most modern computers—including laptops and even smartphones—come
equipped with powerful graphics facilities, often in the form of a separate GPU
(Graphics Processing Unit) that’s capable of impressive 2D and 3D graphics.
Most GPUs support the OpenGL API, and Python programmers can get access
to thisAPI through third-party packages. In Chapter 8,wewill see how tomake
use of OpenGL to do 3D graphics.

The purpose of this book is to illustrate how to write better Python applications
that have good performance and maintainable code, and are easy to use. This
book assumesprior knowledge of Python programming and is intended to be the
kind of book people turn to once they’ve learned Python,whether from Python’s
documentation or from other books—such as Programming in Python 3,Second
Edition (see the Selected Bibliography for details; ➤ 287). The book is designed
to provide ideas, inspiration, and practical techniques to help readers take their
Python programming to the next level.

All the book’s examples have been tested with Python 3.3 (and where possible
Python 3.2 and Python 3.1) on Linux, OS X (in most cases), and Windows (in
most cases). The examples are available from the book’s web site, www.qtrac.eu/
pipbook.html, and should work with all future Python 3.x versions.

Acknowledgments

As with all my other technical books, this book has greatly benefited from the
advice, help, and encouragement of others: I am very grateful to them all.

Nick Coghlan, a Python core developer since 2005, provided plenty of construc-
tive criticism, and backed this up with lots of ideas and code snippets to show
alternative and better ways to do things. Nick’s helpwas invaluable throughout
the book, and particularly improved the early chapters.

Doug Hellmann, an experienced Python developer and author, sent me lots of
useful comments, both on the initial proposal, and on every chapter of the book
itself. Doug gave me many ideas and was kind enough to write the foreword.

Two friends—Jasmin Blanchette and Trenton Schulz—are both experienced
programmers, and with their widely differing Python knowledge, they are
ideal representatives of many of the book’s intended readership. Jasmin and

http://www.qtrac.eu/pipbook.html
http://www.qtrac.eu/pipbook.html

4 Introduction

Trenton’s feedback has lead tomany improvementsand clarifications in the text
and in the examples.

I am glad to thank my commissioning editor, Debra Williams Cauley, who once
more provided support and practical help as the work progressed.

Thanksalso toElizabeth Ryanwhomanaged the production process sowell, and
to the proofreader, Anna V. Popick, who did such excellent work.

As always, I thank my wife, Andrea, for her love and support.

11 Creational Design
Patterns in Python

§1.1. Abstract Factory Pattern ➤ 5

§1.1.1. A Classic Abstract Factory ➤ 6

§1.1.2. A More Pythonic Abstract Factory ➤ 9

§1.2. Builder Pattern ➤ 11

§1.3. Factory Method Pattern ➤ 17

§1.4. Prototype Pattern ➤ 24

§1.5. Singleton Pattern ➤ 26

Creational design patterns are concerned with how objects are created. Nor-
mally we create objects by calling their constructor (i.e., calling their class ob-
ject with arguments), but sometimeswe need more flexibility in how objects are
created—which is why the creational design patterns are useful.

For Python programmers, some of these patterns are fairly similar to each
other—and some of them, as we will note, aren’t really needed at all. This is be-
cause the original design patterns were primarily created for the C++ language
and needed to work around some of that language’s limitations. Python doesn’t
have those limitations.

1.1. Abstract Factory Pattern

The Abstract Factory Pattern is designed for situationswhere wewant to create
complex objects that are composed of other objects and where the composed
objects are all of one particular “family”.

For example, in a GUI system we might have an abstract widget factory that
has three concrete subclass factories: MacWidgetFactory, XfceWidgetFactory, and
WindowsWidgetFactory, all of which providemethods for creating the same objects
(make_button(), make_spinbox(), etc.), but that do so using the platform-appropri-
ate styling. Thisallowsus to create a generic create_dialog() function that takes
a factory instance as argument and produces a dialog with the OS X, Xfce, or
Windows look and feel, depending on which factory we pass it.

5

6 Chapter 1. Creational Design Patterns in Python

1.1.1. A Classic Abstract Factory

To illustrate the Abstract Factory Pattern we will review a program that pro-
duces a simple diagram. Two factories will be used: one to produce plain text
output, and the other to produce SVG (Scalable Vector Graphics) output. Both
outputs are shown in Figure 1.1.The first version of the programwewill look at,
diagram1.py, shows the pattern in its pure form. The second version, diagram2.py,
takes advantage of some Python-specific features to make the code slightly
shorter and cleaner. Both versions produce identical output.★

+----------------------------+

| +--------------------+ |

| |%%%%%%%%%%%%%%%%%%%%| |

| |%%Abstract Factory%%| |

| |%%%%%%%%%%%%%%%%%%%%| |

| +--------------------+ |

+----------------------------+

Figure 1.1 The plain text and SVG diagrams

We will begin by looking at the code common to both versions, starting with the
main() function.

def main():

 ...

 txtDiagram = create_diagram(DiagramFactory()) ➊

 txtDiagram.save(textFilename)

 svgDiagram = create_diagram(SvgDiagramFactory()) ➋

 svgDiagram.save(svgFilename)

First we create a couple of filenames (not shown). Next, we create a diagram
using the plain text (default) factory (➊), which we then save. Then, we create
and save the same diagram, only this time using an SVG factory (➋).

def create_diagram(factory):

 diagram = factory.make_diagram(30, 7)

 rectangle = factory.make_rectangle(4, 1, 22, 5, "yellow")

 text = factory.make_text(7, 3, "Abstract Factory")

 diagram.add(rectangle)

 diagram.add(text)

return diagram

★All the book’s examples are available for download from www.qtrac.eu/pipbook.html.

http://www.qtrac.eu/pipbook.html

1.1. Abstract Factory Pattern 7

This function takes a diagram factory as its sole argument and uses it to create
the required diagram. The function doesn’t know or care what kind of factory
it receives so long as it supports our diagram factory interface. We will look at
the make_…() methods shortly.

Now that we have seen how the factories are used, we can turn to the factories
themselves. Here is the plain text diagram factory (which is also the factory
base class):

class DiagramFactory:

def make_diagram(self, width, height):

return Diagram(width, height)

def make_rectangle(self, x, y, width, height, fill="white",

 stroke="black"):

return Rectangle(x, y, width, height, fill, stroke)

def make_text(self, x, y, text, fontsize=12):

return Text(x, y, text, fontsize)

Despite the word “abstract” in the pattern’s name, it is usual for one class to
serve both as a base class that provides the interface (i.e., the abstraction), and
also as a concrete class in its own right. We have followed that approach here
with the DiagramFactory class.

Here are the first few lines of the SVG diagram factory:

class SvgDiagramFactory(DiagramFactory):

def make_diagram(self, width, height):

return SvgDiagram(width, height)

 ...

The only difference between the two make_diagram()methods is that the Diagram-
Factory.make_diagram()method returnsa Diagram object and the SvgDiagramFacto-
ry.make_diagram() method returns an SvgDiagram object. This pattern applies to
the two other methods in the SvgDiagramFactory (which are not shown).

We will see in a moment that the implementations of the plain text Diagram,
Rectangle, and Text classes are radically different from those of the SvgDiagram,
SvgRectangle, and SvgText classes—although every class provides the same inter-
face (i.e., both Diagram and SvgDiagram have the same methods). This means that
we can’t mix classes from different families (e.g., Rectangle and SvgText)—and
this is a constraint automatically applied by the factory classes.

Plain text Diagram objects hold their data as a list of lists of single character
strings where the character is a space or +, |, -, and so on. The plain text Rect-

8 Chapter 1. Creational Design Patterns in Python

angle and Text and a list of lists of single character strings that are to replace
those in the overall diagram at their position (and working right and down as
necessary).

class Text:

def __init__(self, x, y, text, fontsize):

 self.x = x

 self.y = y

 self.rows = [list(text)]

This is the complete Text class. For plain text we simply discard the fontsize.

class Diagram:

 ...

def add(self, component):

for y, row in enumerate(component.rows):

for x, char in enumerate(row):

 self.diagram[y + component.y][x + component.x] = char

Here is the Diagram.add()method. Whenwe call it with a Rectangle or Text object
(the component), this method iterates over all the characters in the component’s
list of lists of single character strings (component.rows) and replaces correspond-
ing characters in the diagram. The Diagram.__init__() method (not shown) has
already ensured that its self.diagram is a list of lists of space characters (of the
given width and height) when Diagram(width, height) is called.

SVG_TEXT = """<text x="{x}" y="{y}" text-anchor="left" \

font-family="sans-serif" font-size="{fontsize}">{text}</text>"""

SVG_SCALE = 20

class SvgText:

def __init__(self, x, y, text, fontsize):

 x *= SVG_SCALE

 y *= SVG_SCALE

 fontsize *= SVG_SCALE // 10

 self.svg = SVG_TEXT.format(**locals())

This is the complete SvgText class and the two constants it depends on.★ Inciden-
tally, using **locals() saves us from having to write SVG_TEXT.format(x=x, y=y,

text=text, fontsize=fontsize). From Python 3.2 we could write SVG_TEXT.for-

★ Our SVG output is rather crudely done—but it is sufficient to show this design pattern. Third-
party SVG modules are available from the Python Package Index (PyPI) at pypi.python.org.

1.1. Abstract Factory Pattern 9

mat_map(locals()) instead, since the str.format_map() method does the mapping
unpacking for us. (See the “Sequence and Mapping Unpacking” sidebar, ➤ 13.)

class SvgDiagram:

 ...

def add(self, component):

 self.diagram.append(component.svg)

For the SvgDiagram class, each instance holds a list of strings in self.diagram,
each one of which is a piece of SVG text. This makes adding new components
(e.g., of type SvgRectangle or SvgText) really easy.

1.1.2. A More Pythonic Abstract Factory

The DiagramFactory and its SvgDiagramFactory subclass, and the classes they
make use of (Diagram, SvgDiagram, etc.), work perfectly well and exemplify the
design pattern.

Nonetheless, our implementation has some deficiencies. First, neither of the
factories needs any state of its own, so we don’t really need to create factory in-
stances. Second, the code for SvgDiagramFactory is almost identical to that of Di-
agramFactory—the only difference being that it returns SvgText rather than Text

instances, and so on—which seems like needless duplication. Third, our top-lev-
el namespace contains all of the classes: DiagramFactory, Diagram, Rectangle, Text,
and all the SVG equivalents. Yet we only really need to access the two factories.
Furthermore,we have been forced to prefix the SVG classnames (e.g., using Svg-

Rectangle rather than Rectangle) to avoid name clashes, which is untidy. (One
solution for avoiding name conflictswould be to put each class in its ownmodule.
However, this approach would not solve the problem of code duplication.)

In this subsection we will address all these deficiencies. (The code is in dia-

gram2.py.)

The first change we will make is to nest the Diagram, Rectangle, and Text classes
inside the DiagramFactory class. This means that these classes must now be
accessed as DiagramFactory.Diagram and so on. We can also nest the equivalent
classes inside the SvgDiagramFactory class, only now we can give them the same
names as the plain text classes since a name conflict is no longer possible—for
example, SvgDiagramFactory.Diagram. We have also nested the constants the
classes depend on, so our only top-level names are now main(), create_diagram(),
DiagramFactory, and SvgDiagramFactory.

class DiagramFactory:

 @classmethod

def make_diagram(Class, width, height):

10 Chapter 1. Creational Design Patterns in Python

return Class.Diagram(width, height)

 @classmethod

def make_rectangle(Class, x, y, width, height, fill="white",

 stroke="black"):

return Class.Rectangle(x, y, width, height, fill, stroke)

 @classmethod

def make_text(Class, x, y, text, fontsize=12):

return Class.Text(x, y, text, fontsize)

 ...

Here is the start of our new DiagramFactory class. The make_…()methodsarenow
all class methods. This means that when they are called the class is passed as
their first argument (rather like self is passed for normal methods). So, in this
case a call to DiagramFactory.make_text()will mean that DiagramFactory is passed
as the Class, and a DiagramFactory.Text object will be created and returned.

This change also means that the SvgDiagramFactory subclass that inherits from
DiagramFactory does not need any of the make_…() methods at all. If we call, say,
SvgDiagramFactory.make_rectangle(), since SvgDiagramFactory doesn’t have that
method the base class DiagramFactory.make_rectangle() method will be called
instead—but the Class passed will be SvgDiagramFactory. This will result in an
SvgDiagramFactory.Rectangle object being created and returned.

def main():

 ...

 txtDiagram = create_diagram(DiagramFactory)

 txtDiagram.save(textFilename)

 svgDiagram = create_diagram(SvgDiagramFactory)

 svgDiagram.save(svgFilename)

These changes also mean that we can simplify our main() function since we no
longer need to create factory instances.

The rest of the code is almost identical to before, the key difference being that
since the constants and non-factory classes are now nested inside the factories,
we must access them using the factory name.

class SvgDiagramFactory(DiagramFactory):

 ...

class Text:

def __init__(self, x, y, text, fontsize):

 x *= SvgDiagramFactory.SVG_SCALE

 y *= SvgDiagramFactory.SVG_SCALE

1.1. Abstract Factory Pattern 11

 fontsize *= SvgDiagramFactory.SVG_SCALE // 10

 self.svg = SvgDiagramFactory.SVG_TEXT.format(**locals())

Here is the SvgDiagramFactory’s nested Text class (equivalent to diagram1.py’s
SvgText class), which shows how the nested constants must be accessed.

1.2. Builder Pattern
The Builder Pattern is similar to the Abstract Factory Pattern in that both
patterns are designed for creating complex objects that are composed of other
objects.Whatmakes theBuilder Pattern distinct is that the builder not only pro-
vides themethods for building a complex object, it also holds the representation
of the entire complex object itself.

This pattern allows the same kind of compositionality as the Abstract Factory
Pattern (i.e., complex objects are built out of one or more simpler objects), but
is particularly suited to cases where the representation of the complex object
needs to be kept separate from the composition algorithms.

We will show an example of the Builder Pattern in a program that can produce
forms—either web forms using HTML, or GUI forms using Python and Tkinter.
Both forms work visually and support text entry; however, their buttons are
non-functional.★ The forms are shown in Figure 1.2; the source code is in
formbuilder.py.

Figure 1.2 The HTML and Tkinter forms onWindows

Let’s begin by looking at the code needed to build each form, starting with the
top-level calls.

 htmlForm = create_login_form(HtmlFormBuilder())

with open(htmlFilename, "w", encoding="utf-8") as file:

 file.write(htmlForm)

 tkForm = create_login_form(TkFormBuilder())

★All the examplesmust strike a balancebetween realismand suitability for learning,and as a result
a few—as in this case—have only basic functionality.

12 Chapter 1. Creational Design Patterns in Python

with open(tkFilename, "w", encoding="utf-8") as file:

 file.write(tkForm)

Here, we have created each form and written it out to an appropriate file.
In both cases we use the same form creation function (create_login_form()),
parameterized by an appropriate builder object.

def create_login_form(builder):

 builder.add_title("Login")

 builder.add_label("Username", 0, 0, target="username")

 builder.add_entry("username", 0, 1)

 builder.add_label("Password", 1, 0, target="password")

 builder.add_entry("password", 1, 1, kind="password")

 builder.add_button("Login", 2, 0)

 builder.add_button("Cancel", 2, 1)

return builder.form()

This function can create any arbitrary HTML or Tkinter form—or any other
kind of form for which we have a suitable builder. The builder.add_title()

method is used to give the form a title. All the other methods are used to add a
widget to the form at a given row and column position.

Both HtmlFormBuilder and TkFormBuilder inherit from an abstract base class,
AbstractFormBuilder.

class AbstractFormBuilder(metaclass=abc.ABCMeta):

 @abc.abstractmethod

def add_title(self, title):

 self.title = title

 @abc.abstractmethod

def form(self):

pass

 @abc.abstractmethod

def add_label(self, text, row, column, **kwargs):

pass

 ...

Any class that inherits this class must implement all the abstract methods. We
have elided the add_entry() and add_button() abstract methods because, apart
from their names, they are identical to the add_label()method. Incidentally,we
are required to make the AbstractFormBuilder have a metaclass of abc.ABCMeta

to allow it to use the abc module’s @abstractmethod decorator. (See §2.4, ➤ 48 for
more on decorators.)

1.2. Builder Pattern 13

Sequence and Mapping Unpacking i
Unpacking means extracting all the items in a sequence or map individually.
One simple use case for sequence unpacking is to extract the first or first few
items, and then the rest. For example:

first, second, *rest = sequence

Here we are assuming that sequence has at least three items: first == se-

quence[0], second == sequence[1], and rest == sequence[2:].

Perhaps the most common uses of unpacking are related to function calls. If
we have a function that expects a certain number of positional arguments,
or particular keyword arguments, we can use unpacking to provide them.
For example:

args = (600, 900)

kwargs = dict(copies=2, collate=False)

print_setup(*args, **kwargs)

The print_setup() function requires two positional arguments (width and
height) and accepts up to two optional keyword arguments (copies and col-

late). Rather than passing the values directly, we have created an args tuple
and a kwargs dict, and used sequence unpacking (*args) andmapping unpack-
ing (**kwargs) to pass in the arguments. The effect is exactly the same as if
we had written, print_setup(600, 900, copies=2, collate=False).

The other use related to function calls is to create functions that can accept
any number of positional arguments, or any number of keyword arguments,
or any number of either. For example:

def print_args(*args, **kwargs):

print(args.__class__.__name__, args,

 kwargs.__class__.__name__, kwargs)

print_args() # prints: tuple () dict {}

print_args(1, 2, 3, a="A") # prints: tuple (1, 2, 3) dict {'a': 'A'}

The print_args() function accepts any number of positional or keyword ar-
guments. Inside the function, args is of type tuple, and kwargs is of type dict.
If we wanted to pass these on to a function called inside the print_args()

function, we could, of course, use unpacking in the call (e.g., function(*args,
**kwargs)). Another common use of mapping unpacking is when calling the
str.format()method—for example,s.format(**locals())—rather than typing
all the key=value arguments manually (e.g., see SvgText.__init__(); 8 ➤).

14 Chapter 1. Creational Design Patterns in Python

Giving a class a metaclass of abc.ABCMeta means that the class cannot be in-
stantiated, and so must be used as an abstract base class. This makes partic-
ular sense for code being ported from, say, C++ or Java, but does incur a tiny
runtime overhead. However, many Python programmers use a more laid back
approach: they don’t use a metaclass at all, and simply document that the class
should be used as an abstract base class.

class HtmlFormBuilder(AbstractFormBuilder):

def __init__(self):

 self.title = "HtmlFormBuilder"

 self.items = {}

def add_title(self, title):

super().add_title(escape(title))

def add_label(self, text, row, column, **kwargs):

 self.items[(row, column)] = ('<td><label for="{}">{}:</label></td>'

 .format(kwargs["target"], escape(text)))

def add_entry(self, variable, row, column, **kwargs):

 html = """<td><input name="{}" type="{}" /></td>""".format(

 variable, kwargs.get("kind", "text"))

 self.items[(row, column)] = html

 ...

Here is the start of the HtmlFormBuilder class. We provide a default title in case
the form is built without one. All the form’s widgets are stored in an items dic-
tionary that uses row, column 2-tuple keys, and the widgets’ HTML as values.

We must reimplement the add_title() method since it is abstract, but since the
abstract versionhasan implementationwe can simply call that implementation.
In this case wemust preprocess the title using the html.escape() function (or the
xml.sax.saxutil.escape() function in Python 3.2 or earlier).

The add_button() method (not shown) is structurally similar to the other
add_…() methods.

def form(self):

 html = ["<!doctype html>\n<html><head><title>{}</title></head>"

"<body>".format(self.title), '<form><table border="0">']

 thisRow = None

for key, value in sorted(self.items.items()):

 row, column = key

if thisRow is None:

 html.append(" <tr>")

elif thisRow != row:

1.2. Builder Pattern 15

 html.append(" </tr>\n <tr>")

 thisRow = row

 html.append(" " + value)

 html.append(" </tr>\n</table></form></body></html>")

return "\n".join(html)

The HtmlFormBuilder.form() method creates an HTML page consisting of a
<form>, inside of which is a <table>, inside of which are rows and columns of
widgets. Once all the pieces have been added to the html list, the list is returned
as a single string (with newline separators to make it more human-readable).

class TkFormBuilder(AbstractFormBuilder):

def __init__(self):

 self.title = "TkFormBuilder"

 self.statements = []

def add_title(self, title):

super().add_title(title)

def add_label(self, text, row, column, **kwargs):

 name = self._canonicalize(text)

 create = """self.{}Label = ttk.Label(self, text="{}:")""".format(

 name, text)

 layout = """self.{}Label.grid(row={}, column={}, sticky=tk.W, \

padx="0.75m", pady="0.75m")""".format(name, row, column)

 self.statements.extend((create, layout))

 ...

def form(self):

return TkFormBuilder.TEMPLATE.format(title=self.title,

 name=self._canonicalize(self.title, False),

 statements="\n ".join(self.statements))

This is an extract from the TkFormBuilder class. We store the form’s widgets as a
list of statements (i.e., as strings of Python code), two statements per widget.

The add_label() method’s structure is also used by the add_entry() and add_but-

ton() methods (neither of which is shown). These methods begin by getting a
canonicalized name for the widget and thenmake two strings:create, which has
the code to create thewidget and layout, which has the code to lay out thewidget
in the form. Finally, the methods add the two strings to the list of statements.

The form()method is very simple: it just returnsa TEMPLATE string parameterized
by the title and the statements.

16 Chapter 1. Creational Design Patterns in Python

 TEMPLATE = """#!/usr/bin/env python3

import tkinter as tk

import tkinter.ttk as ttk

class {name}Form(tk.Toplevel): ➊

 def __init__(self, master):

 super().__init__(master)

 self.withdraw() # hide until ready to show

 self.title("{title}") ➋

 {statements} ➌

 self.bind("<Escape>", lambda *args: self.destroy())

 self.deiconify() # show when widgets are created and laid out

 if self.winfo_viewable():

 self.transient(master)

 self.wait_visibility()

 self.grab_set()

 self.wait_window(self)

if __name__ == "__main__":

 application = tk.Tk()

 window = {name}Form(application) ➍

 application.protocol("WM_DELETE_WINDOW", application.quit)

 application.mainloop()

"""

The form is given a unique class name based on the title (e.g., LoginForm, ➊; ➍).
The window title is set early on (e.g., “Login”, ➋), and this is followed by all the
statements to create and lay out the form’s widgets (➌).

The Python code produced by using the template can be run stand-alone thanks
to the if __name__ …block at the end.

def _canonicalize(self, text, startLower=True):

 text = re.sub(r"\W+", "", text)

if text[0].isdigit():

return "_" + text

return text if not startLower else text[0].lower() + text[1:]

The code for the _canonicalize() method is included for completeness. Inciden-
tally, although it looks as if we create a fresh regex every time the function is
called, in practice Python maintains a fairly large internal cache of compiled
regexes, so for the second and subsequent calls, Python just looks up the regex
rather than recompiling it.★

1.3. FactoryMethod Pattern 17

1.3. Factory Method Pattern

The Factory Method Pattern is intended to be used when we want subclasses to
choose which classes they should instantiate when an object is requested. This
is useful in its own right, but can be taken further and used in cases where we
cannot know the class in advance (e.g., the class to use is based on what we read
from a file or depends on user input).

In this section we will review a program that can be used to create game boards
(e.g., a checkers or chess board). The program’s output is shown in Figure 1.3,
and the four variants of the source code are in the files gameboard1.py…game-

board4.py.✪

We want to have an abstract board class that can be subclassed to create game-
specific boards. Each board subclasswill populate itself with its initial layout of
pieces. And we want every unique kind of piece to belong to its own class (e.g.,
BlackDraught, WhiteDraught, BlackChessBishop, WhiteChessKnight, etc.). Inciden-
tally, for individual pieces, we have used class names like WhiteDraught rather
than, say, WhiteChecker, to match the names used in Unicode for the correspond-
ing characters.

Figure 1.3 The checkers and chess game boards on a Linux console

★ This book assumes a basic knowledge of regexes and Python’s re module. Readers needing to
learn this can download a free PDF of “Chapter 13. Regular Expressions” from this author’s book
Programming in Python 3,Second Edition; see www.qtrac.eu/py3book.html.
✪Unfortunately,Windowsconsoles’ UTF-8 support is rather poor,withmany charactersunavailable,
even if code page 65001 is used. So, forWindows, the programswrite their output to a temporary file
and print the filename they used. None of the standard Windows monospaced fonts seems to have
the checkers or chess piece characters, although most of the variable-width fonts have the chess
pieces. The free and open-source DejaVu Sans font has them all (dejavu-fonts.org).

http://www.qtrac.eu/py3book.html

18 Chapter 1. Creational Design Patterns in Python

We will begin by reviewing the top-level code that instantiates and prints the
boards. Next, we will look at the board classes and some of the piece classes—
starting with hard-coded classes. Then we will review some variations that
allow us to avoid hard-coding classes and at the same time use fewer lines of
code.

def main():

 checkers = CheckersBoard()

print(checkers)

 chess = ChessBoard()

print(chess)

This function is common to all versions of the program. It simply creates each
type of board and prints it to the console, relying on the AbstractBoard’s __str__()
method to convert the board’s internal representation into a string.

BLACK, WHITE = ("BLACK", "WHITE")

class AbstractBoard:

def __init__(self, rows, columns):

 self.board = [[None for _ in range(columns)] for _ in range(rows)]

 self.populate_board()

def populate_board(self):

raise NotImplementedError()

def __str__(self):

 squares = []

for y, row in enumerate(self.board):

for x, piece in enumerate(row):

 square = console(piece, BLACK if (y + x) % 2 else WHITE)

 squares.append(square)

 squares.append("\n")

return "".join(squares)

The BLACK and WHITE constants are used here to indicate each square’s back-
ground color. In later variants they are also used to indicate each piece’s color.
This class is quoted from gameboard1.py, but it is the same in all versions.

It would have beenmore conventional to specify the constants by writing:BLACK,
WHITE = range(2). However, using strings is much more helpful when it comes to
debugging error messages, and should be just as fast as using integers thanks
to Python’s smart interning and identity checks.

The board is representedby a list of rowsof single-character strings—or None for
unoccupied squares. The console() function (not shown, but in the source code),

1.3. FactoryMethod Pattern 19

returnsa string representing the given piece on the given background color. (On
Unix-like systems this string includes escape codes to color the background.)

We could have made the AbstractBoard a formally abstract class by giving it a
metaclassof abc.ABCMeta (aswe did for the AbstractFormBuilder class;12 ➤).How-
ever, here we have chosen to use a different approach, and simply raise a NotIm-

plementedError exception for any methods we want subclasses to reimplement.

class CheckersBoard(AbstractBoard):

def __init__(self):

super().__init__(10, 10)

def populate_board(self):

for x in range(0, 9, 2):

for row in range(4):

 column = x + ((row + 1) % 2)

 self.board[row][column] = BlackDraught()

 self.board[row + 6][column] = WhiteDraught()

This subclass is used to create a representation of a 10 × 10 international
checkers board. This class’s populate_board() method is not a factory method,
since it uses hard-coded classes; it is shown in this form as a step on the way to
making it into a factory method.

class ChessBoard(AbstractBoard):

def __init__(self):

super().__init__(8, 8)

def populate_board(self):

 self.board[0][0] = BlackChessRook()

 self.board[0][1] = BlackChessKnight()

 ...

 self.board[7][7] = WhiteChessRook()

for column in range(8):

 self.board[1][column] = BlackChessPawn()

 self.board[6][column] = WhiteChessPawn()

This version of the ChessBoard’s populate_board()method—just like the Checkers-
Board’s one—is not a factory method, but it does illustrate how the chess board is
populated.

class Piece(str):

 __slots__ = ()

20 Chapter 1. Creational Design Patterns in Python

This class serves as a base class for pieces. We could have simply used str, but
that would not have allowed us to determine if an object is a piece (e.g., using
isinstance(x, Piece)). Using __slots__ = () ensures that instances have no data,
a topic we’ll discuss later on (§2.6, ➤ 65).

class BlackDraught(Piece):

 __slots__ = ()

def __new__(Class):

return super().__new__(Class, "\N{black draughts man}")

class WhiteChessKing(Piece):

 __slots__ = ()

def __new__(Class):

return super().__new__(Class, "\N{white chess king}")

These two classes aremodels for the pattern used for all the piece classes. Every
one is an immutable Piece subclass (itself a str subclass) that is initialized
with a one-character string holding the Unicode character that represents
the relevant piece. There are fourteen of these tiny subclasses in all, each one
differing only by its class name and the string it holds: clearly, it would be nice
to eliminate all this near-duplication.

def populate_board(self):

for x in range(0, 9, 2):

for y in range(4):

 column = x + ((y + 1) % 2)

for row, color in ((y, "black"), (y + 6, "white")):

 self.board[row][column] = create_piece("draught",

 color)

This new version of the CheckersBoard.populate_board() method (quoted from
gameboard2.py) is a factory method, since it depends on a new create_piece() fac-
tory function rather than on hard-coded classes. The create_piece() function
returns an object of the appropriate type (e.g., a BlackDraught or a WhiteDraught),
depending on its arguments. This version of the program has a similar Chess-

Board.populate_board() method (not shown), which also uses string color and
piece names and the same create_piece() function.

def create_piece(kind, color):

if kind == "draught":

return eval("{}{}()".format(color.title(), kind.title()))

return eval("{}Chess{}()".format(color.title(), kind.title()))

1.3. FactoryMethod Pattern 21

This factory function uses the built-in eval() function to create class instances.
For example, if the arguments are "knight" and "black", the string to be eval()’d
will be "BlackChessKnight()". Although this works perfectly well, it is potentially
risky since pretty well anything could be eval()’d into existence—we will see a
solution, using the built-in type() function, shortly.

for code in itertools.chain((0x26C0, 0x26C2), range(0x2654, 0x2660)):

 char = chr(code)

 name = unicodedata.name(char).title().replace(" ", "")

if name.endswith("sMan"):

 name = name[:-4]

exec("""\

class {}(Piece):

 __slots__ = ()

 def __new__(Class):

 return super().__new__(Class, "{}")""".format(name, char))

Instead of writing the code for fourteen very similar classes, here we create all
the classes we need with a single block of code.

The itertools.chain() function takes one or more iterables and returns a single
iterable that iterates over the first iterable it was passed, then the second, and
so on. Here, we have given it two iterables, the first a 2-tuple of the Unicode
code points for black and white checkers pieces, and the second a range-object (in
effect, a generator) for the black and white chess pieces.

For each code point we create a single character string (e.g., " ") and then
create a class name based on the character’s Unicode name (e.g., “black chess
knight” becomes BlackChessKnight). Once we have the character and the name
we use exec() to create the class we need. This code block is a mere dozen
lines—compared with around a hundred lines for creating all the classes indi-
vidually.

Unfortunately, though, using exec() is potentially even more risky than using
eval(), so we must find a better way.

DRAUGHT, PAWN, ROOK, KNIGHT, BISHOP, KING, QUEEN = ("DRAUGHT", "PAWN",

"ROOK", "KNIGHT", "BISHOP", "KING", "QUEEN")

class CheckersBoard(AbstractBoard):

 ...

def populate_board(self):

for x in range(0, 9, 2):

for y in range(4):

 column = x + ((y + 1) % 2)

22 Chapter 1. Creational Design Patterns in Python

for row, color in ((y, BLACK), (y + 6, WHITE)):

 self.board[row][column] = self.create_piece(DRAUGHT,

 color)

This CheckersBoard.populate_board() method is from gameboard3.py. It differs
from the previous version in that the piece and color are both specified using
constants rather than easy to mistype string literals. Also, it uses a new cre-

ate_piece() factory to create each piece.

An alternative CheckersBoard.populate_board() implementation is provided
in gameboard4.py (not shown)—this version uses a subtle combination of a list
comprehension and a couple of itertools functions.

class AbstractBoard:

 __classForPiece = {(DRAUGHT, BLACK): BlackDraught,

 (PAWN, BLACK): BlackChessPawn,

 ...

 (QUEEN, WHITE): WhiteChessQueen}

 ...

def create_piece(self, kind, color):

return AbstractBoard.__classForPiece[kind, color]()

This version of the create_piece() factory (also from gameboard3.py, of course)
is a method of the AbstractBoard that the CheckersBoard and ChessBoard classes
inherit. It takes two constants and looks them up in a static (i.e., class-level)
dictionary whose keys are (piece kind, color) 2-tuples, and whose values are class
objects. The looked-up value—a class—is immediately called (using the () call
operator), and the resulting piece instance is returned.

The classes in the dictionary could have been individually coded (as they were in
gameboard1.py) or created dynamically but riskily (as they were in gameboard2.py).
But for gameboard3.py, we have created them dynamically and safely, without
using eval() or exec().

for code in itertools.chain((0x26C0, 0x26C2), range(0x2654, 0x2660)):

 char = chr(code)

 name = unicodedata.name(char).title().replace(" ", "")

if name.endswith("sMan"):

 name = name[:-4]

 new = make_new_method(char)

 Class = type(name, (Piece,), dict(__slots__=(), __new__=new))

setattr(sys.modules[__name__], name, Class) # Can be done better!

1.3. FactoryMethod Pattern 23

This code has the same overall structure as the code shown earlier for creating
the fourteen piece subclasses that the program needs (21 ➤). Only this time
instead of using eval() and exec() we take a somewhat safer approach.

Once we have the character and name we create a new function (called new())
by calling a custom make_new_method() function. We then create a new class
using the built-in type() function. To create a class thisway wemust pass in the
type’s name, a tuple of its base classes (in this case, there’s just one, Piece), and
a dictionary of the class’s attributes. Here, we have set the __slots__ attribute
to an empty tuple (to stop the class’s instances having a private __dict__ that
isn’t needed), and set the __new__method attribute to the new() function we have
just created.

Finally, we use the built-in setattr() function to add to the current module
(sys.modules[__name__]) the newly created class (Class) as an attribute called name

(e.g., "WhiteChessPawn"). In gameboard4.py, we have written the last line of this
code snippet in a nicer way:

globals()[name] = Class

Here, we have retrieved a reference to the dict of globals and added a new item
whose key is the name held in name, and whose value is our newly created Class.
This does exactly the same thing as the setattr() line used in gameboard3.py.

def make_new_method(char): # Needed to create a fresh method each time

def new(Class): # Can't use super() or super(Piece, Class)

return Piece.__new__(Class, char)

return new

This function is used to create a new() function (that will become a class’s
__new__() method).We cannot use a super() call since at the time the new() func-
tion is created there is no class context for the super() function to access. Note
that the Piece class (19 ➤) doesn’t have a __new__() method—but its base class
(str) does, so that is the method that will actually be called.

Incidentally, the earlier code block’s new = make_new_method(char) line and the
make_new_method() function just shown could both be deleted, so long as the line
that called the make_new_method() function was replaced with these:

 new = (lambda char: lambda Class: Piece.__new__(Class, char))(char)

 new.__name__ = "__new__"

Here, we create a function that creates a function and immediately calls the
outer function parameterized by char to return a new() function. (This code is
used in gameboard4.py.)

24 Chapter 1. Creational Design Patterns in Python

All lambda functions are called "lambda", which isn’t very helpful for debugging.
So, here, we explicitly give the function the name it should have, once it is
created.

def populate_board(self):

for row, color in ((0, BLACK), (7, WHITE)):

for columns, kind in (((0, 7), ROOK), ((1, 6), KNIGHT),

 ((2, 5), BISHOP), ((3,), QUEEN), ((4,), KING)):

for column in columns:

 self.board[row][column] = self.create_piece(kind,

 color)

for column in range(8):

for row, color in ((1, BLACK), (6, WHITE)):

 self.board[row][column] = self.create_piece(PAWN, color)

For completeness, here is the ChessBoard.populate_board() method from game-

board3.py (and gameboard4.py). It depends on color and piece constants (which
could be provided by a file or come from menu options, rather than being hard-
coded). In the gameboard3.py version, this uses the create_piece() factory func-
tion shown earlier (22 ➤). But for gameboard4.py, we have used our final cre-
ate_piece() variant.

def create_piece(kind, color):

 color = "White" if color == WHITE else "Black"

 name = {DRAUGHT: "Draught", PAWN: "ChessPawn", ROOK: "ChessRook",

 KNIGHT: "ChessKnight", BISHOP: "ChessBishop",

 KING: "ChessKing", QUEEN: "ChessQueen"}[kind]

return globals()[color + name]()

This is the gameboard4.py version’s create_piece() factory function. It uses the
same constants as gameboard3.py, but rather than keeping a dictionary of class
objects it dynamically finds the relevant class in the dictionary returned by the
built-in globals() function. The looked-up class object is immediately called and
the resulting piece instance is returned.

1.4. Prototype Pattern

The PrototypePattern is used to create new objects by cloning an original object,
and then modifying the clone.

As we have already seen, especially in the previous section, Python supports
a wide variety of ways of creating new objects, even when their types are only
known at runtime—and even if we have only their types’ names.

1.4. Prototype Pattern 25

class Point:

 __slots__ = ("x", "y")

def __init__(self, x, y):

 self.x = x

 self.y = y

Given this classic Point class, here are seven ways to create new points:

def make_object(Class, *args, **kwargs):

return Class(*args, **kwargs)

point1 = Point(1, 2)

point2 = eval("{}({}, {})".format("Point", 2, 4)) # Risky

point3 = getattr(sys.modules[__name__], "Point")(3, 6)

point4 = globals()["Point"](4, 8)

point5 = make_object(Point, 5, 10)

point6 = copy.deepcopy(point5)

point6.x = 6

point6.y = 12

point7 = point1.__class__(7, 14) # Could have used any of point1 to point6

Point point1 is created conventionally (and statically) using the Point class ob-
ject as a constructor.★ All the other points are created dynamically, with point2,
point3, and point4 parameterized by the class name. As the creation of point3

(and point4)makes clear, there is no need to use a risky eval() to create instances
(as we did for point2). The creation of point4 works exactly the same way as for
point3, but using nicer syntax by relying on Python’s built-in globals() func-
tion. Point point5 is created using a generic make_object() function that accepts
a class object and the relevant arguments. Point point6 is created using the
classic prototype approach: first, we clone an existing object, then we initialize
or configure it. Point point7 is created by using point point1’s class object, plus
new arguments.

Point point6 shows that Python has built-in support for prototyping using the
copy.deepcopy() function. However, point7 shows that Python can do better than
prototyping: instead of needing to clone an existing object and modify the clone,
Python gives us access to any object’s class object, so that we can create a new
object directly and much more efficiently than by cloning.

★ Strictly speaking, an __init__() method is an initializer, and a __new__() method is a constructor.
However, since we almost always use __init__() and rarely use __new__(), we will refer to them both
as “constructors” throughout the book.

26 Chapter 1. Creational Design Patterns in Python

1.5. Singleton Pattern

The Singleton Pattern is used when we need a class that has only a single
instance that is the one and only instance accessed throughout the program.

For some object-oriented languages, creating a singleton can be surprisingly
tricky, but this isn’t the case for Python. The Python Cookbook (code.active-
state.com/recipes/langs/python/) provides an easy-to-use Singleton class that
any class can inherit to become a singleton—and a Borg class that achieves the
same end in a rather different way.

However, the easiest way to achieve singleton functionality in Python is to
create a module with the global state that’s needed kept in private variables
and access provided by public functions. For example, in Chapter 7’s currency

example (➤ 237), we need a function that will return a dictionary of currency
rates (name keys, conversion rate values). We may want to call the function
several times, but in most cases we want the rates fetched only once. We can
achieve this by using the Singleton Pattern.

_URL = "http://www.bankofcanada.ca/stats/assets/csv/fx-seven-day.csv"

def get(refresh=False):

if refresh:

 get.rates = {}

if get.rates:

return get.rates

with urllib.request.urlopen(_URL) as file:

for line in file:

 line = line.rstrip().decode("utf-8")

if not line or line.startswith(("#", "Date")):

continue

 name, currency, *rest = re.split(r"\s*,\s*", line)

 key = "{} ({})".format(name, currency)

try:

 get.rates[key] = float(rest[-1])

except ValueError as err:

print("error {}: {}".format(err, line))

return get.rates

get.rates = {}

This is the code for the currency/Rates.py module (as usual, excluding the
imports). Here, we create a rates dictionary as an attribute of the Rates.get()

function—this is our private value. When the public get() function is called for
the first time (or if it is called with refresh=True), we download the rates afresh;
otherwise, we simply return the rates we most recently downloaded. There is

http://www.bankofcanada.ca/stats/assets/csv/fx-seven-day.csv

1.5. Singleton Pattern 27

no need for a class, yet we have still got a singleton data value—the rates—and
we could easily add more singleton values.

All of the creational design patterns are straightforward to implement in
Python. The Singleton Pattern can be implemented directly by using a module,
and the Prototype Pattern is redundant (although still doable using the copy

module), since Python provides dynamic access to class objects. The most use-
ful creational design patterns for Python are the Factory and Builder Patterns;
these can be implemented in a number of ways. Once we have created basic
objects, we often need to create more complex objects by composing or adapting
other objects. We’ll look at how this is done in the next chapter.

This page intentionally left blank

Index

Symbols
black chess knight character, 21

!= not equal operator, 48
& bitwise and operator, 133
() call, generator, and tuple operator,

22; see also __call__()

* multiplication and sequence un-
packing operator, 13, 26, 30–31,
43, 49, 70, 109

** mapping unpacking operator, 13,
222, 241–242, 248

< less than operator, 48; see also
__lt__()

<= less than or equal operator, 48
== equal operator, 48; see also

__eq__()

> greater than operator, 48
>= greater than or equal operator,

48
>> bitwise right shift operator, 133
@ at symbol, 48, 52; see also decora-

tor

A
abc (module), 30–32, 35

ABCMeta (type); see top-level entry
abstractmethod(), 12–14, 42, 120
abstractproperty(), 42

ABCMeta (type; abc module), 12–14,
30–32, 35, 42, 120

abs() (built-in), 130
abspath() (os.path module), 146
abstractmethod() (abc module),

12–14, 42, 120

abstractproperty() (abc module), 42
adding properties, 57–58
after() (tkinter module), 214, 239,

261
all() (built-in), 31, 36
antialiasing, 266
append() (list type), 43, 102, 274
application

design, 216
dialog-style, 237–244
main-window–style, 253–261
modal, 214, 236–237

argparse (module), 145–146, 157,
209

arguments
keyword and positional, 13, 50,

51–52
maximum, 134

array (module), 124; see also numpy

module
Array (type; multiprocessingmodule),

144, 154
as_completed() (concurrent.futures

module), 153–154
assert (statement), 30, 37, 55, 69, 82,

127, 131
AssertionError (exception), 30
ast (module)

literal_eval(), 88
asynchronous I/O, 142
atexit (module)

register(), 67, 187, 193
Atom format, 159
atomic operations, 143
AttributeError (exception), 56, 103,

113

289

290 Index

B
Bag1.py (example), 98–99
Bag2.py (example), 100
Bag3.py (example), 100
barchart1.py (example), 35–40
barchart2.py (example), 38, 124
barchart3.py (example), 36
basename() (os.path module), 136,

176
benchmark_Scale.py (example), 194
bind() (tkinter.ttk.Widget), 169, 242,

249, 252, 257; see also keyboard
handling

binding, late, 58
bool (type; built-in), 46, 55, 102, 113
bound method, 63, 83, 102
Bresenham’s line algorithm,

130–131
built-in, see also statements

abs(), 130
all(), 31, 36
bool (type); see top-level entry
callable(), 32, 82
chr(), 21, 87, 95, 136
@classmethod, 9–10, 30–31, 36,

45–46, 127
dict (type); see top-level entry
dir(), 86–87
divmod(), 118, 278
enumerate(), 8, 51, 136, 150
eval(), 20–21, 25, 84–88; see also

ast.literal_eval()

exec(), 21, 88–91
__file__, 156, 162, 181, 256
getattr(), 25, 56, 58, 87, 113, 129,

248
globals(), 23, 24, 25, 86, 88
id(), 66
input(), 85–86, 213
isinstance(), 20, 30, 31, 51, 55, 58,

133, 207, 278
iter(), 44, 47, 95–97, 99
len(), 32, 63

list (type); see top-level entry
locals(), 8, 9, 13, 86
map(), 123
max(), 35, 151
min(), 151, 273
__name__, 16, 50, 146
next(), 76, 77
NotImplemented, 31, 36
open(), 11, 64, 120, 136, 160
ord(), 87, 95
@property, 42, 44, 48, 54, 56, 58,

60, 104, 110, 115, 278
range(), 18, 21
reversed(), 83
round(), 111, 131, 132, 195
setattr(), 22–23, 56, 58, 59, 113
sorted(), 14, 87, 208, 244
@staticmethod, 120, 121, 129, 133
str (type); see top-level entry
sum(), 99, 163
super(), 14, 19, 20, 23, 44, 76, 110,

168, 234
type(), 22–23, 30, 86
zip(), 51, 138

Button (type; tkinter.ttk module),
234; inherits Widget

bytes (type), 66, 67, 266
decode(), 26, 93, 185, 190
find(), 190

C
C foreign function interface for

Python (CFFI), 179, 183
C/C++, 179, 182, 187, 189
c_char_p (ctypes module), 183–184,

185
c_int (ctypes module), 184, 185
c_void_p (ctypes module), 183–184
calculator.py (example), 84–88
__call__() (special method), 82,

96–97, 113; see also () operator
call() (tkinter.Tk), 239
callable() (built-in), 32, 82

Index 291

callback; see function reference
Canvas (type; tkinter module), 257
cast, 192, 197
CDLL() (ctypes module), 183
CFFI (C Foreign Function Interface

for Python), 179, 183
cget() (tkinter.ttk.Widget), 171, 241,

244
chain() (itertools module), 21, 46,

109
ChainMap (type; collections module),

30–31, 36
checking interfaces, 30–32, 35–36
choice() (random module), 206, 220,

274
chr() (built-in), 21, 87, 95, 136
cimport (Cython), 190, 195
class

attributes, see also special meth-
ods

__class__, 25, 222
__doc__, 50
__mro__, 30–31, 36
__slots__, 19–20, 22–23, 65

decorator, 36, 48, 54–59
dynamic creation, 20–24
methods, 10; see also __new__()

nested, 121–122
object, 25, 120

__class__ (class attribute), 25, 222
classes and windows, 234
@classmethod (built-in), 9–10, 30–31,

36, 45–46, 127
cloning, object, 24–25
close button, 166, 177
closure, 52, 62–63, 77, 81
code generation, 91–94
collections (module)

ChainMap (type), 30–31, 36
Counter (type), 100
defaultdict (type), 102, 114, 134
namedtuple (type), 88, 147, 160,

196, 205

OrderedDict (type), 85–86, 87
colors; see Image example and cyImage

example
Combobox (type; tkinter.ttk module),

234, 240; inherits Widget
command-line parsing; see argparse

module
compile() (re module), 120
comprehensions, list, 18, 38, 49, 80,

123
concatenation, tuple, 109
concurrent.futures (module),

152–154
as_completed(), 153–154, 163
Executor (type), 152, 174
Future (type), 152, 153, 173–174,

175
ProcessPoolExecutor (type), 152,

153, 173
ThreadPoolExecutor (type), 152,

154, 162
wait(), 173–174

conditional expression, 18, 47, 115,
130, 135, 137, 206, 244

config() (tkinter.ttk.Widget), 170,
176, 243, 244, 247, 257; alias of
configure()

connect() (rpyc module), 227, 229
connect_by_service() (rpyc module),

228
ConnectionError (exception), 212,

213, 215, 216, 218, 228, 229
constants, 18
constructor; see __init__() and

__new__()

__contains__() (special method), 99,
223

context manager; see with statement
convert, 192, 197
copy (module)

deepcopy(), 25, 144, 154
coroutine, 76–79, 104–106, 116
@coroutine, 77, 78, 105

292 Index

Counter (type; collections module),
100

cProfile (module), 193–194, 201
cpu_count() (multiprocessing mod-

ule), 145–146, 157, 173
cpython.pycapsule (module); see py-

capsule module
create_command() (tkinter.Tk),

258–259
create_string_buffer() (ctypes mod-

ule), 182, 185, 186
ctypes (module), 180–187

c_char_p, 183–184, 185
c_int, 184, 185
c_void_p, 183–184
CDLL(), 183
create_string_buffer(), 182, 185,

186
POINTER(), 184
util (module)

find_library(), 183
currency (example), 26, 237–244
cyImage (example), 151, 198–201; see

also Image example
cylinder painting, 268
cylinder1.pyw (example), 264–270
cylinder2.pyw (example), 265,

270–272
Cython, 52, 179, 187–201; see also

pycapsule module
cimport, 190, 195

D
dæmon, 149, 150, 157, 158, 173
data wrapper, thread-safe, 219–224
datatype; see class
date() (datetime.datetime type), 84
datetime (type; datetime module)

date(), 84
fromtimestamp(), 108–109
isoformat(), 208–209, 226
now(), 208–209, 213, 218, 226
strptime(), 84, 207, 227

DateTime (type; xmlrpc.client mod-
ule), 207

DBM database; see shelve module
decode() (bytes type), 26, 93, 185,

190
decorator

class, 36, 48, 54–59
@coroutine, 77, 78
function and method, 48–53

deepcopy() (copy module), 25, 144,
154

defaultdict (type; collections mod-
ule), 102, 114, 134

deiconify() (tkinter.Tk), 166,
250–252, 255

del (statement), 98, 115, 126
__delitem__() (special method), 98,

223
descriptor, 67
diagram1.py (example), 6–9
diagram2.py (example), 9–11
dialog, 244–253

dumb, 236
modal, 245–250
modeless, 236–237, 244, 250–253
smart, 236, 245
-style applications, 237–244
vs.main windows, 235

dict (type), 26, 88, 98, 221, 223,
241–242, 248

get(), 14, 88, 98, 103, 115, 186,
191, 222

items(), 14, 58, 87, 208
keys(), 223
values(), 99, 187, 224

dictionary, thread-safe, 221–224
dir() (built-in), 86–87
dirname() (os.path module), 126, 156,

162, 181, 216, 256
DISABLED (tkinter module), 170
distutils (module), 188
divmod() (built-in), 118, 278
__doc__ (class attribute), 50

Index 293

dock window, 261–262
documentation, tkinter module, 234
domain specific language, 84
draw() (pyglet.graphics module), 271
drawing; see painting
DSL (Domain Specific Language),

84
dumb dialog, 236
dynamic class creation, 20–24
dynamic code generation, 91–94
dynamic instance creation, 24–25

E
encode() (str type), 185, 186, 190,

191, 266
endswith() (str type), 62, 120, 121
__enter__() (special method), 61,

279
enumerate() (built-in), 8, 51, 136, 150
EOFError (exception), 85–86
__eq__() (special method), 48; see

also ==
escape() (html module), 14, 33
eval() (built-in), 20–21, 25, 84–88;

see also ast.literal_eval()

evaluation, lazy, 60
events, 266; see also keyboard han-

dling and mouse handling
loop, 166, 167; see also glutMain-

Loop() and mainloop()

real and virtual, 242–243
examples

Bag1.py, 98–99
Bag2.py, 100
Bag3.py, 100
barchart1.py, 35–40
barchart2.py, 38, 124
barchart3.py, 36
benchmark_Scale.py, 194
calculator.py, 84–88
currency, 26, 237–244

cyImage, 151, 198–201; see also Im-
age example

cylinder1.pyw, 264–270
cylinder2.pyw, 265, 270–272
diagram1.py, 6–9
diagram2.py, 9–11
formbuilder.py, 11–16
gameboard1.py, 17–20
gameboard2.py, 17–18, 20–21
gameboard3.py, 17–18, 22–23, 24
gameboard4.py, 17–18, 23–24
genome1.py, 88–91
genome2.py, 91–94
genome3.py, 91–94
gravitate, 245–261
gravitate2, 261
gravitate3d.pyw, 272–282
hello.pyw, 233–235
Hyphenate1.py, 181–187
Hyphenate2, 188–193
Image, 124–139, 151, 193, 199; see

also cyImage example
imageproxy1.py, 68–71
imageproxy2.py, 69, 70
ImageScale, 164–177
imagescale.py, 199
imagescale-c.py, 145
imagescale-cy.py, 199
imagescale-m.py, 145, 152–154,

164, 199
imagescale-q-m.py, 145, 147–152
imagescale-s.py, 145, 199
imagescale-t.py, 145
mediator1.py, 59, 101–104
mediator1d.py, 59
mediator2.py, 104–106
mediator2d.py, 106
Meter.py, 205–208
meter-rpc.pyw, 214–228
meter-rpyc.pyw, 228–229
meterclient-rpc.py, 210–219
meterclient-rpyc.py, 227–228
MeterLogin.py, 214–215

294 Index

examples (continued)
MeterMT.py, 219–224
meterserver-rpc.py, 208–210
meterserver-rpyc.py, 225–227
multiplexer1.py, 112–115
multiplexer2.py, 115–116
multiplexer3.py, 116
observer.py, 107–111
pointstore1.py, 65–67
pointstore2.py, 65–67
render1.py, 29–34
render2.py, 32
stationery1.py, 40–45
stationery2.py, 45–47
tabulator1.py, 117
tabulator2.py, 117
tabulator3.py, 116–119
tabulator4.py, 118
texteditor, 261–262
texteditor2, 261–262
Unpack.py, 60–64
whatsnew-q.py, 155, 156–161
whatsnew-t.py, 155, 161–164
wordcount1.py, 119–122
wordcount2.py, 120

Exception (exception), 87, 128, 167,
183

exceptions, 207
AssertionError, 30
AttributeError, 56, 103, 113
ConnectionError, 212, 213, 215,

216, 218, 228, 229
EOFError, 85–86
Exception, 87, 128, 167, 183
ImportError, 125, 126, 137, 199
IndexError, 95, 130
KeyboardInterrupt, 148, 154, 160,

163, 209
KeyError, 98, 206
NotImplementedError, 18, 19, 120
StopIteration, 96, 97
TypeError, 30, 49, 89
ValueError, 26, 51, 113

exec() (built-in), 21, 88–91
executable module, 238
executable (sys module), 92, 216
Executor (type; concurrent.futures

module), 152, 174
exists() (os.path module), 146, 172,

181, 217
__exit__() (special method), 61, 279
exit() (sys module), 91
expression, conditional, 18, 47, 115,

130, 135, 137, 206, 244
expression, generator; see generator
extend() (list type), 15, 46

F
feedparser (module), 159
__file__ (built-in), 156, 162, 181,

256
filedialog (tkinter module), 166
fill() (textwrap module), 32
find() (bytes type), 190
find_library() (ctypes.util module),

183
findall() (re module), 90
flicker, 166
focus() (tkinter.ttk.Widget), 168,

169, 217, 239
format() (str type), 13, 21, 32, 37, 92,

109
format_map() (str type), 8–9
formbuilder.py (example), 11–16
Frame (type; tkinter.ttk module),

166, 168, 234, 247, 255, 260; in-
herits Widget

fromiter() (numpy module), 128
fromtimestamp() (datetime.datetime

type), 108–109
function, 83

arguments, 13, 50
decorators, 48–53
nested, 58
object, 63

Index 295

reference, 60–62, 70, 87, 112
functools (module)

total_ordering(), 48
wraps(), 50, 51, 77

functor; see __call__()
Future (type; concurrent.futures

module), 152, 153, 173–174, 175

G
gameboard1.py (example), 17–20
gameboard2.py (example), 17–18,

20–21
gameboard3.py (example), 17–18,

22–23, 24
gameboard4.py (example), 17–18,

23–24
generator, 76–79, 97, 100, 139, 153,

160
expression, 44, 100
send(), 77, 78, 105–106, 112
throw(), 77

genome1.py (example), 88–91
genome2.py (example), 91–94
genome3.py (example), 91–94
geometry() (tkinter.Tk), 253
get()

dict (type), 14, 88, 98, 103, 115,
186, 191, 222

multiprocessing.Queue (type), 149,
150

queue.Queue (type), 158
tkinter.StringVar (type), 170,

172, 218, 243, 249
getattr() (built-in), 25, 56, 58, 87,

113, 129, 248
__getattr__() (special method), 66
__getitem__() (special method),

95–96, 222
getpass() (getpass module), 212
getpass (module)

getpass(), 212
getuser(), 212

gettempdir() (tempfile module), 39,
65, 161, 216

getuser() (getpass module), 212
GIF (image format), 38, 124, 239
GIL (Global Interpreter Lock), 142,

221
GL (OpenGL module), 265

glBegin(), 268, 271
glClear(), 267, 275
glClearColor(), 267
glColor3f(), 268, 271
glColor3ub(), 268, 277
glColorMaterial(), 267
glDisable(), 279
glEnable(), 267, 279
glEnd(), 268, 271
GLfloat, 267
glHint(), 267
glLightfv(), 267
glLoadIdentity(), 269, 275
glMaterialf(), 267
glMaterialfv(), 267
glMatrixMode(), 267, 269, 275
glOrtho(), 275
glPopMatrix(), 268, 276, 277
glPushMatrix(), 267, 268, 276,

277
glReadPixels(), 280
glRotatef(), 267, 276
glShadeModel(), 279
glTranslatef(), 267, 268, 277
GLubyte, 280
glVertex3f(), 268, 271
glViewport(), 269, 275

global grab, 236
global interpreter lock (GIL), 142,

221
global modal, 235–237
globals() (built-in), 23, 24, 25, 86, 88
GLU (OpenGL module), 265

gluCylinder(), 268
gluDeleteQuadric(), 268, 276
gluNewQuadric(), 268, 276

296 Index

GLU (OpenGL module) (continued)
gluPerspective(), 269
gluQuadricNormals(), 268, 276
gluSphere(), 277

GLUT (OpenGL module), 265
glutDestroyWindow(), 269
glutDisplayFunc(), 266, 276
glutDisplayString(), 266
glutInit(), 265
glutInitWindowSize(), 265
glutKeyboardFunc(), 266, 269
glutMainLoop(), 266
glutPostRedisplay(), 269
glutReshapeFunc(), 266, 275
glutSpecialFunc(), 266

grab, 236
gravitate (example), 245–261
gravitate2 (example), 261
gravitate3d.pyw (example), 272–282
grid() (tkinter.ttk.Widget), 235,

241–242, 248, 260
gzip (module), 64

H
hashlib (module), 206
hello.pyw (example), 233–235
hierarchy, object, 40–48
hierarchy, ownership, 234
html (module)

escape(), 14, 33
HTMLParser (html.parser module),

121–122
Hyphenate1.py (example), 181–187
Hyphenate2 (example), 188–193
hypot() (math module), 85

I
id() (built-in), 66
Image (example), 124–139, 151, 193,

199; see also cyImage example
image formats, 38; see also PhotoIm-

age

GIF, 38, 124, 239
PGM, 124, 239
PNG, 38, 39, 124, 125, 137–139,

239
PPM, 124, 239
SVG, 6
XBM, 39, 125, 136
XPM, 39, 125, 135–137

image references, 256
imageproxy1.py (example), 68–71
imageproxy2.py (example), 69, 70
ImageScale (example), 164–177
imagescale.py (example), 199
imagescale-c.py (example), 145
imagescale-cy.py (example), 199
imagescale-m.py (example), 145,

152–154, 164, 199
imagescale-q-m.py (example), 145,

147–152
imagescale-s.py (example), 145, 199
imagescale-t.py (example), 145
import (statement), 125, 137, 166,

181, 189, 190, 195, 199, 200, 265
import_module() (importlib module),

126
ImportError (exception), 125, 126,

137, 199
IndexError (exception), 95, 130
indirection; see pointer
__init__() (special method), 25, 43,

44, 45, 54, 76, 110, 113, 168, 234
initialize OpenGL, 267
initializer; see __init__()
input() (built-in), 85–86, 213
instance; see object
instate() (tkinter.ttk.Widget), 171,

218, 244
inter-process communication (IPC),

141
interaction, handling, 280–282
interface checking, 30–32, 35–36
I/O, asynchronous, 142

Index 297

IPC (Inter-Process Communication),
141

is_alive() (threading.Thread type),
177

isdigit() (str type), 16, 136
isidentifier() (str type), 113
isinstance() (built-in), 20, 30, 31, 51,

55, 58, 133, 207, 278
isoformat() (datetime.datetime type),

208–209, 226
items() (dict type), 14, 58, 87, 208
iter() (built-in), 44, 47, 95–97, 99
__iter__() (special method), 42, 44,

97, 99–100
iterator protocol, 97–100
itertools (module)

chain(), 21, 46, 109
product(), 276, 280

J
JIT (Just In Time compiler), 179
join()

multiprocessing.JoinableQueue

(type), 148, 150
os.path (module), 39, 65, 150, 256
queue.Queue (type), 160–161
str (type), 15, 18, 87, 92, 111, 122,

136
threading.Thread (type), 177, 226

JoinableQueue (type; multiprocessing
module), 144, 148, 154, 158; see
also Queue type

json (module), 92–93, 106–107
JSON-RPC, 204; see also xmlrpcmod-

ule
just in time compiler (JIT), 179

K
keyboard handling, 234, 242, 249,

250, 252, 257, 258, 269, 272, 281;
see also bind()

KeyboardInterrupt (exception), 148,
154, 160, 163, 209

KeyError (exception), 98, 206
keys() (dict type), 223
keyword arguments, 13, 51–52
kill() (os module), 219
Kivy, 231

L
Label (type)

pyglet.text (module), 274
tkinter.ttk (module), 234, 240,

247–248, 252, 260; inherits
Widget

lambda (statement), 23–24, 64, 93,
116, 134, 181, 242, 249

late binding, 58
layouts; see grid(), pack(), and

place()

lazy evaluation, 60
len() (built-in), 32, 63
__len__() (special method), 99, 223
library, shared, 180, 183, 188
line algorithm, Bresenham’s,

130–131
lines, painting, 130–131, 271
list comprehensions, 18, 38, 49, 80,

123
list (type; built-in), 8, 70, 102, 138,

274
append(), 43, 102, 274
extend(), 15, 44, 46
remove(), 43
slicing, 138

listdir() (os module), 126, 150
literal_eval() (ast module), 88
load() (pyglet.image module), 270
local grab, 236
locals() (built-in), 8, 9, 13, 86
Lock (type; threading module),

175–176, 220, 221
locking, 142, 143–144, 154, 169, 170,

175–176, 223–224
loose coupling, 104

298 Index

lower() (str type), 16, 120
lstrip() (str type), 93
__lt__() (special method), 48; see

also <

M
magic number, 135
main-window applications, 253–261
main windows vs. dialogs, 235
mainloop() (tkinter.Tk), 166, 234,

238, 255
makedirs() (os module), 146, 172
Manager (type; multiprocessing mod-

ule), 144, 168, 169
map() (built-in), 123
mapping; see dict type and collec-

tions.OrderedDict
mapping unpacking, 13, 222,

241–242, 248
MappingProxyType (type; types mod-

ule), 223
math (module), 87

hypot(), 85
max() (built-in), 35, 151
mediator1.py (example), 59, 101–104
mediator1d.py (example), 59
mediator2.py (example), 104–106
mediator2d.py (example), 106
memory, shared, 141
Menu (type; tkinter module), 257,

258–259
menus, 257–260
messagebox (tkinter module), 166,

217, 218, 243
metaclasses, 12–14, 30–31, 35, 42,

59, 120
Meter.py (example), 205–208
meter-rpc.pyw (example), 214–228
meter-rpyc.pyw (example), 228–229
meterclient-rpc.py (example),

210–219
meterclient-rpyc.py (example),

227–228

MeterLogin.py (example), 214–215
meterserver-rpc.py (example),

208–210
meterserver-rpyc.py (example),

225–227
method

bound and unbound, 63, 69, 70,
83, 102

class, 10
decorators; see function decora-

tors
special; see special methods
state-sensitive, 114–115
state-specific, 115–116

min() (built-in), 151, 273
minsize() (tkinter.Tk), 242
mkdir() (os module), 146
mock objects, 67
modality, 214, 235–237, 244,

245–250
model/view/controller (MVC), 107
modeless, 236–237, 244, 250–253
module, executable, 238
modules dictionary (sys module),

22–23, 25
mouse handling, 234, 280
__mro__ (class attribute), 30–31, 36
multiplexer1.py (example), 112–115
multiplexer2.py (example), 115–116
multiplexer3.py (example), 116
multiplexing, 100–106, 107–114
multiprocessing (module), 142–144,

146–154, 164, 173
Array (type), 144, 154
cpu_count(), 145–146, 157, 173
JoinableQueue (type), 144, 148,

154, 158
join(), 148, 150
task_done(), 148, 150
for other methods; see Queue

type
Manager (type), 144, 168, 169
Process (type), 149, 150

Index 299

Queue (type), 144, 148, 154, 158
get(), 149, 150
put(), 149, 150

Value (type), 144, 154, 168, 169
multithreading; see threading mod-

ule
MVC (Model/View/Controller), 107

N
__name__ (built-in), 16, 50, 146
name() (unicodedata module), 21
namedtuple (type; collections mod-

ule), 88, 147, 160, 196, 205
nested class, 121–122
nested function, 58
__new__() (special method), 20,

22–23, 25
next() (built-in), 76, 77
__next__() (special method), 97
Notebook (type; tkinter.ttk module),

234, 261; inherits Widget
NotImplemented (built-in), 31, 36
NotImplementedError (exception), 18,

19, 120
now() (datetime.datetime type),

208–209, 213, 218, 226
Numba, 179
number, magic, 135
Number (numbers module), 55–56
numbers (module)

Number, 55–56
numpy (module), 124, 196; see also ar-

ray module
fromiter(), 128
zeros(), 128

O
-O optimize flag, 30
object

class, 25, 120
cloning, 24–25
dynamic creation, 24–25

function, 63
hierarchy, 40–48
mock, 67
reference, 64–67
selection in scene, 277–279

observer.py (example), 107–111
open()

built-in, 11, 64, 120, 136, 160
webbrowser (module), 161, 162

OpenGL (PyOpenGL), 264–270
GL (module), 265

glBegin(), 268, 271
glClear(), 267, 275
glClearColor(), 267
glColor3f(), 268, 271
glColor3ub(), 268, 277
glColorMaterial(), 267
glDisable(), 279
glEnable(), 267, 279
glEnd(), 268, 271
GLfloat, 267
glHint(), 267
glLightfv(), 267
glLoadIdentity(), 269, 275
glMaterialf(), 267
glMaterialfv(), 267
glMatrixMode(), 267, 269, 275
glOrtho(), 275
glPopMatrix(), 268, 276, 277
glPushMatrix(), 267, 268, 276,

277
glReadPixels(), 280
glRotatef(), 267, 276
glShadeModel(), 279
glTranslatef(), 267, 268, 277
GLubyte, 280
glVertex3f(), 268, 271
glViewport(), 269, 275

GLU (module), 265
gluCylinder(), 268
gluDeleteQuadric(), 268, 276
gluNewQuadric(), 268, 276
gluPerspective(), 269

300 Index

OpenGL (PyOpenGL) (continued)
GLU (module) (continued)

gluQuadricNormals(), 268, 276
gluSphere(), 277

GLUT (module), 265
glutDestroyWindow(), 269
glutDisplayFunc(), 266, 276
glutDisplayString(), 266
glutInit(), 265
glutInitWindowSize(), 265
glutKeyboardFunc(), 266, 269
glutMainLoop(), 266
glutPostRedisplay(), 269
glutReshapeFunc(), 266, 275
glutSpecialFunc(), 266

initialize, 267
operations, atomic, 143
operators

!= not equal, 48
& bitwise and, 133
() call, generator, and tuple, 22;

see also __call__()

*multiplicationand sequenceun-
packing, 13, 26, 30–31, 43,
49, 70, 109

** mapping unpacking, 13, 222,
241–242, 248

< less than, 48; see also __lt__()

<= less than or equal, 48
== equal, 48; see also __eq__()

> greater than, 48
>= greater than or equal, 48
>> bitwise right shift, 133

optimization; seeCython
option_add() (tkinter.Tk), 255
ord() (built-in), 87, 95
OrderedDict (type; collections mod-

ule), 85–86, 87
orthographic projection, 264, 275
os (module)

kill(), 219
listdir(), 126, 150
makedirs(), 146, 172

mkdir(), 146
remove(), 217

os.path (module)
abspath(), 146
basename(), 136, 176
dirname(), 126, 156, 162, 181, 216,

256
exists(), 146, 172, 181, 217
join(), 39, 65, 150, 256
realpath(), 216, 256
splitext(), 62–63, 126, 135

ownership, hierarchy, 234

P
pack() (tkinter.ttk.Widget), 235, 252,

257, 260
packaging tools, 188
painting

cylinders, 268
lines, 130–131, 271
spheres, 277
windows, 267, 275

Panedwindow (type; tkinter.ttk mod-
ule), 261; inherits Widget

parsing, 84
parsing, command-line; see argparse

module
path list (sys module), 126
perspective projection, 264, 269
PGM (image format), 124, 239
PhotoImage (type; tkinter module),

124, 239, 256
pickle (module), 66, 94, 106–107,

152, 173
pipe; see subprocess module
pipeline; see coroutine
pkgutil (module)

walk_packages(), 126
place() (tkinter.ttk.Widget), 235
platform (sys module), 85–86
PNG (image format), 38, 124, 125,

137–139, 239

Index 301

pointer, 182, 190
POINTER() (ctypes module), 184
pointstore1.py (example), 65–67
pointstore2.py (example), 65–67
positional arguments, 13, 51–52
PPM (image format), 124, 239
Process (type; multiprocessing mod-

ule), 149, 150
ProcessPoolExecutor (type; concur-

rent.futures module), 152, 153,
173

product() (itertools module), 276,
280

profiling; see cProfile module
properties, adding, 57–58
@property (built-in), 42, 44, 48, 54, 56,

58, 60, 104, 110, 115, 278
protocol, iterator, 97–100
protocol, sequence, 95–96
protocol() (tkinter.Tk), 166, 252,

255
put()

multiprocessing.Queue (type), 149,
150

queue.Queue (type), 158
.pxd suffix; seeCython
pycapsule (cpython module), 190

PyCapsule_GetPointer(), 191–192
PyCapsule_IsValid(), 191–192
PyCapsule_New(), 191–192

pyglet, 263–264, 270–282
app (module)

run(), 270
clock (module)

schedule_once(), 281
graphics (module)

draw(), 271
vertex_list, 271

image (module)
load(), 270

text (module)
Label (type), 274

window (module)
Window (type), 270, 274

PyGObject, 232
PyGtk, 232
PyOpenGL, 263–270; see also OpenGL

PyPng (module), 137; see also PNG
PyPy, 179, 183
PyQt4, 232
PySide, 232
.pyw suffix, 237
.pyx suffix; seeCython

Q
qsize() (queue.Queue type), 160
queue (module), 144

Queue (type), 156, 158
get(), 158
join(), 160–161
put(), 158
qsize(), 160
task_done(), 158

Queue (type)
multiprocessing (module), 144,

148, 154, 158; see also Join-

ableQueue type
queue (module); see top-level entry

quit() (tkinter.ttk.Widget), 177, 219,
242, 243

R
raise (statement), 30, 51, 55, 175,

183
randint() (random module), 206, 216,

220
random (module)

choice(), 206, 220, 274
randint(), 206, 216, 220
shuffle(), 274

range() (built-in), 18, 21
re (module), 17

compile(), 120
findall(), 90

302 Index

re (module) (continued)
search(), 63
split(), 26
sub(), 16, 39, 90–91, 136–137
subn(), 90–91

real events, 242–243
realpath() (os.path module), 216,

256
recursion, 44
references

function, 60–62, 70, 87
image, 256
object, 64–67

regex; see re module
register() (atexit module), 67, 187,

193
regular expression; see re module
remote procedure call (RPC); see rpyc

module and xmlrpc module
remove()

list (type), 43
os (module), 217

render1.py (example), 29–34
render2.py (example), 32
replace() (str type), 21, 93, 185
resizable() (tkinter.Tk), 251–252,

256
resizing, window, 269, 275
reversed() (built-in), 83
Rich Site Summary (RSS) format,

155, 158, 159
round() (built-in), 111, 131, 132, 195
RPC (Remote Procedure Call); see

rpyc module and xmlrpc module
rpyc (module), 203, 219–229

connect(), 227, 229
connect_by_service(), 228
Service (type), 226–227
utils (module)

server (module), 225–227
RSS (Rich Site Summary) format,

155, 158, 159

rstrip() (str type), 26, 122
run() (pyglet.app module), 270

S
Scalable Vector Graphics; see SVG

image format
scene object selection, 277–279
schedule_once() (pyglet.clock mod-

ule), 281
search() (re module), 63
selection, of scene objects, 277–279
send() (generator method), 77, 78,

105–106, 112
sentinel, 96
sequence protocol, 95–96
sequence unpacking, 13, 26, 30–31,

70, 109
serialized access, 141–142, 143–144,

154
server; see xmlrpc module and rpyc

module
ServerProxy (type; xmlrpc.client

module), 211, 215
Service (type; rpyc module), 226–227
set() (tkinter.StringVar), 172, 176,

214, 217, 218, 261
set (type), 103, 109, 152–153, 162
setattr() (built-in), 22–23, 56, 58,

59, 113
__setattr__() (special method), 67
__setitem__() (special method), 222
setuptools (module), 188
SHA-256, 206
shared data, 141, 143–144, 154
shared library, 180, 183, 188
shared memory, 141
shelve (module), 65–67
shuffle() (random module), 274
signal (module), 219
SimpleNamespace (type; typesmodule),

85–86

Index 303

SimpleXMLRPCRequestHandler (type;
xmlrpc.server module), 210

SimpleXMLRPCServer (type; xmlr-
pc.server module), 209, 210

sleep() (time module), 217
slicing, 138; see also list type
__slots__ (class attribute), 19–20,

22–23, 65
smart dialog, 236, 245
sorted() (built-in), 14, 87, 208, 244
special methods, see also class at-

tributes
__call__(), 82, 96–97, 113; see

also () operator
__contains__(), 99, 223
__delitem__(), 98, 223
__enter__(), 61, 279
__eq__(), 48; see also ==

__exit__(), 61, 279
__getattr__(), 66
__getitem__(), 95–96, 222
__init__(), 25, 43, 44, 45, 54, 76,

110, 113, 168, 234
__iter__(), 42, 44, 97, 99–100
__len__(), 99, 223
__lt__(), 48; see also <

__new__(), 20, 22–23, 25
__next__(), 97
__setattr__(), 67
__setitem__(), 222
__str__(), 18
__subclasshook__, 36

sphere, painting, 277
Spinbox (type; tkinter.ttk module),

240; inherits Widget
split() (re module), 26
splitext() (os.path module), 62–63,

126, 135
startswith() (str type), 26, 63
state-sensitive methods, 114–115
state-specific methods, 115–116
state() (tkinter.ttk.Widget), 170,

244

statements, see also built-in
assert, 30, 37, 55, 69, 82, 127, 131
del, 98, 115, 126
import, 125, 137, 166, 181, 189,

190, 195, 199, 200, 265
lambda, 23–24, 64, 93, 116, 134,

181, 242, 249
raise, 30, 51, 55, 175, 183
with, 26, 61, 64, 92, 153, 159, 162,

176, 220, 222, 276, 279
yield, 44, 76–79, 100, 105, 139,

153, 160
@staticmethod (built-in), 120, 121,

129, 133
static type checking, 52
stationery1.py (example), 40–45
stationery2.py (example), 45–47
status bar, 260–261
StopIteration (exception), 96, 97
__str__() (special method), 18
str (type; built-in), 19–20, 66

encode(), 185, 186, 190, 191, 266
endswith(), 62, 120, 121
format(), 13, 21, 32, 37, 92, 109
format_map(), 8–9
isdigit(), 16, 136
isidentifier(), 113
join(), 15, 18, 87, 92, 111, 122,

136
lower(), 16, 120
lstrip(), 93
replace(), 21, 93, 185
rstrip(), 26, 122
startswith(), 26, 63
strip(), 136
title(), 20–21

string (module), 63
StringVar (type; tkinter module),

168, 240, 247, 256
get(), 170, 172, 218, 243, 249
set(), 172, 176, 214, 217, 218,

261
strip() (str type), 136

304 Index

strptime() (datetime.datetime type),
84, 207, 227

sub() (re module), 16, 39, 90–91,
136–137

__subclasshook__ (special method),
36

subclassing, alternative to, 58–59
subn() (re module), 90–91
subprocess (module), 92, 216
sum() (built-in), 99, 163
super() (built-in), 14, 19, 20, 23, 44,

76, 110, 168, 234
SVG (image format), 6
sys (module)

executable, 92, 216
exit(), 91
modules (dictionary), 22–23, 25
path (list), 126
platform, 85–86

T
tabulator1.py (example), 117
tabulator2.py (example), 117
tabulator3.py (example), 116–119
tabulator4.py (example), 118
tarfile (module), 62–63
task_done()

multiprocessing.JoinableQueue

(type), 148, 150
queue.Queue (type), 158

Tcl/Tk; see tkinter module
tempfile (module)

gettempdir(), 39, 65, 161, 216
testing, unit, 67
Text (type; tkinter module), 261
texteditor (example), 261–262
texteditor2 (example), 261–262
textwrap (module)

fill(), 32
Thread (type; threading module), 150,

157, 172, 226
is_alive(), 177

join(), 177, 226
thread-safe data wrapper, 219–224
thread-safe dictionary, 221–224
threading (module), 142–144, 164

Lock (type), 175–176, 220, 221
Thread (type); see top-level entry

ThreadPoolExecutor (type; concur-
rent.futures module), 152, 154,
162

throw() (generator method), 77
time (module)

sleep(), 217
time(), 109, 110

time() (time module), 109, 110
timer; see after() and sched-

ule_once()

timings, 145, 152, 156, 199
title()

str (type), 20–21
Tk (tkinter module), 215, 234,

238, 255
Tk (tkintermodule),166, 238,255; see

also Widget

after(), 214, 239, 261
call(), 239
create_command(), 258–259
deiconify(), 166, 250–252, 255
geometry(), 253
mainloop(), 166, 234, 238, 255
minsize(), 242
option_add(), 255
protocol(), 166, 252, 255
resizable(), 251–252, 256
title(), 215, 234, 238, 255
wait_visibility(), 251–252
withdraw(), 166, 251–252, 253,

255
tkinter (module), 166

Canvas (type), 257
DISABLED, 170
documentation, 234
filedialog, 166
Menu (type), 257, 258–259

Index 305

messagebox, 166, 217, 218, 243
PhotoImage (type), 124, 239, 256
StringVar (type), 168
Text (type), 261
Tk; see top-level entry
Toplevel (type), 251–252
ttk (module); see top-level entry

tkinter.ttk (module), 166
Button (type), 234; inherits Widget
Combobox (type), 234, 240; inherits

Widget

Frame (type), 166, 168, 234, 247,
255, 260; inherits Widget

Label (type), 234, 240, 247–248,
252, 260; inherits Widget

Notebook (type), 234, 261; inherits
Widget

Panedwindow (type), 261; inherits
Widget

Spinbox (type), 240; inherits Wid-
get

Treeview (type), 234, 261; inherits
Widget

Widget (type)
bind(), 169, 242, 249, 252, 257;

see also keyboard han-
dling

cget(), 171, 241, 244
config(), 170, 176, 243, 244,

247, 257; alias of config-

ure()

focus(), 168, 169, 217, 239
grid(), 235, 241–242, 248,

260
instate(), 171, 218, 244
pack(), 235, 252, 257, 260
place(), 235
quit(), 177, 219, 242, 243
state(), 170, 244
update(), 170, 176

toolbar, 261–262
Toplevel (type; tkinter module),

251–252

total_ordering() (functools module),
48

Treeview (type; tkinter.ttk module),
234, 261; inherits Widget

ttk; see tkinter.ttk module
tuple concatenation, 109
two-part application design, 216
type; see class
type() (built-in), 22–23, 30, 86
type checking, static, 52
TypeError (exception), 30, 49, 89
types (module)

MappingProxyType (type), 223
SimpleNamespace (type), 85–86

U
unbound method, 63, 69, 70
Unicode, 17, 20, 21, 131, 215, 243; see

alsoUTF-8
unicodedata (module)

name(), 21
unit testing, 67
Unpack.py (example), 60–64
unpacking, mapping and sequence,

13, 26, 30–31, 70, 109, 222,
241–242, 248

update() (tkinter.ttk.Widget), 170,
176

urllib.request (module)
urlopen(), 26, 159

urlopen() (urllib.request module),
26, 159

user interaction, handling, 280–282
UTF-8, 17, 66, 121, 160, 182, 185,

243

V
Value (type; multiprocessingmodule),

144, 154, 168, 169
ValueError (exception), 26, 51, 113
values() (dict type), 99, 187, 224

306 Index

vertex_list (pyglet.graphics mod-
ule), 271

virtual events, 242–243

W
wait() (concurrent.futures module),

173–174
wait_visibility() (tkinter.Tk),

251–252
walk_packages() (pkgutil module),

126
warn() (warnings module), 126
webbrowser (module)

open(), 161, 162
whatsnew-q.py (example), 155,

156–161
whatsnew-t.py (example), 155,

161–164
Widget (type; tkinter.ttk module)

bind(), 169, 242, 249, 252, 257; see
also keyboard handling

cget(), 171, 241, 244
config(), 170, 176, 243, 244, 247,

257; alias of configure()

focus(), 168, 169, 217, 239
grid(), 235, 241–242, 248, 260
instate(), 171, 218, 244
pack(), 235, 252, 257, 260
place(), 235
quit(), 177, 219, 242, 243
state(), 170, 244
update(), 170, 176

Window (type; pyglet.window module),
270, 274

windows
and classes, 234
dock, 261–262
main, 255–261
main vs. dialogs, 235
modal, 236–237
painting, 267, 275
resizing, 269, 275

with (statement), 26, 61, 64, 92, 153,
159, 162, 176, 220, 222, 276, 279

withdraw() (tkinter.Tk), 166,
251–252, 253, 255

wordcount1.py (example), 119–122
wordcount2.py (example), 120
wrappers; see decorator, class and

decorator, and function
wraps() (functools module), 50, 51,

77
wxPython, 232

X
XBM (image format), 39, 125, 136
XML (eXtensible Markup Lan-

guage), 155, 204
xmlrpc (module), 203, 204–219

client (module), 210–219
DateTime (type), 207
ServerProxy (type), 211, 215

server (module), 207, 208–210
SimpleXMLRPCRequestHandler

(type), 210
SimpleXMLRPCServer (type),

209, 210
XPM (image format), 39, 125,

135–137

Y
yield (statement), 44, 76–79, 100,

105, 139, 153, 160

Z
zeros() (numpy module), 128
zip() (built-in), 51, 138
zipfile (module), 62–63
zombie, 149, 177

Mark Summerfield

Mark is a computer science graduate with many years experience working in
the software industry, primarily as a programmer and documenter. Mark owns
Qtrac Ltd. (www.qtrac.eu), where he works as an independent author, editor,
consultant, and trainer, specializing in the C++, Go, and Python languages, and
the Qt, PyQt, and PySide libraries.

Other books by Mark Summerfield include

• Programming in Go (2012, ISBN-13: 978-0-321-77463-7)
• Advanced Qt Programming (2011, ISBN-13: 978-0-321-63590-7)
• Programming in Python 3 (First Edition, 2009, ISBN-13: 978-0-13-

712929-4; Second Edition, 2010, ISBN-13: 978-0-321-68056-3)
• Rapid GUI Programming with Python and Qt (2008, ISBN-13: 978-0-13-

235418-9)

Other books by Jasmin Blanchette and Mark Summerfield include

• C++ GUI Programming with Qt 4 (First Edition, 2006, ISBN-13: 978-0-
13-187249-3; Second Edition, 2008, ISBN-13: 978-0-13-235416-5)

• C++ GUI Programming with Qt 3 (2004, ISBN-13: 978-0-13-124072-8)

Production

The text was written using the gvim editor. The typesetting—including all the
diagrams—was done using the lout typesetting language. All of the code snip-
petswere automatically extracted directly from the example programsand from
test programs using custom tools. The index was compiled by the author. The
text and source code was version-controlled using Mercurial. The monospaced
code font was derived from a condensed version of DejaVu Mono and modified
using FontForge. The book was previewed using evince and gv,and converted to
PDFbyGhostscript.The coverwasprovidedby thepublisher. Note that only En-
glish print editions are definitive; ebook versions and translations are not under
the author’s control and may introduce errors.

All the editing and processing wasdone onDebian Linux systems. All the book’s
examples have been testedwith Python 3.3 (and,where possible,Python 3.2 and
Python 3.1) on Linux, OS X (in most cases), and Windows (in most cases). The
examples are available from the book’s web site, www.qtrac.eu/pipbook.html, and
should work with all future Python 3.x versions.

http://www.qtrac.eu
http://www.qtrac.eu/pipbook.html

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for fi rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

	Contents
	Foreword
	Introduction
	Acknowledgments

	Chapter 1. Creational Design Patterns in Python
	1.1. Abstract Factory Pattern
	1.1.1. A Classic Abstract Factory
	1.1.2. A More Pythonic Abstract Factory

	1.2. Builder Pattern
	1.3. Factory Method Pattern
	1.4. Prototype Pattern
	1.5. Singleton Pattern

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

