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Foreword

OpenGL® SuperBible has long been an essential reference for 3D graphics
developers, and this new edition is more relevant than ever, particularly
given the increasing importance of multi-platform deployment. In our
line of work, we spend a lot of time at the interface between high-level
rendering algorithms and fast-moving GPU and API targets. Even though,
between us, we have more than thirty-five years of experience with
real-time graphics programming, there is always more to learn. This is
why we are so excited about this new edition of the OpenGL® SuperBible.

Many programmers of our generation used OpenGL back in the nineties
before market forces dictated that we ship Windows games using
Direct3D, which first shipped in 1995. While Direct3D initially followed
in the footsteps of OpenGL, it eventually surpassed OpenGL in its rapid
exposure of advanced GPU functionality, particularly in the transition to
programmable graphics hardware.

During this transition, Microsoft consistently shipped new versions of
Direct3D for a period of eight years, ending in 2002 with DirectX 9. With
DirectX 10, however, Microsoft adopted a release strategy that tied new
versions of DirectX to new versions of Windows, not only in terms of
timing but in terms of legacy support. That is, not only did new versions
of DirectX come out less frequently — only two major versions have come
out in the last 11 years — but they were not supported on certain older
versions of Windows. Naturally, this change in strategy by Microsoft
curtailed the GPU vendors’ ability to expose their innovations on
Windows.

Fortunately, in this same timeframe, the OpenGL Architecture Review
Board accelerated development, putting OpenGL back in a position of

xxxiii



leadership. In fact, there has been so much progress in the past five years
that OpenGL has reached a tipping point and is again viable for game
development, particularly as more and more developers are adopting a
multiplatform strategy that includes OS X and Linux.

OpenGL even has advantages to developers primarily targeting Windows,
allowing them to access the very latest GPU features on all Windows
versions, not just recent ones that have support for DirectX 10 or DirectX
11. In the growing Asian market, for example, Steam customers have the
same caliber of PC hardware as their Western counterparts, but far more of
them are running Windows XP, where DirectX 10 and DirectX 11 are not
available. An application written using OpenGL, rather than Direct3D,
can use the advanced features of customers’ hardware and not have to
maintain a reduced-quality rendering codepath for customers using
Windows XP.

This edition of OpenGL® SuperBible is an outstanding resource for a wide
variety of software developers, from students who may have some of the
math and programming fundamentals but need a nudge in the right
direction, to seasoned professional developers who need to quickly find
out the nitty-gritty details of a particular API feature. In fact, we suspect
that many professionals may be coming back to OpenGL after a number
of years away, and this book is an excellent resource for doing just that.

Specifically, this edition of OpenGL® SuperBible introduces many of the
new features of OpenGL 4.3, such as compute shaders, texture views,
indirect multi-draw, enhanced API debugging, and more. As readers of
previous editions have come to expect, the SuperBible continues to go well
beyond the information provided in the API documentation and into the
fundamentals of popular application techniques. Just having all of the
essential platform-specific API initialization material for Linux, OS X, and
Windows in one place is worth the price of admission, not to mention the
detailed discussions of modern debugging techniques, shadow mapping,
non-photo-realistic rendering, deferred rendering, and more.

We believe that, for newcomers, OpenGL is the right place to start writing
3D graphics code that will run on a wide array of platforms in order to
reach the largest possible audience. Likewise, for professionals, there has
never been a better time to come back to OpenGL.

Rich Geldreich and Jason Mitchell
Valve
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Preface

About This Book

This book is designed both for people who are learning computer graphics
through OpenGL and for people who may already know about graphics
but want to learn about OpenGL. The intended audience is students of
computer science, computer graphics, or game design; professional
software engineers; or simply just hobbyists and people who are interested
in learning something new. We begin by assuming that the reader knows
nothing about either computer graphics or OpenGL. The reader should be
familiar with computer programming in C++, however.

One of our goals with this book is to ensure that there are as few forward
references as possible and to require little or no assumed knowledge. The
book should be accessible and readable, and if you start from the
beginning and read all the way through, you should come away with a
good comprehension of how OpenGL works and how to use it effectively
in your applications. After reading and understanding the content of this
book, you will be well placed to read and learn from more advanced
computer graphics research articles and be confident that you could take
the principles that they cover and implement them in OpenGL.

It is not a goal of this book to cover every last feature of OpenGL, or to
mention every function in the specification or every value that can be
passed to a command. Rather, the goal is to provide a solid understanding
of OpenGL, introduce its fundamentals, and explore some of its more
advanced features. After reading this book, readers should be comfortable
looking up finer details in the OpenGL specification, experimenting with
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OpenGL on their own machines and using extensions (bonus features that
add capabilities to OpenGL not required by the main specification).

The Architecture of the Book

This book breaks down roughly into three major parts. In the first part, we
explain what OpenGL is, how it connects to the graphics pipeline, and
give minimal working examples that are sufficient to demonstrate each
section of it without requiring much, if any, knowledge of any other part
of the whole system. We lay a foundation in the math behind 3D
computer graphics, and describe how OpenGL manages the large amounts
of data that are required to provide a compelling experience to the users of
your applications. We also describe the programming model for shaders,
which will form a core part of any OpenGL application.

In the second part of the book, we begin to introduce features of OpenGL
that require some knowledge of multiple parts of the graphics pipeline
and may refer to concepts already introduced. This allows us to introduce
more complex topics without glossing over details or telling you to skip
forward in the book to find out how something really works. By taking a
second pass over the OpenGL system, we are able to delve into where data
goes as it leaves each part of OpenGL, as you’ll already have at least been
briefly introduced to its destination.

In the final part of the book, we dive deeper into the graphics pipeline,
cover some more advanced topics, and give a number of examples that use
multiple features of OpenGL. We provide a number of worked examples
that implement various rendering techniques, give a series of suggestions
and advice on OpenGL best practices and performance considerations,
and end up with a practical overview of OpenGL on several popular
platforms, including mobile devices.

In Part I, we start gently and then blast through OpenGL to give you a
taste of what’s to come. Then, we lay the groundwork of knowledge that
will be essential to you as you progress through the rest of the book. In
this part, you will find

• Chapter 1, “Introduction,” which provides a brief introduction to
OpenGL, its origins, history, and current state.

• Chapter 2, “Our First OpenGL Program,” which jumps right into
OpenGL and shows you how to create a simple OpenGL application
using the source code provided with this book.
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• Chapter 3, “Following the Pipeline,” takes a more careful look at
OpenGL and its various components, introducing each in a little
more detail and adding to the simple example presented in the
previous chapter.

• Chapter 4, “Math for 3D Graphics,” introduces the foundations of
math that will be essential for effective use of OpenGL and the
creation of interesting 3D graphics applications.

• Chapter 5, “Data,” provides you with the tools necessary to manage
data that will be consumed and produced by OpenGL.

• Chapter 6, “Shaders and Programs,” takes a deeper look at shaders,
which are fundamental to the operation of modern graphics
applications.

In Part II, we take a more detailed look at several of the topics introduced
in the first chapters. We dig deeper into each of the major parts of
OpenGL, and our example applications will start to become a little more
complex and interesting. In this part, you will find

• Chapter 7, “Vertex Processing and Drawing Commands,” which
covers the inputs to OpenGL and the mechanisms by which
semantics are applied to the raw data you provide.

• Chapter 8, “Primitive Processing,” covers some higher level concepts
in OpenGL, including connectivity information, higher-order
surfaces, and tessellation.

• Chapter 9, “Fragment Processing and the Framebuffer,” looks at how
high-level 3D graphics information is transformed by OpenGL into
2D images, and how your applications can determine the appearance
of objects on the screen.

• Chapter 10, “Compute Shaders,” illustrates how your applications can
harness OpenGL for more than just graphics, and make use of the
incredible computing power locked up in a modern graphics card.

• Chapter 11, “Controlling and Monitoring the Pipeline,” shows you
how you can get a glimpse of how OpenGL executes the commands
you give it — how long they take to execute, and the amount of data
that they produce.

In Part III, we build on the knowledge that you will have gained in reading
the first two-thirds of the book and use it to construct example
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applications that touch on multiple aspects of OpenGL. We also get into
the practicalities of building larger OpenGL applications and deploying
them across multiple platforms. In this part, you will find

• Chapter 12, “Rendering Techniques,” covers several applications of
OpenGL for graphics rendering, from simulation of light to artistic
methods and even some non-traditional techniques.

• Chapter 13, “Debugging and Performance Optimization,” provides
advice and tips on how to get your applications running without
errors, and how to get them going fast.

• Chapter 14, “Platform Specifics,” covers issues that may be particular
to certain platforms, including Windows, Mac, Linux, and mobile
devices.

Finally, several appendices are provided that describe the tools and file
formats used in this book, and give pointers to more useful OpenGL
resources.

What’s New in This Edition

This edition of the book differs somewhat from previous editions. This is
the sixth edition of the book. The first edition of the book was published
in 1996, more than fifteen years ago. Over time, OpenGL has evolved and
so has the book’s audience. Even since the fifth edition, which was
published in 2010, a lot has changed. In some ways, OpenGL has become
more complex, with more bells and whistles, more features, and more that
you have to do to make something — really anything — show up on the
screen. This has raised the barrier to entry for students, and in the fifth
edition, we tried to lower that barrier again by glossing over a lot of details
or hiding them in utility classes, functions, wrappers, and libraries.

In this edition, we do not hide anything from the reader. What this means
is that it might take a while to draw something really impressive, but the
extra effort will give you a deeper understanding of what OpenGL is and
how it interacts with the underlying graphics hardware. Only the most
basic of application frameworks are provided, and our first few programs
will be thoroughly underwhelming. However, we’re working on the
assumption that you’ll read the whole book and that by the end of it,
you’ll have something to show your friends, colleagues, or potential
employers that you can be proud of.
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In this edition, the printed copy of the OpenGL reference pages, or “man”
pages, is gone. The reference pages are available online at
http://www.opengl.org/sdk/docs/man4/ and as a live document are kept
up to date. A printed copy of those pages is somewhat redundant and
leads to errors — several were found in the reference pages after the fifth
edition went to print with no reasonable means of distributing an errata.
Further, the reference pages consumed hundreds of printed pages of the
book, adding to its cost and size. We’d rather fill a bunch of those pages
with more content and save a few trees with the rest.

We’ve also changed the structure of the book somewhat and make several
passes over OpenGL. Rather than having a whole chapter dedicated to a
single topic, for example, we introduce as much as possible as early as
possible using worked, minimal examples, and then bring in features that
touch multiple aspects of OpenGL. This should greatly reduce the number
of forward or circular references, and reduce the number of times we need
to tell you don’t worry about this, we’ll explain it later.

We hope you enjoy it.

How to Build the Samples

Retrieve the sample code from the book’s Web site,
http://www.openglsuperbible.com, unpack the archive to a directory on
your computer, and follow the instructions in the included
HOWTOBUILD.TXT file for your platform of choice. The book’s source code
has been built and tested on Microsoft Windows (Windows XP or later is
required), Linux (several major distributions), and Mac OS X. It is
recommended that you install any available operating system updates and
obtain the most recent graphics drivers from your graphics card
manufacturer.

You may notice some minor discrepancies between the source code
printed in this book and that in the source files. There are a number of
reasons for this:

• This book is about OpenGL 4.3 — the most recent version at time of
writing. The samples printed in the book are written assuming that
OpenGL 4.3 is available on the target platform. However, we
understand that in practice, operating systems, graphics drivers, and
platforms may not have the latest and greatest available, and so,
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where possible, we’ve made minor modifications to the sample
applications to allow them to run on earlier versions of OpenGL.

• There were several months between when this book’s text was
finalized for printing and when the sample applications
were packaged and posted to the Web. In that time, we discovered
opportunities for improvement, whether that was uncovering
new bugs, platform dependencies, or optimizations. The latest
version of the source code on the Web has those fixes and tweaks
applied and therefore deviates from the necessarily static copy
printed in the book.

• There is not necessarily a one-to-one mapping of listings in the
book’s text and sample applications in the Web package. Some
sample applications demonstrate more than one concept, some
aren’t mentioned in the book at all, and some listings in the book
don’t have an equivalent sample application.

Errata

We made a bunch of mistakes — we’re certain of it. It’s incredibly
frustrating as an author to spot an error that you made and know that it
has been printed, in books that your readers paid for, thousands and
thousands of times. We have to accept that this will happen, though, and
do our best to correct issues as we are able. If you think you see something
that doesn’t quite gel, check the book’s Web site for errata.

http://www.openglsuperbible.com
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Chapter 8

Primitive Processing

WHAT YOU’LL LEARN IN THIS CHAPTER

• How to use tessellation to add geometric detail to your scenes

• How to use geometry shaders to process whole primitives and create
geometry on the fly

In the previous chapters, you’ve read about the OpenGL pipeline and have
been at least briefly introduced to the functions of each of its stages. We’ve
covered the vertex shader stage in some detail, including how its inputs
are formed and where its outputs go. A vertex shader runs once on each of
the vertices you send OpenGL and produces one set of outputs for each.
The next few stages of the pipeline seem similar to vertex shaders at first,
but can actually be considered primitive processing stages. First, the two
tessellation shader stages and the fixed-function tessellator that they flank
together process patches. Next, the geometry shader processes entire
primitives (points, lines, and triangles) and runs once for each. In this
chapter, we’ll cover both tessellation and geometry shading, and
investigate some of the OpenGL features that they unlock.
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Tessellation

As introduced in the section “Tessellation” in Chapter 3, tessellation is the
process of breaking a large primitive referred to as a patch into many
smaller primitives before rendering them. There are many uses for
tessellation, but the most common application is to add geometric detail
to otherwise lower fidelity meshes. In OpenGL, tessellation is produced
using three distinct stages of the pipeline — the tessellation control shader
(TCS), the fixed-function tessellation engine, and the tessellation
evaluation shader (TES). Logically, these three stages fit between the vertex
shader and the geometry shader stage. When tessellation is active,
incoming vertex data is first processed as normal by the vertex shader and
then passed, in groups, to the tessellation control shader.

The tessellation control shader operates on groups of up to 32 vertices1 at
a time, collectively known as a patch. In the context of tessellation, the
input vertices are often referred to as control points. The tessellation control
shader is responsible for generating three things:

• The per-patch inner and outer tessellation factors

• The position and other attributes for each output control point

• Per-patch user-defined varyings

The tessellation factors are sent on to the fixed-function tessellation
engine, which uses them to determine the way that it will break up the
patch into smaller primitives. Besides the tessellation factors, the output
of a tessellation control shader is a new patch (i.e., a new collection of
vertices) that is passed to the tessellation evaluation shader after the patch
has been tessellated by the tessellation engine. If some of the data is
common to all output vertices (such as the color of the patch), then that
data may be marked as per patch. When the fixed-function tessellator runs,
it generates a new set of vertices spaced across the patch as determined by
the tessellation factors and the tessellation mode, which is determined
using a layout declaration in the tessellation evaluation shader. The only
input to the tessellation evaluation shader generated by OpenGL is a set of
coordinates indicating where in the patch the vertex lies. When the
tessellator is generating triangles, those coordinates are barycentric

1. The minimum number of vertices per patch required to be supported by the OpenGL spec-
ification is 32. However, the upper limit is not fixed and may be determined by retrieving the
value of GL_MAX_PATCH_VERTICES.
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coordinates. When the tessellation engine is generating lines or triangles,
those coordinates are simply a pair of normalized values indicating the
relative position of the vertex. This is stored in the gl_TessCoord input
variable. This setup is shown in the schematic of Figure 8.1.
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Figure 8.1: Schematic of OpenGL tessellation

Tessellation Primitive Modes

The tessellation mode is used to determine how OpenGL breaks up
patches into primitives before passing them on to rasterization. This mode
is set using an input layout qualifier in the tessellation evaluation shader
and may be one of quads, triangles, or isolines. This primitive mode
not only controls the form of the primitives produced by the tessellator,
but also the interpretation of the gl_TessCoord input variable in the
tessellation evaluation shader.

Tessellation Using Quads

When the chosen tessellation mode is set to quads, the tessellation engine
will generate a quadrilateral (or quad) and break it up into a set of
triangles. The two elements of the gl_TessLevelInner[] array should be
written by the tessellation control shader and control the level of
tessellation applied to the innermost region within the quad. The first
element sets the tessellation in the horizontal (u) direction, and the
second element sets the tessellation level applied in the vertical (v)
direction. Also, all four elements of the gl_TessLevelOuter[] array
should be written by the tessellation control shader and are used to
determine the level of tessellation applied to the outer edges of the quad.
This is shown in Figure 8.2.
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Figure 8.2: Tessellation factors for quad tessellation

When the quad is tessellated, the tessellation engine generates vertices
across a two-dimensional domain normalized within the quad. The value
stored in the gl_TessCoord input variable sent to the tessellation
evaluation shader is then a two-dimensional vector (that is, only the x and
y components of gl_TessCoord are valid) containing the normalized
coordinate of the vertex within the quad. The tessellation evaluation
shader can use these coordinates to generate its outputs from the inputs
passed by the tessellation control shader. An example of quad tessellation
produced by the tessmodes sample application is shown in Figure 8.3.

Figure 8.3: Quad tessellation example
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In Figure 8.3, the inner tessellation factors in the u and v directions were
set to 9.0 and 7.0, respectively. The outer tessellation factors were set to
3.0 and 5.0 in the u and v directions. This was accomplished using the
very simple tessellation control shader shown in Listing 8.1.

#version 430 core

layout (vertices = 4) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 9.0;
gl_TessLevelInner[1] = 7.0;
gl_TessLevelOuter[0] = 3.0;
gl_TessLevelOuter[1] = 5.0;
gl_TessLevelOuter[2] = 3.0;
gl_TessLevelOuter[3] = 5.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.1: Simple quad tessellation control shader example

The result of setting the tessellation factors in this way is visible in
Figure 8.3. If you look closely, you will see that along the horizontal outer
edges there are five divisions and along the vertical ones there are three
divisions. On the interior, you can see that there are 9 divisions along the
horizontal axis and 7 along the vertical.

The tessellation evaluation shader that generated Figure 8.3 is shown in
Listing 8.2. Notice that the tessellation mode is set using the quads input
layout qualifier near the front of the tessellation evaluation shader. The
shader then uses the x and y components of gl_TessCoordinate to
perform its own interpolation of the vertex position. In this case, the
gl_in[] array is four elements long (as specified in the control shader
shown in Listing 8.1).

#version 430 core

layout (quads) in;

void main(void)
{

// Interpolate along bottom edge using x component of the
// tessellation coordinate
vec4 p1 = mix(gl_in[0].gl_Position,

gl_in[1].gl_Position,
gl_TessCoord.x);

// Interpolate along top edge using x component of the
// tessellation coordinate
vec4 p2 = mix(gl_in[2].gl_Position,
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gl_in[3].gl_Position,
gl_TessCoord.x);

// Now interpolate those two results using the y component
// of tessellation coordinate
gl_Position = mix(p1, p2, gl_TessCoord.y);

}

Listing 8.2: Simple quad tessellation evaluation shader example

Tessellation Using Triangles

When the tessellation mode is set to triangles (again, using an input layout
qualifier in the tessellation control shader), the tessellation engine produces
a triangle that is then broken into many smaller triangles. Only the first
element of the gl_TessLevelInner[] array is used, and this level is applied
to the entirety of the inner area of the tessellated triangle. The first three
elements of the gl_TessLevelOuter[] array are used to set the tessellation
factors for the three edges of the triangle. This is shown in Figure 8.4.
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Figure 8.4: Tessellation factors for triangle tessellation

As the tessellation engine generates the vertices corresponding to the
tessellated triangles, each vertex is assigned a three-dimensional
coordinate called a barycentric coordinate. The three components of a
barycentric coordinate can be used to form a weighted sum of three inputs
representing the corners of a triangle and arrive at a value that is linearly
interpolated across that triangle. An example of triangle tessellation is
shown in Figure 8.5.

The tessellation control shader used to generate Figure 8.5 is shown in
Listing 8.3. Notice how similar it is to Listing 8.1 in that all it does is write
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Figure 8.5: Triangle tessellation example

constants into the inner and outer tessellation levels and pass through the
control point positions unmodified.

#version 430 core

layout (vertices = 3) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 5.0;
gl_TessLevelOuter[0] = 8.0;
gl_TessLevelOuter[1] = 8.0;
gl_TessLevelOuter[2] = 8.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.3: Simple triangle tessellation control shader example

Listing 8.3 sets the inner tessellation level to 5.0 and all three outer
tessellation levels to 8.0. Again, looking closely at Figure 8.5, you can see
that each of the outer edges of the tessellated triangle has 8 divisions and
the inner edges have 5 divisions. The tessellation evaluation shader that
produced Figure 8.5 is shown in Listing 8.4.
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#version 430 core

layout (triangles) in;

void main(void)
{

gl_Position = (gl_TessCoord.x * gl_in[0].gl_Position) +
(gl_TessCoord.y * gl_in[1].gl_Position) +
(gl_TessCoord.z * gl_in[2].gl_Position);

}

Listing 8.4: Simple triangle tessellation evaluation shader example

Again, to produce a position for each vertex generated by the tessellation
engine, we simply calculate a weighted sum of the input vertices. This
time, all three components of gl_TessCoord are used and represent the
relative weights of the three vertices making up the outermost tessellated
triangle. Of course, we’re free to do anything we wish with the barycentric
coordinates, the inputs from the tessellation control shader, and any other
data we have access to in the evaluation shader.

Tessellation Using Isolines

Isoline tessellation is a mode of the tessellation engine where, rather than
producing triangles, it produces real line primitives running along lines of
equal v coordinate in the tessellation domain. Each line is broken up into
segments along the u direction. The two outer tessellation factors stored in
the first two components of gl_TessLevelOuter[] are used to specify the
number of lines and the number of segments per line, respectively, and
the inner tessellation factors (gl_TessLevelInner[]) are not used at all.
This is shown in Figure 8.6.
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Figure 8.6: Tessellation factors for isoline tessellation
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The tessellation control shader shown in Listing 8.5 simply set both the
outer tessellation levels to 5.0 and doesn’t write to the inner tessellation
levels. The corresponding tessellation evaluation shader is shown in
Listing 8.6.

#version 430 core

layout (vertices = 4) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelOuter[0] = 5.0;
gl_TessLevelOuter[1] = 5.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.5: Simple isoline tessellation control shader example

Notice that Listing 8.6 is virtually identical to Listing 8.2 except that the
input primitive mode is set to isolines.

#version 430 core

layout (isolines) in;

void main(void)
{

// Interpolate along bottom edge using x component of the
// tessellation coordinate
vec4 p1 = mix(gl_in[0].gl_Position,

gl_in[1].gl_Position,
gl_TessCoord.x);

// Interpolate along top edge using x component of the
// tessellation coordinate
vec4 p2 = mix(gl_in[2].gl_Position,

gl_in[3].gl_Position,
gl_TessCoord.x);

// Now interpolate those two results using the y component
// of tessellation coordinate
gl_Position = mix(p1, p2, gl_TessCoord.y);

}

Listing 8.6: Simple isoline tessellation evaluation shader example

The result of our extremely simple isoline tessellation example is shown in
Figure 8.7.

Figure 8.7 doesn’t really seem all that interesting. It’s also difficult to see
that each of the horizontal lines is actually made up of several segments.
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Figure 8.7: Isoline tessellation example

If, however, we change the tessellation evaluation shader to that shown in
Listing 8.7, we can generate the image shown in Figure 8.8.

#version 430 core

layout (isolines) in;

void main(void)
{

float r = (gl_TessCoord.y + gl_TessCoord.x / gl_TessLevelOuter[0]);
float t = gl_TessCoord.x * 2.0 * 3.14159;
gl_Position = vec4(sin(t) * r, cos(t) * r, 0.5, 1.0);

}

Listing 8.7: Isoline spirals tessellation evaluation shader

The shader in Listing 8.7 converts the incoming tessellation coordinates
into polar form, with the radius r calculated as smoothly extending from
zero to one, and with the angle t as a scaled version of the x component
of the tessellation coordinate to produce a single revolution on each
isoline. This produces the spiral pattern shown in Figure 8.8, where the
segments of the lines are clearly visible.

Tessellation Point Mode

In addition to being able to render tessellated patches using triangles or
lines, it’s also possible to render the generated vertices as individual
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Figure 8.8: Tessellated isoline spirals example

points. This is known as point mode and is enabled using the point_mode
input layout qualifier in the tessellation evaluation shader just like any
other tessellation mode. When you specify that point mode should be
used, the resulting primitives are points. However, this is somewhat
orthogonal to the use of the quads, triangles, or isolines layout
qualifiers. That is, you should specify point_mode in addition to one of the
other layout qualifiers. The quads, triangles, and isolines still control
the generation of gl_TessCoord and the interpretation of the inner and
outer tessellation levels. For example, if the tessellation mode is quads,
then gl_TessCoord is a two-dimensional vector, whereas if the tessellation
mode is triangles, then it is a three-dimensional barycentric coordinate.
Likewise, if the tessellation mode is isolines, only the outer tessellation
levels are used, whereas if it is triangles or quads, the inner tessellation
levels are used as well.

Figure 8.9 shows a version of Figure 8.5 rendered using point mode next to
the original image. To produce the figure on the right, we simply change
the input layout qualifier of Listing 8.4 to read:

layout (triangles, point_mode) in;

As you can see, the layout of the vertices is identical in both sides of
Figure 8.9, but on the right, each vertex has been rendered as a single
point.
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Figure 8.9: Triangle tessellated using point mode

Tessellation Subdivision Modes

The tessellation engine works by generating a triangle or quad primitive
and then subdividing its edges into a number of segments determined by
the inner and outer tessellation factors produced by the tessellation
control shader. It then groups the generated vertices into points, lines, or
triangles and sends them on for further processing. In addition to the type
of primitives generated by the tessellation engine, you have quite a bit of
control about how it subdivides the edges of the generated primitives.

By default, the tessellation engine will subdivide each edge into a number
of equal-sized parts where the number of parts is set by the corresponding
tessellation factor. This is known as equal_spacing mode, and although it
is the default, it can be made explicit by including the following layout
qualifier in your tessellation evaluation shader:

layout (equal_spacing) in;

Equal spacing mode is perhaps the easiest mode to comprehend — simply
set the tessellation factor to the number segments you wish to subdivide
your patch primitive into along each edge, and the tessellation engine
takes care of the rest. Although simple, the equal_spacing mode comes
with a significant disadvantage — as you alter the tessellation factor, it is
always rounded up to the next nearest integer and will produce a visible
jump from one level to the next as the tessellation factor changes. The
two other modes alleviate this problem by allowing the segments to be
non-equal in length. These modes are fractional_even_spacing and
fractional_odd_spacing, and again, you can set these modes by using
input layout qualifiers as follows:

layout (fractional_even_spacing) in;
// or
layout (fractional_odd_spacing) in;
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With fractional even spacing, the tessellation factor is rounded to the next
lower even integer and the edge subdivided as if that were the tessellation
factor. With fractional odd spacing, the tessellation factor is rounded
down to the next lower odd number and the edge subdivided as if that
were the tessellation factor. Of course, with either scheme, there is a small
remaining segment that doesn’t have the same length as the other
segments. That last segment is then cut in half, each half having the same
length as the other and is therefore a fractional segment.

Figure 8.10 shows the same triangle tessellated with equal_spacing mode
on the left, fractional_even_spacing mode in the center, and
fractional_odd_spacing mode on the right.

Figure 8.10: Tessellation using different subdivision modes

In all three images shown in Figure 8.10, the inner and outer tessellation
factors have been set to 5.3. In the leftmost image showing equal_spacing
mode, you should be able to see that the number of segments along each
of the outer edges of the triangle is 6 — the next integer after 5.3. In the
center image, which shows fractional_even_spacing spacing, there are 4
equal-sized segments (as 4 is the next lower even integer to 5.3) and then
two additional smaller segments. Finally, in the rightmost image, which
demonstrates fractional_odd_spacing, you can see that there are 5
equal-sized segments (5 being the next lower odd integer to 5.3) and there
are two very skinny segments that make up the rest.

If the tessellation level is animated, either by being explicitly turned up
and down using a uniform, or calculated in the tessellation control shader,
the length of the equal-sized segments and the two filler segments will
change smoothly and dynamically. Whether you choose
fractional_even_spacing or fractional_odd_spacing really depends on
which looks better in your application — there is generally no real
advantage to either. However, unless you need a guarantee that tessellated
edges have equal-sized segments and you can live with popping if the
tessellation level changes, fractional_even_spacing or
fractional_odd_spacing will generally look better in any dynamic
application than equal_spacing.
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Controlling the Winding Order

In Chapter 3, “Following the Pipeline,” we introduced culling and
explained how the winding order of a primitive affects how OpenGL
decides whether to render it. Normally, the winding order of a primitive is
determined by the order in which your application presents vertices to
OpenGL. However, when tessellation is active, OpenGL generates all the
vertices and connectivity information for you. In order to allow you to
control the winding order of the resulting primitives, you can specify
whether you want the vertices to be generated in clockwise or
counterclockwise order. Again, this is specified using an input layout
qualifier in the tessellation evaluation shader. To indicate that you want
clockwise winding order, use the following layout qualifier:

layout (cw) in;

To specify that the winding order of the primitives generated by the
tessellation engine be counterclockwise, include

layout (ccw) in;

The cw and ccw layout qualifiers can be combined with the other input
layout qualifiers specified in the tessellation control shader. By default, the
winding order is counterclockwise, and so you can omit this layout
qualifier if that is what you need. Also, it should be self-evident that
winding order only applies to triangles, and so if your application
generates isolines or points, then the winding order is ignored — your
shader can still include the winding order layout qualifier, but it won’t be
used.

Passing Data between Tessellation Shaders

In this section, we have looked at how to set the inner and outer
tessellation levels for the quad, triangle, and point primitive modes.
However, the resulting images in Figures 8.3 through 8.8 aren’t
particularly exciting, in part because we haven’t done anything but
compute the positions of the resulting vertices and then just shaded the
resulting primitives solid white. In fact, we have rendered all of these
images using lines by setting the polygon mode to GL_LINE with the
glPolygonMode() function. To produce something a little more interesting,
we’re going to need to pass more data along the pipeline.

Before a tessellation control shader is run, each vertex represents a control
point, and the vertex shader runs once for each input control point and
produces its output as normal. The vertices (or control points) are then
grouped together and passed together to the tessellation control shader.
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The tessellation control shader processes this group of control points and
produces a new group of control points that may or may not have the
same number of elements in it as the original group. The tessellation
control shader actually runs once for each control point in the output
group, but each invocation of the tessellation control shader has access to
all of the input control points. For this reason, both the inputs to and
outputs from a tessellation control shader are represented as arrays. The
input arrays are sized by the number of control points in each patch,
which is set by calling

glPatchParameteri(GL_PATCH_VERTICES, n);

Here, n is the number of vertices per patch. By default, the number of
vertices per patch is 3. The size of the input arrays in the tessellation
control shader is set by this parameter, and their contents come from the
vertex shader. The built-in variable gl_in[] is always available and is
declared as an array of the gl_PerVertex structure. This structure is where
the built-in outputs go after you write to them in your vertex shader. All
other outputs from the vertex shader become arrays in the tessellation
control shader as well. In particular, if you use an output block in your
vertex shader, the instance of that block becomes an array of instances in
the tessellation control shader. So, for example

out VS_OUT
{

vec4 foo;
vec3 bar;
int baz

} vs_out;

becomes

in VS_OUT
{

vec4 foo;
vec3 bar;
int baz;

} tcs_in[];

in the tessellation evaluation shader.

The output of the tessellation control shader is also an array, but its size is
set by the vertices output layout qualifier at the front of the shader. It
is quite common to set the input and output vertex count to the same
value (as was the case in the samples earlier in this section) and then pass
the input directly to the output from the tessellation control shader.
However, there’s no requirement for this, and the size of the output arrays
in the tessellation control shader is limited by the value of the
GL_MAX_PATCH_VERTICES constant.
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As the outputs of the tessellation control shader are arrays, so the inputs to
the tessellation evaluation shader are also similarly sized arrays. The
tessellation evaluation shader runs once per generated vertex and, like the
tessellation control shader, has access to all of the data for all of the
vertices in the patch.

In addition to the per-vertex data passed from tessellation control shader
to the tessellation evaluation shader in arrays, it’s also possible to pass data
directly between the stages that is constant across an entire patch. To do
this, simply declare the output variable in the tessellation control shader
and the corresponding input in the tessellation evaluation shader using
the patch keyword. In this case the variable does not have to be declared
as an array (although you are welcome to use arrays as patch qualified
variables) as there is only one instance per patch.

Rendering without a Tessellation Control Shader

The purpose of the tessellation control shader is to perform tasks such as
computing the value of per-patch inputs to the tessellation evaluation
shader and to calculate the values of the inner and outer tessellation levels
that will be used by the fixed-function tessellator. However, in some
simple applications, there are no per-patch inputs to the tessellation
evaluation shader, and the tessellation control shader only writes
constants to the tessellation levels. In this case, it’s actually possible to set
up a program with a tessellation evaluation shader, but without a
tessellation control shader.

When no tessellation control shader is present, the default values of all
inner and outer tessellation levels is 1.0. You can change this by calling
glPatchParameterfv(), whose prototype is

void glPatchParameterfv(GLenum pname,
const GLfloat * values);

If pname is GL_PATCH_DEFAULT_INNER_LEVEL, then values should point to
an array of two floating-point values that will be used as the new default
inner tessellation levels in the absence of a tessellation control shader.
Likewise, if pname is GL_PATCH_DEFAULT_OUTER_LEVEL, then values should
point to an array of four floating-point values that will be used as the new
default outer tessellation levels.

If no tessellation control shader is part of the current pipeline, then the
number of control points that is presented to the tessellation evaluation
shader is the same as the number of control points per patch set by
the glPatchParameteri() when the pname parameter is set to
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GL_PATCH_VERTICES. In this case, the input to the tessellation evaluation
shader comes directly from the vertex shader. That is, the input to the
tessellation evaluation shader is an array formed from the outputs of the
vertex shader invocations that generated the patch.

Communication between Shader Invocations

Although the purpose of output variables in tessellation control shaders is
primarily to pass data to the tessellation evaluation shader, they also have
a secondary purpose. That is, to communicate data between control
shader invocations. As you have read, the tessellation control shader runs
a single invocation for each output control point in a patch. Each output
variable in the tessellation control shader is therefore an array, the length
of which is the number of control points in the output patch. Normally,
each tessellation control shader invocation will take responsibility for
writing to one element of this array.

What might not be obvious is that tessellation control shaders can
actually read from their output variables — including those that might be
written by other invocations! Now, the tessellation control shader is
designed in such a way that the invocations can run in parallel. However,
there is no ordering guarantee over how those shaders actually execute
your code. That means that you have no idea if, when you read from
another invocation’s output variable, that that invocation has actually
written data there.

To deal with this, GLSL includes the barrier() function. This is known as
a flow-control barrier, as it enforces relative order to the execution of
multiple shader invocations. The barrier() function really shines when
used in compute shaders — we’ll get to that later. However, it’s available in
a limited form in tessellation control shaders, too, with a number of
restrictions. In particular, in a tessellation control shader, barrier() may
only be called directly from within your main() function, and can’t be
inside any control flow structures (such as if, else, while, or switch).

When you call barrier(), the tessellation control shader invocation will
stop and wait for all the other invocations in the same patch to catch up.
It won’t continue execution until all the other invocations have reached
the same point. This means that if you write to an output variable in a
tessellation control shader and then call barrier(), you can be sure that
all the other invocations have done the same thing by the time barrier()
returns, and therefore it’s safe to go ahead and read from the other
invocations’ output variables.
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Tessellation Example — Terrain Rendering

To demonstrate a potential use for tessellation, we will cover a simple
terrain rendering system based on quadrilateral patches and displacement
mapping. The code for this example is part of the dispmap sample.
A displacement map is a texture that contains the displacement from a
surface at each location. Each patch represents a small region of a
landscape that is tessellated depending on its likely screen-space area.
Each tessellated vertex is moved along the tangent to the surface by the
value stored in the displacement map. This adds geometric detail to the
surface without needing to explicitly store the positions of each tessellated
vertex. Rather, only the displacements from an otherwise flat landscape
are stored in the displacement map and are applied at runtime in the
tessellation evaluation shader. The displacement map (which is also
known as a height map) used in the example is shown in Figure 8.11.

Figure 8.11: Displacement map used in terrain sample

Our first step is to set up a simple vertex shader. As each patch is
effectively a simple quad, we can use constants in the shader to represent
the four vertices rather than setting up vertex arrays for it. The complete

300 Chapter 8: Primitive Processing



shader is shown in Listing 8.8. The shader uses the instance number
(stored in gl_InstanceID) to calculate an offset for the patch, which is a
one-unit square in the xz plane, centered on the origin. In this
application, we will render a grid of 64 × 64 patches, and so the x and y
offsets for the patch are calculated by taking gl_InstanceID modulo 64
and gl_InstanceID divided by 64. The vertex shader also calculates the
texture coordinates for the patch, which are passed to the tessellation
control shader in vs_out.tc.

#version 430 core

out VS_OUT
{

vec2 tc;
} vs_out;

void main(void)
{

const vec4 vertices[] = vec4[](vec4(-0.5, 0.0, -0.5, 1.0),
vec4( 0.5, 0.0, -0.5, 1.0),
vec4(-0.5, 0.0, 0.5, 1.0),
vec4( 0.5, 0.0, 0.5, 1.0));

int x = gl_InstanceID & 63;
int y = gl_InstanceID >> 6;
vec2 offs = vec2(x, y);

vs_out.tc = (vertices[gl_VertexID].xz + offs + vec2(0.5)) / 64.0;
gl_Position = vertices[gl_VertexID] + vec4(float(x - 32), 0.0,

float(y - 32), 0.0);
}

Listing 8.8: Vertex shader for terrain rendering

Next, we come to the tessellation control shader. Again, the complete
shader is shown in Listing 8.9. In this example, the bulk of the rendering
algorithm is implemented in the tessellation control shader, and the
majority of the code is only executed by the first invocation. Once we
have determined that we are the first invocation by checking that
gl_InvocationID is zero, we calculate the tessellation levels for the whole
patch. First, we project the corners of the patch into normalized device
coordinates by multiplying the incoming coordinates by the
model-view-projection matrix and then dividing each of the four points
by their own homogeneous .w component.

Next, we calculate the length of each of the four edges of the patch in
normalized device space after projecting them onto the xy plane by
ignoring their z components. Then, the shader calculates the tessellation
levels of each edge of the patch as a function of its length using a simple
scale and bias. Finally, the inner tessellation factors are simply set to the
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minimum of the outer tessellation factors calculated from the edge lengths
in the horizontal or vertical directions.

You may also have noticed a piece of code in Listing 8.9 that checks
whether all of the z coordinates of the projected control points are less
than zero and then sets the outer tessellation levels to zero if this happens.
This is an optimization that culls entire patches that are behind2 the
viewer.

#version 430 core

layout (vertices = 4) out;

in VS_OUT
{

vec2 tc;
} tcs_in[];

out TCS_OUT
{

vec2 tc;
} tcs_out[];

uniform mat4 mvp;

void main(void)
{

if (gl_InvocationID == 0)
{

vec4 p0 = mvp * gl_in[0].gl_Position;
vec4 p1 = mvp * gl_in[1].gl_Position;
vec4 p2 = mvp * gl_in[2].gl_Position;
vec4 p3 = mvp * gl_in[3].gl_Position;
p0 /= p0.w;
p1 /= p1.w;
p2 /= p2.w;
p3 /= p3.w;
if (p0.z <= 0.0 ||

p1.z <= 0.0 ||
p2.z <= 0.0 ||
p3.z <= 0.0)

{
gl_TessLevelOuter[0] = 0.0;
gl_TessLevelOuter[1] = 0.0;
gl_TessLevelOuter[2] = 0.0;
gl_TessLevelOuter[3] = 0.0;

}
else
{

float l0 = length(p2.xy - p0.xy) * 16.0 + 1.0;
float l1 = length(p3.xy - p2.xy) * 16.0 + 1.0;
float l2 = length(p3.xy - p1.xy) * 16.0 + 1.0;
float l3 = length(p1.xy - p0.xy) * 16.0 + 1.0;
gl_TessLevelOuter[0] = l0;

2. This optimization is actually not foolproof. If the viewer were at the bottom of a very steep
cliff and looking directly upwards, all four corners of the base patch may be behind the viewer,
whereas the cliff cutting through the patch will extend into the viewer’s field of view.
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gl_TessLevelOuter[1] = l1;
gl_TessLevelOuter[2] = l2;
gl_TessLevelOuter[3] = l3;
gl_TessLevelInner[0] = min(l1, l3);
gl_TessLevelInner[1] = min(l0, l2);

}
}

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
tcs_out[gl_InvocationID].tc = tcs_in[gl_InvocationID].tc;

}

Listing 8.9: Tessellation control shader for terrain rendering

Once the tessellation control shader has calculated the tessellation levels
for the patch, it simply copies its input to its output. It does this per
instance and passes the resulting data to the tessellation evaluation shader,
which is shown in Listing 8.10.

#version 430 core

layout (quads, fractional_odd_spacing) in;

uniform sampler2D tex_displacement;

uniform mat4 mvp;
uniform float dmap_depth;

in TCS_OUT
{

vec2 tc;
} tes_in[];

out TES_OUT
{

vec2 tc;
} tes_out;

void main(void)
{

vec2 tc1 = mix(tes_in[0].tc, tes_in[1].tc, gl_TessCoord.x);
vec2 tc2 = mix(tes_in[2].tc, tes_in[3].tc, gl_TessCoord.x);
vec2 tc = mix(tc2, tc1, gl_TessCoord.y);

vec4 p1 = mix(gl_in[0].gl_Position,
gl_in[1].gl_Position,
gl_TessCoord.x);

vec4 p2 = mix(gl_in[2].gl_Position,
gl_in[3].gl_Position,
gl_TessCoord.x);

vec4 p = mix(p2, p1, gl_TessCoord.y);

p.y += texture(tex_displacement, tc).r * dmap_depth;

gl_Position = mvp * p;
tes_out.tc = tc;

}

Listing 8.10: Tessellation evaluation shader for terrain rendering
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The tessellation evaluation shader shown in Listing 8.10 first calculates the
texture coordinate of the generated vertex by linearly interpolating the
texture coordinates passed from the tessellation control shader of
Listing 8.9 (which were in turn generated by the vertex shader of
Listing 8.8). It then applies a similar interpolation to the incoming control
point positions to produce the position of the outgoing vertex. However,
once it’s done that, it uses the texture coordinate that it calculated to
offset the vertex in the y direction before multiplying that result by the
model-view-projection matrix (the same one that was used in the
tessellation control shader). It also passes the computed texture coordinate
on to the fragment shader in tes_out.tc. That fragment shader is shown
in Listing 8.11.

#version 430 core

out vec4 color;

layout (binding = 1) uniform sampler2D tex_color;

in TES_OUT
{

vec2 tc;
} fs_in;

void main(void)
{

color = texture(tex_color, fs_in.tc);
}

Listing 8.11: Fragment shader for terrain rendering

The fragment shader shown in Listing 8.11 is really pretty simple. All it
does is use the texture coordinate that the tessellation evaluation shader
gave it to look up a color for the fragment. The result of rendering with
this set of shaders is shown in Figure 8.12.

Of course, if we’ve done our job correctly, you shouldn’t be able to tell
that the underlying geometry is tessellated. However, if you look at the
wireframe version of the image shown in Figure 8.13, you can clearly see
the underlying triangular mesh of the landscape. The goals of the program
are that all of the triangles rendered on the screen have roughly similar
screen-space area and that sharp transitions in the level of tessellation are
not visible in the rendered image.

Tessellation Example — Cubic Bézier Patches

In the displacement mapping example, all we did was use a (very large)
texture to drive displacement from a flat surface and then use tessellation
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Figure 8.12: Terrain rendered using tessellation

Figure 8.13: Tessellated terrain in wireframe

to increase the number of polygons in the scene. This is a type of brute
force, data driven approach to geometric complexity. In the cubicbezier
example described here, we will use math to drive geometry — we’re going
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to render a cubic Bézier patch. If you look back to Chapter 4, you’ll see that
we’ve covered all the number crunching we’ll need here.

A cubic Bézier patch is a type of higher order surface and is defined by a
number of control points3 that provide input to a number of interpolation
functions that define the surface’s shape. A Bézier patch has 16 control
points, laid out in a 4 × 4 grid. Very often (including in this example),
they are equally spaced in two dimensions varying only in distance from a
shared plane. However, they don’t have to be. Free-form Bézier patches are
extremely powerful modeling tools, being used natively by many pieces of
modeling and design software. With OpenGL tessellation, it’s possible to
render them directly.

The simplest method of rendering a Bézier patch is to treat the four
control points in each row of the patch as the control points for a single
cubic Bézier curve, just as was described in Chapter 4. Given our 4 × 4 grid
of control points, we have 4 curves, and if we interpolate along each of
them using the same value of t, we will end up with 4 new points. We use
these 4 points as the control points for a second cubic Bézier curve.
Interpolating along this second curve using a new value for t gives us a
second point that lies on the patch. The two values of t (let’s call them t0
and t1) are the domain of the patch and are what is handed to us in the
tessellation evaluation shader in gl_TessCoord.xy.

In this example, we’ll perform tessellation in view space. That means that
in our vertex shader, we’ll transform our patch’s control points into view
space by multiplying their coordinates by the model-view matrix — that is
all. This simple vertex shader is shown in Listing 8.12.

#version 430 core

in vec4 position;

uniform mat4 mv_matrix;

void main(void)
{

gl_Position = mv_matrix * position;
}

Listing 8.12: Cubic Bézier patch vertex shader

3. It should now be evident why the tessellation control shader is so named.
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Once our control points are in view space, they are passed to our
tessellation control shader. In a more advanced4 algorithm, we could
project the control points into screen space, determine the length of the
curve, and set the tessellation factors appropriately. However, in this
example, we’ll settle with a simple fixed tessellation factor. As in previous
examples, we set the tessellation factors only when gl_InvocationID is
zero, but pass all of the other data through once per invocation. The
tessellation control shader is shown in Listing 8.13.

#version 430 core

layout (vertices = 16) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 16.0;
gl_TessLevelInner[1] = 16.0;
gl_TessLevelOuter[0] = 16.0;
gl_TessLevelOuter[1] = 16.0;
gl_TessLevelOuter[2] = 16.0;
gl_TessLevelOuter[3] = 16.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.13: Cubic Bézier patch tessellation control shader

Next, we come to the tessellation evaluation shader. This is where the
meat of the algorithm lies. The shader in its entirety is shown in
Listing 8.14. You should recognize the cubic_bezier and
quadratic_bezier functions from Chapter 4. The evaluate_patch
function is responsible for evaluating5 the vertex’s coordinate given the
input patch coordinates and the vertex’s position within the patch.

#version 430 core

layout (quads, equal_spacing, cw) in;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

4. To do this right, we’d need to evaluate the length of the Bézier curve, which involves cal-
culating an integral over a non-closed form... which is hard.

5. You should also now see why the tessellation evaluation shader is so named.
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out TES_OUT
{

vec3 N;
} tes_out;

vec4 quadratic_bezier(vec4 A, vec4 B, vec4 C, float t)
{

vec4 D = mix(A, B, t);
vec4 E = mix(B, C, t);

return mix(D, E, t);
}

vec4 cubic_bezier(vec4 A, vec4 B, vec4 C, vec4 D, float t)
{

vec4 E = mix(A, B, t);
vec4 F = mix(B, C, t);
vec4 G = mix(C, D, t);

return quadratic_bezier(E, F, G, t);
}

vec4 evaluate_patch(vec2 at)
{

vec4 P[4];
int i;

for (i = 0; i < 4; i++)
{

P[i] = cubic_bezier(gl_in[i + 0].gl_Position,
gl_in[i + 4].gl_Position,
gl_in[i + 8].gl_Position,
gl_in[i + 12].gl_Position,
at.y);

}

return cubic_bezier(P[0], P[1], P[2], P[3], at.x);
}

const float epsilon = 0.001;

void main(void)
{

vec4 p1 = evaluate_patch(gl_TessCoord.xy);
vec4 p2 = evaluate_patch(gl_TessCoord.xy + vec2(0.0, epsilon));
vec4 p3 = evaluate_patch(gl_TessCoord.xy + vec2(epsilon, 0.0));

vec3 v1 = normalize(p2.xyz - p1.xyz);
vec3 v2 = normalize(p3.xyz - p1.xyz);

tes_out.N = cross(v1, v2);

gl_Position = proj_matrix * p1;
}

Listing 8.14: Cubic Bézier patch tessellation evaluation shader

In our tessellation evaluation shader, we calculate the surface normal to
the patch by evaluating the patch position at two points very close to the
point under consideration, using the additional points to calculate two
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vectors that lie on the patch and then taking their cross product. This is
passed to the fragment shader shown in Listing 8.15.

#version 430 core

out vec4 color;

in TES_OUT
{

vec3 N;
} fs_in;

void main(void)
{

vec3 N = normalize(fs_in.N);

vec4 c = vec4(1.0, -1.0, 0.0, 0.0) * N.z +
vec4(0.0, 0.0, 0.0, 1.0);

color = clamp(c, vec4(0.0), vec4(1.0));
}

Listing 8.15: Cubic Bézier patch fragment shader

This fragment shader performs a very simple lighting calculation using the
z component of the surface normal. The result of rendering with this
shader is shown in Figure 8.14.

Figure 8.14: Final rendering of a cubic Bézier patch
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Because the rendered patch shown in Figure 8.14 is smooth, it is hard to
see the tessellation that has been applied to the shape. The left of
Figure 8.15 shows a wireframe representation of the tessellated patch, and
the right side of Figure 8.15 shows the patch’s control points and the
control cage, which is formed by creating a grid of lines between the
control points.

Figure 8.15: A Bézier patch and its control cage

Geometry Shaders

The geometry shader is unique in contrast to the other shader types in
that it processes a whole primitive (triangle, line, or point) at once and can
actually change the amount of data in the OpenGL pipeline
programmatically. A vertex shader processes one vertex at a time; it
cannot access any other vertex’s information and is strictly one-in,
one-out. That is, it cannot generate new vertices, and it cannot stop the
vertex from being processed further by OpenGL. The tessellation shaders
operate on patches and can set tessellation factors, but have little further
control over how patches are tessellated, and cannot produce disjoint
primitives. Likewise, the fragment shader processes a single fragment at a
time, cannot access any data owned by another fragment, cannot create
new fragments, and can only destroy fragments by discarding them. On
the other hand, a geometry shader has access to all of the vertices in a
primitive (up to six with the primitive modes GL_TRIANGLES_ADJACENCY
and GL_TRIANGLE_STRIP_ADJACENCY), can change the type of a primitive,
and can even create and destroy primitives.

Geometry shaders are an optional part of the OpenGL pipeline. When no
geometry shader is present, the outputs from the vertex or tessellation
evaluation shader are interpolated across the primitive being rendered and
are fed directly to the fragment shader. When a geometry shader is
present, however, the outputs of the vertex or tessellation evaluation
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shader become the inputs to the geometry shader, and the outputs of the
geometry shader are what are interpolated and fed to the fragment shader.
The geometry shader can further process the output of the vertex or
tessellation evaluation shader, and if it is generating new primitives (this is
called amplification), it can apply different transformations to each
primitive as it creates them.

The Pass-Through Geometry Shader

As explained back in Chapter 3, “Following the Pipeline,” the simplest
geometry shader that allows you to render anything is the pass-through
shader, which is shown in Listing 8.16.

#version 430 core

layout (triangles) in;
layout (triangle_strip) out;
layout (max_vertices = 3) out;

void main(void)
{

int i;

for (i = 0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}
EndPrimitive();

}

Listing 8.16: Source code for a simple geometry shader

This is a very simple pass-through geometry shader, which sends its input
to its output without modifying it. It looks similar to a vertex shader, but
there are a few extra differences to cover. Going over the shader a few lines
at a time makes everything clear. The first few lines simply set up the
version number (430) of the shader just like in any other shader. The next
couple of lines are the first geometry shader-specific parts. They are shown
again in Listing 8.17.

#version 430 core

layout (triangles) in;
layout (triangle_strip) out;
layout (max_vertices = 3) out;

Listing 8.17: Geometry shader layout qualifiers

These set the input and output primitive modes using a layout qualifier.
In this particular shader we’re using triangles for the input and
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triangle_strip for the output. Other primitive types, along with the
layout qualifier, are covered later. For the geometry shader’s output, not
only do we specify the primitive type, but the maximum number of
vertices expected to be generated by the shader (through the
max_vertices qualifier). This shader produces individual triangles
(generated as very short triangle strips), so we specified 3 here.

Next is our main() function, which is again similar to what might be seen
in a vertex or fragment shader. The shader contains a loop, and the loop
runs a number of times determined by the length of the built-in array,
gl_in. This is another geometry shader-specific variable. Because the
geometry shader has access to all of the vertices of the input primitive, the
input has to be declared as an array. All of the built-in variables that are
written by the vertex shader (such as gl_Position) are placed into a
structure, and an array of these structures is presented to the geometry
shader in a variable called gl_in.

The length of the gl_in[] array is determined by the input primitive mode,
and because in this particular shader, triangles are the input primitive mode,
the size of gl_in[] is three. The inner loop is given again in Listing 8.18.

for (i = 0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}

Listing 8.18: Iterating over the elements of gl_in[]

Inside our loop, we’re generating vertices by simply copying the elements
of gl_in[] to the geometry shader’s output. A geometry shader’s outputs
are similar to the vertex shader’s outputs. Here, we’re writing to
gl_Position, just as we would in a vertex shader. When we’re done
setting up all of the new vertex’s attributes, we call EmitVertex(). This is a
built-in function, specific to geometry shaders that tells the shader that
we’re done with our work for this vertex and that it should store all that
information away and prepare to start setting up the next vertex.

Finally, after the loop has finished executing, there’s a call to another
special, geometry shader-only function, EndPrimitive(). EndPrimitive()
tells the shader that we’re done producing vertices for the current primitive
and to move on to the next one. We specified triangle_strip as the output
for our shader, and so if we continue to call EmitVertex() more than three
times, OpenGL continues adding triangles to the triangle strip. If we need
our geometry shader to generate separate, individual triangles or multiple,
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unconnected triangle strips (remember, geometry shaders can create new
or amplify geometry), we could call EndPrimitive() between each one
to mark their boundaries. If you don’t call EndPrimitive() somewhere in
your shader, the primitive is automatically ended when the shader ends.

Using Geometry Shaders in an Application

Geometry shaders, like the other shader types, are created by calling the
glCreateShader() function and using GL_GEOMETRY_SHADER as the shader
type, as follows:

glCreateShader(GL_GEOMETRY_SHADER);

Once the shader has been created, it is used like any other shader object.
You give OpenGL your shader source code by calling glShaderSource(),
compile the shader using the glCompileShader() function, and attach it to
a program object by calling the glAttachShader() function. Then the
program is linked as normal using the glLinkProgram() function. Now
that you have a program object with a geometry shader linked into it,
when you draw geometry using a function like glDrawArrays(), the vertex
shader will run once per vertex, the geometry shader will run once per
primitive (point, line, or triangle), and the fragment will run once per
fragment. The primitives received by a geometry shader must match what
it is expecting based in its own input primitive mode. When tessellation is
not active, the primitive mode you use in your drawing commands must
match the input primitive mode of the geometry shader. For example, if
the geometry shader’s input primitive mode is points, then you may only
use GL_POINTS when you call glDrawArrays(). If the geometry shader’s
input primitive mode is triangles, then you may use GL_TRIANGLES,
GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN in your glDrawArrays() call.
A complete list of the geometry shader input primitive modes and the
allowed geometry types is given in Table 8.1.

Table 8.1: Allowed Draw Modes for Geometry Shader Input Modes

Geometry Shader Input Mode Allowed Draw Modes

points GL_POINTS

lines GL_LINES, GL_LINE_LOOP,
GL_LINE_STRIP

triangles GL_TRIANGLES, GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP

lines_adjacency GL_LINES_ADJACENCY

triangles_adjacency GL_TRIANGLES_ADJACENCY
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When tessellation is active, the mode you use in your drawing commands
should always be GL_PATCHES, and OpenGL will convert the patches into
points, lines, or triangles during the tessellation process. In this case, the
input primitive mode of the geometry shader should match the
tessellation primitive mode. The input primitive type is specified in the
body of the geometry shader using a layout qualifier. The general form of
the input layout qualifier is

layout (primitive_type) in;

This specifies that primitive_type is the input primitive type that the
geometry shader is expected to handle, and primitive_type must be one
of the supported primitive modes: points, lines, triangles,
lines_adjacency, or triangles_adjacency. The geometry shader runs
once per primitive. This means that it’ll run once per point for GL_POINTS;
once per line for GL_LINES, GL_LINE_STRIP, and GL_LINE_LOOP; and once
per triangle for GL_TRIANGLES, GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN.
The inputs to the geometry shader are presented in arrays containing all of
the vertices making up the input primitive. The predefined inputs are
stored in a built-in array called gl_in[], which is an array of structures
defined in Listing 8.19.

in gl_PerVertex
{

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[];

} gl_in[];

Listing 8.19: The definition of gl_in[]

The members of this structure are the built-in variables that are written in
the vertex shader: gl_Position, gl_PointSize, and gl_ClipDistance[].
You should recognize this structure from its declaration as an output block
in the vertex shader described earlier in this chapter. These variables
appear as global variables in the vertex shader because the block doesn’t
have an instance name there, but their values end up in the gl_in[] array
of block instances when they appear in the geometry shader. Other
variables written by the vertex shader also become arrays in the geometry
shader. In the case of individual varyings, outputs in the vertex shader are
declared as normal, and the inputs to the geometry shader have a similar
declaration, except that they are arrays. Consider a vertex shader that
defines outputs as

out vec4 color;
out vec3 normal;
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The corresponding input to the geometry shader would be

in vec4 color[];
in vec3 normal[];

Notice that both the color and normal varyings have become arrays in the
geometry shader. If you have a large amount of data to pass from the
vertex to the geometry shader, it can be convenient to wrap per-vertex
information passed from the vertex shader to the geometry shader into an
interface block. In this case, your vertex shader will have a definition like
this:

out VertexData
{

vec4 color;
vec3 normal;

} vertex;

And the corresponding input to the geometry shader would look like this:

in VertexData
{

vec4 color;
vec3 normal;
// More per-vertex attributes can be inserted here

} vertex[];

With this declaration, you’ll be able to access the per-vertex data in the
geometry shader using vertex[n].color and so on. The length of the
input arrays in the geometry shader depends on the type of primitives that
it will process. For example, points are formed from a single vertex, and so
the arrays will only contain a single element, whereas triangles are formed
from three vertices, and so the arrays will be three elements long. If you’re
writing a geometry shader that’s designed specifically to process a
particular primitive type, you can explicitly size your input arrays, which
provides a small amount of additional compile-time error checking.
Otherwise, you can let your arrays be automatically sized by the input
primitive type layout qualifier. A complete mapping of the input primitive
modes and the resulting size of the input arrays is shown in Table 8.2.

Table 8.2: Sizes of Input Arrays to Geometry Shaders

Input Primitive Type Size of Input Arrays

points 1
lines 2
triangles 3
lines_adjacency 4
triangles_adjacency 6
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You also need to specify the primitive type that will be generated by the
geometry shader. Again, this is determined using a layout qualifier, like so:

layout (primitive_type) out;

This is similar to the input primitive type layout qualifier, the only
difference being that you are declaring the output of the shader using the
out keyword. The allowable output primitive types from the geometry
shader are points, line_strip, and triangle_strip. Notice that
geometry shaders only support outputting the strip primitive types (not
counting points—obviously, there is no such thing as a point strip).

There is one final layout qualifier that must be used to configure the
geometry shader. Because a geometry shader is capable of producing a
variable amount of data per vertex, OpenGL must be told how much space
to allocate for all that data by specifying the maximum number of vertices
that the geometry shader is expected to produce. To do this, use the
following layout qualifier:

layout (max_vertices = n) out;

This sets the maximum number of vertices that the geometry shader may
produce to n. Because OpenGL may allocate buffer space to store
intermediate results for each vertex, this should be the smallest number
possible that still allows your application to run correctly. For example, if
you are planning to take points and produce one line at a time, then you
can safely set this to two. This gives the shader hardware the best
opportunity to run fast. If you are going to heavily tessellate the incoming
geometry, you might want to set this to a much higher number, although
this may cost you some performance. The upper limit on the number of
vertices that a geometry shader can produce depends on your OpenGL
implementation. It is guaranteed to be at least 256, but the absolute
maximum can be found by calling glGetIntegerv() with the
GL_MAX_GEOMETRY_OUTPUT_VERTICES parameter.

You can also declare more than one layout qualifier with a single
statement by separating them with a comma, like so:

layout (triangle_strip, max_vertices = n) out;

With these layout qualifiers, a boilerplate #version declaration, and an
empty main() function, you should be able to produce a geometry shader
that compiles and links but does absolutely nothing. In fact, it will discard
any geometry you send it, and nothing will be drawn by your application.
We need to introduce two important functions: EmitVertex() and
EndPrimitive(). If you don’t call these, nothing will be drawn.
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EmitVertex() tells the geometry shader that you’ve finished filling in all
of the information for this vertex. Setting up the vertex works much like
the vertex shader. You need to write into the built-in variable
gl_Position. This sets the clip-space coordinates of the vertex that is
produced by the geometry shader, just like in a vertex shader. Any other
attributes that you want to pass from the geometry shader to the fragment
shader can be declared in an interface block or as global variables in the
geometry shader. Whenever you call EmitVertex, the geometry shader
stores the values currently in all of its output variables and uses them to
generate a new vertex. You can call EmitVertex() as many times as you
like in a geometry shader, until you reach the limit you specified in your
max_vertices layout qualifier. Each time, you put new values into your
output variables to generate a new vertex.

An important thing to note about EmitVertex() is that it makes the
values of any of your output variables (such as gl_Position) undefined.
So, for example, if you want to emit a triangle with a single color, you
need to write that color with every one of your vertices; otherwise, you
will end up with undefined results.

EmitPrimitive() indicates that you have finished appending vertices to
the end of the primitive. Don’t forget, geometry shaders only support the
strip primitive types (line_strip and triangle_strip). If your output
primitive type is triangle_strip and you call EmitVertex() more than
three times, the geometry shader will produce multiple triangles in a strip.
Likewise, if your output primitive type is line_strip and you call
EmitVertex() more than twice, you’ll get multiple lines. In the geometry
shader, EndPrimitive() refers to the strip. This means that if you want to
draw individual lines or triangles, you have to call EndPrimitive() after
every two or three vertices. You can also draw multiple strips by calling
EmitVertex() many times between multiple calls to EndPrimitive().

One final thing to note about calling EmitVertex() and EndPrimitive()
in the geometry shader is that if you haven’t produced enough vertices to
produce a single primitive (e.g., you’re generating triangle_strip outputs
and you call EndPrimitive() after two vertices), nothing is produced for
that primitive, and the vertices you’ve already produced are simply
thrown away.

Discarding Geometry in the Geometry Shader

The geometry shader in your program runs once per primitive. What you
do with that primitive is entirely up to you. The two functions
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EmitVertex() and EndPrimitive() allow you to programmatically append
new vertices to your triangle or line strip and to start new strips. You can
call them as many times as you want (until you reach the maximum defined
by your implementation). You’re also allowed to not call them at all. This
allows you to clip geometry away and discard primitives. If your geometry
shader runs and you never call EmitVertex() for that particular primitive,
nothing will be drawn. To illustrate this, we can implement a custom
backface culling routine that culls geometry as if it were viewed from an
arbitrary point in space. This is implemented in the gsculling example.

First, we set up our shader version and declare our geometry shader to
accept triangles and to produce triangle strips. Backface culling doesn’t
really make a lot of sense for lines or points. We also define a uniform that
will hold our custom viewpoint in world space. This is shown in
Listing 8.20.

#version 330

// Input is triangles, output is triangle strip. Because we’re going
// to do a 1 in 1 out shader producing a single triangle output for
// each one input, max_vertices can be 3 here.
layout (triangles) in;
layout (triangle_strip, max_vertices=3) out;

// Uniform variables that will hold our custom viewpoint and
// model-view matrix
uniform vec3 viewpoint;
uniform mav4 mv_matrix;

Listing 8.20: Configuring the custom culling geometry shader

Now inside our main() function, we need to find the face normal for the
triangle. This is simply the cross products of any two vectors in the plane
of the triangle—we can use the triangle edges for this. Listing 8.21 shows
how this is done.

// Calculate two vectors in the plane of the input triangle
vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 normal = normalize(cross(ab, ac));

Listing 8.21: Finding a face normal in a geometry shader

Now that we have the normal, we can determine whether it faces toward
or away from our user-defined viewpoint. To do this, we need to transform
the normal into the same coordinate space as the viewpoint, which is
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world space. Assuming we have the model-view matrix in a uniform,
simply multiply the normal by this matrix. To be more accurate, we
should multiply the vector by the inverse of the transpose of the
upper-left 3× 3 submatrix of the model-view matrix. This is known as the
normal matrix, and you’re free to implement this and put it in its own
uniform if you like. However, if your model-view matrix only contains
translation, uniform scale (no shear), and rotation, you can use it directly.
Don’t forget, the normal is a three-element vector, and the model-view
matrix is a 4× 4 matrix. We need to extend the normal to a four-element
vector before we can multiply the two. We can then take the dot product
of the resulting vector with the vector from the viewpoint to any point on
the triangle.

If the sign of the dot product is negative, that means that the normal is
facing away from the viewer and the triangle should be culled. If it is
positive, the triangle’s normal is pointing toward the viewer, and we
should pass the triangle on. The code to transform the face normal,
perform the dot product, and test the sign of the result is shown in
Listing 8.22.

// Calculate the transformed face normal and the view direction vector
vec3 transformed_normal = (vec4(normal, 0.0) * mv_matrix).xyz;
vec3 vt = normalize(gl_in[0].gl_Position.xyz - viewpoint);

// Take the dot product of the normal with the view direction
float d = dot(vt, normal);

// Emit a primitive only if the sign of the dot product is positive
if (d > 0.0)
{

for (int i = 0; i < 3; i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}
EndPrimitive();

}

Listing 8.22: Conditionally emitting geometry in a geometry shader

In Listing 8.22, if the dot product is positive, we copy the input vertices to
the output of the geometry shader and call EmitVertex() for each one. If
the dot product is negative, we simply don’t do anything at all. This
results in the incoming triangle being discarded altogether and nothing
being drawn.

In this particular example, we are generating at most one triangle output
for each triangle input to the geometry shader. Although the output of the
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geometry shader is a triangle strip, our strips only contain a single triangle.
Therefore, there doesn’t strictly need to be a call to EndPrimitive(). We
just leave it there for completeness.

Figure 8.16 shows a the result of this shader.

Figure 8.16: Geometry culled from different viewpoints

In Figure 8.16, the virtual viewer has been moved to different positions. As
you can see, different parts of the model have been culled away by the
geometry shader. It’s not expected that this example is particularly useful,
but it does demonstrate the ability for a geometry shader to perform
geometry culling based on application-defined criteria.

Modifying Geometry in the Geometry Shader

The previous example either discarded geometry or passed it through
unmodified. It is also possible to modify vertices as they pass through the
geometry shader to create new, derived shapes. Even though your
geometry shader is passing vertices on one-to-one (i.e., no amplification or
culling is taking place), this still allows you to do things that would
otherwise not be possible with a vertex shader alone. If the input
geometry is in the form of triangle strips or fans, for example, the resulting
geometry will have shared vertices and shared edges. Using the vertex
shader to move shared vertices will move all of the triangles that share
that vertex. It is not possible, then, to separate two triangles that share an
edge in the original geometry using the vertex shader alone. However, this
is trivial using the geometry shader.

Consider a geometry shader that accepts triangles and produces
triangle_strip as output. The input to a geometry shader that accepts
triangles is individual triangles, regardless of whether they originated
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from a glDrawArrays() or a glDrawElements() function call, or whether
the primitive type was GL_TRIANGLES, GL_TRIANGLE_STRIP, or
GL_TRIANGLE_FAN. Unless the geometry shader outputs more than three
vertices, the result is independent, unconnected triangles.

In this next example, we “explode” a model by pushing all of the triangles
out along their face normals. It doesn’t matter whether the original model
is drawn with individual triangles or with triangle strips or fans. As with
the previous example, the input is triangles, the output is
triangle_strip, and the maximum number of vertices produced by the
geometry shader is three because we’re not amplifying or decimating
geometry. The setup code for this is shown in Listing 8.23.

#version 330

// Input is triangles, output is triangle strip. Because we’re going to do a
// 1 in 1 out shader producing a single triangle output for each one input,
// max_vertices can be 3 here.
layout (triangles) in;
layout (triangle_strip, max_vertices=3) out;

Listing 8.23: Setting up the “explode” geometry shader

To project the triangle outward, we need to calculate the face normal of
each triangle. Again, to do this we can take the cross product of two
vectors in the plane of the triangle—two edges of the triangle. For
this, we can reuse the code from Listing 8.21. Now that we have the
triangle’s face normal, we can project vertices along that normal by an
application-controlled amount. That amount can be stored in a uniform
(we call it explode_factor) and updated by the application. This simple
code is shown in Listing 8.24.

for (int i = 0; i < 3; i++)
{

gl_Position = gl_in[i].gl_Position +
vec4(explode_factor * normal, 0.0);

}

Listing 8.24: Pushing a face out along its normal

The result of running this geometry shader on a model is shown in
Figure 8.17. The model has been deconstructed, and the individual
triangles have become visible.
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Figure 8.17: Exploding a model using the geometry shader

Generating Geometry in the Geometry Shader

Just as you are not required to call EmitVertex() or EndPrimitive() at all
if you don’t want to produce any output from the geometry shader, it is
also possible to call EmitVertex() and EndPrimitive() as many times as
you need to produce new geometry. That is, until you reach the maximum
number of output vertices that you declared at the start of your geometry
shader. This functionality can be used for things like making multiple
copies of the input or breaking the input into smaller pieces. This is the
subject of the next example, which is the gstessellate sample in the
book’s accompanying source code. The input to our shader is a
tetrahedron centered around the origin. Each face of the tetrahedron is
made from a single triangle. We tessellate incoming triangles by
producing new vertices halfway along each edge and then moving all of
the resulting vertices so that they are variable distances from the origin.
This transforms our tetrahedron into a spiked shape.

Because the geometry shader operates in object space (remember, the
tetrahedron’s vertices are centered around the origin), we need to do no
coordinate transforms in the vertex shader and, instead, do the transforms
in the geometry shader after we’ve generated the new vertices. To do this,
we need a simple, pass-through vertex shader. Listing 8.25 shows a simple
pass-through vertex shader.
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#version 330

in vec4 position;

void main(void)
{

gl_Position = position;
}

Listing 8.25: Pass-through vertex shader

This shader only passes the vertex position to the geometry shader. If you
have other attributes associated with the vertices such as texture
coordinates or normals, you need to pass them through the vertex shader
to the geometry shader as well.

As in the previous example, we accept triangles as input to the geometry
shader and produce a triangle strip. We break the strip after every triangle
so that we can produce separate, independent triangles. In this example,
we produce four output triangles for every input triangle. We need to
declare our maximum output vertex count as 12—four triangles times
three vertices. We also need to declare a uniform matrix to store the
model-view transformation matrix in the geometry shader because we do
that transform after generating vertices. Listing 8.26 shows this code.

#version 430 core

layout (triangles) in;
layout (triangle_strip, max_vertices = 12) out;

// A uniform to store the model-view-projection matrix
uniform mat4 mvp;

Listing 8.26: Setting up the “tessellator” geometry shader

First, let’s copy the incoming vertex coordinates into a local variable.
Then, given the original, incoming vertices, we find the midpoint of each
edge by taking their average. In this case, however, rather than simply
dividing by two, we multiply by a scale factor, which will allow us to alter
the spikiness of the resulting object. Code to do this is shown in
Listing 8.27.

// Copy the incoming vertex positions into some local variables
vec3 a = gl_in[0].gl_Position.xyz;
vec3 b = gl_in[1].gl_Position.xyz;
vec3 c = gl_in[2].gl_Position.xyz;
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// Find a scaled version of their midpoints
vec3 d = (a + b) * stretch;
vec3 e = (b + c) * stretch;
vec3 f = (c + a) * stretch;

// Now, scale the original vertices by an inverse of the midpoint
// scale
a *= (2.0 - stretch);
b *= (2.0 - stretch);
c *= (2.0 - stretch);

Listing 8.27: Generating new vertices in a geometry shader

Because we are going to generate several triangles using almost identical
code, we can put that code into a function (shown in Listing 8.28) and call
it from our main tessellation function.

void make_face(vec3 a, vec3 b, vec3 c)
{

vec3 face_normal = normalize(cross(c - a, c - b));
vec4 face_color = vec4(1.0, 0.2, 0.4, 1.0) * (mat3(mvMatrix) * face_normal
gl_Position = mvpMatrix * vec4(a, 1.0);
color = face_color;
EmitVertex();

gl_Position = mvpMatrix * vec4(b, 1.0);
color = face_color;
EmitVertex();

gl_Position = mvpMatrix * vec4(c, 1.0);
color = face_color;
EmitVertex();

EndPrimitive();
}

Listing 8.28: Emitting a single triangle from a geometry shader

Notice that the make_face function calculates a face color based on the
face’s normal in addition to emitting the positions of its vertices. Now, we
simply call make_face four times from our main function, which is shown
in Listing 8.29.

make_face(a, d, f);
make_face(d, b, e);
make_face(e, c, f);
make_face(d, e, f);

Listing 8.29: Using a function to produce faces in a geometry shader

Figure 8.18 shows the result of our simple geometry shader-based
tessellation program.
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Figure 8.18: Basic tessellation using the geometry shader

Note that using the geometry shader for heavy tessellation may not
produce the most optimal performance. If something more complex than
that shown in this example is desired, it’s best to use the hardware
tessellation functions of OpenGL. However, if simple amplification of
between two and four output primitives for each input primitive is
desired, the geometry shader is probably the way to go.

Changing the Primitive Type in the Geometry Shader

So far, all of the geometry shader examples we’ve gone through have taken
triangles as input and produced triangle strips as output. This doesn’t
change the geometry type. However, geometry shaders can input and
output different types of geometry. For example, you can transform points
into triangles or triangles into points. In the normalviewer example,
which we’ll describe next, we’re going to change the geometry type from
triangles to lines. For each vertex input to the shader, we take the vertex
normal and represent it as a line. We also take the face normal and
represent that as another line. This allows us to visualize the model’s
normals—both at each vertex and for each face. Note, though, that if you
want to draw the normals on top of the original model, you need to draw
everything twice—once with the geometry shader to visualize the normals
and once without the geometry shader to show the model. You can’t
output a mix of two different primitives from a single geometry shader.
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For our geometry shader, in addition to the members of the gl_in
structure, we need the per-vertex normal, and that will have to be passed
through the vertex shader. An updated version of the pass-through vertex
shader from Listing 8.25 is given in Listing 8.30.

#version 330

in vec4 position;
in vec3 normal;

out Vertex
{

vec3 normal;
} vertex;

void main(void)
{

gl_Position = position;
vertex.normal = normal;

}

Listing 8.30: A pass-through vertex shader that includes normals

This passes the position attribute straight through to the gl_Position
built-in variable and places the normal into an output block.

The setup code for the geometry shader is shown in Listing 8.31. In this
example, we accept triangles and produce line strips, each of a single line.
Because we output a separate line for each normal we visualize, we
produce two vertices for each vertex consumed, plus two more for the face
normal. Therefore, the maximum number of vertices that we output per
input triangle is eight. To match the Vertex output block that we declared
in the vertex shader, we also need to declare a corresponding input
interface block in the geometry shader. As we’re going to do the
object-space-to-world-space transformation in the geometry shader, we
declare a mat4 uniform called mvp to represent the model-view-projection
matrix. This is necessary so that we can keep the vertex’s position in the
same coordinate system as its normal until we produce the new vertices
representing the line.

#version 330

layout (triangles) in;
layout (line_strip) out;
layout (max_vertices = 8) out;

in Vertex
{

vec3 normal;
} vertex[];
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// Uniform to hold the model-view-projection matrix
uniform mat4 mvp;

// Uniform to store the length of the visualized normals
uniform float normal_length;

Listing 8.31: Setting up the “normal visualizer” geometry shader

Each input vertex is transformed into its final position and emitted from
the geometry shader, and then a second vertex is produced by displacing
the input vertex along its normal and transforming that into its final
position as well. This makes the length of all of our normals one but
allows any scaling encoded in our model-view-projection matrix to be
applied to them along with the model. We multiply the normals by the
application-supplied uniform normal_length, allowing them to be scaled
to match the model. Our inner loop is shown in Listing 8.32.

gl_Position = mvp * gl_in[0].gl_Position;
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();

gl_Position = mvp * (gl_in[0].gl_Position +
vec4(gs_in[0].normal * normal_length, 0.0));

gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();
EndPrimitive();

Listing 8.32: Producing lines from normals in the geometry shader

This generates a short line segment at each vertex pointing in the
direction of the normal. Now, we need to produce the face normal. To do
this, we need to pick a suitable place from which to draw the normal, and
we need to calculate the face normal itself in the geometry shader along
which to draw the line.

As in the earlier example given in Listing 8.33, we use a cross product of
two of the triangle’s edges to find the face normal. To pick a starting point
for the line, we choose the centroid of the triangle, which is simply the
average of the coordinates of the input vertices. Listing 8.33 shows the
shader code.

vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 face_normal = normalize(cross(ab, ac));

vec4 tri_centroid = (gl_in[0].gl_Position +
gl_in[1].gl_Position +
gl_in[2].gl_Position) / 3.0;
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gl_Position = mvp * tri_centroid;
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();

gl_Position = mvp * (tri_centroid +
vec4(face_normal * normal_length, 0.0));

gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();
EndPrimitive();

Listing 8.33: Drawing a face normal in the geometry shader

Now when we render a model, we get the image shown in Figure 8.19.

Figure 8.19: Displaying the normals of a model using a geometry shader

Multiple Streams of Storage

When only a vertex shader is present, there is a simple one-in, one-out
relationship between the vertices coming into the shader and the vertices
stored in the transform feedback buffer. When a geometry shader is
present, each shader invocation may store zero, one, or more vertices into
the bound transform feedback buffers. Not only this, but it’s actually
possible to configure up to four output streams and use the geometry
shader to send its output to whichever one it chooses. This can be used,
for example, to sort geometry or to render some primitives while storing
other geometry in transform feedback buffers. There are a couple of pretty

328 Chapter 8: Primitive Processing



major limitations when multiple output streams are used in a geometry
shader; first, the output primitive mode from the geometry shader for
all streams must be set to points. Second, although it’s possible to
simultaneously render geometry and to store data into transform feedback
buffers, only the first stream may be rendered — the others are for storage
only. If your application fits with these constraints, then this can be a very
powerful feature.

To set up multiple output streams from your geometry shader, use the
stream layout qualifier to select one of four streams. As with most other
output layout qualifiers, the stream qualifier may be applied directly to a
single output or to an output block. It can also be applied directly to the
out keyword without declaring an output variable, in which case it will
affect all further output declarations until another stream layout qualifier
is encountered. For example, consider the following output declarations
in a geometry shader:

out vec4 foo; // "foo" is in stream 0 (the default).
layout (stream=2) out vec4 bar; // "bar" is part of stream 2.
out vec4 baz; // "baz" is back in stream 0.
layout (stream=1) out; // Everything from here on is in stream 1.
out int apple; // "apple" and "orange" are part
out int orange; // of stream 1.
layout (stream=3) out MY_BLOCK // Everything in "MY_BLOCK" is in
stream 3.
{

vec3 purple;
vec3 green;

};

In the geometry shader, when you call EmitVertex(), the vertex will be
recorded into the first output stream (stream 0). Likewise, when you call
EndPrimitive(), it will end the primitive being recorded to stream 0.
However, you can call EmitStreamVertex() and EndStreamPrimitive(),
both of which take an integer argument specifying the stream to send the
output to:

void EmitStreamVertex(int stream);

void EndStreamPrimitive(int stream);

The stream argument must be a compile time constant. If rasterization is
enabled, then any primitives sent to stream 0 will be rasterized.

New Primitive Types Introduced by the Geometry Shader

Four new primitive types were introduced with geometry shaders:
GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY,

Geometry Shaders 329



GL_TRIANGLES_ADJACENCY, and GL_TRIANGLE_STRIP_ADJACENCY. These
primitive types are really only useful when rendering with a geometry
shader active. When the new adjacency primitive types are used, for each
line or triangle passed into the geometry shader, it not only has access to
the vertices defining that primitive, but it also has access to the vertices of
the primitive that is next to the one it’s processing.

When you render using GL_LINES_ADJACENCY, each line segment
consumes four vertices from the enabled attribute arrays. The two center
vertices make up the line; the first and last vertices are considered the
adjacent vertices. The inputs to the geometry shader are therefore
four-element arrays. In fact, because the input and output types of the
geometry shader do not have to be related, GL_LINES_ADJACENCY can be
seen as a way of sending generalized four-vertex primitives to the geometry
shader. The geometry shader is free to transform them into whatever it
pleases. For example, your geometry shader could convert each set of four
vertices into a triangle strip made up of two triangles. This allows you to
render quads using the GL_LINES_ADJACENCY primitive. It should be noted,
though, that if you draw using GL_LINES_ADJACENCY when no geometry
shader is active, regular lines will be drawn using the two innermost
vertices of each set of four vertices. The two outermost vertices will be
discarded, and the vertex shader will not run on them at all.

Using GL_LINE_STRIP_ADJACENCY produces a similar effect. The difference
is that the entire strip is considered to be a primitive, with one additional
vertex on each end. If you send eight vertices to OpenGL using
GL_LINES_ADJACENCY, the geometry shader will run twice, whereas if you
send the same vertices using GL_LINE_STRIP_ADJACENCY, the geometry
shader will run five times. Figure 8.20 should make things clear. The eight
vertices in the top row are sent to OpenGL with the GL_LINES_ADJACENCY
primitive mode. The geometry shader runs twice on four vertices each
time—ABCD and EFGH. In the second row, the same eight vertices are
sent to OpenGL using the GL_LINE_STRIP_ADJACENCY primitive mode.
This time, the geometry shader runs five times—ABCD, BCDE, and so on
until EFGH. In each case, the solid arrows are the lines that would be
rendered if no geometry shader were present.

The GL_TRIANGLES_ADJACENCY primitive mode works similarly to the
GL_LINES_ADJACENCY mode. A triangle is sent to the geometry shader for
each set of six vertices in the enabled attribute arrays. The first, third, and
fifth vertices are considered to make up the real triangle, and the second,
fourth, and sixth vertices are considered to be in between the triangle’s
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1 2

1 2 3 4 5

Figure 8.20: Lines produced using lines with adjacency primitives

vertices. This means that the inputs to the geometry shader are
six-element arrays. As before, you can do anything you want to the
vertices using the geometry shader; GL_TRIANGLES_ADJACENCY is a good
way to get arbitrary six-vertex primitives into the geometry shader.
Figure 8.21 shows this.

Figure 8.21: Triangles produced using GL_TRIANGLES_ADJACENCY

The final, and perhaps most complex (or alternatively the most difficult to
understand), of these primitive types is GL_TRIANGLE_STRIP_ADJACENCY.
This primitive represents a triangle strip with every other vertex (the first,
third, fifth, seventh, ninth, and so on) forming the strip. The vertices in
between are the adjacent vertices. Figure 8.22 demonstrates the principle.
In the figure, the vertices A through P represent 16 vertices sent to
OpenGL. A triangle strip is generated from every other vertex (A, C, E, G, I,
and so on), and the vertices that come between them (B, D, F, H, J, and so
on) are the adjacent vertices.

There are special cases for the triangles that come at the start and end of
the strip, but once the strip is started, the vertices fall into a regular
pattern that is more clearly seen in Figure 8.23.

The rules for the ordering of GL_TRIANGLE_STRIP_ADJACENCY are spelled
out clearly in the OpenGL Specification—in particular, the special cases are
noted there. You are encouraged to read that section of the specification if
you want to work with this primitive type.
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Figure 8.22: Triangles produced using GL_TRIANGLE_STRIP_ADJACENCY

Figure 8.23: Ordering of vertices for GL_TRIANGLE_STRIP_ADJACENCY

Rendering Quads Using a Geometry Shader

In computer graphics, the word quad is used to describe a quadrilateral – a
shape with four sides. Modern graphics APIs do not support rendering
quads directly, primarily because modern graphics hardware does not
support quads. When a modeling program produces an object made from
quads, it will often include the option to export the geometry data by
converting each quad into a pair of triangles. These are then rendered by
the graphics hardware directly. In some graphics hardware, quads are
supported, but internally the hardware will do this conversion from quads
to pairs of triangles for you.
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In many cases, breaking a quad into a pair of triangles works out just fine
and the visual image isn’t much different than what would have been
rendered had native support for quads been present. However, there are a
large class of cases where breaking a quad into a pair of triangles doesn’t
produce the correct result. Take a look at Figure 8.24.

Figure 8.24: Rendering a quad using a pair of triangles

In Figure 8.24, we have rendered a quad as a pair of triangles. In both
images, the vertices are wound in the same order. There are three black
vertices and one white vertex. In the left image, the split between the
triangles runs vertically through the quad. The topmost and two side
vertices are black and the bottommost vertex is white. The seam between
the two triangles is clearly visible as a bright line. In the right image, the
quad has been split horizontally. This has produced the topmost triangle,
which contains only black vertices and is therefore entirely black, and the
bottommost triangle, which contains one white vertex and two black
ones, therefore displaying a black to white gradient.

The reason for this is that during rasterization and interpolation of the
per-vertex colors presented to the fragment shader, we’re only rendering a
triangle. There are only three vertices’ worth of information available to
us at any given time, and therefore, we can’t take into consideration the
“other” vertex in the quad.

Clearly, neither image is correct, but neither is obviously better than the
other. Also, the two images are radically different. If we rely on our export
tools, or worse a runtime library, to split quads for us, we do not have any
control over which of these two images we’ll get. What can we do about
that? Well, the geometry shader is able to accept primitives with the
GL_LINES_ADJACENCY type, and each of these has four vertices — exactly
enough to represent a quad. This means that by using lines with
adjacency, we can get four vertices’ worth of information at least as far as
the geometry shader.

Geometry Shaders 333



Next, we need to deal with the rasterizer. Recall, the output of the
geometry shader can only be points, lines, or triangles, and so the best we
can do is to break each quad (represented by a lines_adjacency primitive)
into a pair of triangles. You might think this leaves us in the same spot as
we were before. However, we now have the advantage that we can pass
whatever information we like on to the fragment shader.

To correctly render a quad, we must consider the parameterization of the
domain over which we want to interpolate our colors (or any other
attribute). For triangles, we use barycentric coordinates, which are
three-dimensional coordinates used to weight the three corners of the
triangle. However, for a quad, we can use a two-dimensional
parameterization. Consider the quad shown in Figure 8.25.

(0, 1)

(1, 1)

(0, 0)

(1, 0)

+u

+v

A B

DC

Figure 8.25: Parameterization of a quad

Domain parameterization of a quad is two-dimensional and can be
represented as a two-dimensional vector. This can be smoothly
interpolated over the quad to find the value of the vector at any point
within it. For each of the quad’s four vertices A, B, C, and D, the values of
the vector will be (0, 0), (0, 1), (1, 0), and (1, 1), respectively. We can
generate these values per vertex in our geometry shader and pass them to
the fragment shader.

To use this vector to retrieve the interpolated values of our other
per-fragment attributes, we make the following observation: The value of
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any interpolant will move smoothly between vertex A and B and between
C and D with the x component of the vector. Likewise, a value along the
edge AB will move smoothly to the corresponding value on edge CD.
Thus, given the values of the attributes at the vertices A through D, we
can use the domain parameter to interpolate a value of each attribute at
any point inside the quad.

Thus, our geometry shader simply passes all four of the per-vertex
attributes, unmodified, as flat outputs to the fragment shader, along with
a smoothly varying domain parameter per vertex. The fragment shader
then uses the domain parameter and all four per-vertex attributes to
perform the interpolation directly.

The geometry shader is shown in Listing 8.34, and the fragment shader is
shown in Listing 8.35 — both are taken from the gsquads example.
Finally, the result of rendering the same geometry as shown in Figure 8.24
is shown in Figure 8.26.

#version 430 core

layout (lines_adjacency) in;
layout (triangle_strip, max_vertices = 6) out;

in VS_OUT
{

vec4 color;
} gs_in[4];

out GS_OUT
{

flat vec4 color[4];
vec2 uv;

} gs_out;

void main(void)
{

gl_Position = gl_in[0].gl_Position;
gs_out.uv = vec2(0.0, 0.0);
EmitVertex();

gl_Position = gl_in[1].gl_Position;
gs_out.uv = vec2(1.0, 0.0);
EmitVertex();

gl_Position = gl_in[2].gl_Position;
gs_out.uv = vec2(1.0, 1.0);

// We’re only writing the output color for the last
// vertex here because they’re flat attributes,
// and the last vertex is the provoking vertex by default
gs_out.color[0] = gs_in[1].color;
gs_out.color[1] = gs_in[0].color;
gs_out.color[2] = gs_in[2].color;
gs_out.color[3] = gs_in[3].color;
EmitVertex();
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EndPrimitive();

gl_Position = gl_in[0].gl_Position;
gs_out.uv = vec2(0.0, 0.0);
EmitVertex();

gl_Position = gl_in[2].gl_Position;
gs_out.uv = vec2(1.0, 1.0);
EmitVertex();

gl_Position = gl_in[3].gl_Position;
gs_out.uv = vec2(0.0, 1.0);

// Again, only write the output color for the last vertex
gs_out.color[0] = gs_in[1].color;
gs_out.color[1] = gs_in[0].color;
gs_out.color[2] = gs_in[2].color;
gs_out.color[3] = gs_in[3].color;
EmitVertex();

EndPrimitive();
}

Listing 8.34: Geometry shader for rendering quads

#version 430 core

in GS_OUT
{

flat vec4 color[4];
vec2 uv;

} fs_in;

out vec4 color;

void main(void)
{

vec4 c1 = mix(fs_in.color[0], fs_in.color[1], fs_in.uv.x);
vec4 c2 = mix(fs_in.color[2], fs_in.color[3], fs_in.uv.x);

color = mix(c1, c2, fs_in.uv.y);
}

Listing 8.35: Fragment shader for rendering quads

Multiple Viewport Transformations

You learned in “Viewport Transformation” back in Chapter 3 about the
viewport transformation and how you can specify the rectangle of
the window you’re rendering into by calling glViewport() and
glDepthRange(). Normally, you would set the viewport dimensions to
cover the entire window or screen, depending on whether your
application is running on a desktop or is taking over the whole display.
However, it’s possible to move the viewport around and draw into

336 Chapter 8: Primitive Processing



Figure 8.26: Quad rendered using a geometry shader

multiple virtual windows within a single larger framebuffer. Furthermore,
OpenGL also allows you to use multiple viewports at the same time. This
feature is known as viewport arrays.

To use a viewport array, we first need to tell OpenGL what the bounds of
the viewports we want to use are. To do this, call glViewportIndexedf() or
glViewportIndexedfv(), whose prototypes are

void glViewportIndexedf(GLuint index,
GLfloat x,
GLfloat y,
GLfloat w,
GLfloat h);

void glViewportIndexedfv(GLuint index,
const GLfloat * v);

For both glViewportIndexedf() and glViewportIndexedfv(), index is
the index of the viewport you wish to modify. Also notice that the
viewport parameters to the indexed viewport commands are floating-point
values rather than the integers used for glViewport(). OpenGL supports a
minimum6 of 16 viewports, and so index can range from 0 to 15.

6. The actual number of viewports that are supported by OpenGL can be determined by query-
ing the value of GL_MAX_VIEWPORTS.
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Likewise, each viewport also has its own depth range, which can be
specified by calling glDepthRangeIndexed(), whose prototype is

void glDepthRangeIndexed(GLuint index,
GLdouble n,
GLdouble f);

Again, index may be between 0 and 15. In fact, glViewport() really sets
the extent of all of the viewports to the same range, and glDepthRange()
sets the depth range of all viewports to the same range. If you want to set
more than one or two of the viewports at a time, you might consider using
glViewportArrayv() and glDepthRangeArrayv(), whose prototypes are

void glViewportArrayv(GLuint first,
GLsizei count,
const GLfloat * v);

void glDepthRangeArrayv(GLuint first,
GLsizei count,
const GLdouble * v);

These functions set either the viewport extents or depth range for count
viewports starting with the viewport indexed by first to the
parameters specified in the array v. For glViewportArrayv(), the array
contains a sequence of x, y, width, height values, in that order. For
glDepthRangeArrayv(), the array contains a sequence of n, f pairs, in that
order.

Once you have specified your viewports, you need to direct geometry into
them. This is done by using a geometry shader. Writing to the built-in
variable gl_ViewportIndex selects the viewport to render into.
Listing 8.36 shows what such a geometry shader might look like.

#version 430 core

layout (triangles, invocations = 4) in;
layout (triangle_strip, max_vertices = 3) out;

layout (std140, binding = 0) uniform transform_block
{

mat4 mvp_matrix[4];
};

in VS_OUT
{

vec4 color;
} gs_in[];

out GS_OUT
{

vec4 color;
} gs_out;
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void main(void)
{

for (int i = 0; i < gl_in.length(); i++)
{

gs_out.color = gs_in[i].color;
gl_Position = mvp_matrix[gl_InvocationID] *

gl_in[i].gl_Position;
gl_ViewportIndex = gl_InvocationID;
EmitVertex();

}
EndPrimitive();

}

Listing 8.36: Rendering to multiple viewports in a geometry shader

When the shader of Listing 8.36 executes, it produces four invocations of
the shader. On each invocation, it sets the value of gl_ViewportIndex to
the value of gl_InvocationID, directing the result of each of the geometry
shader instances to a separate viewport. Also, for each invocation, it uses a
separate model-view-projection matrix, which it retrieves from the
uniform block, transform_block. Of course, a more complex shader could
be constructed, but this is sufficient to demonstrate direction of
transformed geometry into a number of different viewports. We have
implemented this code in the multipleviewport sample, and the result of
running this shader on our simple spinning cube is shown in Figure 8.27.

Figure 8.27: Result of rendering to multiple viewports
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You can clearly see the four copies of the cube rendered by Listing 8.36 in
Figure 8.27. Because each was rendered into its own viewport, it is clipped
separately, and so where the cubes extend past the edges of their respective
viewports, their corners are cut off by OpenGL’s clipping stage.

Summary

In this chapter, you have read about the two tessellation shader stages, the
fixed-function tessellation engine, and the way they interact. You have
also read about geometry shaders and have seen how both the tessellator
and the geometry shader can be used to change the amount of data in the
OpenGL pipeline. You have also seen some of the additional functionality
in OpenGL that can be accessed using tessellation and geometry shaders.
You have seen how, conceptually, tessellation shaders and geometry
shaders process vertices in groups — in the case of tessellation shaders,
those groups forming patches, and in the case of geometry shaders, those
groups forming traditional primitives such as lines and triangles. You’ve
seen the special adjacency primitive types accessible to geometry shaders.
After the geometry shader ends, primitives are eventually sent to the
rasterizer and then to per-fragment operations, which will be the subject of
the next chapter.
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listing (9.12), 375
textures, 367

attenuation, distance-based point size, 230
attributes, 51

Cocoa pixel format, 655–658

configs, 690
instancing, 245
pixel format, 636–637
vertices, 28–29, 97, 224

averaging values, 457
axes, coordinates, 68

back buffers, 365
back end processes, 11, 341
back-facing, 39
back-lighting, 515–517
bandwidth, memory, 178, 549
barriers, 446

applications, 131–132
shaders, 132–133

barycentric coordinates, 35, 284–285, 288
baseinstance parameter, 239
basevertex parameter, 234–235, 239, 240
basic conditional rendering example listing

(11.5), 481
basic setup of Windows operating systems,

627–632
Bézier curves, 85, 86, 87
big-picture views, 11
binaries, programs, 216–218, 609
binding, 92

buffers, 261
framebuffers, 366
points, 117, 262

Bishop, Lara, 718
Bit-Level-Image-Transfer, 432
bittangent vectors, 519
blending, 357–363

blend equations, 358, 361–362
color, 406
dual-source, 361
factor, 406
functions, 358–360

Blinn-Phong fragment shader listing (12.5), 514
Blinn-Phong lighting model, 513–515
blit, 431
Block Partitioned Texture Compression (BPTC),

179
blocks

interfaces, 31–32
shaders, storage, 126–133
uniforms, 108–121

Block Transfer, 432
bloom, light, 409–414
bloom fragment shader listing (9.26), 410–411
blur fragment shader listing (9.27), 412–413
boids, 449
Boolean flags, 655
Boolean occlusion queries, 483
Boolean vectors, 196
border color, texture, 159
BPTC (Block Partitioned Texture Compression),

179
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brute force, 579
bubble, 494
buffers, 10, 92–95

asteroids, 254
back, 365
binding, 261
command, 590
data

allocating memory using, 92–95
feeding vertex shaders from, 97–103
filling and copying in, 95–97

depth, 46
double buffering, 634, 661
element array, 279
EGL, 726–727
G-buffers, 548, 549–551
mapping, 600–603
object storage, 251
point indexes, 228
swap values, 637
TBO (texture buffer object), 266, 269
textures, 140
UBO (Uniform Buffer Object), 108

building. See also configuration
Linux applications, 687–693
model-view matrices listing (5.21), 122

built-in functions, 194–201
built-in outputs, 441
built-in variables, 24

gl_InstanceID, 288
gl_FrontFacing, 223
gl_Position, 277
gl_VertexID, 92
gl_int, 146
fragment, 43
tessellation, 35

bump mapping, 518

C++, 737
calculations. See also math

acceleration, 269
antialiasing, 385
colors, fragments, 152
contributions to ambient light, 504
damping force, 270
dot products, 54–55
formulas, indexes, 250
G-buffers, 552
lighting models. See lighting models
orientation, 257
per-fragment lighting, 518
per-instance rotations, 163
reflection and refraction, 57–58
shadow maps, 539
toon shaders, 547

callback functions, 583, 584. See also functions
camera space, 64, 65
Cartesian frames, 519

casting shadows, 534–540
Cathode Ray Tubes (CRTs), 416
cell shading, 545–547
centroid sampling, 395–399
CGL (Core OpenGL), 648, 674–675

specifications, 625n3
checking completeness of a framebuffer object

listing (9.13), 378–379
child windows (in Cocoa), 671
choosing. See also selecting

8 sample antialiasing listing (9.19), 388
and setting a pixel format listing (14.4), 632

chunks, SBM model file format, 752–756
clamping

depth, 354–355
tone mapping, 406

classes, 628
GLKit, 662
GLKTextureInfo, 663
GLKViewController, 741
textures, 183

cleaning up applications, 646–647
clipping, 38–39, 276–282

an object against a plane and a sphere listing
(7.20), 281

lines, 276
clip spaces, 17, 38, 64, 66
Cocoa

GLKit, 669–671
Mac OS X, 649–662
pixel format attributes, 655–658

code
called when the view changes size listing

(14.14), 661
errors, 584

colors
calculating, 257
grass, 244
inputs, vertex shaders, 225
masking, 363–364
OpenGL ES 3.0, 709
output, 357–364
sRGB color spaces, 416–418
tone mapping, 404

columns
column major, 60
column primary, 60
images, 454
layouts, 60

combining geometry and primitive restart,
235–237

commands
buffers, 590
drawing, 231–259, 595

clipping, 276–282
indexed, 231–237
indirect draws, 250–259
instancing, 237–250
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commands (continued)
stencil buffers, 348
storing transformed vertices, 259–275

glxinfo, 684
SwapBuffers(), 593
synchronization, 699

comments, chunks, 755
communication

compute shaders, 444–449
between shader invocations, 299

commutativity, 110
comparison operators, 352
compatibility profiles, 9
compiling

makefiles, 687
programs, 201–219
shaders, 218, 606–609
simple shaders listing (2.5), 18–19

completeness
attachments, 377
framebuffers, 377
whole framebuffer, 377

complex number, 75
complex shader, 339
compressing textures, 177–181, 606
compute shaders, 47–48, 437–472

applying, 438–439
communication, 444–449
examples, 450–471
executing, 439–444
flocking, 462–471
to generate a 2D prefix sum listing (10.7),

455–456
image inversion listing (10.2), 444
parallel prefix sum, 450–462
with race conditions listing (10.4), 447
synchronizing, 445–449
for updates in flocking example listing

(10.11), 466
concatenation

model-view transformations, 76–79
transformations, 73–75

concave polygons, 10
conditions

conditionally emitting geometry in a
geometry shader listing (8.22), 319

conditional rendering, 481, 598
race, 446, 447

configs
EGL, 720–725
management and visuals, 689–693

configuration
Android projects, 730–731
asteroids, 270–271
comparison operators, 352
cubes, geometry, 233
the custom culling geometry shader listing

(8.20), 318

GL3W, 686
GLFW, 686
iOS projects, 734–736
Mesa, 685
scalars, 105–106
separable program pipelines listing (6.3), 208
uniforms

arrays, 106–107
matrices, 107–108

Windows operating systems, 627–632
connecting vertices, 267
construction

and initialization of the GLKView listing
(14.20), 738

matrices, 60–63
consuming G-buffers, 551–554
container objects, 603
contention, 129
contexts

advanced creation, 641–643
applying, 699–701
current, 611
debug, 582–589
devices, 627, 629
managing, 695–699, 725–726

controlling
movement smoothly with keyboard bit flags

and a timer listing (14.15), 672–673
winding order, 296

control points, 83, 284, 324
control shaders, tessellation, 33–34
coordinates

barycentric, 35, 284–285, 288
eye-space, 542
floating point, 152
homogeneous, 39
normalized device, 39
objects, 64–65
spaces, 62
textures, 141, 146–148, 529
transformations, 63–66, 66–73
view, 65–66
window, 40
world, 65

copying
from an array texture to a stereo back buffer

listing (9.17), 383–384
data between framebuffers, 431–433
data in buffers, 95–97
data into a texture, 433–434

Core OpenGL. See CGL
core profiles, 9, 652. See also profiles
counters

atomic, 133–137
performance, 597

counting are using atomic counters listing
(5.31), 135

coverage, sample, 391–393
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CPU (central processing unit) queues, 590
creating. See also configuration; formatting

and compiling a compute shader listing
(10.1), 438–439

a debug context with the sb6 framework
listing (13.1), 582

and initializing the full-screen window
listing (14.16), 676–677

integer framebuffer attachments listing
(9.29), 415

program member variables listing (2.6), 21
shared contexts on Windows listing (14.8),

643
a simple window listing (14.2), 629–630
a stereo window listing (9.14), 380

cross products, 56–57
CRTs (Cathode Ray Tubes), 416
csplines, 90
cube maps, 527–532
cubes

geometry
configuring, 233
drawing indexed, 234

maps, rendering to, 375–376
spinning, 121

cubic Bézier curves, 85, 86
cubic Bézier patches

fragment shader listing (8.15), 309
tessellation control shader listing (8.13),

307
tessellation evaluation shader listing (8.14),

308
tessellation example, 304–310
vertex shader listing (8.12), 306

cubic Bézier splines, 88
cubic Hermite splines, 89
culling, 40–41, 175

geometry, 320
current context, 611
curves, 82, 83–87

Bézier, 85
gamma, 418
Hermite, 198
quintic Bézier, 87
transfer, 407

damping force, calculating, 270
data, 91

atomic counters, 133–137
buffers, 92–95

allocating memory using, 92–95
feeding vertex shaders from, 97–103
filling and copying in, 95–97

driven rendering engines, 613
manipulation, built-in functions, 199–201
shader storage blocks, 126–133
stores, 92
textures, 137–185

types, 188–194
uniforms, 103–126

dds2ktx utility, 761–762
debugging applications, 581, 582–589
decay, exponential, 543
declaration

arrays, 192–193
atomic counters, 133
multiple outputs in a fragment shader listing

(9.7), 370
of multiple vertex attributes listing (7.1),

225
of PIXELFORMATDESCRIPTOR listing (14.3),

631
shader storage blocks, 126
two inputs to vertex shaders listing (5.6),

100
uniform blocks listing (5.10), 110
of vertex attributes listing (3.1), 28
vertices, 227

default block uniforms, 104–105
default framebuffer, 365
Deferred Procedure Call. See DPC
deferred shading, 548–558

downsides to, 556–558
normal mapping, 554–556
with normal mapping listing (12.31), 556

definitions
of gl_in[] listing (8.19), 314
of the Objective-C GLCorePorfileViewClass

listing (14.10), 653
degenerate primitives, 24
denormals, 189
depth

buffers, 46
clamping, 354–355
of field effect, 457
of field using summed area tables listing

(10.8), 459–460
functions, 352
as seen from light, 537
tests, 46, 351–355

deriving a fragment’s color from its position
listing (3.10), (3.12), 43, 44

design, 4–5, 714
destinations

factors, 358
subsystems, 132

detection of edges, 397–399
determining closest intersection point listing

(12.37), 572–573
development

Android environments, 729–734
builds, 607
OpenGL ES, 707–708

devices, context, 627, 629
diffuse light, 504, 505
disabling interpolation, 342–343
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discarding
geometry in geometry shaders, 317–320
rasterizers, 273

dispatching the image copy compute shader
listing (10.3), 444

dispatch, indirect, 439–441
displacement mapping, 300

GPU PerfStudio 2, 594
tessellation evaluation shader listing (12.23),

542
displaying. See also viewing

an array texture–fragment shader listing
(9.11), 373

an array texture–vertex shader listing (9.10),
373

EGL, 718–720
objects and X Window System, 689

distance-based point size attenuation, 230
distributions

grass, 242, 243
Linux. See Linux

DMA packets, 593
domains, 306

parameterization, 334
dot products, 54–55
double buffering, 634, 661

sync frame rates, 677
double precision, 53, 60, 107
downsides to deferred shading, 556–558
DPC (Deferred Procedure Call), 593
drain, queues, 591
drawing

asteroids listing (7.15), 257–258
commands, 231–259, 595

clipping, 276–282
indexed, 231–237
indirect draws, 250–259
instancing, 237–250
stencil buffers, 348
storing transformed vertices, 259–275

data written to a transform feedback buffer
listing (11.9), 491

a face normal in the geometry shader listing
(8.33), 327–328

indexed cube geometry listing (7.3), 234
the same geometry many times listing (7.4),

238
into a stereo window listing (9.15), 381
Stonehenge, 663–665
triangles, 24–25

drivers
Linux, 685–686
Windows graphics, 624–626

dual-source blending, 361

EAC (Ericsson Alpha Compression), 179
early testing, 355–357

edges
detection of, 397–399
jaggies, 384

effects, atmospheric, 540–544
EGL, 718–728

configs, 720–725
displays, 718–720
eglBindAPI(), 767
eglChooseConfig(), 720, 724
eglCreateContext(), 725
eglDestroyContext(), 726
eglDestroySurface(), 725
eglGetConfigAttrib(), 724, 725
eglGetConfigs(), 724
eglGetError(), 727
eglGetProcAddress(), 728
eglInitialize(), 720
eglMakeCurrent(), 726
eglQueryAPI(), 720
eglQueryString(), 727
eglReleaseThread(), 720
eglSwapBuffers(), 726
eglSwapInterval(), 722
eglWaitGL(), 727
eglWaitNative(), 727
errors, 727
extensions, 728
strings, 727
windows, 720

elements, types, 193
eliminating visual tearing, 646
embedded environments, negotiating, 728–729
emitting a single triangle from a geometry

shader listing (8.28), 324
EmitVertex() function, 36
endianness, 145
engines

data driven rendering, 613
Quartz, 647
tessellation, 34, 285

enumerating pixel formats, 640–641
environment mapping, 522–532

cube maps, 527–532
equirectangular, 525–527
spherical environment maps, 523–525

environments
Android development, 729–734
EGL, 718–728
negotiating embedded, 728–729
OpenGL ES, 713–718

equal spacing mode, 295
equations

blend, 358, 361–362
quadratic, 85

equirectangular environment mapping,
525–527

fragment shader listing (12.11), 526
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Ericsson Alpha Compression (EAC), 179
Ericsson Texture Compression (ETC2), 179
errors

code, 584
compiling, 201
EGL, 727
linker, 204
shaders, 203

Essential Mathematics for Games and Interactive
Applications, 718

ETC2 (Ericsson Texture Compression), 179
Euler angles, 72
evaluation, TES (tessellation evaluation shader),

284
Event Trace Logs, 592
examples

compute shaders, 450–471
shader storage block declaration listing

(5.27), 127
stencil buffer usage listing (9.1), 350
subroutine uniform declaration listing (6.5),

213
uniform blocks

declaration listing (5.9), 109
with offsets listing (5.11), 111

use of indirect draw commands listing
(7.10), 253

executing compute shaders, 439–444
exponential decay, 543
exponents

bits, 189
shared, 181

extending GLSurfaceView listing (14.18), 732
extensions, 8, 617

applying, 618–622
EGL, 728
GLX, 695
vendor-specific, 728
WGL (Windows-GL), 634–639

EXT extensions, 618
extinction, 541, 542
eye space, 64, 65, 542

fades, 533
failures, programs, 204
FBOs (user-defined framebuffers), 368, 606

attachment completeness, 377
tests, 379

feedback, transforms
applying, 260–265
starting, pausing, and stopping, 264–266

feeding vertex shaders from buffers, 97–103
fetching vertices, 28
figuring out if occlusion query results are ready

listing (11.2), 478
files

loading

objects, 102–103
from textures, 144–148

SBM model file format, 751–757
filling

data in buffers, 95–97
a linked-list in a fragment shader listing

(5.45), 174
fill performance, increasing, 678–679
filtering

2D Gaussian filters, 411
antialiasing by, 385–387
mipmapping, 155–157
modes, 148
textures, 151–153
trilinear, 156
variables, 457

finding. See also searching
a face normal in a geometry shader listing

(8.21), 318
a pixel format with

wglChoosePixelFormatARB() listing
(14.6), 639

first fragment shaders listing (2.4), 18
first geometry shader listing (3.9), 37
first OpenGL application listing (2.1), 14
first rule of flocking listing (10.12), 467
first tessellation control shader listing (3.7), 34
first vertex shaders listing (2.3), 18
fixed-function stages, 5
fixed outputs, 443
fixed-point

data, 227
math, 716–718

flags, 671
Boolean, 655

flat inputs, 342
floating-point

coordinates, 152
data, 604
fragment shaders, 342n1
framebuffers, 401–414
numbers, 189
texture formats, 402–403

flocking
compute shaders, 462–471
vertex shader body listing (10.16), 470

flow control barriers, 446
FMA (fused multiply-add), 198, 199
focal depth, 457
focal distance, 457
fog, 541–544
format layout qualifiers, 169
formatting

advanced framebuffers, 399–418
applications, 14–16
contexts, 696–699
enumerating pixels, 640–641
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formatting (continued)
pixels, 630–632
SBM model file format, 751–757
textures, 138–139, 182–185
windows, 628–630

formulas, calculating indexes, 250
fractals, rendering Julia, 566–568
fractional even spacing, 295
fractional segments, 295
fragments, 341–435

antialiasing, 384–399
color output, 357–364
depth testing, 351–355
early testing, 355–357
off-screen rendering, 364–384
opacity, 15
OpenGL ES 3.0, 713
pre-fragment tests, 345–357
rasterization, 41
redeclaration of, 356
stencil testing, 348–351

fragment shaders, 42–45, 342–345, 595
for the Alien Rain sample listing (5.42), 163
with an input listing (3.4), 31
for cube map environment rendering listing

(12.16), 531–532
with external function declaration listing

(6.2), 206
for generating shaped points listing (9.33),

425–426
with input interface blocks listing (3.6), 32
for normal mapping listing (12.8), 521
performing image loads and stores listing

(5.44), 171
for per-fragment shininess listing (12.17),

534
producing high-frequency output listing

(9.22), 393–394
ray tracing in, 568–580
for rendering quads listing (8.35), 336
with single texture coordinate listing (5.39),

147
for sky box rendering listing (12.14), 530
for the star field effect listing (9.32), 423
for terrain rendering listing (8.11), 304

framebuffers, 341–435
advanced framebuffer formats, 399–418
antialiasing, 384–399
binding, 366
completeness, 377
copying data between, 431–433
default, 365
floating-point, 401–414
integers, 415–416
layered, 371, 382, 383
logical operations, 363–364
multiple attachments, 368–370

objects, 366
off-screen rendering, 364–384
OpenGL ES 3.0, 713
operations, 45–47, 135
reading from a, 429–431
stacks, 575

frames
AFR (alternate frame rendering), 610
Cartesian, 519
sync frame rates, 677–679

frameworks, applications, 14–16
front end processes, 10
front-facing, 39
frustrum matrix, 81
full-screen

rendering, 644–645, 675–677
views (X Window System), 704

functionality, 621
functions. See also gl functions

blending, 358–360
built-in, 194–201
callback, 583, 584
depth, 352
EmitVertex(), 36
EndPrimitive(), 36
init(), 582
main(), 311
multi versions of, 252
normalization, 200
overloading, 143, 166, 194
pointers, 622
portability of, 633
RegisterClass, 628
shaders, 19–20
stencils, 349
vmath::perspective, 82
vmath::rotate, 72

fused multiply-add. See FMA

gamers, 729
gamma curves, 418
G-buffers, 548

consuming, 551–554
generating, 549–551
unpacking, 552
visualizing, 552

GDI (Graphics Device Interface), 627–628
ChoosePixelFormat(), 634, 638
SetPixelFormat(), 632
SwapBuffers(), 593, 634

generating
binding, and initializing buffers listing (5.1),

94
binding, and initializing textures listing

(5.33), 138
G-buffers, 549–551
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geometry in geometry shaders, 322–325
new vertices in a geometry shader listing

(8.27), 323–324
geometry, 10

cubes
configuring, 233
drawing indexed, 234

drawing commands, 249. See also drawing
commands

primitive restart, combining, 235–237
transformations, 63
uniforms, 121–126

geometry shaders, 36–38, 310–340
changing the primitive type in, 35–328
discarding geometry in, 317–320
generating geometry in, 322–325
layered rendering, 371
layout qualifiers listing (8.17), 311
modifying geometry in, 320–322
multiple streams of storage, 328–329
multiple viewport transformations, 336–340
new primitive types introduced by, 329–336
pass-through, 311–313
quads (quadrilaterals), rendering using,

332–336
for rendering quads listing (8.34), 335–336
using in an application, 313–317

getting ready for instanced rendering listing
(7.9), 248

getting ready for shadow mapping listing
(12.18), 536

getting the result from a query object listing
(11.1), 478

gimbal locks, 72, 76
GL3W

configuring, 686
installing, 687

gl functions
glActiveTexture(), 146, 150
glAttachShader(), 19, 20, 47, 313, 438
glBeginConditionalRender(), 481, 482
glBeginQuery(), 484, 486, 488, 489, 490
glBeginQueryIndexed(), 490
glBeginTransformFeedback(), 265, 266
glBindBuffer(), 93, 263, 600
glBindBufferBase(), 262, 263
glBindBufferRange(), 262, 263
glBindFramebuffer(), 365, 367
glBindImageTexture(), 167
glBindProgramPipeline(), 209, 216
glBindSampler(), 149
glBindTexture(), 138, 663
glBindTransformFeedback(), 491, 604
glBindVertexArray(), 20, 21, 258, 603, 709
glBindVertexBuffer(), 224, 229
glBlendColor(), 358
glBlendEquation(), 361

glBlendEquationSeparate(), 361
glBlendFunc(), 358, 362
glBlendFuncSeparate(), 358, 362
glBlitFramebuffer(), 433, 434
glBufferData(), 92–95, 109, 113, 127, 262,

600
glBufferSubData(), 94, 95, 113, 134
glCheckFramebufferStatus(), 377
glClear(), 347
glClearBufferfv(), 15, 18, 347, 481
glClearBufferiv(), 349
glClearBufferSubData(), 95, 96, 134
glClientWaitSync(), 495–497
glColorMask(), 363, 364, 477
glColorMaski(), 363, 364
glCompileShader(), 19, 20, 47, 201, 204,

313, 438, 607
glCompressedTexSubImage2D(), 180
glCompressedTexSubImage3D(), 181
glCopyBufferSubData(), 96, 262
glCopyImageSubData(), 433
glCopyTexSubImage2D(), 433
glCreateProgram(), 19, 439
glCreateShader(), 19, 20, 313, 438
glCreateShaderProgramv(), 209
glCullFace(), 41
glDebugMessageCallback(), 583, 585
glDebugMessageControl(),586
glDebugMessageInsert(), 587
glDeleteProgram(), 21, 205
glDeleteQueries(), 475
glDeleteShader(), 20, 21, 202
glDeleteSync(), 498
glDeleteTextures(), 146
glDeleteTransformFeedbacks(), 492
glDeleteVertexArrays(), 709
glDepthFunc(), 353
glDepthMask(), 353
glDepthRange(), 88
glDepthRangeArrayv(), 338
glDepthRangeIndexed(), 338
glDisable(), 280, 352, 393, 540
glDisableVertexAttribArray(), 100
glDispatchCompute(), 439–442, 444, 481
glDispatchComputeIndirect(), 439, 440, 442
glDrawArrays(), 21–22, 24–26, 122, 164,

231, 234–236, 238–240, 265, 273, 313,
321, 481, 492, 705, 709

glDrawArraysIndirect(), 250–252, 449
glDrawArraysInstanced(), 239–240, 245,

492, 709
glDrawArraysInstancedBaseInstance(), 232,

239, 250, 258, 439
glDrawBuffer(), 432, 477, 661
glDrawBuffers(), 377, 634
glDrawElements(), 231, 234–240, 251–252,

275, 321, 492, 709
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gl functions (continued)
glDrawElementsBaseVertex(), 234, 235, 239
glDrawElementsIndirect(), 250, 251, 252
glDrawElementsInstanced(), 239, 240, 245,

709
glDrawElementsInstancedBaseVertex(), 239
glDrawRangeElements(), 709
glDrawTransformFeedback(), 492, 493, 604,

615, 622
glDrawTransformFeedbackInstanced(), 492,

493
glDrawTransformFeedbackStream(), 493
glEnable(), 41, 348, 391, 392, 540
glEnableVertexAttribArray(), 98, 99
glEndConditionalRender(), 481, 483
glEndQuery(),476, 484, 486, 489, 490
glEndQueryIndexed(), 490
glEndTransformFeedback(), 491, 497, 712
glFenceSync(), 494, 495, 497, 498
glFinish(), 493, 494, 598, 603
glFlush(), 493, 661, 673, 676
glFlushMappedBufferRange(), 601, 602
glFramebufferParameteri(), 400
glFramebufferTexture(), 366, 375, 376, 390
glFramebufferTexture2D(), 376
glFramebufferTextureLayer(), 374
glFrontFace(), 41
glGenBuffers(), 93
glGenerateMipmap(), 157, 435
glGenFramebuffers(), 365
glGenProgramPipelines(), 207
glGenQueries(), 474, 475
glGenTextures(), 137, 138, 145, 167, 182
glGenTransformFeedbacks(), 491
glGenVertexArrays(), 20, 21, 709
glGetActiveSubroutineName(), 215
glGetActiveUniformsiv(), 114, 115
glGetAttribLocation(), 100, 240
glGetBooleanv(), 713
glGetBufferSubData(), 259
glGetCompressedTexImage(), 180
glGetError(), 379, 474, 496, 584, 598, 727
glGetFloatv(), 680, 713
glGetInteger64v(), 497, 713
glGetIntegeri_v(), 440
glGetIntegerv(), 116, 117, 120, 150, 230, 263,

280, 316, 446, 598, 619, 680, 697, 713
glGetInternalFormativ(),180
glGetProgramBinary(),217, 219
glGetProgramInfoLog(), 205, 206
glGetProgramInterfaceiv(), 210
glGetProgramiv(), 205, 217, 441
glGetProgramResourceIndex(), 214
glGetProgramResourceiv(), 210, 211, 212
glGetProgramResourceName(), 211
glGetProgramStageiv(), 215
glGetQueryObjectuiv(), 476, 477, 479, 481,

484, 487, 488, 491

glGetShaderInfoLog(), 202, 206
glGetShaderiv(), 201, 202, 204, 205, 607
glGetString(), 644
glGetSynciv(), 495
glGetTexImage(), 435
glGetTexLevelParameteriv(), 180
glGetTexParameteriv(), 180
glGetUniformBlockIndex(), 117
glGetUniformLocation(), 104, 105, 151, 598
glInvalidateBufferData(), 614, 615
glInvalidateBufferSubData(), 614, 615
glInvalidateFramebuffer(), 615
glInvalidateSubFramebuffer(), 615
glInvalidateTexImage(), 614, 615
glInvalidateTexSubImage(), 614
glIsTransformFeedback(), 492
glLinkProgram(), 20, 47, 204, 206, 217, 264,

313, 438, 608
glLogicOp(), 362, 713
glMapBuffer(), 95, 109, 113, 127, 259, 600,

601, 603, 739
glMapBufferRange(), 134, 429, 599, 600, 601,

602, 603
glMemoryBarrier(), 131, 132, 137, 177
glMinSampleShading(), 394
glMultiDrawArrays(), 709
glMultiDrawArraysIndirect(), 232, 257, 258
glMultiDrawElements(), 709
glMultiDrawElementsIndirect(), 232
glObjectLabel(), 588
glObjectPtrLabel(), 588, 589
glPatchParameterfv(), 298
glPatchParameteri(), 33, 298
glPixelStorei(), 430
glPointParameteri(), 423
glPointSize(), 22, 26, 37, 230
glPolygonMode(), 36, 296
glPopDebugGroup(), 585, 588
glProgramBinary(), 219
glProgramParameteri(), 207, 217
glPushDebugGroup(), 585
glQueryCounter(), 485, 486
glReadBuffer(), 429, 430
glReadPixels(), 429, 430, 431, 433, 435,

598, 599, 600, 680
glSampleCoverage(), 392
glSamplerParameterf(), 149, 150
glSamplerParameterfv(), 159
glSamplerParameteri(), 149, 150, 158
glScissorIndexed(), 346
glScissorIndexedv(), 346
glShaderSource(), 19, 20, 47, 203, 209, 313,

438
glStencilFunc(), 351
glStencilFuncSeparate(), 348, 350, 351
glStencilMaskSeparate(), 351
glStencilOp(), 351
glStencilOpSeparate(), 348, 349, 350, 351
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glTexBuffer(), 273
glTexParameteri(), 536
glTexStorage2D(), 138, 144, 154, 156, 167,

180, 389, 527
glTexStorage2DMultisample(), 389, 390
glTexStorage3D(), 161, 180, 389
glTexStorage3DMultisample(), 389, 390
glTexSubImage2D(), 138, 139, 144, 154, 185,

429, 433, 435, 527, 613
glTexSubImage3D(), 161, 614
glTextureView(), 182
glTransformFeedbackVaryings(), 260, 261,

263, 264
glUniform*(), 105, 106, 108
glUniform1i(), 151
glUniform4fv(), 439
glUniformBlockBinding(), 118, 119
glUniformSubroutinesuiv(), 215
glUnmapBuffer(), 601
glUseProgram(), 21, 120, 215, 216, 439, 711
glUseProgramStages(), 207, 215
glVertexAttrib*(), 29, 30, 99, 100, 165
glVertexAttrib4fv(), 29
glVertexAttribBinding(), 224, 228
glVertexAttribDivisor(), 470
glVertexAttribFormat(), 224, 225, 227, 228
glVertexAttribI*(), 165
glVertexAttribIFormat(), 227
glVertexAttribIPointer(), 755
glVertexAttribPointer(), 98, 99, 101, 102,

224, 245 , 263, 605, 709
glViewport(), 40, 122, 336, 337, 338, 401,

674, 679
glViewportArrayv(), 338
glViewportIndexedf(), 337
glViewportIndexedfv(), 337
glWaitSync(), 497–498

GLFW
configuring, 686
installing, 686–687

GLKit, 648, 662–673
3D math with, 667–669
Cocoa, 669–671
iOS, 737–738

GLKTextureInfo class, 663
GLKViewController class, 741
global illumination, 558
global work groups, 440–441, 456
gloss maps, 533
GLSL (OpenGL Shading Language), 17, 740–741
GL_TRIANGLES_ADJACENCY primitive mode, 330, 331
GLUT (OpenGL Utility Toolkit), 648, 680–681

main function to set up OpenGL listing
(14.17), 681

GLX
glXChooseFBConfig(), 692, 693, 694
glXCopyContext(), 698
glXCreateContextAttribsARB(), 696, 697

glXCreateNewContext(), 696
glXCreateWindow(), 694
glXDestroyContext(), 698
glXDestroyWindow(), 694
glXGetClientString(), 695
glXGetCurrentReadDrawable(), 700
glXGetFBConfigAttrib(), 692
glXGetFBConfigs(), 689, 692, 694
glXGetProcAddress(), 695
glXIsDirect(), 699
glXMakeContextCurrent(), 699
glXMakeCurrent(), 611
glXQueryContext(), 700
glXQueryDrawable(), 700
glXQueryExtensionsString(), 695
glXQueryServerString(), 695
glXQueryVersion(), 688
glXSwapBuffers(), 700, 703
glXWaitGL(), 699
glXWaitX(), 700
queries, 700–701
strings (Linux), 695
synchronization, 699
windows, 701–704

GLX-interfacing with X Window System,
688–689

Google, 707
Gouraud shading, 507

fragment shader listing (12.2), 508
vertex shader listing (12.1), 507–508

GPU PerfStudio 2, 594–597
GPUs (Graphics Processing Units), 5, 609–611
GPUView, 590–594
graphics, 3

math, 49. See also math
output, 627
pipelines, 4–6, 27–48. See also pipelines
processors, 218, 594
programs, 438

Graphics Device Interface. See GDI
graphics drivers (Windows), 624–626
Graphics Processing Units. See GPUs
graphics processors, compute shaders,

437–472
graphs, exponential decay, 543
grass

colors, 244
distribution, 242, 243
length of, 245
positioning, 241

gravity, 270
groups

messages, 587
outputs, 296
work, 440–441

guard bands, 278
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hardware, 4, 9
Linux, 685–686
queues, 590
rasterizers, 10
support, 625

hazards, 129, 137
HDR (High Dynamic Range), 403–404, 606
header of a .KTX file listing (5.36), 144–145
heads-up display (HUD), 485
Hermite curve, 198
High Dynamic Range. See HDR
higher order surfaces, 324
highlights, specular, 505–509
hints, 209, 614
histograms, 405
history, 3, 6–10

of Linux, 682–683
of OpenGL ES, 706

homogenous coordinates, 39
homogenous vectors, 53
Hooke’s law, 269, 270, 271
HUD (heads-up display), 485, 595

ICD (Installable Client Driver), 624, 626
identity matrix, 67–68
IEEE-754, 188
illumination, global, 558
images

access synchronization, 176–177
atomic operations on, 171–176
columns, 454
stereo, viewing in, 380
transposing, 412
units, 167
variables, 165

increasing fill performance, 678–679
indexes

arrays, 245
data chunks (SBM model file format), 753
drawing commands, 231–237
formulas, calculating, 250
global work groups, 456
queries, 489–490
uniforms, 112

indirect draws, 250–259
infinity, 200
in flight (executing hardware commands), 4
init() function, 582
initializing

array textures listing (5.40), 161–162
core context views listing (14.11), 654
a G-buffer listing (12.27), 550
shader storage buffers for flocking listing

(10.9), 464
textures, 138–139

inner loop of the julia renderer listing (12.34),
567

inner products, 54–55
inputs

compute shaders, 441–444
flat, 342
to the flock rendering vertex shader listing

(10.15), 469
primitive types, 315
smooth, 342
vertex shaders, 224–229

inscattering, 541
inserting geometry shaders, 37
Installable Client Driver. See ICD
installing

GL3W, 687
GLFW, 686–687

instancing
arrays, 288
drawing commands, 237–250
rendering, 245–250, 249

integers, 189
framebuffers, 415–416

Integrated Raster Imaging System Graphics
Library. See IRIS GL

Interface Builder, 651, 659
interfaces

Aero user, 592
APIs (Application Programming Interfaces),

3
blocks, 31–32
GDI (Graphics Device Interface), 627–628
GLX-interfacing with X Window System,

688–689
Mac OS X, 648–649
matching, 209–213
overriding, 652–659

interleaved attributes, 101
internal formats, 138
interpolation, 44, 82

curves, 85
disabling, 342
Hermite, 198
linear, 83
perspective-correct, 344, 345
splines, 88
and storage qualifiers, 342–345

Interrupt Service Routine. See ISR
invocations, 188
iOpenGL, 734–744
iOS

C++, 737
configuring, 734–736
GLKit, 737–738
GLSL (OpenGL Shading Language), 740–741

IRIS GL (Integrated Raster Imaging System
Graphics Library), 682

isoline spirals tessellation evaluation shader
listing (8.7), 292
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ISR (Interrupt Service Routine), 593
items, work, 47
iterating over elements of gl_in[] listing (8.18), 312

jaggies, 384
Julia set, 566–568

Khrones Group, 706–707
Khronos Texture File format, 529
Kilgard, Mark J., 680
knots, 87n4
.KTX (Khronos TeXture) format, 144, 145
ktxtool utility, 759–761

languages, overview of, 188–201
layers, 162

abstraction, 4, 5
rendering, 370–376
rendering using a geometry shader listing

(9.9), 372
layouts

columns, 60
qualifiers, 29, 104, 370

binding, 118
control points, 33
depth, 356, 357
format, 169
geometry shader, 311
location, 370

shared, 110
standard, 110, 116

length
of grass, 245
of vectors, 57

levels, 138
generating mipmapping, 157

libraries, math, 54, 59, 61
light bloom, 409–414
lighting a fragment using data from a G-buffer

listing (12.30), 553
lighting models, 504–544

Blinn-Phong lighting model, 513–515
environment mapping, 522–532
normal mapping, 518–522
Phong lighting model, 504–513
rim lighting, 515–517

light spaces, occluding, 559
linear interpolation, 83
linear texturing, 245
lines, 82

clipping, 276–282
parallel, 80
smoothing, 385

links
makefiles, 687
programs, 204–206

Linux, 682–704
applications, building, 687–693
applying contexts, 699–701
config management and visuals, 689–693
GLX

creating windows, 701–704
strings, 695

history of, 682–683
managing contexts, 695–699
rendering, 693–694
starting, 683–687
windows, 693–694
X Window System, 683

loading
2D array textures, 163–165
a cube map texture listing (12.12), 528–529
a .KTX file listing (5.37), 145
objects from files, 102–103
textures, 144–148, 665–667

local work groups, 47, 440–441, 444
locations, 104

uniforms, 114
of vertex attributes to zero, 29

locks, gimbal, 72, 76
logical operations, 363–364
logs, Event Trace Logs, 592
lookout matrix, 77–79
loops

main, 633
rendering, 273

Mac OS X, 647–681
CGL (Core OpenGL), 674–675
Cocoa, 649–662
full-screen rendering, 675–677
GLUT (OpenGL Utility Toolkit),

680–681
interfaces, 648–649
multi-threaded OpenGL, 679–680
OpenGL on, 647–681
rendering in, 660
retina displays, 673–674
sync frame rates, 677–679

macros, APIENTRY, 583
magnification filters, 152
main body of the flocking update compute

shader listing (10.14), 468–469
main() function, 311
main loops, 633
makefiles, 687
managing

config management and visuals,
689–693

context, 695–699, 725–726
viewports, 660

Mandelbrot sets, 566
mantissa bits, 189
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mapping
buffers, 600–603
a buffer’s data store listing (5.3), 95
bump, 518
displacement, 300
environment, 522–532

cube maps, 527–532
equirectangular, 525–527
spherical environment maps,

523–525
gloss maps, 533
GPU PerfStudio 2, 594
normal, 518–522, 554–556, 605
rendering to cubes, 375–376
shadows, 534–540
tone, 404–409
vertex shader inputs, 228

marching rays, 560
masking colors, 363–364
matching interfaces, 209–213
material properties, 532–534
math, 49

3D math with GLKit, 667–669
built-in functions, 197–199
curves, 83–87
fixed-point, 716–718
library, 54, 59, 61
matrices, construction and operators,

60–63
operators, 54–58
quaternions, 75–76
splines, 87–90
transformations, 63–82

concatenation, 73–75
model-view transforms, 76–79
projection, 79–81

vectors, 51–54
matrices, 53, 58–60, 190–192

built-in functions, 195–197
construction, 60–63
drawing commands, 232
frustrum, 82
identity, 67–68
lookout, 77–79
operators, 60–63
perspective, 81
rotation, 70–72
scaling, 72–73
shadows, 538
transformations, 62, 66
translation, 68–70
uniforms, 107–108

member variables, 21
memory

access synchronization, 129–133
allocation using buffers, 92–95
atomic operations, 128–129

bandwidth, 178, 549
hazards. See hazards
optimization, 613–616

Mesa, 682, 685
messages

debug, 586, 587
loops, 633

methods, 14, 194
minification filters, 152
mipmapping, 138, 153–155

cube map support, 529
example program, 158
filtering, 155–157
levels, 157–158

mobile platforms, 705–744
Android development environments,

729–734
EGL, 718–728
gamers, 729
iOpenGL, 734–744
negotiating embedded environments,

728–729
OpenGL ES, 705–709
OpenGL ES 3.0, 709–713

models
lighting, 504–544

Blinn-Phong lighting model, 513–515
environment mapping, 522–532
normal mapping, 518–522
Phong lighting model, 504–513
Rim lighting model, 515–517

SBM model file format, 751–757
transformations, 63, 67

model space, 64
model-view transforms, 76–79, 667
modes

filtering, 148
parameters, 265
separable, 207
wrapping, 148

modifying
geometry in geometry shaders, 320–322
the primitive type in geometry shaders,

325–328
monolithic program objects, 206
movement keys, 671
MSAA (multi-sample antialiasing), 387–389
multi-dimensional arrays, 194
multiple framebuffer attachments, 368–370
multiple GPUs, 609–611
multiple interleaved vertex attributes listing

(5.8), 102
multiple separate vertex attributes listing (5.7),

101
multiple streams of storage, 328–329
multiple textures, 150–151
multiple threads, 611–613
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multiple vertices, 24
attributes, 225
shader inputs, 100–102

multiple viewport transformations, 336–340
multiplication, 62

coordinate spaces, 63–66
matrices, 62
model-view transformations, 76–79
quaternions, 75–76

multi-sampling, 46n3
aliasing, 140
antialiasing, 387–389
textures, 389–393

multi-threaded OpenGL, 679–680
multi versions of functions, 252

naïve rotated point sprite fragment shader
listing (9.34), 427

names, 92, 138
NaN (Not a Number), 189, 200
NDC (Normalized Device Coordinate) Space,

64, 66
negative reflections, 506
negotiating embedded environments,

728–729
new primitive types introduced by geometry

shaders, 329–336
Newton’s laws, 269, 270, 271
noninstanced rendering, 245–250
non-photo-realistic rendering, 544–547
normalization, 52

buffers, 98
functions, 200
positive values, 226

Normalized Device Coordinate Space. See NDC
Space

normalized device spaces, 39
normal mapping, 518–522, 605

deferred shading, 554–556
normals, finding, 328
Not a Number (NaN), 189, 200
NSOpenGL, 648, 652–659
NULL pointers, 94
NVIDIA drivers, 625, 682
Nyquist rate, 384

objects
buffers, storage, 251
container, 603
coordinates, 64–65
display objects and X Window System, 689
files, loading, 102–103
framebuffers, 366
instancing, 237–250
list chunks, 756
monolithic program, 206
program pipeline, 207, 608

programs, 17
queries, 474
rotation, 70–72
samplers, 148
separable program, 608
shaders, 17
space, 64
stacks, 575
sync, 494
TBO (texture buffer object), 266, 269
texture, 148
UBO (Uniform Buffer Object), 108
VAOs (vertex array objects), 272

object-space coordinate data, 605
occlusion

ambient, 558–565
queries, 475–484

off-screen rendering, 364–384
offsets, 250

polygons, 540
opacity fragments, 15
OpenGL

Mac OS X on, 647–681. See also Mac OS X
multi-threaded, 679–680
in Windows, 623–647. See also Windows

OpenGL ES, 705–709, 713–718
OpenGL ES 3.0, 709–713
OpenGL Shading Language. See GLSL
operating systems. See platforms
operators

AND, 47
comparison, 352
matrices, 60–63
OR, 47
standard, 192
vectors, 54–58

optimization
compute shaders, 437–472
with extensions, 619–622
memory, 613–616
performance. See performance optimization

orientation, calculating, 257
origin of OpenGL, 6–10
OR operator, 47
orthographic projections, 80, 81, 83
orthonormal, 519
outputs

colors, 357–364
compute shaders, 441–444
graphics, 627
groups, 296
vertex shaders, 229–230

outputting information about the OpenGL
context listing (14.12), 660

overdraw, 548
overloading functions, 15, 143, 166, 194
overriding NSOpenGL, 652–659
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packed data formats, 227
packed vertex attributes, 247
packets

DMA, 593
present, 593
standard queue, 592

parallax, 379
parallelism, 4, 42
parallel lines, 80
parallel prefix sum (compute shader example),

450–462
parallization, 450–462
parameters

domains, 334
mode, 265
points, 423–424

passing data between tessellation shaders,
296–299

pass-through
geometry shaders, 311–313
vertex shader listing (8.25), 323
vertex shader that includes normals listing

(8.30), 326
patches, 284, 340

cubic Bézier patches (tessellation example),
304–310

domains, 306
processes, 284

Paul, Brian, 682
pausing transform feedback, 264–266
performance

counters, 597
increasing fill, 678–679
optimization, 581, 589–616, 597–616

performance analysis tools, 589–597
GPU PerfStudio 2, 594–597
GPUView, 590–594
WPT (Windows Performance Toolkit),

590–594
per-fragment lighting, calculating, 518
per-indirect draw attribute setup listing (7.13),

255
per-instance rotations, calculating, 163
per-patch inner/outer tessellation factors, 284
perspective

coordinates, 66
division, 39
matrices, 81
perspective-correct interpolation, 344–345
projections, 80, 81, 82

perturbations, random, 242
per-vertex lighting (Gouraus shading), 509
Phong lighting model, 504–513
Phong shading, 509–513, 519, 521

fragment shader listing (12.4), 511–512
vertex shader listing (12.3), 510–511

physical simulation example, 266–275

pipelines, 10–11, 17, 27–48
clipping, 38–39
compute shaders, 47–48
fragment shaders, 42–45
framebuffer operations, 45–47
geometry shaders, 36–38
graphics, 4–6
interface blocks, 31–32
tessellation, 32–36
vertices

passing data from stage to stage,
29–32

passing data to shaders, 28–29
pixels, 10–11, 17

advanced formats, 643
calculating, 385
centroid sampling, 396, 397
counting, 480
enumerating formats, 640–641
format attributes, 643–644
formatting, 630–632
Phong shading, 521

platforms, 617
extensions, 618–622
Linux, 682–704
Mac OS X on, 647–681. See also

Mac OS X
mobile, 705–744
Windows, 623–647. See also Windows

pointers, 15
functions, 622
NULL, 94

point mode, tessellation, 292–294
points

binding, 117, 262
clipping, 276
control, 83, 284, 304
parameters, 423–424
rotation, 426–428
shaped, 424–426
sizing, 22
sprites, 419–428
textures, 420
variables, 230

polygons
concave, 10
offsets, 540
smoothing, 386

portability of functions, 633
positioning

antialiasing sample, 387
calculating, 257
control points, 284
grass, 241
math, 51

positive value normalization, 226
predication, 481
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prefix sum, 450–462
implementation using a compute shader

listing (10.6), 453
pre-fragment tests, 345–357
pre-optimizing shaders, 609
present packets, 593
primitive mode tessellation, 285–294
primitiveMode values, 265
primitive processing, 283–340

communication between shader
invocations, 299

cubic Bézier patches (tessellation example),
304–310

geometry shaders, 310–340
terrain rendering (tessellation example),

300–304
tessellation, 284–310

primitives, 10–11
assembly, 10, 36, 175
degenerate, 24
restart, combining geometry, 235–237
types, adjacency, 340

printing interface information listing (6.4), 212
processes

back end, 11, 341
fragments, 341–435
front end, 10
primitive, 283–340. See also primitive

processing
vertices, 224–230

processors
GPUs (Graphics Processing Units), 5
graphics, 218, 594

producing
lines from normals in the geometry shader

listing (8.32), 327
multiple vertices in a vertex shaders listing

(2.8), 24
products

cross, 56–57
dot, 54–55
inner, 54–55
vectors, 55

profiles, 9. See also core profiles
programmable stages, 28
programs, 13, 187. See also applications

binaries, 216–219, 609
compiling, 201–219
compute, 438. See also compute shaders
linking, 204–206
monolithic objects, 206
objects, 17
pipeline objects, 207, 608
separaable, 206–213
shaders, 5

projection
matrices, 123

orthographic, 419
perspective, 76, 80, 667
transformations, 79–81

properties, material, 532–534
pseudo-code

for glDrawArraysInstanced() listing (7.5),
240

for glDrawElementsInstanced() listing (7.6),
240

publication dates, 7
pulling vertices, 28
pushing a face out along its normal listing

(8.24), 321

quadratic Bézier curves, 85, 86
quadratic equations, 86
quads (quadrilaterals)

geometry shaders, rendering using, 332–336
tessellation using, 285–288

qualifiers
binding layout, 119
centroid, 395
format layout, 169
layout, 29, 104, 370
storage, interpolation and, 342–345

Quartz, 647
quaternions, 72, 75–76
queries, 474–493

extension functions, 622
GLX, 700–701
indexed, 489–490
objects, 522

result availability, 475
retrieving, 476
timer, 484
transform feedback, 487–489

occlusion, 475–484
results, 476–480, 490–493
timer, 484–487
transform feedback, 487–493

queues
CPU, 590
drain, 591
hardware, 590
software, 590
standard queue packets, 592

race conditions, 446, 447
radians, 199
random perturbations, 242
rasterization, 41–42

back end processes, 341
OpenGL ES 3.0, 712

rasterizers, 10
discard, 273
guards bands, 278
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rates, sync frame, 677–679
RAW (Read-After-Write), 129
ray-plane intersection test listing (12.38), 578
rays, 560, 568–580
ray-sphere intersection test listing (12.36), 572
RC (rendering context), 628, 632–634
Read-After-Write (RAW), 129
reading

back texture data, 434–435
from a framebuffer, 429–431
state or data from OpenGL, 597–600
textures, 148–165
from textures in GLSL listing (5.35), 141

Realtech VR OpenGL Extensions Viewer, 619
rectangles

prefix sums, 460
textures, 140n4

redeclaration of fragments, 356
Red-Green Texture Compression (RGTC), 179
redirecting the current folder to point our

resources listing (14.21), 742–743
reflection, 57–58, 507
reflectivity, 504
refraction, 57–58
RegisterClass function, 628
registering a window class listing (14.1), 628
rendering, 503

3D graphics, 630
AFR (alternate frame rendering), 610
with all blending functions listing (9.3),

359–360
alternative rendering methods, 548–580
Android projects, 731–734
asteroids, 257
atmospheric effects, 540–544
casting shadows, 534–540
conditional, 481, 598
context. See RC
cube maps, 375–376, 529
data driven engines, 613
deferred shading, 548–558
environment mapping, 522–532
full-screen, 644–645, 675–677
HDR (High Dynamic Range), 403–404
instancing, 238, 245–250, 249
Julia fractals, 566–568
layers, 370–376
lighting models, 504–544
Linux, 693–694
loops, 273

for the Alien Rain sample listing (5.43), 164
for the flocking example listing (10.10), 465
listing (5.23), (5.26), 123, 125–126

in Mac OS X, 660
material properties, 532–534
to multiple viewports in a geometry shader

listing (8.36), 338–339

with no attachments, 399–401
noninstanced, 245–250
non-photo-realistic, 544–547
off-screen, 364–384
pipelines. See pipelines
quads (quadrilaterals) using geometry

shaders, 332–336
scissor tests, 347
screen-space techniques, 558–565
single points listing (2.7), 22
single triangles listing (2.9), 25
sky boxes, 531
starfields, 420–423
in stereo, 379–384
Stonehenge, 663–665
surfaces, 725
synchronization, 726–727
terrain, 300–304
a texture listing (9.5), 367–368
textures, 610
to two layers with a geometry shader listing

(9.16), 382–383
when query results aren’t available listing

(11.4), 480
without a TCS (tessellation control shader),

298–299
without triangles, 565–580

render() method, 14
resolution, retina displays (Mac OS X),

673–674
resources

3D graphics books, 748
OpenGL books, 747–748
web sites, 748–749

restarting geometry and primitives, 235–237
results

primitive queries, 490–493
queries, 476–480

retina displays (Mac OS X), 673–674
retrieving

compiler logs from a shader listing (6.1),
202–203

indices of uniform block members listing
(5.12), (5.15), 112, 115

information about uniform block members
listing (5.13), 113

a program binary listing (6.7), 217–218
return values, framebuffer completeness, 378
RGTC (Red-Green Texture Compression), 179
rim lighting, 515–517

shader function listing (12.6), 516
rotated point sprites

fragment shader listing (9.36), 427
vertex shader listing (9.35), 427–428

rotation
matrices, 70–72
points, 426–428
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roughness, 533
rules, uniform blocks, 111

samples
centroid sampling, 395–399
coverage, 391–393
multi-sample

antialiasing, 387–389
textures, 389–393

objects, 148
parameters, 149
rate shading, 393–395
types, 142
variables, 141

sampling rates, 384
SB6

sb6GetProcAddress(), 622, 635
sb6IsExtensionSupported(), 620, 622

sb6mtool utility, 762–764
SBM model file format, 751–757

chunk headers, 752
defined chunks, 752–756
examples, 757
file headers, 751–752

scalability, 4, 67
scalars, 105–106, 188–189
scaling matrix, 72–73
scissor tests, 46, 345–348
screen-space techniques, 558–565
searching bind sections of buffers, 262
segments, fractional, 295
selecting

OpenGL ES versions, 708–709
pixel formats, 631–662, 654

selectors, 150
separable mode, 207
separable program objects, 608
separate attributes, 100
separate programs, 206–213
serialization, 129
servers (X Window System), 693
sets

julia, 566–568
Mandelbrot, 566

setting. See also configuration
the debug callback function listing (13.2), 583
single floats in uniform blocks listing

(5.14), 114
up a full-screen window listing (14.9), 645
up a layered framebuffer listing (9.8), 371
up a multisample framebuffer attachment

listing (9.20), 390
up and rendering Android listing (14.19), 733
up an FBO with multiple attachments listing

(9.6), 369–370
up a shadow matrix listing (12.20), 538
up a simple framebuffer object listing (9.4), 367

up atomic counter buffers listing (5.29),
(5.30), 134

up cube geometry listing (5.20), 121–122
up indexed cube geometry listing (7.2), 233
up indirect draw buffers for Asteroids listing

(7.11), 254
up matrices for shadow mapping listing

(12.19), 536
up matrices in uniform blocks listing (5.17),

116
up scissor rectangle arrays listing (9.1),

346–347
up the “Explode” geometry shader listing

(8.23), 321
up the julia set renderer listing (12.33), 567
up the “Normal Visualizer” geometry shader

listing (8.31), 326–327
up the “Tesellator” geometry shader listing

(8.26), 323
up vertex attributes listing (5.4), 99
values of subroutine uniforms listing (6.6),

216
SGI (Silicon Graphics, Inc.), 6, 682
shaders, 5, 187

applying, 16–23
barriers, 132–133
blocks, storage, 126–133
communication between invocations, 299
compiling, 218, 606–609
compute, 47–48, 437–472

applying, 438–439
communication, 444–449
examples, 450–471
executing, 439–444
flocking, 462–471
synchronizing, 445–449

cores, 5
fragments, 42–45, 342–345
geometry, 36–38, 310–340

changing the primitive type in, 325–328
discarding geometry in, 317–320
generating geometry in, 322–325
layered rendering, 371
modifying geometry in, 320–322
multiple streams of storage, 328–329
multiple viewport transformations,

336–340
new primitive types introduced by,

329–336
pass-through, 311–313
storage blocks, 126, 129
tessellation. See tessellation
using in an application, 313–317
vertex. See vertex shaders

objects, 17
OpenGL ES 3.0, 710–712
pre-optimizing, 609

Index 791



shaders (continued)
subroutines, 213–216
TCS (tessellation control shader), 284
TES (tessellation evaluation shader), 284
tessellation

control, 33–34
evaluation, 34–36
passing data, 296–299

textures
reading from in, 141–144
writing to in, 165–176

vertices, 24
feeding from buffers, 97–103
inputs, 224–229
multiple inputs, 100–102
outputs, 229–230
passing to data to, 28–29

shading
cell, 545–547
deferred, 548–558

downsides to, 556–558
normal mapping, 554–556

Gouraud, 507
Phong, 509–513, 519
sample rate, 393–395

shadows
casting, 534–540
mapping, 534–540
matrix, 538
sampler, 535

shaped points, 424–426
shared memory, 445
sharing

exponents, 181
layouts, 110
variables, 444

shininess factor, 506
shutting down applications, 21
side effects, 443
signaled states, 494
signed areas, 40
signed integers, 189
Silicon Graphics, Inc. (SGI), 6, 680
simple

application side conditional rendering
listing (11.3), 479

do-nothing compute shader listing (3.13), 47
instanced vertex shader listing (7.8), 247
isoline tessellation control shader example

listing (8.5), 291
isoline tessellation control shader example

listing (8.6), 291
multisample maximum resolve listing

(9.21), 391
prefix sum implementation in C++ listing

(10.5), 450
quad tessellation control shader example

listing (8.1), 287

quad tessellation evaluation shader example
listing (8.2), 287–288

simplified fragment shader for shadow
mapping listing (12.22), 539

simplified vertex shader for shadow
mapping listing (12.21), 538

triangle tessellation control shader example
listing (8.3), (8.4), 289, 290

vertex shader with pre-vertex color listing
(7.7), 246

single buffering, 661
sizing

input arrays, 315
points, 22
variables, points, 230

sky boxes, 529, 531
smoothing

inputs, 342
lines, 385
polygons, 386

SoAs (structure-of-arrays), 101
software queues, 590
source code for a simple geometry shader listing

(8.16), 311
source factors, 358
spaces, color, 416–418
specifications, CGL (Core OpenGL), 625n3
specifying

bindings for uniform blocks listing
(5.18), 119

data for arrays in uniform blocks listing
(5.16), 115

varyings, 260
specular albedo, 512
specular highlights, 505–509
speed, tuning applications for, 597–616
spherical environment mapping, 523–525

fragment shader listing (12.10), 524
vertex shader listing (12.9), 523–524

spinning cube
fragment shader listing (5.25), 124
vertex shader listing (5.24), 123

splines, 82, 87–90
spring mass system

example, 266
iteration loop listing (7.18), 273
rendering loop listing (7.19), 273
vertex setup listing (7.16), 269
vertex shader listing (7.17), 271–272

sprites, points, 419–428
sRGB color spaces, 416–418
SSAO (screen space ambient occlusion), 559
stacks, implementing, 575
stages, 5

fixed-function, 5
shaders, 17

standard layouts, 110, 116
standard operators, 192
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standard queue packets, 592
starfields, rendering, 420–423
starting

applications, 21
Linux, 683–687
transform feedback, 264–266

state, OpenGL ES 3.0, 713
stencil tests, 46, 348–351
stereo, rendering in, 379–384
Stonehenge, 663–665
stopping transform feedback, 264–266
storage

buffer objects, 251
multiple streams of, 328–329
qualifiers

interpolation and, 342–345
patch, 445
shared, 445

shaders, blocks, 126–133
transforms, vertices, 259–275

strings
EGL, 727
GLX, 695

structure-of-arrays (SoAs), 101
structures, 192–194

acceleration, 579
VERTEX, 225

subdivision modes, tessellation, 294–296
subroutines, shaders, 213–216
subsystems, destination, 132
summed area tables, 456, 460
sums, prefixes, 450–462
support

core profiles, 652
hardware, 625
ICD (Installable Client Driver), 624, 626
on Linux, 684

surfaces, render, 626, 693–694, 725
SwapBuffers() command, 593
swap values, buffers, 637
swizzling, 191
sync frame rates, 677–679
sync objects, 494
synchronization, 493–498

access
to atomic counters, 137
to images, 176–177
to memory, 129–133

compute shaders, 445–449
and fences, 494–498
GLX, 699
rendering, 726–727

tables, summed area, 456, 460
taking a screenshot with glReadPixels() listing

(9.37), 430–431
tangents

space normals, 554

vectors, 519
targets, 92, 137, 139–140
TBN (Tangent, Bitangent, Normal) matrix, 519,

555
TBO (texture buffer object), 266, 269
TCS (tessellation control shader), 284, 298–299,

595
for terrain rendering listing (8.9), 302–303

terrain, rendering, 300–304
TES (tessellation evaluation shader), 34–36,

284, 595
for terrain rendering listing (8.10), 303

tessellation, 32–36, 284–310
control shaders, 33–34
engines, 34
evaluation shaders, 34–36
examples

cubic Bézier patches, 304–310
terrain rendering, 300–304

isolines, 290–292
point mode, 292–294
primitive modes, 285–294
quads (quadrilaterals), 285–288
shaders, passing data, 296–299
subdivision modes, 294–296
triangles, 288–290

tessellation control shader. See TCS
tessellation evaluation shader. See TES
tests

depth, 46, 351–355
early testing, 355–357
FBOs (user-defined framebuffers), 379
pre-fragment, 345–357
scissor, 46, 345–348
stencil, 46, 348–351

texels as light, 545–547
texture buffer object. See TBO
textures, 19, 137–185

1D, 244
arrays, 160–165, 163–165, 370
attaching, 367
base level, 154
border color, 159
compression, 177–181, 606
coordinates, 146–148, 529
copying data into a, 433–434
files, loading from, 144–148
filtering, 151–153
floating-point, 402–403
formatting, 138–139
initializing, 138–139
linear, 245
loading, 665–667
max level, 154
multiple, 150–151
multi-sample, 389–393
objects, 160
OpenGL ES 3.0, 712

Index 793



textures (continued)
points, 420
a point sprite in the fragment shader listing

(9.30), 420
reading, 148–165, 434–435
rendering, 610
shaders

reading from in, 141–144
writing to in, 165–176

stars, 420
targets, 139–140
TBO (texture buffer object), 266, 269
views, 181–185
wrap mode, 158–160

threads, multiple, 611–613
three-component vertices, 53
tightly packed arrays, 101
timer queries, 484–487
timeslicing, 446
timing operations

using glQueryCounter() listing (11.8),
485–486

using timer queries listing (11.7), 484–485
tokens, 96, 226
tone mapping, 404–409
tools, 759–764

dds2ktx utility, 761–762
GLUT (OpenGL Utility Toolkit), 680–681
ktxtool utility, 759–761
performance analysis, 589–597
Realtech VR OpenGL Extensions Viewer, 619
sb6mtool utility, 762–764

toon fragment shader listing (12.26), 546–547
toon vertex shader listing (12.25), 546
transfer curves, tone mapping, 407
transformations

concatenation, 73–75
coordinates, 66–73
coordinate spaces, 63–66
geometry, 63
matrices, 62, 66

rotation, 70–72
scaling, 72–73
perspective, 68–70

models, 63
model-view, 76–79, 667
multiple viewport transformations, 336–340
order of, 105
overview of, 63–82
projection, 79–81
uniforms, geometry, 121–126
vertices, storage, 259–275
view, 76
viewports, 76

transform feedback
applying, 260–265
ending the pipeline with, 266

physical simulation example, 266–275
queries, 487–493
starting, pausing, and stopping, 264–266

translation, 68–70
transparency, 558
transposing images, 412
traversing a linked-list in a fragment shader

listing (5.46), 175–176
triangles, 10

clipping, 277, 278
drawing, 24–25
GL_TRIANGLES_ADJACENCY primitive mode,

330, 331
guard bands, 278–279
rendering without, 565–580
tessellation using, 288–290

troubleshooting, 581
tuning applications for speed, 597–616
turning on line smoothing listing (9.18), 386
types

buffers, assigning to, 92
data, 188–194
elements, 193
matrices, 190–192
of projection transformations, 79–81
samplers, 132
scalars, 188–189
textures, 139–140
tokens, 96
vectors, 190–192
vertex attributes, 226

UBO (Uniform Buffer Object), 108
unary negation, 76
under sampling data, 384
uniform blocks binding layout qualifiers listing

(5.19), 119
Uniform Buffer Object. See UBO
uniforms, 103–126

arrays, 106
blocks, 108–121
buffers, 92, 109
default block, 104–105
geometry, 121–126
matrices, 107
subroutines, 213, 215

units
images, 167
textures, 137
vectors, 52

unpacking data from a G-buffer listing (12.29),
552

unsignaled states, 494
unsigned integers, 189
updating

the content of buffers listing (5.2), 94
depth buffers, 352–353
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projection matrices listing (5.22), 123
stencil buffers, 351
texture data listing (5.34), 138–139
uniforms, 108
vertex attributes listing (3.2), 29

user-defined clipping, 279–282
user-defined framebuffers. See FBOs
using. See also applying

attributes in vertex shaders listing (5.5), 99
a function to produce faces in a geometry

shader listing (8.29), 324
a gradient texture to color a julia set listing

(12.35), 568
results of atomic counters in uniform blocks

listing (5.32), 136
shader storage blocks in place of vertex

attributes listing (5.28), 127–128
shader storage blocks listing (5.28), 127–128

utilities. See tools

values, 15
averaging, 456
coverage, 392
interpolation, 44
normalization, 226
primitiveMode, 265
return, framebuffer completeness, 378

Van Verth, James, 718
VAOs (vertex array objects), 20, 97, 272, 595
variables

built-in, 24
filtering, 457
images, 165
members, 21
point sizes, 230
sampler, 141
sharing, 444

varyings, 260, 261
centroid sampling, 395
per-patch user-defined, 284

vectors, 15, 51–54, 190–192
bittangent, 519
Boolean, 196
built-in functions, 195–197
homogenous, 53
length of, 57
operators, 54–58
Phong lighting, 506
products, 55
reflection, 507
rim lighting, 516
tangent, 519
uniforms, 105–106
unit, 52

vendor extensions, 618, 728
versions, 7

development (OpenGL ES), 707–708

vertex array objects. See VAOs
vertex shaders, 22, 24, 595. See also shaders

for the Alien Rain sample (5.41), 162–163
with an output listing (3.3), (3.11), 30, 44
for cube map environment rendering

listing (12.15), 531
feeding from buffers, 97–103
inputs, 224–229
inputs for Asteroids listing (7.12), 255
multiple inputs, 100–102
for normal mapping listing (12.7), 520
with output interface blocks listing (3.5), 31
outputs, 229–230
with single texture coordinate listing

(5.38), 147
for sky box rendering listing (12.13), 530
for the star field effect listing (9.31), 422
for terrain rendering listing (8.8), 301

VERTEX structure, 225
vertices

attributes, 28–29, 97
basevertex, adding, 234–235
buffers, 92
clipping, 38–39
connections, 267
data chunks (SBM model file format),

753–755
fetching, 28
multiple, 24
OpenGL ES 3.0, 709
per-patch, 284n1
pipelines

passing data from stage to stage, 29–32
passing data to shaders, 28–29

processing, 224–230
shaders. See vertex shaders
transforms, storage, 259–275

viewing
images in stereo, 380
normals, 328
Realtech VR OpenGL Extensions Viewer, 619
retina displays (Mac OS X), 673–674
X Window System, 704

viewports
managing, 660
multiple, 336–340
transformation, 39–40

views
adding, 650–652
coordinates, 65–66
model-view transforms, 667
space, 64, 555n6
textures, 181–185
transformations, 76–79

visuals
config management and, 689–693
tearing, 646, 678
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vmath::perspective function, 82
vmath::rotate function, 72
volume, 140

clipping, 276
local work groups, 441

vsync, 591

WAR (Write-After-Read), 131
warnings, shaders, 203
WAW (Write-After-Write), 131
web sites, 748–749
WGF (Windows Graphics Foundation), 627
WGL (Windows-GL), 623, 634–639

wglChoosePixelFormatARB(), 638–641
wglCreateContext(), 633, 635, 641
wglCreateContextAttribsARB(), 641, 642,

643, 646
wglDeleteContext(), 646
wglGetExtensionsStringARB(), 635
wglGetPixelFormatAttribARB(), 644
wglGetPixelFormatAttribfvARB(), 640
wglGetPixelFormatAttribivARB(), 640, 644
wglGetProcAddress(), 636, 646, 725
wglMakeCurrent(), 611, 612, 633
wglSwapIntervalEXT(), 646

whole framebuffer completeness, 377
Win32, 623
winding order, 41, 296
windows

child windows (in Cocoa), 671
coordinates, 40
EGL, 720
formatting, 628–630
GLX, 701–704
Linux, 693–694
space, 64
surfaces, 626

Windows-GL. See WGL
Windows Graphics Foundation. See WGF
Windows main message loop listing (14.5), 633

Windows operating systems, 623–647
basic setup, 627–632
graphics drivers, 624–626
Windows 95, 623
Windows NT version 3.5, 623
Windows Vista, 626

Windows Performance Toolkit. See WPT
Windows Presentation Foundation. See WPF
workgroups, 47

maximum size of, 440–441
working while waiting for a sync object listing

(11.10), 495
work items, 493
world coordinates, 65
world space, 64
WPF (Windows Presentation Foundation), 627
WPT (Windows Performance Toolkit), 590–594
wrapping

modes, 148
textures, 147, 148, 158–160

Write-After-Read (WAR), 131
Write-After-Write (WAW), 131
writing to a G-buffer listing (12.28), 551

XCloseDisplay(), 689
Xcode, 649, 739–740
XCreateWindow(), 693, 694, 702
XDestroyWindow(), 694
XFree(), 692, 693
XOpenDisplay(), 689, 690
XOR operator, 47
X Window System, 683

display objects and, 689
full-screen views, 704
GLX-interfacing with, 688–689

y-axis, 243

z-axis, 76
zeroes, 24
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