
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321902948
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321902948
https://plusone.google.com/share?url=http://www.informit.com/title/9780321902948
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321902948
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321902948/Free-Sample-Chapter

OpenGL®

SuperBible
Sixth Edition

The OpenGL graphics system is a software interface to graphics hardware.

(“GL” stands for “Graphics Library”.) It allows you to create interactive programs

that produce color images of moving, three-dimensional objects. With OpenGL,

you can control computer-graphics technology to produce realistic pictures, or

ones that depart from reality in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises tutorial and

reference books that help programmers gain a practical understanding of OpenGL

standards, along with the insight needed to unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products.

Make sure to connect with us!
informit.com/socialconnect

OpenGL Series
from Addison-Wesley

OpenGL®

SuperBible
Sixth Edition

Comprehensive Tutorial
and Reference

Graham Sellers
Richard S. Wright, Jr.
Nicholas Haemel

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Wright, Richard S., Jr., 1965- author.
OpenGL superBible : comprehensive tutorial and reference.—Sixth edition /
Graham Sellers, Richard S. Wright, Jr., Nicholas Haemel.

pages cm
Includes bibliographical references and index.
ISBN-13: 978-0-321-90294-8 (pbk. : alk. paper)
ISBN-10: 0-321-90294-7 (pbk. : alk. paper)

1. Computer graphics. 2. OpenGL. I. Sellers, Graham, author. II. Haemel,
Nicholas, author. III. Title.

T385.W728 2013
006.6’8—dc23

2013016852

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material
from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236–3290.

ISBN-13: 978-0-321-90294-8
ISBN-10: 0-321-90294-7
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, July 2013

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development
Editor
Sheri Cain

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Copy Editor
Teresa D. Wilson

Indexer
Larry Sweazey

Proofreader
Andrea Fox

Technical
Reviewers
Piers Daniell
Daniel Koch
Daniel Rakos

Editorial Assistant
Olivia Basegio

Compositor
LaurelTech

For my family and my friends.
For those from whom I have learned.

For people who love to learn.
—Graham Sellers

For my wife LeeAnne,
for not killing me in my sleep

(when I deserved it).
To the memory of Richard S. Wright, Sr.

Thanks, Dad, for just letting me be a nerd.
—Richard S. Wright, Jr.

For my wife, Anna,
who has put up with all my engineering nonsense all these

years and provided undying love and support.
And to my parents for providing me with encouragement and

more LEGOs than I could get both arms around.
—Nicholas Haemel

This page intentionally left blank

Contents

Figures xv
Tables xxiii
Listings xxv
Foreword xxxiii
Preface xxxv

About This Book . xxxv
The Architecture of the Book xxxvi
What’s New in This Edition . xxxviii
How to Build the Samples . xxxix
Errata . xl

Acknowledgments xli
About the Authors xlv

I Foundations 1

1 Introduction 3
OpenGL and the Graphics Pipeline 4
The Origins and Evolution of OpenGL 6

Core Profile OpenGL . 8
Primitives, Pipelines, and Pixels . 10
Summary . 11

vii

2 Our First OpenGL Program 13
Creating a Simple Application . 14
Using Shaders . 16
Drawing Our First Triangle . 24
Summary . 25

3 Following the Pipeline 27
Passing Data to the Vertex Shader 28

Vertex Attributes . 28
Passing Data from Stage to Stage . 29

Interface Blocks . 31
Tessellation . 32

Tessellation Control Shaders 33
The Tessellation Engine . 34
Tessellation Evaluation Shaders 34

Geometry Shaders . 36
Primitive Assembly, Clipping, and Rasterization 38

Clipping . 38
Viewport Transformation . 39
Culling . 40
Rasterization . 41

Fragment Shaders . 42
Framebuffer Operations . 45

Pixel Operations . 45
Compute Shaders . 47
Summary . 48

4 Math for 3D Graphics 49
Is This the Dreaded Math Chapter? 50
A Crash Course in 3D Graphics Math 51

Vectors, or Which Way Is Which? 51
Common Vector Operators . 54
Matrices . 58
Matrix Construction and Operators 60

Understanding Transformations . 63
Coordinate Spaces in OpenGL 63
Coordinate Transformations 66
Concatenating Transformations 73
Quaternions . 75
The Model-View Transform . 76
Projection Transformations . 79

viii Contents

Interpolation, Lines, Curves, and Splines 82
Curves . 83
Splines . 87

Summary . 90

5 Data 91
Buffers . 92

Allocating Memory using Buffers 92
Filling and Copying Data in Buffers 95
Feeding Vertex Shaders from Buffers 97

Uniforms . 103
Default Block Uniforms . 103
Uniform Blocks . 108
Using Uniforms to Transform Geometry 121

Shader Storage Blocks . 126
Synchronizing Access to Memory 129

Atomic Counters . 133
Synchronizing Access to Atomic Counters 137

Textures . 137
Creating and Initializing Textures 138
Texture Targets and Types . 139
Reading from Textures in Shaders 141
Loading Textures from Files . 144
Controlling How Texture Data Is Read 148
Array Textures . 160
Writing to Textures in Shaders 165
Synchronizing Access to Images 176
Texture Compression . 177
Texture Views . 181

Summary . 185

6 Shaders and Programs 187
Language Overview . 188

Data Types . 188
Built-In Functions . 194

Compiling, Linking, and Examining Programs 201
Getting Information from the Compiler 201
Getting Information from the Linker 204
Separate Programs . 206
Shader Subroutines . 213
Program Binaries . 216

Summary . 219

Contents ix

II In Depth 221

7 Vertex Processing and Drawing Commands 223
Vertex Processing . 224

Vertex Shader Inputs . 224
Vertex Shader Outputs . 229

Drawing Commands . 231
Indexed Drawing Commands 231
Instancing . 237
Indirect Draws . 250

Storing Transformed Vertices . 259
Using Transform Feedback . 260
Starting, Pausing, and Stopping Transform Feedback 264
Ending the Pipeline with Transform Feedback 266
Transform Feedback Example — Physical Simulation 266

Clipping . 276
User-Defined Clipping . 279

Summary . 282

8 Primitive Processing 283
Tessellation . 284

Tessellation Primitive Modes 285
Tessellation Subdivision Modes 294
Passing Data between Tessellation Shaders 296
Communication between Shader Invocations 299
Tessellation Example — Terrain Rendering 300
Tessellation Example — Cubic Bézier Patches 304

Geometry Shaders . 310
The Pass-Through Geometry Shader 311
Using Geometry Shaders in an Application 313
Discarding Geometry in the Geometry Shader 317
Modifying Geometry in the Geometry Shader 320
Generating Geometry in the Geometry Shader 322
Changing the Primitive Type in the Geometry

Shader . 325
Multiple Streams of Storage . 328
New Primitive Types Introduced by the Geometry

Shader . 329
Multiple Viewport Transformations 336

Summary . 340

x Contents

9 Fragment Processing and the Framebuffer 341
Fragment Shaders . 342

Interpolation and Storage Qualifiers 342
Per-Fragment Tests . 345

Scissor Testing . 345
Stencil Testing . 348
Depth Testing . 351
Early Testing . 355

Color Output . 357
Blending . 357
Logical Operations . 362
Color Masking . 363

Off-Screen Rendering . 364
Multiple Framebuffer Attachments 368
Layered Rendering . 370
Framebuffer Completeness . 376
Rendering in Stereo . 379

Antialiasing . 384
Antialiasing by Filtering . 385
Multi-sample Antialiasing . 387
Multi-sample Textures . 389
Sample Rate Shading . 393
Centroid Sampling . 395

Advanced Framebuffer Formats . 399
Rendering with No Attachments 399
Floating-Point Framebuffers . 401
Integer Framebuffers . 415
The sRGB Color Space . 416

Point Sprites . 419
Texturing Points . 420
Rendering a Star Field . 420
Point Parameters . 423
Shaped Points . 424
Rotating Points . 426

Getting at Your Image . 428
Reading from a Framebuffer . 429
Copying Data between Framebuffers 431
Reading Back Texture Data . 434

Summary . 435

10 Compute Shaders 437
Using Compute Shaders . 438

Contents xi

Executing Compute Shaders 439
Compute Shader Communication 444

Examples . 449
Compute Shader Parallel Prefix Sum 450
Compute Shader Flocking . 462

Summary . 471

11 Controlling and Monitoring the Pipeline 473
Queries . 474

Occlusion Queries . 475
Timer Queries . 484
Transform Feedback Queries 487

Synchronization in OpenGL . 493
Draining the Pipeline . 493
Synchronization and Fences 494

Summary . 498

III In Practice 501

12 Rendering Techniques 503
Lighting Models . 504

The Phong Lighting Model . 504
Blinn-Phong Lighting . 513
Rim Lighting . 515
Normal Mapping . 518
Environment Mapping . 522
Material Properties . 532
Casting Shadows . 534
Atmospheric Effects . 540

Non-Photo-Realistic Rendering . 544
Cell Shading — Texels as Light 545

Alternative Rendering Methods . 548
Deferred Shading . 548
Screen-Space Techniques . 558
Rendering without Triangles 565

Summary . 580

13 Debugging and Performance Optimization 581
Debugging Your Applications . 582

Debug Contexts . 582

xii Contents

Performance Optimization . 589
Performance Analysis Tools . 589
Tuning Your Application for Speed 597

Summary . 616

14 Platform Specifics 617
Using Extensions in OpenGL . 618

Enhancing OpenGL with Extensions 619
OpenGL on Windows . 623

OpenGL Implementations on Windows 623
Basic Window Setup . 627
The OpenGL Rendering Context 632
Full-Screen Rendering . 644
Cleaning Up . 646

OpenGL on Mac OS X . 647
The Faces of OpenGL on the Mac 648
OpenGL with Cocoa . 649
Introducing GLKit . 662
Retina Displays . 673
Core OpenGL . 674
Full-Screen Rendering . 675
Sync Frame Rate . 677
Multi-threaded OpenGL . 679
GLUT . 680

OpenGL on Linux . 682
The Basics . 682
Brief History . 682
What Is X? . 683
Getting Started . 683
Building OpenGL Apps . 687
Windows and Render Surfaces 693
GLX Strings . 695
Context Management . 695
Using Contexts . 699
Putting It All Together . 701
Going Full Screen on X . 704

OpenGL on Mobile Platforms . 705
OpenGL on a Diet . 705
OpenGL ES 3.0 . 709
The OpenGL ES Environment 713
EGL: A New Windowing Environment 718
More EGL . 727

Contents xiii

Negotiating Embedded Environments 728
Android Development Environments 729
iOpenGL . 734

Summary . 744

A Further Reading 747

B The SBM File Format 751

C The SuperBible Tools 759

Glossary 765
Index 773

xiv Contents

Figures

Figure 1.1 Simplified graphics pipeline 6
Figure 1.2 Future Crew’s 1992 demo Unreal 8

Figure 2.1 The output of our first OpenGL application 15
Figure 2.2 Rendering our first point 23
Figure 2.3 Making our first point bigger 23
Figure 2.4 Our very first OpenGL triangle 25

Figure 3.1 Our first tessellated triangle 36
Figure 3.2 Tessellated triangle after adding a geometry shader . . 38
Figure 3.3 Clockwise (left) and counterclockwise (right) winding

order . 41
Figure 3.4 Result of Listing 3.10 43
Figure 3.5 Result of Listing 3.12 45

Figure 4.1 A point in space is both a vertex and a vector 52
Figure 4.2 The dot product — cosine of the angle between two

vectors . 55
Figure 4.3 A cross product returns a vector perpendicular to its

parameters . 56
Figure 4.4 Reflection and refraction 58
Figure 4.5 A 4× 4 matrix representing rotation and

translation . 62

xv

Figure 4.6 Modeling transformations: rotation then translation,
and translation then rotation 63

Figure 4.7 Two perspectives of view coordinates 65
Figure 4.8 The modeling transformations 67
Figure 4.9 A cube translated ten units in the positive y direction 69
Figure 4.10 A cube rotated about an arbitrary axis 71
Figure 4.11 A non-uniform scaling of a cube 74
Figure 4.12 A side-by-side example of an orthographic versus

perspective projection 81
Figure 4.13 Finding a point on a line 83
Figure 4.14 A simple Bézier curve 84
Figure 4.15 A cubic Bézier curve . 85
Figure 4.16 A cubic Bézier spline . 88

Figure 5.1 Binding buffers and uniform blocks to binding
points . 118

Figure 5.2 A few frames from the spinning cube application . . . 124
Figure 5.3 Many cubes! . 125
Figure 5.4 A simple textured triangle 142
Figure 5.5 A full-screen texture loaded from a .KTX file 146
Figure 5.6 An object wrapped in simple textures 148
Figure 5.7 Texture filtering — nearest (left) and linear (right) . . 153
Figure 5.8 A series of mipmapped images 155
Figure 5.9 A tunnel rendered with three textures and

mipmapping . 158
Figure 5.10 Example of texture coordinate wrapping modes 160
Figure 5.11 Output of the alien rain sample 165
Figure 5.12 Resolved per-fragment linked lists 177

Figure 6.1 Shape of a Hermite curve 198

Figure 7.1 Indices used in an indexed draw 232
Figure 7.2 Base vertex used in an indexed draw 235
Figure 7.3 Triangle strips with and without primitive restart . . . 237
Figure 7.4 First attempt at an instanced field of grass 241
Figure 7.5 Slightly perturbed blades of grass 242
Figure 7.6 Control over the length and orientation of our grass 243
Figure 7.7 The final field of grass 244
Figure 7.8 Result of instanced rendering 249
Figure 7.9 Result of asteroid rendering program 258
Figure 7.10 Relationship of transform feedback binding points . . 262
Figure 7.11 Connections of vertices in the spring-mass system . . 267

xvi Figures

Figure 7.12 Simulation of points connected by springs 273
Figure 7.13 Visualizing springs in the spring-mass system 275
Figure 7.14 Clipping lines . 276
Figure 7.15 Clipping triangles . 277
Figure 7.16 Clipping triangles using a guard band 278
Figure 7.17 Rendering with user clip distances 282

Figure 8.1 Schematic of OpenGL tessellation 285
Figure 8.2 Tessellation factors for quad tessellation 286
Figure 8.3 Quad tessellation example 286
Figure 8.4 Tessellation factors for triangle tessellation 288
Figure 8.5 Triangle tessellation example 289
Figure 8.6 Tessellation factors for isoline tessellation 290
Figure 8.7 Isoline tessellation example 292
Figure 8.8 Tessellated isoline spirals example 293
Figure 8.9 Triangle tessellated using point mode 294
Figure 8.10 Tessellation using different subdivision modes 295
Figure 8.11 Displacement map used in terrain sample 300
Figure 8.12 Terrain rendered using tessellation 305
Figure 8.13 Tessellated terrain in wireframe 305
Figure 8.14 Final rendering of a cubic Bézier patch 309
Figure 8.15 A Bézier patch and its control cage 310
Figure 8.16 Geometry culled from different viewpoints 320
Figure 8.17 Exploding a model using the geometry shader 322
Figure 8.18 Basic tessellation using the geometry shader 325
Figure 8.19 Displaying the normals of a model using a geometry

shader . 328
Figure 8.20 Lines produced using lines with adjacency primitives 331
Figure 8.21 Triangles produced using

GL_TRIANGLES_ADJACENCY 331
Figure 8.22 Triangles produced using

GL_TRIANGLE_STRIP_ADJACENCY 332
Figure 8.23 Ordering of vertices for

GL_TRIANGLE_STRIP_ADJACENCY 332
Figure 8.24 Rendering a quad using a pair of triangles 333
Figure 8.25 Parameterization of a quad 334
Figure 8.26 Quad rendered using a geometry shader 337
Figure 8.27 Result of rendering to multiple viewports 339

Figure 9.1 Contrasting perspective-correct and linear
interpolation . 345

Figure 9.2 Rendering with four different scissor rectangles 347

Figures xvii

Figure 9.3 Effect of depth clamping at the near plane 354
Figure 9.4 A clipped object with and without depth clamping . . 355
Figure 9.5 All possible combinations of blending functions . . . 360
Figure 9.6 Result of rendering into a texture 369
Figure 9.7 Result of the layered rendering example 374
Figure 9.8 Result of stereo rendering to a stereo display 384
Figure 9.9 Antialiasing using line smoothing 385
Figure 9.10 Antialiasing using polygon smoothing 386
Figure 9.11 Antialiasing sample positions 387
Figure 9.12 No antialiasing (left) and 8-sample antialiasing

(center and right) . 388
Figure 9.13 Antialiasing of high-frequency shader output 394
Figure 9.14 Partially covered multi-sampled pixels 396
Figure 9.15 Different views of an HDR image 404
Figure 9.16 Histogram of levels for treelights.ktx 405
Figure 9.17 Naïve tone mapping by clamping 406
Figure 9.18 Transfer curve for adaptive tone mapping 407
Figure 9.19 Result of adaptive tone mapping program 409
Figure 9.20 The effect of light bloom on an image 409
Figure 9.21 Original and thresholded output for bloom example 412
Figure 9.22 Blurred thresholded bloom colors 413
Figure 9.23 Result of the bloom program 414
Figure 9.24 Gamma curves for sRGB and simple powers 418
Figure 9.25 A particle effect in the flurry screen saver 419
Figure 9.26 The star texture map . 421
Figure 9.27 Flying through space with point sprites 423
Figure 9.28 Two potential orientations of textures on a point

sprite . 424
Figure 9.29 Analytically generated point sprite shapes 425

Figure 10.1 Global and local compute work group dimensions . . 443
Figure 10.2 Effect of race conditions in a compute shader 448
Figure 10.3 Effect of barrier() on race conditions 449
Figure 10.4 Sample input and output of a prefix sum operation . . 450
Figure 10.5 Breaking a prefix sum into smaller chunks 452
Figure 10.6 A 2D prefix sum . 454
Figure 10.7 Computing the sum of a rectangle in a summed area

table . 456
Figure 10.8 Variable filtering applied to an image 457
Figure 10.9 Depth of field in a photograph 458
Figure 10.10 Applying depth of field to an image 461
Figure 10.11 Effects achievable with depth of field 461

xviii Figures

Figure 10.12 Stages in the iterative flocking algorithm 463
Figure 10.13 Output of compute shader flocking program 471

Figure 12.1 Vectors used in Phong lighting 506
Figure 12.2 Per-vertex lighting (Gouraud shading) 509
Figure 12.3 Per-fragment lighting (Phong shading) 510
Figure 12.4 Varying specular parameters of a material 513
Figure 12.5 Phong lighting (left) vs. Blinn-Phong lighting (right) 515
Figure 12.6 Rim lighting vectors . 516
Figure 12.7 Result of rim lighting example 517
Figure 12.8 Example normal map 518
Figure 12.9 Result of normal mapping example 522
Figure 12.10 A selection of spherical environment maps 523
Figure 12.11 Result of rendering with spherical environment

mapping . 525
Figure 12.12 Example equirectangular environment map 526
Figure 12.13 Rendering result of equirectangular environment map 527
Figure 12.14 The layout of six cube faces in the Cubemap sample

program . 528
Figure 12.15 Cube map environment rendering with a sky box . . 532
Figure 12.16 Pre-filtered environment maps and gloss map 533
Figure 12.17 Result of per-pixel gloss example 535
Figure 12.18 Depth as seen from a light 537
Figure 12.19 Results of rendering with shadow maps 540
Figure 12.20 Graphs of exponential decay 543
Figure 12.21 Applying fog to tessellated landscape 544
Figure 12.22 A one-dimensional color lookup table 545
Figure 12.23 A toon-shaded torus . 547
Figure 12.24 Visualizing components of a G-buffer 553
Figure 12.25 Final rendering using deferred shading 554
Figure 12.26 Deferred shading with and without normal maps . . . 556
Figure 12.27 Bumpy surface occluding points 559
Figure 12.28 Selection of random vector in an oriented

hemisphere . 561
Figure 12.29 Effect of increasing direction count on ambient

occlusion . 562
Figure 12.30 Effect of introducing noise in ambient occlusion . . . 562
Figure 12.31 Ambient occlusion applied to a rendered scene 563
Figure 12.32 A few frames from the Julia set animation 568
Figure 12.33 Simplified 2D illustration of ray tracing 570
Figure 12.34 Our first ray-traced sphere 573
Figure 12.35 Our first lit ray-traced sphere 574

Figures xix

Figure 12.36 Implementing a stack using framebuffer objects 575
Figure 12.37 Ray-traced spheres with increasing ray bounces 576
Figure 12.38 Adding a ray-traced plane 578
Figure 12.39 Ray-traced spheres in a box 579

Figure 13.1 GPUView in action . 591
Figure 13.2 VSync seen in GPUView 592
Figure 13.3 A packet dialog in GPUVIew 593
Figure 13.4 GPU PerfStudio 2 running the displacement mapping

example . 594
Figure 13.5 GPU PerfStudio 2 frame debugger 595
Figure 13.6 GPU PerfStudio 2 HUD control window 596
Figure 13.7 GPU PerfStudio 2 overlaying information 596
Figure 13.8 GPU PerfStudio 2 showing AMD performance

counters . 597
Figure 13.9 GPUView showing the effect of glReadPixels() into

system memory . 599
Figure 13.10 GPUView showing the effect of glReadPixels() into

a buffer . 600

Figure 14.1 Realtech VR’s OpenGL Extensions Viewer 619
Figure 14.2 AMD and NVIDIA OpenGL drivers 625
Figure 14.3 The OpenGL Extensions Viewer is free on the Mac

App Store . 650
Figure 14.4 The initial CocoaGL project 651
Figure 14.5 Interface Builder is ready to build your OpenGL app . 651
Figure 14.6 The OpenGL window ready to go. . . or is it? 652
Figure 14.7 Creating the basic NSView view class 653
Figure 14.8 Turn off the One Shot memory attribute 659
Figure 14.9 This chapter’s demo rendering in a Cocoa view 664
Figure 14.10 The Cocoa sample with the supporting files 670
Figure 14.11 Tearing caused by an unsynced buffer swap 678
Figure 14.12 Here’s looking at you! 703
Figure 14.13 OpenGL ES rendering on a cell phone 714
Figure 14.14 A typical embedded system diagram 719
Figure 14.15 StonehengeES rendered on an Android phone 731
Figure 14.16 The Xcode welcome screen 735
Figure 14.17 Selecting an OpenGL-ES-based game (application)

template . 735
Figure 14.18 The starter OpenGL ES application 736
Figure 14.19 The “dancing cubes” default OpenGL ES code 736

xx Figures

Figure 14.20 The Xcode project with the Stonehenge model code
added . 739

Figure 14.21 The completed Stonehenge model on an iOS device 743

Figure B.1 Dump of example SBM file 757

Figures xxi

This page intentionally left blank

Tables

Table 1.1 OpenGL Versions and Publication Dates 7

Table 4.1 Common Coordinate Spaces Used in 3D Graphics . . . 64

Table 5.1 Buffer Object Usage Models 93
Table 5.2 Basic OpenGL Type Tokens and Their Corresponding

C Types . 96
Table 5.3 Uniform Parameter Queries via

glGetActiveUniformsiv() 114
Table 5.4 Atomic Operations on Shader Storage Blocks 130
Table 5.5 Texture Targets and Description 139
Table 5.6 Basic Texture Targets and Sampler Types 142
Table 5.7 Texture Filters, Including Mipmapped Filters 156
Table 5.8 Image Types . 166
Table 5.9 Image Data Format Classes 168
Table 5.10 Image Data Format Classes 169
Table 5.11 Atomic Operations on Images 172
Table 5.12 Native OpenGL Texture Compression Formats 178
Table 5.13 Texture View Target Compatibility 183
Table 5.14 Texture View Format Compatibility 184

Table 6.1 Scalar Types in GLSL . 188
Table 6.2 Vector and Matrix Types in GLSL 190

xxiii

Table 7.1 Vertex Attribute Types 226
Table 7.2 Draw Type Matrix . 232
Table 7.3 Values for primitiveMode 265

Table 8.1 Allowed Draw Modes for Geometry Shader Input
Modes . 313

Table 8.2 Sizes of Input Arrays to Geometry Shaders 315

Table 9.1 Stencil Functions . 349
Table 9.2 Stencil Operations . 350
Table 9.3 Depth Comparison Functions 353
Table 9.4 Blend Functions . 359
Table 9.5 Blend Equations . 362
Table 9.6 Logic Operations . 363
Table 9.7 Framebuffer Completeness Return Values 378
Table 9.8 Floating-Point Texture Formats 402

Table 11.1 Possible Return Values for glClientWaitSync() 496

Table 13.1 Map Buffer Access Types 601

Table 14.1 Pixel Format Attributes 636
Table 14.2 Buffer Swap Values for WGL_SWAP_METHOD_ARB 637
Table 14.3 OpenGL Technologies in OS X 648
Table 14.4 Cocoa Pixel Format Attributes 655
Table 14.5 Read-Only Properties of the GLKTextureInfo Class . . . 663
Table 14.6 GLX Config Attribute List 690
Table 14.7 Base OpenGL Versions for OpenGL ES 708
Table 14.8 EGL Config Attribute List 721
Table 14.9 EGL Config Attribute List 723
Table 14.10 Configuration Members and Flags for GLKView 738

xxiv Tables

Listings

Listing 2.1 Our first OpenGL application 14
Listing 2.2 Animating color over time 16
Listing 2.3 Our first vertex shader 18
Listing 2.4 Our first fragment shader 18
Listing 2.5 Compiling a simple shader 18
Listing 2.6 Creating the program member variable 21
Listing 2.7 Rendering a single point 22
Listing 2.8 Producing multiple vertices in a vertex shader 24
Listing 2.9 Rendering a single triangle 25

Listing 3.1 Declaration of a vertex attribute 28
Listing 3.2 Updating a vertex attribute 29
Listing 3.3 Vertex shader with an output 30
Listing 3.4 Fragment shader with an input 31
Listing 3.5 Vertex shader with an output interface block 31
Listing 3.6 Fragment shader with an input interface block 32
Listing 3.7 Our first tessellation control shader 34
Listing 3.8 Our first tessellation evaluation shader 35
Listing 3.9 Our first geometry shader 37
Listing 3.10 Deriving a fragment’s color from its position 43
Listing 3.11 Vertex shader with an output 44
Listing 3.12 Deriving a fragment’s color from its position 44
Listing 3.13 Simple do-nothing compute shader 47

xxv

Listing 5.1 Generating, binding, and initializing a buffer 94
Listing 5.2 Updating the content of a buffer with

glBufferSubData() . 94
Listing 5.3 Mapping a buffer’s data store with glMapBuffer() . . 95
Listing 5.4 Setting up a vertex attribute 99
Listing 5.5 Using an attribute in a vertex shader 99
Listing 5.6 Declaring two inputs to a vertex shader 100
Listing 5.7 Multiple separate vertex attributes 101
Listing 5.8 Multiple interleaved vertex attributes 102
Listing 5.9 Example uniform block declaration 109
Listing 5.10 Declaring a uniform block with the std140 layout . . 110
Listing 5.11 Example of a uniform block with offsets 111
Listing 5.12 Retrieving the indices of uniform block members . . 112
Listing 5.13 Retrieving the information about uniform block

members . 113
Listing 5.14 Setting a single float in a uniform block 114
Listing 5.15 Retrieving the indices of uniform block members . . 115
Listing 5.16 Specifying the data for an array in a uniform block 115
Listing 5.17 Setting up a matrix in a uniform block 116
Listing 5.18 Specifying bindings for uniform blocks 119
Listing 5.19 Uniform blocks binding layout qualifiers 119
Listing 5.20 Setting up cube geometry 121
Listing 5.21 Building the model-view matrix for a spinning cube 122
Listing 5.22 Updating the projection matrix for the spinning

cube . 123
Listing 5.23 Rendering loop for the spinning cube 123
Listing 5.24 Spinning cube vertex shader 123
Listing 5.25 Spinning cube fragment shader 124
Listing 5.26 Rendering loop for the spinning cube 125
Listing 5.27 Example shader storage block declaration 126
Listing 5.28 Using a shader storage block in place of vertex

attributes . 127
Listing 5.29 Setting up an atomic counter buffer 134
Listing 5.30 Setting up an atomic counter buffer 134
Listing 5.31 Counting area using an atomic counter 135
Listing 5.32 Using the result of an atomic counter in a uniform

block . 136
Listing 5.33 Generating, binding, and initializing a texture 138
Listing 5.34 Updating texture data with glTexSubImage2D() 138
Listing 5.35 Reading from a texture in GLSL 141
Listing 5.36 The header of a .KTX file 144
Listing 5.37 Loading a .KTX file . 145

xxvi Listings

Listing 5.38 Vertex shader with single texture coordinate 147
Listing 5.39 Fragment shader with single texture coordinate . . . 147
Listing 5.40 Initializing an array texture 161
Listing 5.41 Vertex shader for the alien rain sample 162
Listing 5.42 Fragment shader for the alien rain sample 163
Listing 5.43 Rendering loop for the alien rain sample 164
Listing 5.44 Fragment shader performing image loads and

stores . 171
Listing 5.45 Filling a linked list in a fragment shader 174
Listing 5.46 Traversing a linked list in a fragment shader 175

Listing 6.1 Retrieving the compiler log from a shader 202
Listing 6.2 Fragment shader with external function

declaration . 206
Listing 6.3 Configuring a separable program pipeline 208
Listing 6.4 Printing interface information 212
Listing 6.5 Example subroutine uniform declaration 213
Listing 6.6 Setting values of subroutine uniforms 216
Listing 6.7 Retrieving a program binary 217

Listing 7.1 Declaration of a Multiple Vertex Attributes 225
Listing 7.2 Setting up indexed cube geometry 233
Listing 7.3 Drawing indexed cube geometry 234
Listing 7.4 Drawing the same geometry many times 238
Listing 7.5 Pseudo-code for glDrawArraysInstanced() 240
Listing 7.6 Pseudo-code for glDrawElementsInstanced() 240
Listing 7.7 Simple vertex shader with per-vertex color 246
Listing 7.8 Simple instanced vertex shader 247
Listing 7.9 Getting ready for instanced rendering 248
Listing 7.10 Example use of an indirect draw command 253
Listing 7.11 Setting up the indirect draw buffer for asteroids . . . 254
Listing 7.12 Vertex shader inputs for asteroids 255
Listing 7.13 Per-indirect draw attribute setup 255
Listing 7.14 Asteroid field vertex shader 255
Listing 7.15 Drawing asteroids . 257
Listing 7.16 Spring-mass system vertex setup 268
Listing 7.17 Spring-mass system vertex shader 271
Listing 7.18 Spring-mass system iteration loop 274
Listing 7.19 Spring-mass system rendering loop 274
Listing 7.20 Clipping an object against a plane and a sphere . . . 281

Listings xxvii

Listing 8.1 Simple quad tessellation control shader example . . . 287
Listing 8.2 Simple quad tessellation evaluation shader

example . 287
Listing 8.3 Simple triangle tessellation control shader

example . 289
Listing 8.4 Simple triangle tessellation evaluation shader

example . 290
Listing 8.5 Simple isoline tessellation control shader

example . 291
Listing 8.6 Simple isoline tessellation evaluation shader

example . 291
Listing 8.7 Isoline spirals tessellation evaluation shader 292
Listing 8.8 Vertex shader for terrain rendering 301
Listing 8.9 Tessellation control shader for terrain rendering . . . 302
Listing 8.10 Tessellation evaluation shader for terrain

rendering . 303
Listing 8.11 Fragment shader for terrain rendering 304
Listing 8.12 Cubic Bézier patch vertex shader 306
Listing 8.13 Cubic Bézier patch tessellation control shader 307
Listing 8.14 Cubic Bézier patch tessellation evaluation shader . . 307
Listing 8.15 Cubic Bézier patch fragment shader 309
Listing 8.16 Source code for a simple geometry shader 311
Listing 8.17 Geometry shader layout qualifiers 311
Listing 8.18 Iterating over the elements of gl_in[] 312
Listing 8.19 The definition of gl_in[] 314
Listing 8.20 Configuring the custom culling geometry shader . . . 318
Listing 8.21 Finding a face normal in a geometry shader 318
Listing 8.22 Conditionally emitting geometry in a geometry

shader . 319
Listing 8.23 Setting up the “explode” geometry shader 321
Listing 8.24 Pushing a face out along its normal 321
Listing 8.25 Pass-through vertex shader 323
Listing 8.26 Setting up the “tessellator” geometry shader 323
Listing 8.27 Generating new vertices in a geometry shader 323
Listing 8.28 Emitting a single triangle from a geometry shader . . 324
Listing 8.29 Using a function to produce faces in a geometry

shader . 324
Listing 8.30 A pass-through vertex shader that includes

normals . 326
Listing 8.31 Setting up the “normal visualizer” geometry

shader . 326
Listing 8.32 Producing lines from normals in the geometry

shader . 327

xxviii Listings

Listing 8.33 Drawing a face normal in the geometry shader 327
Listing 8.34 Geometry shader for rendering quads 335
Listing 8.35 Fragment shader for rendering quads 336
Listing 8.36 Rendering to multiple viewports in a geometry

shader . 338

Listing 9.1 Setting up scissor rectangle arrays 346
Listing 9.2 Example stencil buffer usage, border decorations . . . 350
Listing 9.3 Rendering with all blending functions 359
Listing 9.4 Setting up a simple framebuffer object 367
Listing 9.5 Rendering to a texture 367
Listing 9.6 Setting up an FBO with multiple attachments 369
Listing 9.7 Declaring multiple outputs in a fragment shader . . . 370
Listing 9.8 Setting up a layered framebuffer 371
Listing 9.9 Layered rendering using a geometry shader 372
Listing 9.10 Displaying an array texture — vertex shader 373
Listing 9.11 Displaying an array texture — fragment shader 373
Listing 9.12 Attaching texture layers to a framebuffer 375
Listing 9.13 Checking completeness of a framebuffer object 378
Listing 9.14 Creating a stereo window 380
Listing 9.15 Drawing into a stereo window 381
Listing 9.16 Rendering to two layers with a geometry shader . . . 382
Listing 9.17 Copying from an array texture to a stereo back

buffer . 383
Listing 9.18 Turning on line smoothing 386
Listing 9.19 Choosing 8-sample antialiasing 388
Listing 9.20 Setting up a multi-sample framebuffer attachment . . 390
Listing 9.21 Simple multi-sample “maximum” resolve 391
Listing 9.22 Fragment shader producing high-frequency

output . 393
Listing 9.23 A 100-megapixel virtual framebuffer 401
Listing 9.24 Applying simple exposure coefficient to an HDR

image . 406
Listing 9.25 Adaptive HDR to LDR conversion fragment

shader . 407
Listing 9.26 Bloom fragment shader; output bright data to a

separate buffer . 410
Listing 9.27 Blur fragment shader 412
Listing 9.28 Adding bloom effect to scene 414
Listing 9.29 Creating integer framebuffer attachments 415
Listing 9.30 Texturing a point sprite in the fragment shader 420
Listing 9.31 Vertex shader for the star field effect 422

Listings xxix

Listing 9.32 Fragment shader for the star field effect 423
Listing 9.33 Fragment shader for generating shaped points 425
Listing 9.34 Naïve rotated point sprite fragment shader 427
Listing 9.35 Rotated point sprite vertex shader 427
Listing 9.36 Rotated point sprite fragment shader 427
Listing 9.37 Taking a screenshot with glReadPixels() 430

Listing 10.1 Creating and compiling a compute shader 438
Listing 10.2 Compute shader image inversion 444
Listing 10.3 Dispatching the image copy compute shader 444
Listing 10.4 Compute shader with race conditions 447
Listing 10.5 Simple prefix sum implementation in C++ 450
Listing 10.6 Prefix sum implementation using a compute shader 453
Listing 10.7 Compute shader to generate a 2D prefix sum 455
Listing 10.8 Depth of field using summed area tables 459
Listing 10.9 Initializing shader storage buffers for flocking 464
Listing 10.10 The rendering loop for the flocking example 465
Listing 10.11 Compute shader for updates in flocking example . . . 466
Listing 10.12 The first rule of flocking 467
Listing 10.13 The second rule of flocking 467
Listing 10.14 Main body of the flocking update compute shader . . 468
Listing 10.15 Inputs to the flock rendering vertex shader 469
Listing 10.16 Flocking vertex shader body 470

Listing 11.1 Getting the result from a query object 478
Listing 11.2 Figuring out if occlusion query results are ready . . . 478
Listing 11.3 Simple, application-side conditional rendering 479
Listing 11.4 Rendering when query results aren’t available 480
Listing 11.5 Basic conditional rendering example 481
Listing 11.6 A more complete conditional rendering example . . . 482
Listing 11.7 Timing operations using timer queries 484
Listing 11.8 Timing operations using glQueryCounter() 485
Listing 11.9 Drawing data written to a transform feedback

buffer . 491
Listing 11.10 Working while waiting for a sync object 495

Listing 12.1 The Gouraud shading vertex shader 507
Listing 12.2 The Gouraud shading fragment shader 508
Listing 12.3 The Phong shading vertex shader 510
Listing 12.4 The Phong shading fragment shader 511

xxx Listings

Listing 12.5 Blinn-Phong fragment shader 514
Listing 12.6 Rim lighting shader function 516
Listing 12.7 Vertex shader for normal mapping 520
Listing 12.8 Fragment shader for normal mapping 521
Listing 12.9 Spherical environment mapping vertex shader 523
Listing 12.10 Spherical environment mapping fragment shader . . 524
Listing 12.11 Equirectangular environment mapping fragment

shader . 526
Listing 12.12 Loading a cube map texture 528
Listing 12.13 Vertex shader for sky box rendering 530
Listing 12.14 Fragment shader for sky box rendering 530
Listing 12.15 Vertex shader for cube map environment

rendering . 531
Listing 12.16 Fragment shader for cube map environment

rendering . 531
Listing 12.17 Fragment shader for per-fragment shininess 534
Listing 12.18 Getting ready for shadow mapping 536
Listing 12.19 Setting up matrices for shadow mapping 536
Listing 12.20 Setting up a shadow matrix 538
Listing 12.21 Simplified vertex shader for shadow mapping 538
Listing 12.22 Simplified fragment shader for shadow mapping . . . 539
Listing 12.23 Displacement map tessellation evaluation shader . . 541
Listing 12.24 Application of fog in a fragment shader 543
Listing 12.25 The toon vertex shader 546
Listing 12.26 The toon fragment shader 546
Listing 12.27 Initializing a G-buffer 550
Listing 12.28 Writing to a G-buffer 551
Listing 12.29 Unpacking data from a G-buffer 552
Listing 12.30 Lighting a fragment using data from a G-buffer 553
Listing 12.31 Deferred shading with normal mapping (fragment

shader) . 555
Listing 12.32 Ambient occlusion fragment shader 564
Listing 12.33 Setting up the Julia set renderer 567
Listing 12.34 Inner loop of the Julia renderer 567
Listing 12.35 Using a gradient texture to color the Julia set 568
Listing 12.36 Ray-sphere intersection test 571
Listing 12.37 Determining closest intersection point 572
Listing 12.38 Ray-plane intersection test 578

Listing 13.1 Creating a debug context with the sb6 framework . . 582
Listing 13.2 Setting the debug callback function 583

Listings xxxi

Listing 14.1 Registering a window class 628
Listing 14.2 Creating a simple window 629
Listing 14.3 Declaration of PIXELFORMATDESCRIPTOR 631
Listing 14.4 Choosing and setting a pixel format 632
Listing 14.5 Windows main message loop 633
Listing 14.6 Finding a pixel format with

wglChoosePixelFormatARB() 639
Listing 14.7 Enumerating pixel formats on Windows 640
Listing 14.8 Creating shared contexts on Windows 643
Listing 14.9 Setting up a full-screen window 645
Listing 14.10 Definition of the Objective-C

GLCoreProfileView class 653
Listing 14.11 Initialization of our core context OpenGL view 654
Listing 14.12 Outputting information about the OpenGL

context . 660
Listing 14.13 Code called whenever the view changes size 660
Listing 14.14 Code called whenever the view changes size 661
Listing 14.15 Controlling movement smoothly with keyboard

bit flags and a timer . 672
Listing 14.16 Creating and initializing the full-screen window . . . 676
Listing 14.17 GLUT main function to set up OpenGL 681
Listing 14.18 Extending GLSurfaceView 732
Listing 14.19 Setting up and rendering 733
Listing 14.20 Construction and initialization of the GLKView 738
Listing 14.21 Redirecting the current folder to point our

resources . 742

xxxii Listings

Foreword

OpenGL® SuperBible has long been an essential reference for 3D graphics
developers, and this new edition is more relevant than ever, particularly
given the increasing importance of multi-platform deployment. In our
line of work, we spend a lot of time at the interface between high-level
rendering algorithms and fast-moving GPU and API targets. Even though,
between us, we have more than thirty-five years of experience with
real-time graphics programming, there is always more to learn. This is
why we are so excited about this new edition of the OpenGL® SuperBible.

Many programmers of our generation used OpenGL back in the nineties
before market forces dictated that we ship Windows games using
Direct3D, which first shipped in 1995. While Direct3D initially followed
in the footsteps of OpenGL, it eventually surpassed OpenGL in its rapid
exposure of advanced GPU functionality, particularly in the transition to
programmable graphics hardware.

During this transition, Microsoft consistently shipped new versions of
Direct3D for a period of eight years, ending in 2002 with DirectX 9. With
DirectX 10, however, Microsoft adopted a release strategy that tied new
versions of DirectX to new versions of Windows, not only in terms of
timing but in terms of legacy support. That is, not only did new versions
of DirectX come out less frequently — only two major versions have come
out in the last 11 years — but they were not supported on certain older
versions of Windows. Naturally, this change in strategy by Microsoft
curtailed the GPU vendors’ ability to expose their innovations on
Windows.

Fortunately, in this same timeframe, the OpenGL Architecture Review
Board accelerated development, putting OpenGL back in a position of

xxxiii

leadership. In fact, there has been so much progress in the past five years
that OpenGL has reached a tipping point and is again viable for game
development, particularly as more and more developers are adopting a
multiplatform strategy that includes OS X and Linux.

OpenGL even has advantages to developers primarily targeting Windows,
allowing them to access the very latest GPU features on all Windows
versions, not just recent ones that have support for DirectX 10 or DirectX
11. In the growing Asian market, for example, Steam customers have the
same caliber of PC hardware as their Western counterparts, but far more of
them are running Windows XP, where DirectX 10 and DirectX 11 are not
available. An application written using OpenGL, rather than Direct3D,
can use the advanced features of customers’ hardware and not have to
maintain a reduced-quality rendering codepath for customers using
Windows XP.

This edition of OpenGL® SuperBible is an outstanding resource for a wide
variety of software developers, from students who may have some of the
math and programming fundamentals but need a nudge in the right
direction, to seasoned professional developers who need to quickly find
out the nitty-gritty details of a particular API feature. In fact, we suspect
that many professionals may be coming back to OpenGL after a number
of years away, and this book is an excellent resource for doing just that.

Specifically, this edition of OpenGL® SuperBible introduces many of the
new features of OpenGL 4.3, such as compute shaders, texture views,
indirect multi-draw, enhanced API debugging, and more. As readers of
previous editions have come to expect, the SuperBible continues to go well
beyond the information provided in the API documentation and into the
fundamentals of popular application techniques. Just having all of the
essential platform-specific API initialization material for Linux, OS X, and
Windows in one place is worth the price of admission, not to mention the
detailed discussions of modern debugging techniques, shadow mapping,
non-photo-realistic rendering, deferred rendering, and more.

We believe that, for newcomers, OpenGL is the right place to start writing
3D graphics code that will run on a wide array of platforms in order to
reach the largest possible audience. Likewise, for professionals, there has
never been a better time to come back to OpenGL.

Rich Geldreich and Jason Mitchell
Valve

xxxiv Foreword

Preface

About This Book

This book is designed both for people who are learning computer graphics
through OpenGL and for people who may already know about graphics
but want to learn about OpenGL. The intended audience is students of
computer science, computer graphics, or game design; professional
software engineers; or simply just hobbyists and people who are interested
in learning something new. We begin by assuming that the reader knows
nothing about either computer graphics or OpenGL. The reader should be
familiar with computer programming in C++, however.

One of our goals with this book is to ensure that there are as few forward
references as possible and to require little or no assumed knowledge. The
book should be accessible and readable, and if you start from the
beginning and read all the way through, you should come away with a
good comprehension of how OpenGL works and how to use it effectively
in your applications. After reading and understanding the content of this
book, you will be well placed to read and learn from more advanced
computer graphics research articles and be confident that you could take
the principles that they cover and implement them in OpenGL.

It is not a goal of this book to cover every last feature of OpenGL, or to
mention every function in the specification or every value that can be
passed to a command. Rather, the goal is to provide a solid understanding
of OpenGL, introduce its fundamentals, and explore some of its more
advanced features. After reading this book, readers should be comfortable
looking up finer details in the OpenGL specification, experimenting with

xxxv

OpenGL on their own machines and using extensions (bonus features that
add capabilities to OpenGL not required by the main specification).

The Architecture of the Book

This book breaks down roughly into three major parts. In the first part, we
explain what OpenGL is, how it connects to the graphics pipeline, and
give minimal working examples that are sufficient to demonstrate each
section of it without requiring much, if any, knowledge of any other part
of the whole system. We lay a foundation in the math behind 3D
computer graphics, and describe how OpenGL manages the large amounts
of data that are required to provide a compelling experience to the users of
your applications. We also describe the programming model for shaders,
which will form a core part of any OpenGL application.

In the second part of the book, we begin to introduce features of OpenGL
that require some knowledge of multiple parts of the graphics pipeline
and may refer to concepts already introduced. This allows us to introduce
more complex topics without glossing over details or telling you to skip
forward in the book to find out how something really works. By taking a
second pass over the OpenGL system, we are able to delve into where data
goes as it leaves each part of OpenGL, as you’ll already have at least been
briefly introduced to its destination.

In the final part of the book, we dive deeper into the graphics pipeline,
cover some more advanced topics, and give a number of examples that use
multiple features of OpenGL. We provide a number of worked examples
that implement various rendering techniques, give a series of suggestions
and advice on OpenGL best practices and performance considerations,
and end up with a practical overview of OpenGL on several popular
platforms, including mobile devices.

In Part I, we start gently and then blast through OpenGL to give you a
taste of what’s to come. Then, we lay the groundwork of knowledge that
will be essential to you as you progress through the rest of the book. In
this part, you will find

• Chapter 1, “Introduction,” which provides a brief introduction to
OpenGL, its origins, history, and current state.

• Chapter 2, “Our First OpenGL Program,” which jumps right into
OpenGL and shows you how to create a simple OpenGL application
using the source code provided with this book.

xxxvi Preface

• Chapter 3, “Following the Pipeline,” takes a more careful look at
OpenGL and its various components, introducing each in a little
more detail and adding to the simple example presented in the
previous chapter.

• Chapter 4, “Math for 3D Graphics,” introduces the foundations of
math that will be essential for effective use of OpenGL and the
creation of interesting 3D graphics applications.

• Chapter 5, “Data,” provides you with the tools necessary to manage
data that will be consumed and produced by OpenGL.

• Chapter 6, “Shaders and Programs,” takes a deeper look at shaders,
which are fundamental to the operation of modern graphics
applications.

In Part II, we take a more detailed look at several of the topics introduced
in the first chapters. We dig deeper into each of the major parts of
OpenGL, and our example applications will start to become a little more
complex and interesting. In this part, you will find

• Chapter 7, “Vertex Processing and Drawing Commands,” which
covers the inputs to OpenGL and the mechanisms by which
semantics are applied to the raw data you provide.

• Chapter 8, “Primitive Processing,” covers some higher level concepts
in OpenGL, including connectivity information, higher-order
surfaces, and tessellation.

• Chapter 9, “Fragment Processing and the Framebuffer,” looks at how
high-level 3D graphics information is transformed by OpenGL into
2D images, and how your applications can determine the appearance
of objects on the screen.

• Chapter 10, “Compute Shaders,” illustrates how your applications can
harness OpenGL for more than just graphics, and make use of the
incredible computing power locked up in a modern graphics card.

• Chapter 11, “Controlling and Monitoring the Pipeline,” shows you
how you can get a glimpse of how OpenGL executes the commands
you give it — how long they take to execute, and the amount of data
that they produce.

In Part III, we build on the knowledge that you will have gained in reading
the first two-thirds of the book and use it to construct example

Preface xxxvii

applications that touch on multiple aspects of OpenGL. We also get into
the practicalities of building larger OpenGL applications and deploying
them across multiple platforms. In this part, you will find

• Chapter 12, “Rendering Techniques,” covers several applications of
OpenGL for graphics rendering, from simulation of light to artistic
methods and even some non-traditional techniques.

• Chapter 13, “Debugging and Performance Optimization,” provides
advice and tips on how to get your applications running without
errors, and how to get them going fast.

• Chapter 14, “Platform Specifics,” covers issues that may be particular
to certain platforms, including Windows, Mac, Linux, and mobile
devices.

Finally, several appendices are provided that describe the tools and file
formats used in this book, and give pointers to more useful OpenGL
resources.

What’s New in This Edition

This edition of the book differs somewhat from previous editions. This is
the sixth edition of the book. The first edition of the book was published
in 1996, more than fifteen years ago. Over time, OpenGL has evolved and
so has the book’s audience. Even since the fifth edition, which was
published in 2010, a lot has changed. In some ways, OpenGL has become
more complex, with more bells and whistles, more features, and more that
you have to do to make something — really anything — show up on the
screen. This has raised the barrier to entry for students, and in the fifth
edition, we tried to lower that barrier again by glossing over a lot of details
or hiding them in utility classes, functions, wrappers, and libraries.

In this edition, we do not hide anything from the reader. What this means
is that it might take a while to draw something really impressive, but the
extra effort will give you a deeper understanding of what OpenGL is and
how it interacts with the underlying graphics hardware. Only the most
basic of application frameworks are provided, and our first few programs
will be thoroughly underwhelming. However, we’re working on the
assumption that you’ll read the whole book and that by the end of it,
you’ll have something to show your friends, colleagues, or potential
employers that you can be proud of.

xxxviii Preface

In this edition, the printed copy of the OpenGL reference pages, or “man”
pages, is gone. The reference pages are available online at
http://www.opengl.org/sdk/docs/man4/ and as a live document are kept
up to date. A printed copy of those pages is somewhat redundant and
leads to errors — several were found in the reference pages after the fifth
edition went to print with no reasonable means of distributing an errata.
Further, the reference pages consumed hundreds of printed pages of the
book, adding to its cost and size. We’d rather fill a bunch of those pages
with more content and save a few trees with the rest.

We’ve also changed the structure of the book somewhat and make several
passes over OpenGL. Rather than having a whole chapter dedicated to a
single topic, for example, we introduce as much as possible as early as
possible using worked, minimal examples, and then bring in features that
touch multiple aspects of OpenGL. This should greatly reduce the number
of forward or circular references, and reduce the number of times we need
to tell you don’t worry about this, we’ll explain it later.

We hope you enjoy it.

How to Build the Samples

Retrieve the sample code from the book’s Web site,
http://www.openglsuperbible.com, unpack the archive to a directory on
your computer, and follow the instructions in the included
HOWTOBUILD.TXT file for your platform of choice. The book’s source code
has been built and tested on Microsoft Windows (Windows XP or later is
required), Linux (several major distributions), and Mac OS X. It is
recommended that you install any available operating system updates and
obtain the most recent graphics drivers from your graphics card
manufacturer.

You may notice some minor discrepancies between the source code
printed in this book and that in the source files. There are a number of
reasons for this:

• This book is about OpenGL 4.3 — the most recent version at time of
writing. The samples printed in the book are written assuming that
OpenGL 4.3 is available on the target platform. However, we
understand that in practice, operating systems, graphics drivers, and
platforms may not have the latest and greatest available, and so,

Preface xxxix

http://www.opengl.org/sdk/docs/man4/
http://www.openglsuperbible.com

where possible, we’ve made minor modifications to the sample
applications to allow them to run on earlier versions of OpenGL.

• There were several months between when this book’s text was
finalized for printing and when the sample applications
were packaged and posted to the Web. In that time, we discovered
opportunities for improvement, whether that was uncovering
new bugs, platform dependencies, or optimizations. The latest
version of the source code on the Web has those fixes and tweaks
applied and therefore deviates from the necessarily static copy
printed in the book.

• There is not necessarily a one-to-one mapping of listings in the
book’s text and sample applications in the Web package. Some
sample applications demonstrate more than one concept, some
aren’t mentioned in the book at all, and some listings in the book
don’t have an equivalent sample application.

Errata

We made a bunch of mistakes — we’re certain of it. It’s incredibly
frustrating as an author to spot an error that you made and know that it
has been printed, in books that your readers paid for, thousands and
thousands of times. We have to accept that this will happen, though, and
do our best to correct issues as we are able. If you think you see something
that doesn’t quite gel, check the book’s Web site for errata.

http://www.openglsuperbible.com

xl Preface

http://www.openglsuperbible.com

Acknowledgments

First and foremost, I would like to thank my wife, Chris, and my two
wonderful kids, Jeremy and Emily. For the never-ending evenings,
weekends, and holidays that I spent holed up in my office or curled up
with a laptop instead of hanging out with you guys.... I appreciate your
patience. I’d like to extend a huge thank you to our tech reviewers, Piers
Daniell, Daniel Koch, and Daniel Rákos. You guys did a fantastic job,
finding my mistakes and helping to make this book as good as it could be.
Your feedback was particularly thorough, and the book grew by at least
one hundred pages after I received your reviews. Thanks also to my
co-authors Nick Haemel and Richard Wright, Jr. In particular to Richard,
thanks for trusting me with taking the lead on this edition. I can only
hope that this one turned out as well as the five that preceded it. Thanks
to Laura Lewin, Olivia Basegio, Sheri Cain, and the rest of the staff at
Addison-Wesley for putting up with me delivering whatever I felt,
whenever I felt, and pretty much ignoring schedules and processes.
Finally, thanks to you, our readers. Without you, there’d be no book.

Graham Sellers

Thanks to Nick and Graham, my very qualified co-authors. Especially
thanks to Graham for taking over the role of lead author for the sixth
edition of this book. I fear this revision simply would not have happened
without him taking over both the management and the majority of the
rewrite for this edition. Two editions ago, Addison-Wesley added this book
to its “OpenGL Library” lineup, and I continue to be grateful for that

xli

move years later. For more than fifteen years, countless editors, reviewers,
and publishers have made me look good and smarter than I am. There are
too many to name, but I have to single out Debra Williams-Cauley for
braving more than half this book’s lifetime, and, yes, thank you Laura
Lewin for taking over for Debra.... You are a brave soul!

Thanks to Full Sail University for letting me teach OpenGL for more than
ten years now, while still continuing my “day job.” Especially Rob Catto
for looking the other way more than once, and running interference when
things get in my way on a regular basis. My very good friends and
associates in the graphics department there, particularly my department
chair, Johnathan Burnside, who simply tolerates my schedule. To Wendy
“Kitty” Jones, thanks for all the Thai food! Very special thanks also to my
muse, Callisto, for your continuing inspiration and support, not to
mention listening to me complain all the time. Special thanks to Software
Bisque (Steve, Tom, Daniel, and Matt) for giving me something “real” to
do with OpenGL every day, and providing me with possibly the coolest
day (and night) job anybody could ever ask for. I also have to thank my
family, LeeAnne, Sara, Stephen, and Alex. You’ve all put up with a lot of
mood swings, rapidly changing priorities, and an unpredictable work
schedule, and you’ve provided a good measure of motivation when I really
needed it over the years.

Richard S. Wright, Jr.

Thanks to Richard and Graham for collaborating on one more project
supporting OpenGL through creating great instructional content. Without
your dedication and commitment, computer graphics students would not
have the necessary tools to learn 3D graphics. It has been a pleasure
working with you over the years to help support 3D graphics and OpenGL
specifically. Thanks to Addison-Wesley and Laura Lewin for supporting
our project.

I’d also like to thank NVIDIA for the great experiences that have expanded
my 3D horizons. It has been great having opportunities to break new
ground squeezing OpenGL into incredibly small products. I can’t wait to
ship all of the exciting things we have been working on! Thanks to
Barthold Lichtenbelt for pulling me back into graphics and giving me an
opportunity to work on some of the most exciting technology I’ve seen to
date. Thanks to Piers Daniell for your vigilance and help in keeping us all

xlii Acknowledgments

on track and making sure we get all the details right. Special thanks to Xi
Chen at NVIDIA for all your help on Android sample code.

And of course, I couldn’t have completed yet another project without the
support of my family and friends. To my wife, Anna: You have put up
with all of my techno mumbo jumbo all these years while at the same
time saving lives and making a significant difference in medicine in your
own right. Thanks for your patience and support — I could never be
successful without you.

Nicholas Haemel

Acknowledgments xliii

This page intentionally left blank

About the Authors

Graham Sellers is a classic geek. His family got their first computer (a
BBC Model B) right before his sixth birthday. After his mum and dad
stayed up all night programming it to play “Happy Birthday,” he was
hooked and determined to figure out how it worked. Next came basic
programming and then assembly language. His first real exposure to
graphics was via “demos” in the early nineties, and then through Glide,
and finally OpenGL in the late nineties. He holds a master’s degree in
engineering from the University of Southampton, England.

Currently, Graham is a senior manager and software architect on the
OpenGL driver team at AMD. He represents AMD at the ARB and has
contributed to many extensions and to the core OpenGL Specification.
Prior to that, he was a team lead at Epson, implementing OpenGL ES and
OpenVG drivers for embedded products. Graham holds several patents in
the fields of computer graphics and image processing. When he’s not
working on OpenGL, he likes to disassemble and reverse engineer old
video game consoles (just to see how they work and what he can make
them do). Originally from England, Graham now lives in Orlando,
Florida, with his wife and two children.

Richard S. Wright, Jr., has been using OpenGL for more than eighteen
years, since version 1.1, and has taught OpenGL programming in the
game design degree program at Full Sail University near Orlando, Florida,
for more than a decade. Currently, Richard is a senior engineer at Software
Bisque, where he is the technical lead and product manager for a 3D solar

xlv

system simulator and their full-dome theater planetarium products, and
works on their mobile products and scientific imaging applications.

Previously with Real 3D/Lockheed Martin, Richard was a regular OpenGL
ARB attendee and contributed to the OpenGL 1.2 specification and
conformance tests back when mammoths still walked the earth. Since
then, Richard has worked in multi-dimensional database visualization,
game development, medical diagnostic visualization, and astronomical
space simulation on Windows, Linux, Mac OS X, and various handheld
platforms.

Richard first learned to program in the eighth grade in 1978 on a paper
terminal. At age 16, his parents let him buy a computer instead of a car
with his grass-cutting money, and he sold his first computer program less
than a year later (and it was a graphics program!). When he graduated
from high school, his first job was teaching programming and computer
literacy for a local consumer education company. He studied electrical
engineering and computer science at the University of Louisville’s Speed
Scientific School and made it halfway through his senior year before his
career got the best of him and took him to Florida. A native of Louisville,
Kentucky, he now lives in Lake Mary, Florida. When not programming or
dodging hurricanes, Richard is an avid amateur astronomer and
photography buff. Richard is also, proudly, a Mac.

Nicholas Haemel has been involved with OpenGL for more than fifteen
years, since soon after its wide acceptance. He graduated from the
Milwaukee School of Engineering with a degree in computer engineering
and a love for embedded systems, computer hardware, and making things
work. Soon after graduation he put these skills to work for the 3D drivers
group at ATI, developing graphics drivers and working on new GPUs.

Nick is now a senior manager of Tegra OpenGL Driver Development at
NVIDIA. He leads a team of software developers working on NVIDIA
mobile graphics drivers, represents NVIDIA at the Khronos Standards
Body, has authored many OpenGL extensions, and contributed to
all OpenGL specifications since version 3.0 and to the OpenGL ES 3.0
specification.

Nick’s graphics career began at age nine when he first learned to program
2D graphics using Logo Writer. After convincing his parents to purchase a
state-of-the-art 286 IBM-compatible PC, it immediately became the central

xlvi About the Authors

control unit for robotic arms and other remotely programmable devices.
Fast-forward twenty-five years and the devices being controlled are GPUs
and SoCs smaller than the size of a fingernail but with more than eight
billion transistors. Nick’s interests also extend to business leadership
and management, bolstered by an MBA from the University of
Wisconsin–Madison. Nick currently resides in the Bay Area in California.
When not working on accelerating the future of graphics, Nick enjoys the
outdoors as a competitive sailor, mountaineer, ex-downhill ski racer, road
biker, and photographer.

About the Authors xlvii

This page intentionally left blank

Chapter 8

Primitive Processing

WHAT YOU’LL LEARN IN THIS CHAPTER

• How to use tessellation to add geometric detail to your scenes

• How to use geometry shaders to process whole primitives and create
geometry on the fly

In the previous chapters, you’ve read about the OpenGL pipeline and have
been at least briefly introduced to the functions of each of its stages. We’ve
covered the vertex shader stage in some detail, including how its inputs
are formed and where its outputs go. A vertex shader runs once on each of
the vertices you send OpenGL and produces one set of outputs for each.
The next few stages of the pipeline seem similar to vertex shaders at first,
but can actually be considered primitive processing stages. First, the two
tessellation shader stages and the fixed-function tessellator that they flank
together process patches. Next, the geometry shader processes entire
primitives (points, lines, and triangles) and runs once for each. In this
chapter, we’ll cover both tessellation and geometry shading, and
investigate some of the OpenGL features that they unlock.

283

Tessellation

As introduced in the section “Tessellation” in Chapter 3, tessellation is the
process of breaking a large primitive referred to as a patch into many
smaller primitives before rendering them. There are many uses for
tessellation, but the most common application is to add geometric detail
to otherwise lower fidelity meshes. In OpenGL, tessellation is produced
using three distinct stages of the pipeline — the tessellation control shader
(TCS), the fixed-function tessellation engine, and the tessellation
evaluation shader (TES). Logically, these three stages fit between the vertex
shader and the geometry shader stage. When tessellation is active,
incoming vertex data is first processed as normal by the vertex shader and
then passed, in groups, to the tessellation control shader.

The tessellation control shader operates on groups of up to 32 vertices1 at
a time, collectively known as a patch. In the context of tessellation, the
input vertices are often referred to as control points. The tessellation control
shader is responsible for generating three things:

• The per-patch inner and outer tessellation factors

• The position and other attributes for each output control point

• Per-patch user-defined varyings

The tessellation factors are sent on to the fixed-function tessellation
engine, which uses them to determine the way that it will break up the
patch into smaller primitives. Besides the tessellation factors, the output
of a tessellation control shader is a new patch (i.e., a new collection of
vertices) that is passed to the tessellation evaluation shader after the patch
has been tessellated by the tessellation engine. If some of the data is
common to all output vertices (such as the color of the patch), then that
data may be marked as per patch. When the fixed-function tessellator runs,
it generates a new set of vertices spaced across the patch as determined by
the tessellation factors and the tessellation mode, which is determined
using a layout declaration in the tessellation evaluation shader. The only
input to the tessellation evaluation shader generated by OpenGL is a set of
coordinates indicating where in the patch the vertex lies. When the
tessellator is generating triangles, those coordinates are barycentric

1. The minimum number of vertices per patch required to be supported by the OpenGL spec-
ification is 32. However, the upper limit is not fixed and may be determined by retrieving the
value of GL_MAX_PATCH_VERTICES.

284 Chapter 8: Primitive Processing

coordinates. When the tessellation engine is generating lines or triangles,
those coordinates are simply a pair of normalized values indicating the
relative position of the vertex. This is stored in the gl_TessCoord input
variable. This setup is shown in the schematic of Figure 8.1.

TESSELLATION
ENGINE

TESSELLATION
CONTROL
SHADER

TESSELLATION
EVALUATION

SHADER

g
l_

T
e
ss

Le
v
e
lO

u
te

r[
]

g
l_

T
e
ss

Le
v
e
lIn

n
e
r[

] g
l_T

e
ssC

o
o
rd

patch PARAMETERS

FROM
VERTEX
SHADER

PER-CONTROL
POINT VARIABLES

TO
PRIMITIVE
ASSEMBLY

Figure 8.1: Schematic of OpenGL tessellation

Tessellation Primitive Modes

The tessellation mode is used to determine how OpenGL breaks up
patches into primitives before passing them on to rasterization. This mode
is set using an input layout qualifier in the tessellation evaluation shader
and may be one of quads, triangles, or isolines. This primitive mode
not only controls the form of the primitives produced by the tessellator,
but also the interpretation of the gl_TessCoord input variable in the
tessellation evaluation shader.

Tessellation Using Quads

When the chosen tessellation mode is set to quads, the tessellation engine
will generate a quadrilateral (or quad) and break it up into a set of
triangles. The two elements of the gl_TessLevelInner[] array should be
written by the tessellation control shader and control the level of
tessellation applied to the innermost region within the quad. The first
element sets the tessellation in the horizontal (u) direction, and the
second element sets the tessellation level applied in the vertical (v)
direction. Also, all four elements of the gl_TessLevelOuter[] array
should be written by the tessellation control shader and are used to
determine the level of tessellation applied to the outer edges of the quad.
This is shown in Figure 8.2.

Tessellation 285

gl_TessLevelOuter[1]

gl_TessLevelOuter[3]

gl_TessLevelInner[0]

gl_TessLevelInner[0]

g
l_

T
e
ss

Le
v
e
lIn

n
e
r[

1
] g

l_T
e
ssLe

v
e
lIn

n
e
r[1

]g
l_

T
e
ss

Le
v
e
lO

u
te

r[
0
]

(0,0)

(0,1)

g
l_T

e
ssLe

v
e
lO

u
te

r[2
]

(1,1)

(1,0)

Figure 8.2: Tessellation factors for quad tessellation

When the quad is tessellated, the tessellation engine generates vertices
across a two-dimensional domain normalized within the quad. The value
stored in the gl_TessCoord input variable sent to the tessellation
evaluation shader is then a two-dimensional vector (that is, only the x and
y components of gl_TessCoord are valid) containing the normalized
coordinate of the vertex within the quad. The tessellation evaluation
shader can use these coordinates to generate its outputs from the inputs
passed by the tessellation control shader. An example of quad tessellation
produced by the tessmodes sample application is shown in Figure 8.3.

Figure 8.3: Quad tessellation example

286 Chapter 8: Primitive Processing

In Figure 8.3, the inner tessellation factors in the u and v directions were
set to 9.0 and 7.0, respectively. The outer tessellation factors were set to
3.0 and 5.0 in the u and v directions. This was accomplished using the
very simple tessellation control shader shown in Listing 8.1.

#version 430 core

layout (vertices = 4) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 9.0;
gl_TessLevelInner[1] = 7.0;
gl_TessLevelOuter[0] = 3.0;
gl_TessLevelOuter[1] = 5.0;
gl_TessLevelOuter[2] = 3.0;
gl_TessLevelOuter[3] = 5.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.1: Simple quad tessellation control shader example

The result of setting the tessellation factors in this way is visible in
Figure 8.3. If you look closely, you will see that along the horizontal outer
edges there are five divisions and along the vertical ones there are three
divisions. On the interior, you can see that there are 9 divisions along the
horizontal axis and 7 along the vertical.

The tessellation evaluation shader that generated Figure 8.3 is shown in
Listing 8.2. Notice that the tessellation mode is set using the quads input
layout qualifier near the front of the tessellation evaluation shader. The
shader then uses the x and y components of gl_TessCoordinate to
perform its own interpolation of the vertex position. In this case, the
gl_in[] array is four elements long (as specified in the control shader
shown in Listing 8.1).

#version 430 core

layout (quads) in;

void main(void)
{

// Interpolate along bottom edge using x component of the
// tessellation coordinate
vec4 p1 = mix(gl_in[0].gl_Position,

gl_in[1].gl_Position,
gl_TessCoord.x);

// Interpolate along top edge using x component of the
// tessellation coordinate
vec4 p2 = mix(gl_in[2].gl_Position,

Tessellation 287

gl_in[3].gl_Position,
gl_TessCoord.x);

// Now interpolate those two results using the y component
// of tessellation coordinate
gl_Position = mix(p1, p2, gl_TessCoord.y);

}

Listing 8.2: Simple quad tessellation evaluation shader example

Tessellation Using Triangles

When the tessellation mode is set to triangles (again, using an input layout
qualifier in the tessellation control shader), the tessellation engine produces
a triangle that is then broken into many smaller triangles. Only the first
element of the gl_TessLevelInner[] array is used, and this level is applied
to the entirety of the inner area of the tessellated triangle. The first three
elements of the gl_TessLevelOuter[] array are used to set the tessellation
factors for the three edges of the triangle. This is shown in Figure 8.4.

(0,0,1)

(1,0,0)

(0,1,0)

gl_TessLevelInner[0]

gl_T
es

sL
ev

elO
ute

r[0
]

gl_TessLevelOuter[1]

g
l_

Te
ss

Le
ve

lO
u
te

r[
2
]

Figure 8.4: Tessellation factors for triangle tessellation

As the tessellation engine generates the vertices corresponding to the
tessellated triangles, each vertex is assigned a three-dimensional
coordinate called a barycentric coordinate. The three components of a
barycentric coordinate can be used to form a weighted sum of three inputs
representing the corners of a triangle and arrive at a value that is linearly
interpolated across that triangle. An example of triangle tessellation is
shown in Figure 8.5.

The tessellation control shader used to generate Figure 8.5 is shown in
Listing 8.3. Notice how similar it is to Listing 8.1 in that all it does is write

288 Chapter 8: Primitive Processing

Figure 8.5: Triangle tessellation example

constants into the inner and outer tessellation levels and pass through the
control point positions unmodified.

#version 430 core

layout (vertices = 3) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 5.0;
gl_TessLevelOuter[0] = 8.0;
gl_TessLevelOuter[1] = 8.0;
gl_TessLevelOuter[2] = 8.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.3: Simple triangle tessellation control shader example

Listing 8.3 sets the inner tessellation level to 5.0 and all three outer
tessellation levels to 8.0. Again, looking closely at Figure 8.5, you can see
that each of the outer edges of the tessellated triangle has 8 divisions and
the inner edges have 5 divisions. The tessellation evaluation shader that
produced Figure 8.5 is shown in Listing 8.4.

Tessellation 289

#version 430 core

layout (triangles) in;

void main(void)
{

gl_Position = (gl_TessCoord.x * gl_in[0].gl_Position) +
(gl_TessCoord.y * gl_in[1].gl_Position) +
(gl_TessCoord.z * gl_in[2].gl_Position);

}

Listing 8.4: Simple triangle tessellation evaluation shader example

Again, to produce a position for each vertex generated by the tessellation
engine, we simply calculate a weighted sum of the input vertices. This
time, all three components of gl_TessCoord are used and represent the
relative weights of the three vertices making up the outermost tessellated
triangle. Of course, we’re free to do anything we wish with the barycentric
coordinates, the inputs from the tessellation control shader, and any other
data we have access to in the evaluation shader.

Tessellation Using Isolines

Isoline tessellation is a mode of the tessellation engine where, rather than
producing triangles, it produces real line primitives running along lines of
equal v coordinate in the tessellation domain. Each line is broken up into
segments along the u direction. The two outer tessellation factors stored in
the first two components of gl_TessLevelOuter[] are used to specify the
number of lines and the number of segments per line, respectively, and
the inner tessellation factors (gl_TessLevelInner[]) are not used at all.
This is shown in Figure 8.6.

(1,0)

(1,1)

(0,0)

(0,1)

g
l_

T
e
ss

Le
v
e
lO

u
te

r[
0
]

gl_TessLevelOuter[1]

Figure 8.6: Tessellation factors for isoline tessellation

290 Chapter 8: Primitive Processing

The tessellation control shader shown in Listing 8.5 simply set both the
outer tessellation levels to 5.0 and doesn’t write to the inner tessellation
levels. The corresponding tessellation evaluation shader is shown in
Listing 8.6.

#version 430 core

layout (vertices = 4) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelOuter[0] = 5.0;
gl_TessLevelOuter[1] = 5.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.5: Simple isoline tessellation control shader example

Notice that Listing 8.6 is virtually identical to Listing 8.2 except that the
input primitive mode is set to isolines.

#version 430 core

layout (isolines) in;

void main(void)
{

// Interpolate along bottom edge using x component of the
// tessellation coordinate
vec4 p1 = mix(gl_in[0].gl_Position,

gl_in[1].gl_Position,
gl_TessCoord.x);

// Interpolate along top edge using x component of the
// tessellation coordinate
vec4 p2 = mix(gl_in[2].gl_Position,

gl_in[3].gl_Position,
gl_TessCoord.x);

// Now interpolate those two results using the y component
// of tessellation coordinate
gl_Position = mix(p1, p2, gl_TessCoord.y);

}

Listing 8.6: Simple isoline tessellation evaluation shader example

The result of our extremely simple isoline tessellation example is shown in
Figure 8.7.

Figure 8.7 doesn’t really seem all that interesting. It’s also difficult to see
that each of the horizontal lines is actually made up of several segments.

Tessellation 291

Figure 8.7: Isoline tessellation example

If, however, we change the tessellation evaluation shader to that shown in
Listing 8.7, we can generate the image shown in Figure 8.8.

#version 430 core

layout (isolines) in;

void main(void)
{

float r = (gl_TessCoord.y + gl_TessCoord.x / gl_TessLevelOuter[0]);
float t = gl_TessCoord.x * 2.0 * 3.14159;
gl_Position = vec4(sin(t) * r, cos(t) * r, 0.5, 1.0);

}

Listing 8.7: Isoline spirals tessellation evaluation shader

The shader in Listing 8.7 converts the incoming tessellation coordinates
into polar form, with the radius r calculated as smoothly extending from
zero to one, and with the angle t as a scaled version of the x component
of the tessellation coordinate to produce a single revolution on each
isoline. This produces the spiral pattern shown in Figure 8.8, where the
segments of the lines are clearly visible.

Tessellation Point Mode

In addition to being able to render tessellated patches using triangles or
lines, it’s also possible to render the generated vertices as individual

292 Chapter 8: Primitive Processing

Figure 8.8: Tessellated isoline spirals example

points. This is known as point mode and is enabled using the point_mode
input layout qualifier in the tessellation evaluation shader just like any
other tessellation mode. When you specify that point mode should be
used, the resulting primitives are points. However, this is somewhat
orthogonal to the use of the quads, triangles, or isolines layout
qualifiers. That is, you should specify point_mode in addition to one of the
other layout qualifiers. The quads, triangles, and isolines still control
the generation of gl_TessCoord and the interpretation of the inner and
outer tessellation levels. For example, if the tessellation mode is quads,
then gl_TessCoord is a two-dimensional vector, whereas if the tessellation
mode is triangles, then it is a three-dimensional barycentric coordinate.
Likewise, if the tessellation mode is isolines, only the outer tessellation
levels are used, whereas if it is triangles or quads, the inner tessellation
levels are used as well.

Figure 8.9 shows a version of Figure 8.5 rendered using point mode next to
the original image. To produce the figure on the right, we simply change
the input layout qualifier of Listing 8.4 to read:

layout (triangles, point_mode) in;

As you can see, the layout of the vertices is identical in both sides of
Figure 8.9, but on the right, each vertex has been rendered as a single
point.

Tessellation 293

Figure 8.9: Triangle tessellated using point mode

Tessellation Subdivision Modes

The tessellation engine works by generating a triangle or quad primitive
and then subdividing its edges into a number of segments determined by
the inner and outer tessellation factors produced by the tessellation
control shader. It then groups the generated vertices into points, lines, or
triangles and sends them on for further processing. In addition to the type
of primitives generated by the tessellation engine, you have quite a bit of
control about how it subdivides the edges of the generated primitives.

By default, the tessellation engine will subdivide each edge into a number
of equal-sized parts where the number of parts is set by the corresponding
tessellation factor. This is known as equal_spacing mode, and although it
is the default, it can be made explicit by including the following layout
qualifier in your tessellation evaluation shader:

layout (equal_spacing) in;

Equal spacing mode is perhaps the easiest mode to comprehend — simply
set the tessellation factor to the number segments you wish to subdivide
your patch primitive into along each edge, and the tessellation engine
takes care of the rest. Although simple, the equal_spacing mode comes
with a significant disadvantage — as you alter the tessellation factor, it is
always rounded up to the next nearest integer and will produce a visible
jump from one level to the next as the tessellation factor changes. The
two other modes alleviate this problem by allowing the segments to be
non-equal in length. These modes are fractional_even_spacing and
fractional_odd_spacing, and again, you can set these modes by using
input layout qualifiers as follows:

layout (fractional_even_spacing) in;
// or
layout (fractional_odd_spacing) in;

294 Chapter 8: Primitive Processing

With fractional even spacing, the tessellation factor is rounded to the next
lower even integer and the edge subdivided as if that were the tessellation
factor. With fractional odd spacing, the tessellation factor is rounded
down to the next lower odd number and the edge subdivided as if that
were the tessellation factor. Of course, with either scheme, there is a small
remaining segment that doesn’t have the same length as the other
segments. That last segment is then cut in half, each half having the same
length as the other and is therefore a fractional segment.

Figure 8.10 shows the same triangle tessellated with equal_spacing mode
on the left, fractional_even_spacing mode in the center, and
fractional_odd_spacing mode on the right.

Figure 8.10: Tessellation using different subdivision modes

In all three images shown in Figure 8.10, the inner and outer tessellation
factors have been set to 5.3. In the leftmost image showing equal_spacing
mode, you should be able to see that the number of segments along each
of the outer edges of the triangle is 6 — the next integer after 5.3. In the
center image, which shows fractional_even_spacing spacing, there are 4
equal-sized segments (as 4 is the next lower even integer to 5.3) and then
two additional smaller segments. Finally, in the rightmost image, which
demonstrates fractional_odd_spacing, you can see that there are 5
equal-sized segments (5 being the next lower odd integer to 5.3) and there
are two very skinny segments that make up the rest.

If the tessellation level is animated, either by being explicitly turned up
and down using a uniform, or calculated in the tessellation control shader,
the length of the equal-sized segments and the two filler segments will
change smoothly and dynamically. Whether you choose
fractional_even_spacing or fractional_odd_spacing really depends on
which looks better in your application — there is generally no real
advantage to either. However, unless you need a guarantee that tessellated
edges have equal-sized segments and you can live with popping if the
tessellation level changes, fractional_even_spacing or
fractional_odd_spacing will generally look better in any dynamic
application than equal_spacing.

Tessellation 295

Controlling the Winding Order

In Chapter 3, “Following the Pipeline,” we introduced culling and
explained how the winding order of a primitive affects how OpenGL
decides whether to render it. Normally, the winding order of a primitive is
determined by the order in which your application presents vertices to
OpenGL. However, when tessellation is active, OpenGL generates all the
vertices and connectivity information for you. In order to allow you to
control the winding order of the resulting primitives, you can specify
whether you want the vertices to be generated in clockwise or
counterclockwise order. Again, this is specified using an input layout
qualifier in the tessellation evaluation shader. To indicate that you want
clockwise winding order, use the following layout qualifier:

layout (cw) in;

To specify that the winding order of the primitives generated by the
tessellation engine be counterclockwise, include

layout (ccw) in;

The cw and ccw layout qualifiers can be combined with the other input
layout qualifiers specified in the tessellation control shader. By default, the
winding order is counterclockwise, and so you can omit this layout
qualifier if that is what you need. Also, it should be self-evident that
winding order only applies to triangles, and so if your application
generates isolines or points, then the winding order is ignored — your
shader can still include the winding order layout qualifier, but it won’t be
used.

Passing Data between Tessellation Shaders

In this section, we have looked at how to set the inner and outer
tessellation levels for the quad, triangle, and point primitive modes.
However, the resulting images in Figures 8.3 through 8.8 aren’t
particularly exciting, in part because we haven’t done anything but
compute the positions of the resulting vertices and then just shaded the
resulting primitives solid white. In fact, we have rendered all of these
images using lines by setting the polygon mode to GL_LINE with the
glPolygonMode() function. To produce something a little more interesting,
we’re going to need to pass more data along the pipeline.

Before a tessellation control shader is run, each vertex represents a control
point, and the vertex shader runs once for each input control point and
produces its output as normal. The vertices (or control points) are then
grouped together and passed together to the tessellation control shader.

296 Chapter 8: Primitive Processing

The tessellation control shader processes this group of control points and
produces a new group of control points that may or may not have the
same number of elements in it as the original group. The tessellation
control shader actually runs once for each control point in the output
group, but each invocation of the tessellation control shader has access to
all of the input control points. For this reason, both the inputs to and
outputs from a tessellation control shader are represented as arrays. The
input arrays are sized by the number of control points in each patch,
which is set by calling

glPatchParameteri(GL_PATCH_VERTICES, n);

Here, n is the number of vertices per patch. By default, the number of
vertices per patch is 3. The size of the input arrays in the tessellation
control shader is set by this parameter, and their contents come from the
vertex shader. The built-in variable gl_in[] is always available and is
declared as an array of the gl_PerVertex structure. This structure is where
the built-in outputs go after you write to them in your vertex shader. All
other outputs from the vertex shader become arrays in the tessellation
control shader as well. In particular, if you use an output block in your
vertex shader, the instance of that block becomes an array of instances in
the tessellation control shader. So, for example

out VS_OUT
{

vec4 foo;
vec3 bar;
int baz

} vs_out;

becomes

in VS_OUT
{

vec4 foo;
vec3 bar;
int baz;

} tcs_in[];

in the tessellation evaluation shader.

The output of the tessellation control shader is also an array, but its size is
set by the vertices output layout qualifier at the front of the shader. It
is quite common to set the input and output vertex count to the same
value (as was the case in the samples earlier in this section) and then pass
the input directly to the output from the tessellation control shader.
However, there’s no requirement for this, and the size of the output arrays
in the tessellation control shader is limited by the value of the
GL_MAX_PATCH_VERTICES constant.

Tessellation 297

As the outputs of the tessellation control shader are arrays, so the inputs to
the tessellation evaluation shader are also similarly sized arrays. The
tessellation evaluation shader runs once per generated vertex and, like the
tessellation control shader, has access to all of the data for all of the
vertices in the patch.

In addition to the per-vertex data passed from tessellation control shader
to the tessellation evaluation shader in arrays, it’s also possible to pass data
directly between the stages that is constant across an entire patch. To do
this, simply declare the output variable in the tessellation control shader
and the corresponding input in the tessellation evaluation shader using
the patch keyword. In this case the variable does not have to be declared
as an array (although you are welcome to use arrays as patch qualified
variables) as there is only one instance per patch.

Rendering without a Tessellation Control Shader

The purpose of the tessellation control shader is to perform tasks such as
computing the value of per-patch inputs to the tessellation evaluation
shader and to calculate the values of the inner and outer tessellation levels
that will be used by the fixed-function tessellator. However, in some
simple applications, there are no per-patch inputs to the tessellation
evaluation shader, and the tessellation control shader only writes
constants to the tessellation levels. In this case, it’s actually possible to set
up a program with a tessellation evaluation shader, but without a
tessellation control shader.

When no tessellation control shader is present, the default values of all
inner and outer tessellation levels is 1.0. You can change this by calling
glPatchParameterfv(), whose prototype is

void glPatchParameterfv(GLenum pname,
const GLfloat * values);

If pname is GL_PATCH_DEFAULT_INNER_LEVEL, then values should point to
an array of two floating-point values that will be used as the new default
inner tessellation levels in the absence of a tessellation control shader.
Likewise, if pname is GL_PATCH_DEFAULT_OUTER_LEVEL, then values should
point to an array of four floating-point values that will be used as the new
default outer tessellation levels.

If no tessellation control shader is part of the current pipeline, then the
number of control points that is presented to the tessellation evaluation
shader is the same as the number of control points per patch set by
the glPatchParameteri() when the pname parameter is set to

298 Chapter 8: Primitive Processing

GL_PATCH_VERTICES. In this case, the input to the tessellation evaluation
shader comes directly from the vertex shader. That is, the input to the
tessellation evaluation shader is an array formed from the outputs of the
vertex shader invocations that generated the patch.

Communication between Shader Invocations

Although the purpose of output variables in tessellation control shaders is
primarily to pass data to the tessellation evaluation shader, they also have
a secondary purpose. That is, to communicate data between control
shader invocations. As you have read, the tessellation control shader runs
a single invocation for each output control point in a patch. Each output
variable in the tessellation control shader is therefore an array, the length
of which is the number of control points in the output patch. Normally,
each tessellation control shader invocation will take responsibility for
writing to one element of this array.

What might not be obvious is that tessellation control shaders can
actually read from their output variables — including those that might be
written by other invocations! Now, the tessellation control shader is
designed in such a way that the invocations can run in parallel. However,
there is no ordering guarantee over how those shaders actually execute
your code. That means that you have no idea if, when you read from
another invocation’s output variable, that that invocation has actually
written data there.

To deal with this, GLSL includes the barrier() function. This is known as
a flow-control barrier, as it enforces relative order to the execution of
multiple shader invocations. The barrier() function really shines when
used in compute shaders — we’ll get to that later. However, it’s available in
a limited form in tessellation control shaders, too, with a number of
restrictions. In particular, in a tessellation control shader, barrier() may
only be called directly from within your main() function, and can’t be
inside any control flow structures (such as if, else, while, or switch).

When you call barrier(), the tessellation control shader invocation will
stop and wait for all the other invocations in the same patch to catch up.
It won’t continue execution until all the other invocations have reached
the same point. This means that if you write to an output variable in a
tessellation control shader and then call barrier(), you can be sure that
all the other invocations have done the same thing by the time barrier()
returns, and therefore it’s safe to go ahead and read from the other
invocations’ output variables.

Tessellation 299

Tessellation Example — Terrain Rendering

To demonstrate a potential use for tessellation, we will cover a simple
terrain rendering system based on quadrilateral patches and displacement
mapping. The code for this example is part of the dispmap sample.
A displacement map is a texture that contains the displacement from a
surface at each location. Each patch represents a small region of a
landscape that is tessellated depending on its likely screen-space area.
Each tessellated vertex is moved along the tangent to the surface by the
value stored in the displacement map. This adds geometric detail to the
surface without needing to explicitly store the positions of each tessellated
vertex. Rather, only the displacements from an otherwise flat landscape
are stored in the displacement map and are applied at runtime in the
tessellation evaluation shader. The displacement map (which is also
known as a height map) used in the example is shown in Figure 8.11.

Figure 8.11: Displacement map used in terrain sample

Our first step is to set up a simple vertex shader. As each patch is
effectively a simple quad, we can use constants in the shader to represent
the four vertices rather than setting up vertex arrays for it. The complete

300 Chapter 8: Primitive Processing

shader is shown in Listing 8.8. The shader uses the instance number
(stored in gl_InstanceID) to calculate an offset for the patch, which is a
one-unit square in the xz plane, centered on the origin. In this
application, we will render a grid of 64 × 64 patches, and so the x and y
offsets for the patch are calculated by taking gl_InstanceID modulo 64
and gl_InstanceID divided by 64. The vertex shader also calculates the
texture coordinates for the patch, which are passed to the tessellation
control shader in vs_out.tc.

#version 430 core

out VS_OUT
{

vec2 tc;
} vs_out;

void main(void)
{

const vec4 vertices[] = vec4[](vec4(-0.5, 0.0, -0.5, 1.0),
vec4(0.5, 0.0, -0.5, 1.0),
vec4(-0.5, 0.0, 0.5, 1.0),
vec4(0.5, 0.0, 0.5, 1.0));

int x = gl_InstanceID & 63;
int y = gl_InstanceID >> 6;
vec2 offs = vec2(x, y);

vs_out.tc = (vertices[gl_VertexID].xz + offs + vec2(0.5)) / 64.0;
gl_Position = vertices[gl_VertexID] + vec4(float(x - 32), 0.0,

float(y - 32), 0.0);
}

Listing 8.8: Vertex shader for terrain rendering

Next, we come to the tessellation control shader. Again, the complete
shader is shown in Listing 8.9. In this example, the bulk of the rendering
algorithm is implemented in the tessellation control shader, and the
majority of the code is only executed by the first invocation. Once we
have determined that we are the first invocation by checking that
gl_InvocationID is zero, we calculate the tessellation levels for the whole
patch. First, we project the corners of the patch into normalized device
coordinates by multiplying the incoming coordinates by the
model-view-projection matrix and then dividing each of the four points
by their own homogeneous .w component.

Next, we calculate the length of each of the four edges of the patch in
normalized device space after projecting them onto the xy plane by
ignoring their z components. Then, the shader calculates the tessellation
levels of each edge of the patch as a function of its length using a simple
scale and bias. Finally, the inner tessellation factors are simply set to the

Tessellation 301

minimum of the outer tessellation factors calculated from the edge lengths
in the horizontal or vertical directions.

You may also have noticed a piece of code in Listing 8.9 that checks
whether all of the z coordinates of the projected control points are less
than zero and then sets the outer tessellation levels to zero if this happens.
This is an optimization that culls entire patches that are behind2 the
viewer.

#version 430 core

layout (vertices = 4) out;

in VS_OUT
{

vec2 tc;
} tcs_in[];

out TCS_OUT
{

vec2 tc;
} tcs_out[];

uniform mat4 mvp;

void main(void)
{

if (gl_InvocationID == 0)
{

vec4 p0 = mvp * gl_in[0].gl_Position;
vec4 p1 = mvp * gl_in[1].gl_Position;
vec4 p2 = mvp * gl_in[2].gl_Position;
vec4 p3 = mvp * gl_in[3].gl_Position;
p0 /= p0.w;
p1 /= p1.w;
p2 /= p2.w;
p3 /= p3.w;
if (p0.z <= 0.0 ||

p1.z <= 0.0 ||
p2.z <= 0.0 ||
p3.z <= 0.0)

{
gl_TessLevelOuter[0] = 0.0;
gl_TessLevelOuter[1] = 0.0;
gl_TessLevelOuter[2] = 0.0;
gl_TessLevelOuter[3] = 0.0;

}
else
{

float l0 = length(p2.xy - p0.xy) * 16.0 + 1.0;
float l1 = length(p3.xy - p2.xy) * 16.0 + 1.0;
float l2 = length(p3.xy - p1.xy) * 16.0 + 1.0;
float l3 = length(p1.xy - p0.xy) * 16.0 + 1.0;
gl_TessLevelOuter[0] = l0;

2. This optimization is actually not foolproof. If the viewer were at the bottom of a very steep
cliff and looking directly upwards, all four corners of the base patch may be behind the viewer,
whereas the cliff cutting through the patch will extend into the viewer’s field of view.

302 Chapter 8: Primitive Processing

gl_TessLevelOuter[1] = l1;
gl_TessLevelOuter[2] = l2;
gl_TessLevelOuter[3] = l3;
gl_TessLevelInner[0] = min(l1, l3);
gl_TessLevelInner[1] = min(l0, l2);

}
}

gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
tcs_out[gl_InvocationID].tc = tcs_in[gl_InvocationID].tc;

}

Listing 8.9: Tessellation control shader for terrain rendering

Once the tessellation control shader has calculated the tessellation levels
for the patch, it simply copies its input to its output. It does this per
instance and passes the resulting data to the tessellation evaluation shader,
which is shown in Listing 8.10.

#version 430 core

layout (quads, fractional_odd_spacing) in;

uniform sampler2D tex_displacement;

uniform mat4 mvp;
uniform float dmap_depth;

in TCS_OUT
{

vec2 tc;
} tes_in[];

out TES_OUT
{

vec2 tc;
} tes_out;

void main(void)
{

vec2 tc1 = mix(tes_in[0].tc, tes_in[1].tc, gl_TessCoord.x);
vec2 tc2 = mix(tes_in[2].tc, tes_in[3].tc, gl_TessCoord.x);
vec2 tc = mix(tc2, tc1, gl_TessCoord.y);

vec4 p1 = mix(gl_in[0].gl_Position,
gl_in[1].gl_Position,
gl_TessCoord.x);

vec4 p2 = mix(gl_in[2].gl_Position,
gl_in[3].gl_Position,
gl_TessCoord.x);

vec4 p = mix(p2, p1, gl_TessCoord.y);

p.y += texture(tex_displacement, tc).r * dmap_depth;

gl_Position = mvp * p;
tes_out.tc = tc;

}

Listing 8.10: Tessellation evaluation shader for terrain rendering

Tessellation 303

The tessellation evaluation shader shown in Listing 8.10 first calculates the
texture coordinate of the generated vertex by linearly interpolating the
texture coordinates passed from the tessellation control shader of
Listing 8.9 (which were in turn generated by the vertex shader of
Listing 8.8). It then applies a similar interpolation to the incoming control
point positions to produce the position of the outgoing vertex. However,
once it’s done that, it uses the texture coordinate that it calculated to
offset the vertex in the y direction before multiplying that result by the
model-view-projection matrix (the same one that was used in the
tessellation control shader). It also passes the computed texture coordinate
on to the fragment shader in tes_out.tc. That fragment shader is shown
in Listing 8.11.

#version 430 core

out vec4 color;

layout (binding = 1) uniform sampler2D tex_color;

in TES_OUT
{

vec2 tc;
} fs_in;

void main(void)
{

color = texture(tex_color, fs_in.tc);
}

Listing 8.11: Fragment shader for terrain rendering

The fragment shader shown in Listing 8.11 is really pretty simple. All it
does is use the texture coordinate that the tessellation evaluation shader
gave it to look up a color for the fragment. The result of rendering with
this set of shaders is shown in Figure 8.12.

Of course, if we’ve done our job correctly, you shouldn’t be able to tell
that the underlying geometry is tessellated. However, if you look at the
wireframe version of the image shown in Figure 8.13, you can clearly see
the underlying triangular mesh of the landscape. The goals of the program
are that all of the triangles rendered on the screen have roughly similar
screen-space area and that sharp transitions in the level of tessellation are
not visible in the rendered image.

Tessellation Example — Cubic Bézier Patches

In the displacement mapping example, all we did was use a (very large)
texture to drive displacement from a flat surface and then use tessellation

304 Chapter 8: Primitive Processing

Figure 8.12: Terrain rendered using tessellation

Figure 8.13: Tessellated terrain in wireframe

to increase the number of polygons in the scene. This is a type of brute
force, data driven approach to geometric complexity. In the cubicbezier
example described here, we will use math to drive geometry — we’re going

Tessellation 305

to render a cubic Bézier patch. If you look back to Chapter 4, you’ll see that
we’ve covered all the number crunching we’ll need here.

A cubic Bézier patch is a type of higher order surface and is defined by a
number of control points3 that provide input to a number of interpolation
functions that define the surface’s shape. A Bézier patch has 16 control
points, laid out in a 4 × 4 grid. Very often (including in this example),
they are equally spaced in two dimensions varying only in distance from a
shared plane. However, they don’t have to be. Free-form Bézier patches are
extremely powerful modeling tools, being used natively by many pieces of
modeling and design software. With OpenGL tessellation, it’s possible to
render them directly.

The simplest method of rendering a Bézier patch is to treat the four
control points in each row of the patch as the control points for a single
cubic Bézier curve, just as was described in Chapter 4. Given our 4 × 4 grid
of control points, we have 4 curves, and if we interpolate along each of
them using the same value of t, we will end up with 4 new points. We use
these 4 points as the control points for a second cubic Bézier curve.
Interpolating along this second curve using a new value for t gives us a
second point that lies on the patch. The two values of t (let’s call them t0
and t1) are the domain of the patch and are what is handed to us in the
tessellation evaluation shader in gl_TessCoord.xy.

In this example, we’ll perform tessellation in view space. That means that
in our vertex shader, we’ll transform our patch’s control points into view
space by multiplying their coordinates by the model-view matrix — that is
all. This simple vertex shader is shown in Listing 8.12.

#version 430 core

in vec4 position;

uniform mat4 mv_matrix;

void main(void)
{

gl_Position = mv_matrix * position;
}

Listing 8.12: Cubic Bézier patch vertex shader

3. It should now be evident why the tessellation control shader is so named.

306 Chapter 8: Primitive Processing

Once our control points are in view space, they are passed to our
tessellation control shader. In a more advanced4 algorithm, we could
project the control points into screen space, determine the length of the
curve, and set the tessellation factors appropriately. However, in this
example, we’ll settle with a simple fixed tessellation factor. As in previous
examples, we set the tessellation factors only when gl_InvocationID is
zero, but pass all of the other data through once per invocation. The
tessellation control shader is shown in Listing 8.13.

#version 430 core

layout (vertices = 16) out;

void main(void)
{

if (gl_InvocationID == 0)
{

gl_TessLevelInner[0] = 16.0;
gl_TessLevelInner[1] = 16.0;
gl_TessLevelOuter[0] = 16.0;
gl_TessLevelOuter[1] = 16.0;
gl_TessLevelOuter[2] = 16.0;
gl_TessLevelOuter[3] = 16.0;

}

gl_out[gl_InvocationID].gl_Position =
gl_in[gl_InvocationID].gl_Position;

}

Listing 8.13: Cubic Bézier patch tessellation control shader

Next, we come to the tessellation evaluation shader. This is where the
meat of the algorithm lies. The shader in its entirety is shown in
Listing 8.14. You should recognize the cubic_bezier and
quadratic_bezier functions from Chapter 4. The evaluate_patch
function is responsible for evaluating5 the vertex’s coordinate given the
input patch coordinates and the vertex’s position within the patch.

#version 430 core

layout (quads, equal_spacing, cw) in;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;

4. To do this right, we’d need to evaluate the length of the Bézier curve, which involves cal-
culating an integral over a non-closed form... which is hard.

5. You should also now see why the tessellation evaluation shader is so named.

Tessellation 307

out TES_OUT
{

vec3 N;
} tes_out;

vec4 quadratic_bezier(vec4 A, vec4 B, vec4 C, float t)
{

vec4 D = mix(A, B, t);
vec4 E = mix(B, C, t);

return mix(D, E, t);
}

vec4 cubic_bezier(vec4 A, vec4 B, vec4 C, vec4 D, float t)
{

vec4 E = mix(A, B, t);
vec4 F = mix(B, C, t);
vec4 G = mix(C, D, t);

return quadratic_bezier(E, F, G, t);
}

vec4 evaluate_patch(vec2 at)
{

vec4 P[4];
int i;

for (i = 0; i < 4; i++)
{

P[i] = cubic_bezier(gl_in[i + 0].gl_Position,
gl_in[i + 4].gl_Position,
gl_in[i + 8].gl_Position,
gl_in[i + 12].gl_Position,
at.y);

}

return cubic_bezier(P[0], P[1], P[2], P[3], at.x);
}

const float epsilon = 0.001;

void main(void)
{

vec4 p1 = evaluate_patch(gl_TessCoord.xy);
vec4 p2 = evaluate_patch(gl_TessCoord.xy + vec2(0.0, epsilon));
vec4 p3 = evaluate_patch(gl_TessCoord.xy + vec2(epsilon, 0.0));

vec3 v1 = normalize(p2.xyz - p1.xyz);
vec3 v2 = normalize(p3.xyz - p1.xyz);

tes_out.N = cross(v1, v2);

gl_Position = proj_matrix * p1;
}

Listing 8.14: Cubic Bézier patch tessellation evaluation shader

In our tessellation evaluation shader, we calculate the surface normal to
the patch by evaluating the patch position at two points very close to the
point under consideration, using the additional points to calculate two

308 Chapter 8: Primitive Processing

vectors that lie on the patch and then taking their cross product. This is
passed to the fragment shader shown in Listing 8.15.

#version 430 core

out vec4 color;

in TES_OUT
{

vec3 N;
} fs_in;

void main(void)
{

vec3 N = normalize(fs_in.N);

vec4 c = vec4(1.0, -1.0, 0.0, 0.0) * N.z +
vec4(0.0, 0.0, 0.0, 1.0);

color = clamp(c, vec4(0.0), vec4(1.0));
}

Listing 8.15: Cubic Bézier patch fragment shader

This fragment shader performs a very simple lighting calculation using the
z component of the surface normal. The result of rendering with this
shader is shown in Figure 8.14.

Figure 8.14: Final rendering of a cubic Bézier patch

Tessellation 309

Because the rendered patch shown in Figure 8.14 is smooth, it is hard to
see the tessellation that has been applied to the shape. The left of
Figure 8.15 shows a wireframe representation of the tessellated patch, and
the right side of Figure 8.15 shows the patch’s control points and the
control cage, which is formed by creating a grid of lines between the
control points.

Figure 8.15: A Bézier patch and its control cage

Geometry Shaders

The geometry shader is unique in contrast to the other shader types in
that it processes a whole primitive (triangle, line, or point) at once and can
actually change the amount of data in the OpenGL pipeline
programmatically. A vertex shader processes one vertex at a time; it
cannot access any other vertex’s information and is strictly one-in,
one-out. That is, it cannot generate new vertices, and it cannot stop the
vertex from being processed further by OpenGL. The tessellation shaders
operate on patches and can set tessellation factors, but have little further
control over how patches are tessellated, and cannot produce disjoint
primitives. Likewise, the fragment shader processes a single fragment at a
time, cannot access any data owned by another fragment, cannot create
new fragments, and can only destroy fragments by discarding them. On
the other hand, a geometry shader has access to all of the vertices in a
primitive (up to six with the primitive modes GL_TRIANGLES_ADJACENCY
and GL_TRIANGLE_STRIP_ADJACENCY), can change the type of a primitive,
and can even create and destroy primitives.

Geometry shaders are an optional part of the OpenGL pipeline. When no
geometry shader is present, the outputs from the vertex or tessellation
evaluation shader are interpolated across the primitive being rendered and
are fed directly to the fragment shader. When a geometry shader is
present, however, the outputs of the vertex or tessellation evaluation

310 Chapter 8: Primitive Processing

shader become the inputs to the geometry shader, and the outputs of the
geometry shader are what are interpolated and fed to the fragment shader.
The geometry shader can further process the output of the vertex or
tessellation evaluation shader, and if it is generating new primitives (this is
called amplification), it can apply different transformations to each
primitive as it creates them.

The Pass-Through Geometry Shader

As explained back in Chapter 3, “Following the Pipeline,” the simplest
geometry shader that allows you to render anything is the pass-through
shader, which is shown in Listing 8.16.

#version 430 core

layout (triangles) in;
layout (triangle_strip) out;
layout (max_vertices = 3) out;

void main(void)
{

int i;

for (i = 0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}
EndPrimitive();

}

Listing 8.16: Source code for a simple geometry shader

This is a very simple pass-through geometry shader, which sends its input
to its output without modifying it. It looks similar to a vertex shader, but
there are a few extra differences to cover. Going over the shader a few lines
at a time makes everything clear. The first few lines simply set up the
version number (430) of the shader just like in any other shader. The next
couple of lines are the first geometry shader-specific parts. They are shown
again in Listing 8.17.

#version 430 core

layout (triangles) in;
layout (triangle_strip) out;
layout (max_vertices = 3) out;

Listing 8.17: Geometry shader layout qualifiers

These set the input and output primitive modes using a layout qualifier.
In this particular shader we’re using triangles for the input and

Geometry Shaders 311

triangle_strip for the output. Other primitive types, along with the
layout qualifier, are covered later. For the geometry shader’s output, not
only do we specify the primitive type, but the maximum number of
vertices expected to be generated by the shader (through the
max_vertices qualifier). This shader produces individual triangles
(generated as very short triangle strips), so we specified 3 here.

Next is our main() function, which is again similar to what might be seen
in a vertex or fragment shader. The shader contains a loop, and the loop
runs a number of times determined by the length of the built-in array,
gl_in. This is another geometry shader-specific variable. Because the
geometry shader has access to all of the vertices of the input primitive, the
input has to be declared as an array. All of the built-in variables that are
written by the vertex shader (such as gl_Position) are placed into a
structure, and an array of these structures is presented to the geometry
shader in a variable called gl_in.

The length of the gl_in[] array is determined by the input primitive mode,
and because in this particular shader, triangles are the input primitive mode,
the size of gl_in[] is three. The inner loop is given again in Listing 8.18.

for (i = 0; i < gl_in.length(); i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}

Listing 8.18: Iterating over the elements of gl_in[]

Inside our loop, we’re generating vertices by simply copying the elements
of gl_in[] to the geometry shader’s output. A geometry shader’s outputs
are similar to the vertex shader’s outputs. Here, we’re writing to
gl_Position, just as we would in a vertex shader. When we’re done
setting up all of the new vertex’s attributes, we call EmitVertex(). This is a
built-in function, specific to geometry shaders that tells the shader that
we’re done with our work for this vertex and that it should store all that
information away and prepare to start setting up the next vertex.

Finally, after the loop has finished executing, there’s a call to another
special, geometry shader-only function, EndPrimitive(). EndPrimitive()
tells the shader that we’re done producing vertices for the current primitive
and to move on to the next one. We specified triangle_strip as the output
for our shader, and so if we continue to call EmitVertex() more than three
times, OpenGL continues adding triangles to the triangle strip. If we need
our geometry shader to generate separate, individual triangles or multiple,

312 Chapter 8: Primitive Processing

unconnected triangle strips (remember, geometry shaders can create new
or amplify geometry), we could call EndPrimitive() between each one
to mark their boundaries. If you don’t call EndPrimitive() somewhere in
your shader, the primitive is automatically ended when the shader ends.

Using Geometry Shaders in an Application

Geometry shaders, like the other shader types, are created by calling the
glCreateShader() function and using GL_GEOMETRY_SHADER as the shader
type, as follows:

glCreateShader(GL_GEOMETRY_SHADER);

Once the shader has been created, it is used like any other shader object.
You give OpenGL your shader source code by calling glShaderSource(),
compile the shader using the glCompileShader() function, and attach it to
a program object by calling the glAttachShader() function. Then the
program is linked as normal using the glLinkProgram() function. Now
that you have a program object with a geometry shader linked into it,
when you draw geometry using a function like glDrawArrays(), the vertex
shader will run once per vertex, the geometry shader will run once per
primitive (point, line, or triangle), and the fragment will run once per
fragment. The primitives received by a geometry shader must match what
it is expecting based in its own input primitive mode. When tessellation is
not active, the primitive mode you use in your drawing commands must
match the input primitive mode of the geometry shader. For example, if
the geometry shader’s input primitive mode is points, then you may only
use GL_POINTS when you call glDrawArrays(). If the geometry shader’s
input primitive mode is triangles, then you may use GL_TRIANGLES,
GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN in your glDrawArrays() call.
A complete list of the geometry shader input primitive modes and the
allowed geometry types is given in Table 8.1.

Table 8.1: Allowed Draw Modes for Geometry Shader Input Modes

Geometry Shader Input Mode Allowed Draw Modes

points GL_POINTS

lines GL_LINES, GL_LINE_LOOP,
GL_LINE_STRIP

triangles GL_TRIANGLES, GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP

lines_adjacency GL_LINES_ADJACENCY

triangles_adjacency GL_TRIANGLES_ADJACENCY

Geometry Shaders 313

When tessellation is active, the mode you use in your drawing commands
should always be GL_PATCHES, and OpenGL will convert the patches into
points, lines, or triangles during the tessellation process. In this case, the
input primitive mode of the geometry shader should match the
tessellation primitive mode. The input primitive type is specified in the
body of the geometry shader using a layout qualifier. The general form of
the input layout qualifier is

layout (primitive_type) in;

This specifies that primitive_type is the input primitive type that the
geometry shader is expected to handle, and primitive_type must be one
of the supported primitive modes: points, lines, triangles,
lines_adjacency, or triangles_adjacency. The geometry shader runs
once per primitive. This means that it’ll run once per point for GL_POINTS;
once per line for GL_LINES, GL_LINE_STRIP, and GL_LINE_LOOP; and once
per triangle for GL_TRIANGLES, GL_TRIANGLE_STRIP, and GL_TRIANGLE_FAN.
The inputs to the geometry shader are presented in arrays containing all of
the vertices making up the input primitive. The predefined inputs are
stored in a built-in array called gl_in[], which is an array of structures
defined in Listing 8.19.

in gl_PerVertex
{

vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[];

} gl_in[];

Listing 8.19: The definition of gl_in[]

The members of this structure are the built-in variables that are written in
the vertex shader: gl_Position, gl_PointSize, and gl_ClipDistance[].
You should recognize this structure from its declaration as an output block
in the vertex shader described earlier in this chapter. These variables
appear as global variables in the vertex shader because the block doesn’t
have an instance name there, but their values end up in the gl_in[] array
of block instances when they appear in the geometry shader. Other
variables written by the vertex shader also become arrays in the geometry
shader. In the case of individual varyings, outputs in the vertex shader are
declared as normal, and the inputs to the geometry shader have a similar
declaration, except that they are arrays. Consider a vertex shader that
defines outputs as

out vec4 color;
out vec3 normal;

314 Chapter 8: Primitive Processing

The corresponding input to the geometry shader would be

in vec4 color[];
in vec3 normal[];

Notice that both the color and normal varyings have become arrays in the
geometry shader. If you have a large amount of data to pass from the
vertex to the geometry shader, it can be convenient to wrap per-vertex
information passed from the vertex shader to the geometry shader into an
interface block. In this case, your vertex shader will have a definition like
this:

out VertexData
{

vec4 color;
vec3 normal;

} vertex;

And the corresponding input to the geometry shader would look like this:

in VertexData
{

vec4 color;
vec3 normal;
// More per-vertex attributes can be inserted here

} vertex[];

With this declaration, you’ll be able to access the per-vertex data in the
geometry shader using vertex[n].color and so on. The length of the
input arrays in the geometry shader depends on the type of primitives that
it will process. For example, points are formed from a single vertex, and so
the arrays will only contain a single element, whereas triangles are formed
from three vertices, and so the arrays will be three elements long. If you’re
writing a geometry shader that’s designed specifically to process a
particular primitive type, you can explicitly size your input arrays, which
provides a small amount of additional compile-time error checking.
Otherwise, you can let your arrays be automatically sized by the input
primitive type layout qualifier. A complete mapping of the input primitive
modes and the resulting size of the input arrays is shown in Table 8.2.

Table 8.2: Sizes of Input Arrays to Geometry Shaders

Input Primitive Type Size of Input Arrays

points 1
lines 2
triangles 3
lines_adjacency 4
triangles_adjacency 6

Geometry Shaders 315

You also need to specify the primitive type that will be generated by the
geometry shader. Again, this is determined using a layout qualifier, like so:

layout (primitive_type) out;

This is similar to the input primitive type layout qualifier, the only
difference being that you are declaring the output of the shader using the
out keyword. The allowable output primitive types from the geometry
shader are points, line_strip, and triangle_strip. Notice that
geometry shaders only support outputting the strip primitive types (not
counting points—obviously, there is no such thing as a point strip).

There is one final layout qualifier that must be used to configure the
geometry shader. Because a geometry shader is capable of producing a
variable amount of data per vertex, OpenGL must be told how much space
to allocate for all that data by specifying the maximum number of vertices
that the geometry shader is expected to produce. To do this, use the
following layout qualifier:

layout (max_vertices = n) out;

This sets the maximum number of vertices that the geometry shader may
produce to n. Because OpenGL may allocate buffer space to store
intermediate results for each vertex, this should be the smallest number
possible that still allows your application to run correctly. For example, if
you are planning to take points and produce one line at a time, then you
can safely set this to two. This gives the shader hardware the best
opportunity to run fast. If you are going to heavily tessellate the incoming
geometry, you might want to set this to a much higher number, although
this may cost you some performance. The upper limit on the number of
vertices that a geometry shader can produce depends on your OpenGL
implementation. It is guaranteed to be at least 256, but the absolute
maximum can be found by calling glGetIntegerv() with the
GL_MAX_GEOMETRY_OUTPUT_VERTICES parameter.

You can also declare more than one layout qualifier with a single
statement by separating them with a comma, like so:

layout (triangle_strip, max_vertices = n) out;

With these layout qualifiers, a boilerplate #version declaration, and an
empty main() function, you should be able to produce a geometry shader
that compiles and links but does absolutely nothing. In fact, it will discard
any geometry you send it, and nothing will be drawn by your application.
We need to introduce two important functions: EmitVertex() and
EndPrimitive(). If you don’t call these, nothing will be drawn.

316 Chapter 8: Primitive Processing

EmitVertex() tells the geometry shader that you’ve finished filling in all
of the information for this vertex. Setting up the vertex works much like
the vertex shader. You need to write into the built-in variable
gl_Position. This sets the clip-space coordinates of the vertex that is
produced by the geometry shader, just like in a vertex shader. Any other
attributes that you want to pass from the geometry shader to the fragment
shader can be declared in an interface block or as global variables in the
geometry shader. Whenever you call EmitVertex, the geometry shader
stores the values currently in all of its output variables and uses them to
generate a new vertex. You can call EmitVertex() as many times as you
like in a geometry shader, until you reach the limit you specified in your
max_vertices layout qualifier. Each time, you put new values into your
output variables to generate a new vertex.

An important thing to note about EmitVertex() is that it makes the
values of any of your output variables (such as gl_Position) undefined.
So, for example, if you want to emit a triangle with a single color, you
need to write that color with every one of your vertices; otherwise, you
will end up with undefined results.

EmitPrimitive() indicates that you have finished appending vertices to
the end of the primitive. Don’t forget, geometry shaders only support the
strip primitive types (line_strip and triangle_strip). If your output
primitive type is triangle_strip and you call EmitVertex() more than
three times, the geometry shader will produce multiple triangles in a strip.
Likewise, if your output primitive type is line_strip and you call
EmitVertex() more than twice, you’ll get multiple lines. In the geometry
shader, EndPrimitive() refers to the strip. This means that if you want to
draw individual lines or triangles, you have to call EndPrimitive() after
every two or three vertices. You can also draw multiple strips by calling
EmitVertex() many times between multiple calls to EndPrimitive().

One final thing to note about calling EmitVertex() and EndPrimitive()
in the geometry shader is that if you haven’t produced enough vertices to
produce a single primitive (e.g., you’re generating triangle_strip outputs
and you call EndPrimitive() after two vertices), nothing is produced for
that primitive, and the vertices you’ve already produced are simply
thrown away.

Discarding Geometry in the Geometry Shader

The geometry shader in your program runs once per primitive. What you
do with that primitive is entirely up to you. The two functions

Geometry Shaders 317

EmitVertex() and EndPrimitive() allow you to programmatically append
new vertices to your triangle or line strip and to start new strips. You can
call them as many times as you want (until you reach the maximum defined
by your implementation). You’re also allowed to not call them at all. This
allows you to clip geometry away and discard primitives. If your geometry
shader runs and you never call EmitVertex() for that particular primitive,
nothing will be drawn. To illustrate this, we can implement a custom
backface culling routine that culls geometry as if it were viewed from an
arbitrary point in space. This is implemented in the gsculling example.

First, we set up our shader version and declare our geometry shader to
accept triangles and to produce triangle strips. Backface culling doesn’t
really make a lot of sense for lines or points. We also define a uniform that
will hold our custom viewpoint in world space. This is shown in
Listing 8.20.

#version 330

// Input is triangles, output is triangle strip. Because we’re going
// to do a 1 in 1 out shader producing a single triangle output for
// each one input, max_vertices can be 3 here.
layout (triangles) in;
layout (triangle_strip, max_vertices=3) out;

// Uniform variables that will hold our custom viewpoint and
// model-view matrix
uniform vec3 viewpoint;
uniform mav4 mv_matrix;

Listing 8.20: Configuring the custom culling geometry shader

Now inside our main() function, we need to find the face normal for the
triangle. This is simply the cross products of any two vectors in the plane
of the triangle—we can use the triangle edges for this. Listing 8.21 shows
how this is done.

// Calculate two vectors in the plane of the input triangle
vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 normal = normalize(cross(ab, ac));

Listing 8.21: Finding a face normal in a geometry shader

Now that we have the normal, we can determine whether it faces toward
or away from our user-defined viewpoint. To do this, we need to transform
the normal into the same coordinate space as the viewpoint, which is

318 Chapter 8: Primitive Processing

world space. Assuming we have the model-view matrix in a uniform,
simply multiply the normal by this matrix. To be more accurate, we
should multiply the vector by the inverse of the transpose of the
upper-left 3× 3 submatrix of the model-view matrix. This is known as the
normal matrix, and you’re free to implement this and put it in its own
uniform if you like. However, if your model-view matrix only contains
translation, uniform scale (no shear), and rotation, you can use it directly.
Don’t forget, the normal is a three-element vector, and the model-view
matrix is a 4× 4 matrix. We need to extend the normal to a four-element
vector before we can multiply the two. We can then take the dot product
of the resulting vector with the vector from the viewpoint to any point on
the triangle.

If the sign of the dot product is negative, that means that the normal is
facing away from the viewer and the triangle should be culled. If it is
positive, the triangle’s normal is pointing toward the viewer, and we
should pass the triangle on. The code to transform the face normal,
perform the dot product, and test the sign of the result is shown in
Listing 8.22.

// Calculate the transformed face normal and the view direction vector
vec3 transformed_normal = (vec4(normal, 0.0) * mv_matrix).xyz;
vec3 vt = normalize(gl_in[0].gl_Position.xyz - viewpoint);

// Take the dot product of the normal with the view direction
float d = dot(vt, normal);

// Emit a primitive only if the sign of the dot product is positive
if (d > 0.0)
{

for (int i = 0; i < 3; i++)
{

gl_Position = gl_in[i].gl_Position;
EmitVertex();

}
EndPrimitive();

}

Listing 8.22: Conditionally emitting geometry in a geometry shader

In Listing 8.22, if the dot product is positive, we copy the input vertices to
the output of the geometry shader and call EmitVertex() for each one. If
the dot product is negative, we simply don’t do anything at all. This
results in the incoming triangle being discarded altogether and nothing
being drawn.

In this particular example, we are generating at most one triangle output
for each triangle input to the geometry shader. Although the output of the

Geometry Shaders 319

geometry shader is a triangle strip, our strips only contain a single triangle.
Therefore, there doesn’t strictly need to be a call to EndPrimitive(). We
just leave it there for completeness.

Figure 8.16 shows a the result of this shader.

Figure 8.16: Geometry culled from different viewpoints

In Figure 8.16, the virtual viewer has been moved to different positions. As
you can see, different parts of the model have been culled away by the
geometry shader. It’s not expected that this example is particularly useful,
but it does demonstrate the ability for a geometry shader to perform
geometry culling based on application-defined criteria.

Modifying Geometry in the Geometry Shader

The previous example either discarded geometry or passed it through
unmodified. It is also possible to modify vertices as they pass through the
geometry shader to create new, derived shapes. Even though your
geometry shader is passing vertices on one-to-one (i.e., no amplification or
culling is taking place), this still allows you to do things that would
otherwise not be possible with a vertex shader alone. If the input
geometry is in the form of triangle strips or fans, for example, the resulting
geometry will have shared vertices and shared edges. Using the vertex
shader to move shared vertices will move all of the triangles that share
that vertex. It is not possible, then, to separate two triangles that share an
edge in the original geometry using the vertex shader alone. However, this
is trivial using the geometry shader.

Consider a geometry shader that accepts triangles and produces
triangle_strip as output. The input to a geometry shader that accepts
triangles is individual triangles, regardless of whether they originated

320 Chapter 8: Primitive Processing

from a glDrawArrays() or a glDrawElements() function call, or whether
the primitive type was GL_TRIANGLES, GL_TRIANGLE_STRIP, or
GL_TRIANGLE_FAN. Unless the geometry shader outputs more than three
vertices, the result is independent, unconnected triangles.

In this next example, we “explode” a model by pushing all of the triangles
out along their face normals. It doesn’t matter whether the original model
is drawn with individual triangles or with triangle strips or fans. As with
the previous example, the input is triangles, the output is
triangle_strip, and the maximum number of vertices produced by the
geometry shader is three because we’re not amplifying or decimating
geometry. The setup code for this is shown in Listing 8.23.

#version 330

// Input is triangles, output is triangle strip. Because we’re going to do a
// 1 in 1 out shader producing a single triangle output for each one input,
// max_vertices can be 3 here.
layout (triangles) in;
layout (triangle_strip, max_vertices=3) out;

Listing 8.23: Setting up the “explode” geometry shader

To project the triangle outward, we need to calculate the face normal of
each triangle. Again, to do this we can take the cross product of two
vectors in the plane of the triangle—two edges of the triangle. For
this, we can reuse the code from Listing 8.21. Now that we have the
triangle’s face normal, we can project vertices along that normal by an
application-controlled amount. That amount can be stored in a uniform
(we call it explode_factor) and updated by the application. This simple
code is shown in Listing 8.24.

for (int i = 0; i < 3; i++)
{

gl_Position = gl_in[i].gl_Position +
vec4(explode_factor * normal, 0.0);

}

Listing 8.24: Pushing a face out along its normal

The result of running this geometry shader on a model is shown in
Figure 8.17. The model has been deconstructed, and the individual
triangles have become visible.

Geometry Shaders 321

Figure 8.17: Exploding a model using the geometry shader

Generating Geometry in the Geometry Shader

Just as you are not required to call EmitVertex() or EndPrimitive() at all
if you don’t want to produce any output from the geometry shader, it is
also possible to call EmitVertex() and EndPrimitive() as many times as
you need to produce new geometry. That is, until you reach the maximum
number of output vertices that you declared at the start of your geometry
shader. This functionality can be used for things like making multiple
copies of the input or breaking the input into smaller pieces. This is the
subject of the next example, which is the gstessellate sample in the
book’s accompanying source code. The input to our shader is a
tetrahedron centered around the origin. Each face of the tetrahedron is
made from a single triangle. We tessellate incoming triangles by
producing new vertices halfway along each edge and then moving all of
the resulting vertices so that they are variable distances from the origin.
This transforms our tetrahedron into a spiked shape.

Because the geometry shader operates in object space (remember, the
tetrahedron’s vertices are centered around the origin), we need to do no
coordinate transforms in the vertex shader and, instead, do the transforms
in the geometry shader after we’ve generated the new vertices. To do this,
we need a simple, pass-through vertex shader. Listing 8.25 shows a simple
pass-through vertex shader.

322 Chapter 8: Primitive Processing

#version 330

in vec4 position;

void main(void)
{

gl_Position = position;
}

Listing 8.25: Pass-through vertex shader

This shader only passes the vertex position to the geometry shader. If you
have other attributes associated with the vertices such as texture
coordinates or normals, you need to pass them through the vertex shader
to the geometry shader as well.

As in the previous example, we accept triangles as input to the geometry
shader and produce a triangle strip. We break the strip after every triangle
so that we can produce separate, independent triangles. In this example,
we produce four output triangles for every input triangle. We need to
declare our maximum output vertex count as 12—four triangles times
three vertices. We also need to declare a uniform matrix to store the
model-view transformation matrix in the geometry shader because we do
that transform after generating vertices. Listing 8.26 shows this code.

#version 430 core

layout (triangles) in;
layout (triangle_strip, max_vertices = 12) out;

// A uniform to store the model-view-projection matrix
uniform mat4 mvp;

Listing 8.26: Setting up the “tessellator” geometry shader

First, let’s copy the incoming vertex coordinates into a local variable.
Then, given the original, incoming vertices, we find the midpoint of each
edge by taking their average. In this case, however, rather than simply
dividing by two, we multiply by a scale factor, which will allow us to alter
the spikiness of the resulting object. Code to do this is shown in
Listing 8.27.

// Copy the incoming vertex positions into some local variables
vec3 a = gl_in[0].gl_Position.xyz;
vec3 b = gl_in[1].gl_Position.xyz;
vec3 c = gl_in[2].gl_Position.xyz;

Geometry Shaders 323

// Find a scaled version of their midpoints
vec3 d = (a + b) * stretch;
vec3 e = (b + c) * stretch;
vec3 f = (c + a) * stretch;

// Now, scale the original vertices by an inverse of the midpoint
// scale
a *= (2.0 - stretch);
b *= (2.0 - stretch);
c *= (2.0 - stretch);

Listing 8.27: Generating new vertices in a geometry shader

Because we are going to generate several triangles using almost identical
code, we can put that code into a function (shown in Listing 8.28) and call
it from our main tessellation function.

void make_face(vec3 a, vec3 b, vec3 c)
{

vec3 face_normal = normalize(cross(c - a, c - b));
vec4 face_color = vec4(1.0, 0.2, 0.4, 1.0) * (mat3(mvMatrix) * face_normal
gl_Position = mvpMatrix * vec4(a, 1.0);
color = face_color;
EmitVertex();

gl_Position = mvpMatrix * vec4(b, 1.0);
color = face_color;
EmitVertex();

gl_Position = mvpMatrix * vec4(c, 1.0);
color = face_color;
EmitVertex();

EndPrimitive();
}

Listing 8.28: Emitting a single triangle from a geometry shader

Notice that the make_face function calculates a face color based on the
face’s normal in addition to emitting the positions of its vertices. Now, we
simply call make_face four times from our main function, which is shown
in Listing 8.29.

make_face(a, d, f);
make_face(d, b, e);
make_face(e, c, f);
make_face(d, e, f);

Listing 8.29: Using a function to produce faces in a geometry shader

Figure 8.18 shows the result of our simple geometry shader-based
tessellation program.

324 Chapter 8: Primitive Processing

Figure 8.18: Basic tessellation using the geometry shader

Note that using the geometry shader for heavy tessellation may not
produce the most optimal performance. If something more complex than
that shown in this example is desired, it’s best to use the hardware
tessellation functions of OpenGL. However, if simple amplification of
between two and four output primitives for each input primitive is
desired, the geometry shader is probably the way to go.

Changing the Primitive Type in the Geometry Shader

So far, all of the geometry shader examples we’ve gone through have taken
triangles as input and produced triangle strips as output. This doesn’t
change the geometry type. However, geometry shaders can input and
output different types of geometry. For example, you can transform points
into triangles or triangles into points. In the normalviewer example,
which we’ll describe next, we’re going to change the geometry type from
triangles to lines. For each vertex input to the shader, we take the vertex
normal and represent it as a line. We also take the face normal and
represent that as another line. This allows us to visualize the model’s
normals—both at each vertex and for each face. Note, though, that if you
want to draw the normals on top of the original model, you need to draw
everything twice—once with the geometry shader to visualize the normals
and once without the geometry shader to show the model. You can’t
output a mix of two different primitives from a single geometry shader.

Geometry Shaders 325

For our geometry shader, in addition to the members of the gl_in
structure, we need the per-vertex normal, and that will have to be passed
through the vertex shader. An updated version of the pass-through vertex
shader from Listing 8.25 is given in Listing 8.30.

#version 330

in vec4 position;
in vec3 normal;

out Vertex
{

vec3 normal;
} vertex;

void main(void)
{

gl_Position = position;
vertex.normal = normal;

}

Listing 8.30: A pass-through vertex shader that includes normals

This passes the position attribute straight through to the gl_Position
built-in variable and places the normal into an output block.

The setup code for the geometry shader is shown in Listing 8.31. In this
example, we accept triangles and produce line strips, each of a single line.
Because we output a separate line for each normal we visualize, we
produce two vertices for each vertex consumed, plus two more for the face
normal. Therefore, the maximum number of vertices that we output per
input triangle is eight. To match the Vertex output block that we declared
in the vertex shader, we also need to declare a corresponding input
interface block in the geometry shader. As we’re going to do the
object-space-to-world-space transformation in the geometry shader, we
declare a mat4 uniform called mvp to represent the model-view-projection
matrix. This is necessary so that we can keep the vertex’s position in the
same coordinate system as its normal until we produce the new vertices
representing the line.

#version 330

layout (triangles) in;
layout (line_strip) out;
layout (max_vertices = 8) out;

in Vertex
{

vec3 normal;
} vertex[];

326 Chapter 8: Primitive Processing

// Uniform to hold the model-view-projection matrix
uniform mat4 mvp;

// Uniform to store the length of the visualized normals
uniform float normal_length;

Listing 8.31: Setting up the “normal visualizer” geometry shader

Each input vertex is transformed into its final position and emitted from
the geometry shader, and then a second vertex is produced by displacing
the input vertex along its normal and transforming that into its final
position as well. This makes the length of all of our normals one but
allows any scaling encoded in our model-view-projection matrix to be
applied to them along with the model. We multiply the normals by the
application-supplied uniform normal_length, allowing them to be scaled
to match the model. Our inner loop is shown in Listing 8.32.

gl_Position = mvp * gl_in[0].gl_Position;
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();

gl_Position = mvp * (gl_in[0].gl_Position +
vec4(gs_in[0].normal * normal_length, 0.0));

gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();
EndPrimitive();

Listing 8.32: Producing lines from normals in the geometry shader

This generates a short line segment at each vertex pointing in the
direction of the normal. Now, we need to produce the face normal. To do
this, we need to pick a suitable place from which to draw the normal, and
we need to calculate the face normal itself in the geometry shader along
which to draw the line.

As in the earlier example given in Listing 8.33, we use a cross product of
two of the triangle’s edges to find the face normal. To pick a starting point
for the line, we choose the centroid of the triangle, which is simply the
average of the coordinates of the input vertices. Listing 8.33 shows the
shader code.

vec3 ab = gl_in[1].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 ac = gl_in[2].gl_Position.xyz - gl_in[0].gl_Position.xyz;
vec3 face_normal = normalize(cross(ab, ac));

vec4 tri_centroid = (gl_in[0].gl_Position +
gl_in[1].gl_Position +
gl_in[2].gl_Position) / 3.0;

Geometry Shaders 327

gl_Position = mvp * tri_centroid;
gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();

gl_Position = mvp * (tri_centroid +
vec4(face_normal * normal_length, 0.0));

gs_out.normal = gs_in[0].normal;
gs_out.color = gs_in[0].color;
EmitVertex();
EndPrimitive();

Listing 8.33: Drawing a face normal in the geometry shader

Now when we render a model, we get the image shown in Figure 8.19.

Figure 8.19: Displaying the normals of a model using a geometry shader

Multiple Streams of Storage

When only a vertex shader is present, there is a simple one-in, one-out
relationship between the vertices coming into the shader and the vertices
stored in the transform feedback buffer. When a geometry shader is
present, each shader invocation may store zero, one, or more vertices into
the bound transform feedback buffers. Not only this, but it’s actually
possible to configure up to four output streams and use the geometry
shader to send its output to whichever one it chooses. This can be used,
for example, to sort geometry or to render some primitives while storing
other geometry in transform feedback buffers. There are a couple of pretty

328 Chapter 8: Primitive Processing

major limitations when multiple output streams are used in a geometry
shader; first, the output primitive mode from the geometry shader for
all streams must be set to points. Second, although it’s possible to
simultaneously render geometry and to store data into transform feedback
buffers, only the first stream may be rendered — the others are for storage
only. If your application fits with these constraints, then this can be a very
powerful feature.

To set up multiple output streams from your geometry shader, use the
stream layout qualifier to select one of four streams. As with most other
output layout qualifiers, the stream qualifier may be applied directly to a
single output or to an output block. It can also be applied directly to the
out keyword without declaring an output variable, in which case it will
affect all further output declarations until another stream layout qualifier
is encountered. For example, consider the following output declarations
in a geometry shader:

out vec4 foo; // "foo" is in stream 0 (the default).
layout (stream=2) out vec4 bar; // "bar" is part of stream 2.
out vec4 baz; // "baz" is back in stream 0.
layout (stream=1) out; // Everything from here on is in stream 1.
out int apple; // "apple" and "orange" are part
out int orange; // of stream 1.
layout (stream=3) out MY_BLOCK // Everything in "MY_BLOCK" is in
stream 3.
{

vec3 purple;
vec3 green;

};

In the geometry shader, when you call EmitVertex(), the vertex will be
recorded into the first output stream (stream 0). Likewise, when you call
EndPrimitive(), it will end the primitive being recorded to stream 0.
However, you can call EmitStreamVertex() and EndStreamPrimitive(),
both of which take an integer argument specifying the stream to send the
output to:

void EmitStreamVertex(int stream);

void EndStreamPrimitive(int stream);

The stream argument must be a compile time constant. If rasterization is
enabled, then any primitives sent to stream 0 will be rasterized.

New Primitive Types Introduced by the Geometry Shader

Four new primitive types were introduced with geometry shaders:
GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY,

Geometry Shaders 329

GL_TRIANGLES_ADJACENCY, and GL_TRIANGLE_STRIP_ADJACENCY. These
primitive types are really only useful when rendering with a geometry
shader active. When the new adjacency primitive types are used, for each
line or triangle passed into the geometry shader, it not only has access to
the vertices defining that primitive, but it also has access to the vertices of
the primitive that is next to the one it’s processing.

When you render using GL_LINES_ADJACENCY, each line segment
consumes four vertices from the enabled attribute arrays. The two center
vertices make up the line; the first and last vertices are considered the
adjacent vertices. The inputs to the geometry shader are therefore
four-element arrays. In fact, because the input and output types of the
geometry shader do not have to be related, GL_LINES_ADJACENCY can be
seen as a way of sending generalized four-vertex primitives to the geometry
shader. The geometry shader is free to transform them into whatever it
pleases. For example, your geometry shader could convert each set of four
vertices into a triangle strip made up of two triangles. This allows you to
render quads using the GL_LINES_ADJACENCY primitive. It should be noted,
though, that if you draw using GL_LINES_ADJACENCY when no geometry
shader is active, regular lines will be drawn using the two innermost
vertices of each set of four vertices. The two outermost vertices will be
discarded, and the vertex shader will not run on them at all.

Using GL_LINE_STRIP_ADJACENCY produces a similar effect. The difference
is that the entire strip is considered to be a primitive, with one additional
vertex on each end. If you send eight vertices to OpenGL using
GL_LINES_ADJACENCY, the geometry shader will run twice, whereas if you
send the same vertices using GL_LINE_STRIP_ADJACENCY, the geometry
shader will run five times. Figure 8.20 should make things clear. The eight
vertices in the top row are sent to OpenGL with the GL_LINES_ADJACENCY
primitive mode. The geometry shader runs twice on four vertices each
time—ABCD and EFGH. In the second row, the same eight vertices are
sent to OpenGL using the GL_LINE_STRIP_ADJACENCY primitive mode.
This time, the geometry shader runs five times—ABCD, BCDE, and so on
until EFGH. In each case, the solid arrows are the lines that would be
rendered if no geometry shader were present.

The GL_TRIANGLES_ADJACENCY primitive mode works similarly to the
GL_LINES_ADJACENCY mode. A triangle is sent to the geometry shader for
each set of six vertices in the enabled attribute arrays. The first, third, and
fifth vertices are considered to make up the real triangle, and the second,
fourth, and sixth vertices are considered to be in between the triangle’s

330 Chapter 8: Primitive Processing

1 2

1 2 3 4 5

Figure 8.20: Lines produced using lines with adjacency primitives

vertices. This means that the inputs to the geometry shader are
six-element arrays. As before, you can do anything you want to the
vertices using the geometry shader; GL_TRIANGLES_ADJACENCY is a good
way to get arbitrary six-vertex primitives into the geometry shader.
Figure 8.21 shows this.

Figure 8.21: Triangles produced using GL_TRIANGLES_ADJACENCY

The final, and perhaps most complex (or alternatively the most difficult to
understand), of these primitive types is GL_TRIANGLE_STRIP_ADJACENCY.
This primitive represents a triangle strip with every other vertex (the first,
third, fifth, seventh, ninth, and so on) forming the strip. The vertices in
between are the adjacent vertices. Figure 8.22 demonstrates the principle.
In the figure, the vertices A through P represent 16 vertices sent to
OpenGL. A triangle strip is generated from every other vertex (A, C, E, G, I,
and so on), and the vertices that come between them (B, D, F, H, J, and so
on) are the adjacent vertices.

There are special cases for the triangles that come at the start and end of
the strip, but once the strip is started, the vertices fall into a regular
pattern that is more clearly seen in Figure 8.23.

The rules for the ordering of GL_TRIANGLE_STRIP_ADJACENCY are spelled
out clearly in the OpenGL Specification—in particular, the special cases are
noted there. You are encouraged to read that section of the specification if
you want to work with this primitive type.

Geometry Shaders 331

Figure 8.22: Triangles produced using GL_TRIANGLE_STRIP_ADJACENCY

Figure 8.23: Ordering of vertices for GL_TRIANGLE_STRIP_ADJACENCY

Rendering Quads Using a Geometry Shader

In computer graphics, the word quad is used to describe a quadrilateral – a
shape with four sides. Modern graphics APIs do not support rendering
quads directly, primarily because modern graphics hardware does not
support quads. When a modeling program produces an object made from
quads, it will often include the option to export the geometry data by
converting each quad into a pair of triangles. These are then rendered by
the graphics hardware directly. In some graphics hardware, quads are
supported, but internally the hardware will do this conversion from quads
to pairs of triangles for you.

332 Chapter 8: Primitive Processing

In many cases, breaking a quad into a pair of triangles works out just fine
and the visual image isn’t much different than what would have been
rendered had native support for quads been present. However, there are a
large class of cases where breaking a quad into a pair of triangles doesn’t
produce the correct result. Take a look at Figure 8.24.

Figure 8.24: Rendering a quad using a pair of triangles

In Figure 8.24, we have rendered a quad as a pair of triangles. In both
images, the vertices are wound in the same order. There are three black
vertices and one white vertex. In the left image, the split between the
triangles runs vertically through the quad. The topmost and two side
vertices are black and the bottommost vertex is white. The seam between
the two triangles is clearly visible as a bright line. In the right image, the
quad has been split horizontally. This has produced the topmost triangle,
which contains only black vertices and is therefore entirely black, and the
bottommost triangle, which contains one white vertex and two black
ones, therefore displaying a black to white gradient.

The reason for this is that during rasterization and interpolation of the
per-vertex colors presented to the fragment shader, we’re only rendering a
triangle. There are only three vertices’ worth of information available to
us at any given time, and therefore, we can’t take into consideration the
“other” vertex in the quad.

Clearly, neither image is correct, but neither is obviously better than the
other. Also, the two images are radically different. If we rely on our export
tools, or worse a runtime library, to split quads for us, we do not have any
control over which of these two images we’ll get. What can we do about
that? Well, the geometry shader is able to accept primitives with the
GL_LINES_ADJACENCY type, and each of these has four vertices — exactly
enough to represent a quad. This means that by using lines with
adjacency, we can get four vertices’ worth of information at least as far as
the geometry shader.

Geometry Shaders 333

Next, we need to deal with the rasterizer. Recall, the output of the
geometry shader can only be points, lines, or triangles, and so the best we
can do is to break each quad (represented by a lines_adjacency primitive)
into a pair of triangles. You might think this leaves us in the same spot as
we were before. However, we now have the advantage that we can pass
whatever information we like on to the fragment shader.

To correctly render a quad, we must consider the parameterization of the
domain over which we want to interpolate our colors (or any other
attribute). For triangles, we use barycentric coordinates, which are
three-dimensional coordinates used to weight the three corners of the
triangle. However, for a quad, we can use a two-dimensional
parameterization. Consider the quad shown in Figure 8.25.

(0, 1)

(1, 1)

(0, 0)

(1, 0)

+u

+v

A B

DC

Figure 8.25: Parameterization of a quad

Domain parameterization of a quad is two-dimensional and can be
represented as a two-dimensional vector. This can be smoothly
interpolated over the quad to find the value of the vector at any point
within it. For each of the quad’s four vertices A, B, C, and D, the values of
the vector will be (0, 0), (0, 1), (1, 0), and (1, 1), respectively. We can
generate these values per vertex in our geometry shader and pass them to
the fragment shader.

To use this vector to retrieve the interpolated values of our other
per-fragment attributes, we make the following observation: The value of

334 Chapter 8: Primitive Processing

any interpolant will move smoothly between vertex A and B and between
C and D with the x component of the vector. Likewise, a value along the
edge AB will move smoothly to the corresponding value on edge CD.
Thus, given the values of the attributes at the vertices A through D, we
can use the domain parameter to interpolate a value of each attribute at
any point inside the quad.

Thus, our geometry shader simply passes all four of the per-vertex
attributes, unmodified, as flat outputs to the fragment shader, along with
a smoothly varying domain parameter per vertex. The fragment shader
then uses the domain parameter and all four per-vertex attributes to
perform the interpolation directly.

The geometry shader is shown in Listing 8.34, and the fragment shader is
shown in Listing 8.35 — both are taken from the gsquads example.
Finally, the result of rendering the same geometry as shown in Figure 8.24
is shown in Figure 8.26.

#version 430 core

layout (lines_adjacency) in;
layout (triangle_strip, max_vertices = 6) out;

in VS_OUT
{

vec4 color;
} gs_in[4];

out GS_OUT
{

flat vec4 color[4];
vec2 uv;

} gs_out;

void main(void)
{

gl_Position = gl_in[0].gl_Position;
gs_out.uv = vec2(0.0, 0.0);
EmitVertex();

gl_Position = gl_in[1].gl_Position;
gs_out.uv = vec2(1.0, 0.0);
EmitVertex();

gl_Position = gl_in[2].gl_Position;
gs_out.uv = vec2(1.0, 1.0);

// We’re only writing the output color for the last
// vertex here because they’re flat attributes,
// and the last vertex is the provoking vertex by default
gs_out.color[0] = gs_in[1].color;
gs_out.color[1] = gs_in[0].color;
gs_out.color[2] = gs_in[2].color;
gs_out.color[3] = gs_in[3].color;
EmitVertex();

Geometry Shaders 335

EndPrimitive();

gl_Position = gl_in[0].gl_Position;
gs_out.uv = vec2(0.0, 0.0);
EmitVertex();

gl_Position = gl_in[2].gl_Position;
gs_out.uv = vec2(1.0, 1.0);
EmitVertex();

gl_Position = gl_in[3].gl_Position;
gs_out.uv = vec2(0.0, 1.0);

// Again, only write the output color for the last vertex
gs_out.color[0] = gs_in[1].color;
gs_out.color[1] = gs_in[0].color;
gs_out.color[2] = gs_in[2].color;
gs_out.color[3] = gs_in[3].color;
EmitVertex();

EndPrimitive();
}

Listing 8.34: Geometry shader for rendering quads

#version 430 core

in GS_OUT
{

flat vec4 color[4];
vec2 uv;

} fs_in;

out vec4 color;

void main(void)
{

vec4 c1 = mix(fs_in.color[0], fs_in.color[1], fs_in.uv.x);
vec4 c2 = mix(fs_in.color[2], fs_in.color[3], fs_in.uv.x);

color = mix(c1, c2, fs_in.uv.y);
}

Listing 8.35: Fragment shader for rendering quads

Multiple Viewport Transformations

You learned in “Viewport Transformation” back in Chapter 3 about the
viewport transformation and how you can specify the rectangle of
the window you’re rendering into by calling glViewport() and
glDepthRange(). Normally, you would set the viewport dimensions to
cover the entire window or screen, depending on whether your
application is running on a desktop or is taking over the whole display.
However, it’s possible to move the viewport around and draw into

336 Chapter 8: Primitive Processing

Figure 8.26: Quad rendered using a geometry shader

multiple virtual windows within a single larger framebuffer. Furthermore,
OpenGL also allows you to use multiple viewports at the same time. This
feature is known as viewport arrays.

To use a viewport array, we first need to tell OpenGL what the bounds of
the viewports we want to use are. To do this, call glViewportIndexedf() or
glViewportIndexedfv(), whose prototypes are

void glViewportIndexedf(GLuint index,
GLfloat x,
GLfloat y,
GLfloat w,
GLfloat h);

void glViewportIndexedfv(GLuint index,
const GLfloat * v);

For both glViewportIndexedf() and glViewportIndexedfv(), index is
the index of the viewport you wish to modify. Also notice that the
viewport parameters to the indexed viewport commands are floating-point
values rather than the integers used for glViewport(). OpenGL supports a
minimum6 of 16 viewports, and so index can range from 0 to 15.

6. The actual number of viewports that are supported by OpenGL can be determined by query-
ing the value of GL_MAX_VIEWPORTS.

Geometry Shaders 337

Likewise, each viewport also has its own depth range, which can be
specified by calling glDepthRangeIndexed(), whose prototype is

void glDepthRangeIndexed(GLuint index,
GLdouble n,
GLdouble f);

Again, index may be between 0 and 15. In fact, glViewport() really sets
the extent of all of the viewports to the same range, and glDepthRange()
sets the depth range of all viewports to the same range. If you want to set
more than one or two of the viewports at a time, you might consider using
glViewportArrayv() and glDepthRangeArrayv(), whose prototypes are

void glViewportArrayv(GLuint first,
GLsizei count,
const GLfloat * v);

void glDepthRangeArrayv(GLuint first,
GLsizei count,
const GLdouble * v);

These functions set either the viewport extents or depth range for count
viewports starting with the viewport indexed by first to the
parameters specified in the array v. For glViewportArrayv(), the array
contains a sequence of x, y, width, height values, in that order. For
glDepthRangeArrayv(), the array contains a sequence of n, f pairs, in that
order.

Once you have specified your viewports, you need to direct geometry into
them. This is done by using a geometry shader. Writing to the built-in
variable gl_ViewportIndex selects the viewport to render into.
Listing 8.36 shows what such a geometry shader might look like.

#version 430 core

layout (triangles, invocations = 4) in;
layout (triangle_strip, max_vertices = 3) out;

layout (std140, binding = 0) uniform transform_block
{

mat4 mvp_matrix[4];
};

in VS_OUT
{

vec4 color;
} gs_in[];

out GS_OUT
{

vec4 color;
} gs_out;

338 Chapter 8: Primitive Processing

void main(void)
{

for (int i = 0; i < gl_in.length(); i++)
{

gs_out.color = gs_in[i].color;
gl_Position = mvp_matrix[gl_InvocationID] *

gl_in[i].gl_Position;
gl_ViewportIndex = gl_InvocationID;
EmitVertex();

}
EndPrimitive();

}

Listing 8.36: Rendering to multiple viewports in a geometry shader

When the shader of Listing 8.36 executes, it produces four invocations of
the shader. On each invocation, it sets the value of gl_ViewportIndex to
the value of gl_InvocationID, directing the result of each of the geometry
shader instances to a separate viewport. Also, for each invocation, it uses a
separate model-view-projection matrix, which it retrieves from the
uniform block, transform_block. Of course, a more complex shader could
be constructed, but this is sufficient to demonstrate direction of
transformed geometry into a number of different viewports. We have
implemented this code in the multipleviewport sample, and the result of
running this shader on our simple spinning cube is shown in Figure 8.27.

Figure 8.27: Result of rendering to multiple viewports

Geometry Shaders 339

You can clearly see the four copies of the cube rendered by Listing 8.36 in
Figure 8.27. Because each was rendered into its own viewport, it is clipped
separately, and so where the cubes extend past the edges of their respective
viewports, their corners are cut off by OpenGL’s clipping stage.

Summary

In this chapter, you have read about the two tessellation shader stages, the
fixed-function tessellation engine, and the way they interact. You have
also read about geometry shaders and have seen how both the tessellator
and the geometry shader can be used to change the amount of data in the
OpenGL pipeline. You have also seen some of the additional functionality
in OpenGL that can be accessed using tessellation and geometry shaders.
You have seen how, conceptually, tessellation shaders and geometry
shaders process vertices in groups — in the case of tessellation shaders,
those groups forming patches, and in the case of geometry shaders, those
groups forming traditional primitives such as lines and triangles. You’ve
seen the special adjacency primitive types accessible to geometry shaders.
After the geometry shader ends, primitives are eventually sent to the
rasterizer and then to per-fragment operations, which will be the subject of
the next chapter.

340 Chapter 8: Primitive Processing

Index

a 100 megapixel virtual framebuffer listing
(9.23), 401

1D textures, 244
2D

array textures, loading, 163–165
Gaussian filters, 411
pixel formats, 630
prefix sums, 452

3D
Linux, 682
math with GLKit, 667–669

abstraction layers, 4, 5
acceleration

calculating, 269
structures, 579

access
map buffer types, 601
synchronization

atomic counters, 137
images, 176–177
memory, 129–133

textures, arrays, 163–165
adaptive HDR to LDR conversion fragment

shader listing (9.25), 407–408
adding

basevertex, 234–235
bloom effect to scene listing (9.28), 414
device context parameters, 628
fog effects, 541–544
views, 650–652

addresses, querying extension functions, 622
adjacency primitive types, 340
advanced framebuffer formats, 399–418
advanced occlusion queries, 483–484

Aero user interfaces, 592
AFR (alternate frame rendering), 610
algorithms

flocking, 462–471
prefix sum, 452

aliasing, 140
allocating memory using buffers, 92–95
alpha-to-coverage, 392
alternate frame rendering. See AFR
alternative rendering methods, 548–580
ALU (Arithmetic and Logic Unit) performance,

605
ambient light, 504
ambient occlusion, 558–565

fragment shader listing (12.32), 564–565
AMD drivers, 625, 682
a more complete conditional rendering

example listing (11.6), 482–483
analysis

graphics processors, 594
performance analysis tools, 589–597

AND operator, 47
Android

development environments, 729–734
handheld platforms, 729

angles, Euler, 72
animating color over time listing (2.2), 16
antialiasing, 384–399

by filtering, 385–387
multi-sample, 387–389

AoSs (array-of-structures), 102
APIENTRY macro, 583
APIs (Application Programming Interfaces), 3,

7. See also interfaces
trace tools, 594
Windows, 623

773

application of fog in a fragment shader listing
(12.24), 543–544

Application Programming Interfaces. See APIs
applications

barriers, 131–132
cleaning up, 646–647
Cocoa, 650
debugging, 582–589
design (OpenGL ES 3.0), 714
frameworks, 14–16
geometry shaders, 313–317
Linux, 687–693
loading textures from files, 144
performance optimization, 589–616
shaders, 5
starting, 21
tuning for speed, 597–616

applying
arrow keys, 671–673
contexts, 699–701
extensions, 618–622
simple exposure coefficient to an HDR image

listing (9.24), 406
ARB (Architectural Review Board), 7, 8, 618
areas, signed, 40
Arithmetic and Logic Unit performance. See

ALU performance
array-of-structures (AoSs), 102
arrays, 15, 192–194

accessing, 163–165
allocating, 638
indexes, 245
instanced, 288
multi-dimensional, 194
sizes of input, 315
textures, 160–165
VAOs (vertex array objects), 272

arrow keys, 671–673
assigning binding points, 117
associative, 62
asteroids

configuring, 254
field vertex shader listing (7.14), 255–257
rendering, 257
vertex shader inputs for, 254

atmospheric effects, 540–544
atomic counters, 133–137
atomic operations, 126, 128–129, 171–176
attachments

completeness, 377
multiple framebuffer, 368–370
rendering with no, 399–401
texture layers to a framebuffer

listing (9.12), 375
textures, 367

attenuation, distance-based point size, 230
attributes, 51

Cocoa pixel format, 655–658

configs, 690
instancing, 245
pixel format, 636–637
vertices, 28–29, 97, 224

averaging values, 457
axes, coordinates, 68

back buffers, 365
back end processes, 11, 341
back-facing, 39
back-lighting, 515–517
bandwidth, memory, 178, 549
barriers, 446

applications, 131–132
shaders, 132–133

barycentric coordinates, 35, 284–285, 288
baseinstance parameter, 239
basevertex parameter, 234–235, 239, 240
basic conditional rendering example listing

(11.5), 481
basic setup of Windows operating systems,

627–632
Bézier curves, 85, 86, 87
big-picture views, 11
binaries, programs, 216–218, 609
binding, 92

buffers, 261
framebuffers, 366
points, 117, 262

Bishop, Lara, 718
Bit-Level-Image-Transfer, 432
bittangent vectors, 519
blending, 357–363

blend equations, 358, 361–362
color, 406
dual-source, 361
factor, 406
functions, 358–360

Blinn-Phong fragment shader listing (12.5), 514
Blinn-Phong lighting model, 513–515
blit, 431
Block Partitioned Texture Compression (BPTC),

179
blocks

interfaces, 31–32
shaders, storage, 126–133
uniforms, 108–121

Block Transfer, 432
bloom, light, 409–414
bloom fragment shader listing (9.26), 410–411
blur fragment shader listing (9.27), 412–413
boids, 449
Boolean flags, 655
Boolean occlusion queries, 483
Boolean vectors, 196
border color, texture, 159
BPTC (Block Partitioned Texture Compression),

179

774 Index

brute force, 579
bubble, 494
buffers, 10, 92–95

asteroids, 254
back, 365
binding, 261
command, 590
data

allocating memory using, 92–95
feeding vertex shaders from, 97–103
filling and copying in, 95–97

depth, 46
double buffering, 634, 661
element array, 279
EGL, 726–727
G-buffers, 548, 549–551
mapping, 600–603
object storage, 251
point indexes, 228
swap values, 637
TBO (texture buffer object), 266, 269
textures, 140
UBO (Uniform Buffer Object), 108

building. See also configuration
Linux applications, 687–693
model-view matrices listing (5.21), 122

built-in functions, 194–201
built-in outputs, 441
built-in variables, 24

gl_InstanceID, 288
gl_FrontFacing, 223
gl_Position, 277
gl_VertexID, 92
gl_int, 146
fragment, 43
tessellation, 35

bump mapping, 518

C++, 737
calculations. See also math

acceleration, 269
antialiasing, 385
colors, fragments, 152
contributions to ambient light, 504
damping force, 270
dot products, 54–55
formulas, indexes, 250
G-buffers, 552
lighting models. See lighting models
orientation, 257
per-fragment lighting, 518
per-instance rotations, 163
reflection and refraction, 57–58
shadow maps, 539
toon shaders, 547

callback functions, 583, 584. See also functions
camera space, 64, 65
Cartesian frames, 519

casting shadows, 534–540
Cathode Ray Tubes (CRTs), 416
cell shading, 545–547
centroid sampling, 395–399
CGL (Core OpenGL), 648, 674–675

specifications, 625n3
checking completeness of a framebuffer object

listing (9.13), 378–379
child windows (in Cocoa), 671
choosing. See also selecting

8 sample antialiasing listing (9.19), 388
and setting a pixel format listing (14.4), 632

chunks, SBM model file format, 752–756
clamping

depth, 354–355
tone mapping, 406

classes, 628
GLKit, 662
GLKTextureInfo, 663
GLKViewController, 741
textures, 183

cleaning up applications, 646–647
clipping, 38–39, 276–282

an object against a plane and a sphere listing
(7.20), 281

lines, 276
clip spaces, 17, 38, 64, 66
Cocoa

GLKit, 669–671
Mac OS X, 649–662
pixel format attributes, 655–658

code
called when the view changes size listing

(14.14), 661
errors, 584

colors
calculating, 257
grass, 244
inputs, vertex shaders, 225
masking, 363–364
OpenGL ES 3.0, 709
output, 357–364
sRGB color spaces, 416–418
tone mapping, 404

columns
column major, 60
column primary, 60
images, 454
layouts, 60

combining geometry and primitive restart,
235–237

commands
buffers, 590
drawing, 231–259, 595

clipping, 276–282
indexed, 231–237
indirect draws, 250–259
instancing, 237–250

Index 775

commands (continued)
stencil buffers, 348
storing transformed vertices, 259–275

glxinfo, 684
SwapBuffers(), 593
synchronization, 699

comments, chunks, 755
communication

compute shaders, 444–449
between shader invocations, 299

commutativity, 110
comparison operators, 352
compatibility profiles, 9
compiling

makefiles, 687
programs, 201–219
shaders, 218, 606–609
simple shaders listing (2.5), 18–19

completeness
attachments, 377
framebuffers, 377
whole framebuffer, 377

complex number, 75
complex shader, 339
compressing textures, 177–181, 606
compute shaders, 47–48, 437–472

applying, 438–439
communication, 444–449
examples, 450–471
executing, 439–444
flocking, 462–471
to generate a 2D prefix sum listing (10.7),

455–456
image inversion listing (10.2), 444
parallel prefix sum, 450–462
with race conditions listing (10.4), 447
synchronizing, 445–449
for updates in flocking example listing

(10.11), 466
concatenation

model-view transformations, 76–79
transformations, 73–75

concave polygons, 10
conditions

conditionally emitting geometry in a
geometry shader listing (8.22), 319

conditional rendering, 481, 598
race, 446, 447

configs
EGL, 720–725
management and visuals, 689–693

configuration
Android projects, 730–731
asteroids, 270–271
comparison operators, 352
cubes, geometry, 233
the custom culling geometry shader listing

(8.20), 318

GL3W, 686
GLFW, 686
iOS projects, 734–736
Mesa, 685
scalars, 105–106
separable program pipelines listing (6.3), 208
uniforms

arrays, 106–107
matrices, 107–108

Windows operating systems, 627–632
connecting vertices, 267
construction

and initialization of the GLKView listing
(14.20), 738

matrices, 60–63
consuming G-buffers, 551–554
container objects, 603
contention, 129
contexts

advanced creation, 641–643
applying, 699–701
current, 611
debug, 582–589
devices, 627, 629
managing, 695–699, 725–726

controlling
movement smoothly with keyboard bit flags

and a timer listing (14.15), 672–673
winding order, 296

control points, 83, 284, 324
control shaders, tessellation, 33–34
coordinates

barycentric, 35, 284–285, 288
eye-space, 542
floating point, 152
homogeneous, 39
normalized device, 39
objects, 64–65
spaces, 62
textures, 141, 146–148, 529
transformations, 63–66, 66–73
view, 65–66
window, 40
world, 65

copying
from an array texture to a stereo back buffer

listing (9.17), 383–384
data between framebuffers, 431–433
data in buffers, 95–97
data into a texture, 433–434

Core OpenGL. See CGL
core profiles, 9, 652. See also profiles
counters

atomic, 133–137
performance, 597

counting are using atomic counters listing
(5.31), 135

coverage, sample, 391–393

776 Index

CPU (central processing unit) queues, 590
creating. See also configuration; formatting

and compiling a compute shader listing
(10.1), 438–439

a debug context with the sb6 framework
listing (13.1), 582

and initializing the full-screen window
listing (14.16), 676–677

integer framebuffer attachments listing
(9.29), 415

program member variables listing (2.6), 21
shared contexts on Windows listing (14.8),

643
a simple window listing (14.2), 629–630
a stereo window listing (9.14), 380

cross products, 56–57
CRTs (Cathode Ray Tubes), 416
csplines, 90
cube maps, 527–532
cubes

geometry
configuring, 233
drawing indexed, 234

maps, rendering to, 375–376
spinning, 121

cubic Bézier curves, 85, 86
cubic Bézier patches

fragment shader listing (8.15), 309
tessellation control shader listing (8.13),

307
tessellation evaluation shader listing (8.14),

308
tessellation example, 304–310
vertex shader listing (8.12), 306

cubic Bézier splines, 88
cubic Hermite splines, 89
culling, 40–41, 175

geometry, 320
current context, 611
curves, 82, 83–87

Bézier, 85
gamma, 418
Hermite, 198
quintic Bézier, 87
transfer, 407

damping force, calculating, 270
data, 91

atomic counters, 133–137
buffers, 92–95

allocating memory using, 92–95
feeding vertex shaders from, 97–103
filling and copying in, 95–97

driven rendering engines, 613
manipulation, built-in functions, 199–201
shader storage blocks, 126–133
stores, 92
textures, 137–185

types, 188–194
uniforms, 103–126

dds2ktx utility, 761–762
debugging applications, 581, 582–589
decay, exponential, 543
declaration

arrays, 192–193
atomic counters, 133
multiple outputs in a fragment shader listing

(9.7), 370
of multiple vertex attributes listing (7.1),

225
of PIXELFORMATDESCRIPTOR listing (14.3),

631
shader storage blocks, 126
two inputs to vertex shaders listing (5.6),

100
uniform blocks listing (5.10), 110
of vertex attributes listing (3.1), 28
vertices, 227

default block uniforms, 104–105
default framebuffer, 365
Deferred Procedure Call. See DPC
deferred shading, 548–558

downsides to, 556–558
normal mapping, 554–556
with normal mapping listing (12.31), 556

definitions
of gl_in[] listing (8.19), 314
of the Objective-C GLCorePorfileViewClass

listing (14.10), 653
degenerate primitives, 24
denormals, 189
depth

buffers, 46
clamping, 354–355
of field effect, 457
of field using summed area tables listing

(10.8), 459–460
functions, 352
as seen from light, 537
tests, 46, 351–355

deriving a fragment’s color from its position
listing (3.10), (3.12), 43, 44

design, 4–5, 714
destinations

factors, 358
subsystems, 132

detection of edges, 397–399
determining closest intersection point listing

(12.37), 572–573
development

Android environments, 729–734
builds, 607
OpenGL ES, 707–708

devices, context, 627, 629
diffuse light, 504, 505
disabling interpolation, 342–343

Index 777

discarding
geometry in geometry shaders, 317–320
rasterizers, 273

dispatching the image copy compute shader
listing (10.3), 444

dispatch, indirect, 439–441
displacement mapping, 300

GPU PerfStudio 2, 594
tessellation evaluation shader listing (12.23),

542
displaying. See also viewing

an array texture–fragment shader listing
(9.11), 373

an array texture–vertex shader listing (9.10),
373

EGL, 718–720
objects and X Window System, 689

distance-based point size attenuation, 230
distributions

grass, 242, 243
Linux. See Linux

DMA packets, 593
domains, 306

parameterization, 334
dot products, 54–55
double buffering, 634, 661

sync frame rates, 677
double precision, 53, 60, 107
downsides to deferred shading, 556–558
DPC (Deferred Procedure Call), 593
drain, queues, 591
drawing

asteroids listing (7.15), 257–258
commands, 231–259, 595

clipping, 276–282
indexed, 231–237
indirect draws, 250–259
instancing, 237–250
stencil buffers, 348
storing transformed vertices, 259–275

data written to a transform feedback buffer
listing (11.9), 491

a face normal in the geometry shader listing
(8.33), 327–328

indexed cube geometry listing (7.3), 234
the same geometry many times listing (7.4),

238
into a stereo window listing (9.15), 381
Stonehenge, 663–665
triangles, 24–25

drivers
Linux, 685–686
Windows graphics, 624–626

dual-source blending, 361

EAC (Ericsson Alpha Compression), 179
early testing, 355–357

edges
detection of, 397–399
jaggies, 384

effects, atmospheric, 540–544
EGL, 718–728

configs, 720–725
displays, 718–720
eglBindAPI(), 767
eglChooseConfig(), 720, 724
eglCreateContext(), 725
eglDestroyContext(), 726
eglDestroySurface(), 725
eglGetConfigAttrib(), 724, 725
eglGetConfigs(), 724
eglGetError(), 727
eglGetProcAddress(), 728
eglInitialize(), 720
eglMakeCurrent(), 726
eglQueryAPI(), 720
eglQueryString(), 727
eglReleaseThread(), 720
eglSwapBuffers(), 726
eglSwapInterval(), 722
eglWaitGL(), 727
eglWaitNative(), 727
errors, 727
extensions, 728
strings, 727
windows, 720

elements, types, 193
eliminating visual tearing, 646
embedded environments, negotiating, 728–729
emitting a single triangle from a geometry

shader listing (8.28), 324
EmitVertex() function, 36
endianness, 145
engines

data driven rendering, 613
Quartz, 647
tessellation, 34, 285

enumerating pixel formats, 640–641
environment mapping, 522–532

cube maps, 527–532
equirectangular, 525–527
spherical environment maps, 523–525

environments
Android development, 729–734
EGL, 718–728
negotiating embedded, 728–729
OpenGL ES, 713–718

equal spacing mode, 295
equations

blend, 358, 361–362
quadratic, 85

equirectangular environment mapping,
525–527

fragment shader listing (12.11), 526

778 Index

Ericsson Alpha Compression (EAC), 179
Ericsson Texture Compression (ETC2), 179
errors

code, 584
compiling, 201
EGL, 727
linker, 204
shaders, 203

Essential Mathematics for Games and Interactive
Applications, 718

ETC2 (Ericsson Texture Compression), 179
Euler angles, 72
evaluation, TES (tessellation evaluation shader),

284
Event Trace Logs, 592
examples

compute shaders, 450–471
shader storage block declaration listing

(5.27), 127
stencil buffer usage listing (9.1), 350
subroutine uniform declaration listing (6.5),

213
uniform blocks

declaration listing (5.9), 109
with offsets listing (5.11), 111

use of indirect draw commands listing
(7.10), 253

executing compute shaders, 439–444
exponential decay, 543
exponents

bits, 189
shared, 181

extending GLSurfaceView listing (14.18), 732
extensions, 8, 617

applying, 618–622
EGL, 728
GLX, 695
vendor-specific, 728
WGL (Windows-GL), 634–639

EXT extensions, 618
extinction, 541, 542
eye space, 64, 65, 542

fades, 533
failures, programs, 204
FBOs (user-defined framebuffers), 368, 606

attachment completeness, 377
tests, 379

feedback, transforms
applying, 260–265
starting, pausing, and stopping, 264–266

feeding vertex shaders from buffers, 97–103
fetching vertices, 28
figuring out if occlusion query results are ready

listing (11.2), 478
files

loading

objects, 102–103
from textures, 144–148

SBM model file format, 751–757
filling

data in buffers, 95–97
a linked-list in a fragment shader listing

(5.45), 174
fill performance, increasing, 678–679
filtering

2D Gaussian filters, 411
antialiasing by, 385–387
mipmapping, 155–157
modes, 148
textures, 151–153
trilinear, 156
variables, 457

finding. See also searching
a face normal in a geometry shader listing

(8.21), 318
a pixel format with

wglChoosePixelFormatARB() listing
(14.6), 639

first fragment shaders listing (2.4), 18
first geometry shader listing (3.9), 37
first OpenGL application listing (2.1), 14
first rule of flocking listing (10.12), 467
first tessellation control shader listing (3.7), 34
first vertex shaders listing (2.3), 18
fixed-function stages, 5
fixed outputs, 443
fixed-point

data, 227
math, 716–718

flags, 671
Boolean, 655

flat inputs, 342
floating-point

coordinates, 152
data, 604
fragment shaders, 342n1
framebuffers, 401–414
numbers, 189
texture formats, 402–403

flocking
compute shaders, 462–471
vertex shader body listing (10.16), 470

flow control barriers, 446
FMA (fused multiply-add), 198, 199
focal depth, 457
focal distance, 457
fog, 541–544
format layout qualifiers, 169
formatting

advanced framebuffers, 399–418
applications, 14–16
contexts, 696–699
enumerating pixels, 640–641

Index 779

formatting (continued)
pixels, 630–632
SBM model file format, 751–757
textures, 138–139, 182–185
windows, 628–630

formulas, calculating indexes, 250
fractals, rendering Julia, 566–568
fractional even spacing, 295
fractional segments, 295
fragments, 341–435

antialiasing, 384–399
color output, 357–364
depth testing, 351–355
early testing, 355–357
off-screen rendering, 364–384
opacity, 15
OpenGL ES 3.0, 713
pre-fragment tests, 345–357
rasterization, 41
redeclaration of, 356
stencil testing, 348–351

fragment shaders, 42–45, 342–345, 595
for the Alien Rain sample listing (5.42), 163
with an input listing (3.4), 31
for cube map environment rendering listing

(12.16), 531–532
with external function declaration listing

(6.2), 206
for generating shaped points listing (9.33),

425–426
with input interface blocks listing (3.6), 32
for normal mapping listing (12.8), 521
performing image loads and stores listing

(5.44), 171
for per-fragment shininess listing (12.17),

534
producing high-frequency output listing

(9.22), 393–394
ray tracing in, 568–580
for rendering quads listing (8.35), 336
with single texture coordinate listing (5.39),

147
for sky box rendering listing (12.14), 530
for the star field effect listing (9.32), 423
for terrain rendering listing (8.11), 304

framebuffers, 341–435
advanced framebuffer formats, 399–418
antialiasing, 384–399
binding, 366
completeness, 377
copying data between, 431–433
default, 365
floating-point, 401–414
integers, 415–416
layered, 371, 382, 383
logical operations, 363–364
multiple attachments, 368–370

objects, 366
off-screen rendering, 364–384
OpenGL ES 3.0, 713
operations, 45–47, 135
reading from a, 429–431
stacks, 575

frames
AFR (alternate frame rendering), 610
Cartesian, 519
sync frame rates, 677–679

frameworks, applications, 14–16
front end processes, 10
front-facing, 39
frustrum matrix, 81
full-screen

rendering, 644–645, 675–677
views (X Window System), 704

functionality, 621
functions. See also gl functions

blending, 358–360
built-in, 194–201
callback, 583, 584
depth, 352
EmitVertex(), 36
EndPrimitive(), 36
init(), 582
main(), 311
multi versions of, 252
normalization, 200
overloading, 143, 166, 194
pointers, 622
portability of, 633
RegisterClass, 628
shaders, 19–20
stencils, 349
vmath::perspective, 82
vmath::rotate, 72

fused multiply-add. See FMA

gamers, 729
gamma curves, 418
G-buffers, 548

consuming, 551–554
generating, 549–551
unpacking, 552
visualizing, 552

GDI (Graphics Device Interface), 627–628
ChoosePixelFormat(), 634, 638
SetPixelFormat(), 632
SwapBuffers(), 593, 634

generating
binding, and initializing buffers listing (5.1),

94
binding, and initializing textures listing

(5.33), 138
G-buffers, 549–551

780 Index

geometry in geometry shaders, 322–325
new vertices in a geometry shader listing

(8.27), 323–324
geometry, 10

cubes
configuring, 233
drawing indexed, 234

drawing commands, 249. See also drawing
commands

primitive restart, combining, 235–237
transformations, 63
uniforms, 121–126

geometry shaders, 36–38, 310–340
changing the primitive type in, 35–328
discarding geometry in, 317–320
generating geometry in, 322–325
layered rendering, 371
layout qualifiers listing (8.17), 311
modifying geometry in, 320–322
multiple streams of storage, 328–329
multiple viewport transformations, 336–340
new primitive types introduced by, 329–336
pass-through, 311–313
quads (quadrilaterals), rendering using,

332–336
for rendering quads listing (8.34), 335–336
using in an application, 313–317

getting ready for instanced rendering listing
(7.9), 248

getting ready for shadow mapping listing
(12.18), 536

getting the result from a query object listing
(11.1), 478

gimbal locks, 72, 76
GL3W

configuring, 686
installing, 687

gl functions
glActiveTexture(), 146, 150
glAttachShader(), 19, 20, 47, 313, 438
glBeginConditionalRender(), 481, 482
glBeginQuery(), 484, 486, 488, 489, 490
glBeginQueryIndexed(), 490
glBeginTransformFeedback(), 265, 266
glBindBuffer(), 93, 263, 600
glBindBufferBase(), 262, 263
glBindBufferRange(), 262, 263
glBindFramebuffer(), 365, 367
glBindImageTexture(), 167
glBindProgramPipeline(), 209, 216
glBindSampler(), 149
glBindTexture(), 138, 663
glBindTransformFeedback(), 491, 604
glBindVertexArray(), 20, 21, 258, 603, 709
glBindVertexBuffer(), 224, 229
glBlendColor(), 358
glBlendEquation(), 361

glBlendEquationSeparate(), 361
glBlendFunc(), 358, 362
glBlendFuncSeparate(), 358, 362
glBlitFramebuffer(), 433, 434
glBufferData(), 92–95, 109, 113, 127, 262,

600
glBufferSubData(), 94, 95, 113, 134
glCheckFramebufferStatus(), 377
glClear(), 347
glClearBufferfv(), 15, 18, 347, 481
glClearBufferiv(), 349
glClearBufferSubData(), 95, 96, 134
glClientWaitSync(), 495–497
glColorMask(), 363, 364, 477
glColorMaski(), 363, 364
glCompileShader(), 19, 20, 47, 201, 204,

313, 438, 607
glCompressedTexSubImage2D(), 180
glCompressedTexSubImage3D(), 181
glCopyBufferSubData(), 96, 262
glCopyImageSubData(), 433
glCopyTexSubImage2D(), 433
glCreateProgram(), 19, 439
glCreateShader(), 19, 20, 313, 438
glCreateShaderProgramv(), 209
glCullFace(), 41
glDebugMessageCallback(), 583, 585
glDebugMessageControl(),586
glDebugMessageInsert(), 587
glDeleteProgram(), 21, 205
glDeleteQueries(), 475
glDeleteShader(), 20, 21, 202
glDeleteSync(), 498
glDeleteTextures(), 146
glDeleteTransformFeedbacks(), 492
glDeleteVertexArrays(), 709
glDepthFunc(), 353
glDepthMask(), 353
glDepthRange(), 88
glDepthRangeArrayv(), 338
glDepthRangeIndexed(), 338
glDisable(), 280, 352, 393, 540
glDisableVertexAttribArray(), 100
glDispatchCompute(), 439–442, 444, 481
glDispatchComputeIndirect(), 439, 440, 442
glDrawArrays(), 21–22, 24–26, 122, 164,

231, 234–236, 238–240, 265, 273, 313,
321, 481, 492, 705, 709

glDrawArraysIndirect(), 250–252, 449
glDrawArraysInstanced(), 239–240, 245,

492, 709
glDrawArraysInstancedBaseInstance(), 232,

239, 250, 258, 439
glDrawBuffer(), 432, 477, 661
glDrawBuffers(), 377, 634
glDrawElements(), 231, 234–240, 251–252,

275, 321, 492, 709

Index 781

gl functions (continued)
glDrawElementsBaseVertex(), 234, 235, 239
glDrawElementsIndirect(), 250, 251, 252
glDrawElementsInstanced(), 239, 240, 245,

709
glDrawElementsInstancedBaseVertex(), 239
glDrawRangeElements(), 709
glDrawTransformFeedback(), 492, 493, 604,

615, 622
glDrawTransformFeedbackInstanced(), 492,

493
glDrawTransformFeedbackStream(), 493
glEnable(), 41, 348, 391, 392, 540
glEnableVertexAttribArray(), 98, 99
glEndConditionalRender(), 481, 483
glEndQuery(),476, 484, 486, 489, 490
glEndQueryIndexed(), 490
glEndTransformFeedback(), 491, 497, 712
glFenceSync(), 494, 495, 497, 498
glFinish(), 493, 494, 598, 603
glFlush(), 493, 661, 673, 676
glFlushMappedBufferRange(), 601, 602
glFramebufferParameteri(), 400
glFramebufferTexture(), 366, 375, 376, 390
glFramebufferTexture2D(), 376
glFramebufferTextureLayer(), 374
glFrontFace(), 41
glGenBuffers(), 93
glGenerateMipmap(), 157, 435
glGenFramebuffers(), 365
glGenProgramPipelines(), 207
glGenQueries(), 474, 475
glGenTextures(), 137, 138, 145, 167, 182
glGenTransformFeedbacks(), 491
glGenVertexArrays(), 20, 21, 709
glGetActiveSubroutineName(), 215
glGetActiveUniformsiv(), 114, 115
glGetAttribLocation(), 100, 240
glGetBooleanv(), 713
glGetBufferSubData(), 259
glGetCompressedTexImage(), 180
glGetError(), 379, 474, 496, 584, 598, 727
glGetFloatv(), 680, 713
glGetInteger64v(), 497, 713
glGetIntegeri_v(), 440
glGetIntegerv(), 116, 117, 120, 150, 230, 263,

280, 316, 446, 598, 619, 680, 697, 713
glGetInternalFormativ(),180
glGetProgramBinary(),217, 219
glGetProgramInfoLog(), 205, 206
glGetProgramInterfaceiv(), 210
glGetProgramiv(), 205, 217, 441
glGetProgramResourceIndex(), 214
glGetProgramResourceiv(), 210, 211, 212
glGetProgramResourceName(), 211
glGetProgramStageiv(), 215
glGetQueryObjectuiv(), 476, 477, 479, 481,

484, 487, 488, 491

glGetShaderInfoLog(), 202, 206
glGetShaderiv(), 201, 202, 204, 205, 607
glGetString(), 644
glGetSynciv(), 495
glGetTexImage(), 435
glGetTexLevelParameteriv(), 180
glGetTexParameteriv(), 180
glGetUniformBlockIndex(), 117
glGetUniformLocation(), 104, 105, 151, 598
glInvalidateBufferData(), 614, 615
glInvalidateBufferSubData(), 614, 615
glInvalidateFramebuffer(), 615
glInvalidateSubFramebuffer(), 615
glInvalidateTexImage(), 614, 615
glInvalidateTexSubImage(), 614
glIsTransformFeedback(), 492
glLinkProgram(), 20, 47, 204, 206, 217, 264,

313, 438, 608
glLogicOp(), 362, 713
glMapBuffer(), 95, 109, 113, 127, 259, 600,

601, 603, 739
glMapBufferRange(), 134, 429, 599, 600, 601,

602, 603
glMemoryBarrier(), 131, 132, 137, 177
glMinSampleShading(), 394
glMultiDrawArrays(), 709
glMultiDrawArraysIndirect(), 232, 257, 258
glMultiDrawElements(), 709
glMultiDrawElementsIndirect(), 232
glObjectLabel(), 588
glObjectPtrLabel(), 588, 589
glPatchParameterfv(), 298
glPatchParameteri(), 33, 298
glPixelStorei(), 430
glPointParameteri(), 423
glPointSize(), 22, 26, 37, 230
glPolygonMode(), 36, 296
glPopDebugGroup(), 585, 588
glProgramBinary(), 219
glProgramParameteri(), 207, 217
glPushDebugGroup(), 585
glQueryCounter(), 485, 486
glReadBuffer(), 429, 430
glReadPixels(), 429, 430, 431, 433, 435,

598, 599, 600, 680
glSampleCoverage(), 392
glSamplerParameterf(), 149, 150
glSamplerParameterfv(), 159
glSamplerParameteri(), 149, 150, 158
glScissorIndexed(), 346
glScissorIndexedv(), 346
glShaderSource(), 19, 20, 47, 203, 209, 313,

438
glStencilFunc(), 351
glStencilFuncSeparate(), 348, 350, 351
glStencilMaskSeparate(), 351
glStencilOp(), 351
glStencilOpSeparate(), 348, 349, 350, 351

782 Index

glTexBuffer(), 273
glTexParameteri(), 536
glTexStorage2D(), 138, 144, 154, 156, 167,

180, 389, 527
glTexStorage2DMultisample(), 389, 390
glTexStorage3D(), 161, 180, 389
glTexStorage3DMultisample(), 389, 390
glTexSubImage2D(), 138, 139, 144, 154, 185,

429, 433, 435, 527, 613
glTexSubImage3D(), 161, 614
glTextureView(), 182
glTransformFeedbackVaryings(), 260, 261,

263, 264
glUniform*(), 105, 106, 108
glUniform1i(), 151
glUniform4fv(), 439
glUniformBlockBinding(), 118, 119
glUniformSubroutinesuiv(), 215
glUnmapBuffer(), 601
glUseProgram(), 21, 120, 215, 216, 439, 711
glUseProgramStages(), 207, 215
glVertexAttrib*(), 29, 30, 99, 100, 165
glVertexAttrib4fv(), 29
glVertexAttribBinding(), 224, 228
glVertexAttribDivisor(), 470
glVertexAttribFormat(), 224, 225, 227, 228
glVertexAttribI*(), 165
glVertexAttribIFormat(), 227
glVertexAttribIPointer(), 755
glVertexAttribPointer(), 98, 99, 101, 102,

224, 245 , 263, 605, 709
glViewport(), 40, 122, 336, 337, 338, 401,

674, 679
glViewportArrayv(), 338
glViewportIndexedf(), 337
glViewportIndexedfv(), 337
glWaitSync(), 497–498

GLFW
configuring, 686
installing, 686–687

GLKit, 648, 662–673
3D math with, 667–669
Cocoa, 669–671
iOS, 737–738

GLKTextureInfo class, 663
GLKViewController class, 741
global illumination, 558
global work groups, 440–441, 456
gloss maps, 533
GLSL (OpenGL Shading Language), 17, 740–741
GL_TRIANGLES_ADJACENCY primitive mode, 330, 331
GLUT (OpenGL Utility Toolkit), 648, 680–681

main function to set up OpenGL listing
(14.17), 681

GLX
glXChooseFBConfig(), 692, 693, 694
glXCopyContext(), 698
glXCreateContextAttribsARB(), 696, 697

glXCreateNewContext(), 696
glXCreateWindow(), 694
glXDestroyContext(), 698
glXDestroyWindow(), 694
glXGetClientString(), 695
glXGetCurrentReadDrawable(), 700
glXGetFBConfigAttrib(), 692
glXGetFBConfigs(), 689, 692, 694
glXGetProcAddress(), 695
glXIsDirect(), 699
glXMakeContextCurrent(), 699
glXMakeCurrent(), 611
glXQueryContext(), 700
glXQueryDrawable(), 700
glXQueryExtensionsString(), 695
glXQueryServerString(), 695
glXQueryVersion(), 688
glXSwapBuffers(), 700, 703
glXWaitGL(), 699
glXWaitX(), 700
queries, 700–701
strings (Linux), 695
synchronization, 699
windows, 701–704

GLX-interfacing with X Window System,
688–689

Google, 707
Gouraud shading, 507

fragment shader listing (12.2), 508
vertex shader listing (12.1), 507–508

GPU PerfStudio 2, 594–597
GPUs (Graphics Processing Units), 5, 609–611
GPUView, 590–594
graphics, 3

math, 49. See also math
output, 627
pipelines, 4–6, 27–48. See also pipelines
processors, 218, 594
programs, 438

Graphics Device Interface. See GDI
graphics drivers (Windows), 624–626
Graphics Processing Units. See GPUs
graphics processors, compute shaders,

437–472
graphs, exponential decay, 543
grass

colors, 244
distribution, 242, 243
length of, 245
positioning, 241

gravity, 270
groups

messages, 587
outputs, 296
work, 440–441

guard bands, 278

Index 783

hardware, 4, 9
Linux, 685–686
queues, 590
rasterizers, 10
support, 625

hazards, 129, 137
HDR (High Dynamic Range), 403–404, 606
header of a .KTX file listing (5.36), 144–145
heads-up display (HUD), 485
Hermite curve, 198
High Dynamic Range. See HDR
higher order surfaces, 324
highlights, specular, 505–509
hints, 209, 614
histograms, 405
history, 3, 6–10

of Linux, 682–683
of OpenGL ES, 706

homogenous coordinates, 39
homogenous vectors, 53
Hooke’s law, 269, 270, 271
HUD (heads-up display), 485, 595

ICD (Installable Client Driver), 624, 626
identity matrix, 67–68
IEEE-754, 188
illumination, global, 558
images

access synchronization, 176–177
atomic operations on, 171–176
columns, 454
stereo, viewing in, 380
transposing, 412
units, 167
variables, 165

increasing fill performance, 678–679
indexes

arrays, 245
data chunks (SBM model file format), 753
drawing commands, 231–237
formulas, calculating, 250
global work groups, 456
queries, 489–490
uniforms, 112

indirect draws, 250–259
infinity, 200
in flight (executing hardware commands), 4
init() function, 582
initializing

array textures listing (5.40), 161–162
core context views listing (14.11), 654
a G-buffer listing (12.27), 550
shader storage buffers for flocking listing

(10.9), 464
textures, 138–139

inner loop of the julia renderer listing (12.34),
567

inner products, 54–55
inputs

compute shaders, 441–444
flat, 342
to the flock rendering vertex shader listing

(10.15), 469
primitive types, 315
smooth, 342
vertex shaders, 224–229

inscattering, 541
inserting geometry shaders, 37
Installable Client Driver. See ICD
installing

GL3W, 687
GLFW, 686–687

instancing
arrays, 288
drawing commands, 237–250
rendering, 245–250, 249

integers, 189
framebuffers, 415–416

Integrated Raster Imaging System Graphics
Library. See IRIS GL

Interface Builder, 651, 659
interfaces

Aero user, 592
APIs (Application Programming Interfaces),

3
blocks, 31–32
GDI (Graphics Device Interface), 627–628
GLX-interfacing with X Window System,

688–689
Mac OS X, 648–649
matching, 209–213
overriding, 652–659

interleaved attributes, 101
internal formats, 138
interpolation, 44, 82

curves, 85
disabling, 342
Hermite, 198
linear, 83
perspective-correct, 344, 345
splines, 88
and storage qualifiers, 342–345

Interrupt Service Routine. See ISR
invocations, 188
iOpenGL, 734–744
iOS

C++, 737
configuring, 734–736
GLKit, 737–738
GLSL (OpenGL Shading Language), 740–741

IRIS GL (Integrated Raster Imaging System
Graphics Library), 682

isoline spirals tessellation evaluation shader
listing (8.7), 292

784 Index

ISR (Interrupt Service Routine), 593
items, work, 47
iterating over elements of gl_in[] listing (8.18), 312

jaggies, 384
Julia set, 566–568

Khrones Group, 706–707
Khronos Texture File format, 529
Kilgard, Mark J., 680
knots, 87n4
.KTX (Khronos TeXture) format, 144, 145
ktxtool utility, 759–761

languages, overview of, 188–201
layers, 162

abstraction, 4, 5
rendering, 370–376
rendering using a geometry shader listing

(9.9), 372
layouts

columns, 60
qualifiers, 29, 104, 370

binding, 118
control points, 33
depth, 356, 357
format, 169
geometry shader, 311
location, 370

shared, 110
standard, 110, 116

length
of grass, 245
of vectors, 57

levels, 138
generating mipmapping, 157

libraries, math, 54, 59, 61
light bloom, 409–414
lighting a fragment using data from a G-buffer

listing (12.30), 553
lighting models, 504–544

Blinn-Phong lighting model, 513–515
environment mapping, 522–532
normal mapping, 518–522
Phong lighting model, 504–513
rim lighting, 515–517

light spaces, occluding, 559
linear interpolation, 83
linear texturing, 245
lines, 82

clipping, 276–282
parallel, 80
smoothing, 385

links
makefiles, 687
programs, 204–206

Linux, 682–704
applications, building, 687–693
applying contexts, 699–701
config management and visuals, 689–693
GLX

creating windows, 701–704
strings, 695

history of, 682–683
managing contexts, 695–699
rendering, 693–694
starting, 683–687
windows, 693–694
X Window System, 683

loading
2D array textures, 163–165
a cube map texture listing (12.12), 528–529
a .KTX file listing (5.37), 145
objects from files, 102–103
textures, 144–148, 665–667

local work groups, 47, 440–441, 444
locations, 104

uniforms, 114
of vertex attributes to zero, 29

locks, gimbal, 72, 76
logical operations, 363–364
logs, Event Trace Logs, 592
lookout matrix, 77–79
loops

main, 633
rendering, 273

Mac OS X, 647–681
CGL (Core OpenGL), 674–675
Cocoa, 649–662
full-screen rendering, 675–677
GLUT (OpenGL Utility Toolkit),

680–681
interfaces, 648–649
multi-threaded OpenGL, 679–680
OpenGL on, 647–681
rendering in, 660
retina displays, 673–674
sync frame rates, 677–679

macros, APIENTRY, 583
magnification filters, 152
main body of the flocking update compute

shader listing (10.14), 468–469
main() function, 311
main loops, 633
makefiles, 687
managing

config management and visuals,
689–693

context, 695–699, 725–726
viewports, 660

Mandelbrot sets, 566
mantissa bits, 189

Index 785

mapping
buffers, 600–603
a buffer’s data store listing (5.3), 95
bump, 518
displacement, 300
environment, 522–532

cube maps, 527–532
equirectangular, 525–527
spherical environment maps,

523–525
gloss maps, 533
GPU PerfStudio 2, 594
normal, 518–522, 554–556, 605
rendering to cubes, 375–376
shadows, 534–540
tone, 404–409
vertex shader inputs, 228

marching rays, 560
masking colors, 363–364
matching interfaces, 209–213
material properties, 532–534
math, 49

3D math with GLKit, 667–669
built-in functions, 197–199
curves, 83–87
fixed-point, 716–718
library, 54, 59, 61
matrices, construction and operators,

60–63
operators, 54–58
quaternions, 75–76
splines, 87–90
transformations, 63–82

concatenation, 73–75
model-view transforms, 76–79
projection, 79–81

vectors, 51–54
matrices, 53, 58–60, 190–192

built-in functions, 195–197
construction, 60–63
drawing commands, 232
frustrum, 82
identity, 67–68
lookout, 77–79
operators, 60–63
perspective, 81
rotation, 70–72
scaling, 72–73
shadows, 538
transformations, 62, 66
translation, 68–70
uniforms, 107–108

member variables, 21
memory

access synchronization, 129–133
allocation using buffers, 92–95
atomic operations, 128–129

bandwidth, 178, 549
hazards. See hazards
optimization, 613–616

Mesa, 682, 685
messages

debug, 586, 587
loops, 633

methods, 14, 194
minification filters, 152
mipmapping, 138, 153–155

cube map support, 529
example program, 158
filtering, 155–157
levels, 157–158

mobile platforms, 705–744
Android development environments,

729–734
EGL, 718–728
gamers, 729
iOpenGL, 734–744
negotiating embedded environments,

728–729
OpenGL ES, 705–709
OpenGL ES 3.0, 709–713

models
lighting, 504–544

Blinn-Phong lighting model, 513–515
environment mapping, 522–532
normal mapping, 518–522
Phong lighting model, 504–513
Rim lighting model, 515–517

SBM model file format, 751–757
transformations, 63, 67

model space, 64
model-view transforms, 76–79, 667
modes

filtering, 148
parameters, 265
separable, 207
wrapping, 148

modifying
geometry in geometry shaders, 320–322
the primitive type in geometry shaders,

325–328
monolithic program objects, 206
movement keys, 671
MSAA (multi-sample antialiasing), 387–389
multi-dimensional arrays, 194
multiple framebuffer attachments, 368–370
multiple GPUs, 609–611
multiple interleaved vertex attributes listing

(5.8), 102
multiple separate vertex attributes listing (5.7),

101
multiple streams of storage, 328–329
multiple textures, 150–151
multiple threads, 611–613

786 Index

multiple vertices, 24
attributes, 225
shader inputs, 100–102

multiple viewport transformations, 336–340
multiplication, 62

coordinate spaces, 63–66
matrices, 62
model-view transformations, 76–79
quaternions, 75–76

multi-sampling, 46n3
aliasing, 140
antialiasing, 387–389
textures, 389–393

multi-threaded OpenGL, 679–680
multi versions of functions, 252

naïve rotated point sprite fragment shader
listing (9.34), 427

names, 92, 138
NaN (Not a Number), 189, 200
NDC (Normalized Device Coordinate) Space,

64, 66
negative reflections, 506
negotiating embedded environments,

728–729
new primitive types introduced by geometry

shaders, 329–336
Newton’s laws, 269, 270, 271
noninstanced rendering, 245–250
non-photo-realistic rendering, 544–547
normalization, 52

buffers, 98
functions, 200
positive values, 226

Normalized Device Coordinate Space. See NDC
Space

normalized device spaces, 39
normal mapping, 518–522, 605

deferred shading, 554–556
normals, finding, 328
Not a Number (NaN), 189, 200
NSOpenGL, 648, 652–659
NULL pointers, 94
NVIDIA drivers, 625, 682
Nyquist rate, 384

objects
buffers, storage, 251
container, 603
coordinates, 64–65
display objects and X Window System, 689
files, loading, 102–103
framebuffers, 366
instancing, 237–250
list chunks, 756
monolithic program, 206
program pipeline, 207, 608

programs, 17
queries, 474
rotation, 70–72
samplers, 148
separable program, 608
shaders, 17
space, 64
stacks, 575
sync, 494
TBO (texture buffer object), 266, 269
texture, 148
UBO (Uniform Buffer Object), 108
VAOs (vertex array objects), 272

object-space coordinate data, 605
occlusion

ambient, 558–565
queries, 475–484

off-screen rendering, 364–384
offsets, 250

polygons, 540
opacity fragments, 15
OpenGL

Mac OS X on, 647–681. See also Mac OS X
multi-threaded, 679–680
in Windows, 623–647. See also Windows

OpenGL ES, 705–709, 713–718
OpenGL ES 3.0, 709–713
OpenGL Shading Language. See GLSL
operating systems. See platforms
operators

AND, 47
comparison, 352
matrices, 60–63
OR, 47
standard, 192
vectors, 54–58

optimization
compute shaders, 437–472
with extensions, 619–622
memory, 613–616
performance. See performance optimization

orientation, calculating, 257
origin of OpenGL, 6–10
OR operator, 47
orthographic projections, 80, 81, 83
orthonormal, 519
outputs

colors, 357–364
compute shaders, 441–444
graphics, 627
groups, 296
vertex shaders, 229–230

outputting information about the OpenGL
context listing (14.12), 660

overdraw, 548
overloading functions, 15, 143, 166, 194
overriding NSOpenGL, 652–659

Index 787

packed data formats, 227
packed vertex attributes, 247
packets

DMA, 593
present, 593
standard queue, 592

parallax, 379
parallelism, 4, 42
parallel lines, 80
parallel prefix sum (compute shader example),

450–462
parallization, 450–462
parameters

domains, 334
mode, 265
points, 423–424

passing data between tessellation shaders,
296–299

pass-through
geometry shaders, 311–313
vertex shader listing (8.25), 323
vertex shader that includes normals listing

(8.30), 326
patches, 284, 340

cubic Bézier patches (tessellation example),
304–310

domains, 306
processes, 284

Paul, Brian, 682
pausing transform feedback, 264–266
performance

counters, 597
increasing fill, 678–679
optimization, 581, 589–616, 597–616

performance analysis tools, 589–597
GPU PerfStudio 2, 594–597
GPUView, 590–594
WPT (Windows Performance Toolkit),

590–594
per-fragment lighting, calculating, 518
per-indirect draw attribute setup listing (7.13),

255
per-instance rotations, calculating, 163
per-patch inner/outer tessellation factors, 284
perspective

coordinates, 66
division, 39
matrices, 81
perspective-correct interpolation, 344–345
projections, 80, 81, 82

perturbations, random, 242
per-vertex lighting (Gouraus shading), 509
Phong lighting model, 504–513
Phong shading, 509–513, 519, 521

fragment shader listing (12.4), 511–512
vertex shader listing (12.3), 510–511

physical simulation example, 266–275

pipelines, 10–11, 17, 27–48
clipping, 38–39
compute shaders, 47–48
fragment shaders, 42–45
framebuffer operations, 45–47
geometry shaders, 36–38
graphics, 4–6
interface blocks, 31–32
tessellation, 32–36
vertices

passing data from stage to stage,
29–32

passing data to shaders, 28–29
pixels, 10–11, 17

advanced formats, 643
calculating, 385
centroid sampling, 396, 397
counting, 480
enumerating formats, 640–641
format attributes, 643–644
formatting, 630–632
Phong shading, 521

platforms, 617
extensions, 618–622
Linux, 682–704
Mac OS X on, 647–681. See also

Mac OS X
mobile, 705–744
Windows, 623–647. See also Windows

pointers, 15
functions, 622
NULL, 94

point mode, tessellation, 292–294
points

binding, 117, 262
clipping, 276
control, 83, 284, 304
parameters, 423–424
rotation, 426–428
shaped, 424–426
sizing, 22
sprites, 419–428
textures, 420
variables, 230

polygons
concave, 10
offsets, 540
smoothing, 386

portability of functions, 633
positioning

antialiasing sample, 387
calculating, 257
control points, 284
grass, 241
math, 51

positive value normalization, 226
predication, 481

788 Index

prefix sum, 450–462
implementation using a compute shader

listing (10.6), 453
pre-fragment tests, 345–357
pre-optimizing shaders, 609
present packets, 593
primitive mode tessellation, 285–294
primitiveMode values, 265
primitive processing, 283–340

communication between shader
invocations, 299

cubic Bézier patches (tessellation example),
304–310

geometry shaders, 310–340
terrain rendering (tessellation example),

300–304
tessellation, 284–310

primitives, 10–11
assembly, 10, 36, 175
degenerate, 24
restart, combining geometry, 235–237
types, adjacency, 340

printing interface information listing (6.4), 212
processes

back end, 11, 341
fragments, 341–435
front end, 10
primitive, 283–340. See also primitive

processing
vertices, 224–230

processors
GPUs (Graphics Processing Units), 5
graphics, 218, 594

producing
lines from normals in the geometry shader

listing (8.32), 327
multiple vertices in a vertex shaders listing

(2.8), 24
products

cross, 56–57
dot, 54–55
inner, 54–55
vectors, 55

profiles, 9. See also core profiles
programmable stages, 28
programs, 13, 187. See also applications

binaries, 216–219, 609
compiling, 201–219
compute, 438. See also compute shaders
linking, 204–206
monolithic objects, 206
objects, 17
pipeline objects, 207, 608
separaable, 206–213
shaders, 5

projection
matrices, 123

orthographic, 419
perspective, 76, 80, 667
transformations, 79–81

properties, material, 532–534
pseudo-code

for glDrawArraysInstanced() listing (7.5),
240

for glDrawElementsInstanced() listing (7.6),
240

publication dates, 7
pulling vertices, 28
pushing a face out along its normal listing

(8.24), 321

quadratic Bézier curves, 85, 86
quadratic equations, 86
quads (quadrilaterals)

geometry shaders, rendering using, 332–336
tessellation using, 285–288

qualifiers
binding layout, 119
centroid, 395
format layout, 169
layout, 29, 104, 370
storage, interpolation and, 342–345

Quartz, 647
quaternions, 72, 75–76
queries, 474–493

extension functions, 622
GLX, 700–701
indexed, 489–490
objects, 522

result availability, 475
retrieving, 476
timer, 484
transform feedback, 487–489

occlusion, 475–484
results, 476–480, 490–493
timer, 484–487
transform feedback, 487–493

queues
CPU, 590
drain, 591
hardware, 590
software, 590
standard queue packets, 592

race conditions, 446, 447
radians, 199
random perturbations, 242
rasterization, 41–42

back end processes, 341
OpenGL ES 3.0, 712

rasterizers, 10
discard, 273
guards bands, 278

Index 789

rates, sync frame, 677–679
RAW (Read-After-Write), 129
ray-plane intersection test listing (12.38), 578
rays, 560, 568–580
ray-sphere intersection test listing (12.36), 572
RC (rendering context), 628, 632–634
Read-After-Write (RAW), 129
reading

back texture data, 434–435
from a framebuffer, 429–431
state or data from OpenGL, 597–600
textures, 148–165
from textures in GLSL listing (5.35), 141

Realtech VR OpenGL Extensions Viewer, 619
rectangles

prefix sums, 460
textures, 140n4

redeclaration of fragments, 356
Red-Green Texture Compression (RGTC), 179
redirecting the current folder to point our

resources listing (14.21), 742–743
reflection, 57–58, 507
reflectivity, 504
refraction, 57–58
RegisterClass function, 628
registering a window class listing (14.1), 628
rendering, 503

3D graphics, 630
AFR (alternate frame rendering), 610
with all blending functions listing (9.3),

359–360
alternative rendering methods, 548–580
Android projects, 731–734
asteroids, 257
atmospheric effects, 540–544
casting shadows, 534–540
conditional, 481, 598
context. See RC
cube maps, 375–376, 529
data driven engines, 613
deferred shading, 548–558
environment mapping, 522–532
full-screen, 644–645, 675–677
HDR (High Dynamic Range), 403–404
instancing, 238, 245–250, 249
Julia fractals, 566–568
layers, 370–376
lighting models, 504–544
Linux, 693–694
loops, 273

for the Alien Rain sample listing (5.43), 164
for the flocking example listing (10.10), 465
listing (5.23), (5.26), 123, 125–126

in Mac OS X, 660
material properties, 532–534
to multiple viewports in a geometry shader

listing (8.36), 338–339

with no attachments, 399–401
noninstanced, 245–250
non-photo-realistic, 544–547
off-screen, 364–384
pipelines. See pipelines
quads (quadrilaterals) using geometry

shaders, 332–336
scissor tests, 347
screen-space techniques, 558–565
single points listing (2.7), 22
single triangles listing (2.9), 25
sky boxes, 531
starfields, 420–423
in stereo, 379–384
Stonehenge, 663–665
surfaces, 725
synchronization, 726–727
terrain, 300–304
a texture listing (9.5), 367–368
textures, 610
to two layers with a geometry shader listing

(9.16), 382–383
when query results aren’t available listing

(11.4), 480
without a TCS (tessellation control shader),

298–299
without triangles, 565–580

render() method, 14
resolution, retina displays (Mac OS X),

673–674
resources

3D graphics books, 748
OpenGL books, 747–748
web sites, 748–749

restarting geometry and primitives, 235–237
results

primitive queries, 490–493
queries, 476–480

retina displays (Mac OS X), 673–674
retrieving

compiler logs from a shader listing (6.1),
202–203

indices of uniform block members listing
(5.12), (5.15), 112, 115

information about uniform block members
listing (5.13), 113

a program binary listing (6.7), 217–218
return values, framebuffer completeness, 378
RGTC (Red-Green Texture Compression), 179
rim lighting, 515–517

shader function listing (12.6), 516
rotated point sprites

fragment shader listing (9.36), 427
vertex shader listing (9.35), 427–428

rotation
matrices, 70–72
points, 426–428

790 Index

roughness, 533
rules, uniform blocks, 111

samples
centroid sampling, 395–399
coverage, 391–393
multi-sample

antialiasing, 387–389
textures, 389–393

objects, 148
parameters, 149
rate shading, 393–395
types, 142
variables, 141

sampling rates, 384
SB6

sb6GetProcAddress(), 622, 635
sb6IsExtensionSupported(), 620, 622

sb6mtool utility, 762–764
SBM model file format, 751–757

chunk headers, 752
defined chunks, 752–756
examples, 757
file headers, 751–752

scalability, 4, 67
scalars, 105–106, 188–189
scaling matrix, 72–73
scissor tests, 46, 345–348
screen-space techniques, 558–565
searching bind sections of buffers, 262
segments, fractional, 295
selecting

OpenGL ES versions, 708–709
pixel formats, 631–662, 654

selectors, 150
separable mode, 207
separable program objects, 608
separate attributes, 100
separate programs, 206–213
serialization, 129
servers (X Window System), 693
sets

julia, 566–568
Mandelbrot, 566

setting. See also configuration
the debug callback function listing (13.2), 583
single floats in uniform blocks listing

(5.14), 114
up a full-screen window listing (14.9), 645
up a layered framebuffer listing (9.8), 371
up a multisample framebuffer attachment

listing (9.20), 390
up and rendering Android listing (14.19), 733
up an FBO with multiple attachments listing

(9.6), 369–370
up a shadow matrix listing (12.20), 538
up a simple framebuffer object listing (9.4), 367

up atomic counter buffers listing (5.29),
(5.30), 134

up cube geometry listing (5.20), 121–122
up indexed cube geometry listing (7.2), 233
up indirect draw buffers for Asteroids listing

(7.11), 254
up matrices for shadow mapping listing

(12.19), 536
up matrices in uniform blocks listing (5.17),

116
up scissor rectangle arrays listing (9.1),

346–347
up the “Explode” geometry shader listing

(8.23), 321
up the julia set renderer listing (12.33), 567
up the “Normal Visualizer” geometry shader

listing (8.31), 326–327
up the “Tesellator” geometry shader listing

(8.26), 323
up vertex attributes listing (5.4), 99
values of subroutine uniforms listing (6.6),

216
SGI (Silicon Graphics, Inc.), 6, 682
shaders, 5, 187

applying, 16–23
barriers, 132–133
blocks, storage, 126–133
communication between invocations, 299
compiling, 218, 606–609
compute, 47–48, 437–472

applying, 438–439
communication, 444–449
examples, 450–471
executing, 439–444
flocking, 462–471
synchronizing, 445–449

cores, 5
fragments, 42–45, 342–345
geometry, 36–38, 310–340

changing the primitive type in, 325–328
discarding geometry in, 317–320
generating geometry in, 322–325
layered rendering, 371
modifying geometry in, 320–322
multiple streams of storage, 328–329
multiple viewport transformations,

336–340
new primitive types introduced by,

329–336
pass-through, 311–313
storage blocks, 126, 129
tessellation. See tessellation
using in an application, 313–317
vertex. See vertex shaders

objects, 17
OpenGL ES 3.0, 710–712
pre-optimizing, 609

Index 791

shaders (continued)
subroutines, 213–216
TCS (tessellation control shader), 284
TES (tessellation evaluation shader), 284
tessellation

control, 33–34
evaluation, 34–36
passing data, 296–299

textures
reading from in, 141–144
writing to in, 165–176

vertices, 24
feeding from buffers, 97–103
inputs, 224–229
multiple inputs, 100–102
outputs, 229–230
passing to data to, 28–29

shading
cell, 545–547
deferred, 548–558

downsides to, 556–558
normal mapping, 554–556

Gouraud, 507
Phong, 509–513, 519
sample rate, 393–395

shadows
casting, 534–540
mapping, 534–540
matrix, 538
sampler, 535

shaped points, 424–426
shared memory, 445
sharing

exponents, 181
layouts, 110
variables, 444

shininess factor, 506
shutting down applications, 21
side effects, 443
signaled states, 494
signed areas, 40
signed integers, 189
Silicon Graphics, Inc. (SGI), 6, 680
simple

application side conditional rendering
listing (11.3), 479

do-nothing compute shader listing (3.13), 47
instanced vertex shader listing (7.8), 247
isoline tessellation control shader example

listing (8.5), 291
isoline tessellation control shader example

listing (8.6), 291
multisample maximum resolve listing

(9.21), 391
prefix sum implementation in C++ listing

(10.5), 450
quad tessellation control shader example

listing (8.1), 287

quad tessellation evaluation shader example
listing (8.2), 287–288

simplified fragment shader for shadow
mapping listing (12.22), 539

simplified vertex shader for shadow
mapping listing (12.21), 538

triangle tessellation control shader example
listing (8.3), (8.4), 289, 290

vertex shader with pre-vertex color listing
(7.7), 246

single buffering, 661
sizing

input arrays, 315
points, 22
variables, points, 230

sky boxes, 529, 531
smoothing

inputs, 342
lines, 385
polygons, 386

SoAs (structure-of-arrays), 101
software queues, 590
source code for a simple geometry shader listing

(8.16), 311
source factors, 358
spaces, color, 416–418
specifications, CGL (Core OpenGL), 625n3
specifying

bindings for uniform blocks listing
(5.18), 119

data for arrays in uniform blocks listing
(5.16), 115

varyings, 260
specular albedo, 512
specular highlights, 505–509
speed, tuning applications for, 597–616
spherical environment mapping, 523–525

fragment shader listing (12.10), 524
vertex shader listing (12.9), 523–524

spinning cube
fragment shader listing (5.25), 124
vertex shader listing (5.24), 123

splines, 82, 87–90
spring mass system

example, 266
iteration loop listing (7.18), 273
rendering loop listing (7.19), 273
vertex setup listing (7.16), 269
vertex shader listing (7.17), 271–272

sprites, points, 419–428
sRGB color spaces, 416–418
SSAO (screen space ambient occlusion), 559
stacks, implementing, 575
stages, 5

fixed-function, 5
shaders, 17

standard layouts, 110, 116
standard operators, 192

792 Index

standard queue packets, 592
starfields, rendering, 420–423
starting

applications, 21
Linux, 683–687
transform feedback, 264–266

state, OpenGL ES 3.0, 713
stencil tests, 46, 348–351
stereo, rendering in, 379–384
Stonehenge, 663–665
stopping transform feedback, 264–266
storage

buffer objects, 251
multiple streams of, 328–329
qualifiers

interpolation and, 342–345
patch, 445
shared, 445

shaders, blocks, 126–133
transforms, vertices, 259–275

strings
EGL, 727
GLX, 695

structure-of-arrays (SoAs), 101
structures, 192–194

acceleration, 579
VERTEX, 225

subdivision modes, tessellation, 294–296
subroutines, shaders, 213–216
subsystems, destination, 132
summed area tables, 456, 460
sums, prefixes, 450–462
support

core profiles, 652
hardware, 625
ICD (Installable Client Driver), 624, 626
on Linux, 684

surfaces, render, 626, 693–694, 725
SwapBuffers() command, 593
swap values, buffers, 637
swizzling, 191
sync frame rates, 677–679
sync objects, 494
synchronization, 493–498

access
to atomic counters, 137
to images, 176–177
to memory, 129–133

compute shaders, 445–449
and fences, 494–498
GLX, 699
rendering, 726–727

tables, summed area, 456, 460
taking a screenshot with glReadPixels() listing

(9.37), 430–431
tangents

space normals, 554

vectors, 519
targets, 92, 137, 139–140
TBN (Tangent, Bitangent, Normal) matrix, 519,

555
TBO (texture buffer object), 266, 269
TCS (tessellation control shader), 284, 298–299,

595
for terrain rendering listing (8.9), 302–303

terrain, rendering, 300–304
TES (tessellation evaluation shader), 34–36,

284, 595
for terrain rendering listing (8.10), 303

tessellation, 32–36, 284–310
control shaders, 33–34
engines, 34
evaluation shaders, 34–36
examples

cubic Bézier patches, 304–310
terrain rendering, 300–304

isolines, 290–292
point mode, 292–294
primitive modes, 285–294
quads (quadrilaterals), 285–288
shaders, passing data, 296–299
subdivision modes, 294–296
triangles, 288–290

tessellation control shader. See TCS
tessellation evaluation shader. See TES
tests

depth, 46, 351–355
early testing, 355–357
FBOs (user-defined framebuffers), 379
pre-fragment, 345–357
scissor, 46, 345–348
stencil, 46, 348–351

texels as light, 545–547
texture buffer object. See TBO
textures, 19, 137–185

1D, 244
arrays, 160–165, 163–165, 370
attaching, 367
base level, 154
border color, 159
compression, 177–181, 606
coordinates, 146–148, 529
copying data into a, 433–434
files, loading from, 144–148
filtering, 151–153
floating-point, 402–403
formatting, 138–139
initializing, 138–139
linear, 245
loading, 665–667
max level, 154
multiple, 150–151
multi-sample, 389–393
objects, 160
OpenGL ES 3.0, 712

Index 793

textures (continued)
points, 420
a point sprite in the fragment shader listing

(9.30), 420
reading, 148–165, 434–435
rendering, 610
shaders

reading from in, 141–144
writing to in, 165–176

stars, 420
targets, 139–140
TBO (texture buffer object), 266, 269
views, 181–185
wrap mode, 158–160

threads, multiple, 611–613
three-component vertices, 53
tightly packed arrays, 101
timer queries, 484–487
timeslicing, 446
timing operations

using glQueryCounter() listing (11.8),
485–486

using timer queries listing (11.7), 484–485
tokens, 96, 226
tone mapping, 404–409
tools, 759–764

dds2ktx utility, 761–762
GLUT (OpenGL Utility Toolkit), 680–681
ktxtool utility, 759–761
performance analysis, 589–597
Realtech VR OpenGL Extensions Viewer, 619
sb6mtool utility, 762–764

toon fragment shader listing (12.26), 546–547
toon vertex shader listing (12.25), 546
transfer curves, tone mapping, 407
transformations

concatenation, 73–75
coordinates, 66–73
coordinate spaces, 63–66
geometry, 63
matrices, 62, 66

rotation, 70–72
scaling, 72–73
perspective, 68–70

models, 63
model-view, 76–79, 667
multiple viewport transformations, 336–340
order of, 105
overview of, 63–82
projection, 79–81
uniforms, geometry, 121–126
vertices, storage, 259–275
view, 76
viewports, 76

transform feedback
applying, 260–265
ending the pipeline with, 266

physical simulation example, 266–275
queries, 487–493
starting, pausing, and stopping, 264–266

translation, 68–70
transparency, 558
transposing images, 412
traversing a linked-list in a fragment shader

listing (5.46), 175–176
triangles, 10

clipping, 277, 278
drawing, 24–25
GL_TRIANGLES_ADJACENCY primitive mode,

330, 331
guard bands, 278–279
rendering without, 565–580
tessellation using, 288–290

troubleshooting, 581
tuning applications for speed, 597–616
turning on line smoothing listing (9.18), 386
types

buffers, assigning to, 92
data, 188–194
elements, 193
matrices, 190–192
of projection transformations, 79–81
samplers, 132
scalars, 188–189
textures, 139–140
tokens, 96
vectors, 190–192
vertex attributes, 226

UBO (Uniform Buffer Object), 108
unary negation, 76
under sampling data, 384
uniform blocks binding layout qualifiers listing

(5.19), 119
Uniform Buffer Object. See UBO
uniforms, 103–126

arrays, 106
blocks, 108–121
buffers, 92, 109
default block, 104–105
geometry, 121–126
matrices, 107
subroutines, 213, 215

units
images, 167
textures, 137
vectors, 52

unpacking data from a G-buffer listing (12.29),
552

unsignaled states, 494
unsigned integers, 189
updating

the content of buffers listing (5.2), 94
depth buffers, 352–353

794 Index

projection matrices listing (5.22), 123
stencil buffers, 351
texture data listing (5.34), 138–139
uniforms, 108
vertex attributes listing (3.2), 29

user-defined clipping, 279–282
user-defined framebuffers. See FBOs
using. See also applying

attributes in vertex shaders listing (5.5), 99
a function to produce faces in a geometry

shader listing (8.29), 324
a gradient texture to color a julia set listing

(12.35), 568
results of atomic counters in uniform blocks

listing (5.32), 136
shader storage blocks in place of vertex

attributes listing (5.28), 127–128
shader storage blocks listing (5.28), 127–128

utilities. See tools

values, 15
averaging, 456
coverage, 392
interpolation, 44
normalization, 226
primitiveMode, 265
return, framebuffer completeness, 378

Van Verth, James, 718
VAOs (vertex array objects), 20, 97, 272, 595
variables

built-in, 24
filtering, 457
images, 165
members, 21
point sizes, 230
sampler, 141
sharing, 444

varyings, 260, 261
centroid sampling, 395
per-patch user-defined, 284

vectors, 15, 51–54, 190–192
bittangent, 519
Boolean, 196
built-in functions, 195–197
homogenous, 53
length of, 57
operators, 54–58
Phong lighting, 506
products, 55
reflection, 507
rim lighting, 516
tangent, 519
uniforms, 105–106
unit, 52

vendor extensions, 618, 728
versions, 7

development (OpenGL ES), 707–708

vertex array objects. See VAOs
vertex shaders, 22, 24, 595. See also shaders

for the Alien Rain sample (5.41), 162–163
with an output listing (3.3), (3.11), 30, 44
for cube map environment rendering

listing (12.15), 531
feeding from buffers, 97–103
inputs, 224–229
inputs for Asteroids listing (7.12), 255
multiple inputs, 100–102
for normal mapping listing (12.7), 520
with output interface blocks listing (3.5), 31
outputs, 229–230
with single texture coordinate listing

(5.38), 147
for sky box rendering listing (12.13), 530
for the star field effect listing (9.31), 422
for terrain rendering listing (8.8), 301

VERTEX structure, 225
vertices

attributes, 28–29, 97
basevertex, adding, 234–235
buffers, 92
clipping, 38–39
connections, 267
data chunks (SBM model file format),

753–755
fetching, 28
multiple, 24
OpenGL ES 3.0, 709
per-patch, 284n1
pipelines

passing data from stage to stage, 29–32
passing data to shaders, 28–29

processing, 224–230
shaders. See vertex shaders
transforms, storage, 259–275

viewing
images in stereo, 380
normals, 328
Realtech VR OpenGL Extensions Viewer, 619
retina displays (Mac OS X), 673–674
X Window System, 704

viewports
managing, 660
multiple, 336–340
transformation, 39–40

views
adding, 650–652
coordinates, 65–66
model-view transforms, 667
space, 64, 555n6
textures, 181–185
transformations, 76–79

visuals
config management and, 689–693
tearing, 646, 678

Index 795

vmath::perspective function, 82
vmath::rotate function, 72
volume, 140

clipping, 276
local work groups, 441

vsync, 591

WAR (Write-After-Read), 131
warnings, shaders, 203
WAW (Write-After-Write), 131
web sites, 748–749
WGF (Windows Graphics Foundation), 627
WGL (Windows-GL), 623, 634–639

wglChoosePixelFormatARB(), 638–641
wglCreateContext(), 633, 635, 641
wglCreateContextAttribsARB(), 641, 642,

643, 646
wglDeleteContext(), 646
wglGetExtensionsStringARB(), 635
wglGetPixelFormatAttribARB(), 644
wglGetPixelFormatAttribfvARB(), 640
wglGetPixelFormatAttribivARB(), 640, 644
wglGetProcAddress(), 636, 646, 725
wglMakeCurrent(), 611, 612, 633
wglSwapIntervalEXT(), 646

whole framebuffer completeness, 377
Win32, 623
winding order, 41, 296
windows

child windows (in Cocoa), 671
coordinates, 40
EGL, 720
formatting, 628–630
GLX, 701–704
Linux, 693–694
space, 64
surfaces, 626

Windows-GL. See WGL
Windows Graphics Foundation. See WGF
Windows main message loop listing (14.5), 633

Windows operating systems, 623–647
basic setup, 627–632
graphics drivers, 624–626
Windows 95, 623
Windows NT version 3.5, 623
Windows Vista, 626

Windows Performance Toolkit. See WPT
Windows Presentation Foundation. See WPF
workgroups, 47

maximum size of, 440–441
working while waiting for a sync object listing

(11.10), 495
work items, 493
world coordinates, 65
world space, 64
WPF (Windows Presentation Foundation), 627
WPT (Windows Performance Toolkit), 590–594
wrapping

modes, 148
textures, 147, 148, 158–160

Write-After-Read (WAR), 131
Write-After-Write (WAW), 131
writing to a G-buffer listing (12.28), 551

XCloseDisplay(), 689
Xcode, 649, 739–740
XCreateWindow(), 693, 694, 702
XDestroyWindow(), 694
XFree(), 692, 693
XOpenDisplay(), 689, 690
XOR operator, 47
X Window System, 683

display objects and, 689
full-screen views, 704
GLX-interfacing with, 688–689

y-axis, 243

z-axis, 76
zeroes, 24

796 Index

	Contents
	Figures
	Tables
	Listings
	Foreword
	Preface
	About This Book
	The Architecture of the Book
	What’s New in This Edition
	How to Build the Samples
	Errata

	Acknowledgments
	About the Authors
	8 Primitive Processing
	Tessellation
	Geometry Shaders
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

