
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321889119
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321889119
https://plusone.google.com/share?url=http://www.informit.com/title/9780321889119
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321889119
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321889119/Free-Sample-Chapter

Learning iCloud
Data Management

The Addison-Wesley Learning Series is a collection of hands-on programming

guides that help you quickly learn a new technology or language so you can

apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in

the text. This code is fully annotated and can be reused in your own projects

with no strings attached. Many chapters end with a series of exercises to

encourage you to reexamine what you have just learned, and to tweak or

adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and

leave you with the ability to walk off and build your own application and apply

the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning iCloud
Data Management

A Hands-On Guide to Structuring
Data for iOS and OS X

Jesse Feiler

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial cap-
ital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Feiler, Jesse.
 Learning iCloud data management : a hands-on guide to structuring data for iOS and
 OS X / Jesse Feiler.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-321-88911-9 (paperback : alkaline paper)
 1. iCloud—Handbooks, manuals, etc. 2. Cloud computing—Handbooks, manuals, etc.
3. Database management—Handbooks, manuals, etc. 4. iOS (Electronic resource)—
Handbooks, manuals, etc. 5. Mac OS—Handbooks, manuals, etc. I. Title.
 QA76.585.F45 2014
 004.67’82—dc23
 2013043333

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or
you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88911-9
ISBN-10: 0-321-88911-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, February 2014

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Development
Editor
Michael Thurston

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Project Editor
Anna Popick

Copy Editor
Carol Lallier

Indexer
Jack Lewis

Proofreader
Anna Popick

Technical
Reviewers
Jon Bell
Erik Buck
Rod Strougo

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Shepherd, Inc.

Contents at a Glance

 Preface xvii

 Acknowledgments xxiii

 About the Author xxv

 Introduction 1

I Introducing iCloud 3

 1 Exploring iCloud and Its User Experience 5

 2 Setting Up iCloud for Development 17

II Using the APIs 33

 3 Introducing the APIs and the First Apps 35

 4 Working with the AddressBook API for Contacts 57

 5 Managing Calendars and Reminders with the
Event Kit API 69

 6 Protecting the Privacy of User Data 87

III Using the Technologies 95

 7 Introducing Blocks, Threads, and Notifications 97

 8 Using Key-Value Coding (KVC) 105

 9 Using Preferences, Settings, and Keychains
with iCloud 121

 10 Managing Persistent Storage with Core Data 133

 11 Using Xcode Workspaces for Shared
Development 157

 12 Adding Data to Apps with Bundles and
Resources 169

vi Contents at a Glance

IV Using iCloud Documents and Data 185

 13 Adding the iCloud Infrastructure 187

 14 Working with File Wrappers in iCloud 231

 15 Working with iOS Documents 273

 16 Working with OS X Documents 317

 17 Working with Core Data and iCloud 339

 18 Completing the Round Trip 349

 Index 379

Contents

 Preface xvii

 Acknowledgments xxiii

 About the Author xxv

 Introduction 1

I Introducing iCloud 3

 1 Exploring iCloud and Its User Experience 5

Looking at Cloud Computing 5

Understanding the iCloud Paradigm 7

Organizing Files by App 8

Managing Documents with iCloud, Time Machine,
and Auto Save 12

Syncing Data Across Devices 13

Making the Round Trip 14

Chapter Summary 14

Exercises 15

 2 Setting Up iCloud for Development 17

Managing App Security on iOS and OS X 18

Identifying Yourself and Your App on
developer.apple.com 18

Identifying Your User and Your Ubiquity Container
at Runtime 22

Looking Inside the iCloud Basics 23

Apple ID 24

Bundle Identifier 26

Entitlements and Capabilities 28

Ubiquity Container 30

Using iCloud in Your App 30

Chapter Summary 31

Exercises 32

viii Contents

II Using the APIs 33

 3 Introducing the APIs and the First Apps 35

Getting Started as an Apple Developer 35

Looking at the APIs 37

Introducing the Built-In Data Apps 38

Keeping Up with Apple 38

App Overview 40

Creating Separate Xcode Projects for iOS
and OS X 41

Wiring Up the Interfaces 50

Wiring Up the iOS Interface 51

Wiring Up the OS X Interfaces 54

Chapter Summary 55

Exercises 55

 4 Working with the AddressBook API for Contacts 57

Considering the AddressBook API on iOS and OS X 57

Sending Mail from the iOS App 58

Making Sure You Can Send Mail 59

Sending the Message 60

Checking That Mail Is Configured and the Internet
Is Available 63

Sending Mail from the OS X App 65

Using Property Lists for Storing and Syncing 65

Chapter Summary 66

Exercises 67

 5 Managing Calendars and Reminders with the
Event Kit API 69

Exploring the Event Class Hierarchy 70

Setting OS X Permissions 71

Working with the Calendar Database 72

Allocating and Getting Access to the Event
Store 72

Creating a New Event or Reminder 75

Searching for an Event or Reminder 76

Setting or Modifying Properties 77

Committing Changes 79

Contents ix

Adding a Reminder to the App on iOS 80

Adding an Event to the App on OS X 83

Chapter Summary 85

Exercises 85

 6 Protecting the Privacy of User Data 87

The Need for Privacy 87

Looking at Apple’s Rules and Guidelines 88

Best Practices in App Privacy 88

Know What Should Be Private 88

Use Good Programming Style to Enforce Privacy 89

Be Careful When Debugging 89

Ask Permission and Explain What You’ll Do
with the Data 90

Do Not Require Personal Data to Unlock
Your App 91

Add Extra Measures to Protect Minors 91

Provide Privacy for Support Materials 91

Consider User Issues 92

Chapter Summary 93

Exercises 93

III Using the Technologies 95

 7 Introducing Blocks, Threads, and Notifications 97

Catching Up with Blocks and Threads 98

Queues and Threads 98

Blocks 99

Getting Up to Speed with Notifications 100

Notification Properties 101

Registering for Notifications 101

Posting Notifications 102

Receiving Notification of iCloud Availability
Changes 102

Introducing the Second Project 103

Getting Ready to Move On 103

Chapter Summary 104

Exercises 104

x Contents

 8 Using Key-Value Coding (KVC) 105

Setting Up a Controlled Testing Environment 106

Implementing KVC 106

Testing iCloud on iOS Simulator 107

Preparing Your Project for Testing 108

Sharing the Key-Value Store for the Round Trip 110

Setting Up and Using
NSUbiquitousKeyValueStore 111

Looking at the Methods 111

Working with the Store 112

Preparing the User Interface 112

Setting Up the Store at Runtime 114

Monitoring Store Changes 116

Monitoring Interface Changes 118

Chapter Summary 120

Exercises 120

 9 Using Preferences, Settings, and Keychains
with iCloud 121

Using Property Lists 122

Looking at Property Lists 122

Looking Inside a Property List 125

Reading and Writing Property Lists 127

Using NSData Objects in Property Lists 127

Using Scalars in Property Lists 127

Working with User Defaults 128

Can the User Set Defaults? 128

How Frequently Are Defaults Changed? 129

Where Should the Defaults and Settings
Be Located? 129

How Do You Use iCloud with Your User
Defaults? 129

Registering Defaults 130

Chapter Summary 131

Exercises 131

 10 Managing Persistent Storage with Core Data 133

Understanding the Goals of Core Data 134

Understanding Object Graphs 134

Contents xi

Introducing Faulting 134

Introducing the Data Model 135

Structuring Data 135

Properties 135

Relationships 136

Normalizing Data 138

Denormalizing Data 139

Understanding How Core Data Works with iCloud 139

Introducing the Core Data Project 139

Using the Xcode Data Modeling Tool 142

Managing the Data Model 144

Working with Entities 145

Converting Entities to Objects 149

Using the Object 154

Examining the Core Data Stack 154

Chapter Summary 155

Exercises 155

 11 Using Xcode Workspaces for Shared
Development 157

Building on the Digital Hub 158

Reviewing Xcode File Management 159

Setting Up a Multiproject Workspace 162

Creating a Multiproject Workspace 163

Chapter Summary 167

Exercise 168

 12 Adding Data to Apps with Bundles
and Resources 169

Packages, Bundles, and Resources 169

Adding Files to Your App’s Bundle 172

Getting Files Out of the Bundle 175

Looking at Sandboxed Files 176

Setting Up Sandboxing 177

Looking Inside Sandboxing Containers on OS X 178

Writing to Your Sandbox 180

Including Property Lists 181

Adding the Property List to Your App 181

Reading the Property List into an NSDictionary 182

xii Contents

Including a Core Data Store 183

Chapter Summary 184

Exercises 184

IV Using iCloud Documents and Data 185

 13 Adding the iCloud Infrastructure 187

Exploring the Workspace for the App 188

Exploring iOS and OS X Document Architecture
Differences 190

Dealing with UI Differences 191

Designing the Shared App Folder Structure 191

Checking Out the End Result 192

Scoping the Project 194

Debugging iCloud Apps with developer.icloud.com 195

Building the App 199

Creating the Shared Folder 201

Constants.h 201

Constants.m 201

SharediCloudController.h 202

SharediCloudController.m 204

Creating the App’s Classes 215

AppDelegate 215

MasterViewController 217

DetailViewController 224

ReportDocument 227

Storyboards 230

Chapter Summary 230

Exercises 230

 14 Working with File Wrappers in iCloud 231

Exploring Files, File Wrappers, and Documents 231

Looking at Files 232

Exploring File Wrappers 232

Exploring Documents 233

How Users Manage iCloud Files 233

Contents xiii

Starting the Placid Project 236

Certificates, Identifiers, Devices, and Profiles
on developer.apple.com 237

Certificates, Identifiers, Devices, and Profiles
on Xcode 5 239

Adjusting the General Settings 241

Setting Images 242

Configuring Capabilities 242

Setting Document and Universal Type
Identifiers 244

Checking Build Settings 246

Writing the Code 246

AppDelegate 248

MasterViewController 250

DetailViewController 260

WrappedDocument 263

Working with the Storyboard 270

Chapter Summary 270

Exercises 270

 15 Working with iOS Documents 273

Planning the App’s Structure 274

Choosing between Navigation and Split View
Controller on iPad 274

Deciding on a Structure 275

Starting the Loon Project 276

Setting Project General Info 276

Setting Project Capabilities 278

Setting Up Documents 279

Adding Settings 280

Writing the Code 280

AppDelegate 280

MasterViewController 286

DetailViewController 301

WrappedDocument 306

FileRepresentation 314

Chapter Summary 315

Exercises 315

xiv Contents

 16 Working with OS X Documents 317

Evolution of NSDocument and UIDocument
Differences 317

Planning the Project 319

Starting the Chazy Project 321

Setting Up the App in Xcode 321

Changing Document to WrappedDocument 323

Adding an App Delegate (If Necessary) 325

Writing the Code 326

WrappedDocument 327

WindowController 334

Testing the App 337

Chapter Summary 338

Exercises 338

 17 Working with Core Data and iCloud 339

Looking at the iCloud Core Data Implementation 339

Using the Class Extension for the Snippets
in This Chapter 340

Using the Options Dictionary 340

Fallback Stores 341

Setting Up and Managing Persistent Stores 342

Setting Up a Persistent Store Asynchronously 342

Managing Persistent Store Changes 343

Managing Account Changes 344

Database Migration 345

Putting Data Model Changes in Perspective 345

Starting Over 346

Chapter Summary 348

Exercises 348

 18 Completing the Round Trip 349

How the User Sees the Round Trip 350

Working with the Open Dialog on OS X 350

Working with a Split View Controller on iOS 353

Examining iCloud Files in System Preferences
on OS X 355

Examining iCloud Files with Settings on iOS 356

Contents xv

How the Developer Sees the Round Trip 362

Using developer.icloud.com 362

Using Xcode 364

Configuring the Shared Ubiquity Container 366

Using a Shared iCloud Controller 368

Making the App Delegate Link to the Controller 369

Declaring the Shared iCloud Controller 369

Implementing the Shared iCloud Controller 370

Moving Documents to iCloud 376

Moving Documents from iCloud to Local Storage 377

Chapter Summary 378

Exercise s 378

 Index 379

This page intentionally left blank

Preface

 When Apple announces new products or new versions of its operating systems, there
is usually a big press event, and frequently there are lines of people waiting at Apple
stores. There’s generally a pattern to these announcements. In the case of the operating
systems, the major announcements are made at the Apple Worldwide Developers Con-
ference in June. In some years, developer previews of one or both operating systems
are made available earlier in the spring. Over the course of the summer, developer
releases are made available. Rumors of the availability of the new iPhone begin circu-
lating, and, sometime in the fall, Apple sends invitations to a media event to be held in
a week. At that event, a new version of iOS is shown to the public along with a new
iPhone. The public release of iOS comes a week later, followed by the availability of
the new iPhone. Later (often the following month) the process is repeated for the iPad,
Macs, and OS X.

This has been the schedule over the past few years, but there is no guarantee it
will be repeated. What is important to note is that there are specific dates for the
announcement and release of the products and operating systems. iCloud is a very
different matter. Over a number of years, Apple has built a significant hardware and
telecommunications support structure to power iCloud and its other network opera-
tions. As is the case with many such infrastructures, the details of it are kept confiden-
tial. We know the location of some of Apple’s data centers because they often require
building permits and other public documents and permissions, but they are usually
kept out of the public view. There has been no ribbon cutting or turning of a key
to launch iCloud—it has been a years-long process (and it will continue for years
to come).

In addition to the hardware infrastructure, iCloud has a software component. How-
ever, that, too, has been a years-long development process. As you will see in this
book, parts of iCloud are implemented in the user interface of the operating systems,
and other parts of it are implemented with relatively small changes to existing frame-
works and APIs. For developers as well as consumers, public announcements about
iCloud have been part of the announcements of new versions of the operating systems
as well as of hardware.

In short, iCloud is not a product: it’s a pervasive technology and a companywide
strategy for Apple. Unlike Apple’s hardware and software products, iCloud has no part
number and no version. It is part of products across the company.

Prefacexviii

For that reason, it is not easy to write about iCloud or to learn to develop for it.
This book was first envisioned in early 2012, but as it took shape, it became clear that
some of the most powerful pieces of iCloud were not yet in place. Rather than rush-
ing out a partial book and relying on the possibility of a revised edition sometime in
the future, Trina MacDonald and Addison-Wesley agreed to push back the publication
date so as to include the information from WWDC in June 2013, and I’m very grate-
ful to them for doing that.

As you will see, the book culminates in what I call the iCloud Round Trip. In the
final chapter, you’ll see how to build an iOS app and an OS X app that let you share
data via iCloud on both OS X and iOS. Having the tools to be able to implement the
Round Trip seems to me to be a good time to publish the book. That’s as close to a
product launch event as you can get in the world of iCloud.

Who Should Read This Book
This book is written for developers who want to explore iCloud. Because iCloud is
implemented in so many areas of the operating systems, you need a bit of familiarity
with many parts of Cocoa and Cocoa Touch. As the book presents iCloud, an attempt
has been made to at least summarize the various components that it touches. This
means that the discussion of a topic such as notifications is at a fairly high level: some
people will think “everyone knows that” and other people may think that more details
are needed.

The attempt has been to provide a medium road for both experts and novices in
the various Cocoa technologies that interact with iCloud. Apple’s documentation on
developer.apple.com provides the primary resource for more details if you feel you
need them. If you hit an area where you feel that you already know the topic, feel
free to skip to the details of iCloud. Even among engineers at Apple, there are many
areas of Cocoa that they know inside out (and may have written) and other areas with
which they’re not familiar.

In terms of skills and knowledge, you should have a basic knowledge of Cocoa
and/or Cocoa Touch as well as of Xcode. Objective-C is a must for understanding the
code. The author’s Sams Teach Yourself Objective-C in 24 Hours provides an introduction
to that topic.

In addition, you should have experience in using iCloud. It is always amazing how
many people attempt to develop for a technology that they have not used. There’s
nothing like hands-on user experience.

Downloading the Example Files
The example files for each chapter that has them can be downloaded from the
author’s site at http://northcountryconsulting.com and from http://informit.com/
title/9780321889119. In addition to the examples, you will find any updates and

http://northcountryconsulting.com
http://informit.com/title/9780321889119
http://informit.com/title/9780321889119

Preface xix

corrections on both sites. Some of the downloadable examples contain additional code,
such as an iPad interface in addition to the iPhone interface for Chapter 14, “Working
with File Wrappers in iCloud.”

The files are arranged by chapter, and they represent the code as of the end of the
chapter. Thus, in the cases where one chapter builds on the previous chapter’s code,
download the previous chapter and work through it to add the new chapter’s code.

iCloud requires code signing, so you’ll see in this book how to set up your proj-
ects to accomplish that. Note that the code in this book and in the downloadable
code contains code signing that will not work on your computer. You must use your
own developer credentials. Rather than leaving the code signing information blank, I
have used my own credentials (the password is not provided, and even the developer
account name has been changed). This means that the code will not run unless you
customize it for your own developer account. This is deliberate and necessary.

The code has been written against Xcode 5.0 and OS X Mavericks (10.9).

How This Book Is Organized
There are four parts to this book.

Part I: Introducing iCloud
The first part provides perspectives on iCloud from the user’s point of view and from
that of the developer.

 n Chapter 1, “Exploring iCloud and Its User Experience”: As iCloud has evolved,
it has been incorporated into apps such as the iWork suite. You’ll see the user
interface aspects of iCloud for apps and the operating systems.

 n Chapter 2, “Setting Up iCloud for Development”: This chapter provides
an overview of the API structure of iCloud. It’s a roadmap to the rest of
the book.

Part II: Using the APIs
This part explores how you use iCloud data that the user enters and maintains. For
many users, iCloud plays some role with the storage of their music and with the syn-
chronization of their calendars and contacts. There are APIs that allow developers to
tap into this synchronized user data, and they are described in this part of the book.
This use of iCloud can reap big payoffs for the developer: the engineers at Apple and
the users have done all the work—all you have to do is empower the users to employ
their own data in new and imaginative ways.

 n Chapter 3, “Introducing the APIs and the First Apps”: The simplest part of
iCloud consists of the APIs that manage user data. This chapter provides the
roadmap to this part of the book.

Prefacexx

 n Chapter 4, “Working with the AddressBook API for Contacts”: The
 AddressBook API lets developers access and update address book data. This
chapter shows you the basics of doing so.

 n Chapter 5, “Managing Calendars and Reminders with the Event Kit API”:
You’ll see how to leverage calendars and reminders in this chapter.

 n Chapter 6, “Protecting the Privacy of User Data”: iCloud brings up many pri-
vacy issues that you need to address in your apps. This is user data, and you have
to play by the rules described in this chapter.

Part III: Using the Technologies
Various data management technologies and design patterns are integrated with iCloud.
Using these technologies can mean that your apps can take the most advantage of
iCloud synchronization. These technologies are integrated with iCloud, but they
existed long before iCloud came to be. It’s the integration that’s new.

 n Chapter 7, “Introducing Blocks, Threads, and Notifications”: This chapter pro-
vides a roadmap to the technologies in the context of iCloud. Even if you know
the technologies, it’s important to review them in the iCloud world.

 n Chapter 8, “Using Key-Value Coding (KVC)”: Key-value coding has been used
in Cocoa for years. It’s a very efficient way of storing relatively small amounts of
data. And it works very easily for you and your users with iCloud.

 n Chapter 9, “Using Preferences, Settings, and Keychains with iCloud”: Prefer-
ences (OS X) and Settings (iOS) are a special case of key-value coding. This
chapter shows how you can add them to your apps so that they apply to all of
a user’s devices. You’ll also see how to exclude certain preferences and settings
from iCloud if they don’t make sense for a specific device.

 n Chapter 10, “Managing Persistent Storage with Core Data”: Core Data is the
major data persistence tool in Cocoa and Cocoa Touch. This chapter provides a
high-level overview. It is followed on by Chapter 17, “Working with Core Data
and iCloud.”

 n Chapter 11, “Using Xcode Project Workspaces for Shared Development”: Intro-
duced in Xcode 4, Xcode workspaces make it easy to set up multiple targets
within a project and to share certain files among the targets. For example, this
will enable you to share a Core Data data model (schema) and its specific man-
aged object classes with an OS X/iOS Round Trip.

 n Chapter 12, “Adding Data to Apps with Bundles and Resources”: This is one of
the most general ways of managing data in apps. It doesn’t use iCloud directly,
but it may be an appropriate addition to an iCloud app to complement iCloud-
synchronized data.

Preface xxi

Part IV: Using iCloud Documents and Data
The final part of the book brings together the APIs and technologies in documents
and file wrappers. You’ll see how to implement them on OS X as well as on iOS. In
addition, you’ll see how to complete a Round Trip as the documents synchronize
across iOS and OS X.

 n Chapter 13, “Adding the iCloud Infrastructure”: This chapter shows you the
basic infrastructure to use with iCloud—the code to establish contact with
iCloud, manage changes in iCloud availability, and make iCloud account
changes. Note that this is code that will need to be implemented in any of the
following chapters. In order to focus on the specific issues of the following chap-
ters in this part of the book, it is not repeated in them.

 n Chapter 14, “Working with File Wrappers in iCloud”: File wrappers implement
a structure akin to packages in the finder: a collection of files that appear to be
a single file to the user. They are a very efficient structure to take advantage of
iCloud synchronization.

 n Chapter 15, “Working with iOS Documents”: This chapter provides the iOS
document model based on UIDocument. You’ll see how to monitor changes in
your iCloud documents in real time.

 n Chapter 16, “Working with OS X Documents”: On OS X, Cocoa takes care of
the changes in iCloud documents for you, so you have less work to do than in
Chapter 15. However, there is still work to be done, and this chapter shows you
how to use NSDocument to accomplish what is necessary.

 n Chapter 17, “Working with Core Data and iCloud”: This chapter provides you
with the code you’ll need to manage Core Data-based apps with iCloud. It
builds on Chapter 10.

 n Chapter 18, “Completing the Round Trip”: Finally, you’ll see how to put
together a Round Trip. Remember to add the code from Chapter 13 to both of
your targets (OS X and iOS).

This page intentionally left blank

Acknowledgments

As always, Carole Jelen at Waterside Productions provided help and guidance in bring-
ing this book to fruition. At Addison-Wesley, Trina MacDonald helped move this
book along from idea to publication. Michael Thurston provided excellent editorial
advice. The production manager, Julie Nahil, kept things moving along in the very
complicated process of creating a technical book. Anna Popick, the freelance project
manager, and Carol Lallier, freelance copy editor, contributed mightily to the book’s
development. The elegant cover design is by Chuti Prasertsith.

Notwithstanding the help of these and many other people, any errors are the
author’s.

This page intentionally left blank

About the Author

Jesse Feiler is a developer and author. He has been an Apple developer since before
it became fashionable. His books include Sams Teach Yourself Core Data for Mac and
iOS in 24 Hours (Sams Publishing, 2011), Sams Teach Yourself Objective-C in 24 Hours
(Sams Publishing, 2012), FileMaker 12 in Depth (Que Publishing, 2012), and iWork for
Dummies (Wiley, 2012).

Jesse has written about Objective-C and the Apple frameworks beginning with
Rhapsody Developer’s Guide (Academic Press, 1997) and Mac OS X Developer’s Guide
(Morgan Kaufmann, 2001). His books on Apple technologies such as Cyberdog,
OpenDoc, ODF, Bento (in both incarnations), and Apple Guide occupy a special place
on the shelf of developer books.

He is the author of Minutes Machine, the meeting management app for iPad, as
well as the Saranac River Trail app for iPhone and iPad. They are available on the App
Store; more details are available at champlainarts.com.

A native of Washington, DC, Jesse has lived in New York City and currently lives
in Plattsburgh, New York, where he serves on the board of the Plattsburgh Public
Library and as chair of the Saranac River Trail Advisory Committee.

He can be reached at http://northcountryconsulting.com.

http://northcountryconsulting.com

This page intentionally left blank

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

You can email or write me directly to let us know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book
and that due to the high volume of mail we receive, we might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or email address.

Email: trina.macdonald@pearson.com
Mail: Reader Feedback
Addison-Wesley Learning Series
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Cocoa and Cocoa Touch consist of frameworks that contain classes as well as proto-
cols, defined constants, and some other supporting items including dynamic sharable
libraries. The most basic frameworks are Foundation, UIKit (Cocoa Touch—iOS) and
AppKit (Cocoa—OS X). More specialized frameworks, such as the Core Audio Kit
Framework, are used as needed by developers.

iCloud is different. Don’t search for an iCloud framework: there is none. Don’t even
search for an iCloud API. There are a couple iCloud-specific methods, but they are few
and far between. In fact, they’re very far between in the sense that they are scattered
across various classes and frameworks. URLForPublishingUbiquitousItemAtURL:
expirationDate:error: is part of the NSFileManager class (there are seven
iCloud-related methods among the 52 methods in this class), while NSPersistent-
StoreDidImportUbiquitousContentChangesNotification is part of the
NSPersistentStoreCoordinator class (it is one of two iCloud-related notifications
in this class).

The implementation of iCloud in this way means that existing apps that don’t use
iCloud aren’t affected. In addition, because iCloud spans multiple devices as well as
both operating systems (OS X and iOS), it is hard to imagine how it could have been
implemented in a single framework or API.

Along with these few additions to the Cocoa and Cocoa Touch APIs, the implemen-
tation of iCloud relies on long-time best practices, which now have been converted to
essential practices. Design patterns such as key-value coding that date back to the very
early versions of NeXTSTEP have been used for a quarter of a century now, and they
are used in new ways in iCloud, although in most cases you don’t have to do anything
to take advantage of the iCloud functionality.

Core Data, which has long been the most powerful solution to managing an app’s
persistent data, is deeply integrated with iCloud. However, that integration is largely
(but not totally) done behind the scenes. If you don’t use iCloud, your existing Core
Data code is just fine. Perhaps the most significant impact of iCloud on Core Data is
that, in the past, there were two ways of creating a data store that could be distributed
with an app. You could place a seed database in the app’s bundle, or you could add seed

Introduction2

data programmatically to an empty data store that you create the first time the app
launches (or whenever the seed data needs to be recreated). Both techniques have been
used for years. The biggest impact that iCloud has on Core Data is that with iCloud,
the second technique needs to be used; the first one will not work properly. This is
scarcely a major change.

Perhaps the most visible impact of iCloud on developers is the enhancement of
entitlements that control what an app can do in its runtime environment. Entitlements
implement the new sandboxing rules that come into play with shared documents on
iCloud. Explicit entitlements and sandboxing define the functions and capabilities of
the operating system that an app will use along with the specific parts of disk storage
where the app can write data. They increase the stability and security of both operating
systems. They are required on iOS and are optional on OS X. On both operating sys-
tems, they are more aggressively implemented. Furthermore, from a developer’s point
of view, you’ll probably be happy to hear that the developer-facing interface for entitle-
ments in Xcode 5 is now vastly changed and dramatically simplified. (Sandboxing is
related to iCloud, but they are two separate functionalities.)

The implementation of iCloud has proceeded over several years; in mid-2012, the
release of OS X Mountain Lion (10.8) and iOS 6 brought together some of the pieces
that had been released over the previous year. In the fall of 2013, OS X Mavericks
(10.9) and iOS 7 refined iCloud and expanded its behind-the-scenes tools for develop-
ers. If you have not used any of the iWork apps (Numbers, Pages, and Keynote), try
one of them on multiple iCloud-enabled devices. They provide the best demonstration
of iCloud from the user’s point of view.

Actually, that statement is wrong. They provide the best demonstration of iCloud
from the user’s point of view—until you write your iCloud-enabled app.

This page intentionally left blank

2
Setting Up iCloud

for Development

In Chapter 1, “Exploring iCloud and Its User Interface,” you saw how iCloud looks to
users. For many users, it’s just a logical way of working, and iCloud really isn’t an issue
that they think about. For other users who have become used to managing their own
files and folders on their various devices and desktops, there can be a significant effort
at familiarization—an unlearning process. As technology advances, these unlearning
events happen from time to time, but in the long run, the old way of doing things is
forgotten. You may have had to configure a dial-up modem with bit rates and parity
settings, for example. Now, even dial-up modems are automated and managed with
handshakes to adjust their own settings. Dial-up modems are (fortunately) becoming
artifacts of the past. And reports are surfacing of mystified children who don’t know
what a computer mouse is in the world of touchscreens that they inhabit.

This chapter looks at iCloud from the developer’s perspective. As noted in the
Introduction, iCloud isn’t a monolithic API or framework that you just plug into your
code. It’s a collection of additions and modifications to many parts of Cocoa and Cocoa
Touch. In this chapter, you’ll find a high-level view of those additions and modifica-
tions with particular emphasis on setting up iCloud in your app.

iCloud involves synchronizing data across a user’s devices, and as soon as you start
thinking about sharing data among various devices, you have to consider the secu-
rity issues involved. Fortunately, the engineers at Apple have done this: iCloud takes
advantage of the security mechanisms that are built into the App Store and the Mac
App Store. App security has not changed dramatically over time; however, configuring
security has been difficult for many developers. In part, this is because it is a relatively
complex process that, for most developers, is done relatively infrequently. That combi-
nation is a classic recipe for difficulty.

With the introduction of Xcode 5 in 2013, the implementation and setup of app
security has changed insofar as the developer interface is involved (the underlying
security mechanism is not changed). The changes make it easier for you to set up your
app’s security, but for many developers, it is a new process. Once again, there is an

Chapter 2 Setting Up iCloud for Development 18

unlearning process involved when you use the new and simpler tools. Because iCloud
requires security to be in place and because the way in which you implement it is
changed, this chapter begins with an introduction to the new, improved, 2013 version
of app security.

Managing App Security on iOS and OS X
The heart of the app security system is digitally signing your code with two digital
signatures. Both of these signatures are generated by Apple, and each one references the
other. (This is a common security mechanism that you can read about on Wikipedia in
articles such as “Code Signing,” which explains the process.) These signatures will not
match if either the one identifying Apple or the one identifying the developer has been
altered; in addition, part of the digital signature contains a checksum mechanism that
causes the security system to fail if the code has been altered since it was signed.

Part of the complexity arises from the use of these digital signatures. The security for
apps is built on a combination of developer.apple.com tools, Xcode tools, and Keychain
Access tools. It is important to note that Apple IDs are used to identify people, and
there are two categories of people (thus Apple IDs) that come into play: During devel-
opment, you as a developer have an Apple ID. At runtime, the user’s Apple ID comes
into play with iCloud.

Identifying Yourself and Your App on developer.apple.com
Along with changes in Xcode 5, during 2013 developer.apple.com was revisited to
consolidate the process of managing certificates, identifiers, devices, and provision-
ing profiles. These are the components of the security system for apps on iOS and
OS X. Although the terminology hasn’t changed, the layout of developer.apple.com has
changed. Furthermore, with Xcode 5, it is easier to manage these security features, but
the process is slightly changed.

Here is an overview of the process. It is required for you to set up your app to use
iCloud as well as to ultimately distribute it.

After you register on developer.apple.com, go to Certificates, Identifiers & Profiles
(currently at the right of developer.apple.com). It handles security for both your iOS
and OS X apps. However, you can now do this through Xcode 5 and later: it’s much
easier there.

 n You must identify yourself as a registered developer with a signing identity.
 n You must identify your app with an App ID.
 n You must identify the devices that you want to use for testing your app during

development.
 n You must create a provisioning profile that brings together your developer ID,

your app ID, and the IDs for your test devices.

Managing App Security on iOS and OS X 19

Managing Your Developer Signing Identity
A key part of the security mechanism is the certificate that you can download for each
signing identity that you create. That is the link between developer.apple.com and
Keychain Access on your Mac. The certificate is a portable and secure representation
of your signing identity. In developer documentation, you may find the terms used
interchangeably.

You can manage your signing identities in Xcode or on developer.apple.com.
Xcode 5 introduced the ability to manage one or more Apple IDs for developer
accounts, as you can see in Figure 2.1. A given Apple ID does not uniquely identify
a specific developer account because a developer can be invited to join one or more
development teams. You normally continue to use your developer Apple ID even
though you may be working on several teams. Figure 2.1 shows the simplest scenario: a
single developer Apple ID working on a single team. For iOS and Mac, one developer
can have different roles.

Figure 2.1 Manage your accounts on Xcode

Chapter 2 Setting Up iCloud for Development 20

Perhaps the most important point to take away is that you must use your own
Apple ID to avoid compromising the security system for apps. Use the tools described
on developer.apple.com to manage development teams so that developers can be
assigned to the appropriate team without destroying the security structure.

Select the team you want to work with, and click View Details (shown at the lower
right of Figure 2.1) to see its signing identities and provisioning profiles, as you see in
Figure 2.2.

Figure 2.2 Manage certificates in Xcode account preferences

Managing App Security on iOS and OS X 21

Figure 2.3 shows the list of Mac certificates for a developer on developer.apple.com.
Note that each one has a name that you provide, a type that you choose, and an expira-
tion date that is set and enforced by Apple.

Figure 2.3 Manage certificates on developer.apple.com

Managing Your App ID
Unlike your developer signing identity, which can be edited on developer.apple.com
through Xcode accounts, your App ID must be managed for the most part on
developer.apple.com. You give the app a name, which can be changed later on if you
want. (This is not the name the user sees.) What is important to note is that when
you register your App ID, you can enable services that you want to use, such as Game
Center, In-App Purchase, Maps, Push Notifications, and most important for this
book, iCloud.

Although you cannot create an App ID through Xcode, when you turn on a capa-
bility such as iCloud, Xcode offers to update your App ID to add the iCloud capability
automatically. (You’ll see this demonstrated in Figure 2.9 later in this chapter.)

Managing Your Devices
You can register a number of devices that can be used for testing your apps. (As of this
writing, the number is 100.) When you recruit people to test your app, ask them for
the UDID (iOS) or UUID (OS X) of the device they want to test with. These people
do not need to be registered developers, and sometimes it’s a good idea to recruit one

Chapter 2 Setting Up iCloud for Development 22

or two testers who are “real people” as opposed to developers. The rules for managing
devices are detailed on developer.apple.com. There are limits to how many times you
can change the list: this limit prevents you from allowing your app to be installed on a
large number of devices without going through the App Store. (Ad hoc distribution is
a specific option you may want to explore in this case.) You have one list of devices for
your developer account. The provisioning profiles associate them with App IDs.

Managing Provisioning Profiles
Now that you have your App ID and a list of devices, you can create a provisioning
profile to combine the two. As you see at the bottom of Figure 2.2, the provisioning
profiles are listed by name and expiration date along with the various entitlements
associated with them when you look at them in Xcode accounts. When you look at
them in developer.apple.com, you’ll see that some are marked as being managed by
Xcode. For the others, you can specify the devices and the services you want to enable
on developer.apple.com.

Thus, at this point, you should have your developer signing identity; your app and
its App ID; and your provisioning profile that brings together testing devices, your
app ID, and the entitlements or services that it uses. You’re ready to start thinking
about runtime.

Identifying Your User and Your Ubiquity Container at Runtime
As you saw in Chapter 1, iCloud helps users organize their data by app rather than by
file and folder. Users can still work with documents, but those documents aren’t on a
visible file system in most cases: they’re in iCloud. But where is iCloud?

As with all cloud computing, the cloud is an artifact of the Internet and large server
farms. If you follow the trail of bits, you see that these server farms synchronize and
store data so that it is accessible on an as-needed basis by users. The physical location
of the data doesn’t matter, and in fact, the actual storage is so often duplicated across
servers that there is frequently no single primary data store among the many stores that
come into play.

A user’s data is available (subject to security constraints) whenever a user accesses the
cloud with the appropriate account information and password. That’s not the model
with iCloud. With iCloud, data is available with the presentation of two identifiers:

 n Apple ID: This identifies the user.
 n A ubiquity container identifier: A ubiquity container is the object that

holds the iCloud data for the app. It typically is a bundle identifier such as
com.champlainarts.colby. It is prefixed automatically by your developer Team ID.

When the user connects to iCloud (usually this happens through the iCloud System
Preference panel whenever the user logs in), the Apple ID is made available to all apps
that are entitled to use iCloud. The ubiquity container identifier is usually set in the

Looking Inside the iCloud Basics 23

Capabilities tab of the target in Xcode. As you will see in Chapter 18, “Completing the
Round Trip,” a shared ubiquity container may have an identifier that does not corre-
spond to an app bundle identifier. In the case of the Round Trip, the two apps are
com.champlainarts.ColbyOSX and com.champlainarts.ColbyiOS. They share a ubiq-
uity container called com.champlainarts.Colby. It is the last component of the ubiquity
container identifier that shows up in the System Preferences iCloud pane shown previ-
ously at the left in Figure 1.5.

With these two pieces of information, you can connect to the appropriate iCloud
ubiquity container. That is your first task when your app starts to run.

Looking Inside the iCloud Basics
Bundle identifiers and Apple IDs have been around for a long time, but now they
have key roles to play in iCloud. Both of them are needed to gain access to a section
of iCloud. This is the implementation of the app-based file structure described in
Chapter 1.

You might expect to find standard log-in methods in the iCloud API that enable
your app to present an Apple ID and a bundle ID to iCloud in order to gain access to
the data. That’s not how it happens. Remember that there is no explicit iCloud API;
beyond that, the notion of logging in to iCloud for an app isn’t what happens. (Users do
log in to iCloud—often automatically with their settings in the iCloud pane of System
Preferences.)

Your app interacts directly with a local copy of the iCloud data for the user and the
app. This copy of the iCloud data for the user and app is stored locally in a ubiquity
container. The ubiquity containers are stored on the local device, and their contents are
synchronized by the local OS and its interaction with iCloud. Just as is the case with
any other local data access, you can read and write as necessary, and you can expect
(and even check on) the results of those read and write statements.

Because you are not reading and writing to the iCloud data directly in most cases,
you can’t expect the changes that you have made to the local ubiquity data to be propa-
gated to iCloud immediately. If you want to get into naming things, iCloud is an asyn-
chronous and declarative implementation of cloud technology.

The key components of iCloud are

 n Apple ID
 n Bundle identifier
 n Entitlements and capabilities
 n Ubiquity container

The following sections cover the basics of what you need to know about them.

Chapter 2 Setting Up iCloud for Development 24

Declarative Programming
As is the case with more and more software today, iCloud relies heavily on declarative
programming techniques. Declarative programming is distinguished from other styles
that specify what happens and, frequently, in what order. (Common names for that
style are imperative, functional, and procedural programming.) Declarative programming
simply describes what should be done without specifying a control flow.

You find examples of declarative programming throughout OS X and iOS with more
examples showing up with each new iteration of the Cocoa frameworks. Blocks, for
example, allow you to specify code that is executed for each element of an enumerator
or on completion of some task, but you do not hang around waiting for that trigger to
occur. You define the block and then send it off (often as a parameter of a method),
and it is executed at the appropriate time. You are out of the traffic-cop business, and,
not coincidentally, multithreading at the system level is much easier for the OS to man-
age in your absence.

If you’re not familiar with declarative programming or are still not comfortable with it,
explore the topic online (Wikipedia is a great place to start for this type of research).

Apple ID
We’re now looking at iCloud runtime behavior. The Apple ID discussed here is the
user’s Apple ID.

An Apple ID uniquely identifies . . . something. It started in 2000 as an account
name on Apple’s early Internet service, iTools, which provided free email accounts
as <accountname>@mac.com. Over time, <accountname>@mac.com became
<accountname>@me.com (MobileMe) and then <accountname>@icloud.com. With
the advent of the iTunes store, customers used an Apple ID for their purchases. The
email account name served as the first Apple IDs, but, particularly after Apple began
charging for email accounts, Apple IDs no longer consisted of me.com or mac.com
addresses. Every Apple ID did have to have an email address associated with it (for veri-
fication if for no other reason) and, for purchases in iTunes Store, a credit card number.

The idea that an Apple ID uniquely identifies an individual person has long gone
away. An Apple ID has a name, a password, an email address, an optional rescue email
address (in case the primary address is unreachable), and, if used for purchases, it may
have a credit card associated with it. Apple suggests that people not share Apple IDs,
but we know that sometimes a family or even a small business will share one.

Apple suggests that people may like to have one Apple ID to identify themselves
to iTunes and another to identify themselves for other purposes such as iCloud, Face-
Time, and the like. Developers often have one or more Apple IDs for their personal life
and another for their developer account. iBook authors need their own Apple ID, so a
developer who is also an iBook author needs two right there.

Looking Inside the iCloud Basics 25

There is a unique identifier underneath all the attributes, so email address, name,
password, and credit card can all be changed without creating a new Apple ID. Every
iOS device requires that the user has an Apple ID in order to gain access to downloads
of the operating system as well as any purchased apps or music.

On OS X, although the installation process encourages it, you do not need an
Apple ID. If you want to use iCloud, you do need an Apple ID. Apple has recognized
the proliferation of multi-Apple ID individuals in OS X Mountain Lion (10.8) and
later versions of OS X. Figure 2.4 shows part of the Users & Groups pane in System
Preferences.

Figure 2.4 You can have multiple Apple IDs on OS X.

Chapter 2 Setting Up iCloud for Development 26

Most of the time, people don’t pay attention to their Apple ID when they set up
a device beyond checking that their email works (if it uses the Apple ID). However,
for ongoing support of your iCloud app, remember (and let your tech support people
remember) that the Apple ID is a critical part of iCloud access. If someone in an office
uses an OS X account for business and another for personal matters, the iCloud docu-
ments created under those two OS X accounts may be using different Apple IDs. A
Pages document under one account will not be shared with the other, although you can
do so with sharing commands implemented in Pages and other apps.

The Apple ID that a user has used to sign into iCloud is available to the operating
system at runtime, and that is how the Apple ID part of the iCloud authentication takes
place: you don’t do anything.

Bundle Identifier
The bundle identifier is set in your app’s target settings in Xcode (in the General tab
of the target). As you step through the process of creating a new project, you are asked
for information, including the product name and the company identifier. You provide
the product name, and the company identifier is editable (it actually is sticky—you start
with the last company identifier you used).

Note
The management of bundle identifiers, product names, and targets, as described in
this section, has been a matter of concern for a number of developers over the years.
You can find many references on the Internet to what is going on. Unfortunately, some
of them (particularly those from several years ago) are misleading. The information in
this section is current as of Xcode 5, which is the version released with iOS 7 and OS X
Mavericks (10.9).

If you click Change, you see a list of the Apple IDs you have associated with this
account. You can add or delete some and create a new one, as shown in Figure 2.5.

Figure 2.5 Switching Apple IDs on OS X

Looking Inside the iCloud Basics 27

Figure 2.6 Editing the bundle identifier in Info

The bundle identifier that Xcode starts with is the combination of the company
identifier (which is usually your reverse domain name) and the product name, as in
com.yourcompany.yourproductname.

If you look at the Info tab of your project, as shown in Figure 2.6, you’ll see that
the bundle identifier is set to your product name. The product name is also used as the
target name, so you begin with identical values for your target and the last component
of your bundle identifier. You can change your target name in the left side of the proj-
ect editor: just double-click and type in a new name. You’ll see that the last component
of the bundle name also changes, because, as you see in Figure 2.6, it is picking up the
product name.

However, you can edit the bundle identifier itself in the General tab. As initially set
up, it is set to com.yourcompany.${PRODUCT_NAME:rfc1034identifier. If you
trace through the various settings, you’ll see that product name (in the Packaging sec-
tion of Build Settings) is set to $(TARGET_NAME). This means that if you change the
target name, the product name will change, and because it’s used as the last compo-
nent in the bundle identifier, that, too, will change. Anywhere along the line, you can
double-click to edit the setting. If you change Product Name to be MyProject instead
of $(TARGET_NAME), you will change the product name, and indirectly, the last com-
ponent of the bundle identifier. Generally, the best place to edit a bundle identifier is in
the General tab of the project itself rather than in the Info tab. That is because the Info
tab sets up the naming structure with placeholders such as $(TARGET_NAME) and the
General tab lets you type in the actual name that you want to use, which overrides the
placeholders.

Chapter 2 Setting Up iCloud for Development 28

Most of the time, the default settings are fine, and you don’t have to worry about
them. However, they come into play with iCloud when you need a ubiquity container
that is shared among several apps. (Perhaps most commonly, one is a Mac app and the
other is an iOS app.)

Entitlements and Capabilities
Entitlements specify what your app can do. The Capabilities tab shown in Figure 2.7
lets you configure the capabilities and the related entitlements and other settings. As
you can see, there’s a simple switch for each capability—iCloud, Game Center, Pass-
book, In-App Purchase, and more (still more are likely to come in the future).

Note
The Capabilities tab is new in Xcode 5. It replaces previous entitlements configurations
that were different for iOS and OS X. The interface shown here is for iOS apps, but it is
almost identical for OS X apps.

If a given capability is off, turning it on will also open the disclosure triangle to
show you what additional steps you and/or Xcode must take, as you see in Figure 2.7.

Figure 2.7 Turn capabilities on and off.

Looking Inside the iCloud Basics 29

The steps that need to be taken, as shown in Figure 2.7, are checked off or, if a prob-
lem occurred, you are usually given an opportunity to have Xcode fix it, as you see in
Figure 2.9.

Figure 2.8 Choose a development team.

Figure 2.9 Managing Capabilities

When you turn a capability on, you’ll be asked to choose a development team to use in
provisioning, as you see in Figure 2.8.

Chapter 2 Setting Up iCloud for Development 30

Beginning in Xcode 5, this process replaces the manual configuration that you had
to do in the past on developer.apple.com. You can still do that, and that is still the best
place to actually see the details of your identities, provisioning profiles, and app IDs,
but for many if not most of your transactions, Xcode will take care of those tasks. Also
note that Xcode sets up the appropriate entries in your project’s plist.

As you can see in Figure 2.9, when you enable iCloud, you’ll be able to choose the
entitlements file, but Xcode will begin by naming one for you. If you want to use a
key-value store, you can enable it here: that is the topic of Chapter 8, “Using Key-
Value Coding (KVC).” For documents (that is, data other than KVC data), you use a
ubiquity container. You may have more than one, but the first one is always assumed to
be the main one. If you are using KVC without documents, you don’t need a ubiquity
container.

Ubiquity Container
As you can see in Figure 2.9, you can specify ubiquity containers for your app. The
first one you create has a default name set by Xcode, and it has a special role to play.
(You can change the default name if you want, and in some cases, you must, as you’ll
see in the next paragraph.) The first ubiquity container is the primary ubiquity con-
tainer. On OS X, its contents are displayed in the open and save dialogs available in
 NSDocument. (On iOS, you create your own interface to display documents in iCloud
if you use them.)

The default name for the primary ubiquity container is the bundle identifier. In
cases where you want to share a ubiquity container among several apps (such as an
OS X version and an iOS version), change one of the ubiquity container names to the
other one so it is shared. As you will see in Chapter 18, “Completing the Round Trip,”
the shared ubiquity container may have any name you want. In Chapter 18, the two
apps have bundle identifiers of com.champlainarts.ColbyiOS and com.champlainarts
.ColbyOSX. The shared ubiquity container is com.champlainarts.colby.

Using iCloud in Your App
At this point, you’re ready to use iCloud in your app. You will see concrete examples of
how to do so starting in Part III, “Using the Technologies.” There is one step that you
can take now to confirm that your app has been properly set up and that the entitle-
ments and provisioning are correct.

Create a new app or use an existing app that you want to enable for iCloud (start-
ing from a new app is a simpler way in the long run until you’re more comfortable with
iCloud). Set up the entitlements and provisioning as described in the previous sections.
Add a single line of code to test if iCloud is available:

id c urrentiCloudToken = [[NSFileManager defaultManager]

 ubiquityIdentityToken];

Chapter Summary 31

On OS X, it should go in applicationDidFinishLaunching:, and on iOS, it
should go in application:didFinishLaunchingWithOptions:. In both cases,
it normally goes after your other initializations. (Note that this method was added in
iOS 6 and OS X Mountain Lion (10.8). You can find older and more complex ways of
performing this task on the web.)

The iCloud token that is returned is an opaque object identifying the iCloud
account (that means that you can’t see inside it). There are two possibilities when you
ask for the token:

 n If it is nil, the user is not signed into an iCloud account.
 n Although you can’t see the account details, you can check if a token is the same as

another token using isEqual:. This lets you check to see if the user has changed
iCloud accounts.

Note that if a user has been signed into an iCloud account and turns on Airplane
mode or turns off networking on a Mac, the token is still returned. You can access the
local copy of your ubiquity container’s data. When Airplane mode is turned on again,
iCloud will take care of syncing the two stores and will let you know if there is any-
thing for you to do. Because the operating systems manage these disruptions in connec-
tivity, resist the temptation to store extra copies of data locally in the app’s sandbox.

Apple recommends as a best practice that you use either iCloud storage or sandbox
storage. Mixing the two provides a suboptimal user experience. Along those lines, ask
users if they want to use iCloud the first time they run your app. Unless they reinstall
the app, don’t ask them again.

The iWork apps are a good example of how to manage documents in iCloud. Over
the last few years, they have moved to an explicit Export command, which, among
other things, can let you export the contents of an iCloud document to another format
and to a non-iCloud location.

Chapter Summary
In this chapter, you’ve seen the basics of how iCloud works. iCloud for document data
relies on a ubiquity container, which is identified by a user’s Apple ID and your app’s
bundle ID and is enabled by entitlements. You can share ubiquity containers across
several apps by using a single app’s bundle ID for all of them.

A high-level overview of the provisioning process has shown you where you
enable iCloud for your app. Provisioning is done by registered developers on developer
.apple.com and in Xcode accounts. Provisioning profiles as well as identity certif icates
are then downloaded. You install provisioning profiles in Xcode accounts, while cer-
tif icates are installed automatically in Key Chain.

Chapter 2 Setting Up iCloud for Development 32

Exercises
 1. If you have any doubts about the wisdom of Apple’s advice to either use iCloud

for all storage or local (sandbox) storage for all storage, try to come up with a user
interface of your own to manage them.

 2. Set up entitlements for an iCloud-enabled app as described in this chapter. Start
by following the steps exactly—either those in this chapter or those on developer
.apple.com. Don’t take any shortcuts until your first provisioning profile is run-
ning properly. Then you can experiment.

 3. TextEdit supports iCloud documents; it is installed as part of the OS X instal-
lation. Experiment with it and particularly note how iCloud has been integrated
into the File Save dialog. You can access this dialog from your own code when
you instantiate NSDocument objects.

Index

Symbols
^ (caret) character, for block declarations, 99

A
ABPerson class, AddressBook API, 66
ABRecord class, AddressBook API, 66
Access, managing iCloud, 207–208
Accessors, WrappedDocument, 308–311,

332–334
Accounts, managing changes of iCloud

accounts, 344–345
Accounts tab, Xcode 5, 239–240
Add button, 219–220
AddDocument

adding new document in Loon, 291–295
making changes to storyboards, 215
master view controller, 253

AddressBook API
on iOS and OS X, 57–58
review, 66–67
sending Mail from iOS app, 58–65
sending Mail from OS X app, 65
using property lists for storing/syncing,

65–66
Ad hoc distribution, 22
Alerts

checking that Mail is confi gured/available,
64–65

code for Loon, 281–282, 284
Aliases, looking inside sandboxing containers,

179–180
APIs

AddressBook. See AddressBook API
app overview, 40–41
built-in data apps, overview, 38
creating iOS Xcode project, 42–46
creating OS X Xcode project, 47–50
creating separate OS X/iOS Xcode

projects, 41
Event Kit. See Event Kit API
getting started as Apple Developer, 35–36

keeping up with Apple, 38–40
overview of, 35
review, 55–56
understanding, 37–38
wiring up interfaces, 50–55

App delegate
adding event to app on OS X, 83–84
Calendar database, 72–74
for Chazy project, 325–326
creating iCloud apps, 215–217
creating shared folders, 207
linking to iCloud controller, 369
for Loon project, 280–286
monitoring store changes, 116–118
for Placid project, 248–250
preparing user interface in OS X, 113–114
setting up store at runtime, 115–116
storing data on iOS with, 119
structuring app in Loon, 275
Xcode fi le management, 159

App ID
building iCloud app, 199–200
identifying app with, 18
managing, 21
managing provisioning profi les, 22
starting Placid project, 238

App Store
never deleting App ID for app submitted

to, 238
Review Guidelines, 88–92

AppKit (Cocoa for OS X), 1
Apple Developer Forum, 44
Apple ID

history of, 24
iCloud runtime behavior and, 24–26
identifying two categories of people, 18
identifying user at runtime, 22–23
managing developer signing identity, 19–21
not requiring personal data to unlock app, 91
setting up test devices by creating new, 104
understanding, 24–26

Index380

Apple’s Worldwide Developers Conference
(WWDC)

keeping up with Apple changes, 40
WWDC 2012, 340
WWDC 2013, 340

Apps
APIs and fi rst. See APIs
built-in data apps. See built-in data apps
managing, 18–23
managing documents with iCloud, Time

Machine, and Auto Save, 12–13
organizing fi les by, 8–11
syncing data across devices, 13–14
using iCloud in, 30–31

Apps, document-based
accessors for WrappedDocument, 332–334
adding app delegates, 325–326
creating WrappedDocument, 323–324
defi ning WrappedDocument properties,

327–328
initialization and management code for

WrappedDocument, 328–329
planning project app, 319–321
reading and writing code for

WrappedDocument, 330–332
setting up in Xcode, 321–323
testing, 337
window management code for

WrappedDocument, 329–330
WindowController subclass, 334–337
writing code for OS X app, 326–327

ARC (Automatic Reference Counting), 38
Architecture

of APIs relating to user data, 37
Calendar database, 72
iOS vs. OS X document, 191

Arrays
documents array. See documents array
retrieving events with, 77

Attributes. See also properties
adding to entities, 145–148
fi le wrapper fi le-system, 232
structuring data and, 135

Attributes inspector, 175
Auto Layout system, for Round Trip, 14
Auto Save, OS X, 13, 319
Automatic Reference Counting (ARC), 38

Automator app, 171
Availability, managing iCloud, 275

B
Backing variables

enforcing privacy, 89
keeping up with Apple, 38–39

Binary data, issues with iCloud, 146
Bindings, blocks containing bindings to

variables, 99
Blocks

overview of, 97, 99–100
retrieving events with, 77
review, 104
types of queues in GCD, 99
using together with threads, 98

Blue boxes, 177
Breakpoints, in Loon code, 280, 304, 306
Build Phases

adding fi les to app’s bundle, 173–175
adding fi les to project, 171

Build Settings tab, confi guring Placid project, 246
Built-in data apps

app overview, 40–41
creating iOS Xcode project, 42–46
creating OS X Xcode project, 47–50
creating separate Xcode projects for iOS/

OS X, 41
keeping up with Apple, 38–40
overview of, 38

Bundle identifi er
as default name for primary ubiquity

container, 30
naming, 276–277
sharing key-value store for Round Trip, 111
as storage area for fi les, 232
understanding, 26–28

Bundles
adding fi les to app’s, 172–175
getting fi les out of, 175–176
overview of, 169–171

Buttons
adding event to app on OS X, 83–84
adding reminder to app on iOS, 80–83
adding to iOS Xcode project, 46
code for Loon, 286
wiring up iOS interface, 51–54

Index 381

C
Calendar database

accessing with Event Kit API, 69
allocating/accessing event store, 72–74
committing changes, 79–80
creating new event/reminder, 75–76
overview of, 72
searching for event/reminder, 76–77
setting/modifying properties, 77–79
synchronization of, 69–70

Calendar management. See Event Kit API
CalendarItem Identifi er property, 76
Capabilities tab

accessing iCloud, 322–323
building iCloud app, 200
confi guring entitlements/capabilities, 28–30
confi guring for Placid project, 242
enabling iCloud for Loon project, 278–279
extra feature of, 243
keeping up with Apple, 39
preparing project for testing, 108–109
setting OS X permissions for calendar, 71
setting up common ubiquity container for

two projects, 367–368
setting up sandboxing in, 178

Case sensitivity, project names, 276
Central library apps, iCloud working with, 139
Certifi cates

confi guring on developer.apple.com,
237–238

confi guring on Xcode 5, 239–240
identifying user and app, 18–22
managing in Xcode account preferences, 20
managing on developer.apple.com, 21

$CFBundleIdentifi er, sharing key-value store
for Round Trip, 111

CFBundleTypeExtensions property, document
types, 245

Chazy project
accessors for WrappedDocument, 332–334
adding app delegates, 325–326
creating WrappedDocument, 323–324
defi ning WrappedDocument properties,

327–328
initialization and management code for

WrappedDocument, 328–329

planning, 319–321
read/write code for WrappedDocument,

330–332
setting up in Xcode, 321–323
testing, 337
window management code for

WrappedDocument, 329–330
WindowController subclass, 334–337
writing code for, 326–327

CheckOnQuery, debugging method, 204
Classes. See also by individual class

extensions, 207, 308
methods, 111

Classes, creating iCloud apps
AppDelegate, 215–217
DetailViewController, 224–227
MasterViewController, 217–224

Cloud computing. See also iCloud
focus on app-centered content, 98
understanding, 5–6

Cocoa
Application template, 318, 350
Cocoa Touch compared with, 191
creating OS X Xcode project, 47–48
keeping up with Apple changes, 38–40
lazy loading in, 330–332
MVC design pattern and, 318
for OS X, 1

Cocoa Touch
Cocoa compared with, 191
for iOS, 1
keeping up with Apple changes, 38–40
lazy loading in, 330–332
MVC design pattern and, 318
UIDocument (iOS) and, 273

Codd, Edgar, 134
Code signing. See security
Colored card technique, controlling testing

environment, 106
Columns, as fi elds, 136
Concurrent queues, 99
Confi gurations, data model, 144
Confi gureView, Loon project, 302–305
Connections inspector, wiring up iOS

interface, 51–53
Constants, managing iCloud data, 209

Index382

Constants.h class
creating shared folders, 201
managing iCloud data, 211

Constants.m class
creating shared folders, 201–202
managing iCloud data, 211

Contacts
AddressBook vs., 57
setting OS X permissions, 71

Container view controllers, 39–40
Containers, setting OS X permissions, 71
Containers folder, 178–180
Content view controllers, 39–40
Contents:forType:error:, WrappedDocument, 311
Contextual menu, opening package from, 170
Convert to Modern Objective-C Syntax, 39
Convert to Objective-C ARC, 39
Copy Bundle Resources, 174
Core Data

adding fi les to app’s bundle, 172–175
Core Data Project, 139–142
goals, 134–135
including store with app, 183–184
managing persistent storage, 133–134
managing versions, 144–145
review, 155
stack, 154–155
structuring data, 135–139
working with iCloud, 139

Core Data, integration with iCloud
database migration, 345–347
fallback stores for when iCloud is

unavailable, 341–342
managing account changes, 344–345
managing persistent store changes, 343–344
options dictionary, 340–341
overview of, 339
review, 348
setting up persistent stores asynchronously,

342–343
WWDC 2013 revisions, 340

Core Data, with Xcode data modeling tool
converting entities to objects, 149–153
managing data model, 144–145
overview of, 142–144
using objects, 154
working with entities, 145–148

D
Data, adding to apps

adding fi les to bundle, 172–175
bundles, packages, and resources, 169–171
getting fi les out of bundle, 175–176
including Core Data store, 183–184
including property lists, 181–183
looking at sandboxed fi les, 176–181
overview of, 168
review, 184

Data, managing iCloud, 209–212
Data apps, built-in. See built-in data apps
Data model

building persistent store from compiled,
183–184

converting entities to objects, 149–153
of Core Data stack, 154
managing in Core Data, 144–145
migrating to new version, 345–347
using the object, 154
working directly with in Core Data, 135
working with entities, 149–153

Data Model editor, 142–144
Data model inspector, 147–148
Data store

Calendar database, 72
migration, 345–347

DBAs (database administrators), 345
DBMSs (database management systems),

345–347
DEBUG, enforcing privacy, 89
Debug navigator, Xcode, 364–366
Debugging

checkOnQuery method for, 204
enforcing privacy when, 89
iCloud, 195–199, 364–366

Declarations
block, 99
WrappedDocument, 308

Declarative programming, iCloud reliance
on, 24

Declared properties, keeping up with Apple,
38–39

#defi ne, creating Shared folder, 201
Delegates. See app delegate
Deleting documents, 217, 223–224

Index 383

DetailViewController
code for Loon, 301–306
creating iCloud apps, 224–227
structuring app in Loon, 275–276
using object in, 154
writing code for Placid project, 260–263

Developer Technical Support (DTS), 108
developer.apple.com

building iCloud app, 199–200
confi guring certifi cates, identifi ers, devices,

profi les, 237–238
data management APIs, 37–38
documentation on, 340
getting started as Apple Developer. See APIs
identifying yourself and your apps, 18–19
keeping up with Apple changes, 39–40
managing your App ID, 21
rules for managing devices, 22

developer.icloud.com
accessing, 235
debugging iCloud apps, 195–199
viewing fi les and folders, 362–363

Development
getting started as Apple Developer,

35–36
Xcode workspaces for shared. See

workspaces
Development, iCloud setup for

Apple ID, 24–26
bundle identifi er, 26–28
entitlements and capabilities, 28–30
managing app security on iOS and OS X,

18–23
overview of, 17–18
review, 31–32
ubiquity container, 30
understanding iCloud basics, 23–24
using iCloud in your app, 30–31

Development team, 109
Devices

confi guring on developer.apple.com,
237–238

confi guring on Xcode 5, 239–240
identifi ers, 89
local and remote storage, 5–6
managing, 21–22
managing provisioning profi les, 22

syncing data across, 13–14
testing iCloud on iOS Simulator vs., 108
testing synchronization across iOS,

103–104
Digital Hub, 158–159
Digital signatures

identifying user/ubiquity container at
runtime, 22–23

identifying yourself and your app, 18–22
managing App ID, 21
managing app security on iOS and

OS X, 18
managing developer identity, 19–21
managing devices, 21–22
managing provisioning profi les, 22
setting up sandboxing on iOS, 177–178

Directories
folders as, 232
wrapped by fi le wrappers, 233

discoveredFiles array, iCloud query, 298, 300
displayComposerSheet, 63–65
DisplayDetailSegue, 215
Documentation, on developer.apple.com, 340
“Document-Based App Programming Guide

for iOS,” 274
documentDescription property,

WrappedDocument, 327–328
documentLocation property,

WrappedDocument, 327–328
Documents

code for Loon, 290–297
creating document types, 244–245
debugging iCloud apps, 195–199
defi nitions of, 273
exploring, 233
iCloud working with document-based

apps, 139
iOS/OS X architecture differences, 191
managing with iCloud, Time Machine, and

Auto Save, 12–13
managing with iWork apps, 31
managing with master view controller,

253–255
moving to iCloud, 376–377
opening fi le wrapper, 235–236
organizing fi les by app, 8–11
storing in iCloud, 105

Index384

Documents, NSDocument subclass
accessors for WrappedDocument, 332–334
adding app delegates, 325–326
creating WrappedDocument, 323–324
defi ning WrappedDocument properties,

327–328
initialization and management code for

WrappedDocument, 328–329
NSDocument vs. UIDocument, 317–319
overview of, 317
planning project app, 319–321
reading and writing code for

WrappedDocument, 330–332
review, 338
setting up app in Xcode, 321–323
testing document app, 337
window management code for

WrappedDocument, 329–330
WindowController subclass, 334–337
writing code for OS X app, 326–327

Documents, UIDocument subclass
AppDelegate, 280–286
DetailViewController, 301–306
FileRepresentation, 314–315
MasterViewController, 286–301
planning app’s structure, 274–276
review, 315
starting Loon project, 276–280
UIDocument vs. NSDocument, 273–274
WrappedDocument, 306–314
writing code, 280

Documents array
creating new document, 217
creating shared folders, 212–215
managing, 212–215
managing iCloud data, 209–212

Documents folder
debugging iCloud apps, 195–198
moving outside iCloud, 197–198

documentsIniCloud, 281–283
Downloading fi les, 363
DTS (Developer Technical Support), 108
@dynamic command, converting entities to

objects, 153

E
editableField, preparing user interface, 114
editedValue, preparing user interface, 114
EKCalendarItem class, 70
EKEntityTypeEvent, Calendar database

defi ned, 72
requesting access to events, 74

EKEntityTypeReminder, Calendar database
defi ned, 72
requesting access to reminders, 74

EKEvent, Calendar database, 76
EKEventStore, Calendar database, 72

adding event to app on OS X, 83–84
adding reminder to app on iOS, 80–83
allocating/accessing event store, 72–74
defi ned, 72

EKObject, Event class hierarchy, 70–71
EKReminder class, Calendar database

simple properties of, 78–79
as subclass, 70
unique identifi er, 76

EKSpanFutureEvents, 79–80
EKSpanThisEvent, 79–80
Email. See AddressBook API
Enterprise Objects Framework (EOF),

134–135
Entities, data model

converting to objects, 149–153
defi ned, 144
working with, 145–148

Entitlements
building iCloud app, 200
confi guring capabilities and, 28–30, 243
enabling iCloud for Loon project,

278–279
sharing key-value store for Round Trip,

110–111
EOF (Enterprise Objects Framework),

134–135
Event class hierarchy, 70–71
Event Kit API

adding event to app on OS X, 83–84
adding reminder to app on iOS, 80–83
Event class hierarchy, 70–71

Index 385

overview of, 69–70
review, 85
setting OS X permissions, 71
working with Calendar database, 72–80

Event store
allocating/accessing, 72–74
EKEventStore, Calendar database. See

EKEventStore, Calendar database
EventKitUI, 69
Extensions, fi le extensions, 232, 251

F
Fallback stores

for when iCloud is unavailable, 341–342
wiping persistent store and starting

over, 346
Faulting, Core Data, 134–135
Fetch requests, data model, 144
File extensions

defi ned, 232
master view controller, 251

File inspector, exploring workspace, 189
File wrappers. See also WrappedDocument

adjusting general settings, 241
AppDelegate, 248–250
certifi cates, identifi ers, devices, and profi les

on developer.apple.com, 237–238
certifi cates, identifi ers, devices, and profi les

on Xcode 5, 238–240
checking build settings, 246
confi guring capabilities, 242–243
Core Data store and, 339
DetailViewController, 260–263
exploring documents, 233
exploring fi les, 232
MasterViewController, 250–260
overview of, 231, 246–248
review, 270–271
setting document/universal type identifi ers,

244–245
setting images, 242
starting Placid project, 236–237
users managing iCloud fi les, 233–236
working with storyboard, 270
WrappedDocument, 263–270, 312–314

FileMaker iOS, 135
FileRepresentation, 276, 314–315
Files

adding to app’s bundle, 172–175
adding to project, 189–190
creating multiproject workspace, 163–167
downloading, 363
exploring, 232
getting out of bundle, 175–176
management of iCloud fi les, 233–236
managing with iCloud, Time Machine, and

Auto Save, 12–13
organizing by app, 8–11
project navigator showing added

project, 171
setting up multiproject workspace, 162–163
viewing with developer.icloud.com,

362–363
in workspace for iCloud apps, 188–190
Xcode in management of, 159–162

FileWrappers method, 233
Finder

creating multiproject workspace, 164–167
dragging fi les from iCloud, 320
managing fi les across various devices, 7
organizing fi les by app, 8–11
viewing workspace fi les in, 190
Xcode fi le management, 160–162

Fingerprint scan, Touch ID, 92
First normal form, 138
First Time setting, Loon project, 280
Folders

creating multiproject workspace,
162–167

as directories, 232
exploring workspace for iCloud apps,

188–190
viewing with developer.icloud.com,

362–363
Xcode fi le management, 159–162

Foreign keys, 137
Frameworks

Enterprise Objects Framework (EOF),
134–135

importing to ViewController.m, 60–61

Index386

Frameworks (continued)
MFMailComposeViewController

framework. See
MFMailComposeViewController
framework

Functional programming, 24
“The Future of Mobile News,” 98

G
GCD (Grand Central Dispatch). See Grand

Central Dispatch (GCD)
General info settings, Loon project, 276–277
General tab

confi guring Placid project, 241
editing bundle identifi er in, 27–28

Getters, setting up and using key-value
store, 112

Goals, Core Data, 134–135
Grand Central Dispatch (GCD)

abstractions in, 98
defi ned, 98
queues in, 99

Graph style, Data Model editor, 143–144, 147
Group properties, of calendar items, 77–78
Groups, Xcode fi le management, 160–162
Guidelines, App Store/Mac App Store

privacy, 88

H
handleiCloudAvailabilityChange method,

notifi cations, 102–103
hasChanges method, Event class, 70
Header fi le

AppDelegate, 215, 281
DetailViewController, 224, 261, 301–302
FileRepresentation, 314
MasterViewController, 217, 250–251, 286
ReportDocument, 227–228
WrappedDocument, 264, 307–308

High-speed Internet connections, cloud
computing and, 6

Home button, 197–198

I
iCloud

access management, 207–208
accessing from Capabilities tab, 322–323

building apps, 199–200
checking out app built with, 192–194
creating classes, 215–229
creating shared folders, 201–207
data management, 209–212
debugging, 195–199, 364–366
designing folder structure for shared apps,

191–192
Digital Hub as predecessor to, 159
document management with, 12–13
examining fi les in System Preferences

(OS X), 355
examining fi les with iOS Settings, 356–362
exploring app workspace, 188–190
integration with Core Data. See Core Data,

integration with iCloud
iOS vs. OS X document architectures, 191
managing account changes, 344–345
managing availability of, 275
managing documents array, 212–215
moving documents to, 376–377
moving documents to local storage,

377–378
opening fi les, 320–321
overview of, 187–188
query, 298–300
review, 230
Round Trip. See Round Trip
scoping project, 194
storyboards, 230
synchronization, 346
tracking usage, 337
turning on, 108–110
types of storage in, 105
using user defaults with, 129–130

iCloud controller
declaring shared controller, 369–370
implementing shared controller, 370–375
making app delegate link to, 369
sharing, 368–369

iCloud gauge, Xcode, 364–366
iCloud Keychain, 92
iCloud Key-Value Store

methods, 111–112
sharing key-value store for Round Trip, 111
working with, 112

Icon view, OS X, 351

Index 387

Icons
adding to document type, 245
setting up UTIs, 245

Id fi eld, 137
Identifi ers

confi guring on developer.apple.com,
237–238

confi guring on Xcode 5, 239–240
device, 89
setting document/universal type,

244–245
user and app, 18–22

Identity, in iCloud, 208
Images.xcassets fi le, 242
Imperative programming, 24
Info tab

declaring document types for Placid project,
244–245

setting documents for Loon project, 279
Information Property List dictionary, 123
Initialization

creating shared folders, 204–207
master view controller, 217
WrappedDocument, 328–329

initializeiCloudAccess, 204–206, 284
insertNewObject, 290
Instances, of properties, 136
Interface Builder

wiring interfaces with, 50–51
wiring up iOS interface, 51–54

Internet
high-speed connections and cloud

computing, 6
sending Mail from iOS app, 59

iOS
adding fi les to app’s bundle,

172–175
adding reminders, 80–83
AddressBook data, 58
app security, 18–23
Apple ID required for, 25
Cocoa Touch for, 1
Core Data project, 141–142
document architecture, 191
documents. See documents, UIDocument

subclass
event store declaration, 73

examining iCloud fi les with iOS Settings,
356–362

iCloud for, 2, 30–31
monitoring interface changes, 118–119
monitoring store changes, 116–118
OS X compared with, 54, 317–318
preparing project for testing, 108–110
preparing user interface, 112–113
requesting access to events/reminders, 74
Round Trip and, 14
sending mail, 58–65
setting up sandboxing, 177–178
setting up store, 114–115
shared ubiquity container for apps,

366–368
sharing key-value store for Round Trip,

110–111
split view controller in, 353–354
testing iCloud on Simulator, 107–108
user defaults, 121–122
wiring up interfaces, 51–54
Xcode data modeling tool and,

142–150
Xcode project, 42–46

iOS Development certifi cate, 238
IP addresses, best practices in app privacy, 89
iPad

app workspace, 193
iPad vs. iPhone architecture, 274–275
setting up with window property, 281
working with iOS documents, 274–275,

353–354
iPhone

iPad vs. iPhone architecture, 274–275
navigation interface, 193–194, 302
storyboards, 46, 56
working with iOS documents, 354

isNew method, Event class, 70
iTunes, 104
iWork apps

demonstrating iCloud to users, 2
managing documents in iCloud, 31
saving to iCloud, 198–199

J
Jobs, Steve, 177
Join tables, many-to-many relationships, 137

Index388

K
KeyForCurrentUbiquityToken, 208
Key-value coding (KVC)

converting entities to objects, 149
enabling key-value store, 30
implementing, 106–107
keeping track of defaults with ubiquity

store, 129
methods, 111–112
monitoring interface changes, 118–119
monitoring store changes, 116–118
NSUbiquitousKeyValueStore, 111
overview of, 105
preparing project for testing, 108–110
preparing user interface, 112–114
review, 120
setting up controlled testing

environment, 106
setting up store at runtime, 114–116
sharing key-value store for Round Trip,

110–111
testing iCloud on iOS simulator,

107–108
user defaults settings using, 122
working with store, 112

L
Latency, iCloud, 104
Lazy loading, in Cocoa and Cocoa Touch,

330–332
Library folder, 176, 178–180
List view, OS X, 351
Live queries, managing iCloud data, 209–211
Load section, Loon project, 288–289
Local storage

devices and, 5–6
moving documents from iCloud to,

377–378
Location data

best practices in app privacy, 88–89
setting OS X permissions, 71

Loon project
adding settings, 280
AppDelegate, 280–286
DetailViewController, 301–306
FileRepresentation, 314–315
MasterViewController, 286–301

overview of, 280
Placid project vs., 273–274
planning app’s structure, 274–276
setting Capabilities, 278–279
setting general info, 276–277
setting up documents, 279
WrappedDocument, 306–314

Loose coupling, notifi cations, 100
Lproj fi le, 160
LSHandlerRank property, document types, 245
LSTypeIsPackage property, document types, 245

M
Mac App Store, 88
Mail

AddressBook API, 57–58
checking that it is confi gured/available,

63–64
property lists for storing/syncing, 65–66
sending from iOS app, 58–65
sending from OS X app, 65

Main queues, 99
MainViewController

monitoring store changes, 116–118
preparing user interface in iOS, 113
setting up store/UI on iOS at runtime,

114–115
Managed objects

of Core Data stack, 155
managedObjectModel, 175–176

Many-to-many relationships, 137
Many-to-one relationships, 137
Master-Detail Application template

adding fi les to app’s bundle, 172–175
adding new document to, 219–220
building iCloud app, 199–200
checking out end result of new app,

192–193
creating iOS Core Data project, 141–142
getting fi les out of bundle, 175–176
including Core Data store with app,

183–184
iPad vs. iPhone architecture, 274–275
Loon project, 286–301
Placid project, 236–237
Xcode data modeling tool, 142–150
Xcode fi le management, 159–162

Index 389

MasterViewController
creating documents, 220–222
deleting documents, 223–224
handling segues, 223
implementing, 218–219
interacting with iCloud at document

level, 301
Loon project, 286–301
managing list of documents, 217
objects in, 154
Placid project, 250–260
responding to tap in table view, 222
setting up header, 217
structuring apps, 275–276
viewing at iOS documents, 353–354
wiring Add button, 219–220

Memory section, Loon project, 288–289
MessageComposer sample app, 58–65
Methods

Calendar database, 72–74
debugging, 204
Event Kit class, 70–71
fi le wrappers, 233
iCloud access, 207–208
key-value store, 111–113, 115–117, 119

MFMailComposeViewController framework
adding reminders to app, 81
AddressBook API, 57–58
building into OS X code, 58
checking that Mail is confi gured/available,

63–64
sending mail, 58–59
sending messages, 60–63

Minors, protecting online privacy of, 91
Mobile news, 98
Model-view-controller (MVC) design

pattern
implementing relational databases, 140
using with database apps, 318

Monitoring
interface changes, 118–119
key-value store changes, 112, 116–118

Multiproject workspace
creating, 163–167
setting up, 162–163

Multitarget workspace, creating, 188–190
Mutable documents array, 253

MVC (model-view-controller) design pattern
implementing relational databases, 140
using with database apps, 318

N
Name property, notifi cations, 101
NameID fi eld, 137
Naming

blocks, 99
document types, 244–245
documents, 255, 291–295
projects, 276–277
text views, 51–52
UTIs, 245

Navigation interface, iPhone
app workspace, 193–194
ViewWillAppear/ViewWillDisappear, 302
working with iOS documents, 274–275

NeXT, 134
NeXTSTEP, 139
Nib fi les

creating Chazy project, 321, 323–324
creating OS X Xcode project, 47
First Responder commands in, 352
linking class to delegate or property, 327
overview of, 48

Non-Retina versions of images, 242
Normalizing data, 138–139
Notifi cations

of iCloud availability changes, 102–103
Loon project, 280
managing iCloud data, 209–212
overview of, 97, 100
posting, 102
properties, 101
registering for, 101–102
for view appearance/disappearance,

226–227
NSApplicationDelegate protocol, 325
NSArray

implementing KVC, 107
property list class, 122
reading and writing property lists, 127

NSData objects
property list class, 122
reading plist into, 182–183
using in property lists, 127

Index390

NSDate
creating new event, 76
property list class, 122

NSDictionary
Core Data methods and, 340–341
implementing KVC, 107
property list class, 122
reading and writing property lists, 127
reading property list into, 182–183
registering defaults, 130
setting up/using key-value store, 112
storing, 111

NSDocument. See also documents,
NSDocument subclass

defi ned, 233
NSPersistentDocument subclass, 339
UIDocument compared with, 317–319

NSHomeDirectory, 180–181
NSKeyValueProtocol, 106–107
NSManagedObject, 149–153, 155
NSManagedObjectContext, 155
NSMetaDataQuery

fi nding iCloud documents, 298–300
managing iCloud data, 209–212
master view controller and, 258–260

NSNotifi cation class
creating notifi cations, 101
notifi cations as lightweight objects

of, 100
NSNotifi cationCenter, 100
NSNumber

property list class, 122
using scalars in property lists, 127–128

NSObject, 106–107
NSPersistentDocument subclass, 339
NSPersistentStore

managing changes to, 343–344
rebuilding local store, 346–347
setting up persistent stores asynchronously,

342–343
NSPersistentStoreCooordinator, 155
NSString

implementing KVC, 106–107
preparing user interface, 114
property list class, 122

NSTextField, 54–55
NSTextView, 54–55

NSUbiquitousKeyValueStore
methods, 111–112
monitoring interface changes,

118–119
monitoring store changes, 116–118
overview of, 111
preparing user interface, 112–114
setting up store at runtime, 114–116
working with store, 112

NSUbiquityIdentityDidChange Notifi cation,
102–103, 204–207

NSUserDefaults class method
getting to app’s defaults with, 130
managing iCloud access, 207–208
monitoring interface changes, 119
monitoring store changes, 117
setting up store at runtime, 115–116

NSWrapper, 232–233. See also fi le
wrappers

O
Object property, notifi cations, 101
Objective-C

enforcing privacy with, 89
keeping up with Apple, 38–39

Object-oriented programming, 134
Objects

converting entities to, 149–153
data objects. See NSData objects
graphs, 134
implementing KVC, 106–107
inserting new, 290
managed objects, 155, 175–176
setting up/using key-value store, 112
using, 154

One-to-many relationships, 137
onguardonline.gov, 91
Open dialog, in OS X, 350–353
Operating systems

Round Trip and, 14
OS X

adding events, 83–84
app security, 18–23
Apple ID for, 25
Auto Save, 319
calendar permissions, 71
Cocoa for, 1

Index 391

Core Data project, 140–142
document architecture, 191
document-based apps. See documents,

NSDocument subclass
event store declaration, 73
iCloud for, 2, 30–31
icon and list views, 351
iOS compared with, 54, 317–318
looking inside sandboxing containers,

178–180
monitoring interface changes,

118–119
monitoring store changes, 116–118
multiple Apple IDs on, 25–26
Open dialog in, 350–353
preparing project for testing, 108–110
preparing user interface, 113–114
requesting access to events/reminders, 74
Round Trip requirements, 14
sending mail, 65
setting up store at runtime, 115–116
shared ubiquity container for iOS and OS

X apps, 366–368
sharing key-value store for Round Trip,

110–111
user defaults, 121–122
wiring up interfaces, 54–55
writing code for document-based app,

326–327
Xcode project, 47–50

P
Packages

overview of, 170
WrappedDocument, 312–314

Pages documents, viewing Cloud-enabled apps,
9–10

Parameters, registration for notifi cations, 102
Password managers, 92
Passwords

storing, 107
user issues, 92

Permissions
asking user before accessing data, 79–80,

90–91
OS X, 71
privacy rules and guidelines, 88

Persistent store coordinator (psc), 154–155,
341, 343–344

Persistent stores. See also Core Data
building from compiled data model,

183–184
of Core Data stack, 154
managing changes to, 343–344
rebuilding local store, 346–347
setting up asynchronously, 342–343

Personal information, privacy of, 92
Pew Research Center’s Project for Excellence

in Journalism, 98
Phone phreaks, 177
Placid project

adjusting general settings, 241
certifi cates, identifi ers, devices, and profi les,

237–240
checking build settings, 246
confi guring capabilities, 242–243
Loon project vs., 273–274
setting document/universal type identifi ers,

244–245
setting images, 242
starting, 236–237

Plists. See property lists
Posting notifi cations, 102
Predicates

enumerating events with, 77
searching for event/reminder, 77

Primary key, 137
Primary ubiquity container, 30
Privacy

Apple rules and guidelines, 88
asking permission and explaining use of

data, 90–91
best practices, 88–92
debugging and, 89
knowing what should be private, 88–89
need for, 87
not requiring personal data to unlock

app, 91
overview of, 87
programming style enforcing, 89
protecting minors, 91
review, 93
for support materials, 91–92
user issues, 92

Index392

Procedural programming, 24
Product name, editing bundle identifi er,

27–28
Profi les

identifying user and app, 18–22
provisioning profi les, 237–240

Programming style, enforcing privacy with, 89
Project navigator

adding fi les to app’s bundle, 173–175
adding property list data to app, 182
creating multiproject workspace, 166–167
exploring workspace for iCloud apps,

189–190
showing added project fi les, 171
Xcode fi le management, 160–162

Projects
Chazy project. See Chazy project
creating iOS Xcode, 42–46
creating multiproject workspace, 163–167
creating OS X Xcode, 47–50
Loon project. See Loon project
Placid project. See Placid project
preparing for testing, 108–110
setting up multiproject workspace, 162–163
working directly with iCloud. See key-value

coding (KVC)
Xcode fi le management, 159–162

Properties. See also attributes
adding to document type, 245
calendar items, 77–79
Core Data, 135–136
declaring, 207
enforcing privacy with good programming

style, 89
notifi cation, 101
setting up UTIs, 245
WrappedDocument, 327–328

Property lists
adding to your app, 181–182
looking at, 122–125
looking inside, 125–126
NSData objects in, 127
overview of, 122
reading and writing, 127
scalars in, 127–128
storing/syncing in AddressBook, 65–66
user defaults settings, 122

Provisioning profi les
confi guring on developer.apple.com,

237–238
confi guring on Xcode 5, 239–240
creating and managing, 22

Psc (persistent store coordinator), 154–155,
341, 343–344

Q
Queries

managing iCloud data, 209–211
master view controller, 258–260
SQL queries, 136
working with iCloud, 298–300

Queues
defi ned, 98
enqueuing blocks in, 99–100
types in GCD, 98–99

R
Reachability sample code

adding reminder to app on iOS, 80–83
sending mail from OS X app, 59–60

Reading
property lists, 127, 182–183
to/from URL, 353
WrappedDocument, 330–332

Records, unique identifi ers of table, 136
Redo, WrappedDocument, 309–311
Refactor commands, creating iOS Xcode

project, 42–46
Refactor submenu, Edit menu, 39
References, notifi cation, 100
RegisterDefaults, 130–131
Registration, for notifi cations

defi ned, 100
overview of, 101–102
receiving iCloud availability changes,

102–103
review, 104

Registration, of user defaults, 130–131
RegularFileContents method, fi le

wrappers, 233
Relational databases

Core Data as merging of OOP and, 134
relationships in, 136–137
spreadsheet design of, 135

Index 393

Relationships
in Core Data, 136–137
denormalizing data, 139
normalizing data, 138–139

Reminders, managing with Event Kit API. See
Event Kit API

Remote storage devices, 6–7
ReportDocument, 227–229
Reset method, Event class, 71
Retina versions of images, 242
Review Guidelines, App Store/Mac App

Store, 88
Rollback method, Event class, 71
Round Trip

Auto Layout system for, 14
declaring shared iCloud controller, 369–370
from developer viewpoint, 362–363
examining iCloud fi les in System

Preferences (OS X), 355
examining iCloud fi les with iOS Settings,

356–362
implementing shared iCloud controller,

370–375
linking app delegate to iCloud

controller, 369
making, 14
moving documents from iCloud to local

storage, 377–378
moving documents to iCloud, 376–377
overview of, 349
review, 378
shared iCloud controller, 368–369
shared key-value store, 110–111
shared ubiquity container, 23, 366–368
from user viewpoint, 350
working with Open dialog in OS X,

350–353
working with split view controller in iOS,

353–354
Xcode and, 364–366

Runtime
getting fi les out of bundle for use at,

175–176
identifying user/ubiquity container at,

22–23
setting up store at, 112, 114–116
understanding Apple ID at, 24–26

S
Sandboxing

constraining access with, 87
iCloud storage vs., 31
looking inside sandboxing Containers on

OS X, 178–180
Loon project, 287–288, 300–301
master view controller, 251
overview of, 176–177
setting up, 177–178
writing to sandboxes, 180–181

Saving
changes to reminders and events,

79–80
iOS Xcode project, 44
Save button, 113, 119
saveData method, 113, 119

SBSendEmail sample app, 65
Scalars, using in property lists, 127
Scope, project, 194
Scratchpad, Core Data stack, 155
Second normal form, 138
Security. See also privacy

developer.apple.com, 18
digital signatures and, 18
identifying user/ubiquity container at

runtime, 22–23
managing App ID, 21
managing developer identity, 19–21
managing devices, 21–22
managing provisioning profi les, 22
sandboxing for. See sandboxing

Serial queues, 99
Setters, key-value store, 112
Settings

examining iCloud fi les, 356–362
iOS Simulator, 107–108
legacy, 122
locating iOS defaults, 129
managing iOS defaults, 121

Shared development. See workspaces
Shared folders

building iCloud app and, 200
Constants.h, 201
Constants.m, 201–202
designing structure of, 191–192

Index394

Shared folders (continued)
exploring workspace for iCloud apps,

188–190
managing documents array, 212–215
managing iCloud access, 207–208
managing iCloud data, 209–212
multiproject workspace and, 163, 166
overview of, 201
SharediCloudController.h, 202–204
SharediCloudController.m, 204–207

SharediCloudController, 207
SharediCloudController class, 215–217
SharediCloudController.h class, 202–204
SharediCloudController.m class, 204–207
Shoebox apps

historical accuracy of, 140
iCloud working with, 139
managing iCloud availability, 275

Show Package Contents command, 170, 235
Simula 67 programming language, 134
Simulators

running Xcode project on, 44
sending Mail from iOS app, 59
testing iCloud on, 107–108
testing synchronization across iOS devices,

103–104
Single View Application template, 42–46
Span parameter, events, 79–80
Split view controller, iPad

app workspace, 193
setting up with window property, 281
working with iOS documents, 274–275,

353–354
SQL queries, 136
SQLite database, 135, 139
Standards, calendar format, 69
Storage. See also Core Data

fallback stores for when iCloud is
unavailable, 341–342

iCloud. See iCloud
key-value store. See key-value coding

(KVC)
moving documents from iCloud to local

storage, 377–378
persistent. See persistent stores
types of storage in iCloud, 105
using iCloud storage vs. sandboxing, 31

Storyboards
container views attached to, 40
creating iCloud apps, 230
creating iOS Xcode project, 44
customizing for Placid project, 270
iPhone, 46, 56
making Round Trip using, 14
master view controller, 251
preparing user interface in iOS, 113

Structure
app, 274–276
data, 97, 135–139
folder, 191–192

Support materials, providing privacy for, 91–92
Synchronization

AddressBook API, 65–66
of data across devices, 13–14
fi le wrappers and, 233
iCloud Keychain and, 92
setting up controlled testing

environment, 106
setting up key-value store, 112
setting up store at runtime, 114–116
structuring data for, 97
testing across iOS devices, 103–104
using iCloud with user defaults, 129–130

System Preferences
examining iCloud fi les in OS X, 355
legacy preferences, 122
locating OS X defaults, 129
managing OS X user defaults, 121
viewing iCloud documents, 11

T
Table style, Data Model editor, 143–144, 147
Table view

Loon project, 287, 295–297
master view controller updating, 256–257

Tables
managing storage with Core Data, 135–136
normalizing data, 138–139
relationships between, 136–137

Tap, responding in table view to, 222
tapButton

checking that Mail is confi gured/available,
63–65

sending message from iOS app, 60, 62–63

Index 395

Targets
app bundles for, 170
editing bundle identifi er, 27–28

Templates
Cocoa Application template, 318, 350
creating Core Data project, 140–142
creating iOS Xcode project, 42–46
enabling Core Data in Xcode, 155
Master-Detail Application template. See

Master-Detail Application template
using Cocoa application, 47–48

Testing
debugging iCloud apps, 187–188
iCloud on iOS simulator, 107–108
Loon project, 280
preparing project for, 108–110
setting up controlled environment, 106

Text fi elds
creating OS X Xcode project, 48–49
preparing user interface in KVC, 112–113
wiring up OS X interfaces, 54–55

Text view
creating iOS Xcode project, 44–46
making changes to storyboards, 215
making Round Trip on iOS side using, 14
sending message from iOS app, 60–63
wiring up iOS interface, 51–54
wiring up OS X interfaces, 54

textFieldDidEndEditing, KVC, 112–113
Third normal form, 139
Threads

defi ned, 98
overview of, 97
queues and, 98–99
review, 104
using blocks together with, 98

Time lag, in synchronization process, 106
Time Machine backup, 7, 12–13
Tokens

managing iCloud access, 207–208
ubiquity token, 281–286

Touch ID, fi ngerprint scan, 92

U
Ubiquity container

identifying at runtime, 22–23
Loon project, 283–284

navigating, 363
sharing iOS and OS X apps, 366–368
specifying for your app, 30

Ubiquity token, 281–286
UDID (iOS), 21–22
UIAlertViewDelegate, 281
UIDocument. See also documents,

UIDocument subclass
defi ned, 233
NSDocument compared with, 273,

317–319
UIManagedDocument subclass, 339

UIKit (Cocoa Touch for iOS), 1
UILabel item, 215
UIManagedDocument subclass, 339
UITextField Delegate, 118
UITextView, 54
unconfi gureView, 302–305
Undo, WrappedDocument, 309–311
Uniform Type Identifi er (UTIs)

defi ned, 232
setting up, 245

Unique identifi ers
EKEvent and EKReminder, 76
as primary key, 137
for records in tables, 136–137
retrieving events with, 77
setting up UTIs, 245

updateCloudItems, 116–118
Updates, 106
URLForUbiquityContainerIdentifi er

creating new document, 220
creating shared folders, 206–207
working with iOS documents, 292
writing code, 250, 253, 283

URLs
including Core Data store with app, 185
reading/writing, 353
storing fi lenames, 314–315

Use iCloud setting, Loon project, 280
User data APIs, 38
User defaults

legacy preferences/Settings, 122
overview of, 121
preparing user interface, 113
property lists. See property lists
registering, 130–131

Index396

User defaults (continued)
review, 131
setting up store at runtime, 114–116
working with, 128–130

User experience
cloud computing, 5–7
iCloud paradigm, 8–14
making Round Trip, 14
managing documents with iCloud, Time

Machine and Auto Save, 12–13
organizing fi les by app, 8–11
review, 14–15
Round Trip from user viewpoint, 350
syncing data across devices, 13–14

User interface. See also user experience
advanced view techniques, 39–40
creating graphically, 47–48
detail view controller focus on, 301
iOS vs. OS X document architectures, 191
monitoring store changes, 118–119
overview, 50–51
preparing using KVC, 112–113
updating store from changes in, 112
wiring up OS X, 54–55
working with store, 112
writing up iOS, 51–54

userInfo property, notifi cations, 101
User-settable defaults, 128–129
Utility Application. See iOS
UTIs (Uniform Type Identifi er)

defi ned, 232
setting up, 245

UTTTypeSpecifi cation property,
UTI, 245

UUID (OS X), 21–22

V
Values

code confl ict resolution and, 105
data confl icts in synchronization, 106
setting up/using key-value store, 112
using iCloud with user defaults,

129–130
Variables

backing variables, 38–39, 89
blocks containing bindings to, 99

Versions
Auto Save document, 12–13
managing in Core Data, 144–145

View Controller Catalog for iOS, 39–40, 52–54
View controller, preparing user interface in

iOS, 113
ViewDidLoad method, Calendar database,

72–74, 80–82
ViewWillAppear, iPhone navigation

interface, 302
ViewWillDisappear, iPhone navigation

interface, 302

W
Warnings, Xcode, 38
WHERE clause, 77
WindowController subclass, 334–337
WindowDidLoad method, Calendar database,

72–74
Windows

managing for WrappedDocument, 329–330
setting up split view with, 281

Workspaces, 188–190
building on Digital Hub, 158–159
creating for iCloud app, 199–200
creating iOS Xcode project, 46
creating multiproject, 163–167
exploring for iCloud apps, 188–190
making Round Trip using multiproject, 14
overview of, 157–158
review, 167–168
setting up multiproject, 162–163
shared fi les in two places in, 192
Xcode fi le management, 159–162

Worldwide Developers Conference. See
WWDC (Apple’s Worldwide Developers
Conference)

Wozniak, Steve, 177
WrappedDocument

accessors, 332–334
Chazy project, 323–324
Loon project, 306–314
managing windows, 329–330
Placid project, 260–270
properties, 327–328
structuring apps, 276

Index 397

WrappedDocumentDelegate, Loon project,
306–308

WrappedFile, 301
Writing, 330–332

property lists, 127
to/from URL, 353
WrappedDocument, 330–332
to your sandbox, 180–181

WWDC (Apple’s Worldwide Developers
Conference)

keeping up with Apple changes, 40
WWDC 2012, 340
WWDC 2013, 340

X
xcassets fi le type, 242
Xcode

adjusting general project settings, 241
bundle identifi er in, 26–28
confi guring entitlements/capabilities, 28–30
creating workspace for two apps, 366–368
Debug navigator, 364–366

fi le management, 159–162
IDE for building apps, 37
inability to create App ID, 21
keeping up with Apple, 38–39
managing developer identity, 19–21
planning document-based app project,

319–321
viewing workspace fi les, 189
with, 21
workspaces. See workspaces

Xcode data modeling tool
converting entities to objects,

149–153
managing data models, 144–145
review, 155
using objects, 154
working with Core Data, 142–144
working with entities, 145–148

XML, inside property lists, 125–126

Z
zzID fi eld, 137

	Contents
	Preface
	Acknowledgments
	About the Author
	Introduction
	2 Setting Up iCloud for Development
	Managing App Security on iOS and OS X
	Looking Inside the iCloud Basics
	Using iCloud in Your App
	Chapter Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

