

Develop and Design

Building
Touch Interfaces
with HTML5
Speed up your site and create amazing user experiences

Stephen Woods

Peachpit Press
www.peachpit.com

HTTP://WWW.PEACHPIT.COM

Building Touch Interfaces with HTML5: Develop and Design
Stephen Woods

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2013 by Stephen Woods

Project Editor: Nancy Peterson
Production Editor: Rebecca Chapman-Winter
Development Editor: Jeff Riley
Compositor: Danielle Foster
Technical Editor: Nicholas C. Zakas
Copyeditor: Gretchen Dykstra
Proofer: Darren Meiss
Indexer: Jack Lewis
Cover Design: Aren Straiger
Interior Design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the author nor the publisher shall have any liability to any person or entity with respect
to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by
the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested
by the owner of the trademark. All other product names and services identified throughout this book are used in editorial
fashion only and for the benefit of such companies with no intention of infringement of the trademark. No such use, or the
use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 	 978-0-321-88765-8
ISBN 10: 	 0-321-88765-4

Printed and bound in the United States of America

9 8 7 6 5 4 3 2 1

http://www.peachpit.com

To Sashimi, the best cat ever.

Acknowledgements
Thanks to Jeff Riley, Nancy Peterson, Michael Nolan, and the staff at Peachpit for making the
book possible and my words less incoherent. Thanks to Nicholas Zakas for his exceptionally
detailed and thoughtful criticism about this book and for his mentorship at Yahoo!

Thanks as well to Stoyan Stefanov for his last-minute review and invaluable experience
in the world of technical writing. Thanks also to Guy Podjarny for his time and research.

This book wouldn’t have been possible without the support of my manager, Ross
Harmes, as well as the rest of the front-end team at Flickr.

Thanks to Benjamin for showing me the many uses for mobile devices.
Finally, thank you to Elise for putting up with me while I spent hours every evening

staring at my computer and a pile of cell phones.

iv  Acknowledgements

About the Author
Stephen Woods is a Senior Front-end Engineer at Flickr. He has been developing user
interfaces for the web since the end of the last century. He has worked at Yahoo! since 2006.
Before Flickr, he developed JavaScript platforms that supported the Yahoo! home page and
worked on the UI team at Yahoo! Personals. He’s an expert with the full web stack, but his
primary interest is making responsive user interfaces with web technologies. Stephen has
spoken at SXSW and HTML5DevConf about touch interfaces and he has been published
in .net magazine.

About the Author  v

Contents
Introduction . viii

Welcome . x

Chapter 1	 The Mobile Landscape . 2
The difference between a touch device and a desktop 4

Devices in the wild . 5

HTML5 . . 8

The uncanny valley: What makes a touch interface responsive? 9

Wrapping up . 11

Chapter 2 	 Creating a Simple Content Site . 12
Choosing a philosophy:
Mobile first or mobile last . 15

Creating the markup . 15

Laying the groundwork: the <head> . 17

Understanding the viewport . 18

Responsive CSS . 22

Wrapping up . 29

Chapter 3	 Speeding Up the First Load . 30
How the browser loads a page . . 32

Why are pages slow? . 32

Speeding up with YSlow and PageSpeed . 36

Solving common problems . 39

Pulling it all together . 47

Wrapping up . 47

Chapter 4	 Speeding Up the Next Visit . 48
Caching in HTTP . 50

Optimizing for mobile . 51

Using web storage . 53

The application cache . 61

Wrapping up . 65

Chapter 5	 Using PJAX to Improve the Touch Experience 66
The price of page loads . 68

The browser history API . 70

Adding PJAX . 78

Wrapping up . 87

Chapter 6	 Taps vs. Clicks: Basic Event Handling 88
What makes a tap different? . 90

Introducing touch events . 91

vi  Contents

Handling taps . . 94

Wrapping up . 102

Project . 103

Chapter 7	 CSS Transitions, Animation, and Transforms 104
Animating elements . 106

CSS transforms . 122

Wrapping up . 132

Project . 133

Chapter 8	 Maximizing JavaScript Performance 134
Performance testing and debugging . 136

The write-only DOM . 137

Prioritizing user feedback . 139

Putting it together: Infinite scroll . 140

Wrapping up . 151

Project . 151

Chapter 9	 The Basics of Gestures . 152
Why gestures? . 154

Creating a progressively enhanced touch control 156

Building a touch lightbox . . 163

Wrapping up . 181

Project . 181

Chapter 10	 Scrolling and Swiping . 182
Scrolling . 184

When layouts fail . 192

Making the bird browser swipeable . 195

Wrapping up . 214

Project . 215

Chapter 11	 Pinching and Other Complex Gestures 216
Understanding multi-touch limitations and support 218

Handling multiple touches . 219

Handling pinches . 224

Wrapping up . 237

Project . 237

Index . 238

Appendix A	 Debugging tools . A:1

Appendix B	 Mobile frameworks . B:1

Appendix C	 building a mobile web application . C:1
Bonus chapters mentioned in this eBook are available after the index.

Contents  vii

Introduction
As of this writing, 11.42 percent of web visits are via a mobile device (according to Stat-
Counter.com). One year ago that was 7 percent. Three years ago it was 1.77 percent. Desktops
will be with us for a while, but the future of the web will be on mobile devices.

For web developers, supporting mobile devices is the biggest change since the web stan-
dards revolution of the early 2000s. Mobile devices all have HTML5-capable, thoroughly
modern browsers. They have limited memory and slow CPUs. They often connect via high-
latency connections. Most importantly, they all have touch interfaces.

Developing for mobile is developing for touch. Many of the skills you use for desktop web
development carry over to the mobile web, but some things are quite different—and getting
those things right can be difficult. I wrote this book to help you get the new things right.

Who this book is for
This book was written for two types of readers:

JJ Experienced web developers who have never developed for mobile or touch interfaces
and want to learn how.

JJ Developers who’ve been working in mobile but have struggled to make their mobile
websites feel right.

This book is not for absolute beginners. You’ll need to have a working knowledge of the
web front-end: HTML, CSS, and JavaScript. Prior experience with the new APIs and features
of HTML5 and CSS3 won’t hurt either.

Most importantly, this book is for people who aren’t content with a mobile site that’s just
good enough. If you want to build a site that feels fast and smooth, this book is for you.

What you will learn
This book is focused on making touch interfaces that feel fast. It’s structured in roughly the
same way I approach optimizing a website. The first half covers what I consider the basics—
concepts that make any website faster, but mobile sites in particular. Chapters 2 and 3 show
you how to build a simple site and make it load faster. Chapter 4 helps you speed up users’
next visit to the site with caching. Chapter 5 is all about removing page loads all together and
structuring applications to maximize real and perceived performance.

The second half of the book is specifically about touch interfaces, in particular making
them feel as smooth and fast as possible. The book gets more complex as it goes on. If you
feel like the later chapters are over your head, try applying what you’ve learned so far in
your work and then coming back to some of the ideas I’ll present toward the end. A website
doesn’t need pinch to zoom to be useful.

viii  Introduction

What you’ll need
To get the most out of this book you’ll need at least one touch-enabled device in addition to
your computer. If you’re only going to have one, I recommend an iOS 6 or Android 4 device.
Having both is ideal if you can afford it.

When developing for the mobile web, try to get as many devices as possible. iOS and
Android simulators are no substitute for real devices. When writing this book, I used a
Samsung Galaxy S III with Android 4.0.4 (Ice Cream Sandwich), an iPhone 4, an iPhone 5,
an iPad 1, and an HTC 8X (Windows 8). I supplemented these devices with the simulators.

At Flickr we have a similar set but we also have several Android tablets and a Kindle Fire.

Frameworks
This book doesn’t use jQuery or any other JavaScript framework. You’ll learn about a few
specialized libraries, but we’ll focus as much as possible on native DOM APIs. That’s not
to say you should avoid frameworks—far from it! But I want to make sure you understand
how things really work. When you decide to build a site with jQuery mobile, Backbone.js,
Zepto.js, or any other framework, you’ll be much more comfortable understanding what’s
really going on.

The other huge benefit to understanding the native DOM APIs is that when you find a
bug or a problem in a library you can patch it yourself and make a pull request with your
fixes, benefiting the entire community. Appendix A lists some handy debugging tools.

Appendix B lists a few of the more common mobile-focused frameworks. When you
build a new site, I recommend carefully evaluating your needs, including as little library
code as you can, and adding only what you need.

The appendices are not printed in the book. They can be found at the book’s companion
website: touch-interfaces.com

The website
All the code samples in this book as well as late-breaking changes can be found at the
companion website: touch-interfaces.com. The code samples are also mirrored on GitHub,
where you can file issues with the samples and submit pull requests: https://github.com/saw/
touch-interfaces.

Introduction  ix

https://github.com/saw/touch-interfaces
https://github.com/saw/touch-interfaces

Welcome to the Mobile Web
Websites are built with HTML, CSS, and JavaScript. Mobile websites are no differ-
ent. All you really need to get started is a web browser and a text editor, but to be
really productive I recommend a few more tools.

The Toolchain
The easiest process is to develop with a text editor and a desktop browser,
then keep a touch device around for testing.

A Text Editor & A
WebKit Browser

I use TextMate 2 (github.
com/textmate/textmate)
for MacOS X, but any edi-
tor will do.

Because the vast majority
of mobile devices run a
WebKit browser, you will
find that Chrome or Safari
is a an essential tool to
being productive. It isn’t
the same as testing on
the real device but it’s a
lot easier and essential.

A Web Server

In order to test your site
on an actual device you
will need to serve pages
on your local wireless net-
work. On the Mac I find
MAMP (www.mamp.info)
to be a very convenient
tool for this, but using
the built-in Apache web
server will work as well.

A Touch Device

There is no substitute for
a physical device. If you
can afford it, I recom-
mend having at least a
recent Android phone
and an iOS device. If
you can only afford one
phone it’s helpful to find
people who will let you
borrow their phones for
a moment to test on.

x  Welcome to the Mobile Web

http://www.mamp.info

Testing Across Devices
You can’t assume that all WebKit browsers are created equal. You should test
your app in iOS 5, iOS 6, Android 2.3, Android 4.0, Android 4.1 (Chrome), and
IE 10. Here is a guide to how to test on these devices, even if you don’t have
access to the device itself.

iOS Safari

Apple provides a quite
capable simulator with
XCode. The simulator
can run as iOS 5 or 6 and
as a tablet or phone. It
also supports remote
debugging with Safari.
It really is a great tool
and assuming you have a
Mac this is a critical part
of your toolset. XCode is
available for free from the
Mac App store.

Android

Google provides emula-
tors for just about every
version of Android. These
are available with the
Android SDK (developer.
android.com/sdk). Once
you have the Android
SDK, images for various
Android versions are
separate downloads.
Keep in mind these are
the official builds from
Google; Android versions
on actual devices can vary
quite a bit.

Windows 8

Microsoft does provide
an emulator for Windows
Phone 8; it’s avail-
able with the SDK (dev.
windowsphone.com/
en-us/downloadsdk).
The emulator runs only
on Windows. IE 10 for
the desktop is the same
browser, so most debug-
ging can be down with
the desktop browser
rather than the emulator.

Debugging

Debugging websites on
phones can be a chore,
but there are a lot of
tools available to make it
easier. I’ve provided a list
of several on the website
in Appendix A.

Welcome to the Mobile Web  xi

Chapter 4

Speeding Up
the Next Visit

So much about computing performance depends on caching.

Fundamentally, caching is putting data somewhere after you get

it the first time so you can access it much more quickly the next

time. On the web, we want to take advantage of caching as often

as possible to speed up users’ subsequent visits to the site, keep-

ing in mind that their next visit is quite frequently within seconds

of their first, when they ask for another page.

On mobile, as much as anywhere, we want to make the best

possible use of caching. The main tools we have for caching on

touch devices are the normal browser cache, localStorage, and the

application cache. In this chapter we’ll look at normal browser

cache, which isn’t as good as it should be; LocalStorage, a newish

API for persistent storage that’s an incredibly powerful tool for

manual caching; and the application cache.

49

Caching in HTTP
HTTP was designed with caching in mind. The cache we’re most familiar with is the browser
cache, but additional caching proxies often exist as well, and they follow the same rules
defined in the specification. There are three ways to control HTTP caches:

JJ Freshness

JJ Validation

JJ Invalidation

Freshness
Freshness, sometimes called the TTL (Time To Live), is the simplest. Using headers, caching
agents are told how long to hold on to a cached resource before it should be considered stale
and refetched. The simplest way this is handled is with the Expires header. You might remem-
ber that YSlow and PageSpeed recommend setting far-future Expires headers for static content.

The goal here is that so-called static assets (like CSS and JavaScript) are never fetched
again, if possible. YSlow advises that you set an expiration some time in the distant future:

Expires: Thu, 15 Apr 2025 20:00:00 GMT

The intent is that the browser (or a caching proxy) will keep this file around until it runs
out of room in cache.

Validation
Validation provides a way for a caching agent to determine if a stale cache is actually still
good, without requesting the full resource. The browser can make a request with an If-Mod-
ified-Since header. The server then can send a 304 Not Modified response and the browser
uses the file already in the cache, rather than refetching from the server.

Another validation feature is the ETag. ETags are unique identifiers, usually hashes,
which allow cache validation without dates by comparing a short string. The requesting
agent makes a conditional request as well, but this time with an If-None-Match header con-
taining the ETag. If the current content matches the client’s ETag, then the server can again
return a 304 response.

Validating the cache does require a full round-trip to the server. That is better than
redownloading a file, but avoiding a round trip altogether is preferable. That’s the reason
for the far-future expiration date. If the cached item hasn’t expired, then the browser won’t
attempt to validate it.

Invalidation
Browsers invalidate cached items after some actions, the most common being any non-GET
request to the same URL.

50  Chapter 4  Speeding Up the Next Visit

What is normal cache behavior?
So what is the normal behavior of the browser cache, if you don’t mess with the headers or
do anything else? Most browsers have a maximum cache size. When that size is reached they
begin removing items from the cache that were least recently used. So a cached item that
hasn’t been used in a long time will be purged, keeping items used more frequently.

The result of this algorithm is that what is purged is completely based on user behavior
and there’s no reliable way to predict how it will work. It’s safe to assume that if you don’t
think about cache headers, then some browser will cache something you don’t want cached
and won’t cache something you do.

Optimizing for mobile
The browser cache is very important on a desktop computer, but not so much on touch devices.

In iOS 5, the browser cache is limited to 100 MB and does not persist between app
launches. That means that if the phone restarts or the browser is killed or crashes, the entire
cache is emptied when the browser starts again. Android 2.x’s stock browser (still the most
widely installed version by far) has a cache limit of just 5.7 MB, and that isn’t per domain—
that’s total (Table 4.1).

Table 4.1  Persistent Cache Size by Browser

OS Browser Max Persistent Size

iOS 4.3 Mobile Safari 0

iOS 5.1.1 Mobile Safari 0

iOS 5.1.1 Chrome for iOS 200 MB +

Android 2.2 Android Browser 4 MB

Android 2.3 Android Browser 4 MB

Android 3.0 Android Browser 20 MB

Android 4.0–4.1 Chrome for Android 85 MB

Android 4.0–4.1 Android Browser 85 MB

Android 4.1 Firefox Beta 75 MB

BlackBerry OS 6 Browser 25 MB

BlackBerry OS 7 Browser 85 MB

* Adapted from research by Guy Podjarny (www.guypo.com)

Optimizing for mobile  51

http://www.guypo.com

It’s very important to optimize the cacheability of your site. But the very limited size of
the browser caches means that users will very often come to your site with an empty cache,
so optimizing for that state should not be neglected.

A good header for a static resource looks something like this:

HTTP/1.1 200 OK

Content-Type: image/png

Last-Modified: Thu, 29 Mar 2012 23:53:57 GMT

Date: Tue, 11 Sep 2012 21:36:44 GMT

Expires: Wed, 11 Sep 2013 21:36:44 GMT

Cache-Control: public, max-age=31536000

Cache-Control: public makes sure that SSL resources can be cached by proxies. The
max-age is one year (in seconds). The Expires date is also a year in the future.

In practice, it’s a good idea to read up on how to configure your particular server so that
the headers are correct. If you’re working with separate back-end developers, gently remind
them how important these values are.

For the actual content many major sites use cache-control: private to prevent any
caching by proxies. For the Birds of California site, the content won’t change that much, so
on the server we can set up the cache headers to expire in one hour. We’re using Nginx, so
we can do that with the expires directive:

location / {

	 expires 1h;

}

This results in a header that looks like this, assuming the site was accessed at 05:16:45 PST:

Last-Modified: Thu, 05 Jul 2012 17:15:35 PST

Connection: keep-alive

Vary: Accept-Encoding

Expires: Wed, 14 Nov 2012 06:16:46 PST

Cache-Control: max-age=3600

This prevents mobile users from refetching content too much during a browsing session,
but ensures that the content is fresh, even for desktop users.

Another important thing to consider is web accelerators like Amazon Silk. Silk is the
browser for the Kindle Fire tablets. Unlike a normal browser, Amazon Silk is a browser that
lives both on the Kindle Fire and on Amazon servers. According to Amazon, much of the accel-
eration comes from pipelining and “predictive push,” which means sending static resources to
the browser before the browser even requests the resource. In this case Silk acts as a transpar-
ent HTTP proxy. A proxy may cache just like the browser, and it follows the same rules. So by
sending the correct headers you’re also improving performance for Kindle users.

52  Chapter 4  Speeding Up the Next Visit

Using web storage
Browser makers, and Apple in particular, have left us with a less than ideal situation when it
comes to the browser cache. But they and the W3C have given us something else that almost
makes up for it: the web storage API. Web storage provides a persistent data store for the
browser, in addition to cookies. Unlike cookies, 5 MB is available per domain in a simple key-
value store. On iOS, WebStorage stores the text as a UTF-16 string, which means that each
character takes twice as many bytes. So on iOS the total is actually 2.5 MB.

Using the web storage API
Web storage is accessed from two global variables: localStorage and sessionStorage. session-
Storage is a nonpersistent store; it’s cleared between browsing sessions. It also isn’t shared
between tabs, so it’s better suited to temporary storage of application data rather than cach-
ing. Other than that, localStorage and sessionStorage are the same.

Just like cookies, web storage access is limited by the same origin policy (a web page can
only access web storage values set from the same domain) and if users reset their browsers
all the data will be lost. One other small issue is that in iOS 5, web views in apps stored their
web storage data in the same small space used for the browser cache, so they were hardly
persistent. This has been fixed in iOS 6.

The web storage API is very simple. The primary methods are localStorage.
getItem(‘key’); localStorage.setItem(‘key’, ‘value’). key and value are stored as
strings. If you try to set the value of a key to a non-string value it will use the JavaScript
default toString method, so an object will just be replaced with [object object].

Additionally you can treat localStorage as a regular object and use square bracket notation:

	 var bird = localStorage[‘birdname’];

	 localStorage[‘birdname’] = ‘Gull’;

Removing items is as simple as calling localStorage.removeItem(‘key’). If the key you
specify doesn’t exist, removeItem will conveniently do nothing.

In addition to storing specific information, localStorage is a great tool for caching. In this
next section, we’ll use the Flickr API to fetch a random photo for Birds of California, and use
localStorage as a transparent caching layer to greatly improve the performance of the ran-
dom image picker on future page loads.

Note  LocalStorage should not be treated as secure. Like everything, the
user can read and modify what is in localStorage.

Using web storage  53

Using web storage as a caching layer
For the Birds of California site, we can make things a little more exciting for users by incor-
porating a random image from Flickr, rather than a predefined image. This will sacrifice
some of the gains we made in the last chapter in trimming images down to size, in exchange
for developer convenience.

We’ll use the Flickr search API to find Creative Commons–licensed photos of birds. List-
ing 4.1 is a simple JavaScript Flickr API module that uses JSONP to fetch data. For the sake of
brevity the code is not included here, but it’s available for download from the website. Let’s
use this module to grab some images related to the California Gull.

Listing 4.1  Fetching the Flickr data
	 //a couple of convenience functions

	 var $ = function(selector) {

		 return document.querySelector(selector);

	 };

	

	 var getEl = function(id) {

		 return document.getElementById(id);

	 };

	

	 var flickr = new Flickr(apikey);	

	 var photoList;

	 flickr.makeRequest(

		 ‘flickr.photos.search’,

		

		 {

			 text:’Larus californicus’,

			 extras:’url_z,owner_name’,

			 license:5,

			 per_page:50

		 },

		

		 function(data) {

			 photoList = data.photos.photo;

			 updatePhoto();

		 }

);

54  Chapter 4  Speeding Up the Next Visit

As you can see, the API takes a method (flickr.photos.search) and some parameters. This
will hopefully give us back as many as 50 photos of Larus Californicus.

In Listing 4.2, the updatePhoto function takes the list, grabs a random photo from the
list, and updates the image, the links, and the attribution.

Listing 4.2  Updating the photo
	 function updatePhoto() {

		 var heroImg = document.querySelector(‘.hero-img’);

		 //shorthand for “random member of this array”

		 var thisPhoto = photoList[Math.floor(Math.random() * photoList.length)];

		 $(‘.hero-img’).style.backgroundImage

					 = ‘url(‘+ thisPhoto.url_z + ‘)’;

		

		 //update the link

		 getEl(‘imglink’).href =

			 ‘http://www.flickr.com/photos/’ +

			 thisPhoto.owner +

			 ‘/’+ thisPhoto.id;

		

		 //update attribution	

		 var attr = getEl(‘attribution’);

		 attr.href = ‘http://www.flickr.com/photos/’

				 + thisPhoto.owner;

		 attr.innerHTML = thisPhoto.ownername;

			

	 }

Add this script (with the Flickr API module) to the Birds of California page with a valid
Flickr API key and the bird hero image will dynamically update to a random option from the
search results list. With no changes to the HTML and CSS from before, however, the user
will see the original gull photo, and then a moment later it will be replaced with the result
from the API. On one hand, this provides a fallback in case of JavaScript failure for the image.
But on the other hand, it doesn’t look very nice, and we’ll go ahead and say the image is an
enhancement to the main content, which is the text.

With that in mind, let’s create a null or “loading” state for the links and caption, as shown
in Listing 4.3.

Using web storage  55

Listing 4.3  Hero image null state
<div class=”hero-shot”>

	

	

	 <p class=”caption”>

		 Photo By ...

	 </p>

</div>

While the data is loading the user needs some indication that something’s happening,
just so she knows things aren’t broken. Normally a spinner of some kind is called for, but in
this case let’s just add the text “loading” and make the image background gray until it’s ready:

//show the user we are loading something....

var heroImgElement = $(‘.hero-img’);

heroImgElement.style.background = ‘#ccc’;

heroImgElement.innerHTML = ‘<p>Loading...</p>’;

//Then inside updatePhoto I’ll remove the loading state:

heroImgElement.innerHTML = ‘’;

So, now we have a pretty nice random image, with a loading state (Figure 4.1). However,
we’re making users wait every time they visit for a random image from a list that probably
doesn’t change that much. Not only that, but having a very up-to-date list of photos isn’t
all that important because we just want to add variety, not give up-to-the-minute accurate
search results. This is a prime candidate for caching.

Figure 4.1  The loading state.

56  Chapter 4  Speeding Up the Next Visit

If something is cacheable, it’s generally best to abstract away the caching, otherwise
the main logic of the application will be cluttered with references to the cache, validation
checks, and other logic not relevant to the task at hand. For this call we’ll create a new object
to serve as a data access layer, so that rather than calling the Flickr API object directly, we’ll
call the data layer, like so:

birdData.fetchPhotos(‘Larus californicus’, function(photos) {

	 photoList = photos;

	 updatePhoto();

});

Because all we ever want to do is search for photos and get back a list, we can hide the
Flickr-specific stuff inside this new API. Not only that, but by creating a clean API we can, in
theory, change the data source later. If we decide that a different API produces better photo
results, we can change the data layer without making changes to any consumers. In this case
the key feature is caching. We want to cache API results locally for one day, so that the next
time the user visits she’ll still get a random photo, but she won’t have to wait for a response
from the Flickr API.

Creating the caching layer
The fetchPhotos method will first check if this search is cached, and whether the cached
data is still valid. If the cache is available and valid, it will return the cached data, otherwise
it will make a request to the API and then populate the cache after firing the callback.

First, we’ll set up a few variables, as shown in Listing 4.4.

Listing 4.4  A caching layer
	 window.birdData = {};

	

	 var memoryCache = {};

	

	 var CACHE_TTL = 86400000; //one day in seconds

	 var CACHE_PREFIX = ‘ti’;

The memoryCache object is a place to cache things fetched from localStorage, so if those
items are requested again in the same session they can be returned even faster; fetching data
from localStorage is much slower than simply getting data from memory, without including
the added cost of decoding a JSON string (remember, localStorage can only store strings).
We’ll talk more about CACHE_PREFIX and CACHE_TTL shortly.

The first thing we need is a method to write values into cache. We’ll cache the response
from the Flickr search, but wrap the cached value inside a different object so we can store a
timestamp for a cache so that it can be expired.

Using web storage  57

	 function setCache(mykey, data) {

		

		 var stamp, obj;

		

		 stamp = Date.now();

		

		 obj = {

			 date: stamp,

			 data: data

		 };

		

		 localStorage.setItem(CACHE_PREFIX + mykey, JSON.stringify(obj));

		 memoryCache[mykey] = obj;

	 }

We’re using CACHE_PREFIX for each of the keys to eliminate the already small chance of
collisions. It’s possible that another developer on the Birds of California site might decide to
use localStorage, so just to be on the safe side we’ll prefix our keys. The date value contains
a timestamp in seconds, which we can use later to check if the cache has expired. We’ll also
add the value to the memory cache for quicker access to it if it’s fetched again during the
same session. We’ll use the “setItem” notation for localStorage; this is much clearer than
bracket notation—another developer will see right away what is happening, rather than
thinking that this is a regular object.

The next function is getCached, which returns the cached data if it’s available and valid,
or false if the cache is not present or expired (the caller really doesn’t need to know which):

	 //fetch cached date if available,

	 //returns false if not (stale date is treated as unavailable)

	 function getCached(mykey) {

		

		 var key, obj;

		

		 //prefixed keys to prevent

		 //collisions in localStorage, not likely, but

		 //a good practice

		 key = CACHE_PREFIX + mykey;

		

		 if(memoryCache[key]) {

			

			 if(memoryCache[key].date - Date.now() > CACHE_TTL) {

				 return false;

			 }

			

58  Chapter 4  Speeding Up the Next Visit

			 return memoryCache[key].data;

		 }

		

		 obj = localStorage.getItem(key);

		

		 if(obj) {

			 obj = JSON.parse(obj);

			

			 if (Date.now() - obj.date > CACHE_TTL) {

				 //cache is expired! let us purge that item

				 localStorage.removeItem(key);

				 delete(memoryCache[key]);

				 return false;

			 }

			 memoryCache[key] = obj;

			 return obj.data;

		 }

	 }

This function checks the cache in layers. It starts with the memory cache, because this is
the fastest. Then it falls back to localStorage. If it finds the value in localStorage, then it makes
sure to also put that value into the memoryCache before returning the data. If no cached value
is found, or one of the cached values has expired, then the function returns false.

Next up is the actual fetchPhotos function that encapsulates the caching. All it has to
do now is fetch the cached value for the query. If that value is false, then it executes the API
method and caches the response. If it is true, then the callback function is called immedi-
ately with the cached value.

	 // function to fetch CC flickr photos,

	 // given a search query. Results are cached for

	 // one day

	 function fetchPhotos(query, callback) {

		 var flickr, cached;

		

		 cached = getCached(query);

		

		 if(cached) {

			 callback(cached.photos.photo);

		 } else {

			

			 flickr = new Flickr(API_KEY);

			

Using web storage  59

			 flickr.makeRequest(

				 ‘flickr.photos.search’,

				 {text:query,

				 extras:’url_z,owner_name’,

				 license:5,

				 per_page:50},

				 function(data) {

					 callback(data.photos.photo);

					

					 //set the cache after the

					 //callback, so that it happens after

						 //any UI updates that may be needed

					 setCache(query, data);

				 }

);

		 }

		

	 }

	

	 window.birdData.fetchPhotos = fetchPhotos;

Now the data call is fully cacheable, with a simple API.

Managing localStorage
This is just the beginning for localStorage. Unlike the browser cache, localStorage gives
you full manual control. You can decide what to put in, when to take it out, and when to
expire it. Some websites (like Google) have actually used localStorage to cache JavaScript
and CSS explicitly. It’s a powerful tool, so powerful that 5 MB starts to feel a little small
sometimes. What do you do when the cache is full? How do you know if the cache is full?

First of all, we can treat localStorage as a normal JavaScript object, so JSON.stringify
(localStorage) will return a JSON representation of localStorage. Then we can apply an
old trick to figure out how many bytes that uses, including UTF-8 multi-byte characters:
unescape(encodeURIcomponent(‘string’)).length, which gives us the size of string
in bytes. We know that 5 MB is 1024 * 1024 * 5 bytes, so the available space can be found
with this:

1024 * 1024 * 5 - unescape(encodeURIComponent(JSON.stringify(localStorage))).
p length

60  Chapter 4  Speeding Up the Next Visit

If you want to know if you’ve run out of space, WebKit browsers, Opera mobile and
Internet Explorer 10 for Windows Phone 8 will throw an exception if you’ve exceeded the
available storage space; if you’re worried, you can wrap your setItem call in a try/catch block.
When you’ve run out of storage you can either clear all the values your app has written with
localStorage.clear, or keep a separate list in localStorage of all the data you cache and intel-
ligently clear out old values.

The application cache
The traditional browser cache, as mentioned previously in this chapter, isn’t particularly
reliable on mobile. On the other hand, the HTML5 application cache is very reliable on
mobile—maybe even too reliable.

What is the application cache?
With features like localStorage, you can easily see how a web application could continue
to be useful even when not connected to the network. The application cache is designed for
that use case.

The idea is to provide a list of all the resources your app needs to function up front, so
that the browser can download and cache them. This list is called the manifest. The manifest
is identified with a parameter to the <html> tag:

<!DOCTYPE html>

<html manifest=”birds.appcache”>

<head>

This file must be served with the mime-type text/cache-manifest. If it’s not, it will be
ignored. If you can’t configure a custom mime type on your server, you can’t use the applica-
tion cache.

The manifest contains four types of entries:

JJ MASTER

JJ CACHE

JJ NETWORK

JJ FALLBACK

MASTER
MASTER entries are the files that reference the manifest in their HTML. By including a
manifest, these files are implicitly adding themselves to the list. The rest of the entries are
included in the manifest file.

The application cache  61

CACHE
The CACHE entries define what to cache. Anything in this list will be downloaded the first
time a visitor comes to the page. The entries will then be cached forever, or until the mani-
fest (not the resource in question) changes.

NETWORK
Because the application cache is designed for offline use, network access actually has to
be whitelisted. That means that if a network resource is not listed under network it will be
blocked, even if the user is online. For example, if the site includes a Facebook “like” wid-
get inside an iframe, if http://www.facebook.com is not listed in the NETWORK entry, that
iframe will not load. To allow all network requests you can use the ‘*’ wildcard character.

FALLBACK
These entries allow you to specify fallback content if the user is not online. Entries here are
listed as pairs of URLs: the first is the resource requested, the second is the fallback. You have
to use relative paths, and everything listed here has to be on the same domain. For example,
if you serve images from a CDN on a separate domain you can’t define a fallback for that.

Creating the cache manifest
Here’s a manifest for the Birds of California site from the previous chapter:

CACHE MANIFEST

Timestamp:

2013-03-15r1

CACHE:

jquery-1.8.0.min.js

gull-360x112.jpg

gull-640x360.jpg

gull-720x225.jpg

FALLBACK:

NETWORK:

*

Notice that there are entries for all the different images. Because these are explicit, the
browser will download and cache all of them on the first visit to the page, but will never
again need to fetch them.

62  Chapter 4  Speeding Up the Next Visit

http://www.facebook.com

Pitfalls of the application cache
The application cache is the nuclear option. That’s because the files in here will never expire
until the manifest file itself changes, the user clears the cache, or the cache is updated via
JavaScript (more on that later). That’s why we included a timestamp in the manifest so we
can easily force a change to the file if we want to invalidate cached versions in the wild.

The application cache is also completely separate from the browser cache. For example,
it is possible to create an application cache that will never revalidate. If you set a far-future
Expires header on the manifest file, the browser will cache that file forever. When the appli-
cation cache checks whether it has changed, it will get the version in the browser cache, see
that it is unchanged, and then hold on to the cached files forever (or until the user explicitly
clears her cache).

Once the page is cached, it’s possible to visit Birds of California without network con-
nectivity. On iOS, offline is guaranteed to work only if the user has bookmarked the page on
her home screen. In iOS Safari the contents of the application cache may be evicted if the
browser needs to reclaim the space for the browser cache. The cache will still be used.

One of the other pitfalls of the application cache is that once it expires it won’t be
updated until the next time the user visits. So if a user comes to your site with a stale cache,
she’ll still see the cached version, even though it’s been updated. To make sure users get the
latest and greatest bird info, we’ll take advantage of the application cache JavaScript API to
programmatically check for a stale cache.

Avoiding a stale cache with JavaScript
The API for the cache hangs off the window.applicationCache object. The most important
property there is “status.” As shown in Table 4.2, it has an integer value that represents the
current state of the application cache.

Table 4.2  Application Cache Status Codes

Code Name Description

0 UNCACHED The cache isn’t being used.

1 IDLE The application cache is not currently being updated.

3 CHECKING The manifest is being downloaded and updates are being
made, if available.

4 UPDATEREADY The new cache is downloaded and ready to use.

5 OBSOLETE The current cache is stale and cannot be used.

Thankfully, you don’t have to remember these numbers; there are constants on the appli-
cationCache object that keep track of the association:

> console.log(window.applicationCache.CHECKING)

	 2

The application cache  63

On the Birds of California site, we’ll add a short script to check the cache every time the
page loads:

	 //alias for convenience

	 var appCache = window.applicationCache;

	

	 appCache.update();

This goes at the bottom of page and doesn’t need to be ready for the window onload
event to do its stuff. At this point we could start polling appCache.status to see if a new
version is loaded. When it’s calling the swapCache method, it will force the browser to update
the changed files in the cache (it will not change what the user is seeing; a reload is still
required). It’s simpler to use the built-in events that the applicationCache object provides.
We can add an event handler to automatically reload the page when the cache is refreshed:

		 var appCache = window.applicationCache;

		

		 appCache.addEventListener(‘updateready’, function(e) {

			

			 //let’s be defensive and double check the status

			 if (appCache.status == appCache.UPDATEREADY) {

				

				 //swap in the new cache!

				 appCache.swapCache();

				

				 //Reload the page

				 window.location.reload();

				

			 }

			

		 });

		 appCache.update();

In addition to the extremely useful “updateready” event, there’s a bigger set of events
available on the applicationCache object, one for each state we already saw in the status
property.

Having the page automatically reload, particularly when the user is in the middle of look-
ing at the site, is a terrible user experience. There are several ways to handle this. Using a
confirm dialog box or whisper tip to ask the user to reload to fetch new content is better, but
still not great. In the next chapter we’ll explore a much better way to handle this, and other
cases, by dynamically updating the content with AJAX.

64  Chapter 4  Speeding Up the Next Visit

The 404 problem
If any of the resources in the CACHE entry can’t be retrieved when the browser attempts to
fetch them, the browser ignores the cache manifest. This means that if a user visits your site
and for some reason one of the requests fails, it will be as if she were a completely new visi-
tor the next time she visits—the cache will be useless. That means the cache is quite brittle:
unless all the requests are successful, there’s no caching at all—it’s all or nothing.

The application cache: Worth the pain?
The application cache is obviously fraught with difficulties, not the least of which is how
difficult it is to invalidate. It gives you a lot of power, but at the cost of flexibility and main-
tainability. Users love an app that launches instantly, but everyone hates strange errors. The
stickiness of the application cache leads necessarily to strange bugs that are hard to chase
down. When you use it, you’ll eventually end up with a file that you just can’t seem to get out
of cache. It isn’t that the application cache is buggy; it’s that it’s completely unforgiving. If
you deploy a bad cache, it can be a real problem to undo the error.

Optimizing for browser cache and using the much more flexible web storage API is usu-
ally a better choice, but when you want the fastest possible launch time, and you’re willing
to accept the difficulties, the application cache is an incredible tool.

Wrapping up
Caching is one of the most powerful tools for optimizing performance. It’s one of the basics
that you really want to get right before you move on to more complex optimizations. In this
chapter we covered the fundamentals of the browser cache and some simple optimization
strategies. We discussed web storage and using it for caching data. Finally we talked about
the application cache, which is powerful, if a bit finicky.

In the next chapter we’ll look at how to work around the overhead of page loads entirely
with PJAX.

Further reading
The complete APIs for web storage and the application cache are well covered on the Mozilla
Developer Network:

JJ https://developer.mozilla.org/en-US/docs/DOM/Storage

JJ https://developer.mozilla.org/en-US/docs/HTML/Using_the_application_cache

Wrapping up  65

https://developer.mozilla.org/en-US/docs/DOM/Storage
https://developer.mozilla.org/en-US/docs/HTML/Using_the_application_cache

Index

Numbers
2D transforms

matrices    130
overview of    125–128

3D transforms
matrices    131
overview of    125–128

A
Absolute positioning, in bird browser

example    195–198
ActionScript 3.0    x
addRoute method    79–80
Adobe Air    x
Adobe Flash Builder    xi
Adobe Flash Catalyst    xi
Adobe Flash Player    x
Adobe Flash Professional, in Creative

Suite 5.5    x
Adobe Flex    xi
AJAX    68–70
all keyword, CSS transitions and    107
Amazon Silk browser

on Kindle Fire    6
role of web accelerators in optimizing

browser caching    51
Android Browser

multi-touch support    218
native scrolling in    184–185
optimizing caching for    51
overflow in Android 2    189–190
pushState support    73–74
WebKit browser engine in    8
zooming impacting fixed layouts   

194–195
Android Chrome

default browser on Android
devices    6

frames timeline tool    120–121
high-density displays and    22
multi-touch support    218
optimizing caching for    51
pushState support    73–74
testing performance with

console.time()    136
WebKit browser engine in    8

Android OS, operating systems for touch
devices    5–6

Animation
compositing    122
creating hidden images    107
creating using cubic Bézier

timing functions and vendor
prefixes    114–116

CSS animation    112, 146–147
CSS transforms    122–125
CSS transitions    106–107
debugging    120–122
deferred loading    146–148
of elements    106
good and bad    105
hardware acceleration and    125–129
JavaScript animation    117
JavaScript transitions    108–112
keyframes    113
requestAnimationFrame    117–120
smoothness of    120
subproperties    113–114
swapping CSS styles    108
transformation matrices    130–132
wrap up    132

APIs, web storage    53
Apple

high-density displays and    22
iOS. see iOS
UI conventions    11

Apple Touch Interface Guidelines    10
Application cache

avoiding stale cache    63–65
creating CACHE MANIFEST    62
overview of    61–62
pitfalls of    63
when to use    65

<aside> tags, in content site example    16

B
Bandwidth, of network connections    35
Bézier curves

creating CSS animation using cubic
Bézier timing functions and
vendor prefixes    114–116

for ease-in/ease-out    110–112
Blackberry OS    5–6
Blocking rendering

DOM operations and    138
load time and    35

<body> tags, in content site example   
16–17

Bouncing ball markup
animation using cubic Bézier timing

functions and vendor prefixes   
114–116

keyframes for    113
subproperties    113–114
transition example with

JavaScript    108–110
transitions and    110–112

Breakpoints
creating    25
CSS styles for    27–29
media queries    25–27

Browser history API
hash-bang urls and    77
load avoidance and    70–71

Browsers. see Web browsers
_build function    203
buildChrome function, for lightbox   

171–172
Byte count

load time and    35
reducing with Closure Compiler    68

C
CACHE entries, in manifest of application

cache    62
Cache/caching

application cache    61–65
CDN (content delivery network)

and    37
creating wrapper for data calls to allow

insertion of caching layer   
201–202

the DOM    137–138
in HTTP    50–51
load time and    35
localStorage    60–61
mobile browsers and    40–41
optimizing    51–52
overview of    49
PageSpeed tool and    38
slide data    148
web storage API    53
Web storage as caching layer    54–60

“cargo cults,”    136
CDN (content delivery network)    37

238  Index

Center point, of layout    233
Charles proxy (charlesproxy.com),

troubleshooting load time    39–40
Chrome. see Android Chrome
Click events

handling for lightbox    172
intercepting    81
slides and    173
taps compared with    89–90

Client-side templating languages    87
Closure Compiler, for reducing byte

count    68
Compositing, in animation    122
console.time()

fetch data function and    143
testing performance with    136

Constructor, for initializing touch
lightbox    169–171

Content delivery network (CDN)    37
Content site

breakpoints    25–27
CSS styles    22–25
CSS styles for breakpoints    27–29
<head> tag    17–18
high-density displays    22
markup for    15–17
mobile first vs. mobile last

philosophies    15
overview of    13–15
viewports    18
virtual pixels on viewport    19–22
wrap up    29

Conventions
touch    154–155
UI    11

Cookies, impact on size of HTTP
requests    35

Critical path, load time and    41
CSS (Cascading Style Sheets)

absolute positioned styles    195–198
animation    112, 114–116, 146–147
applying styles to thumbnails    164–167
combining CSS files to reduce number

of requests    40–41
creating content sites    14
creating styles for

breakpoints    27–29
CSS3 in HTML5 suite    9
em and px units in CSS2 and CSS3    20
fixed position layout    186–189
media queries in CSS3    25–27
mobile first and    15
for pinch to zoom    229
responsive CSS files    22–25

swapping CSS styles    108
swapping styles    108
transform-origin in    225
transforms    122–125
transitions    106–107
using for interfaces    140–142

cubic-bézier curve, for ease-in/
ease-out    110–112

currentSlide function    207

D
Data

data model for bird browser    199–201
fetching    143–144
web storage    53

Debugging animation    120–122
Deferred loading

of animated images    146–148
of images    143–145

Design, mobile first and    15
Desktops

vs. mobile devices    15
vs. touch devices    4–5

Development, mobile first    15
device-height, viewports and    20–21
device-pixel-ratio, specifying with

media queries    46
device-width, viewports and    20–22
Dilation, geometry of    226–227
“direct manipulation,” touch interface

and    10
<div> tags

creating content site    16–17
creating slide template    173–174
creating thumbnail HTML    164
scrollable    185

DNS (Domain Name Service)    32
DOM (Document Object Model)

caching    137–138
creating content sites    14
creating custom event interface with

DOM Level 3    97–99
facades for event handling    99–102
optimizing DOM insertion    150–151
pruning DOM nodes when no longer

useful    86
slowness of interaction with    137–138

Domain Name Service (DNS)    32
Domain names, resolving    32

E
Ease-in/ease-out transitions    110–112
Edge cache, CDN (content delivery

network) and    37
Elements

animation of    106
labeling    186
scaling    235–236
visibility of    148–150

em units, in CSS2 and CSS3    20
endPos variable, handling touch

events    178
ETags, validation feature for HTTP

cache    50
Event handling

creating synthetic tap event    97–102
facades around DOM for    99–102
IE10 (Internet Explorer 10) and    93–94
overview of    89
popstate event    72–73
properties of touch objects    92
for taps    94–97
taps vs. clicks    89–90
for touch lightbox example    172
types of touch events in mobile

browsers    91
wrap up    102

Event listeners
attaching to touchstart event   

96–97
for intercepting click events    81
for MSPointer events on bird browser   

212–214
for touch events    160–161
for touch events on bird browser   

208–211
Events

attaching touch events to touch
lightbox    177

click events. see Click events
creating custom event interface with

DOM Level 3    97–99
pointer events. see Pointer events, IE10
popstate event    72–73
replacing scroll event with timer   

145–146
tap events. see Tap events
touch events. see Touch events

Index  239

F
Facades, around DOM for event handling   

99–102
Fade in/fade out transitions, CSS    108
FALLBACK entries, in manifest of

application cache    62
Feedback

adding gesture support to
lightbox    176

adding to light switch example   
161–163

animation and    105
prioritizing    139
touch interface and    10–11, 90
types of gestures    153

Fetching data    143–144
Files

byte count and load time    35
tips for downloading large    34

Firefox Beta    51
Firefox Mobile

mobile browsers    8
multi-touch support    218

Fixed positioning
CSS for fixed position layout   

186–189
orientation changes and    192
pinching and    224
scrolling and    185–186
zooming impacting fixed

layouts    194–195
Flags, for delaying a task in

JavaScript    139
Flickr

automatically adjusting image size    42
infinite scrolling of slides from    140
photo download speed    68

Form factors
for touch devices    7
for touch devices vs. desktops    4

FPS (frames per second)
frame rate in animation    117
smoothness of animation

and    120–121
Frames per second (FPS)

frame rate in animation    117
smoothness of animation and   

120–121
Frames timeline tool, in Chrome   

120–121
Frameworks, single-page    87
Freshness, of HTTP cache    50

G
Geometry, of dilation    226–227
Gestures

conventions for    154–155
creating progressively enhanced touch

control    156–159
disabling native    219
listening to touch events    160–161
multiple. see Multi-touch
overview of    153
pinching. see Pinching
progressive enhancement of    155
reasons for    154
“snapping back,”    162–163
user feedback and    11, 161–162

Gestures, in lightbox example
adding chrome    171–172
adding gesture support    176–177
applying styles to thumbnails   

164–167
attaching touch events    177
browser normalization and    168
building slides    174–175
constructor for initializing    169–171
creating slide template    173–174
disabling native    163
event handler    172
handling touch events    178–181
moving slides into position    175–176
thumbnail HTML for    164
utility functions    168–169
wrap up    181

goTo function, for moving slides into
position    175–176, 207–208

GPUs (graphic processing units)
hardware acceleration and    125–126
limitations of hardware

acceleration    126–129
scrubbing transforms freeing up

graphics memory    129
Graphic interface, in original

Macintosh    89
Graphic processing units. see GPUs

(graphic processing units)
Graphics acceleration hardware

in iOS devices    125–126
limitations of    126–129
overview of    7

H
HandleDefer()

caching slide data    148
deferring loading of animated images   

146–147
deferring loading of images    143–145

handleRoute method    79–80
Hardware acceleration. see Graphics

acceleration hardware
Hash-bang urls    77
<head> tag, in creation of content site   

17–18
“Hiccups,” animation-related issues    105
Hidden images, creating    107
Hide pages function    85
High-density displays    22, 46–47
History, browser history API    70–71
HTML

creating thumbnail HTML    164
for pinch to zoom    228

HTML fragments
building bird browser with    195
creating    78

HTML5
application cache    61
overview of    8–9

HTTP
cache/caching in    50–51
downloading multiple requests

and    34
number of HTTP requests and load

time    34–35
http-equiv meta property    17–18

I
Identity matrix, in CSS    130–131
IE10 (Internet Explorer 10)

acting on touch
movements    222–223

adding handlers for MSPointer events   
212–214

gestures    153
landscape orientation    194
managing start of a touch    221–222
multi-touch support    218
native scrolling    184–185
overview of    7–8
pointer events    93–94
pushState support    73–74
throwing exception when exceed

storage space    61
Images

dealing with load issues related to
image size    42–47

deferred loading of animated
images    146–148

deferring loading of    143–145
fetching data containing    143

Infinite scrolling
creating    142–143
markup for    141–142
overview of    140

240  Index

init function
constructor for initializing lightbox   

170–171
converting array into an object    200

Initialization
constructor for initializing lightbox   

169–171
of pinch to zoom layout    230–232
of swipeable bird browser interface   

208–211
Internet Explorer 10. see IE10 (Internet

Explorer 10)
Invalidation, controlling HTTP cache    50
iOS

multi-touch support    218
native scrolling and    184–185, 189
operating systems for touch devices   

5–6
pushState support    73–74
Safari. see Safari
zooming impacting fixed layouts   

194–195
IP addresses    32
iPhone

feedback in    90
as first modern touch device    89
multiple touch capacity    217
power and speed    4
smoothness of animation in    125

iScroll 4    191–192

J
“Jank,” animation-related issues    105
JavaScript

animation    117
avoiding stale cache    63–65
blocking rendering while waiting for

execution of    35
for lightbox example    168
transitions    108–112

JavaScript, maximizing performance of
caching slide data    148
caching the DOM    137–138
checking element visibility    148–150
creating infinite scroll    142–143
deferring loading of animated images   

146–148
deferring loading of images    143–145
function for fetching data    143–144
infinite scrolling    140
interacting with DOM and    137
making user feedback a priority    139
optimizing DOM insertion    150–151
overview of    135
replacing scroll event with timer   

145–146

testing using console.time()    136
testing using JSPerf.com website   

136–137
using templates and CSS for interface   

140–142
wrap up    151

“Jitter,” animation-related issues   
105–106

Jobs, Steve    217
jQuery

blocking rendering while waiting for
execution of    41

creating custom event interface    97
facades around DOM for event

handling    99–102
JSPerf.com website, for performance

testing    136–137

K
Keyframes    113
@keyframes rule    113
Kindle Fire

Android OS and    6
HTTP proxy improving

performance    52
Konqueror    8

L
Landscape orientation, handling

orientation changes    192–194
Latency

load time and    35
speed of light and    37

Layouts
correcting pinch to zoom layout   

230–232
creating for pinch to zoom    227–229
issues with mobile    192
orientation changes    192–194
zooming impacting fixed layouts   

194–195
 tags, in content site example    17
Libraries, reasons for avoiding use of    177
Life cycle functions, creating    221
Light switch example

adding user feedback    161–163
building power switch control    156
CSS styles for    156–159
listening to touch events    160–161

Lightbox example
adding gesture support    176–177
applying styles to thumbnails   

164–167
attaching touch events    177
browser normalization and    168

building    168
building chrome for    171–172
building slides for    174–175
constructor for initializing    169–171
creating slide template    173–174
creating thumbnail HTML    164
creating utility functions for    168–169
event handler for    172
handling touch events    178–181
moving slides into position    175–176
overview of    163

Load time, speeding up first load
combining CSS files to reduce number

of requests    40–41
critical path and    41
how browsers load a page    32
image size and    42–47
overview of    31
PageSpeed tool    37–39
reasons for slow loading    32–35
solving common problems    39–40
speeding up    36
wrap up    47
YSlow tool    36–37

Load time, speeding up subsequent visits
application cache    61–65
caching in HTTP    50–51
local storage    60–61
optimizing for mobile browsers    51–52
overview of    49
web storage    54–60
web storage API    53
wrap up    65

Loads, avoiding
benefits of PJAX over AJAX    68–70
browser history API    70–71
creating HTML fragments    78
creating routers    79–81
enabling    78
hide pages function    85
implementing a route    81–83
intercepting click events    81
overview of    67
page handler function    85–86
popstate events    72–73
price of page loads and    68
pruning DOM nodes    86
pushState for changing browser

history    71–72
pushState support in mobile browsers   

73–74
replaceState for upgrading/

downgrading URLs    75–77
templates    83–85

localStorage, for managing cache   
60–61

localStorage variable, web storage API    53

Index  241

M
Manifest

application cache    61
creating CACHE MANIFEST    62
including timestamp to handle

expiration of cache    63
MASTER entries, in manifest of

application cache    61
Matrices, transformation matrices   

130–132
Media queries

CSS styles for    25–27
dealing with load issues related to

image size    43
handling orientation changes   

193–194
specifying device-pixel-ratio    46
syntax    40

meta property, viewports    163, 185, 228
Mobile browsers. see also Web browsers

cache/caching and    40–41
optimizing caching for    51–52
pushState support    73–74
touch events    91
types of    7–8

Mobile devices. see also Touch devices,
introduction to

power and speed    4
web browsers and touch interfaces    3

Mobile first approach, to creating content
sites    15

Mobile First (Wroblewski)    15
Mobile last approach, to creating content

sites    15
Model-View-Controller (MVC)    87
Mouse, touch interface compared with    89
mousedown events

clicks and    90
touch devices and    91

mouseup events
clicks and    90
touch devices and    91

Mozilla Development Network    26
MSPointer events. see Pointer events
Multi-touch. see also Pinching

acting on touch movements   
222–223

browser support for    218
laying groundwork for    219–221
managing end of touch life cycle   

223–224
managing start of a touch    221–222
overview of    218
wrap up    237

MVC (Model-View-Controller)    87

N
Native scrolling    184–185
<nav> tags, in content site example    16
Navigation, slide class for navigating

between pages    202–205
NETWORK entries, in manifest of

application cache    62
Network tab, Safari    33
nextSlide function, bird browser

example    206–207

O
Objects

converting array into    200
creating for circles    220–221
properties of touch objects    92

onclick events    91
Opera Mobile

overview of    7–8
throwing exception when exceed

storage space    61
Operating systems (OSs), for touch

devices    5–7
Orientation

handling changes in    192–194
handling for all browsers    211–212

OSs (operating systems), for touch
devices    5–7

overflow:auto
iScroll used for overflow    191–192
native scrolling and    185, 189
overthrow used for overflow    190
overview of    189–190

Overthrow, for adding overflow    190

P
Page handler function    85–86
Page loads

avoiding. see Loads, avoiding
speeding up first load. see Load time,

speeding up first load
speeding up subsequent loads.

see Load time, speeding up
subsequent visits

PageSpeed tool
expiration settings for HTTP cache    50
troubleshooting load time    37–39

Parallelism
JavaScript and    139
parallel download support    34

Performance
animation issues    105
debugging animation    120–122
HTTP proxy improving performance of

Kindle Fire    52

JavaScript. see JavaScript, maximizing
performance of

testing    136–137
Web Inspector for diagnosing    33

Phones
dealing with load issues related to

image size    45–46
in iPhone. see iPhone
smartphones    5
touch device form factors    4, 7
Windows Phone 8    194

Photo viewers, support for    176
Pinch to zoom

creating layout for    227–229
implementing    227
initializing and correcting layout for   

230–232
Pinching

creating layout for pinch to zoom   
227–229

geometry of dilation and    226–227
handling touches    233–235
handling transform-origin

in CSS    225
implementing pinch to zoom    227
initializing and correcting layout for

pinch to zoom    230–232
next steps    236
overview of    224
preventing interference of scrolling with   

232–233
reimplementing in JavaScript    163
scale and    224–225, 235–236
as type of gesture    153
wrap up    237

Pipelining, HTTP    34
Pixels, virtual on viewport    19–22
PJAX (pushState AJAX)

adding HTML fragments    78
adding page handler function    85–86
adding templates to client    83–85
benefits over AJAX    68–70
for changing browser history    71–72
creating router    79–81
implementing a route    81–83
intercepting click events    81
single-page frameworks    87
support in mobile browsers    73–74

Pointer events, IE10
handling MSPointerDown events   

221–222
handling MSPointerMove events   

222–223
handling MSPointerUp events    224
listening to    212–214
overview of    93–94

Polyfill, overthrow as    190

242  Index

popstate event, handling    72–73
Power switch, building control for   

156–159
prevSlide function, bird browser

example    206–207
Progressive enhancement

building in layers and    155
of touch control    156–159

Properties
animatable CSS    106–107
of pointer events    93
of touch objects    92
transform property    122
viewport    21

Pruning DOM nodes    86
pushState method. see also PJAX

(pushState AJAX)
browser history API    71
changing history with    71–72
cross-browser state change handler   

76–77
mobile browsers support    73–74

px units, in CSS    20

R
replaceState method

browser history API    71
for upgrading/downgrading URLs   

75–77
requestAnimationFrame    117–120
Round-trip times, PageSpeed tool

minimizing    38
Routers

creating    79–81
implementing a route    81–83

S
Safari

finding center point of layout    233
gestures    153
multi-touch support    218
optimizing caching    51
parallel download support    34
scale property    233
testing performance with

console.time()    136
viewports and    18
Web Inspector for diagnosing

performance issues    33
WebKit browser engine in    8

Scale
determining a scale factor    233
geometry of dilation and    226–227
pinch effect and    224

transform-origin and    225,
235–236

Scientific method, applying to JavaScript
performance    136

Scripts, blocking rendering while waiting
for execution of    35, 41

Scrolling
CSS for fixed position layout    186–189
fixed positioning approach in bird

browser example    185–186
getting the right feel    183
infinite scrolling    140, 142–143
iScroll used for overflow    191–192
issues with scroll handler    145
native scrolling in iOS 5+, Android,

and IE10    184–185
overflow:auto    189–190
overthrow used to add overflow    190
overview of    184
preventing interference with pinching   

232–233
replacing scroll handler with timer   

145–146
types of gestures    153
wrap up    191–192

sessionStorage variable, web storage
API    53

setTimeout animation    106, 117
Shared memory, for graphics    7
sidebars    16
Silk browser. see Amazon Silk browser
Single-page frameworks    87
Slides, for bird browser

goTo function for moving between   
207–208

preparing for interaction    205–206
slide class for navigating between

pages    202–205
Slides, for touch lightbox

building    174–175
moving into position    175–176
template for    173–174

Smartphones    5
Smith, David    6
“snapping back,”    162–163
Souders, Steve    34, 37
SPDY, downloading multiple requests

and    34
Speed of light, latency and    37
startPos variable, handling touch

events    178
Subproperties, animation    113–114
Swipeable bird browser

absolute positioning and    195–198
data model for    199–201
goTo function for moving to next slide   

207–208

handling orientation in browsers   
211–212

initializing interface and listening for
touch events    208–211

listening to pointer events    212–214
overview of    195
preparing slides for

interaction    205–206
slide class for navigating between

pages    202–205
wrap up    214
wrapper for data calls to allow

insertion of caching
layer    201–202

Swiping
adding gesture support to lightbox   

176–177
bird browser example. see Swipeable

bird browser
conventions of touch

interfaces    154–155
ease of    155
getting the right feel    183
light switch example    163
lightbox example. see Lightbox example
slides and    173
types of gestures    153
user feedback and    11

T
Tablets

creating styles for
breakpoints    27–29

dealing with load issues related to
image size    45

touch device form factors    4, 7
touch interface on    5

Tap events
creating synthetic tap event    97–102
gestures compared with    153
handling    94–97
what makes them different from click

events    89–90
TCP connections, making requests when

loading pages    32
Templates

adding to client    83–85
creating slide template    173–174
using templates and CSS for interface   

140–142
Testing performance

with console.time()    136
with jSPerf.com website    136–137

Threads, JavaScript    139

Index  243

Thumbnails
creating thumbnail HTML    164
styling    164–167

“time to first byte,” in measuring load
time    31

Time To Live (TTL), controlling HTTP
cache    50

Timer, replacing scroll handler with   
145–146

TiVo    10–11
Touch control, progressive enhancement

of    156–159
Touch conventions    11, 154–155
Touch devices, introduction to

conventions and    11
desktops compared with    4–5
“direct manipulation,”    10
form factors    7
HTML5 and    8–9
OSs (operating systems)    5–7
“the uncanny valley,”    9–10
user feedback    10–11
web browsers    7–8
wrap up    11

Touch events
attaching to touch lightbox    177
canceling. see touchcancel event
ending. see touchend event
event listener    160–161
handling    178–181
moving. see touchmove event
starting. see touchstart event
types of    91

Touch interface
conventions    11, 154–155
“direct manipulation” and    10
feedback from    90
initializing interface and listening for

touch events    208–211
mouse compared with    89
naturalness of    89
on tablets    5
“the uncanny valley” and    9–10
user feedback and    10–11
web browsers and    3

Touch objects, properties of    92
touchcancel event

adding user feedback to light
switch    163

listening to    160–161
WebKit and    91

touchend event
adding user feedback to light

switch    162
listening to    160–161

managing end of touch life cycle   
223–224

WebKit and    91
touchmove event

acting on touch movements    222–223
adding user feedback to light switch   

161–162
handling    178–179
listening to    160–161
WebKit and    91

touchstart event
attaching listener to    96–97
handling    178–179
listening to    160–161
managing start of a touch    221–222
toggling visibility of a photo    95
WebKit and    91

transform-origin
in CSS    225
scaling elements and    235–236

Transforms
2D and 3D transforms    125–128
CSS transforms    122–125
matrices    130–132
scrubbing    128–129

Transitions
CSS    106–107
JavaScript    108–112

translate transform function    122–123
TTL (Time To Live), controlling HTTP

cache    50

U
UI (user interface). see also Touch interface

conventions    11
creating custom event interface   

97–99
CSS (Cascading Style Sheets)    140–142
graphic interface in original

Macintosh    89
infinite scroll as UI pattern    140
initializing interface and listening for

touch events    208–211
mouse compared with touch

interface    89
“the uncanny valley,”    9–10
Uniform resource locators. see URLs

(uniform resource locators)
URLs (uniform resource locators)

breaking links    70
browser history API and    70–71
creating router for handling    79–81
cross-browser state change handler   

76–77
handling popstate event    72–73
hash-bang urls    77

pushState method for changing
browser history    71–72

upgrading incoming links    75–76
User feedback

adding gesture support to lightbox    176
adding to light switch example    161–163
animation and    105
gestures and    153
prioritizing    139
touch interface and    10–11, 90

UTF-8 character set
specifying    18
using for arrows    186

Utility functions, for lightbox
example    168–169

V
Validation, controlling HTTP cache    50
Vendor prefixes

animation and    112
creating CSS animation using    114–116
transitions and    110–112

Viewports
high-density displays    22
meta property    163, 185, 228
overview of    18
properties    21
virtual pixels on    19–22

W
W3C (World Wide Web Consortium)    9
WAI-ARIA (Web Accessibility Initiative-

Accessible Rich Internet
Applications)    44, 186

Waterfall graph, for animation frames    121
Web Accessibility Initiative-Accessible

Rich Internet Applications
(WAI-ARIA)    44, 186

Web browsers
Android Browser. see Android Browser
Android Chrome. see Android Chrome
bird browser example. see Swipeable

bird browser
browser history API and    70–71, 77
browser normalization    168
cross-browser state change handler   

76–77
Firefox Mobile. see Firefox Mobile
gesture support    155
handling orientation    211–212
how pages are loaded    32
Internet Explorer 10. see IE10 (Internet

Explorer 10)
iOS Safari. see Safari

244  Index

for mobile devices. see Mobile browsers
multi-touch support    218
native scrolling in    184–185
normal cache behavior    51
parallel download support    34
pushState for changing browser

history    71–72
for touch devices    7–8
touch interface and    3

Web development, progressive
enhancement approach    155

Web Hypertext Application Working
Group (WHATWG)    8–9

Web pages
rendering    32
slide class for navigating between pages

of bird browser    202–205
Web storage. see also Cache/caching

as caching layer    54–60
web storage API    53

WebKit
CSS transitions and    107
developer tools    33

mobile browser    7–8
throwing exception when exceed

storage space    61
touch events    91
vendor prefixes required for

animation    112, 114–116
WHATWG (Web Hypertext Application

Working Group)    8–9
Widgets

iScroll 4    191–192
lightbox example. see Lightbox example

window.pageYOffset    142
Windows 8

multi-touch support    218
operating systems for touch devices   

5, 7
zooming impacting fixed layouts   

194–195
Windows Phone 8, landscape orientation

in    194
World Wide Web Consortium (W3C)    9
Wrappers, for data calls to allow insertion

of caching layer    201–202

Y
YSlow team, tips for downloading large

files    34
YSlow tool

expiration settings for HTTP cache    50
troubleshooting load time    36–37

YUI
creating custom event interface    97
facades around DOM for event

handling    99–102

Z
Zoom/zooming

creating layout for pinch to zoom   
227–229

double tap convention for    90
impacting fixed layouts    194–195
implementing pinch to zoom    227
initializing and correction layout for

pinch to zoom    230–232

Index  245

	Contents
	Introduction
	Welcome
	CHAPTER 4 SPEEDING UP THE NEXT VISIT
	Caching in HTTP
	Optimizing for mobile
	Using web storage
	The application cache
	Wrapping up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

