
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321887283
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321887283
https://plusone.google.com/share?url=http://www.informit.com/title/9780321887283
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321887283
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321887283/Free-Sample-Chapter

Programming in
Objective-C

Fifth Edition

informit.com/devlibrary

Developer’s
Library

 PHP & MySQL Web Development

Luke Welling & Laura Thomson

ISBN 978-0-672-32916-6

 MySQL

Paul DuBois

ISBN-13: 978-0-672-32938-8

 Linux Kernel Development

Robert Love

ISBN-13: 978-0-672-32946-3

 Python Essential Reference

David Beazley

ISBN-13: 978-0-672-32978-4

 PostgreSQL

Korry Douglas

ISBN-13: 978-0-672-32756-8

 C++ Primer Plus

Stephen Prata

ISBN-13: 978-0321-77640-2

 Developer’s Library books are available in print and in electronic formats at most retail
and online bookstores, as well as by subscription from Safari Books Online at
safari.informit.com

 Developer’s Library
 ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

 Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

 All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

 Key titles include some of the best, most widely acclaimed books within their topic
areas:

www.informit.com/devlibrary

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 Programming in
Objective-C

 Fifth Edition

 Stephen G. Kochan

 Programming in Objective-C, Fifth Edition
 Copyright © 2013 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

 ISBN-13: 978-0-321-88728-3

 ISBN-10: 0-321-88728-X

 The Library of Congress Cataloging-in-Publication Data is on file.

 Printed in the United States of America

 First Printing: December 2012

 Trademarks
 All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

 Warning and Disclaimer
 Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or enti-
ty with respect to any loss or damages arising from the information contained in this book.

 Bulk Sales
 Pearson offers excellent discounts on this book when ordered in quantity for bulk purchas-
es or special sales. For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

 For sales outside of the U.S., please contact

 International Sales
 international@pearsoned.com

 Acquisitions Editor
Mark Taber

 Managing Editor
Sandra Schroeder

 Project Editor
Mandie Frank

 Copy Editor
Keith Cline

 Indexer
Erika Millen

 Proofreader
Dan Knott

 Technical Editor
Michael Trent

 Publishing
Coordinator
Vanessa Evans

 Designer
Gary Adair

Cover Designer
Chuti Prasertsith

 Compositor
Tricia Bronkella

 To Roy and Ve, two people whom I dearly miss.

 To Ken Brown, “It’s just a jump to the left.”

vi Contents

 Contents at a Glance

 1 Introduction 1

I: The Objective-C Language

 2 Programming in Objective-C 7

 3 Classes, Objects, and Methods 27

 4 Data Types and Expressions 51

 5 Program Looping 71

 6 Making Decisions 93

 7 More on Classes 127

 8 Inheritance 153

 9 Polymorphism, Dynamic Typing, and Dynamic Binding 179

 10 More on Variables and Data Types 197

 11 Categories and Protocols 223

 12 The Preprocessor 237

 13 Underlying C Language Features 251

 II: The Foundation Framework

 14 Introduction to the Foundation Framework 307

 15 Numbers, Strings, and Collections 311

 16 Working with Files 377

 17 Memory Management and Automatic Reference Counting 407

 18 Copying Objects 419

 19 Archiving 431

 III: Cocoa, Cocoa Touch, and the iOS SDK

 20 Introduction to Cocoa and Cocoa Touch 449

 21 Writing iOS Applications 453

viiContents

 Appendixes

 A Glossary 487

 B Address Book Example Source Code 495

 Index 501

Table of Contents

 1 Introduction 1

What You Will Learn from This Book 2

How This Book Is Organized 3

Support 5

Acknowledgments 5

Preface to the Fifth Edition 6

I: The Objective-C Language

 2 Programming in Objective-C 7

Compiling and Running Programs 7

Using Xcode 8

Using Terminal 16

Explanation of Your First Program 18

Displaying the Values of Variables 22

Summary 25

Exercises 25

 3 Classes, Objects, and Methods 27

What Is an Object, Anyway? 27

Instances and Methods 28

An Objective-C Class for Working with Fractions 30

The @interface Section 33

Choosing Names 34

Class and Instance Methods 35

The @implementation Section 37

The program Section 39

Accessing Instance Variables and Data Encapsulation 45

Summary 49

Exercises 49

 4 Data Types and Expressions 51

Data Types and Constants 51

Type int 51

Type float 52

ixContents

Type char 52

Qualifiers: long, long long, short, unsigned, and
signed 53

Type id 54

Arithmetic Expressions 55

Operator Precedence 55

Integer Arithmetic and the Unary Minus Operator 58

The Modulus Operator 60

Integer and Floating-Point Conversions 61

The Type Cast Operator 63

Assignment Operators 64

A Calculator Class 65

Exercises 67

 5 Program Looping 71

The for Statement 72

Keyboard Input 79

Nested for Loops 81

for Loop Variants 83

The while Statement 84

The do Statement 89

The break Statement 91

The continue Statement 91

Summary 91

Exercises 92

 6 Making Decisions 93

The if Statement 93

The if-else Construct 98

Compound Relational Tests 101

Nested if Statements 104

The else if Construct 105

The switch Statement 115

Boolean Variables 118

The Conditional Operator 123

Exercises 125

x Contents

 7 More on Classes 127

Separate Interface and Implementation Files 127

Synthesized Accessor Methods 133

Accessing Properties Using the Dot Operator 135

Multiple Arguments to Methods 137

Methods without Argument Names 139

Operations on Fractions 139

Local Variables 143

Method Arguments 144

The static Keyword 144

The self Keyword 148

Allocating and Returning Objects from Methods 149

Extending Class Definitions and the Interface File 151

Exercises 151

 8 Inheritance 153

It All Begins at the Root 153

Finding the Right Method 157

Extension through Inheritance: Adding New Methods 158

A Point Class and Object Allocation 162

The @class Directive 163

Classes Owning Their Objects 167

Overriding Methods 171

Which Method Is Selected? 173

Abstract Classes 176

Exercises 176

 9 Polymorphism, Dynamic Typing, and Dynamic Binding 179

Polymorphism: Same Name, Different Class 179

Dynamic Binding and the id Type 182

Compile Time Versus Runtime Checking 184

The id Data Type and Static Typing 185

Argument and Return Types with Dynamic Typing 186

Asking Questions about Classes 187

Exception Handling Using @try 192

Exercises 195

xiContents

 10 More on Variables and Data Types 197

Initializing Objects 197

Scope Revisited 200

Directives for Controlling Instance Variable Scope 200

More on Properties, Synthesized Accessors, and Instance
Variables 202

Global Variables 203

Static Variables 205

Enumerated Data Types 207

The typedef Statement 211

Data Type Conversions 212

Conversion Rules 212

Bit Operators 214

The Bitwise AND Operator 215

The Bitwise Inclusive-OR Operator 216

The Bitwise Exclusive-OR Operator 217

The Ones Complement Operator 217

The Left-Shift Operator 219

The Right-Shift Operator 219

Exercises 220

 11 Categories and Protocols 223

Categories 223

Class Extensions 228

Some Notes about Categories 229

Protocols and Delegation 230

Delegation 233

Informal Protocols 233

Composite Objects 234

Exercises 235

 12 The Preprocessor 237

The #define Statement 237

More Advanced Types of Definitions 239

The #import Statement 244

xii Contents

Conditional Compilation 245

The #ifdef, #endif, #else, and #ifndef Statements 245

The #if and #elif Preprocessor Statements 247

The #undef Statement 248

Exercises 249

 13 Underlying C Language Features 251

Arrays 252

Initializing Array Elements 254

Character Arrays 255

Multidimensional Arrays 256

Functions 258

Arguments and Local Variables 259

Returning Function Results 261

Functions, Methods, and Arrays 265

Blocks 266

Structures 270

Initializing Structures 273

Structures within Structures 274

Additional Details about Structures 276

Don’t Forget about Object-Oriented Programming! 277

Pointers 277

Pointers and Structures 281

Pointers, Methods, and Functions 283

Pointers and Arrays 284

Operations on Pointers 294

Pointers and Memory Addresses 296

They’re Not Objects! 297

Miscellaneous Language Features 297

Compound Literals 297

The goto Statement 298

The Null Statement 298

The Comma Operator 299

The sizeof Operator 299

Command-Line Arguments 300

xiiiContents

How Things Work 302

Fact 1: Instance Variables Are Stored in Structures 303

Fact 2: An Object Variable Is Really a Pointer 303

Fact 3: Methods Are Functions, and Message Expressions Are Function
Calls 304

Fact 4: The id Type Is a Generic Pointer Type 304

Exercises 304

 II: The Foundation Framework

 14 Introduction to the Foundation Framework 307

Foundation Documentation 307

 15 Numbers, Strings, and Collections 311

Number Objects 311

String Objects 317

More on the NSLog Function 317

The description Method 318

Mutable Versus Immutable Objects 319

Mutable Strings 326

Array Objects 333

Making an Address Book 338

Sorting Arrays 355

Dictionary Objects 361

Enumerating a Dictionary 364

Set Objects 367

NSIndexSet 371

Exercises 373

 16 Working with Files 377

Managing Files and Directories: NSFileManager 378

Working with the NSData Class 383

Working with Directories 384

Enumerating the Contents of a Directory 387

Working with Paths: NSPathUtilities.h 389

Common Methods for Working with Paths 392

Copying Files and Using the NSProcessInfo Class 394

xiv Contents

Basic File Operations: NSFileHandle 398

The NSURL Class 403

The NSBundle Class 404

Exercises 405

 17 Memory Management and Automatic Reference Counting 407

Automatic Garbage Collection 409

Manual Reference Counting 409

Object References and the Autorelease Pool 410

The Event Loop and Memory Allocation 412

Summary of Manual Memory Management Rules 414

Automatic Reference Counting 415

Strong Variables 415

Weak Variables 416

@autoreleasepool Blocks 417

Method Names and Non-ARC Compiled Code 418

 18 Copying Objects 419

The copy and mutableCopy Methods 419

Shallow Versus Deep Copying 422

Implementing the <NSCopying> Protocol 424

Copying Objects in Setter and Getter Methods 427

Exercises 429

 19 Archiving 431

Archiving with XML Property Lists 431

Archiving with NSKeyedArchiver 434

Writing Encoding and Decoding Methods 435

Using NSData to Create Custom Archives 442

Using the Archiver to Copy Objects 446

Exercises 447

xvContents

 III: Cocoa, Cocoa Touch, and the iOS SDK

 20 Introduction to Cocoa and Cocoa Touch 449

Framework Layers 449

Cocoa Touch 450

 21 Writing iOS Applications 453

The iOS SDK 453

Your First iPhone Application 453

Creating a New iPhone Application Project 456

Entering Your Code 460

Designing the Interface 462

An iPhone Fraction Calculator 469

Starting the New Fraction_Calculator Project 471

Defining the View Controller 471

The Fraction Class 477

A Calculator Class That Deals with Fractions 480

Designing the User Interface 482

Summary 482

Exercises 484

 Appendixes

 A Glossary 487

 B Address Book Example Source Code 495

 Index 501

 About the Author
 Stephen Kochan is the author and coauthor of several bestselling titles on the C language,
including Programming in C (Sams, 2004), Programming in ANSI C (Sams, 1994), and Topics in C
Programming (Wiley, 1991), and several UNIX titles, including Exploring the Unix System (Sams,
1992) and Unix Shell Programming (Sams, 2003). He has been programming on Macintosh
computers since the introduction of the first Mac in 1984, and he wrote Programming C for the
Mac as part of the Apple Press Library. In 2003, Kochan wrote Programming in Objective-C (Sams,
2003), and followed that with another Mac-related title, Beginning AppleScript (Wiley, 2004).

 About the Technical Reviewers
 Michael Trent has been programming in Objective-C since 1997—and programming Macs
since well before that. He is a regular contributor to Steven Frank’s www.cocoadev.com website,
a technical reviewer for numerous books and magazine articles, and an occasional dabbler
in Mac OS X open-source projects. Currently, he is using Objective-C and Apple Computer’s
Cocoa frameworks to build professional video applications for Mac OS X. Michael holds a
Bachelor of Science degree in computer science and a Bachelor of Arts degree in music from
Beloit College of Beloit, Wisconsin. He lives in Santa Clara, California, with his lovely wife,
Angela.

 Wendy Mui is a programmer and software development manager in the San Francisco Bay
Area. After learning Objective-C from the second edition of Steve Kochan’s book, she landed
a job at Bump Technologies, where she put her programming skills to good use working on
the client app and the API/SDK for Bump’s third-party developers. Prior to her iOS experience,
Wendy spent her formative years at Sun and various other tech companies in Silicon Valley
and San Francisco. She got hooked on programming while earning a Bachelor of Arts degree in
mathematics from the University of California Berkeley.

www.cocoadev.com

 We Want to Hear from You!
 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write directly to let us know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

 Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

 When you write, please be sure to include this book’s title and author, as well as your name
and phone or email address.

 Email: feedback@developers-library.info

 Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services
 Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

www.informit.com/register

This page intentionally left blank

 3
 Classes, Objects, and

Methods

 In this chapter, you learn about some key concepts in object-oriented programming and start
working with classes in Objective-C. You need to learn a little bit of terminology, but we keep
it fairly informal. We also cover only some of the basic terms here because you can easily get
overwhelmed. Refer to Appendix A , “Glossary,” at the end of this book for more precise defini-
tions of these terms.

 What Is an Object, Anyway?
 An object is a thing. Think about object-oriented programming as a thing and something you
want to do to that thing. This is in contrast to a programming language such as C, known as a
procedural programming language. In C, you typically think about what you want to do first
and then you worry about the objects, almost the opposite of object orientation.

 Consider an example from everyday life. Let’s assume that you own a car, which is obviously
an object, and one that you own. You don’t have just any car; you have a particular car that
was manufactured in a factory, maybe in Detroit, maybe in Japan, or maybe someplace else.
Your car has a vehicle identification number (VIN) that uniquely identifies that car here in the
United States.

 In object-oriented parlance, your particular car is an instance of a car. Continuing with the
terminology, car is the name of the class from which this instance was created. So each time a
new car is manufactured, a new instance from the class of cars is created, and each instance of
the car is referred to as an object.

 Your car might be silver, have a black interior, be a convertible or hardtop, and so on. In addi-
tion, you perform certain actions with your car. For example, you drive your car, fill it with gas,
(hopefully) wash it, take it in for service, and so on. Table 3.1 depicts this.

28 Chapter 3 Classes, Objects, and Methods

 Table 3.1 Actions on Objects

 Object What You Do with It

 Your car Drive it

 Fill it with gas

 Wash it

 Service it

 The actions listed in Table 3.1 can be done with your car, and they can be done with other cars
as well. For example, your sister drives her car, washes it, fills it with gas, and so on.

 Instances and Methods
 A unique occurrence of a class is an instance, and the actions that are performed on the
instance are called methods. In some cases, a method can be applied to an instance of the class
or to the class itself. For example, washing your car applies to an instance. (In fact, all the
methods listed in Table 3.1 can be considered instance methods.) Finding out how many types
of cars a manufacturer makes would apply to the class, so it would be a class method.

 Suppose you have two cars that came off the assembly line and are seemingly identical: They
both have the same interior, same paint color, and so on. They might start out the same, but
as each car is used by its respective owner, its unique characteristics or properties change. For
example, one car might end up with a scratch on it, and the other might have more miles
on it. Each instance or object contains not only information about its initial characteristics
acquired from the factory but also its current characteristics. Those characteristics can change
dynamically. As you drive your car, the gas tank becomes depleted, the car gets dirtier, and the
tires get a little more worn.

 Applying a method to an object can affect the state of that object. If your method is to “fill up
my car with gas,” after that method is performed, your car’s gas tank will be full. The method
then will have affected the state of the car’s gas tank.

 The key concepts here are that objects are unique representations from a class, and each object
contains some information (data) that is typically private to that object. The methods provide
the means of accessing and changing that data.

 The Objective-C programming language has the following particular syntax for applying
methods to classes and instances:

[ClassOrInstance method];

 In this syntax, a left bracket is followed by the name of a class or instance of that class, which
is followed by one or more spaces, which is followed by the method you want to perform.
Finally, it is closed off with a right bracket and a terminating semicolon. When you ask a class

29Instances and Methods

or an instance to perform some action, you say that you are sending it a message; the recipient
of that message is called the receiver. So another way to look at the general format described
previously is as follows:

[receiver message];

 Let’s go back to the previous list and write everything in this new syntax. Before you do that,
though, you need to get your new car. Go to the factory for that, like so:

yourCar = [Car new]; get a new car

 You send a new message to the Car class (the receiver of the message) asking it to give you a
new car. The resulting object (which represents your unique car) is then stored in the variable
 yourCar . From now on, yourCar can be used to refer to your instance of the car, which you
got from the factory.

 Because you went to the factory to get the car, the method new is called a factory or class
method. The rest of the actions on your new car will be instance methods because they apply
to your car. Here are some sample message expressions you might write for your car:

[yourCar prep]; get it ready for first-time use
[yourCar drive]; drive your car
[yourCar wash]; wash your car
[yourCar getGas]; put gas in your car if you need it
[yourCar service]; service your car

[yourCar topDown]; if it's a convertible
[yourCar topUp];

currentMileage = [yourCar odometer];

 This last example shows an instance method that returns information—presumably, the current
mileage, as indicated on the odometer. Here, we store that information inside a variable in our
program called currentMileage .

 Here’s an example of where a method takes an argument that specifies a particular value that
may differ from one method call to the next:

[yourCar setSpeed: 55]; set the speed to 55 mph

 Your sister, Sue, can use the same methods for her own instance of a car:

[suesCar drive];
[suesCar wash];

[suesCar getGas];

 Applying the same methods to different objects is one of the key concepts of object-oriented
programming, and you’ll learn more about it later.

30 Chapter 3 Classes, Objects, and Methods

 You probably won’t need to work with cars in your programs. Your objects will likely be
computer-oriented things, such as windows, rectangles, pieces of text, or maybe even a calcula-
tor or a playlist of songs. And just like the methods used for your cars, your methods might
look similar, as in the following:

[myWindow erase]; Clear the window

theArea = [myRect area]; Calculate the area of the rectangle

[userText spellCheck]; Spell-check some text

[deskCalculator clearEntry]; Clear the last entry

[favoritePlaylist showSongs]; Show the songs in a playlist of favorites

[phoneNumber dial]; Dial a phone number

[myTable reloadData]; Show the updated table’s data

n = [aTouch tapCount]; Store the number of times the display was tapped

 An Objective-C Class for Working with Fractions
 Now it’s time to define an actual class in Objective-C and learn how to work with instances of
the class.

 Once again, you’ll learn procedure first. As a result, the actual program examples might not
seem very practical. We get into more practical stuff later.

 Suppose that you need to write a program to work with fractions. Maybe you need to deal with
adding, subtracting, multiplying, and so on. If you didn’t know about classes, you might start
with a simple program that looked like this.

 Program 3.1

// Simple program to work with fractions

#import <Foundation/Foundation.h>

int main (int argc, char * argv[])
{
 @autoreleasepool {
 int numerator = 1;
 int denominator = 3;
 NSLog (@"The fraction is %i/%i", numerator, denominator);
 }
 return 0;

}

31An Objective-C Class for Working with Fractions

 Program 3.1 Output

The fraction is 1/3

 In Program 3.1 , the fraction is represented in terms of its numerator and denominator. After
the @autoreleasepool directive, the two lines in main both declare the variables numerator
and denominator as integers and assign them initial values of 1 and 3 , respectively. This is
equivalent to the following lines:

int numerator, denominator;

numerator = 1;

denominator = 3;

 We represented the fraction 1/3 by storing 1 in the variable numerator and 3 in the variable
 denominator . If you needed to store a lot of fractions in your program, this could be cumber-
some. Each time you wanted to refer to the fraction, you’d have to refer to the corresponding
numerator and denominator. And performing operations on these fractions would be just as
awkward.

 It would be better if you could define a fraction as a single entity and collectively refer to its
numerator and denominator with a single name, such as myFraction . You can do that in
Objective-C, and it starts by defining a new class.

 Program 3.2 duplicates the functionality of Program 3.1 using a new class called Fraction .
Here, then, is the program, followed by a detailed explanation of how it works.

 Program 3.2

// Program to work with fractions – class version

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
{
 int numerator;

32 Chapter 3 Classes, Objects, and Methods

 int denominator;
}
-(void) print
{
 NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{
 numerator = n;
}

-(void) setDenominator: (int) d
{
 denominator = d;
}

@end

//---- program section ----

int main (int argc, char * argv[])
{
 @autoreleasepool {
 Fraction *myFraction;

 // Create an instance of a Fraction

 myFraction = [Fraction alloc];
 myFraction = [myFraction init];

 // Set fraction to 1/3

 [myFraction setNumerator: 1];
 [myFraction setDenominator: 3];

 // Display the fraction using the print method

 NSLog (@"The value of myFraction is:");
 [myFraction print];
 }
 return 0;
}

33The @interface Section

 Program 3.2 Output

The value of myFraction is:
1/3

 As you can see from the comments in Program 3.2 , the program is logically divided into three
sections:

 @interface section

 @implementation section

 program section

 The @interface section describes the class and its methods, and the @implementation section
describes the data (the instance variables that objects from the class will store) and contains
the actual code that implements the methods declared in the interface section. The program
section contains the program code to carry out the intended purpose of the program.

 Note
 You can also declare the instance variables for a class in the interface section. The ability to do
it in the implementation section was added as of Xcode 4.2 and is considered a better way to
define a class. You learn more about why in a later chapter.

 Each of these sections is a part of every Objective-C program, even though you might not need
to write each section yourself. As you’ll see, each section is typically put in its own file. For
now, however, we keep it all together in a single file.

 The @interface Section
 When you define a new class, you have to tell the Objective-C compiler where the class came
from. That is, you have to name its parent class. Next, you need to define the type of opera-
tions, or methods, that can be used when working with objects from this class. And, as you
learn in a later chapter, you also list items known as properties in this special section of the
program called the @interface section. The general format of this section looks like this:

@interface NewClassName: ParentClassName
propertyAndMethodDeclarations;

@end

 By convention, class names begin with an uppercase letter, even though it’s not required. This
enables someone reading your program to distinguish class names from other types of variables
by simply looking at the first character of the name. Let’s take a short diversion to talk a little
about forming names in Objective-C.

34 Chapter 3 Classes, Objects, and Methods

 Choosing Names
 In Chapter 2 , “Programming in Objective-C,” you used several variables to store integer (int)
values. For example, you used the variable sum in Program 2.4 to store the result of the addi-
tion of the two integers 50 and 25 .

 The Objective-C language allows you to store data types other than just integers in variables as
well, as long as the proper declaration for the variable is made before it is used in the program.
Variables can be used to store floating-point numbers, characters, and even objects (or, more
precisely, references to objects).

 The rules for forming names are quite simple: They must begin with a letter or underscore (_),
and they can be followed by any combination of letters (uppercase or lowercase), underscores,
or the digits 0 through 9. The following is a list of valid names:

 sum

 pieceFlag

 i

 myLocation

 numberOfMoves

 sysFlag

 ChessBoard

 However, the following names are not valid for the stated reasons:

 sum$value $ —Is not a valid character.

 piece flag —Embedded spaces are not permitted.

 3Spencer —Names cannot start with a number.

 int —This is a reserved word.

 int cannot be used as a variable name because its use has a special meaning to the Objective-C
compiler. This use is known as a reserved name or reserved word. In general, any name that has
special significance to the Objective-C compiler cannot be used as a variable name.

 Always remember that uppercase and lowercase letters are distinct in Objective-C. Therefore,
the variable names sum , Sum , and SUM each refer to a different variable. As noted, when naming
a class, start it with a capital letter. Instance variables, objects, and method names, however,
typically begin with lowercase letters. To aid readability, capital letters are used inside names to
indicate the start of a new word, as in the following examples:

 AddressBook —This could be a class name.

 currentEntry —This could be an object.

35The @interface Section

 addNewEntry —This could be a method name.

 When deciding on a name, keep one recommendation in mind: Don’t be lazy. Pick names
that reflect the intended use of the variable or object. The reasons are obvious. Just as with the
comment statement, meaningful names can dramatically increase the readability of a program
and will pay off in the debug and documentation phases. In fact, the documentation task will
probably be much easier because the program will be more self-explanatory.

 Here, again, is the @interface section from Program 3.2 :

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

 The name of the new class is Fraction , and its parent class is NSObject . (We talk in greater
detail about parent classes in Chapter 8 , “Inheritance.”) The NSObject class is defined in
the file NSObject.h , which is automatically included in your program whenever you import
 Foundation.h .

 Class and Instance Methods
 You have to define methods to work with your Fraction s. You need to be able to set the value
of a fraction to a particular value. Because you won’t have direct access to the internal repre-
sentation of a fraction (in other words, direct access to its instance variables), you must write
methods to set the numerator and denominator. You’ll also write a method called print that
will display the value of a fraction. Here’s what the declaration for the print method looks like
in the interface file:

-(void) print;

 The leading minus sign (-) tells the Objective-C compiler that the method is an instance
method. The only other option is a plus sign (+), which indicates a class method. A class
method is one that performs some operation on the class itself, such as creating a new instance
of the class.

 An instance method performs some operation on a particular instance of a class, such as setting
its value, retrieving its value, displaying its value, and so on. Referring to the car example, after
you have manufactured the car, you might need to fill it with gas. The operation of filling it
with gas is performed on a particular car, so it is analogous to an instance method.

36 Chapter 3 Classes, Objects, and Methods

 Return Values

 When you declare a new method, you have to tell the Objective-C compiler whether the
method returns a value and, if it does, what type of value it returns. You do this by enclosing
the return type in parentheses after the leading minus or plus sign. So this declaration specifies
that the instance method called currentAge returns an integer value:

–(int) currentAge;

 Similarly, this line declares a method that returns a double precision value. (You learn more
about this data type in Chapter 4 , “Data Types and Expressions.”)

–(double) retrieveDoubleValue;

 A value is returned from a method using the Objective-C return statement, similar to the way
in which we returned a value from main in previous program examples.

 If the method returns no value, you indicate that using the type void , as in the following:

–(void) print;

 This declares an instance method called print that returns no value. In such a case, you do not
need to execute a return statement at the end of your method. Alternatively, you can execute
a return without any specified value, as in the following:

return;

 Method Arguments

 Two other methods are declared in the @interface section from Program 3.2 :

–(void) setNumerator: (int) n;

–(void) setDenominator: (int) d;

 These are both instance methods that return no value. Each method takes an integer argument,
which is indicated by the (int) in front of the argument name. In the case of setNumerator ,
the name of the argument is n . This name is arbitrary and is the name the method uses to refer
to the argument. Therefore, the declaration of setNumerator specifies that one integer argu-
ment, called n , will be passed to the method and that no value will be returned. This is similar
for setDenominator , except that the name of its argument is d .

 Notice the syntax of the declaration for these methods. Each method name ends with a colon,
which tells the Objective-C compiler that the method expects to see an argument. Next, the
type of the argument is specified, enclosed in a set of parentheses, in much the same way the
return type is specified for the method itself. Finally, the symbolic name to be used to identify
that argument in the method is specified. The entire declaration is terminated with a semico-
lon. Figure 3.1 depicts this syntax.

37The @implementation Section

method
type

return
type

method
name

method
takes

argument

argument
type

argument
name

 Figure 3.1 Declaring a method

 When a method takes an argument, you also append a colon to the method name when refer-
ring to the method. Therefore, setNumerator: and setDenominator: is the correct way to
identify these two methods, each of which takes a single argument. Also, identifying the print
method without a trailing colon indicates that this method does not take any arguments. In
 Chapter 7 , “More on Classes,” you’ll see how methods that take more than one argument are
identified.

 The @implementation Section
 As noted, the @implementation section contains the actual code for the methods you declared
in the @interface section. You have to specify what type of data is to be stored in the objects
of this class. That is, you have to describe the data that members of the class will contain.
These members are called the instance variables. Just as a point of terminology, you say that
you declare the methods in the @interface section and that you define them (that is, give the
actual code) in the @implementation section. The general format for the @implementation
section is as follows:

@implementation NewClassName
{

memberDeclarations;
}
methodDefinitions;

@end

 NewClassName is the same name that was used for the class in the @interface section. You
can use the trailing colon followed by the parent class name, as we did in the @interface
section:

@implementation Fraction: NSObject

 However, this is optional and typically not done.

 The memberDeclarations section specifies what types of data are stored in a Fraction , along
with the names of those data types. As you can see, this section is enclosed inside its own set
of curly braces. For your Fraction class, these declarations say that a Fraction object has two
integer members, called numerator and denominator :

int numerator;

int denominator;

38 Chapter 3 Classes, Objects, and Methods

 The members declared in this section are known as the instance variables. Each time you create
a new object, a new and unique set of instance variables also is created. Therefore, if you have
two Fraction s, one called fracA and another called fracB , each will have its own set of
instance variables—that is, fracA and fracB each will have its own separate numerator and
 denominator . The Objective-C system automatically keeps track of this for you, which is one
of the nicer things about working with objects.

 The methodDefinitions part of the @implementation section contains the code for each
method specified in the @interface section. Similar to the @interface section, each method’s
definition starts by identifying the type of method (class or instance), its return type, and its
arguments and their types. However, instead of the line ending with a semicolon, the code for
the method follows, enclosed inside a set of curly braces. It’s noted here that you can have the
compiler automatically generate methods for you by using a special @synthesize directive.
 Chapter 7 covers this in detail.

 Consider the @implementation section from Program 3.2 :

//---- @implementation section ----
@implementation Fraction
{
 int numerator;
 int denominator;
}

–(void) print
{
 NSLog (@"%i/%i", numerator, denominator);
}

–(void) setNumerator: (int) n
{
 numerator = n;
}

–(void) setDenominator: (int) d
{
 denominator = d;
}

@end

 The print method uses NSLog to display the values of the instance variables numerator and
 denominator . But to which numerator and denominator does this method refer? It refers to
the instance variables contained in the object that is the receiver of the message. That’s an
important concept, and we return to it shortly.

39The program Section

 The setNumerator: method stores the integer argument you called n in the instance variable
 numerator . Similarly, setDenominator: stores the value of its argument d in the instance vari-
able denominator .

 The program Section
 The program section contains the code to solve your particular problem, which can be spread
out across many files, if necessary. Somewhere you must have a routine called main , as previ-
ously noted. That’s where your program always begins execution. Here’s the program section
from Program 3.2 :

//---- program section ----

int main (int argc, char * argv[])
{
 @autoreleasepool {
 Fraction *myFraction;

 // Create an instance of a Fraction and initialize it

 myFraction = [Fraction alloc];
 myFraction = [myFraction init];

 // Set fraction to 1/3

 [myFraction setNumerator: 1];
 [myFraction setDenominator: 3];

 // Display the fraction using the print method

 NSLog (@"The value of myFraction is:");
 [myFraction print];
 }

 return 0;

}

 Inside main , you define a variable called myFraction with the following line:

Fraction *myFraction;

 This line says that myFraction is an object of type Fraction ; that is, myFraction is used to
store values from your new Fraction class. The asterisk that precedes the variable name is
described in more detail later.

40 Chapter 3 Classes, Objects, and Methods

 Now that you have an object to store a Fraction , you need to create one, just as you ask the
factory to build you a new car. This is done with the following line:

myFraction = [Fraction alloc];

 alloc is short for allocate. You want to allocate memory storage space for a new fraction. This
expression sends a message to your newly created Fraction class:

[Fraction alloc]

 You are asking the Fraction class to apply the alloc method, but you never defined an alloc
method, so where did it come from? The method was inherited from a parent class. Chapter 8
deals with this topic in detail.

 When you send the alloc message to a class, you get back a new instance of that class. In
 Program 3.2 , the returned value is stored inside your variable myFraction . The alloc method
is guaranteed to zero out all of an object’s instance variables. However, that doesn’t mean that
the object has been properly initialized for use. You need to initialize an object after you allo-
cate it.

 This is done with the next statement in Program 3.2 , which reads as follows:

myFraction = [myFraction init];

 Again, you are using a method here that you didn’t write yourself. The init method initial-
izes the instance of a class. Note that you are sending the init message to myFraction . That
is, you want to initialize a specific Fraction object here, so you don’t send it to the class; you
send it to an instance of the class. Make sure that you understand this point before continuing.

 The init method also returns a value—namely, the initialized object. You store the return
value in your Fraction variable myFraction .

 The two-line sequence of allocating a new instance of class and then initializing it is done so
often in Objective-C that the two messages are typically combined, as follows:

myFraction = [[Fraction alloc] init];

 This inner message expression is evaluated first:

[Fraction alloc]

 As you know, the result of this message expression is the actual Fraction that is allocated.
Instead of storing the result of the allocation in a variable, as you did before, you directly apply
the init method to it. So, again, first you allocate a new Fraction and then you initialize it.
The result of the initialization is then assigned to the myFraction variable.

 As a final shorthand technique, the allocation and initialization is often incorporated directly
into the declaration line, as in the following:

Fraction *myFraction = [[Fraction alloc] init];

41The program Section

 Returning to Program 3.2 , you are now ready to set the value of your fraction. These program
lines do just that:

// Set fraction to 1/3

[myFraction setNumerator: 1];

[myFraction setDenominator: 3];

 The first message statement sends the setNumerator: message to myFraction . The argument
that is supplied is the value 1 . Control is then sent to the setNumerator: method you defined
for your Fraction class. The Objective-C system knows that it is the method from this class to
use because it knows that myFraction is an object from the Fraction class.

 Inside the setNumerator: method, the passed value of 1 is stored inside the variable n . The
single program line in that method stores that value in the instance variable numerator . So,
you have effectively set the numerator of myFraction to 1 .

 The message that invokes the setDenominator: method on myFraction follows next. The
argument of 3 is assigned to the variable d inside the setDenominator: method. This value is
then stored inside the denominator instance variable, thus completing the assignment of the
value 1/3 to myFraction . Now you’re ready to display the value of your fraction, which you
do with the following lines of code from Program 3.2 :

// Display the fraction using the print method

NSLog (@"The value of myFraction is:");

[myFraction print];

 The NSLog call simply displays the following text:

The value of myFraction is:

 The following message expression invokes the print method:

[myFraction print];

 Inside the print method, the values of the instance variables numerator and denominator are
displayed, separated by a slash character.

 Note
 In the past, iOS programmers were responsible for telling the system when they were done
using an object that they allocated by sending the object a release message. That was done
in accordance with a memory management system known as manual reference counting. As of
Xcode 4.2, programmers no longer have to worry about this and can rely on the system to take
care of releasing memory as necessary. This is done through a mechanism known as Automatic
Reference Counting, or ARC for short. ARC is enabled by default when you compile new applica-
tions using Xcode 4.2 or later.

42 Chapter 3 Classes, Objects, and Methods

 It seems as if you had to write a lot more code to duplicate in Program 3.2 what you did in
 Program 3.1 . That’s true for this simple example here; however, the ultimate goal in working
with objects is to make your programs easier to write, maintain, and extend. You’ll realize that
later.

 Let’s go back for a second to the declaration of myFraction

Fraction *myFraction;

 and the subsequent setting of its values.

 The asterisk (*) in front of myFraction in its declaration says that myFraction is actually a
reference (or pointer) to a Fraction object. The variable myFraction doesn’t actually store the
fraction’s data (that is, its numerator and denominator values). Instead, it stores a reference—
which is a actually a memory address—indicating where the object’s data is located in memory.
When you first declare myFraction as shown, its value is undefined as it has not been set to
any value and does not have a default value. We can conceptualize myFraction as a box that
holds a value. Initially the box contains some undefined value, as it hasn’t been assigned any
value, as shown in Figure 3.2 .

 myFraction

 Figure 3.2 Declaring Fraction *myFraction;

 When you allocate a new object (using alloc , for example) enough space is reserved in
memory to store the object’s data, which includes space for its instance variables, plus a little
more. The location of where that data is stored (the reference to the data) is returned by the
 alloc routine, and assigned to the variable myFraction . This all takes place when this state-
ment is executed in Program 3.2 :

myFraction = [Fraction alloc];

 The allocation of the object and the storage of the reference to that object in myFraction is
depicted in Figure 3.3 .

myFraction

Object’s data

0 numerator

0 denominator

 Figure 3.3 Relationship between myFraction and its data

43The program Section

 Note
 More data is stored with the object than just that indicated, but you don’t need to worry about
that here. You’ll note that the instance variables are shown as being set to 0. That’s currently
being handled by the alloc method. However, the object still has not been properly initialized.
You still need to use the init method on the newly allocated object.

 Notice the directed line in Figure 3.3 . This indicates the connection that has been made
between the variable myFraction and the allocated object. (The value stored inside myFrac-
tion is actually a memory address. It’s at that memory address that the object’s data is stored.)

 Subsequently in Program 3.2 , the fraction’s numerator and denominator are set. Figure 3.4
depicts the fully initialized Fraction object with its numerator set to 1 and its denominator set
to 3.

myFraction

Object’s data

1 numerator

3 denominator

 Figure 3.4 Setting the fraction’s numerator and denominator

 The next example shows how you can work with more than one fraction in your program. In
 Program 3.3 , you set one fraction to 2/3 , set another to 3/7 , and display them both.

 Program 3.3

// Program to work with fractions – cont'd

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;

@end

//---- @implementation section ----

@implementation Fraction
{
 int numerator;

44 Chapter 3 Classes, Objects, and Methods

 int denominator;
}

-(void) print
{
 NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{
 numerator = n;
}

-(void) setDenominator: (int) d
{
 denominator = d;
}

@end

//---- program section ----

int main (int argc, char * argv[])
{
 @autoreleasepool {

 Fraction *frac1 = [[Fraction alloc] init];
 Fraction *frac2 = [[Fraction alloc] init];

 // Set 1st fraction to 2/3

 [frac1 setNumerator: 2];
 [frac1 setDenominator: 3];

 // Set 2nd fraction to 3/7

 [frac2 setNumerator: 3];
 [frac2 setDenominator: 7];

 // Display the fractions

 NSLog (@"First fraction is:");

 [frac1 print];

 NSLog (@"Second fraction is:");
 [frac2 print];

45Accessing Instance Variables and Data Encapsulation

 }
 return 0;
}

 Program 3.3 Output

First fraction is:
2/3
Second fraction is:
3/7

 The @interface and @implementation sections remain unchanged from Program 3.2 . The
program creates two Fraction objects, called frac1 and frac2 , and then assigns the value
 2/3 to the first fraction and 3/7 to the second. Realize that when the setNumerator: method
is applied to frac1 to set its numerator to 2 , the instance variable frac1 gets its instance vari-
able numerator set to 2 . Also, when frac2 uses the same method to set its numerator to 3 , its
distinct instance variable numerator is set to the value 3 . Each time you create a new object, it
gets its own distinct set of instance variables. Figure 3.5 depicts this.

Object

Instance
Variables

frac1

numerator 2
denominator 3

frac2

numerator 3
denominator 7

 Figure 3.5 Unique instance variables

 Based on which object is getting sent the message, the correct instance variables are referenced.
Therefore, here frac1 ’s numerator is referenced whenever setNumerator: uses the name
 numerator inside the method:

[frac1 setNumerator: 2];

 That’s because frac1 is the receiver of the message.

 Accessing Instance Variables and Data Encapsulation
 You’ve seen how the methods that deal with fractions can access the two instance variables
 numerator and denominator directly by name. In fact, an instance method can always directly
access its instance variables. A class method can’t, however, because it’s dealing only with the
class itself, not with any instances of the class. (Think about that for a second.) But what if you
wanted to access your instance variables from someplace else (for example, from inside your
 main routine)? You can’t do that directly because they are hidden. The fact that they are hidden
from you is a key concept called data encapsulation. It enables someone writing class definitions
to extend and modify the class definitions, without worrying about whether programmers (that

46 Chapter 3 Classes, Objects, and Methods

is, users of the class) are tinkering with the internal details of the class. Data encapsulation
provides a nice layer of insulation between the programmer and the class developer.

 You can access your instance variables in a clean way by writing special methods to set and
retrieve their values. We wrote setNumerator : and setDenominator : methods to set the values
of the two instance variables in our Fraction class. To retrieve the values of those instance
variables, you need to write two new methods. For example, create two new methods called,
appropriately enough, numerator and denominator to access the corresponding instance
variables of the Fraction that is the receiver of the message. The result is the corresponding
integer value, which you return. Here are the declarations for your two new methods:

–(int) numerator;

–(int) denominator;

 And here are the definitions:

–(int) numerator
{
 return numerator;
}

–(int) denominator
{
 return denominator;

}

 Note that the names of the methods and the instance variables they access are the same.
There’s no problem doing this (although it might seem a little odd at first); in fact, it is
common practice. Program 3.4 tests your two new methods.

 Program 3.4

// Program to access instance variables – cont'd

#import <Foundation/Foundation.h>

//---- @interface section ----

@interface Fraction: NSObject

-(void) print;
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;
-(int) numerator;
-(int) denominator;

@end

47Accessing Instance Variables and Data Encapsulation

//---- @implementation section ----

@implementation Fraction
{
 int numerator;
 int denominator;
}

-(void) print
{
 NSLog (@"%i/%i", numerator, denominator);
}

-(void) setNumerator: (int) n
{
 numerator = n;
}

-(void) setDenominator: (int) d
{
 denominator = d;
}

-(int) numerator
{
 return numerator;
}

-(int) denominator
{
 return denominator;
}

@end

//---- program section ----

int main (int argc, char * argv[])
{
 @autoreleasepool {
 Fraction *myFraction = [[Fraction alloc] init];

 // Set fraction to 1/3

 [myFraction setNumerator: 1];
 [myFraction setDenominator: 3];

48 Chapter 3 Classes, Objects, and Methods

 // Display the fraction using our two new methods

 NSLog (@"The value of myFraction is: %i/%i",
 [myFraction numerator], [myFraction denominator]);
 }

 return 0;
}

 Program 3.4 Output

The value of myFraction is 1/3

 This NSLog statement displays the results of sending two messages to myFraction: the first to
retrieve the value of its numerator , and the second the value of its denominator :

NSLog (@"The value of myFraction is: %i/%i",

 [myFraction numerator], [myFraction denominator]);

 So, in the first message call, the numerator message is sent to the Fraction object myFrac-
tion . In that method, the code returns the value of the numerator instance variable for that
fraction. Remember, the context of a method while it is executing is the object that is the
receiver of the message. So, when the numerator method accesses and returns the value of the
 numerator instance variable, it’s myFraction ’s numerator that is accessed and returned. That
returned integer value is then passed along to NSLog to be displayed.

 For the second message call, the denominator method is called to access and return the value
of myFraction ’s denominator, which is then passed to NSLog to be displayed.

 Incidentally, methods that set the values of instance variables are often collectively referred to
as setters, and methods used to retrieve the values of instance variables are called getters. For
the Fraction class, setNumerator: and setDenominator: are the setters, and numerator
and denominator are the getters. Collectively, setters and getters are also referred to as accessor
methods.

 Make sure that you understand the difference between setters and the getters. The setters don’t
return a value, because their purpose is to take an argument and to set the corresponding
instance variable to the value of that argument. No value needs to be returned in that case.
That’s the purpose of a setter: to set the value of an instance variable, so setters typically do not
return values. In contrast, the purpose of the getter is to “get” the value of an instance variable
stored in an object and to send it back to the program. To do that, the getter must return the
value of the instance variable using the return statement.

 Again, the idea that you can’t directly set or get the value of an instance variable from outside
of the methods written for the class, but instead have to write setter and getter methods to do
so is the principle of data encapsulation. So, you have to use methods to access this data that
is normally hidden to the “outside world.” This provides a centralized path to the instance

49Accessing Instance Variables and Data Encapsulation

variables and prevents some other code from indirectly changing these values, which would
make your programs harder to follow, debug, and modify.

 We should also point out that a method called new combines the actions of an alloc and
 init . So, this line could be used to allocate and initialize a new Fraction :

Fraction *myFraction = [Fraction new];

 It’s generally better to use the two-step allocation and initialization approach so that you
conceptually understand that two distinct events are occurring: You’re first creating a new
object and then you’re initializing it.

 Summary
 Now you know how to define your own class, create objects or instances of that class, and send
messages to those objects. We return to the Fraction class in later chapters. You’ll learn how
to pass multiple arguments to your methods, how to divide your class definitions into separate
files, and also how to use key concepts such as inheritance and dynamic binding. However,
now it’s time to learn more about data types and writing expressions in Objective-C. First, try
the exercises that follow to test your understanding of the important points covered in this
chapter.

 Exercises

 1. Which of the following are invalid names? Why?

Int playNextSong 6_05
_calloc Xx alphaBetaRoutine
clearScreen _1312 z
ReInitialize _ A$

 2. Based on the example of the car in this chapter, think of an object you use every day.
Identify a class for that object and write five actions you do with that object.

 3. Given the list in exercise 2, use the following syntax to rewrite your list in this format:

[instance method];

 4. Imagine that you own a boat and a motorcycle in addition to a car. List the actions you
perform with each of these. Do you have any overlap between these actions?

50 Chapter 3 Classes, Objects, and Methods

 5. Based on question 4, imagine that you have a class called Vehicle and an object called
 myVehicle that could be either Car, Motorcycle, or Boat . Suppose that you write the
following:

[myVehicle prep];
[myVehicle getGas];
[myVehicle service];

 Do you see any advantages of being able to apply an action to an object that could be
from one of several classes?

 6. In a procedural language such as C, you think about actions and then write code to
perform the action on various objects. Referring to the car example, you might write a
procedure in C to wash a vehicle and then inside that procedure write code to handle
washing a car, washing a boat, washing a motorcycle, and so on. If you took that
approach and then wanted to add a new vehicle type (see the previous exercise), do
you see advantages or disadvantages to using this procedural approach over an object-
oriented approach?

 7. Define a class called XYPoint that will hold a Cartesian coordinate (x, y), where x and y
are integers. Define methods to individually set the x and y coordinates of a point and
retrieve their values. Write an Objective-C program to implement your new class and
test it.

Index

 Symbols
 + (addition) operator, 54 - 58

 & (address) operator, 278

 += (assignment) operator, 64

 = (assignment) operator, 64 - 65 , 74

 -= (assignment) operator, 64

 * (asterisk), 42

 @ (at symbol), 20 , 317

 & (bitwise AND) operator, 215 - 216

 | (bitwise OR) operator, 216 - 217

 ̂ (bitwise XOR) operator, 217

 ̂ (caret), 267

 : (colon), 123

 , (comma) operator, 299

 /* */ comment syntax, 19

 // comment syntax, 19

 {} (curly braces), 20

 -- (decrement) operator, 78 , 291 - 294

 / (division) operator, 54 - 58

 $ (dollar sign), 16

 . (dot) operator, 135 - 136

 " (double quotes), 132

 == (equal to) operator, 74

 > (greater than) operator, 74

 >= (greater than or equal to) operator, 74

 ++ (increment) operator, 78 , 291 - 294

 * (indirection) operator, 278

 << (left-shift) operator, 219

 < (less than) operator, 74

502 <= (less than or equal to) operator

 <= (less than or equal to) operator, 74

 && (logical AND) operator, 101

 ! (logical negation) operator, 121

 || (logical OR) operator, 101

 - (minus sign), 35

 % (modulus) operator, 60 - 61

 * (multiplication) operator, 54 - 58

 != (not equal to) operator, 74

 ~ (ones complement) operator, 217 - 219

 # (pound sign), 237

 ? (question mark), 123

 >> (right-shift) operator, 219 - 220

 ; (semicolon), 84

 - (subtraction) operator, 54

 ~ (tilde), 378

 - (unary minus) operator, 58 - 60

 _ (underscore), 34 , 202

 A
 absolute value, calculating, 94

 abstract classes, 176 , 487

 accessing

 instance variables, 45 - 49

 properties with dot operator, 135 - 136

 accessor methods

 definition of, 487

 explained, 48 - 49

 synthesized accessors, 133 - 135 , 202 - 203 ,
 493

 add: method, 139 - 143 , 149 - 151 , 411

 addition (+) operator, 54 - 58

 addObject: method, 358 , 370

 address (&) operator, 278

 address book program, 2

 AddressBook class

 custom archives, 442 - 445

 defining, 344 - 347

 encoding/decoding methods,
 438 - 441

 fast enumeration, 347 - 349

 @implementation section, 345 - 346

 @implentation section, 497 - 500

 @interface section, 345 , 496

 lookup: method, 349 - 351

 removeCard: method, 351 - 355

 sortedArrayUsingComparator:
method, 357

 sortUsingComparator: method,
357 - 358

 sortUsingSelector: method, 355 - 358

 AddressCard class

 defining, 338 - 341

 @implementation section, 339 - 342

 @implentation section, 496 - 497

 @interface section, 338 - 339 , 495

 synthesized methods, 341 - 344

 entries

 looking up, 349 - 351

 removing, 351 - 355

 sorting, 355 - 358

 fast enumeration, 347 - 349

 overview, 338

 source code, 495 - 500

 AddressBook class

 custom archives, 442 - 445

 defining, 344 - 347

 encoding/decoding methods, 438 - 441

 fast enumeration, 347 - 349

 @implementation section, 345 - 346 ,
 497 - 500

 @interface section, 345 , 496

 lookup: method, 349 - 351

 removeCard: method, 351 - 355

503array method

 sortedArrayUsingComparator: method,
 357

 sortUsingComparator: method, 357 - 358

 sortUsingSelector: method, 355 - 358

 AddressCard class

 defining, 338 - 341

 @implementation section, 339 - 340 , 342,
 496 - 497

 @interface section, 338 - 339 , 495

 synthesized methods, 341 - 344

 addresses

 memory addresses, 296 - 297

 URL addresses, reading files from,
403 - 404

 algorithms, greatest common divisor (gcd),
 86 - 87

 allKeys method, 365

 alloc method, 40

 allocation

 instances, 40

 memory, 135 - 137

 objects, 149 - 151 , 162 - 163

 allocF method, 205 - 207

 allocWithZone: method, 425

 alternative names, assigning to data types,
 211 - 212

 AND operators

 & (bitwise AND), 215 - 216

 && (logical AND), 101

 anyObject method, 370

 AppDelegate class, 460

 appending files, 402 - 403

 appendString: method, 333

 AppKit, 307 , 487

 application bundles, 404 - 405

 Application Kit, 307 , 487

 Application Services layer, 450

 application templates, 457

 ARC (Automatic Reference Counting), 41

 @autoreleasepool blocks, 417 - 418

 definition of, 488

 explained, 415

 with non-ARC compiled code, 418

 strong variables, 415 - 416

 weak variables, 416 - 417

 archiveRootObject: method, 434

 archiving

 copying objects with, 446 - 447

 definition of, 431 , 487

 encoding/decoding methods, 435 - 442

 with NSData, 442 - 445

 with NSKeyedArchiver, 434 - 435

 with XML property lists, 431 - 433

 arguments

 argument types, 263 - 265

 command-line arguments, 300 - 302

 function arguments, 259 - 261

 method arguments

 declaring, 36 - 37

 local variables, 144

 methods without argument names,
 139

 multiple arguments, 137 - 143

 arguments method, 396

 arithmetic operators

 binary arithmetic operators, 54 - 58

 integer and floating-point conversions,
 61 - 63

 integer arithmetic, 58 - 60

 modulus (%) operator, 60 - 61

 precedence, 54 - 58

 type cast operator, 63 - 64

 unary minus (-) operator, 58 - 60

 array method, 358

504 arrays

 arrays

 array objects

 address book example. See address
book program

 defining, 331 - 337

 NSValue class, 360 - 361

 character arrays, 255 - 256

 declaring, 252 - 254

 definition of, 487

 initializing, 254 - 255

 limitations, 297

 multidimensional arrays, 256 - 258

 NSArray class, 311

 passing to methods/functions, 265 - 266

 pointers to, 284 - 294

 increment and decrement operators,
 291 - 294

 pointers to character strings,
289 - 291

 valuesPtr example, 284 - 288

 arrayWithCapacity: method, 358

 arrayWithContentsOfFile: method, 407 , 433

 arrayWithObjects: method, 334 , 358

 assignment operators, 64 - 65 , 74

 asterisk (*), 42 , 54 - 58

 at symbol (@), 20 , 317

 AT&T Bell Laboratories, 1

 attributesOfItemAtPath: method, 378

 automatic garbage collection, 409

 automatic local variables, 261

 Automatic Reference Counting (ARC). See
ARC (Automatic Reference Counting)

 automatic variables, 488

 autorelease message, 410

 autorelease pool, 20 , 410 - 412 , 488

 @autoreleasepool, 20 , 410 , 417 - 418

 availableData method, 398

 B
 backslash (), 22

 base 8 (octal) notation, 54

base 16 (hexadecimal) notation, 54

 binary arithmetic operators, 54 - 58

 binding, dynamic, 182 - 184 , 489

 bit operators

 binary, decimal, and hexadecimal equiv-
alents, 214

 bitwise AND (&), 215 - 216

 bitwise OR (|), 216 - 217

 bitwise XOR (^), 217

 left-shift (<<) operator, 219

 ones complement (~) operator, 217 - 219

 right-shift (>>) operator, 219 - 220

 table of, 214

 bitfield, 488

 bitwise AND (&) operator, 215 - 216

 bitwise OR (|) operator, 216 - 217

 bitwise XOR (^) operator, 217

 blocks . See also statements

 @autoreleasepool blocks, 417 - 418

 definition of, 488 , 492

 explained, 266 - 270

 BOOL data type, 122 - 123

 Boolean variables, 118 - 123

 braces ({}), 20

 break statement, 91

 buffers, reading files to/from, 383 - 384

 bundles (application), 404 - 405

 buttons, adding, 466 - 468

 C
 C programming language, 1

 calculate: method, 144

505classes

 calculateTriangularNumber method,
 259 - 261

 calculator. See fraction calculator

 Calculator class, 65 - 67 , 480

 @implementation section, 481 - 482

 @interface section, 481

 capitalizedString method, 332

 caret (^), 217 , 267

 case sensitivity, 19 , 34

 caseInsensitiveCompare: method, 322 , 332

 @catch blocks, 192 - 194

 categories

 best practices, 229

 class extensions, 228 - 229

 defining, 223 - 228

 definition of, 488

 explained, 223 - 232

 MathOps, 223 - 228

 CGPoint data type, 274

 CGRect data type, 274

 CGSize data type, 274

 changeCurrentDirectoryPath: method, 385

 char characters, 317

 char data type, 52 - 53

 character arrays, 255 - 256

 character string objects. See string objects

 characterAtIndex: method, 332

 child classes, 153 - 155

 clang compiler, 17 - 18

 @class directive, 163 - 167

 class extensions, 228 - 229

 class methods, 29 , 35 , 488

 class objects. See objects

 classes

 abstract classes, 176 , 487

 adding to projects, 127 - 130

 AddressBook

 custom archives, 442 - 445

 defining, 344 - 347

 encoding/decoding methods,
438 - 441

 fast enumeration, 347 - 349

 @implementation section, 345 - 346,
 497 - 500

 @interface section, 345 , 496

 lookup: method, 349 - 351

 removeCard: method, 351 - 355

 sortedArrayUsingComparator: meth-
od, 357

 sortUsingComparator: method,
357 - 358

 sortUsingSelector: method, 355 - 358

 AddressCard

 defining, 338 - 341

 @implementation section, 339 - 340 ,
 342, 496 - 497

 @interface section, 338 - 339 , 495

 synthesized methods, 341 - 344

 AppDelegate, 460

 Calculator, 65 - 67 , 480 - 482

 @implementation section, 481 - 482

 @interface section, 481

 categories

 best practices, 229

 class extensions, 228 - 229

 defining, 223 - 228

 definition of, 488

 explained, 223 - 232

 child classes, 153 - 155

 class extensions, 228 - 229

 Complex, 179 - 182

 composite classes, 488

506 classes

 concrete subclasses, 488

 defining

 Fraction example, 30 - 33

 @implementation section, 37 ,
127 - 133

 @interface section, 33 - 37 , 127 - 133

 program section, 39 - 45

 definition of, 488

 dynamic binding, 182 - 184

 extending through inheritance

 @class directive, 163 - 167

 classes owning their objects,
 167 - 171

 explained, 158 - 162

 object allocation, 162 - 163

 Fraction, 30 - 33 , 477 - 480

 add: method, 139 - 143 , 149 - 151 , 411

 adding to projects, 127 - 130

 allocF method, 205 - 207

 convertToNum method, 95 - 98

 count method, 205 - 207

 data encapsulation, 45 - 49

 @implementation section, 37 ,
131 - 132 , 141 - 142 , 146 - 147 ,
 478 - 480

 initWith:over: method, 197 - 200

 instance variables, accessing, 45 - 49

 @interface section, 33 - 37 , 130 - 131 ,
 141 , 146 , 477

 program section, 39 - 45

 setTo:over: method, 137 - 139

 inheritance, 153 - 157 , 490

 instances

 allocation, 40

 definition of, 490

 explained, 28 - 30

 initialization, 40

 local variables

 explained, 143 - 144

 method arguments, 144

 static variables, 144 - 148

 methods . See also specific methods

 accessor methods, 48 - 49 , 133 - 135

 arguments, 36 - 37 , 137 - 143 , 144

 class methods versus instance
methods, 29 , 35

 declaring, 35 - 37

 explained, 28 - 30

 methods without argument names,
 139

 overriding, 171 - 175

 return values, 36

 self keyword, 148 - 149

 syntax, 28 - 29

 MusicCollection, 374 - 375

 naming conventions, 34 - 35

 NSArray, 311

 archiving, 431 - 433

 defining, 331 - 337

 methods, 358

 NSBundle, 404 - 405

 NSCountedSet, 370

 NSData, 383 - 384 , 431 - 433 , 442 - 445

 NSDate, 431 - 433

 NSDictionary

 archiving, 431 - 433

 defining, 361 - 363

 enumerating, 364 - 365

 methods, 365

 NSFileHandle, 377 , 398 - 403

 NSFileManager, 377

 directory enumeration, 387 - 389

 directory management, 384 - 387

 file management, 378 - 383

507composite objects

 NSIndexSet, 371 - 372

 NSKeyedArchiver, 434 - 435

 NSMutableArray

 defining, 331 - 337

 methods, 358

 NSMutableDictionary

 defining, 361 - 363

 enumerating, 364 - 365

 methods, 365

 NSMutableString, 326 - 330 , 333 - 331

 NSNumber, 311 - 317 , 431 - 433

 NSProcessInfo, 394 - 398

 NSSet, 367 - 370

 NSString, 317

 archiving, 431 - 433

 description method, 318 - 319

 mutable versus immutable objects,
 319 - 326

 NSLog function, 317 - 318

 NSURL, 403 - 404

 NSValue, 360 - 361

 objects

 allocation, 149 - 151

 returning from methods, 149 - 151

 parent classes, 153 - 155 , 491

 Playlist, 374 - 375

 polymorphism, 179 - 182 , 491

 properties, accessing with dot operator,
 135 - 136

 Rectangle, 158 - 171

 returning information about, 187 - 192

 root classes, 153

 Song, 374 - 375

 Square, 160 - 162 , 234 - 235

 subclasses, 492

 superclasses, 492

 ViewController

 first iPhone application, 460 - 462

 fraction calculator, 471 - 477

 XYPoint, 162 - 165

 classroomM.com/objective-c, 5

 clickDigit: method, 476 , 482

 closeFile method, 398

 clusters, 488

 Cocoa, 449

 definition of, 307 , 488

 development of, 1

 framework layers, 449 - 450

 Cocoa Touch, 307 , 450 - 451 , 488

 collections

 definition of, 488

 set, 492

 colon (:), 123

 comma (,) operator, 299

 Command Line Tools, 16

 command-line arguments, 300 - 302

 comments, 19 - 20

 compare: method, 315 , 322 , 332

 comparing string objects, 322

 compilation, 7 - 8

 conditional compilation, 245 - 248

 with Terminal, 16 - 18

 with Xcode, 8 - 15

 compile time, 184 - 185 , 488

 compilers

 gcc, 490

 LLVM Clang Objective-C compiler,
17 - 18

 Complex class, 179 - 182

 composite classes, 488

 composite objects, 234 - 235

508 compound literals

 compound literals, 297 - 298

 compound relational tests, 101 - 104

 concrete subclasses, 488

 conditional compilation, 245 - 248

 conditional operator, 123 - 124

 conforming, 489

 conformsToProtocol: method, 232

 constant character strings, 489

 constants

 defined names, 237 - 244

 definition of, 51

 PI, 238 - 239

 TWO_PI, 239 - 241

 containIndex: method, 372

 containsObject: method, 358 , 369 , 370

 contentsAtPath: method, 378 , 384

 contentsEqualAtPath: method, 378

 contentsOfDirectoryAtPath: method, 377 ,
 387 - 389

 continue statement, 91

 conversions (data types)

 conversion rules, 212 - 214

 integer and floating-point conversions,
 61 - 63

 convertToNum method, 95 - 98

 copy method, 419 - 421

 copying, 419

 files

 with NSFileHandle class, 399 - 402

 with NSProcessInfo class, 394 - 398

 objects

 with archiver, 446 - 447

 copy method, 419 - 421

 deep copying, 422 - 424 , 446 - 447

 mutableCopy method, 419 - 421

 <NSCopying> protocol, 424 - 426

 in setter/getter methods, 427 - 429

 shallow copying, 422 - 424

 copyItemAtPath: method, 378 , 385

 copyString function, 293 - 294

 copyWithZone: method, 425 - 428

 Core Data, 307

 Core Services layer, 449

 count method, 205 - 207 , 358 , 365 , 372

 countForObject: methods, 370

 Cox, Brad, 1

 createDirectoryAtPath: method, 385

 createFileAtPath: method, 378 , 384

 curly braces ({}), 20

 currentDirectoryPath method, 385

 custom archives, 442 - 445

 D
 data encapsulation, 45 - 49 , 489

 data method, 443

 data types

 argument types, 263 - 265

 assigning alternative names to, 211 - 212

 BOOL, 122 - 123

 CGPoint, 274

 CGRect, 274

 CGSize, 274

 char, 52 - 53

 conversions

 conversion rules, 212 - 214

 integer and floating-point conver-
sions, 61 - 63

 determining size of, 299 - 300

 dynamic typing

 argument and return types, 186 - 187

 definition of, 489

509delegation

 explained, 182 - 184

 methods for working with, 187 - 189

 enumerated data types, 207 - 211

 explained, 51

 float, 52

 id, 54 , 304

 definition of, 490

 dynamic typing and binding and,
 182 - 183 , 186 - 187

 static typing and, 185 - 186

 int, 20 , 51 - 52 . See also integers

 integer and floating-point conversions,
 61 - 63

 pointers to, 277 - 281

 qualifiers, 53 - 51

 return types, 263 - 265

 static typing, 185 - 186 , 492

 table of, 55

 dataWithContentsOfURL: method, 404

 date structure

 defining, 270 - 273

 initialization, 273 - 274

 debugging

 gdb tool, 490

 Xcode projects, 14 - 15

 decision-making constructs, 93 . See also
loops

 Boolean variables, 118 - 123

 conditional operator, 123 - 124

 if statement

 compound relational tests, 101 - 104

 else if construct, 105 - 115

 explained, 93 - 98

 if-else construct, 98 - 101

 nested if statements, 104 - 105

 switch statement, 115 - 118

 declaring . See also defining

 argument types, 263 - 265

 arrays, 252 - 254

 methods, 35

 arguments, 36 - 37

 return values, 36

 return types, 263 - 265

 strong variables, 415 - 416

 weak variables, 416 - 417

 decodeIntForKey: method, 442

 decodeObject: method, 436

 decoding methods, writing, 435 - 442

 decrement (--) operator, 78 , 291 - 294

 deep copying, 422 - 424 , 446 - 447

 #define statement, 237 - 244

 defined names, 237 - 244

 defining . See also declaring

 array objects, 331 - 337

 categories, 223 - 228

 class extensions, 228 - 229

 classes

 AddressBook class, 344 - 347

 AddressCard class, 338 - 341

 Fraction class, 30 - 33

 @implementation section, 37 ,
127 - 133

 @interface section, 33 - 37 , 127 - 133

 program section, 39 - 45

 pointers

 to data types, 277 - 281

 to structures, 281 - 283

 protocols, 230 - 233

 string objects, 317 - 318

 structures, 270 - 273 , 274 - 276

 delegation

 definition of, 489

 protocols, 233

510 deleteCharactersInRange: method

 deleteCharactersInRange: method, 329 , 333

 deleting files, 379

 denominator method, 46 - 48

 description method, 318 - 319

 designated initializers, 489

 development of Objective-C, 1 - 2

 dictionary objects

 creating, 361 - 363

 enumerating, 364 - 365

 NSDictionary methods, 365

 NSMutableDictionary methods, 365

 dictionaryWithCapacity: method, 365

 dictionaryWithContentsOfFile: method, 433

 dictionaryWithContentsOfURL: method, 404

 dictionaryWithObjectsAndKeys: method,
 364- 365

 digits of numbers, reversing, 89 - 90

 directives

 @autoreleasepool, 20 , 410

 @catch, 192 - 194

 @class, 163 - 167

 definition of, 489

 @finally, 194

 @optional, 231

 @package, 201

 @private, 201

 @property, 133

 @protected, 201

 @protocol, 232

 @public, 201

 @selector, 188 - 189

 @synthesize, 134 , 202

 @throw, 194

 @try, 192 - 194

 directories . See also files

 common iOS directories, 393

 enumerating, 387 - 389

 managing with NSFileManager class,
 384 - 387

 dispatch tables, creating, 296

 displaying variable values, 22 - 25

 distributed objects, 489

 division (/) operator, 54 - 58

 do statement, 89 - 90

 documentation for Foundation framework,
 307 - 310

 Documents directory, 393

 dollar sign ($), 16

 dot (.) operator, 135 - 136

 double quotes ("), 132

 doubleValue method, 332

 downloading

 iOS SDK (software development kit),
 453

 Xcode, 8

 Drawing protocol, 231 - 233

 dynamic binding, 182 - 184 , 489

 dynamic typing

 argument and return types, 186 - 187

 definition of, 489

 explained, 182 - 184

 methods for working with, 187 - 189

 E
 #elif statement, 245 - 247

 else if construct, 105 - 115

 #else statement, 245 - 247

 Empty Application template, 457

 encapsulation, 45 - 49 , 489

 encodeIntForKey: method, 442

 encodeWithCoder: method, 436 - 442

 encoding methods, writing, 435 - 442

 #endif statement, 245 - 247

 enum keyword, 207

511firstIndex method

 enumerated data types, 207 - 211

 enumerateObjectsUsingBlock: method, 358

 enumeration

 of dictionaries, 364 - 365

 of directories, 387 - 389

 fast enumeration, 347 - 349

 enumeratorAtPath: method, 385 - 389

 environment method, 396

 equal to (==) operator, 74

 event loop and memory allocation, 135 - 137

 exception handling, 192 - 194

 exchange function, 284

 extending classes through inheritance

 @class directive, 163 - 167

 classes owning their objects, 167 - 171

 explained, 158 - 162

 object allocation, 162 - 163

 Extensible Markup Language (XML). See
XML (Extensible Markup Language)

 extensions (class), 228 - 229

 extern variables. See global variables

 F
 factory methods. See class methods

 factory objects. See objects

 fast enumeration, 347 - 349

 Fibonacci numbers, generating, 253 - 254

 fileExistsAtPath: method, 378 , 385

 fileHandleForReadingAtPath: method, 398

 fileHandleForUpdatingAtPath: method, 398

 fileHandleForWritingAtPath: method, 398

 filename extensions, 12

 files

 appending, 402 - 403

 application bundles, 404 - 405

 basic file operations with NSFileHandle
class, 377 , 398 - 403

 copying

 with NSFileHandle class, 399 - 402

 with NSProcessInfo class, 394 - 398

 deleting, 379

 directories

 common iOS directories, 393

 enumerating, 387 - 389

 managing with NSFileManager class,
 384 - 387

 filename extensions, 12

 header files, 490

 main.m, 13

 managing with NSFileManager class,
 377 - 383

 moving, 382

 paths

 basic path operations, 389 - 392

 path utility functions, 393

 path utility methods, 392 - 394

 reading to/from buffer, 383 - 384

 removing, 382

 system files, 20

 Web files, reading with NSURL class,
 403 - 404

 xib files, 462

 @finally directive, 194

 finishEncoding message, 444

 first iPhone application

 AppDelegate class, 460

 application templates, 457

 interface design, 462 - 469

 button, 466 - 468

 label, 464 - 465

 overview, 453 - 469

 project, creating, 456 - 458

 ViewController class, 460 - 462

 firstIndex method, 372

512 float data type

 float data type, 52 , 61 - 63

 floatValue method, 332

 fnPtr pointer, 363 - 365

 for statement

 execution order, 75

 explained, 72 - 79

 infinite loops, 84

 keyboard input, 79 - 83

 nested loops, 81 - 83

 syntax, 73 - 75

 variants, 83 - 84

 formal protocols, 489

 forums, classroomM.com/objective-c, 5

 forwarding, 489

 forwardInvocation: method, 189

 Foundation framework

 address book program. See address book
program

 archiving

 copying objects with, 446 - 447

 definition of, 431

 encoding/decoding methods,
435 - 442

 with NSData, 442 - 445

 with NSKeyedArchiver, 434 - 435

 with XML property lists, 431 - 433

 array objects

 address book example. See address
book program

 defining, 331 - 337

 classes

 abstract classes, 176

 NSArray, 311 , 331 - 337 , 358

 NSBundle, 404 - 405

 NSCountedSet, 370

 NSData, 383 - 384 , 442 - 445

 NSFileHandle, 377 , 398 - 403

 NSFileManager, 377 - 387

 NSIndexSet, 371 - 372

 NSKeyedArchiver, 434 - 435

 NSMutableArray, 331 - 337 , 358

 NSMutableSet, 367 - 370

 NSMutableString, 326 - 330 , 333 - 331

 NSNumber, 311 - 317

 NSProcessInfo, 394 - 398

 NSSet, 367 - 370

 NSString, 317 - 331

 NSURL, 403 - 404

 NSValue, 360 - 361

 Cocoa, 449 - 450

 Cocoa Touch, 450 - 451

 copying objects

 copy method, 419 - 421

 deep copying, 422 - 424

 mutableCopy method, 419 - 421

 <NSCopying> protocol, 424 - 426

 in setter/getter methods, 427 - 429

 shallow copying, 422 - 424

 definition of, 489

 dictionary objects

 creating, 361 - 363

 enumerating, 364 - 365

 NSDictionary methods, 365

 NSMutableDictionary methods, 365

 directories

 enumerating, 387 - 389

 managing with NSFileManager class,
 384 - 387

 documentation, 307 - 310

 exercises, 373 - 375

 explained, 307

513Fraction class

 file paths

 basic path operations, 389 - 392

 path utility functions, 393

 path utility methods, 392 - 394

 files, 377 - 378

 appending, 402 - 403

 application bundles, 404 - 405

 basic file operations with
NSFileHandle class, 398 - 403

 copying with NSFileHandle class,
 399 - 402

 copying with NSProcessInfo class,
 394 - 398

 deleting, 379

 managing with NSFileManager class,
 378 - 383

 moving, 382

 removing, 382

 Web files, reading with NSURL class,
 403 - 404

 memory management

 ARC (Automatic Reference
Counting), 415 - 418

 autorelease pool, 20

 explained, 407 - 408

 garbage collection, 409 , 490

 manual reference counting, 409 - 415

 number objects, 311 - 317

 set objects

 NSCountedSet class, 370

 NSIndexSet, 371 - 372

 NSMutableSet, 367 - 370

 NSSet, 367 - 370

 string objects

 comparing, 322

 defining, 317 - 318

 description method, 318 - 319

 explained, 317

 immutable strings, 319 - 326

 joining, 321

 mutable strings, 326 - 330

 NSLog function, 317 - 318

 NSString methods, 331 - 332

 substrings, 323 - 326

 testing equality of, 322

 fraction calculator

 Calculator class, 480 - 482

 @implementation section, 481 - 482

 @interface section, 481

 creating project, 471

 Fraction class, 477 - 480

 @implementation section, 478 - 480

 @interface section, 477

 overview, 469 - 470

 summary, 482 - 484

 user interface design, 482

 ViewController class, 471 - 477

 @implementation section, 473 - 476

 @interface section, 472

 Fraction class, 30 - 33 , 477 - 480

 add: method, 139 - 143 , 149 - 151 , 411

 adding to projects, 127 - 130

 allocF method, 205 - 207

 convertToNum method, 95 - 98

 count method, 205 - 207

 data encapsulation, 45 - 49

 @implementation section, 37 , 131 - 132 ,
 138 , 146 - 147 , 478 - 480

 initWith:over: method, 197 - 200

 instance variables, accessing, 45 - 49

 @interface section, 33 - 37 , 130 - 131 , 141 ,
 146 , 477

 program section, 39 - 45

 setTo:over: method, 137 - 139

514 Fraction.h interface file

 Fraction.h interface file, 130 - 131

 Fraction.m implementation file, 131 - 132

 FractionTest project

 Fraction.h interface file, 130 - 131

 Fraction.m implementation file, 131 - 132

 main.m, 127 - 128

 output, 133

 framework layers, 449 - 450

 frameworks, 489 . See also Foundation
framework

 Free Software Foundation (FSF), 1

 FSF (Free Software Foundation), 1

 functions . See also methods

 arguments, 259 - 261

 pointers, 283 - 284

 copyString, 293 - 294

 definition of, 489

 exchange, 284

 explained, 258 - 259

 gcd, 261 - 263

 local variables, 259 - 261

 minimum, 265 - 266

 NSFullUserName, 393

 NSHomeDirectory, 392- 393

 NSHomeDirectoryForUser, 393

 NSLog, 317 - 318

 NSSearchPathForDirectoriesInDomains,
 393

 NSTemporaryDirectory, 391- 393

 NSUserName, 393

 passing arrays to, 265 - 266

 pointers to, 295 - 296

 qsort, 296

 return values, 261 - 265

 static functions, 492

 G
 garbage collection, 409 , 490

 gcc, 490

 gcd (greatest common divisor), calculating,
 86 - 87 , 261 - 263

 gcd function, 261 - 263

 gdb, 490

 getters

 copying objects in, 427 - 429

 definition of, 490

 explained, 48 - 49

 synthesizing, 133 - 135 , 202 - 203

 global variables

 definition of, 490

 scope, 203 - 205

 globallyUniqueString method, 396

 glossary, 487 - 493

 GNU General Public License, 1

 GNUStep, 1

 goto statement, 298

 greater than (>) operator, 74

 greater than or equal to (>=) operator, 74

 greatest common divisor (gcd), calculating,
 86 - 87 , 261 - 263

 H
 handling exceptions, 192 - 194

 hasPrefix: methods, 332

 hasSuffix: method, 332

 header files, 490

 help

 classroomM.com/objective-c, 5

 Foundation framework documentation,
 307 - 310

 Mac OS X reference library, 310

 Quick Help panel, 309 - 310

515installation, Xcode Command Line Tools

 hexadecimal (base 16) notation, 54

 history of Objective-C, 1 - 2

 hostName method, 396

 hyphen (-), 35

 I
 id data type, 54 , 304

 definition of, 490

 dynamic typing and binding and,
182 - 183 , 186 - 187

 static typing and, 185 - 186

 #if statement, 245 - 247

 if statement

 compound relational tests, 101 - 104

 else if construct, 105 - 115

 explained, 93 - 98

 if-else construct, 98 - 101

 nested if statements, 104 - 105

 #ifdef statement, 245 - 247

 if-else construct, 98 - 101

 #ifndef statement, 245 - 247

 immutable objects

 definition of, 490

 immutable strings, 319 - 326

 @implementation section, 37

 AddressBook class, 345 - 346 , 497 -500

 AddressCard class, 339 - 342 , 496 -497

 Calculator class, 481 - 482

 Complex class, 180

 definition of, 490

 Fraction class, 127 - 133 , 131 - 132 , 138 ,
 141 - 142 , 146 - 147 , 478 - 480

 ViewController class, 473 - 476

 #import statement, 244 - 245

 increment (++) operator, 78 , 291 - 294

 indexesOfObjectsPassingTest: method, 372

 indexesPassingTest: method, 372

 indexLessThanIndex: method, 372

 indexOfObject: method, 358

 indexOfObjectPassingTest: method, 358 ,
 371

 indirection (*) operator, 278

 infinite loops, 84

 informal protocols, 233 - 234 , 490

 inheritance

 definition of, 490

 explained, 153 - 158

 extending classes with, 158 - 171

 init method, 40 , 197

 overriding, 198

 initialization

 arrays, 254 - 255

 designated initializers, 489

 instances, 40

 objects, 197 - 200

 structures, 273 - 274

 initWithCapacity: method, 333 , 358 , 365 ,
 370

 initWithCoder: method, 436 - 442

 initWithContentsOfFile: method, 332

 initWithContentsOfURL: method, 332

 initWithName: method, 346

 initWithObjects: method, 370

 initWithObjectsAndKeys: method, 365

 initWith:over: method, 197 - 200

 initWithString: method, 332

 insertObject:, 358

 insertString: method, 333

 insertString:atIndex: method, 329

 installation, Xcode Command Line Tools, 16

516 instance methods

 instance methods, 29 , 35 , 490

 instance variables, 38

 accessing, 45 - 49

 definition of, 490

 scope, 200 - 203

 storing in structures, 303

 instances

 allocation, 40

 definition of, 490

 explained, 28 - 30

 extending classes with

 @class directive, 163 - 167

 classes owning their objects,
167 - 171

 explained, 158 - 162

 object allocation, 162 - 163

 initialization, 40

 instancesRespondToSelector: method, 187

 int data type, 20 , 51 - 52 . See also integers

 integers

 arithmetic, 58 - 60

 calculating absolute value of, 94

 conversions, 61 - 63

 int data type, 20 , 51 - 52

 NSInteger, 313

 integerValue method, 332

 Interface Builder, 490

 interface design (first iPhone application),
 462 - 469

 button, 466 - 468

 label, 464 - 465

 @interface section, 33 - 37

 AddressBook class, 345 , 496

 AddressCard class, 338 - 339 , 495

 Calculator class, 481

 class names, 34 - 35

 definition of, 490

 Fraction class, 127 - 133 , 141 , 146 , 477

 method declarations, 35

 arguments, 36 - 37

 class methods versus instance meth-
ods, 35

 return values, 36

 ViewController class, 472

 internationalization. See localization

 intersect: method, 369

 intersectSet: method, 370

 intersectsSet: methods, 370

 intNumber method, 313

 intValue method, 332

 iOS applications

 application templates, 457

 first iPhone application, 453 - 469

 AppDelegate class, 460

 interface design, 462 - 469

 overview, 453 - 456

 project, creating, 456 - 458

 ViewController class, 460 - 462

 fraction calculator

 Calculator class, 480 - 482

 creating project, 471

 Fraction class, 477 - 480

 overview, 469 - 470

 summary, 482 - 484

 user interface design, 482

 ViewController class, 471 - 477

 iOS SDK, 453

 iOS SDK (software development kit), 2 , 453

 iPhone applications. See iOS applications

 IS_LOWER_CASE macro, 243

 isa variable, 490

 isEqual: method, 352 - 353

 isEqualToNumber: method, 315

517lowercaseString method

 isEqualToSet: method, 370

 isEqualToString: method, 322 , 332

 isKindOfClass: method, 187

 isMemberOfClass: method, 187

 isReadableFileAtPath: method, 378

 isSubclassOfClass: method, 187

 isSubsetOfSet: method, 370

 isWritableFileAtPath: method, 378

 J-K
 joining character strings, 321

 keyed archives, 434 - 435

 keyEnumerator method, 365

 keysSortedByValueUsingSelector: method,
 365

 keywords

 enum, 207

 main, 20

 self, 148 - 149

 static, 144 - 148

 _ _strong, 416

 super, 492

 _ _weak, 417

 L
 labels, adding, 464 - 465

 lastIndex method, 372

 lastObject method, 358

 lastPathComponent method, 391 - 392

 layers (framework), 449 - 450

 leap years, determining, 102 - 103

 left-shift (<<) operator, 219

 length method, 332

 less than (<) operator, 74

 less than or equal to (<=) operator, 74

 Library/Caches directory, 393

 Library/Preferences directory, 393

 linking, 490

 LinuxSTEP, 1

 literals, compound, 297 - 298

 LLVM Clang Objective-C compiler, 17 - 18

 local variables

 definition of, 491

 explained, 143 - 144

 function arguments, 259 - 261

 method arguments, 144

 static variables, 144 - 148

 localization, 491

 logical AND (&&) operator, 101

 logical negation (!) operator, 121

 logical OR (||) operator, 101

 long qualifier, 53 - 54

 looking up address book entries, 349 - 351

 lookup: method, 349 - 351 , 371 - 372

 loops

 break statement, 91

 continue statement, 91

 do statement, 89 - 90

 explained, 71 - 72

 for statement

 execution order, 75

 explained, 72 - 84

 infinite loops, 84

 keyboard input, 79 - 83

 nested loops, 81 - 83

 syntax, 73 - 75

 variants, 83 - 84

 while statement, 84 - 89

 lowercaseString method, 332

518 M_PI

 M
 M_PI, 239

 Mac OS X reference library, 310

 macros, 242 - 244

 IS_LOWER_CASE, 243

 MakeFract, 243

 MAX, 243

 SQUARE, 242 - 243

 TO_UPPER, 244

 main keyword, 20

 mainBundle method, 405

 main.m, 13

 MakeFract macro, 243

 makeObjectsPerform Selector: method, 358

 manual memory management rules,
414 - 415

 manual reference counting

 autorelease pool, 410 - 412

 event loop and memory allocation,
135 - 137

 explained, 409 - 410

 manual memory management rules,
 414 - 415

 Master-Detail application template, 457

 MathOps category, defining, 223 - 228

 MAX macro, 243

 member: method, 370

 memberDeclarations (@implementation sec-
tion), 37

 memory addresses, pointers to, 296 - 297

 memory management

 ARC (Automatic Reference Counting)

 @autoreleasepool blocks, 417 - 418

 explained, 415

 with non-ARC compiled code, 418

 strong variables, 415 - 416

 weak variables, 416 - 417

 autorelease pool, 20

 explained, 407 - 408

 garbage collection, 409 , 490

 manual reference counting

 autorelease pool, 410 - 412

 event loop and memory allocation,
 135 - 137

 explained, 409 - 410

 manual memory management rules,
 414 - 415

 messages

 autorelease, 410

 definition of, 491

 finishEncoding, 444

 message expression, 491

 release, 409

 retain, 409

 methodDefinitions (@implementation
section), 38

 methods . See also functions

 accessor methods

 definition of, 487

 explained, 48 - 49

 synthesized accessors, 133 - 135 ,
 202 - 203 , 493

 add:, 139 - 143 , 149 - 151 , 411

 adding to classes

 @class directive, 163 - 167

 classes owning their objects,
167 - 171

 explained, 158 - 162

 object allocation, 162 - 163

 addObject:, 358 , 370

 allKeys, 365

 alloc, 40

519methods

 allocF, 205 - 207

 allocWithZone:, 425

 anyObject, 370

 appendString:, 333

 archiveRootObject:, 434

 arguments, 396

 local variables, 144

 methods without argument names,
 139

 multiple arguments, 137 - 143

 pointers, 283 - 284

 array, 358

 arrayWithCapacity:, 358

 arrayWithContentsOfFile:, 407 , 433

 arrayWithObjects:, 334 , 358

 attributesOfItemAtPath:, 378

 availableData, 398

 calculate:, 144

 calculateTriangularNumber, 259 - 261

 capitalizedString, 332

 caseInsensitiveCompare:, 322 , 332

 changeCurrentDirectoryPath:, 385

 characterAtIndex:, 332

 class methods versus instance methods,
 29 , 35 , 488 - 490

 clickDigit:, 476 , 482

 closeFile, 398

 compare:, 315 , 322 , 332

 conformsToProtocol:, 232

 containIndex:, 372

 containsObject:, 358 , 369 - 370

 contentsAtPath:, 378 , 384

 contentsEqualAtPath:, 378

 contentsOfDirectoryAtPath:, 377 ,
387 - 389

 convertToNum, 95 - 98

 copy, 419 - 421

 copyItemAtPath:, 378 , 385

 copyWithZone:, 425 - 428

 count, 205 - 207 , 358 , 365 , 372

 countForObject:, 370

 createDirectoryAtPath:, 385

 createFileAtPath:, 378 , 384

 currentDirectoryPath, 385

 data, 443

 dataWithContentsOfURL:, 404

 declaring, 35

 arguments, 36 - 37

 return values, 36

 decodeIntForKey:, 442

 decodeObject:, 436

 definition of, 491

 deleteCharactersInRange:, 329 , 333

 description, 318 - 319

 dictionaryWithCapacity:, 365

 dictionaryWithContentsOfFile:, 433

 dictionaryWithContentsOfURL:, 404

 dictionaryWithObjectsAndKeys:,
364- 365

 doubleValue, 332

 encodeIntForKey:, 442

 encodeWithCoder:, 436 - 442

 encoding/decoding methods, 435 - 442

 enumerateObjectsUsingBlock:, 358

 enumeratorAtPath:, 385 - 389

 environment, 396

 explained, 28 - 30 , 304

 fileExistsAtPath:, 378 , 385

 fileHandleForReadingAtPath:, 398

 fileHandleForUpdatingAtPath:, 398

 fileHandleForWritingAtPath:, 398

 firstIndex, 372

 floatValue, 332

 forwardInvocation:, 189

520 methods

 getters

 copying objects in, 427 - 429

 definition of, 490

 explained, 48 - 49

 synthesizing, 133 - 135 , 202 - 203

 globallyUniqueString, 396

 hasPrefix:, 332

 hasSuffix:, 332

 hostName, 396

 indexesOfObjectsPassingTest:, 372

 indexesPassingTest:, 372

 indexLessThanIndex:, 372

 indexOfObject:, 358

 indexOfObjectPassingTest:, 358 , 371

 indexSet

 init, 40 , 197

 overriding, 198

 initWithCapacity:, 333 , 358 , 365 , 370

 initWithCoder:, 436 - 442

 initWithContentsOfFile:, 332

 initWithContentsOfURL:, 332

 initWithName:, 346

 initWithObjects:, 370

 initWithObjectsAndKeys:, 365

 initWith:over:, 197 - 200

 initWithString:, 332

 insertObject:, 358

 insertString:, 333

 insertString:atIndex:, 329

 instancesRespondToSelector:, 187

 integerValue, 332

 intersect:, 369

 intersectSet:, 370

 intersectsSet:, 370

 intNumber, 313

 intValue, 332

 isEqual:, 352 - 353

 isEqualToNumber:, 315

 isEqualToSet:, 370

 isEqualToString:, 322 , 332

 isKindOfClass:, 187

 isMemberOfClass:, 187

 isReadableFileAtPath:, 378

 isSubclassOfClass:, 187

 isSubsetOfSet:, 370

 isWritableFileAtPath:, 378

 keyEnumerator, 365

 keysSortedByValueUsingSelector:, 365

 lastIndex, 372

 lastObject, 358

 lastPathComponent, 391

 length, 332

 lookup: , 349 - 351 , 371 - 372

 lowercaseString, 332

 mainBundle, 405

 makeObjectsPerform Selector:, 358

 member:, 370

 minusSet:, 370

 moveItemAtPath:, 378 , 385

 mutableCopy, 419 - 421

 mutableCopyWithZone:, 425

 new, 49

 numberWithInt:, 315

 numberWithInteger:, 315

 objectAtIndex:, 334 , 358

 objectEnumerator, 365 , 370

 objectForKey:, 363 - 365

 offsetInFile, 398

 operatingSystem, 396

 operatingSystemName, 396

 operatingSystemVersionString, 396

 overriding, 171 - 175

 passing arrays to, 265 - 266

 pathComponents, 392

521methods

 pathExtension, 391 - 392

 pathsForResourcesOfType:, 405

 pathWithComponents:, 392

 performSelector:, 187- 189

 print, 369

 processDigit:, 476

 processIdentifier, 396

 processInfo, 396

 processName, 396

 rangeOfString:, 325 , 329

 readDataToEndOfFile, 398

 reduce, 143 - 144

 removeAllObjects, 365 , 370

 removeItemAtPath:, 378 , 385

 removeObject:, 358 , 370

 removeObjectAtIndex:, 358

 removeObjectForKey:, 365

 replaceCharactersInRange:, 333

 replaceObject:, 424

 replaceObjectAtIndex:, 358

 replaceOccurrencesOfString:withString:
options:range:, 330 , 333

 respondsToSelector:, 187 , 189

 returning objects from, 149 - 151

 seekToEndOfFile, 398

 seekToFileOffset:, 398

 self keyword, 148 - 149

 set:, 139

 setAttributesOfItemAtPath:, 378

 setDenominator:, 39 - 41

 setEmail:, 340

 setName:, 340

 setName:andEmail:, 343

 setNumerator:, 39- 41

 setNumerator:andDenominator:
method, 137

 setObject:, 365

 setProcessName:, 396

 setString:, 330 , 333

 setters

 copying objects in, 427 - 429

 definition of, 492

 explained, 48 - 49

 synthesizing, 133 - 135 , 202 - 203

 setTo:over:, 137 - 139

 setWithCapacity:, 370

 setWithObjects:, 369 - 370

 sortedArrayUsing Selector:, 358

 sortedArrayUsingComparator:, 357- 358

 sortUsingComparator:, 357 - 358

 sortUsingSelector:, 355 - 358

 string, 332

 stringByAppendingPathComponent:,
 391- 392

 stringByAppendingPathExtension:, 392

 stringByAppendingString:, 321

 stringByDeletingLastPathComponent,
 392

 stringByDeletingPathExtension, 392

 stringByExpandingTildeInPath, 392

 stringByResolvingSymlinksInPath, 392

 stringByStandardizingPath, 392

 stringWithCapacity:, 333

 stringWithContentsOfFile:, 332 , 433

 stringWithContentsOfURL:, 332

 stringWithFormat:, 319 , 332

 stringWithString:, 329 , 332 , 424

 substringFromIndex:, 325 , 332

 substringToIndex:, 325 , 332

 substringWithRange:, 325 , 332

 syntax, 28 - 29

 truncateFileAtOffset:, 398

522 methods

 unarchiveObjectWithFile:, 435

 union:, 369

 unionSet:, 370

 uppercaseString, 332

 URLWithString:, 403

 UTF8String, 332

 writeData:, 398

 writeToFile:, 358

 writeToFile:atomically:, 431 - 432

 minimum function, 265 - 266

 minus sign (-), 35 , 54 , 58 - 60

 minusSet: method, 370

 modulus (%) operator, 60 - 61

 moveItemAtPath: method, 378 , 385

 moving files, 382

 multidimensional arrays, 256 - 258

 multiple arguments to methods, 137 - 143

 multiplication (*) operator, 54 - 58

 MusicCollection class, 374 - 375

 mutable objects

 definition of, 491

 NSMutableArray class

 defining, 331 - 337

 methods, 358

 NSMutableDictionary class

 defining, 361 - 363

 enumerating, 364 - 365

 methods, 365

 NSMutableSet class, 367 - 370

 NSMutableString class, 326 - 330 , 333 - 331

 mutableCopy method, 419 - 421

 mutableCopyWithZone: method, 425

 myFraction variable, 39

 N
 \n (newline character), 22

 names

 assigning to data types, 211 - 212

 class names, 34 - 35

 defined names, 237 - 244

 native applications, 2

 nested for loops, 81 - 83

 nested if statements, 104 - 105

 new method, 49

 newline character, 22

 NeXT Software, 1

 NEXTSTEP, 1

 nib files, 462

 nil objects, 491

 not equal to (!=) operator, 74

 notification, 491

 NSArray class, 311

 archiving, 431 - 433

 defining, 331 - 337

 methods, 358

 NSBundle class, 404 - 405

 NSCopying protocol, 230 - 231

 <NSCopying> protocol, 424 - 426

 NSCountedSet class, 370

 NSData class, 383 - 384 , 431 - 433 , 442 - 445

 NSDate class, archiving, 431 - 433

 NSDictionary class

 archiving, 431 - 433

 defining, 361 - 363

 enumerating, 364 - 365

 methods, 365

 NSFileHandle class, 377 , 398 - 403

523objects

 NSFileManager class, 377

 directory enumeration, 387 - 389

 directory management, 384 - 387

 management, 378 - 383

 NSFullUserName function, 393

 NSHomeDirectory function, 392- 393

 NSHomeDirectoryForUser function, 393

 NSIndexSet class, 371 - 372

 NSInteger, 313

 NSKeyedArchiver class, 434 - 435

 NSLog routine, 317 - 318

 displaying text with, 21 - 22

 displaying variable values with, 22 - 25

 NSMutableArray class

 defining, 331 - 337

 methods, 358

 NSMutableDictionary class

 defining, 361 - 363

 enumerating, 364 - 365

 methods, 365

 NSMutableSet class, 367 - 370

 NSMutableString class, 326 - 330 , 333 - 331

 NSNumber class, 311 - 317 , 431 - 433

 NSObject, 491

 NSPathUtilities.h, 389 - 392

 NSProcessInfo class, 394 - 398

 NSSearchPathForDirectoriesInDomains
function, 393

 NSSet class, 367 - 370

 NSString class

 archiving, 431 - 433

 description method, 318 - 319

 explained, 317

 mutable versus immutable objects,
319 - 326

 NSLog function, 317 - 318

 NSTemporaryDirectory function, 391- 393

 NSURL class, 403 - 404

 NSUserName function, 393

 NSValue class, 360 - 361

 null character, 491

 null pointers, 491

 null statement, 298 - 299

 numbers

 determining whether even or odd,
93 - 98

 Fibonacci numbers, generating, 253 - 254

 integers

 arithmetic, 58 - 60

 calculating absolute value of, 94

 conversions, 61 - 63

 int data type, 20 , 51 - 52

 integer and floating-point conver-
sions, 61 - 63

 number objects, 311 - 317

 prime numbers, generating, 119 - 123

 reversing digits of, 89 - 90

 triangular numbers, generating, 259 - 261

 numberWithInt: method, 315

 numberWithInteger: method, 315

 numerator method, 46 - 48 , 71 - 82

 O
 object variables, 303

 objectAtIndex: method, 334 , 358

 objectEnumerator method, 365 , 370

 objectForKey: method, 363- 365

 object-oriented programming, 491

 objects

 allocation, 149 - 151 , 162 - 163

 archiving

 copying objects with, 446 - 447

 definition of, 431 , 487

524 objects

 encoding/decoding methods,
435 - 442

 with NSData, 442 - 445

 with NSKeyedArchiver, 434 - 435

 with XML property lists, 431 - 433

 array objects

 address book example. See address
book program

 defining, 331 - 337

 class objects, 488

 composite objects, 234 - 235

 copying

 with archiver, 446 - 447

 copy method, 419 - 421

 deep copying, 422 - 424 , 446 - 447

 mutableCopy method, 419 - 421

 <NSCopying> protocol, 424 - 426

 in setter/getter methods, 427 - 429

 shallow copying, 422 - 424

 definition of, 488 , 491

 dictionary objects

 creating, 361 - 363

 enumerating, 364 - 365

 NSDictionary methods, 365

 NSMutableDictionary methods, 365

 distributed objects, 489

 explained, 27 - 28

 immutable objects

 definition of, 490

 immutable strings, 319 - 326

 initialization, 197 - 200

 mutable objects, 326 - 330 , 491

 nil objects, 491

 NSObject, 491

 number objects, 311 - 317

 returning from methods, 149 - 151

 root objects, 492

 set objects

 NSCountedSet class, 370

 NSIndexSet, 371 - 372

 NSMutableSet, 367 - 370

 NSSet, 367 - 370

 string objects

 comparing, 322

 defining, 317 - 318

 description method, 318 - 319

 explained, 317

 immutable strings, 319 - 326

 joining, 321

 mutable strings, 326 - 330

 NSLog function, 317 - 318

 NSMutableString methods, 333 - 331

 NSString methods, 332 - 331

 substrings, 323 - 326

 testing equality of, 322

 octal (base 8) notation, 54

 offsetInFile method, 398

 ones complement (~) operator, 217 - 219

 OOP (object-oriented programming), 491

 OpenGL Game application template, 457

 OPENSTEP, 1

 operatingSystem method, 396

 operatingSystemName method, 396

 operatingSystemVersionString method, 396

 operators

 address (&), 278

 arithmetic operators

 binary arithmetic operators, 54 - 58

 integer and floating-point conver-
sions, 61 - 63

 modulus (%) operator, 60 - 61

 type cast operator, 63 - 64

 unary minus (-) operator, 58 - 60

 assignment operators, 64 - 65 , 74

525preprocessor

 bit operators

 binary, decimal, and hexadecimal
equivalents, 214

 bitwise AND (&), 215 - 216

 bitwise OR (|), 216 - 217

 bitwise XOR (^), 217

 left-shift (<<) operator, 219

 ones complement (~) operator,
217 - 219

 right-shift (>>) operator, 219 - 220

 table of, 214

 comma (,), 299

 conditional operator, 123 - 124

 decrement (--), 78 , 291 - 294

 dot (.), 135 - 136

 increment (++), 78 , 291 - 294

 indirection (*), 278

 logical AND (&&), 101

 logical negation (!), 121

 logical OR (||), 101

 relational operators, 74 - 75

 sizeof, 299 - 300

 @optional directive, 231

 OR operator (|), 216 - 217

 OS X, 1

 overriding methods, 171 - 175 , 198

 P
 @package directive, 201

 Page-Based Application template, 457

 parent classes, 153 - 155 , 491

 pathComponents method, 392

 pathExtension method, 391- 392

 paths

 basic path operations, 389 - 392

 path utility functions, 393

 path utility methods, 392 - 394

 pathsForResourcesOfType: method, 405

 pathWithComponents: method, 392

 performSelector: method, 187- 189

 PI constant, 238 - 239

 Playlist class, 374 - 375

 plists. See property lists

 plus sign (+), 54 - 58

 pointers

 to arrays, 284 - 294

 increment and decrement operators,
 291 - 294

 pointers to character strings,
289 - 291

 valuesPtr example, 284 - 288

 to character strings, 289 - 291

 to data types, 277 - 281

 definition of, 491

 to functions, 295 - 296

 and memory addresses, 296 - 297

 object variables as, 303

 operations, 294 - 295

 passing to methods/functions, 283 - 284

 to structures, 281 - 283

 polymorphism, 179 - 182 , 491

 pound sign (#), 237

 precedence

 arithmetic operators, 54 - 58

 relational operators, 74

 preprocessor

 conditional compilation, 245 - 248

 definition of, 491

 explained, 237

 statements

 #define, 237 - 244

 #elif, 245 - 247

 #else, 245 - 247

 #endif, 245 - 247

526 preprocessor

 #if, 245 - 247

 #ifdef, 245 - 247

 #ifndef, 245 - 247

 #import, 244 - 245

 #undef, 245 - 247

 prime numbers, generating, 119 - 123

 print method, 38 , 41 , 369

 @private directive, 201

 procedural programming languages, 491

 processDigit: method, 476

 processIdentifier method, 396

 processInfo method, 396

 processName method, 396

 "Programming is fun!" sample program

 code listings, 7 , 18 - 22

 compiling and running, 7 - 8

 with Terminal, 16 - 18

 with Xcode, 8 - 15

 explained, 18 - 22

 programs, compiling and running, 7 - 8 . See
also iOS applications

 with Terminal, 16 - 18

 with Xcode, 8 - 15

 projects (Xcode) . See also iOS applications

 adding classes to, 127 - 130

 application templates, 457

 creating, 15

 debugging, 14 - 15

 filename extensions, 12

 first iPhone application

 AppDelegate class, 460

 creating project, 456 - 458

 interface design, 462 - 469

 overview, 453 - 456

 ViewController class, 460 - 462

 fraction calculator

 Calculator class, 480 - 482

 creating project, 471

 Fraction class, 477 - 480

 overview, 469 - 470

 summary, 482 - 484

 user interface design, 482

 ViewController class, 471 - 477

 FractionTest

 Fraction.h interface file, 130 - 131

 Fraction.m implementation file,
 131 - 132

 main.m, 127 - 128

 output, 133

 main.m, 13

 project window, 10 - 11

 running, 14

 starting, 8 - 11

 properties

 accessing with dot operator, 135 - 136

 property declarations, 492

 property lists. See property lists

 property declarations, 492

 @property directive, 133

 property lists

 archiving with, 431 - 433

 definition of, 492

 @protected directive, 201

 @protocol directive, 232

 protocols

 defining, 230 - 233

 definition of, 492

 delegation, 233

 explained, 230

 formal protocols, 489

 informal protocols, 233 - 234 , 490

 NSCopying, 230 - 231

 <NSCopying> protocol, 424 - 426

 @public directive, 201

527runtime

 Q
 qsort function, 296

 qualifiers, 51 - 53

 long, 53 - 54

 short, 54

 unsigned, 54

 question mark (?), 123

 Quick Help pane, 309 - 310

 R
 rangeOfString: method , 329

 readDataToEndOfFile method, 398

 reading files to buffer, 383 - 384

 receivers, 492

 Rectangle class, 158 - 171

 reduce method, 143 - 144

 reference counting

 ARC (Automatic Reference Counting)

 @autoreleasepool blocks, 417 - 418

 explained, 415

 with non-ARC compiled code, 418

 strong variables, 415 - 416

 weak variables, 416 - 417

 manual reference counting

 autorelease pool, 410 - 412

 event loop and memory allocation,
 135 - 137

 explained, 409 - 410

 manual memory management rules,
 414 - 415

 relational operators, 74 - 75

 release message, 409

 removeAllObjects method, 365 , 370

 removeCard: method, 351 - 355

 removeItemAtPath: method, 378 , 385

 removeObject: method, 358 , 370

 removeObjectAtIndex: method, 358

 removeObjectForKey: method, 365

 removing

 address book entries, 351 - 355

 files from directories, 382

 replaceCharactersInRange: method, 333

 replaceObject: method, 424

 replaceObjectAtIndex: method, 358

 replaceOccurrencesOfString:withString:optio
ns:range: method, 330 , 333

 reserved words. See keywords; statements

 respondsToSelector: method, 187- 189

 retain count, 492 . See also reference
counting

 retain message, 409

 return types, declaring, 263 - 265

 return values

 function return values, 261 - 265

 method return values, 36

 returning objects from methods, 149 - 151

 reversing digits of numbers, 89 - 90

 right-shift (>>) operator, 219 - 220

 Ritchie, Dennis, 1

 root classes, 153

 root objects, 492

 routines

 NSLog

 displaying text with, 21 - 22

 displaying variable values with,
22 - 25

 scanf, 79 - 83

 running programs, 7 - 8

 with Terminal, 16 - 18

 with Xcode, 8 - 15

 runtime, 184 - 185 , 492

528 scanf routine

 S
 scanf routine, 79 - 83

 scope

 global variables, 203 - 205

 instance variables, 200 - 203

 static variables, 205 - 207

 SDK (software development kit). See soft-
ware development kit (SDK)

 seekToEndOfFile method, 398

 seekToFileOffset: method, 398

 @selector directive, 188 - 189

 selectors, 492

 self keyword, 148 - 149

 self variable, 492

 semicolon (;), 84

 set collection, 492

 set:: method, 139

 set objects

 NSCountedSet class, 370

 NSIndexSet, 371 - 372

 NSMutableSet, 367 - 370

 NSSet, 367 - 370

 setAttributesOfItemAtPath: method, 378

 setDenominator: method, 39- 41

 setEmail: method, 340

 setName: method, 340

 setName:andEmail:, 343

 setNumerator: method, 39- 41

 setNumerator:andDenominator: method,
 137

 setObject: method, 365

 setProcessName: method, 396

 setString: method, 330 , 333

 setters

 copying objects in, 427 - 429

 definition of, 492

 explained, 48 - 49

 synthesizing, 133 - 135 , 202 - 203

 setTo:over: method, 137 - 139

 setWithCapacity: method, 370

 setWithObjects: method, 369- 370

 shallow copying, 422 - 424

 short qualifier, 54

 sign function, implementing, 106 - 107

 Single View Application template, 457

 size of data types, determining, 299 - 300

 sizeof operator, 299 - 300

 slash (/), 54 - 58

 software development kit (SDK), 2 , 453

 Song class, 374 - 375

 sortedArrayUsing Selector: method, 358

 sortedArrayUsingComparator: method,
357- 358

 sorting address book entries, 355 - 358

 sortUsingComparator: method, 357 - 358

 sortUsingSelector: method, 355 - 358

 Square class, 160 - 162 , 234 - 235

 SQUARE macro, 242 - 243

 starting Xcode projects, 8 - 11

 statement blocks. See blocks

 statements

 break, 91

 continue, 91

 definition of, 492

 do, 89 - 90

 for

 execution order, 75

 explained, 72 - 79

 infinite loops, 84

 keyboard input, 79 - 83

 nested loops, 81 - 83

529structures

 syntax, 73 - 75

 variants, 83 - 84

 goto, 298

 if

 compound relational tests, 101 - 104

 else if construct, 105 - 115

 explained, 93 - 98

 if-else construct, 98 - 101

 nested if statements, 104 - 105

 null, 298 - 299

 preprocessor statements

 #define, 237 - 244

 #elif, 245 - 247

 #else, 245 - 247

 #endif, 245 - 247

 #if, 245 - 247

 #ifdef, 245 - 247

 #ifndef, 245 - 247

 #import, 244 - 245

 #undef, 245 - 247

 switch, 115 - 118

 typedef, 211 - 212 , 274

 while, 84 - 89

 static analyzer (Xcode), 15

 static functions, 492

 static keyword, 144 - 148

 static local variables, 261

 static typing, 185 - 186 , 492

 static variables, 144 - 148

 definition of, 492

 scope, 205 - 207

 string method, 332

 string objects

 character strings, 488

 comparing, 322

 constant character strings, 489

 defining, 317 - 318

 definition of, 488

 description method, 318 - 319

 explained, 317

 immutable strings, 319 - 326

 joining, 321

 limitations, 297

 mutable strings, 326 - 330

 NSLog function, 317 - 318

 NSMutableString methods, 333 - 331

 NSString methods, 332 - 331

 pointers to, 289 - 291

 substrings, 323 - 326

 testing equality of, 322

 stringByAppendingPathComponent: method,
 391 - 392

 stringByAppendingPathExtension: method,
 392

 stringByAppendingString: method, 321

 stringByDeletingLastPathComponent meth-
od, 392

 stringByDeletingPathExtension method, 392

 stringByExpandingTildeInPath method, 392

 stringByResolvingSymlinksInPath method,
 392

 stringByStandardizingPath method, 392

 stringWithCapacity: method, 333

 stringWithContentsOfFile: method, 332 , 433

 stringWithContentsOfURL: method, 332

 stringWithFormat: method, 319 , 332

 stringWithString: method, 329 , 332 , 424

 _ _strong keyword, 416

 strong variables, 415 - 416

 structures

 date

 defining, 270 - 273

 initialization, 273 - 274

530 structures

 defining, 270 - 276

 definition of, 492

 initialization, 273 - 274

 instance variables stored in, 303

 limitations, 297

 pointers to, 281 - 283

 structures within structures, 274 - 276

 subclasses, 153 - 155

 concrete subclasses, 488

 definition of, 492

 substringFromIndex: method, 325 , 332

 substrings, 323 - 326

 substringToIndex: method, 325 , 332

 substringWithRange: method, 325 , 332

 subtraction (-) operator, 54

 super keyword, 492

 superclasses, 153 - 155 , 492

 support

 classroomM.com/objective-c, 5

 Foundation framework documentation,
 307 - 310

 Mac OS X reference library, 310

 Quick Help panel, 309 - 310

 switch statement, 115 - 118

 @synthesize directive, 134 , 202

 synthesized accessors, 133 - 135 , 202 - 203 ,
 341 - 344 , 493

 system files, 20

 T
 Tabbed Application template, 457

 tables, dispatch tables, 296

 templates, application templates, 457

 Terminal, compiling programs with, 16 - 18

 text, displaying with NSLog routine, 21 - 22

 @throw directive, 194

 tilde (~), 217 - 219 , 378

 tmp directory, 393

 TO_UPPER macro, 244

 triangular numbers

 calculating, 71 - 82

 generating, 259 - 261

 triangularNumber program, 71 - 72

 truncateFileAtOffset: method, 398

 @try blocks, 192 - 194

 TWO_PI constant, 239 - 241

 two-dimensional arrays, 256 - 258

 type cast operator, 63 - 64

 typedef statement, 211 - 212 , 274

 types. See data types

 U
 UIKit, 493

 unarchiveObjectWithFile: method, 435

 unary minus (-) operator, 58 - 60

 #undef statement, 245 - 247

 underscore (_), 34 , 202

 unichar characters, 317

 Unicode characters, 493

 union: method, 369

 unions, 493

 unionSet: method, 370

 unsigned qualifier, 54

 uppercaseString method, 332

 URL addresses, reading files from, 403 - 404

 URLWithString: method, 403

 UTF8String method, 332

 Utility Application template, 457

531Xcode

 V
 values

 displaying, 22 - 25

 return values

 function return values, 261 - 265

 method return values, 36

 valuesPtr pointer, 284 - 288

 variables

 automatic variables, 488

 Boolean variables, 118 - 123

 global variables

 definition of, 490

 scope, 203 - 205

 instance variables, 38

 accessing, 45 - 49

 definition of, 490

 scope, 200 - 203

 storing in structures, 303

 isa, 490

 local variables

 definition of, 491

 explained, 143 - 144

 in functions, 259 - 261

 method arguments, 144

 static variables, 144 - 148

 myFraction, 39

 object variables, 303

 scope

 global variables, 203 - 205

 instance variables, 200 - 203

 static variables, 205 - 207

 self, 492

 static variables

 definition of, 492

 scope, 205 - 207

 strong variables, 415 - 416

 values, displaying, 22 - 25

 weak variables, 416 - 417

 ViewController class

 first iPhone application, 460 - 462

 fraction calculator, 471 - 477

 @implementation section, 473 - 476

 @interface section, 472

 W
 _ _weak keyword, 417

 weak variables, 416 - 417

 Web files, reading with NSURL class,
403 - 404

 Web-based applications, 2

 while statement, 84 - 89

 writeData: method, 398

 writeToFile: method, 358

 writeToFile:atomically: method, 431 - 432

 writing files from buffer, 383 - 384

 X-Y-Z
 Xcode, 8 - 15

 Command Line Tools, 16

 definition of, 493

 downloading, 8

 projects

 adding classes to, 127 - 130

 creating, 15

 debugging, 14 - 15

 filename extensions, 12

 FractionTest, 127 - 133

 main.m, 13

 project window, 10 - 11

 running, 14

 starting, 8 - 11

 static analyzer, 15

532 xib files

 xib files, 462

 XML (Extensible Markup Language)

 definition of, 493

 XML property lists, archiving with,
 431 - 433

 XYPoint class, 162 - 165

 zones, 493

	Contents
	3 Classes, Objects, and Methods
	What Is an Object, Anyway?
	Instances and Methods
	An Objective-C Class for Working with Fractions
	The @interface Section
	The @implementation Section
	The program Section
	Accessing Instance Variables and Data Encapsulation
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

