
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321886736
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321886736
https://plusone.google.com/share?url=http://www.informit.com/title/9780321886736
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321886736
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321886736/Free-Sample-Chapter

Praise for Android User Interface Design

 “Android User Interface Design is a truly excellent book, written by one of the most experienced
and knowledgeable Android developers. This is a very practical, highly readable guide and
a great how-to resource for every Android developer. Each chapter reveals a clear and deep
understanding of UI design. I highly recommend this book to anyone wishing to develop
Android apps with superior UI.”

—Kyungil Kim

Software Engineer, Facebook

“I recommend this book for all Android developers who work alone and want to give a
professional look to their apps. The content of the book is excellent and covers all aspects
needed to understand how to design Android apps that stand out.”

—Gonzalo Benoffi

CEO, Coffee and Cookies, Android Development

“Design was never part of a developer’s job until mobile app development started; now it’s a
must. This book gives a simple yet effective way to design your apps. It’s easy for beginners
and informative for experienced developers as well. This is the best book I could ever refer to
anyone who is in Android development. A one-time read of this book covers the experience
you might gain from three years of learning development. I am amazed to see instructions
on how to design starting from wireframes, which is something no other book has provided
clear enough explanation of. (Some don’t even cover it.) I really love it. Thanks to Ian for this
wonderful contribution to the Android developer community. Best, simple, and effective!”

—Chakradhar Gavirineni

Android Application Developer, Adeptpros IT Solutions Pvt Ltd.

“Ian’s book is an invaluable resource for everything there is to know about designing, creating
layouts, and rendering Android applications. The ‘Common Task Reference’ appendix is an
excellent addition that makes this book a must-have. Make sure to keep this one within arm’s
reach of your desk.”

—Josh Schumacher

Software Engineer, HasOffers

“From the first few pages, this book provides a wealth of tips, tricks, and techniques for
developing Android user interfaces. If you are grappling with all the various view types, then
read this book—it really helps cement when and why you should include the various UI
components to great effect (with worked examples!). Well worth a read by anyone looking for
inspiration to improve their user interface into a great user experience.”

—Richard Sey

PassBx Developers

 Android™ User
Interface Design

Turning Ideas and Sketches
into Beautifully Designed Apps

 Ian G. Clifton

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U.S. Corporate and Government Sales
(800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

 Visit us on the Web: informit.com/aw

 Library of Congress Cataloging-in-Publication Data is on file.

 Copyright © 2013 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

 Google is a registered trademark of Google, Inc. Android, Gmail, Google Currents, Google
Maps, Google Play, and Nexus are trademarks of Google, Inc. Amazon and Kindle Fire are
registered trademarks of Amazon.com, Inc. Java is a registered trademark of Oracle and/or
its affiliates. Other names may be trademarks of their respective owners.

 ISBN-13: 978-0-321-88673-6
 ISBN-10: 0-321-88673-9

 Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

 First printing: May 2013

 Editor-in-Chief
Mark Taub

 Acquisitions Editor
Laura Lewin

 Development Editor
Songlin Qiu

 Managing Editor
Kristy Hart

 Project Editor
Betsy Gratner

 Copy Editor
Bart Reed

 Indexer
Lisa Stumpf

 Proofreader
Jess DeGabriele

 Technical Reviewers
 Joseph Annuzzi
Cameron Banga
Joshua Jamison

 Editorial Assistant
Olivia Basegio

 Cover Designer
Chuti Prasertsith

 Compositor
Nonie Ratcliff

 Dedicated to my family

This page intentionally left blank

Contents

 Introduction. .1

 Part I The Basics of Android User Interface

 1 Android UI Overview .5
A Brief History of Android Design. . 6

The Android Design Website . 7

Core Principles. . 8

Standard Components . 16

Supporting Multiple Devices . 19

Notable Changes . 20

Summary . 21

 2 Understanding Views—The UI Building Blocks 23
What Is a View? . 24

Displaying Text . 29

Displaying Images . 33

Views for Gathering User Input . 36

Other Notable Views. . 40

Listening to Events . 42

Summary . 44

 3 Creating Full Layouts with View Groups
and Fragments . 45
ViewGroup . 46

Fragments . 57

Summary . 60

 4 Adding App Graphics and Resources 61
Introduction to Resources in Android 62

Resource Qualifiers. . 62

viii CONTENTS

Understanding Density . 67

Supported Image Files . 68

Nine-Patch Images . 69

XML Drawables . 71

Other Resources . 81

Summary . 84

 Part II The Full Design and Development Process

 5 Starting a New App . 87
Defining Goals. . 88

High-Level Flow. . 91

Wireframes . 94

Summary . 106

 6 Developing the App Foundation. 107
Organizing into Activities and Fragments 108

Breaking Wireframes into Views .116

Creating Themes and Styles . 131

Summary . 132

 7 Finalizing the Design . 133
Wireframes and Graphical Design 134

App Visual Style and Personality 134

Text Considerations . 143

Standard Icons. 148

Dynamic Content Considerations. 149

Navigation and Transitions . 150

Error Cases . 150

Summary . 150

 CONTENTS ix

 8 Applying the Design . 153
Working with the Designer. 154

Slicing the Graphics Assets . 155

Updating Themes and Styles . 160

Breaking Comps into Views . 161

Improving Efficiency. 166

Basic Testing Across Device Types 174

Summary . 175

 9 Further Improving the App 177
Hierarchy Viewer . 178

Animations . 184

Custom Fonts . 194

Summary . 198

 Part III Advanced Topics for Android User Interfaces

 10 How to Handle Common Components. 199
Splash Screen . 200

Loading Indication . 210

Complex TextViews . 212

Autoloading ListViews . 217

Summary . 222

 11 Combining Views for Custom Components 223
When to Combine Views . 224

Combining Views to Simplify Working with Them 224

Implementing a Multibutton Toggle. 236

Summary . 255

x CONTENTS

 12 Developing Fully Custom Views 257
General Concepts. 258

Developing the Custom View . 263

Summary . 298

 13 Working with the Canvas and Advanced Drawing . . . 299
PorterDuff Image Compositing . 300

Creating Custom Drawables . 319

Summary . 324

 Part IV Helpful Guides and Reference

 A Google Play Assets . 325
Application Description. 326

The Change Log. 327

Application Icon. 327

Screenshots . 328

Feature Graphic . 329

Promotional Graphic. 334

Video (YouTube). 334

Promoting Your App . 335

 B Amazon Appstore Assets 337
Overview . 338

The Application Icon. 338

Screenshots . 339

Promotional Graphic. 339

Videos . 340

 C Common Task Reference. 343
Indicating Loading in the Action Bar. 344

Dismissing the Software Keyboard. 350

Using Full Screen Mode . 351

Keeping the Screen On . 352

Determining the Device’s Physical Screen Size 352

Determining the Device DPI . 353

Checking for a Network Connection. 354

Checking if the Current Thread Is the UI Thread 354

Custom View Attributes. 355

 Index . 363

This page intentionally left blank

 PREFACE

 Whether you have been working with the Android SDK since before the first device was
released in September of 2008 or you just finished your first “Hello, World” app, you are likely
aware of the incredible pace at which Android has been developed. The operating system itself
has changed and matured, and the apps have followed suit. That means it is more challeng-
ing than ever to stand out. It’s no longer enough to create a functional user interface that’s
“good enough.” Now there is enough competition that apps with poor UI and apps that are
half-hearted ports from other operating systems are outright rejected by users. Google has
shown their commitment to design with the major UI and usability fixes in Android 4.0, Ice
Cream Sandwich, and users have learned to expect more from their devices and the apps they
download. With the additional work of “Project Butter” in Android 4.1 and continued improve-
ments in Android 4.2, it has become more important than ever to ensure your app is smooth
and efficient.

 Design has many purposes, but two of the most important are usability and visual appeal. You
want brand-new users to be able to jump into your app and get started without any effort
because mobile users are more impatient than users of nearly any other platform. Users need
to know exactly what they can interact with, and they need to be able to do so in a hurry while
distracted. That also means you have to be mindful of what platform conventions are in order
to take advantage of learned behavior.

 You also want your app to stand out because visual appeal can get users excited about your
app and can strengthen your brand. It gives a sense of quality when done right and can imme-
diately lead to a larger user base when your users show the app off to their friends. Comparing
your app to a car, you can think of design as the visual appearance and usability as the controls.
There is a good bit of flexibility with the appearance of a car, limited only by practicality and
the need for it to be usable to the potential owner. If you were to get into a car and not have
a steering wheel, you would immediately start looking around and wonder, “How do I control
this thing?” The same is true of your app. If the user opens it up and is immediately confused by
the controls, your app has failed the most basic usability test.

 If you have picked up this book, I probably do not need to go on and on about how important
design is. You get it. You want to make the commitment of making beautiful apps.

 This book primarily focuses on Android from a developer’s perspective, but it also has a large
amount of design sensibility built in. This is an attempt to both bridge the gap between
designer and developer and to teach you how to implement great designs. We are not here to

focus extensively on color theory or Photoshop techniques; we are here to understand what
goes into designing an app and how to actually make that app come alive. When you are done
with this book, you will be able to communicate your needs and feedback with designers and
even do some design on your own.

 This book will serve as a tutorial for the entire design and implementation process as well as
a handy reference that you can keep using again and again. You will understand how to talk
with designers and developers alike in order to make the best applications possible. You will be
able to make apps that are visually appealing while still easy to change when those last-minute
design requests inevitably come in.

 Ultimately, designers and developers both want their apps to be amazing, and I am excited to
teach you how to make that happen.

 —Ian G. Clifton

 ACKNOWLEDGMENTS

 Despite having been writing fervently since I was barely old enough to hold a pencil, this book
would not have been possible without the help of many individuals. I’d like to thank Execu-
tive Editor, Laura Lewin, who kept me on track despite the fact that I am perhaps the worst
author to ever estimate chapter sizes and level of effort. Olivia Basegio, the Editorial Assistant,
kept track of all the moving pieces despite that some days they moved slowly and others they
moved at lightning speed. Songlin Qiu was the Development Editor for this book and managed
to make sense out of my 4 a.m. draft chapter postings so that the final chapters could be much
improved. I am very appreciative of all the work by the technical reviewers; having done that
job myself in the past, I know how much work it can be, so thanks go out to Joseph Annuzzi,
Cameron Banga, and Joshua Jamison.

 Writing is certainly a full-time job, so balancing it among a full-time job at A.R.O., family (espe-
cially during the holidays), and several other projects was quite the challenge. Special thanks
goes out to Andy Hickl at A.R.O. for his flexibility and support of my book, along with all my
other friends and coworkers for not raising pitchforks when I had to work from home to cut out
commute time for this book or even take time off to get chapters done on schedule.

 Of course, I have to thank my family for their support. My parents told me I could do anything
while growing up, and apparently I misunderstood that to mean I had to do everything . I have
never stopped pushing myself to learn more and accomplish more than I ever thought I would,
and I am grateful for their ability to believe in me.

 ABOUT THE AUTHOR

 Ian G. Clifton is the Director of User Experience and lead Android developer at A.R.O. in Seattle,
where he develops Saga, an Android and iOS app that learns about you in order to let you live
a better life with minimal interaction. He has worked with many designers in the course of his
career and has developed several well-known Android apps, such as CNET News, CBS News,
Survivor, Big Brother, and Rick Steves’ Audio Europe.

 Ian’s love of technology, art, and user experience has led him along a variety of paths. Besides
Android development, he has done platform, web, and desktop development. He served in the
United States Air Force as a Satellite, Wideband, and Telemetry Systems Journeyman and has
also created quite a bit of art with pencil, brush, and camera.

 You can follow Ian G. Clifton on Twitter at http://twitter.com/IanGClifton and see his thoughts
about mobile development on his blog at http://blog.iangclifton.com . He also published
a video series called “The Essentials of Android Application Development,” available at
 http://my.safaribooksonline.com/video/programming/android/9780132996594 .

http://twitter.com/IanGClifton
http://blog.iangclifton.com
http://my.safaribooksonline.com/video/programming/android/9780132996594

 INTRODUCTION

 Audience of This Book
 This book is intended primarily for Android developers who want to better understand user interfaces in
Android, but it also has a strong design focus, so designers can benefit from it as well. In order to focus
on the important topics of Android user interface design, this book makes the assumption that you
already have a basic understanding of Android. For example, if you’re looking to learn about the develop-
ment side, this book makes the assumption that you’ve at least made a “Hello, World” Android app and
don’t need help setting up your computer for development (if that’s not the case, the Android developer
site is a good place to start: http://developer.android.com/training/basics/firstapp/index.html). If you’re a
designer, you may find some of the code examples intimidating, but the book is written to give enough
information to be useful for designers as well. For example, Chapter 13 , “Working with the Canvas and
Advanced Drawing,” covers detailed examples of concepts such as PorterDuff compositing. Although
most designers haven’t heard of these concepts and don’t care about the mathematical implementa-
tions, they have usually encountered them in other software such as Photoshop, where they are more
simply referred to as blending modes (for example, “multiply” and “lighten”). By looking at the sample
images and the intro details, designers can understand the capabilities of Android and point developers
to the specific details.

 Organization of This Book
 This book is organized into four parts. Part I, “The Basics of Android User Interface,” provides an overview
of the Android UI and trends before diving into the specific classes used to create an interface in Android.
It also covers the use of graphics and resources. Part II, “The Full Design and Development Process,”
mirrors the stages of app development, starting with just ideas and goals, working through wireframes
and prototypes, and developing complete apps that include efficient layouts, animations, and more.
Part III, “Advanced Topics for Android User Interfaces,” explores making apps more useful by creating
automatically updating ListViews, custom components that combine views, fully custom views, and even
advanced techniques such as image compositing. Finally, Part IV, “Helpful Guides and Reference,” con-
sists of three appendixes: one that covers Google Play assets, one that covers Amazon Appstore assets,
and one that covers a variety of common UI-related tasks that are good to know but don’t necessarily fit
elsewhere (such as how to dim the onscreen navigation elements).

http://developer.android.com/training/basics/firstapp/index.html

2 INTRODUCTION

 The emphasis throughout is on implementation in simple and clear ways. You do not have to
worry about pounding your head against complex topics such as 3D matrix transformations in
OpenGL; instead, you will learn how to create smooth animations, add PorterDuff compositing
into your custom views, and efficiently work with touch events. The little math involved will be
broken down, making it so simple that you barely realize any math is involved. In addition, illus-
trations will make even the most complex examples clear, and every example will be practical.

 How to Use This Book
 This book starts with a very broad overview before going into more specific and more
advanced topics. As such, it is intended to be read in order, but it is also organized to make
reference as easy as possible. Even if you’re an advanced developer, it is a good idea to read
through all the chapters because of the wide range of material covered; however, you can also
jump directly to the topics that most interest you. For example, if you really want to focus on
creating your own custom views, you can jump right to Chapter 12 , “Developing Fully
Custom Views.”

 This Book’s Website
 You can find the source code for the examples used throughout this book at http://auidbook.
com and the publisher’s website at www.informit.com/title/9780321886736 . From there, you
can clone the entire repository, download a full ZIP file, and browse through individual files.

 Conventions Used in This Book
 This book uses typical conventions found in most programming-related books. Code terms
such as class names or keywords appear in monospace font . When a class is being referred to
specifically (for example, “Your class should extend the View class”), then it will be in mono-
space font. If it’s used more generally (for example, “When developing a view, don’t forget to
test on a real device”), then it will not be in a special font.

 Occasionally when a line of code is too long to fit on a printed line in the book, a code-
continuation arrow (➥) is used to mark the continuation.

 note

 Notes look like this and are intended to supplement the material in the book with
other information you may find useful.

http://auidbook.com
http://auidbook.com
http://www.informit.com/title/9780321886736

 CONVENTIONS USED IN THIS BOOK 3

 tip

 Tips look like this and give you advice on specific topics.

 warning

 Warnings look like this and are meant to bring to your attention potential issues
you may run into or things you should look out for.

This page intentionally left blank

 C H A P T E R 10

 HOW TO HANDLE

COMMON COMPONENTS

 A lot of different UI components are common

to apps. Splash screens and loading indicators,

for example, are very common but have several

different implementations. There are times when

you need to include complex styling for text or even

inline images, but do not want to create several

views. You may want to improve the user experience

by loading content just before the user needs it. In

this chapter, you will learn about these common app

components and the best way to develop them.

200 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 Splash Screen
 Splash screens are typically still images that fill the screen of a mobile device. On a desktop
computer, they can be full screen (such as for an operating system) or a portion of the screen
(for example, Photoshop, Eclipse, and so on). They give feedback that the system has responded
to the user’s action of opening the application. Splash screens can include loading indicators
but are often static images.

 Do You Really Need It?

 Looking back at the previous examples (operating systems, Photoshop, and Eclipse), you should
notice something in common with desktop uses of splash screens: The applications are large.
They need to show the user something while they are loading so that the user will not feel like
the computer has locked up or failed to respond to the user’s actions.

 Compared to massive applications such as Photoshop, your Android app is very small and
likely loading from flash storage rather than a slower, spinning disk. Many people also have
the mistaken conception that because iOS apps require splash screens that Android apps do,
too. Related, when an app already exists on iOS and is being built for Android afterward, many
people think that it should have a splash screen in both places to be consistent, but you should
play to the strengths of each platform and take advantage of how fast Android apps load. So,
does your app really need a splash screen?

 The correct answer to start with is no, until you have proven it a necessity. Splash screens are
often abused as a way of getting branding in front of the user, but they should only be used if
loading is going on in the background. An app that artificially displays a splash screen for a few
seconds is preventing the user from actually using the app, and that is the whole reason the
user has the app in the first place. Mobile apps are especially designed for quick, short uses.
You might have someone pushing for more heavy-handed branding, but that can ultimately
hurt the app and the brand itself if users find they have two wait a few extra seconds when they
open the app but they don’t have to wait with a competitor’s app.

 That said, there are genuine times when a splash screen is needed. If you cannot show any UI
until some loading takes place that could take a while, then it makes sense to show a splash
screen. A good example of this is a game running in OpenGL that needs to load several textures
into memory, not to mention sound files and other resources. Another example is an app that
has to load data from the Web. For the first run, the app might not have any content to display,
so it can show a splash screen while the web request is made, making sure to give an indication
of progress. For subsequent loads, the cached data can be displayed while the request is made.
If that cached data takes any significant amount of time, you might opt to show the splash
screen there too until the cached content has loaded, then have a smaller loading indicator that
shows the web request is still in progress. If you want to display a splash screen because your
layout takes a long time to display, you should first consider making your layout more efficient.

 SPLASH SCREEN 201

 Keep in mind that the user might want to take an action immediately and does not care about
the main content. You would not want the Google Play app to show a splash screen for five
seconds because it is loading the top content when you are actually just opening it to search for
a specific app.

 Ultimately, you should opt to skip on the splash screen unless you have developed the app and
it is absolutely necessary. When in doubt, it is not needed.

 Using a Fragment for a Splash Screen

 If you have determined that your app is one of the few that does truly require a splash
screen, one approach for displaying it is to use a Fragment . You immediately show it in your
 onCreate(Bundle) method, start your loading on a background thread, and replace the
 Fragment with your actual UI Fragment when your loading has completed. That sounds easy
enough, but what does it really look like?

 First, create the Fragment that you will use for the splash screen. You’ll probably have some
kind of branded background, but this example will just use a simple XML-defined gradient for
the background (see Listing 10.1).

 Listing 10.1 A Simple Gradient Saved as splash_screen_bg.xml

 <?xml version = "1.0" encoding = "utf-8" ?>
 <shape xmlns:android = "http://schemas.android.com/apk/res/android"
 android:shape = "rectangle" >

 <gradient
 android:angle = "90"
 android:centerColor = "#FF223333"
 android:endColor = "@android:color/black"
 android:startColor = "@android:color/black" />

 </shape>

 Next, create a layout for the splash screen. This example will use a really simple layout that just
shows the text “Loading” and a ProgressBar . Notice that the style is specifically set on the
 ProgressBar to make this a horizontal indicator (instead of an indeterminate indicator) in
 Listing 10.2 .

 Listing 10.2 The Splash Screen Layout

 <?xml version = "1.0" encoding = "utf-8" ?>
 <LinearLayout xmlns:android = "http://schemas.android.com/apk/res/
➥android"
 android:layout_width = "match_parent"

202 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 android:layout_height = "match_parent"
 android:background = "@drawable/splash_screen_bg"
 android:gravity = "center"
 android:orientation = "vertical" >

 <TextView
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:text = "@string/loading"
 android:textAppearance = "@android:style/
➥TextAppearance.Medium.Inverse" />

 <ProgressBar
 android:id = "@+id/progress_bar"
 style = "?android:attr/progressBarStyleHorizontal"
 android:layout_width = "200dp"
 android:layout_height = "wrap_content"
 android:max = "100" />

 </LinearLayout>

 The last piece of the splash screen portion is to create a simple Fragment that displays that lay-
out. The one requirement of this Fragment is that it has a way of updating the ProgressBar .
In this example, a simple setProgress(int) method is tied directly to the ProgressBar in
the layout. See Listing 10.3 for the full class and Figure 10.1 for what this will look like in use.

 Listing 10.3 The Fragment That Displays the Splash Screen

 public class SplashScreenFragment extends Fragment {

 private ProgressBar mProgressBar ;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
 ➥container, Bundle savedInstanceState) {
 final View view = inflater.inflate(R.layout. splash_screen ,
 ➥container, false);
 mProgressBar = (ProgressBar) view.findViewById
➥(R.id. progress_bar);
 return view;
 }

 /**
 * Sets the progress of the ProgressBar
 *
 * @param progress int the new progress between 0 and 100
 */

 SPLASH SCREEN 203

 public void setProgress(int progress) {
 mProgressBar .setProgress(progress);
 }
 }

 Figure 10.1 The simple splash screen with loading indicator

 Now that the easy part is done, you need to handle loading the data. Prior to the introduction
of the Fragment class, you would do this with a simple AsyncTask in your Activity that
you would save and restore during config changes (attaching and detaching the Activity to
avoid leaking the Context). This is actually easier now with a Fragment . All you have to do is
create a Fragment that lives outside of the Activity lifecycle and handles the loading. The
 Fragment does not have any UI because its sole purpose is to manage loading the data.

 Take a look at Listing 10.4 for a sample Fragment that loads data. First, it defines a public inter-
face that can be used by other classes to be notified of progress with loading the data. When
the Fragment is attached, it calls setRetainInstance(true) so that the Fragment is kept

204 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

across configuration changes. When the user rotates the device, slides out a keyboard, or
otherwise affects the device’s configuration, the Activity will be re-created but this
Fragment will continue to exist. It has simple methods to check if loading is complete and
to get the result of loading the data (which is stored as a Double for this example, but it could
be anything for your case). It can also set and remove the ProgressListener that is notified
of updates to the loading.

 The Fragment contains an AsyncTask that does all the hard work. In this case, the back-
ground method is combining some arbitrary square roots (to mimic real work) and causing the
 Thread to sleep for 50ms per iteration to create a delay similar to what you might see with real
use. This is where you would grab assets from the Web, load them from the disk, parse a com-
plex data structure, or do whatever you needed to finish before the app is ready.

 On completion, the AsyncTask stores the result, removes its own reference, and notifies the
 ProgressListener (if one is available).

 Listing 10.4 A Fragment That Handles Loading Data Asynchronously

 public class DataLoaderFragment extends Fragment {

 /**
 * Classes wishing to be notified of loading progress/completion
 * implement this.
 */
 public interface ProgressListener {
 /**
 * Notifies that the task has completed
 *
 * @param result Double result of the task
 */
 public void onCompletion(Double result);

 /**
 * Notifies of progress
 *
 * @param value int value from 0-100
 */
 public void onProgressUpdate(int value);
 }

 private ProgressListener mProgressListener ;
 private Double mResult = Double. NaN ;
 private LoadingTask mTask ;

 @Override
 public void onAttach(Activity activity) {
 super .onAttach(activity);

 SPLASH SCREEN 205

 // Keep this Fragment around even during config changes
 setRetainInstance(true);
 }

 /**
 * Returns the result or {@value Double#NaN}
 *
 * @return the result or {@value Double#NaN}
 */
 public Double getResult() {
 return mResult ;
 }

 /**
 * Returns true if a result has already been calculated
 *
 * @return true if a result has already been calculated
 * @see #getResult()
 */
 public boolean hasResult() {
 return !Double. isNaN (mResult);
 }

 /**
 * Removes the ProgressListener
 *
 * @see #setProgressListener(ProgressListener)
 */
 public void removeProgressListener() {
 mProgressListener = null ;
 }

 /**
 * Sets the ProgressListener to be notified of updates
 *
 * @param listener ProgressListener to notify
 * @see #removeProgressListener()
 */
 public void setProgressListener(ProgressListener listener) {
 mProgressListener = listener;
 }

 /**
 * Starts loading the data
 */
 public void startLoading() {
 mTask = new LoadingTask();
 mTask .execute();
 }

206 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 private class LoadingTask extends AsyncTask<Void, Integer,
➥Double>
{

 @Override
 protected Double doInBackground(Void... params) {
 double result = 0;
 for (int i = 0; i < 100; i++) {
 try {
 result += Math. sqrt (i);
 Thread. sleep (50);
 this .publishProgress(i);
 } catch (InterruptedException e) {
 return null ;
 }
 }
 return Double. valueOf (result);
 }

 @Override
 protected void onPostExecute(Double result) {
 mResult = result;
 mTask = null ;
 if (mProgressListener != null) {
 mProgressListener .onCompletion(mResult);
 }
 }

 @Override
 protected void onProgressUpdate(Integer... values) {
 if (mProgressListener != null) {
 mProgressListener .onProgressUpdate(values[0]);
 }
 }
 }
 }

 To tie everything together, you need an Activity . Listing 10.5 shows an example of such an
 Activity . It implements the ProgressListener from the DataLoaderFragment . When
the data is done loading, the Activity simply displays a TextView with the result (that’s
where you would show your actual app with the necessary data loaded in). When notified of
updates to loading progress, the Activity passes those on to the SplashScreenFragment
to update the ProgressBar .

 In onCreate(Bundle) , the Activity checks whether or not the DataLoaderFragment
exists by using a defined tag. If this is the first run, it won’t exist, so the DataLoaderFragment
is instantiated, the ProgressListener is set to the Activity , the DataLoaderFragment
starts loading, and the FragmentManager commits a FragmentTransaction to add the

 SPLASH SCREEN 207

 DataLoaderFragment (so it can be recovered later). If the user has rotated the device, the
 DataLoaderFragment will be found, so the app has to check whether or not the data has
already loaded. If it has, the method is done; otherwise, everything falls through to checking if
the SplashScreenFragment has been instantiated, creating it if it hasn’t.

 The onStop() method removes the Activity from the DataLoaderFragment so that your
 Fragment does not retain a Context reference and the app avoids handling the data result if
it’s not in the foreground. Similarly, onStart() checks if the data has been successfully loaded.

 The last method, checkCompletionStatus() , checks if the data has been loaded. If it has, it
will trigger onCompletion(Double) and remove the reference to the DataLoader
Fragment . By removing the reference, the Activity is able to ensure that the result
is only handled once (which is why onStart() checks if there is a reference to the
DataLoaderFragment before handling the result). Figure 10.2 shows what the app looks
like once it has finished loading the data.

 Listing 10.5 The Activity That Ties Everything Together

 public class MainActivity extends Activity implements
➥ProgressListener {

 private static final String TAG_DATA_LOADER = "dataLoader" ;
 private static final String TAG_SPLASH_SCREEN = "splashScreen" ;

 private DataLoaderFragment mDataLoaderFragment ;
 private SplashScreenFragment mSplashScreenFragment ;

 @Override
 public void onCompletion(Double result) {
 // For the sake of brevity, we just show a TextView with the
➥result
 TextView tv = new TextView(this);
 tv.setText(String. valueOf (result));
 setContentView(tv);
 mDataLoaderFragment = null ;
 }

 @Override
 public void onProgressUpdate(int progress) {
 mSplashScreenFragment .setProgress(progress);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super .onCreate(savedInstanceState);

 final FragmentManager fm = getFragmentManager();

208 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 mDataLoaderFragment = (DataLoaderFragment)
 ➥fm.findFragmentByTag(TAG_DATA_LOADER);
 if (mDataLoaderFragment == null) {
 mDataLoaderFragment = new DataLoaderFragment();
 mDataLoaderFragment .setProgressListener(this);
 mDataLoaderFragment .startLoading();
 fm.beginTransaction().add(mDataLoaderFragment ,
 ➥ TAG_DATA_LOADER).commit();
 } else {
 if (checkCompletionStatus()) {
 return ;
 }
 }

 // Show loading fragment
 mSplashScreenFragment = (SplashScreenFragment)
 ➥fm.findFragmentByTag(TAG_SPLASH_SCREEN);
 if (mSplashScreenFragment == null) {
 mSplashScreenFragment = new SplashScreenFragment();
 fm.beginTransaction().add(android.R.id. content ,
 ➥] mSplashScreenFragment , TAG_SPLASH_SCREEN).commit();
 }
 }

 @Override
 protected void onStart() {
 super .onStart();
 if (mDataLoaderFragment != null) {
 checkCompletionStatus();
 }
 }

 @Override
 protected void onStop() {
 super .onStop();
 if (mDataLoaderFragment != null) {
 mDataLoaderFragment .removeProgressListener();
 }
 }

 /**
 * Checks if data is done loading, if it is, the result is handled
 *
 * @return true if data is done loading
 */
 private boolean checkCompletionStatus() {
 if (mDataLoaderFragment .hasResult()) {

 SPLASH SCREEN 209

 onCompletion(mDataLoaderFragment .getResult());
 FragmentManager fm = getFragmentManager();
 mSplashScreenFragment = (SplashScreenFragment)
 ➥fm.findFragmentByTag(TAG_SPLASH_SCREEN);
 if (mSplashScreenFragment != null) {
 fm.beginTransaction().remove(mSplashScreenFragment).
➥commit();
 }
 return true ;
 }
 mDataLoaderFragment .setProgressListener(this);
 return false ;
 }
 }

 Figure 10.2 The resulting app after data has loaded

210 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 Quite a bit is going on in this small bit of code, so it’s a good idea to review it. On a high level,
you are using DataLoaderFragment to load all the data, and it exists outside of configuration
changes. The Activity checks DataLoaderFragment each time it is created and started
to handle the result. If it’s not done yet, the SplashScreenFragment is shown to indicate
progress.

 Loading Indication
 Immediate feedback is one of the most important parts of a good UI. If a button does not have
a touch state and the resulting action takes some time, the user will feel like the app is unre-
sponsive. Unfortunately, whether the app needs to run complex image analysis algorithms or
just access web resources, there are times when it will not be able to immediately show the
users what they want to see. In these instances, you use a loading indicator to give the user a
sense that something is happening. Ideally, you use a loading indicator that can show progress
such as when downloading a file, but sometimes you have to fall back on the indeterminate
loading indicator, which just tells the user, “Hey, something is happening, but who knows how
long it will take.”

 Dialogs versus Inline

 Using dialogs to indicate loading is the go-to solution for a lot of developers. In fact, Android’s
 ProgressDialog class makes this extremely easy. Just create an instance using one of the
static show() methods and then update it if possible. When your task is done, you just
dismiss() the dialog. Simple enough, right?

 The problem is that these dialogs are modal. That means the user can do nothing else in your
app while looking at one of these dialogs, so they don’t make sense unless there really is noth-
ing else the user can do (for example, the previously explained splash screen). You may have
allowed the user to back out of the dialog, but that just results in the user being confused as to
whether the task actually stopped or not (and further confused when the UI suddenly changes
when it does complete). Instead, consider using inline loading indicators.

 An inline loading indicator is basically a loading indicator that is a part of your regular view
hierarchy. It goes where the content that is loading will go and serves as a placeholder as well as
a visual indication of activity. Not only is this significantly less disruptive than a dialog, it lets the
user interact with other content immediately. If you go to Google Play to search for a particular
app, you don’t want to wait while the front page loads before you can actually search. An addi-
tional advantage of inline indicators is that they allow you to load different sections of a screen
and display them independently. You might go to someone’s profile page in an app and see the
basic info. At the same time, one section is loading that displays recent content posted by that
person and another section loads people who are similar to that person. Neither of these pieces
is dependent on the other.

 LOADING INDICATION 211

 Using an Inline Loading Indicator

 Using inline loading indicators in your app is actually extremely easy. The simplest way is to just
include a ProgressBar in your layout somewhere and then hide or remove it when the load-
ing is complete and add the new views. There are several ways to make this easier to manage.
If the extra content is almost always available (for example, you might go from a list of articles
to a detailed article page, and you just need to fetch the body text), then an easy approach
is to use a ViewSwitcher . A ViewSwitcher is a ViewGroup that contains two child View s
and can animate between them. In this case, you use it to display a loading indicator and then
switch to the other View when it is ready.

 First, define a couple of animations in XML. These go in res/anim . Listing 10.6 defines a simple
fade-in animation, and Listing 10.7 defines a fade-out animation.

 Listing 10.6 A Simple Fade-in Animation Saved as fade_in.xml

 <?xml version = "1.0" encoding = "utf-8" ?>
 <alpha xmlns:android = "http://schemas.android.com/apk/res/android"
 android:duration = "300"
 android:fromAlpha = "0.0"
 android:interpolator = "@android:anim/decelerate_interpolator"
 android:toAlpha = "1.0" />

 Listing 10.7 A Simple Fade-out Animation Saved as fade_out.xml

 <?xml version = "1.0" encoding = "utf-8" ?>
 <alpha xmlns:android = "http://schemas.android.com/apk/res/android"
 android:duration = "300"
 android:fromAlpha = "1.0"
 android:interpolator = "@android:anim/accelerate_interpolator"
 android:toAlpha = "0.0" />

 With those animations defined, all you need now is a ViewSwitcher that is displaying a load-
ing indication and a second child View that is the content you have finished loading. You set
the animations and then simply call showNext() , as shown in Listing 10.8 .

 Listing 10.8 Using a ViewSwitcher to Animate Between Views

 ViewSwitcher viewSwitcher = (ViewSwitcher) findViewById
➥(R.id. view_switcher);
 viewSwitcher.setInAnimation(this , R.anim. fade_in);
 viewSwitcher.setOutAnimation(this , R.anim. fade_out);
 viewSwitcher.showNext();

212 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 Sometimes you’ll have some chunk of content that is frequently not there or that has a complex
view hierarchy. In these cases, it’s a good idea to make use of ViewStub s. A ViewStub is an
extremely simple implementation of View that essentially acts as a placeholder for other con-
tent. It takes up no space and draws nothing, so it has minimal impact on your layout complex-
ity. Think of it like an include tag that does not actually include another layout until you say
to do so.

 Listing 10.9 shows what a ViewStub will look like in your XML layout. The regular ID is used for
finding the ViewStub , but it can also specify an inflatedID for finding the layout after it has
been inflated. The layout that will be inflated is specified by the layout property the same as it
is in an include tag.

 Listing 10.9 An XML ViewStub

 <ViewStub
 android:id = "@+id/view_stub"
 android:layout_width = "match_parent"
 android:layout_height = "wrap_content"
 android:inflatedId = "@+id/dynamic_content"
 android:layout = "@layout/other_layout" />

 All that is left to do is to find a reference to your ViewStub , inflate it, and do whatever you
need to with the resulting layout. See Listing 10.10 for the basic code involved.

 Listing 10.10 Inflating a ViewStub in Java

 ViewStub stub = (ViewStub) findViewById(R.id. view_stub);
 View otherLayout = stub.inflate();
 // Do something with otherLayout...

 Complex TextView s
 TextView s in Android are extremely powerful. Obviously, they’re able to display text, but they
can also display several styles of text, different fonts or colors, and even inline images, all within
a single TextView . You can have specific portions of text respond to click events and really
associate any object you want with any portion of text. These ranges of text are generically
referred to as “spans,” as in a span (range) of bold text or a span of subscript.

 Existing Spans

 Android has a large number of prebuilt spans you can take advantage of. Because you can
assign any object as a span, there isn’t an actual span class. That’s great in that it gives you
a huge amount of flexibility, but it also means you have to dig a little to figure out what is
supported.

 COMPLEX TEXTVIEWS 213

 First, you should know about the two main types of spans: CharacterStyle and
ParagraphStyle . As you can probably guess, these interfaces refer to spans that affect one
or more characters and spans that affect entire paragraphs. Most spans will implement one of
these two interfaces (although many implement more than just these). See the following list of
built-in spans to get an idea about what is already supported:

 AbsoluteSizeSpan — A span that allows you to specify an exact size in pixels or density
independent pixels.

 AlignmentSpan.Standard — A span that attaches an alignment (from Layout.
Alignment).

 BackgroundColorSpan — A span that specifies a background color (the color behind
the text, such as for highlighting).

 ClickableSpan — A span that has an onClick method that is triggered. (This class is
abstract, so you can extend it with a class that specifies the onClick behavior.)

 DrawableMarginSpan — A span that draws a Drawable plus the specified amount of
spacing.

 DynamicDrawableSpan — A span that you can extend to provide a Drawable that may
change (but the size must remain the same).

 EasyEditSpan — A span that just marks some text so that the TextView can easily
delete it.

 ForegroundColorSpan — A span that changes the color of the text (basically just called
 setColor(int) on the TextPaint object).

 IconMarginSpan — A span that draws a Bitmap plus the specified amount of spacing.

 ImageSpan — A span that draws an image specified as a Bitmap , Drawable , URI , or
resource ID.

 LeadingMarginSpan.Standard — A span that adjusts the margin.

 LocaleSpan — A span that changes the locale of text (available in API level 17 and
above).

 MaskFilterSpan — A span that sets the MaskFilter of the TextPaint (such as for
blurring or embossing).

 MetricAffectingSpan — A span that affects the height and/or width of characters
(this is an abstract class).

 QuoteSpan — A span that puts a vertical line to the left of the selected text to indicate it
is a quote; by default the line is blue.

 RasterizerSpan — A span that sets the Rasterizer of the TextPaint (generally not
useful to you).

214 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 RelativeSizeSpan — A span that changes the text size relative to the supplied float
(for instance, setting a 0.5 float will cause the text to render at half size).

 ReplacementSpan — A span that can be extended when something custom is drawn in
place of the spanned text (for example, ImageSpan extends this).

 ScaleXSpan — A span that provides a multiplier to use when calling the TextPaint ’s
 setTextScaleX(float) method. (In other words, setting this to 0.5 will cause the text
to be scaled to half size along the x axis, thus appearing squished.)

 StrikethroughSpan — A span that simply passes true to the TextPaint ’s
 setStrikeThruText(boolean) method, causing the text to have a line through it
(useful for showing deleted text, such as in a draft of a document).

 StyleSpan — A span that adds bold and/or italic to the text.

 SubscriptSpan — A span that makes the text subscript (below the baseline).

 SuggestionSpan — A span that holds possible replacement suggestions, such as for a
incorrectly spelled word (available in API level 14 and above).

 SuperscriptSpan — A span that makes the text superscript (above the baseline).

 TabStopSpan.Standard — A span that allows you to specify an offset from the leading
margin of a line.

 TextAppearanceSpan — A span that allows you to pass in a TextAppearance for
styling.

 TypefaceSpan — A span that uses a specific typeface family (monospace , serif , or
 sans-serif only).

 UnderlineSpan — A span that underlines the text.

 URLSpan — A ClickableSpan that attempts to view the specified URL when clicked.

 Using Spans for Complex Text

 One of the simplest ways to use spans is with the HTML class. If you have some HTML in a string,
you can simply call HTML.fromHtml(String) to get an object that implements the spanned
interface that will have the applicable spans applied. You can even supply an ImageGetter
and a TagHandler , if you’d like. The styles included in the HTML will be converted to spans
so, for example, “b” (bold) tags are converted to StyleSpan s and “u” (underline) tags are
converted to UnderlineSpan s. See Listing 10.11 for a brief example of how to set the text of a
 TextView from an HTML string and enable navigating through and clicking the links.

 Listing 10.11 Using HTML in a TextView

 textView.setText(Html. fromHtml (htmlString));
 textView.setMovementMethod(LinkMovementMethod. getInstance ());
 textView.setLinksClickable(true);

 COMPLEX TEXTVIEWS 215

 Another easy method for implementing spans is to use the Linkify class. The Linkify class
allows you to easily create links within text for web pages, phone numbers, email addresses,
physical addresses, and so on. You can even use it for custom regular expressions, if you’re so
inclined.

 Finally, you can also manually set spans on anything that implements the Spannable interface.
If you have an existing String or CharSequence that you’d like to make Spannable ,
use the SpannableString class. If you are building up some text, you can use the
SpannableStringBuilder , which works like a StringBuilder but can attach spans. To
the untrained eye, the app in Figure 10.3 is using two TextView s and an ImageView , but it
actually has just a single TextView . See Listing 10.12 to understand how you can do this with
one TextView and a few spans.

 Figure 10.3 An app that seemingly uses more views than it really does

216 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 Listing 10.12 Using Spans with a SpannableStringBuilder

 public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super .onCreate(savedInstanceState);

 final SpannableStringBuilder ssb = new
➥SpannableStringBuilder();
 final int flag = Spannable. SPAN_EXCLUSIVE_EXCLUSIVE ;
 int start;
 int end;

 // Regular text
 ssb.append("This text is normal, but ");

 // Bold text
 start = ssb.length();
 ssb.append("this text is bold");
 end = ssb.length();
 ssb.setSpan(new StyleSpan(Typeface. BOLD), start, end, flag);

 // Inline image
 ssb.append('\n');
 start = end++;
 ssb.append('\uFFFC'); // Unicode replacement character
 end = ssb.length();
 ssb.setSpan(new ImageSpan(this , R.drawable. ic_launcher), start,
 ➥end, flag);

 // Stretched text
 ssb.append('\n');
 start = end++;
 ssb.append("This text is wide");
 end = ssb.length();
 ssb.setSpan(new ScaleXSpan(2f), start, end, flag);

 // Assign to TextView
 final TextView tv = new TextView(this);
 tv.setText(ssb);
 setContentView(tv);
 }
 }

 AUTOLOADING LISTVIEWS 217

 Autoloading ListView s
 Using a ListView is a great way to display an extensive data set. For instance, you might show
a list of news articles. For this to load quickly, you only request the first 10 or 20 news articles to
show in the list; however, the user may want to see more. Older user experiences would have a
button at the end of the list that the user could tap that would begin loading the next set. That
works, but you can do better.

 Concept and Reasoning

 To improve the user experience, it’s a good idea to anticipate the user’s actions. Scrolling
through a list is a great example where you can easily make reasonable assumptions. If the user
has scrolled to the bottom of the list, there is a good chance that the user wants to continue
scrolling. Instead of waiting for the user to press a button, you can immediately begin loading
more items. So, now you’ve managed to save the user a little bit of work, but you can go a
step further.

 When the user has scrolled to near the bottom of the list, you can start loading more. Say
you display 20 items and the user has scrolled down to where the device is showing items
12 through 17. The user is very close to the bottom of the list, so you can begin loading more
items ahead of time. If your data source and connection are fast, the next 10 or 20 items can be
loaded by the time the user gets to the bottom of the list. Now the user can scroll without effort
through a large data set, and you can still have the benefits of loading a smaller set of data to
speed up the initial user experience.

 Autoloading Near the Bottom of a List

 Although you are going to start loading before getting to the bottom of a list, you will want
to have a loading indicator at the bottom because the user can get there before the loading
completes. So, to start, create a simple loading view called loading_view.xml like the one in
 Listing 10.13 .

 Listing 10.13 A Simple Loading Layout

 <?xml version = "1.0" encoding = "utf-8" ?>
 <LinearLayout xmlns:android = "http://schemas.android.com/apk/res/
➥android"
 android:layout_width = "match_parent"
 android:layout_height = "wrap_content"
 android:gravity = "center"
 android:orientation = "horizontal" >

218 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 <ProgressBar
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:layout_marginRight = "10dp" />

 <TextView
 android:layout_width = "wrap_content"
 android:layout_height = "wrap_content"
 android:text = "@string/loading"
 android:textAppearance = "?android:attr/textAppearanceMedium" />

 </LinearLayout>

 Next, create an Adapter that will provide fake data to test out this technique. Listing 10.14
shows an example. This sample Adapter just keeps a count representing the number of fake
items to show. You can simulate adding more items with the addMoreItems(int) method.
For the purposes of testing this autoloading technique, this is adequate.

 Listing 10.14 An Adapter That Can Mimic Real Content

 private static class SimpleAdapter extends BaseAdapter {

 private int mCount = 20;
 private final LayoutInflater mLayoutInflater ;
 private final String mPositionString ;
 private final int mTextViewResourceId ;

 /*package*/ SimpleAdapter(Context context, int textViewResourceId)
{
 mLayoutInflater = LayoutInflater. from (context);
 mPositionString = context.getString(R.string. position) + " " ;
 mTextViewResourceId = textViewResourceId;
 }

 public void addMoreItems(int count) {
 mCount += count;
 notifyDataSetChanged();
 }

 @Override
 public int getCount() {
 return mCount ;
 }

 @Override
 public String getItem(int position) {
 return mPositionString + position;
 }

 AUTOLOADING LISTVIEWS 219

 @Override
 public long getItemId(int position) {
 return position;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup
➥parent) {
 final TextView tv;
 if (convertView == null) {
 tv = (TextView) mLayoutInflater .inflate
➥(mTextViewResourceId , null);
 } else {
 tv = (TextView) convertView;
 }

 tv.setText(getItem(position));
 return tv;
 }
 }

 The last piece is the actual Fragment that does the hard work. It is a ListFragment that
listens to the position of the ListView and loads more items if necessary. The AUTOLOAD_
THRESHOLD value determines how close to the bottom of the list the user has to be before
loading. The MAXIMUM_ITEMS value is an arbitrary limit to the size of our list, so you can see
how to handle removing the loading View when all data has been loaded.

 The mAddItemsRunnable object simulates adding additional items after a delay,
similarly to how you would add more items after fetching them from a data source. In
 onActivityCreated(Bundle) , a Handler is created (for posting the Runnable with a
delay), the Adapter is created, a footer view is instantiated and added to the ListView , the
 Adapter is set, and the Fragment is added as the OnScrollListener . It’s important that
you add the footer before setting your Adapter because the ListView is actually wrapping
your Adapter with one that supports adding header and footer View s.

 When the user scrolls, the Fragment checks if data is not currently loading and if there is more
data to load. If that is the case, it checks if the Adapter has already added at least the maxi-
mum number of items (remember, this is arbitrary to simulate having a finite data set like you
would in a real use). If there is no more data, the footer is removed. If there is more data, the
 Fragment checks to see if the user has scrolled far enough to load more data and triggers
the load.

 The onScrollStateChanged method has to be implemented as part of
OnScrollListener , but it is not needed in this code, so it does nothing.

220 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 The onStart and onStop methods handle stopping and starting the loading of data, so the
load does not continue when the app is no longer visible. This is not particularly necessary in
the sample code, but it is useful in the real world when you might be loading or processing a
large amount of data and don’t want it to be done if the user has changed apps.

 For a complete implementation, see Listing 10.15 .

 Listing 10.15 A ListFragment That Automatically Loads More Content

 public class AutoloadingListFragment extends ListFragment implements
 ➥OnScrollListener {

 private final int AUTOLOAD_THRESHOLD = 4;
 private final int MAXIMUM_ITEMS = 52;
 private SimpleAdapter mAdapter ;
 private View mFooterView ;
 private Handler mHandler ;
 private boolean mIsLoading = false ;
 private boolean mMoreDataAvailable = true ;
 private boolean mWasLoading = false ;

 private Runnable mAddItemsRunnable = new Runnable() {
 @Override
 public void run() {
 mAdapter .addMoreItems(10);
 mIsLoading = false ;
 }
 };

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super .onActivityCreated(savedInstanceState);
 final Context context = getActivity();
 mHandler = new Handler();
 mAdapter = new SimpleAdapter(context,
 ➥android.R.layout. simple_list_item_1);
 mFooterView = LayoutInflater. from (context).inflate(
➥R.layout. loading_view , null);
 getListView().addFooterView(mFooterView , null , false);
 setListAdapter(mAdapter);
 getListView().setOnScrollListener(this);
 }

 @Override
 public void onScroll(AbsListView view, int firstVisibleItem,
 int visibleItemCount, int totalItemCount) {

 AUTOLOADING LISTVIEWS 221

 if (! mIsLoading && mMoreDataAvailable) {
 if (totalItemCount >= MAXIMUM_ITEMS) {
 mMoreDataAvailable = false ;
 getListView().removeFooterView(mFooterView);
 } else if (totalItemCount - AUTOLOAD_THRESHOLD <=
 ➥firstVisibleItem + visibleItemCount) {
 mIsLoading = true ;
 mHandler .postDelayed(mAddItemsRunnable , 1000);
 }
 }
 }

 @Override
 public void onScrollStateChanged(AbsListView view,
➥ int scrollState) {
 // Ignore
 }

 @Override
 public void onStart() {
 super .onStart();
 if (mWasLoading) {
 mWasLoading = false ;
 mIsLoading = true ;
 mHandler .postDelayed(mAddItemsRunnable , 1000);
 }
 }

 @Override
 public void onStop() {
 super .onStop();
 mHandler .removeCallbacks(mAddItemsRunnable);
 mWasLoading = mIsLoading ;
 mIsLoading = false ;
 }
 }

 Now that you have it all finished, give it a try. Notice that when you are scrolling slowly, the
content loads before you ever know that it was loading. If you fling to the bottom quickly, you’ll
have the experience shown in Figure 10.4 , where the list shows the loading footer just before
the content loads in. Notice, too, that your position in the list is not changed when new content
loads in. The user is not disturbed even if he or she was unaware that content was loading, and
the loading view being replaced by content makes it clear that something new has loaded
(without the loading view, the user might think he or she is at the bottom of the list, even after
new content has been loaded).

222 CHAPTER 10 HOW TO HANDLE COMMON COMPONENTS

 Figure 10.4 Scrolling quickly from the top (left) to the bottom (middle) results in content loading in

automatically (right) .

 Summary
 Although there are countless techniques for developing better apps, this chapter has intro-
duced you to a few of the more common ones. By now, you should hate splash screens, but you
should also know how to implement them correctly. You should be annoyed by modal loading
dialogs and have experience implementing more user-friendly inline dialogs. Your experi-
ence with TextView spans will allow you to avoid creating several TextView s for minor style
changes, and you should know how to implement autoloading ListView s.

INDEX

 Symbols
 @ (at symbol), 24
 + (plus), 24
 2.5X rule, 141

 A
 AbsoluteLayout, 55
 AbsoluteSizeSpan, 213
 accessible vocabulary, 148
 action bars, 17

 indicating loading, 344 - 350
 split action bars, 18

 ACTION_UP, 282
 Activity, 185 , 189

 MultiButton class, 243
 onCreate, 275 - 276
 PorterDuff image compositing, 318 - 319
 PropertyView class, testing, 228
 splash screens, 207 - 209

 activity_main.xml, 248 - 249
 Adapter, 54 - 55
 AdapterView, 50 , 167 , 218

 interfaces for, 55
 AdapterViewAnimator, 55
 AdapterViewFlipper, 56
 add, PorterDuff image compositing, 307
 addUpdateListener, 192
 ADT, 160

 prototypes, creating, 109 - 116
 screenshots, 110
 templates, 115

 AlignmentSpan.Standard, 213
 alpha, 24
 alternate sizes, generating alternate

sizes, 158 - 159

 Amazon Appstore, 337
 application icon, 338 - 339
 overview, 338
 promotional graphics, 339 - 340
 screenshots, 339
 videos, 340 - 341

 AnalogClock, 40
 Android design website, 7
 animations, 13 , 84 , 184 - 186

 combining, AnimationSet, 193
 compound animations, 190 - 191
 fade-in animation, 211
 fade-out animations, 211
 property animations, 192 - 194
 testing, 187
 triggering with MainActivity, 189
 view animations, 186 - 191
 ViewSwitcher, 211
 XML Rotate animation, 188 - 189

 AnimationSet, 193
 animator, 62
 AnimatorUpdateListener, 192
 application description, Google Play, 326
 application icon

 Amazon Appstore, 338 - 339
 Google Play, 327 - 328

 apps
 Camera app, 9
 Gallery app, 9
 Gmail app, 18
 People app, 8 - 9
 promoting Google Play, 335

 AppWidgetHostView, 56
 ArrayAdapter, 124
 arrays, 83
 arrays.xml, 247

 ASSET NAMING CONVENTIONS364

 asset naming conventions, 105
 at symbol (@), 24
 atr, minLines, 31
 attributes

 alpha, 24
 background, 24
 clickable, 25
 contentDescription, 25
 custom view attributes, 355 - 361
 drawable, 30
 drawablePadding, 30
 duplicateParentState, 25
 ellipsize, 30
 focusable, 25
 focusableInTouchMode, 25
 fontFamily, 30
 gravity, 30
 hint, 31
 id, 25
 importantForAccessibility, 25
 inputType, 31
 lines, 31
 lineSpacingExtra, 31
 lineSpacingMultiplier, 31
 longClickable, 25
 maxLines, 31
 minHeight, 26
 minWidth, 26
 padding, 26
 shadowColor, 31
 shadowDx, 31
 shadowDy, 31
 shadowRadius, 31
 text, 31
 textColor, 31
 textIsSelectable, 32
 textSize, 32
 textStyle, 32
 typeface, 32
 View class, 24 - 26
 visibility, 26

 attrs.xml, 248 , 250 - 254 , 355
 AutoCompleteTextView, 36
 autoloading ListView, 217

 bottom of the list, 217 - 221
 automatic translation, 326
 available height, 64
 available width, 64

 B
 background, 24
 BackgroundColorSpan, 213
 backgrounds, 33 - 34

 mirrored tile background, 156
 repeating tile background, 156
 themes, removing, 172 - 173
 XML-defi ned gradients, 201

 bending to the user, 15 - 16
 Bitmap, 320
 BitmapFactory, 261

 PorterDuff image compositing, 313
 bitmaps, Canvas object, 260 - 261
 bottom of the list, autoloading

(ListView), 217 - 221
 breaking comps into views, 161 - 165
 Button, displaying text, 30 - 33
 button selection

 MultiButton class, 245 - 246
 multibutton toggle, 240 - 241

 C
 CalendarView, 36
 Camera app, 9
 Canvas object, 260

 bitmaps, 260 - 261
 custom views, 272 - 275
 Drawables, 261
 drawBitmap, 314
 Paint, 260
 PorterDuff image compositing, 313

 365 DESIGN

 capitalization, text, 144 - 145
 change log, Google Play, 327
 CheckBox, 37
 checkCompletionStatus(), 207
 CheckedTextView, 37
 checking

 if current thread is the UI thread, 354 - 355
 for network connections, 354

 Chronometer, 40
 clear, PorterDuff image compositing, 301
 click listening, 187
 clickable, 25
 ClickableSpan, 213
 clicks, multibutton toggle, 239 - 243
 ClipDrawable, XML drawables, 78
 color, 62
 color blindness, 139
 color vision defi ciencies, 139
 colors, 83 - 84

 design, 137 - 139
 combining

 animations, AnimationSet, 193
 views, 224

 for simplicity, 224 - 236
 complex text, spans, 214 - 216
 components

 action bars, 17
 notifi cations, 17 - 18
 split action bars, 18
 system bars, 16 - 17

 compound animations, 190 - 191
 CompoundButton, 37
 comps, breaking into views, 161 - 165
 computeScroll(), 277 - 278
 confi guration support, 90 - 91
 connections, network connections

(checking for), 354
 content pieces, wireframes, 98 - 101
 contentDescription, 25
 context.getResources(), 267
 controlling garbage collection, 166 - 168

 core principles, 8
 bend to the user, 15 - 16
 do one thing well, 8 - 9
 easy but powerful, 13 - 15
 platform consistency, 15
 visuals, 13
 work well with others, 11 - 12

 corners, rounded corners, 81
 createBitmap, 313 - 314
 current threads, checking if current thread is

UI thread, 354 - 355
 custom fonts, 147 - 148 , 194 - 197

 TextView, 197
 custom view attributes, 355 - 361
 custom views, 263 - 264

 creating initial custom view fi les, 264 - 269
 drawing to the canvas, 272 - 275
 measuring view dimensions, 269 - 272
 testing, 296
 touch input

 handling, 281 - 297
 preparing for, 277 - 280

 CustomDrawable, 320

 D
 D (destination image), 300
 darken, PorterDuff image compositing, 306
 data, fragments, 58 - 60
 DataLoaderFragment, 210
 DatePicker, 37- 38
 Daydream feature, 6
 defaults, specifying, 67
 deferred rendering, 171
 delete button, 15
 density, 65 , 67 - 68

 design, 139 - 140
 density independent pixels (DIP), 27
 design

 colors, 137 - 139
 density, 139 - 140
 error cases, 150 - 151

 DESIGN366

 graphical design, wireframes, 134
 icons, 148 - 149
 images, 149
 lighting angle, 135
 navigation, 150
 personality, 134 - 135
 sizing, 139 - 140
 text, 143

 accessible vocabulary, 148
 custom fonts, 147 - 148
 sizes, styles and capitalization, 144 - 145
 text contrast, 143 - 144
 text shadows, 146 - 147
 text spacing, 145 - 146

 transitions, 150
 transparency, 2.5X rule, 141
 varying text lengths, 149
 voice, 134 - 135

 design website, 7
 designers, working with, 154 - 155
 detail pages, wireframes, 102 - 103
 developers, 154
 device support, 90 - 91
 devices, supporting multiple devices, 19 - 20
 DialerFilter, 56
 dialogs, loading indicators, 210
 digital wireframes, 92
 DigitalClock, 40
 dimensions, 84
 dimens.xml, 264
 dismissing software keyboard, 350 - 351
 displaying

 images
 backgrounds, 33 - 34
 ImageButton, 34 - 36
 ImageView, 34

 text, 29
 Button, 30 - 33
 EditText, 30 - 33
 TextView, 29 - 31

 dividers, views, 180 - 182
 dots per inch (DPI), 27

 DPI (dots per inch), 27
 Determining, 353

 drawable, 30 , 62
 DrawableMarginSpan, 213
 drawablePadding, 30
 Drawables, 268 - 269 , 319

 Canvas object, 261
 methods, 319 - 320

 drawables
 ShapeDrawable, 79 - 81
 states, 255
 XML drawables, 71 - 72

 ClipDrawable, 78
 InsetDrawable, 77
 layer lists, 72 - 73
 level lists, 76
 state lists, 73 - 76
 TransitionDrawable, 77

 drawables, ScaleDrawable, 78
 Drawables, Shader, 320 - 324
 draw(Canvas), 319
 drawing views, 259 - 260
 DST, PorterDuff image compositing, 302
 DST_ATOP, 305
 DST_IN, PorterDuff image compositing, 302
 DST_OUT, PorterDuff image compositing,

 303 - 304
 DST_OVER, PorterDuff image

compositing, 303
 Duarte, Matias, 6
 Duff , Tom, 300
 duplicateParentState, 25
 DynamicDrawableSpan, 213

 E
 EasyEditSpan, 213
 EditText, 3 3
 effi ciency, improving, 166

 controlling garbage collection, 166 - 168
 eliminating overdraw, 170 - 173
 ViewHolder pattern, 168 - 170

 367 GOOGLE PLAY

 eliminating
 overdraw, 170 - 173
 views, Hierarchy Viewer, 179 - 183

 ellipsize, 30
 enum, 300
 error cases, design, 150 - 151
 events, listening to, 42 - 43
 exporting Photoshop documents (PSD),

Hierarchy Viewer, 183
 external libraries, 91
 extra, extra high dots per inch (XXHDPI),

 27 , 67
 extra high dots per inch (XHDPI), 27
 ExtractEditText, 41

 F
 fade-in animation, 211
 fade-out animation, 211
 feature graphics, Google Play, 329 - 333
 fi ll_parent, 27
 fl ing, 279
 fl oats, 300
 fl owcharts, 92
 Fluid ID, 95
 focusable, 25
 focusableInTouchMode, 25
 focused state, 13
 fontFamily, 30
 fonts

 custom fonts, 147 - 148 , 194 - 197
 Roboto font, 194
 TextView, 195

 ForegroundColorSpan, 213
 formats for image fi les, 68
 Fragment

 loading data asynchronously, 204 - 206
 splash screens, 201 - 210

 FragmentBreadCrumbs, 56

 fragments, 57
 determining, 108 - 109
 giving data, 58 - 60
 lifecycle of, 58
 prototypes, creating, 109 - 116

 FrameLayout, 46
 full screen mode, 351 - 352

 G
 Galaxy Nexus, prototypes, 130
 Gallery app, 9 , 17 , 53
 garbage collection, controlling, 166 - 168
 GestureOverlayView, 56
 gestures, long press, 20 - 21
 getActionView(), 349
 getBounds(), 319
 getCurrVelocity, 298
 getIntrinsicHeight(), 319
 getIntrinsicWidth(), 319
 getItemMethod, PropertyListFragment, 129
 getOpacity, 319- 320
 getScaledMinimumFlingVelocity(), 267
 getScroll, 277
 getView, 170
 GIFs, 68
 Gilfelt, Jeff , 116
 GLSurfaceView, 41
 Gmail app, 18
 goals, 88

 device and confi guration support, 90 - 91
 product goals, 89 - 90
 user goals, 88 - 89
 user personas, 89

 Google Play, 325
 application description, 326
 application icon, 327 - 328
 change log, 327
 feature graphics, 329 - 333
 promoting apps, 335

 GOOGLE PLAY368

 promotional graphics, 334
 screenshots, 328 - 329
 video (YouTube), 334 - 335

 graphical design, wireframes and, 134
 graphics

 feature graphics, Google Play, 329 - 333
 promotional graphics

 Amazon Appstore, 339 - 340
 Google Play, 334

 gravity, 30 , 47
 GridLayout, 56
 GridView, 52 - 53

 H
 hardware keyboard type, 66
 HDPI (high dots per inch), 27 , 67
 headers, samples, 160
 Hierarchy Viewer, 178 - 179

 eliminating views, 179 - 183
 exporting Photoshop documents

(PSD), 183
 high dots per inch (HDPI), 27 , 67
 high-level fl ow, 91 - 92
 hint, 31
 history of Android design, 6
 Honeycomb, 6

 full screen mode, 351
 HorizontalIconView class, 264 - 266 , 283 - 294
 HorizontalScrollView, 56
 HTML

 spans, 214 - 216
 TextView, 214 - 216

 I
 Ice Cream Sandwich, 6
 IconMarginSpan, 213
 icons

 application icon
 Amazon Appstore, 338 - 339
 Google Play, 327 - 328

 design, 148 - 149

 id, 25
 image fi les, 68
 ImageButton, 35 - 36
 images

 alternate sizes, generating, 158 - 159
 design, 149
 displaying

 backgrounds, 33 - 34
 ImageButton, 34 - 36
 ImageView, 34

 nine-patch images, 69 - 71
 shaping with Shader, 320 - 324
 shrinking, 159
 XML drawables, 71 - 72

 ClipDrawable, 78
 InsetDrawable, 77
 layer lists, 72 - 73
 level lists, 76
 ScaleDrawable, 78
 ShapeDrawable, 79 - 81
 state lists, 73 - 76
 TransitionDrawable, 77

 ImageSpan, 213
 ImageSwitcher, 56
 ImageView, 34
 importantForAccessibility, 25
 improving effi ciency, 166

 controlling garbage collection, 166 - 168
 eliminating overdraw, 170 - 173
 ViewHolder pattern, 168 - 170

 indicating loading in action bar, 344 - 350
 infl ating ViewStub, in Java, 212
 init method, 197 , 226
 inline loading indicators, 210 - 212
 InputMethodManager, dismissing software

keyboard, 351
 inputType, 31
 InsetDrawable, XML drawables, 77
 interfaces for AdapterView, 55
 interpolators, 186
 invalidate(), 260

 369 MINHEIGHT

 J-K
 Java, infl ating (ViewStub), 212
 Java class, creating for multibutton

toggle, 236 - 240
 Jelly Bean, 6
 JPEGs, 68
 keeping screens on, 352
 kerning, 146
 keyboard availability, 65
 keyboards, software keyboard

(dismissing), 350 - 351
 KeyboardView, 41

 L
 Lacy, Chris, 96
 language, 63
 layer lists, XML drawables, 72 - 73
 layers, 155
 LayoutParams, RelativeLayout, 49
 layouts, 24 , 62

 splash screens, 201 - 202
 views, 259
 LDPI (low dots per inch), 27
 LeadingMarginSpan.Standard, 213
 level lists, XML drawables, 76
 LevelListDrawable, 76
 libraries, external libraries, 91
 lifecycle of fragments, 58
 lighten, PorterDuff image compositing,

 305 - 306
 lighting angle, design, 135
 limitations of MapView, 109
 LinearGradient, 320
 LinearLayout, 46 - 49 , 165 , 317
 lines, 31
 lineSpacingExtra, 31
 lineSpacingMultiplier, 31
 list items

 property list item, 116 - 119
 putting in apps, 119 - 130

 listeners, 43 , 261
 listening to events, 42 - 43
 ListFragment, 220 - 221
 ListView, 50 - 52 , 197

 autoloading, 217
 bottom of the list, 217 - 221

 loading, indicating in action bar, 344 - 350
 loading data asynchronously, Fragment,

204 - 206
 loading indicators, 210

 dialogs versus inline, 210
 inline loading indicators, 211 - 212

 LocaleSpan, 213
 long press, 20 - 21
 longClickable, 25
 low dots per inch (LDPI), 27

 M
 mAddItemsRunnable, 219
 main.xml, 62
 MapView, limitations of, 109
 MaskFilterSpan, 213
 match_parent, 27
 maxLines, 31
 MDPI (medium dots per inch), 27 , 67
 measureHeight, 269 - 270
 measurement, views, 258 - 259
 MeasureSpec, 258
 measureWidth, 269 , 271
 measuring view dimensions, custom

views, 269 - 272
 mEdgeEff ectLeft, 267 , 281
 mEdgeEff ectRight, 267
 MediaController, 56
 MediaRouteButton, 41
 medium dots per inch (MDPI), 27 , 67
 menu, 62
 menu key, 20
 MetricAff ectingSpan, 213
 mIconPositions, 274
 minHeight, 26

 MINLINES370

 minLines, 31
 minWidth, 26
 mirrored tile background, 156
 mirroring, 155
 mobile country code, 63
 mobile network code, 63
 modes, PorterDuff image compositing,

 300 - 301
 add, 307
 clear, 301
 darken, 306
 DST, 302
 DST_ATOP, 305
 DST_IN, 302
 DST_OUT, 303 - 304
 DST_OVER, 303
 lighten, 305 - 306
 multiply, 308
 overlay, 309 - 310
 screen, 309 - 310
 SRC, 302
 SRC_ATOP, 305
 SRC_IN, 302
 SRC_OUT, 303 - 304
 SRC_OVER, 303
 XOR, 310 - 311

 MotionEvent object, 262
 MotionEvent.ACTION_CANCEL, 282
 MotionEvent.ACTION_UP, 282
 mScroller, 281
 mSkippedIconCount, 273
 MultiAutoCompleteTextView, 37
 MultiButton class

 Activity, 243
 button selection, 245 - 246
 SavedState, 244 - 245

 multibutton toggle, 236
 creating initial Java class, 236 - 240
 defi ning custom XML attributes, 246 - 255
 handling clicks, 239 - 243
 saving and restoring state, 244 - 247

 multiply, PorterDuff image compositing, 308

 N
 namespaces, 188
 naming conventions, wireframes, 104 - 105
 navigation

 design, 150
 wireframes, 96 - 99

 navigation key availability, 66
 NDK, 20
 network connections, checking for, 354
 newInstance(String) method, 60
 night mode, 65
 nine-patch images, 69 - 71 , 156 - 159
 normal state, 13
 notifi cations, 17 - 18
 NumberPicker, 38
 Nurik, Roman, 116

 O
 ObjectAnimator, 193
 Omnigraffl e, 95
 onActivityCreated, 58
 onAttach(Activity), 58
 onBoundsChange(Rect), 319 - 320
 OnClickListener, 43
 onCreate, 323 - 324

 Activity, 275 - 276
 onCreate(Bundle), 58 , 207
 onCreateView, 58
 onDestroy(), 58
 onDestroyView(), 58
 onDetach(), 58
 OnDragListener, 43
 onDraw, 274 - 275 , 279 - 280
 OnFocusChangeListener, 43
 OnGenericMotionListener, 43
 OnGestureListener, 262
 OnHoverListener, 43
 onKeyDown, 263
 OnKeyListener, 43
 onLevelChange(int), 319
 OnLongClickListener, 43

 371 PROPERTYLISTADAPTER

 onMeasure, 272
 onOptionsItemSelected(MenuItem), 347
 onOverScrolled, 278
 onPause(), 58
 onResume(), 58
 onScrollChanged, 277
 OnScrollListener, 219
 OnScrollStateChanged, 219
 onSecondaryPointerUp, 280
 onSecondaryPointerUp(MotionEvent), 280
 onStart(), 58
 onStateChange(int), 319
 onStop(), 58 , 207
 onTouchEvent, 281
 OnTouchListener, 43
 orientation, 65
 overdraw, eliminating, 170 - 173
 overlay, PorterDuff image compositing,

309 - 310
 overScrollBy, 277

 P
 padding, 26
 PagerTabStrip, 56
 PagerTitleStrip, 56
 Paint, Canvas object, 260
 Paper Camera, 334
 Parcelable, 119
 patterns, ViewHolder pattern, 168 - 170
 Pencil, wireframes, 95
 People app, 8 - 9
 personality, design, 134 - 135
 photo fi lters, 14
 Photoshop, color vision defi ciencies, 139
 Photoshop documents (PSD), exporting,

Hierarchy Viewer, 183
 placeholder images, 149
 platform consistency, core principles, 15
 platform version, 66
 plus (+), 24
 PNG compression, 68

 PNGs, 68
 Porter, Thomas, 300
 PorterDuff image compositing, 300 , 310 - 319

 Activity, 318 - 319
 modes, 300 - 301

 add, 307
 clear, 301
 darken, 306
 DST, 302
 DST_ATOP, 305
 DST_IN, 302
 DST_OUT, 303 - 304
 DST_OVER, 303
 lighten, 305 - 306
 multiply, 308
 overlay, 309 - 310
 screen, 309 - 310
 SRC, 302
 SRC_ATOP, 305
 SRC_IN, 302
 SRC_OUT, 303 - 304
 SRC_OVER, 303
 XOR, 310 - 311

 PorterDuff View, 310 - 319
 PorterDuff .Mode enums, 317
 PorterDuff View, 310 - 319
 postInvalidate(), 260
 postInvalidateOnAnimation(), 298
 pressed state, 13
 primary non-touch navigation method, 66
 product goals, 89 - 90
 ProgressBar, 42 , 344
 Project Butter, 6
 promoting apps, Google Play, 335
 promotional graphics

 Amazon Appstore, 339 - 340
 Google Play, 334

 property animations, 192 - 194
 property class, populating views, 119 - 123
 property list item, 116 - 119
 PropertyListAdapter, 167 - 168

 PROPERTYLISTFRAGMENT372

 PropertyListFragment, 123 , 127
 getItemMethod, 129

 PropertyListFragment with adapter, 125 - 126
 PropertyTestUtils, 127 - 129
 PropertyView class, 227- 228 , 234

 testing, Activity, 228
 property.xml layout fi le, 225 - 226 , 231

 with only one address TextView, 233
 prototypes, creating, 109 - 116
 PSD (Photoshop documents), exporting, 183

 Q-R
 qualifi ers, 62 - 67
 Quick Offi ce Pro, 335
 QuickContactBadge, 41
 QuoteSpan, 213
 R class, 24

 resource qualifi ers, 63
 RadioButton, 38
 RadioGroup, 38
 RasterizerSpan, 213
 RatingBar, 38
 raw, 62
 R.drawable.header, 63
 refreshing , 346
 region, 63
 RelativeLayout, 49 , 165 , 224 , 226 , 230
 RelativeSizeSpan, 214
 removing theme backgrounds, 172 - 173
 rendering, deferred rendering, 171
 repeating tile background, 156
 ReplacementSpan, 214
 resource qualifi ers, 62 - 67
 restoring state, multibutton toggle, 244 - 247
 Roboto font, 194
 rounded corners, specifying, 81
 RoundedBitmapDrawable class, 321 - 322
 RSSurfaceView, 42
 RSTextureView, 42

 S
 S (source image), 300
 sans-serif fonts, 148
 SavedState, MultiButton class, 244 - 245
 saving state, multibutton toggle, 244 - 247
 ScaleDrawable, XML drawables, 78
 ScaleXSpan, 214
 screen, PorterDuff image compositing,

 309 - 310
 screen aspect, 65
 screen size, 64

 determining, 352 - 353
 screens, keeping on, 352
 screenshots

 ADT, 110
 Amazon Appstore, 339
 Google Play, 328 - 329

 Scroller, 298
 scrolling, 219 - 221

 OnScrollListener, 219
 ScrollView, 56
 SearchView, 56
 SeekBar, 38
 serif fonts, 148
 setAlpha(int), 319
 setColorFilter(ColorFilter), 319
 setDrawables, 268 - 269
 setDuration, 193
 setPorterDuff Mode, 311
 setProperty method, 226
 setScrollX, 278
 setWillNotDraw, 260 , 267
 Shader, 320 - 324
 shadowColor, 31
 shadowDx, 31
 shadowDy, 31
 shadowRadius, 31
 shadows, text, 146 - 147
 shape, standard icons, 149
 ShapeDrawable, XML drawables, 79 - 81

 373 TEXT

 sharing, 11 - 12
 Show GPU Overdraw option, 171
 showLoadingIndicator(true), 347
 shrinking images, 159
 SimpleOnGestureListener, 262
 sizing

 design, 139 - 140
 text, 144 - 145

 Skia, 300
 slicing, 155

 easy slices, 155 - 156
 generating alternate sizes, 158 - 159
 nine-patch images, 156 - 159

 SlidingDrawer, 56
 smallest width, 64
 software keyboard, dismissing, 350 - 351
 Space, 42
 SpannableStringBuilder, 215 - 216 , 233
 spans

 complex text, 214 - 216
 TextView, existing spans, 212 - 214

 Spinner, 39 , 52 - 54 , 317
 splash screens, 200

 Activity, 207 - 209
 deciding if you really need one, 200 - 201
 Fragment, 201 - 210
 layout, 201 - 202

 split action bars, 18
 SRC, PorterDuff image compositing, 302
 SRC_ATOP, 305
 SRC_IN, PorterDuff image compositing, 302
 SRC_OUT, 303 - 304
 SRC_OVER, 303
 StackView, 56
 standard icons, 148 - 149
 startAnimation, 189
 state, saving and restoring (multibutton

toggle), 244 - 247
 state lists, XML drawables, 73 - 76
 StateListDrawable, 74
 states, drawables, 255

 StrikethroughSpan, 214
 StringBuilder, 233
 strings, 81 - 83
 styles

 creating, 131 - 132
 text, 144 - 145
 updating, 160 - 161

 StyleSpan, 214
 SubscriptSpan, 214
 SuggestionSpan, 214
 SuperscriptSpan, 214
 support, device and confi guration

support, 90 - 91
 supporting multiple devices, 19 - 20

 wireframes, 104
 SurfaceView, 42
 Switch, 39
 SyncTask, 204
 system bars, 16 - 17

 T
 TabHost, 57
 TableLayout, 57
 TableRow, 57
 TabStopSpan.Standard, 214
 TabWidget, 57
 templates, ADT, 115
 testing

 across device types, 174 - 175
 animations, 187
 custom views, 296
 PropertyView class, Activity, 228

 text, 31
 design, 143

 accessible vocabulary, 148
 custom fonts, 147 - 148
 sizes, styles and capitalization, 144 - 145
 text contrast, 143 - 144
 text shadows, 146 - 147
 text spacing, 145 - 146

 TEXT374

 displaying, 29
 Button, 30 - 33
 EditText, 30 - 33
 TextView, 29 - 31

 kerning, 146
 varying lengths of, 149

 text contrast, 143 - 144
 text shadows, 146 - 147
 text spacing, 145 - 146
 TextAppearanceSpan, 214
 textColor, 31
 textIsSelectable, 32
 textSize, 32
 textStyle, 32
 TextSwitcher, 57
 TextureView, 42
 TextView, 29 - 32 , 161 , 180 , 212 , 224

 custom fonts, 197
 existing spans, 212 - 214
 fonts, 195
 HTML, 214 - 216
 updated with nine-patch

background, 183
 theme backgrounds, removing, 172 - 173
 themes

 creating, 131 - 132
 updating, 160 - 161

 TileMode, 320
 TimePicker, 39
 ToggleButton, 39
 touch input

 custom views
 handling, 281 - 297
 preparing for, 277 - 280

 views, 261 - 263
 touchscreen type, 65
 trackball events, 263
 TransitionDrawable, XML drawables, 77
 transitions, design, 150
 translation, automatic translation, 326
 transparency, design, 2.5X rule, 141
 triggering, animations, MainActivity, 189

 Tweet Lanes, 96 - 98
 typeface, 32
 Typeface, 197
 TypefaceSpan, 214

 U
 UI mode, 65
 UI threads, checking if current thread is

UI thread, 354 - 355
 UnderlineSpan, 214
 up indicator, 102
 updating

 styles, 160 - 161
 themes, 160 - 161

 URLSpan, 214
 user experience (UX), 87
 user goals, 88 - 89
 user input, views, 36 - 39
 user personas, 89
 UX (user experience), 87

 V
 ValueAnimator, 192
 values, 62
 VelocityTracker.obtain(), 281
 video (YouTube), 334 - 335
 videos, Amazon Appstore, 340 - 341
 VideoView, 42
 view animations, 186 - 191
 View class, attributes, 24 - 26
 view dimensions, 27 - 28
 view groups, 55 - 57
 view IDs, 26 - 27
 ViewAnimator, 57
 ViewConfi guration, 267
 ViewFlipper, 57
 ViewGroup, 46 , 187 , 272
 ViewHolder pattern, 168 - 170
 ViewPager, 55
 ViewPropertyAnimator, 194

 375 ZOOMCONTROLS

 views, 24 - 25 , 40 - 41 , 258
 breaking comps into, 161 - 165
 Canvas object, 260

 bitmaps, 260 - 261
 Drawables, 261
 Paint, 260

 combining, 224
 for simplicity, 224 - 236

 custom views, 263 - 264
 creating initial custom view fi les,

264 - 269
 drawing to the canvas, 272 - 275
 handling touch input, 281 - 297
 measuring view dimensions, 269 - 272
 preparing for touch input, 277 - 280
 testing, 296

 drawing, 259 - 260
 eliminating, Hierarchy Viewer, 179 - 183
 for gathering user input, 36 - 39
 layouts, 259
 measurement, 258 - 259
 touch input, 261 - 263
 wireframes, 116

 property list item, 116 - 119
 putting list item in the app, 119 - 130

 ViewStub, 212
 infl ating in Java, 212

 ViewSwitcher, 57 , 211
 animations, 211

 visibility, 26
 visuals, core principles, 13
 voice, design, 134 - 135

 W
 WCAG (Web Content Accessibility

Guidelines), 143
 websites, Android design website, 7
 WebView, 42
 weight, LinearLayout, 47
 Wireframe Sketcher, 95

 wireframes, 94 - 96
 content pieces, 98 - 101
 detail pages, 102 - 103
 graphical design and, 134
 naming conventions, 104 - 105
 navigation, 96 - 99
 profi le pages, 163
 supporting multiple devices, 104
 views, 116

 property list item, 116 - 119
 putting list item in the app, 119 - 130

 wrap_content, 27

 X-Y
 XHDPI (extra high dots per inch), 27 , 67 , 158
 xml, 62
 XML attributes, defi ning for multibutton

toggle, 246 - 255
 XML drawables, 71 - 72

 ClipDrawable, 78
 InsetDrawable, 77
 layer lists, 72 - 73
 level lists, 76
 ScaleDrawable, 78
 ShapeDrawable, 79 - 81
 state lists, 73 - 76
 tiles, 155
 TransitionDrawable, 77

 XML Rotate animation, 188 - 189
 XML ViewStub, 212
 XML-defi ned gradients, 201
 XOR, PorterDuff image compositing, 310 - 311
 XXHDPI (extra, extra high dots per inch), 27

 Z
 ZoomButton, 42
 ZoomControls, 57

	Contents
	Introduction
	10 How to Handle Common Components
	Splash Screen
	Loading Indication
	Complex TextViews
	Autoloading ListViews
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y
	Z

