
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321884220
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321884220
https://plusone.google.com/share?url=http://www.informit.com/title/9780321884220
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321884220
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321884220/Free-Sample-Chapter

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

 The Advanced iOS 6
Developer’s
Cookbook

 Fourth Edition

 Erica Sadun

 Editor-in-Chief

Mark Taub

 Senior Acquisitions
Editor

Trina MacDonald

 Senior Development
Editor

Chris Zahn

 Managing Editor

Kristy Hart

 Project Editor

Jovana San Nicolas-
Shirley

 Copy Editor

Apostrophe Editing
Services

 Indexer

Brad Herriman

 Proofreader

Sarah Kearns

 Technical Editors

Mike Shields
Rich Wardwell

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

1-800-382-3419

 corpsales@pearsontechgroup.com

 For sales outside of the U.S., please contact

 International Sales

 international@pearsoned.com

 AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV,
Aqua, Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode,
Finder, FireWire, iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod
touch, iTunes, the iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch,
Objective-C, Quartz, QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight,
and Xcode are trademarks of Apple, Inc., registered in the U.S. and other countries.
OpenGL, or OpenGL Logo, OpenGL is a registered trademark of Silicon Graphics,
Inc. The YouTube logo is a trademark of Google, Inc. Intel, Intel Core, and Xeon are
trademarks of Intel Corp. in the United States and other countries.

 Visit us on the Web: informit.com/aw

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, write to:

 Pearson Education, Inc.

Rights and Contracts Department

501 Boylston Street, Suite 900

Boston, MA 02116

Fax (617) 671-3447

 ISBN-13: 978-0-321-88422-0
 ISBN-10: 0-321-88422-1

❖

 I dedicate this book with love to my husband, Alberto,
who has put up with too many gadgets and

too many SDKs over the years while remaining
both kind and patient at the end of the day.

❖

iv Contentsiv Contents

 Contents at a Glance

 Preface xiii

 1 Device-Specific Development 1

 2 Documents and Data Sharing 39

 3 Core Text 87

 4 Geometry 127

 5 Networking 167

 6 Images 197

 7 Camera 229

 8 Audio 261

 9 Connecting to the Address Book 297

 10 Location 339

 11 GameKit 371

 12 StoreKit 427

 13 Push Notifications 447

 Index 475

Table of Contents

 Preface . xiii

 1 Device-Specific Development . 1

Accessing Basic Device Information . 1

Adding Device Capability Restrictions . 2

Recipe: Checking Device Proximity and Battery States . 5

Recipe: Recovering Additional Device Information . 9

Recipe: Using Acceleration to Locate “Up” . 11

Working with Basic Orientation . 12

Retrieving the Current Accelerometer Angle Synchronously 13

Recipe: Using Acceleration to Move Onscreen Objects . 16

Recipe: Accelerometer-Based Scroll View . 19

Recipe: Core Motion Basics . 21

Recipe: Retrieving and Using Device Attitude . 26

Detecting Shakes Using Motion Events . 27

Recipe: Using External Screens . 29

Tracking Users . 35

One More Thing: Checking for Available Disk Space . 35

Summary . 36

 2 Documents and Data Sharing . 39

Recipe: Working with Uniform Type Identifiers . 39

Recipe: Accessing the System Pasteboard . 45

Recipe: Monitoring the Documents Folder . 48

Recipe: Presenting the Activity View Controller . 54

Recipe: The Quick Look Preview Controller . 63

Recipe: Adding a QuickLook Action . 66

Recipe: Using The Document Interaction Controller . 69

Recipe: Declaring Document Support. . 75

Recipe: Creating URL-Based Services . 82

Summary . 84

vi Contents

 3 Core Text . 87

Core Text and iOS . 87

Attributed Strings . 89

Recipe: Basic Attributed Strings . 93

Recipe: Mutable Attributed Strings . 95

The Mystery of Responder Styles . 98

Recipe: Attribute Stacks . 100

Recipe: Using Pseudo-HTML to Create Attributed Text . 105

Drawing with Core Text . 109

Creating Image Cut-Outs . 112

Recipe: Drawing Core Text onto a Scroll View . 114

Recipe: Exploring Fonts . 116

Adding Custom Fonts to Your App . 118

Recipe: Splitting Core Text into Pages . 119

Recipe: Drawing Attributed Text into a PDF . 120

Recipe: Big Phone Text . 122

Summary . 125

 4 Geometry . 127

Recipe: Retrieving Points from Bezier Paths . 127

Recipe: Thinning Points . 129

Recipe: Smoothing Drawings . 132

Recipe: Velocity-Based Stroking . 135

Recipe: Bounding Bezier Paths . 137

Recipe: Fitting Paths . 142

Working with Curves . 144

Recipe: Moving Items Along a Bezier Path . 148

Recipe: Drawing Attributed Text Along a Bezier Path . 151

Recipe: View Transforms . 154

Recipe: Testing for View Intersection . 161

Summary . 166

 5 Networking . 167

Recipe: Secure Credential Storage . 167

Recipe: Entering Credentials . 171

Recipe: Handling Authentication Challenges . 176

Recipe: Uploading Data . 177

viiContents

Recipe: Building a Simple Web Server . 181

Recipe: OAuth Utilities . 184

Recipe: The OAuth Process . 188

Summary . 196

 6 Images . 197

Image Sources . 197

Reading Image Data . 199

Recipe: Fitting and Filling Images . 203

Recipe: Rotating Images . 208

Recipe: Working with Bitmap Representations. . 210

Recipe: Basic Image Processing . 215

Recipe: Image Convolution . 216

Recipe: Basic Core Image Processing . 219

Capturing View-Based Screen Shots . 221

Drawing into PDF Files . 222

Recipe: Reflection . 223

Recipe: Emitters . 226

Summary . 228

 7 Cameras . 229

Recipe: Snapping Photos . 229

Recipe: Enabling a Flashlight . 233

Recipe: Accessing the AVFoundation Camera . 235

Recipe: EXIF . 242

Image Orientations . 247

Recipe: Core Image Filtering . 249

Recipe: Core Image Face Detection . 251

Recipe: Sampling a Live Feed . 257

Summary . 260

 8 Audio . 261

Recipe: Playing Audio with AVAudioPlayer . 261

Recipe: Looping Audio . 269

Recipe: Handling Audio Interruptions . 272

Recipe: Recording Audio . 274

Recipe: Recording Audio with Audio Queues . 280

Recipe: Picking Audio with the MPMediaPickerController 286

viii Contents

Creating a Media Query . 288

Recipe: Using the MPMusicPlayerController . 290

Summary . 294

 9 Connecting to the Address Book . 297

The AddressBook Frameworks . 297

Recipe: Searching the Address Book . 322

Recipe: Accessing Contact Image Data . 325

Recipe: Picking People . 326

Recipe: Limiting Contact Picker Properties . 329

Recipe: Adding and Removing Contacts . 331

Modifying and Viewing Individual Contacts . 334

Recipe: The “Unknown” Person Controller . 335

Summary . 338

 10 Location . 339

Authorizing Core Location . 339

Recipe: Core Location in a Nutshell . 344

Recipe: Geofencing . 348

Recipe: Keeping Track of “North” by Using Heading Values 350

Recipe: Forward and Reverse Geocoding . 353

Recipe: Viewing a Location . 355

Recipe: User Location Annotations . 360

Recipe: Creating Map Annotations . 363

Summary . 369

 11 GameKit . 371

Enabling Game Center . 371

Recipe: Signing In to Game Center . 373

Designing Leaderboards and Achievements . 375

Recipe: Accessing Leaderboards . 378

Recipe: Displaying the Game Center View Controller . 380

Recipe: Submitting Scores. . 381

Recipe: Checking Achievements . 382

Recipe: Reporting Achievements to Game Center . 383

Recipe: Multiplayer Matchmaking . 385

Recipe: Responding to the Matchmaker . 387

Recipe: Creating an Invitation Handler . 388

ixContents

Managing Match State . 390

Recipe: Handling Player State Changes . 390

Recipe: Retrieving Player Names . 392

Game Play . 393

Serializing Data . 394

Recipe: Synchronizing Data . 397

Recipe: Turn-by-Turn Matchmaking . 399

Recipe: Responding to Turn-Based Invitations . 401

Recipe: Loading Matches . 402

Recipe: Responding to Game Play . 403

Recipe: Ending Gameplay . 407

Recipe: Removing Matches . 410

Recipe: Game Center Voice . 411

GameKit Peer Services . 415

Summary . 425

 12 StoreKit . 427

Getting Started with StoreKit . 427

Creating Test Accounts . 430

Creating New In-App Purchase Items . 431

Building a Storefront GUI . 435

Purchasing Items . 438

Validating Receipts . 443

Summary . 445

 13 Push Notifications . 447

Introducing Push Notifications . 447

Provisioning Push . 451

Registering Your Application . 454

Recipe: Push Client Skeleton . 458

Building Notification Payloads . 465

Recipe: Sending Notifications. . 466

Feedback Service . 471

Designing for Push . 473

Summary . 473

 Index . 475

 Acknowledgments

 This book would not exist without the efforts of Chuck Toporek, who was my editor and
whipcracker for many years and multiple publishers. He is now at Apple and deeply missed.
There’d be no Cookbook were it not for him. He balances two great skill sets: inspiring authors
to do what they think they cannot, and wielding the large “reality trout” of whacking1 to keep
subject matter focused and in the real world. There’s nothing like being smacked repeatedly by
a large virtual fish to bring a book in on deadline and with compelling content.

 Thanks go as well to Trina MacDonald (my terrific new editor), Chris Zahn (the awesomely
talented development editor), and Olivia Basegio (the faithful and rocking editorial assistant
who kept things rolling behind the scenes). Also, a big thank you to the entire Addison-Wesley/
Pearson production team, specifically Kristy Hart, Jovana San Nicolas-Shirley, San Dee Phillips,
Nonie Ratcliff, and Chuti Prasertsith. Thanks also to the crew at Safari for getting my book up
in Rough Cuts and for quickly fixing things when technical glitches occurred.

 Thanks go as well to Neil Salkind, my agent of many years, to the tech reviewers Oliver
Drobnik, Rich Wardwell, and Duncan Champney, who helped keep this book in the realm
of sanity rather than wishful thinking, and to all my colleagues, both present and former, at
TUAW, Ars Technica, and the Digital Media/Inside iPhone blog.

 I am deeply indebted to the wide community of iOS developers, including Jon Bauer, Tim
Burks, Matt Martel, Tim Isted, Joachim Bean, Aaron Basil, Roberto Gamboni, John Muchow,
Scott Mikolaitis, Alex Schaefer, Nick Penree, James Cuff, Jay Freeman, Mark Montecalvo, August
Joki, Max Weisel, Optimo, Kevin Brosius, Planetbeing, Pytey, Michael Brennan, Daniel Gard,
Michael Jones, Roxfan, MuscleNerd, np101137, UnterPerro, Jonathan Watmough, Youssef
Francis, Bryan Henry, William DeMuro, Jeremy Sinclair, Arshad Tayyeb, Jonathan Thompson,
Dustin Voss, Daniel Peebles, ChronicProductions, Greg Hartstein, Emanuele Vulcano, Sean
Heber, Josh Bleecher Snyder, Eric Chamberlain, Steven Troughton-Smith, Dustin Howett, Dick
Applebaum, Kevin Ballard, Hamish Allan, Lutz Bendlin, Oliver Drobnik, Rod Strougo, Kevin
McAllister, Jay Abbott, Tim Grant Davies, Maurice Sharp, Chris Samuels, Chris Greening,
Jonathan Willing, Landon Fuller, Jeremy Tregunna, Christine Reindl, Wil Macaulay, Stefan
Hafeneger, Scott Yelich, Mike Kale, chrallelinder, John Varghese, Robert Jen, Andrea Fanfani,
J. Roman, jtbandes, Artissimo, Aaron Alexander, Christopher Campbell Jensen, Nico Ameghino,
Jon Moody, Julián Romero, Scott Lawrence, Evan K. Stone, Kenny Chan Ching-King, Matthias
Ringwald, Jeff Tentschert, Marco Fanciulli, Neil Taylor, Sjoerd van Geffen, Absentia, Nownot,
Emerson Malca, Matt Brown, Chris Foresman, Aron Trimble, Paul Griffin, Paul Robichaux,
Nicolas Haunold, Anatol Ulrich (hypnocode GmbH), Kristian Glass, Remy “psy” Demarest,
Yanik Magnan, ashikase, Shane Zatezalo, Tito Ciuro, Mahipal Raythattha, Jonah Williams of
Carbon Five, Joshua Weinberg, biappi, Eric Mock, and everyone at the iPhone developer chan-
nels at irc.saurik.com and irc.freenode.net , among many others too numerous to name indi-
vidually. Their techniques, suggestions, and feedback helped make this book possible. If I have
overlooked anyone who helped contribute, please accept my apologies for the oversight.

xiAcknowledgments

 Special thanks go out to my family and friends, who supported me through month after month
of new beta releases and who patiently put up with my unexplained absences and frequent
howls of despair. I appreciate you all hanging in there with me. And thanks to my children for
their steadfastness, even as they learned that a hunched back and the sound of clicking keys is
a pale substitute for a proper mother. My kids provided invaluable assistance over the past few
months by testing applications, offering suggestions, and just being awesome people. I try to
remind myself on a daily basis how lucky I am that these kids are part of my life.

 About the Author

 Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
 The iOS 5 Developer’s Cookbook. She currently blogs at TUAW.com and has blogged in the past
at O’Reilly’s Mac Devcenter, Lifehacker, and Ars Technica. In addition to being the author of
dozens of iOS-native applications, Erica holds a Ph.D. in Computer Science from Georgia Tech’s
Graphics, Visualization, and Usability Center. A geek, a programmer, and an author, she’s never
met a gadget she didn’t love. When not writing, she and her geek husband parent three geeks-
in-training, who regard their parents with restrained bemusement, when they’re not busy rewir-
ing the house or plotting global dominance.

 Preface

 Welcome to another iOS Cookbook!

 With iOS 6, Apple’s mobile device family has reached new levels of excitement and possibil-
ity. This Cookbook is here to help you start developing. This revision introduces new features
announced at the latest WWDC, showing you how to incorporate them into your applications.

 For this edition, my publishing team has sensibly split the Cookbook material into manage-
able print volumes. This book, The Advanced iOS 6 Developer’s Cookbook, centers on common
frameworks such as StoreKit, GameKit, and Core Location and handy techniques such as image
manipulation typesetting. It helps you build applications that leverage special-purpose libraries
and move beyond the basics. This volume is for those who have a strong grasp on iOS develop-
ment and are looking for practical how-to’s for specialized areas.

 Its companion volume, The Core iOS 6 Developer’s Cookbook, provides solutions for the heart of
day-to-day development. It covers all the classes you need for creating iOS applications using
standard APIs and interface elements. It contains the recipes you need for working with graph-
ics, touches, and views to create mobile applications.

 Finally, there’s Learning iOS 6: A Hands-On Guide to the Fundamentals of iOS Programming , which
covers much of the tutorial material that used to compose the first several chapters of the
Cookbook. There you can find all the fundamental how-to’s you need to learn iOS 6 develop-
ment from the ground up. From Objective-C to Xcode, debugging to deployment, Learning iOS
6 teaches you how to start with Apple’s development tool suite.

 As in the past, you can find sample code at github. You’ll find the repository for this Cookbook
at https://github.com/erica/iOS-6-Cookbook , all of it refreshed for iOS 6 after WWDC 2012.

 If you have suggestions, bug fixes, corrections, or anything else you’d like to contribute to a
future edition, please contact me at erica@ericasadun.com . Let me thank you all in advance. I
appreciate all feedback that helps make this a better, stronger book.

 —Erica Sadun, September 2012

 What You Need

 It goes without saying that, if you plan to build iOS applications, you need at least one iOS
device to test your application, preferably a new model iPhone or tablet. The following list
covers the basics of what you need to begin:

 ■ Apple’s iOS SDK— You can download the latest version of the iOS SDK from Apple’s iOS
Dev Center (http://developer.apple.com/ios). If you plan to sell apps through the App
Store, become a paid iOS developer. This costs $99/year for individuals and $299/year for
enterprise (that is, corporate) developers. Registered developers receive certificates that
enable them to “sign” and download their applications to their iPhone/iPod touch for
testing and debugging and to gain early access to prerelease versions of iOS. Free-program

https://github.com/erica/iOS-6-Cookbook
http://developer.apple.com/ios

xiv Preface

developers can test their software on the Mac-based simulator but cannot deploy to
devices or submit to the App Store.

 University Student Program

Apple also offers a University Program for students and educators. If you are a computer sci-
ence student taking classes at the university level, check with your professor to see whether
your school is part of the University Program. For more information about the iPhone Developer
University Program, see http://developer.apple.com/support/iphone/university .

 ■ A modern Mac running Mac OS X Lion (v 10.7) or, preferably, Mac OS X Mountain
Lion (v 10.8)— You need plenty of disk space for development, and your Mac should
have as much RAM as you can afford to put into it.

 ■ An iOS device— Although the iOS SDK includes a simulator for you to test your
applications in, you really do need to own iOS hardware to develop for the platform. You
can tether your unit to the computer and install the software you’ve built. For real-life
App Store deployment, it helps to have several units on hand, representing the various
hardware and firmware generations, so you can test on the same platforms your target
audience uses.

 ■ An Internet connection— This connection enables you to test your programs with a live
Wi-Fi connection and with an EDGE or 3G service.

 ■ Familiarity with Objective-C— To program for the iPhone, you need to know
Objective-C 2.0. The language is based on ANSI C with object-oriented extensions, which
means you also need to know a bit of C. If you have programmed with Java or C++ and
are familiar with C, you can make the move to Objective-C.

 Your Roadmap to Mac/iOS Development

 One book can’t be everything to everyone. Try as I might, if we were to pack everything you
need to know into this book, you wouldn’t be able to pick it up. (As it stands, this book offers
an excellent tool for upper-body development. Please don’t sue if you strain yourself lifting
it.) There is, indeed, a lot you need to know to develop for the Mac and iOS platforms. If you
are just starting out and don’t have any programming experience, your first course of action
should be to take a college-level course in the C programming language. Although the alphabet
might start with the letter A, the root of most programming languages, and certainly your path
as a developer, is C.

 When you know C and how to work with a compiler (something you’ll learn in that basic C
course), the rest should be easy. From there, you can hop right on to Objective-C and learn
how to program with that alongside the Cocoa frameworks. The flowchart shown in Figure P-1
shows you key titles offered by Pearson Education that can help provide the training you need
to become a skilled iOS developer.

http://developer.apple.com/support/iphone/university

xvPreface

 Figure P-1 A roadmap to becoming an iOS developer

 When you know C, you have a few options for learning how to program with Objective-C. If
you want an in-depth view of the language, you can either read Apple’s documentation or pick
up one of these books on Objective-C:

 ■ Objective-C Programming: The Big Nerd Ranch Guide, by Aaron Hillegass (Big Nerd Ranch,
2012)

xvi Preface

 ■ Learning Objective-C: A Hands-on Guide to Objective-C for Mac and iOS Developers, by Robert
Clair (Addison-Wesley, 2011)

 ■ Programming in Objective-C 2.0, Fourth Edition, by Stephen Kochan (Addison-Wesley, 2012)

 With the language behind you, next up is tackling Cocoa and the developer tools, otherwise
known as Xcode. For that, you have a few different options. Again, you can refer to Apple’s
documentation on Cocoa and Xcode,2 or if you prefer books, you can learn from the best.
Aaron Hillegass, founder of the Big Nerd Ranch in Atlanta, 3 is the coauthor of iOS Programming:
The Big Nerd Ranch Guide, Second Edition, and author of Cocoa Programming for Mac OS X, soon
to be in its fourth edition. Aaron’s book is highly regarded in Mac developer circles and is the
most-recommended book you’ll see on the cocoa-dev mailing list. To learn more about Xcode,
look no further than Fritz Anderson’s Xcode 4 Unleashed from Sams Publishing.

 Note

 There are plenty of other books from other publishers on the market, including the bestsell-
ing Beginning iPhone 4 Development, by Dave Mark, Jack Nutting, and Jeff LaMarche (Apress,
2011). Another book that’s worth picking up if you’re a total newbie to programming is
 Beginning Mac Programming, by Tim Isted (Pragmatic Programmers, 2011). Don’t just limit your-
self to one book or publisher. Just as you can learn a lot by talking with different developers,
you can learn lots of tricks and tips from other books on the market.

 To truly master Mac development, you need to look at a variety of sources: books, blogs,
mailing lists, Apple’s documentation, and, best of all, conferences. If you get the chance to
attend WWDC, you’ll know what I’m talking about. The time you spend at those conferences
talking with other developers, and in the case of WWDC, talking with Apple’s engineers, is well
worth the expense if you are a serious developer.

 How This Book Is Organized

 This book offers single-task recipes for the most common issues new iOS developers face: laying
out interface elements, responding to users, accessing local data sources, and connecting to the
Internet. Each chapter groups together related tasks, enabling you to jump directly to the solu-
tion you’re looking for without having to decide which class or framework best matches that
problem.

 The iOS 6 Developer’s Cookbook offers you “cut-and-paste convenience,” which means you can
freely reuse the source code from recipes in this book for your own applications and then tweak
the code to suit your app’s needs.

 Here’s a rundown of this book’s chapters:

 ■ Chapter 1 , “Device-Specific Development”— Each iOS device represents a meld of
unique, shared, momentary, and persistent properties. These properties include the
device’s current physical orientation, its model name, its battery state, and its access to

xviiPreface

onboard hardware. This chapter looks at the device from its build configuration to its
active onboard sensors. It provides recipes that return a variety of information items
about the unit in use.

 ■ Chapter 2 , “Documents and Data Sharing”— Under iOS, applications can share
information and data as well as move control from one application to another using
several system-supplied features. This chapter introduces the ways you can integrate
documents and data sharing between applications. You see how to add these features
into your applications and use them smartly to make your app a cooperative citizen of
the iOS ecosystem.

 ■ Chapter 3 , “Core Text”— This chapter introduces attributed text processing and explores
how you can build text features into your apps. You read about adding attributed
strings to common UIKit elements, how to create Core Text-powered views, and how to
break beyond lines for freeform text typesetting. After reading this chapter, you’ll have
discovered the power that Core Text brings to iOS.

 ■ Chapter 4 , “Geometry”— Although UIKit requires less applied math than, say, Core
Animation or Open GL, geometry plays an important role when working with Bezier
paths and view transforms. Why do you need geometry? It helps you manipulate views
in nonstandard ways, including laying out text along custom paths and performing
path-follow types of animation. If your eyes glaze over at the mention of Bezier curves,
Convex Hulls, and splines, this chapter can help demystify these terms, enabling you to
add some powerful customization options to your toolbox.

 ■ Chapter 5 , “Networking”— Apple has lavished iOS with a solid grounding in all kinds
of network computing and its supporting technologies. The networking chapter in the
Core Cookbook introduced network status checks, synchronous and asynchronous
downloads, JSON, and XML parsing. This chapter continues that theme by introducing
more advanced techniques. These include authentication challenges, using the system
keychain, working with OAuth, and so forth. Here are handy approaches that should
help with your development.

 ■ Chapter 6 , “Images”— Images are abstract representations, storing data that makes up
pictures. This chapter introduces Cocoa Touch images, specifically the UIImage class, and
teaches you all the basic know-how you need for working with image data on iOS. In this
chapter, you learn how to load, store, and modify image data in your applications. You
discover how to process image data to create special effects, how to access images on a
byte-by-byte basis, and more.

 ■ Chapter 7 , “Camera”— Cameras kick images up to the next level. They enable you to
integrate live feeds and user-directed snapshots into your applications, and provide raw
data sourced from the real world. In this chapter, you read about image capture. You
discover how to take pictures using Apple-sourced classes and how to roll your own from
scratch. You learn about controlling image metadata and how to integrate live feeds
with advanced filtering. This chapter focuses on image capture from a hardware point of
view. Whether you’re switching on the camera flash LED or detecting faces, this chapter
introduces the ins and outs of iOS image capture technology.

xviii Preface

 ■ Chapter 8 , “Audio”— The iOS device is a media master; its built-in iPod features expertly
handle both audio and video. The iOS SDK exposes that functionality to developers. A
rich suite of classes simplifies media handling via playback, search, and recording. This
chapter introduces recipes that use those classes for audio, presenting media to your users
and letting your users interact with that media. You see how to build audio players and
audio recorders. You discover how to browse the iPod library and how to choose what
items to play.

 ■ Chapter 9 , “Connecting to the Address Book”— This chapter introduces the Address
Book and demonstrates how to use its frameworks in your applications. You read about
accessing information on a contact-by-contact basis, how to modify and update contact
information, and how to use predicates to find just the contact you’re interested in. This
chapter also covers the GUI classes that provide interactive solutions for picking, viewing,
and modifying contacts.

 ■ Chapter 10 , “Location”— Where you compute is fast becoming just as important as
how you compute and what you compute. iOS is constantly on the go, traveling with
its users throughout the course of the day. Core Location infuses iOS with on-demand
geopositioning. MapKit adds interactive in-application mapping, enabling users to
view and manipulate annotated maps. With Core Location and MapKit, you can
develop applications that help users meet up with friends, search for local resources, or
provide location-based streams of personal information. This chapter introduces these
location-aware frameworks and shows you how you can integrate them into your iOS
applications.

 ■ Chapter 11 , “GameKit”— This chapter introduces various ways you can create connected
game play through GameKit. GameKit offers features that enable your applications to
move beyond a single-player/single-device scenario toward using Game Center and
device-to-device networking. Apple’s Game Center adds a centralized service that enables
your game to offer shared leaderboards and Internet-based matches. GameKit also
provides an ad-hoc networking solution for peer-to-peer connectivity.

 ■ Chapter 12 , “StoreKit”— StoreKit offers in-app purchasing that integrates into your
software. With StoreKit, end users can use their iTunes credentials to buy unlockable
features, media subscriptions, or consumable assets, such as fish food or sunlight, from
within an application. This chapter introduces StoreKit and shows you how to use the
StoreKit API to create purchasing options for users.

 ■ Chapter 13 , “Push Notification”— When off-device services need to communicate
directly with users, push notifications provide a solution. Just as local notifications
enable apps to contact users at scheduled times, push notifications deliver messages from
web-based systems. Push notifications enable devices to display an alert, play a custom
sound, or update an application badge. In this way, off-device services connect with
an iOS-based client, enabling them to know about new data or updates. This chapter
introduces all the push notification basics you need to know.

xixPreface

 About the Sample Code

 For the sake of pedagogy, this book’s sample code uses a single main.m file. This is not how
people normally develop iPhone or Cocoa applications, or, honestly, how they should be devel-
oping them, but it provides a great way of presenting a single big idea. It’s hard to tell a story
when readers must look through five or seven or nine individual files at once. Offering a single
file concentrates that story, allowing access to that idea in a single chunk.

 These examples are not intended as stand-alone applications. They are there to demonstrate a
single recipe and a single idea. One main.m file with a central presentation reveals the imple-
mentation story in one place. You can study these concentrated ideas and transfer them into
normal application structures, using the standard file structure and layout. The presentation in
this book does not produce code in a standard day-to-day best-practices approach. Instead, it
offers concise solutions that you can incorporate back into your work as needed.

 Contrast that to Apple’s standard sample code, where you must comb through many files to
build up a mental model of the concepts that are being demonstrated. Those examples are built
as full applications, often doing tasks that are related to but not essential to what you need to
solve. Finding just those relevant portions is a lot of work. The effort may outweigh any gains.

 In this book, you find exceptions to this one-file-with-the-story rule: The Cookbook provides
standard class and header files when a class implementation is the recipe. Instead of highlight-
ing a technique, some recipes offer these classes and categories (that is, extensions to a preexist-
ing class rather than a new class). For those recipes, look for separate .m and .h files in addition
to the skeletal main.m that encapsulates the rest of the story.

 For the most part, the examples for this book use a single application identifier: com.sadun.
helloworld. This book uses one identifier to avoid clogging up your iOS devices with dozens
of examples at once. Each example replaces the previous one, ensuring that your home screen
remains relatively uncluttered. If you want to install several examples simultaneously, simply
edit the identifier, adding a unique suffix, such as com.sadun.helloworld.table-edits. You can
also edit the custom display name to make the apps visually distinct. Your Team Provisioning
Profile matches every application identifier, including com.sadun.helloworld. This enables you
to install compiled code to devices without having to change the identifier; just make sure to
update your signing identity in each project’s build settings.

 Getting the Sample Code

 You’ll find the source code for this book at github.com/erica/iOS-6-Cookbook on the open-
source GitHub hosting site. There, you can find a chapter-by-chapter collection of source code
that provides working examples of the material covered in this book. Recipes are numbered as
they are in the book. Recipe 6 in Chapter 5 , for example, appears in the C05 folder in the 06
subfolder.

 Any project numbered 00 or that has a suffix (such as 05b or 02c) refers to material used to
create in-text coverage and figures. Normally I delete these extra projects. Early readers of this

xx Preface

manuscript requested that I include them in this edition. You can find a half dozen or so of
these extra samples scattered around the repository.

 If you do not feel comfortable using git directly, GitHub offers a download button. It was at
the right side of the main page at the time this book was written, about halfway down the first
page. It enables you to retrieve the entire repository as a ZIP archive or tarball.

 Contribute!

 Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and the
Cocoa Touch libraries. Get involved. You can pitch in by suggesting bug fixes and corrections
as well as by expanding the code that’s on offer. GitHub enables you to fork repositories and
grow them with your own tweaks and features, and share those back to the main repository. If
you come up with a new idea or approach, let me know. My team and I are happy to include
great suggestions both at the repository and in the next edition of this Cookbook.

 Getting Git

 You can download this Cookbook’s source code using the git version control system. An OS X
implementation of git is available at http://code.google.com/p/git-osx-installer . OS X git imple-
mentations include both command-line and GUI solutions, so hunt around for the version that
best suits your development needs.

 Getting GitHub

 GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public
repositories. It provides both free hosting for public projects and paid options for private proj-
ects. With a custom web interface that includes wiki hosting, issue tracking, and an emphasis
on social networking of project developers, it’s a great place to find new code or collaborate on
existing libraries. You can sign up for a free account at its Web site, enabling you to copy and
modify the Cookbook repository or create your own open-source iOS projects to share with
others.

 Contacting the Author

 If you have any comments or questions about this book, please drop me an e-mail message at
 erica@ericasadun.com , or stop by the github repository and contact me there.

http://code.google.com/p/git-osx-installer
http://github.com

xxiPreface

 Endnotes

 1. No trouts, real or imaginary, were hurt in the development and production of this book.
The same cannot be said for countless cans of Diet Coke that selflessly surrendered their
contents in the service of this manuscript.

 2. See the Cocoa Fundamentals Guide (http://developer.apple.com/mac/library/
documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf) for a
head start on Cocoa, and for Xcode, see A Tour of Xcode (http://developer.apple.com/
mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_
Xcode.pdf).

 3. Big Nerd Ranch: www.bignerdranch.com .

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://www.bignerdranch.com

 Editor’s Note: We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone or e-mail address. I will carefully review your comments and share them with the author
and editors who worked on the book.

 E-mail: trina.macdonald@pearson.com

 Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

 1
 Device-Specific

Development

 Each iOS device represents a meld of unique, shared, momentary, and persistent properties.
These properties include the device’s current physical orientation, its model name, its battery
state, and its access to onboard hardware. This chapter looks at the device from its build
configuration to its active onboard sensors. It provides recipes that return a variety of informa-
tion items about the unit in use. You read about testing for hardware prerequisites at runtime
and specifying those prerequisites in the application’s Info.plist file. You discover how to solicit
sensor feedback via Core Motion and subscribe to notifications to create callbacks when sensor
states change. You read about adding screen mirroring and second-screen output, and about
soliciting device-specific details for tracking. This chapter covers the hardware, file system, and
sensors available on the iPhone device and helps you programmatically take advantage of those
features.

 Accessing Basic Device Information

 The UIDevice class exposes key device-specific properties, including the iPhone, iPad, or iPod
touch model being used, the device name, and the OS name and version. It’s a one-stop solu-
tion for pulling out certain system details. Each method is an instance method, which is called
using the UIDevice singleton, via [UIDevice currentDevice] .

 The system information you can retrieve from UIDevice includes these items:

 ■ systemName — This returns the name of the operating system currently in use. For current
generations of iOS devices, there is only one OS that runs on the platform: iPhone OS.
Apple has not yet updated this name to match the general iOS rebranding.

 ■ systemVersion — This value lists the firmware version currently installed on the unit: for
example, 4.3, 5.1.1, 6.0, and so on.

2 Chapter 1 Device-Specific Development

 ■ model — The iPhone model returns a string that describes its platform—namely iPhone,
iPad, and iPod touch. Should iOS be extended to new devices, additional strings will
describe those models. localizedModel provides a localized version of this property.

 ■ userInterfaceIdiom — This property represents the interface style used on the current
device, namely either iPhone (for iPhone and iPod touch) or iPad. Other idioms may be
introduced as Apple offers additional platform styles.

 ■ name — This string presents the iPhone name assigned by the user in iTunes, such as “Joe’s
iPhone” or “Binky.” This name is also used to create the local hostname for the device.

 Here are a few examples of these properties in use:

 UIDevice *device = [UIDevice currentDevice];

 NSLog(@"System name: %@", device.systemName);

 NSLog(@"Model: %@", device.model);

 NSLog(@"Name: %@", device.name);

 For current iOS releases, you can use the idiom check with a simple Boolean test. Here’s
an example of how you might implement an iPad check. Notice the convenience macro.
It tests for selector conformance and then returns [UIDevice currentDevice].
userInterfaceIdiom if possible, and UIUserInterfaceIdiomPhone otherwise:

 #define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

 Should this test fail, you may currently assume that you’re working with an iPhone/iPod touch.
If and when Apple releases a new family of devices, you’ll need to update your code accord-
ingly for a more nuanced test.

 Adding Device Capability Restrictions

 An application’s Info.plist property list enables you to specify application requirements when
you submit applications to iTunes. These restrictions enable you to tell iTunes what device
features your application needs.

 Each iOS unit provides a unique feature set. Some devices offer cameras and GPS capabilities.
Others don’t. Some have onboard gyros, autofocus, and other powerful options. You specify
what features are needed to run your application on a device.

 When you include the UIRequiredDeviceCapabilities key in your Info.plist file, iTunes
limits application installation to devices that offer the required capabilities. Provide this list as
either an array of strings or a dictionary.

 An array specifies each required capability; each item in that array must be present on your
device. A dictionary enables you to explicitly require or prohibit a feature. The dictionary keys
are the capabilities. The dictionary values set whether the feature must be present (Boolean
true) or omitted (Boolean false).

3Adding Device Capability Restrictions

 The current keys are detailed in Table 1-1 . Only include those features that your application
absolutely requires or cannot support. If your application can provide workarounds, do not
add restrictions in this way. Table 1-1 discusses each feature in a positive sense. When using a
prohibition rather than a requirement, reverse the meaning—for example, that an autofocus
camera or gyro cannot be onboard, or that Game Center access cannot be supported.

 Table 1-1 Required Device Capabilities

 Key Use

 telephony Application requires the Phone application or uses tel:// URLs.

 wifi Application requires local 802.11-based network access. If
iOS must maintain that Wi-Fi connection as the app runs, add
 UIRequiresPersistentWiFi as a top-level property list key.

 sms Application requires the Messages application or uses sms:// URLs.

 still-camera Application requires an onboard still camera and can use the image picker
interface to capture photos from that still camera.

 auto-focus-camera Application requires extra focus capabilities for macro photography or
especially sharp images for in-image data detection.

 front-facing-camera Application requires a front-facing camera on the device.

 camera-flash Application requires a camera flash feature.

 video-camera Application requires a video-capable camera.

 accelerometer Application requires accelerometer-specific feedback beyond simple
 UIViewController orientation events.

 gyroscope Application requires an onboard gyroscope on the device.

 location-services Application uses Core Location of any kind.

 gps Application uses Core Location and requires the additional accuracy of GPS
positioning.

 magnetometer Application uses Core Location and requires heading-related events—that is,
the direction of travel. (The magnetometer is the built-in compass.)

 gamekit Application requires Game Center access (iOS 4.1 and later).

 microphone Application uses either built-in microphones or (approved) accessories that
provide a microphone.

 opengles-1 Application requires OpenGL ES 1.1.

 opengles-2 Application requires OpenGL ES 2.0.

 armv6 Application is compiled only for the armv6 instruction set (3.1 or later).

 armv7 Application is compiled only for the armv7 instruction set (3.1 or later).

4 Chapter 1 Device-Specific Development

 Key Use

 peer-peer Application uses GameKit peer-to-peer connectivity over Bluetooth
(3.1 or later).

 bluetooth-le Application requires Bluetooth low-energy support (5.0 and later).

 For example, consider an application that offers an option for taking pictures when run on a
camera-ready device. If the application otherwise works on pre-camera iPod touch units, do not
include the still-camera restriction. Instead, use check for camera capability from within the
application and present the camera option when appropriate. Adding a still-camera restriction
eliminates many early iPod touch (first through third generation) and iPad (first generation)
owners from your potential customer pool.

 User Permission Descriptions

 To protect privacy, the end user must explicitly permit your applications to access reminders,
photos, location, contacts, and calendar data. To convince the user to opt-in, it helps to explain
how your application can use this data and describe your reason for accessing it. Assign string
values to the following keys at the top level of your Info.plist file. When iOS prompts your user
for resource-specific permission, it displays these strings as part of its standard dialog box:

 ■ NSRemindersUsageDescription

 ■ NSPhotoLibraryUsageDescription

 ■ NSLocationUsageDescription

 ■ NSContactsUsageDescription

 ■ NSCalendarsUsageDescription

 Other Common Info.plist Keys

 Here are a few other common keys you may want to assign in your property list, along with
descriptions of what they do:

 ■ UIFileSharingEnabled (Boolean, defaults to off)—Enables users to access the contents
of your app’s Documents folder from iTunes. This folder appears at the top level of your
app sandbox.

 ■ UIAppFonts (Array, strings of font names including their extension)—Specifies
custom TTF fonts that you supply in your bundle. When added, you access them using
standard UIFont calls.

 ■ UIApplicationExitsOnSuspend (Boolean, defaults to off)—Enables your app to
terminate when the user clicks the Home button rather than move to the background.
When enabled, iOS terminates the app and purges it from memory.

5Recipe: Checking Device Proximity and Battery States

 ■ UIRequiresPersistentWifi (Boolean, defaults to off)—Instructs iOS to maintain a
Wi-Fi connection while the app is active.

 ■ UIStatusBarHidden (Boolean, defaults to off)—If enabled, hides the status bar as the
app launches.

 ■ UIStatusBarStyle (String, defaults to UIStatusBarStyleDefault)—Specifies the style of
the status bar at app launch.

 Recipe: Checking Device Proximity and Battery States

 The UIDevice class offers APIs that enable you to keep track of device characteristics including
the states of the battery and proximity sensor. Recipe 1-1 demonstrates how you can enable
and query monitoring for these two technologies. Both provide updates in the form of notifica-
tions, which you can subscribe to so your application is informed of important updates.

 Enabling and Disabling the Proximity Sensor

 Proximity is an iPhone-specific feature at this time. The iPod touch and iPad do not offer prox-
imity sensors. Unless you have some pressing reason to hold an iPhone against body parts (or
vice versa), using the proximity sensor accomplishes little.

 When enabled, it has one primary task. It detects whether there’s a large object right in front
of it. If so, it switches the screen off and sends a general notification. Move the blocking object
away and the screen switches back on. This prevents you from pressing buttons or dialing the
phone with your ear when you are on a call. Some poorly designed protective cases keep the
iPhone’s proximity sensors from working properly.

 Siri uses this feature. When you hold the phone up to your ear, it records your query, sending
it to be interpreted. Siri’s voice interface does not depend on a visual GUI to operate.

 Recipe 1-1 also demonstrates how to work with proximity sensing on the iPhone. Its code uses
the UIDevice class to toggle proximity monitoring and subscribes to UIDeviceProximity
StateDidChangeNotification to catch state changes. The two states are on and off. When
the UIDevice proximityState property returns YES , the proximity sensor has been activated.

 Monitoring the Battery State

 You can programmatically keep track of the battery and device state. These APIs enable you to
know the level to which the battery is charged and whether the device is plugged into a charg-
ing source. The battery level is a floating-point value that ranges between 1.0 (fully charged)
and 0.0 (fully discharged). It provides an approximate discharge level that you can use to query
before performing operations that put unusual strain on the device.

6 Chapter 1 Device-Specific Development

 For example, you might want to caution your user about performing a large series of math-
ematical computations and suggest that the user plug in to a power source. You retrieve the
battery level via this UIDevice call. The value returned is produced in 5% increments:

 NSLog(@"Battery level: %0.2f%",

 [UIDevice currentDevice].batteryLevel * 100);

 The charge state has four possible values. The unit can be charging (that is, connected to a
power source), full, unplugged, and a catchall “unknown.” Recover the state using the UIDevice
batteryState property:

 NSArray *stateArray = @[

 @"Battery state is unknown",

 @"Battery is not plugged into a charging source",

 @"Battery is charging",

 @"Battery state is full"];

 NSLog(@"Battery state: %@",

 stateArray[[UIDevice currentDevice].batteryState]);

 Don’t think of these choices as persistent states. Instead, think of them as momentary reflec-
tions of what is actually happening to the device. They are not flags. They are not OR’ed
together to form a general battery description. Instead, these values reflect the most recent state
change.

 You can easily monitor state changes by responding to notifications that the battery state
has changed. In this way, you can catch momentary events, such as when the battery finally
recharges fully, when the user has plugged in to a power source to recharge, and when the user
disconnects from that power source.

 To start monitoring, set the batteryMonitoringEnabled property to YES . During monitor-
ing, the UIDevice class produces notifications when the battery state or level changes. Recipe
 1-1 subscribes to both notifications. Please note that you can also check these values directly,
without waiting for notifications. Apple provides no guarantees about the frequency of level
change updates, but as you can tell by testing this recipe, they arrive in a fairly regular fashion.

 Recipe 1-1 Monitoring Proximity and Battery

 // View the current battery level and state

 - (void) peekAtBatteryState

 {

 NSArray *stateArray = [NSArray arrayWithObjects:

 @"Battery state is unknown",

 @"Battery is not plugged into a charging source",

 @"Battery is charging",

 @"Battery state is full", nil];

 NSString *status = [NSString stringWithFormat:

7Recipe: Checking Device Proximity and Battery States

 @"Battery state: %@, Battery level: %0.2f%%",

 [stateArray objectAtIndex:[UIDevice currentDevice].batteryState],

 [UIDevice currentDevice].batteryLevel * 100];

 NSLog(@"%@", status);

 }

 // Show whether proximity is being monitored

 - (void) updateTitle

 {

 self.title = [NSString stringWithFormat:@"Proximity %@",

 [UIDevice currentDevice].proximityMonitoringEnabled ? @"On" : @"Off"];

 }

 // Toggle proximity monitoring off and on

 - (void) toggle: (id) sender

 {

 // Determine the current proximity monitoring and toggle it

 BOOL isEnabled = [UIDevice currentDevice].proximityMonitoringEnabled;

 [UIDevice currentDevice].proximityMonitoringEnabled = !isEnabled;

 [self updateTitle];

 }

 - (void) loadView

 {

 [super loadView];

 // Enable toggling and initialize title

 self.navigationItem.rightBarButtonItem =

 BARBUTTON(@"Toggle", @selector(toggle:));

 [self updateTitle];

 // Add proximity state checker

 [[NSNotificationCenter defaultCenter]

 addObserverForName:UIDeviceProximityStateDidChangeNotification

 object:nil queue:[NSOperationQueue mainQueue]

 usingBlock:^(NSNotification *notification) {

 // Sensor has triggered either on or off

 NSLog(@"The proximity sensor %@",

 [UIDevice currentDevice].proximityState ?

 @"will now blank the screen" : @"will now restore the screen");

 }];

 // Enable battery monitoring

 [[UIDevice currentDevice] setBatteryMonitoringEnabled:YES];

8 Chapter 1 Device-Specific Development

 // Add observers for battery state and level changes

 [[NSNotificationCenter defaultCenter]

 addObserverForName:UIDeviceBatteryStateDidChangeNotification

 object:nil queue:[NSOperationQueue mainQueue]

 usingBlock:^(NSNotification *notification) {

 // State has changed

 NSLog(@"Battery State Change");

 [self peekAtBatteryState];

 }];

 [[NSNotificationCenter defaultCenter]

 addObserverForName:UIDeviceBatteryLevelDidChangeNotification

 object:nil queue:[NSOperationQueue mainQueue]

 usingBlock:^(NSNotification *notification) {

 // Level has changed

 NSLog(@"Battery Level Change");

 [self peekAtBatteryState];

 }];

 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Detecting Retina Support

 In recent years, Apple introduced the Retina display on its flagship devices. Its pixel density is,
according to Apple, high enough so the human eye cannot distinguish individual pixels. Apps
shipped with higher-resolution art take advantage of this improved display quality.

 The UIScreen class offers an easy way to check whether the current device offers a built-in
Retina display. Check the screen scale property, which provides the factor that converts from
the logical coordinate space (points, approximately 1/160 th of an inch) into a device coordi-
nate space (pixels). It is 1.0 for standard displays, so one point corresponds to one pixel. It is
2.0 for Retina displays (4 pixels per point):

 - (BOOL) hasRetinaDisplay

 {

 return ([UIScreen mainScreen].scale == 2.0f);

 }

 The UIScreen class also offers two useful display-size properties. The bounds returns the
screen’s bounding rectangle, measured in points. This gives you the full size of the screen,
regardless of any onscreen elements such as status bars, navigation bars, or tab bars. The

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

9Recipe: Recovering Additional Device Information

 applicationFrame property, also measured in points, excludes the status bar, providing the
frame for your application’s initial window size.

 Recipe: Recovering Additional Device Information

 Both sysctl() and sysctlbyname() enable you to retrieve system information. These stan-
dard UNIX functions query the operating system about hardware and OS details. You can get
a sense of the kind of scope on offer by glancing at the /usr/include/sys/sysctl.h include file on
the Macintosh. There you can find an exhaustive list of constants that can be used as param-
eters to these functions.

 These constants enable you to check for core information such as the system’s CPU frequency,
the amount of available memory, and more. Recipe 1-2 demonstrates this functionality. It
introduces a UIDevice category that gathers system information and returns it via a series of
method calls.

 You might wonder why this category includes a platform method, when the standard
 UIDevice class returns device models on demand. The answer lies in distinguishing different
types of units.

 An iPhone 3GS’s model is simply “iPhone,” as is the model of an iPhone 4S. In contrast, this
recipe returns a platform value of “iPhone2,1” for the 3GS and “iPhone 4,1” for the iPhone 4S.
This enables you to programmatically differentiate the 3GS unit from a first-generation iPhone
(“iPhone1,1”) or iPhone 3G (“iPhone1,2”).

 Each model offers distinct built-in capabilities. Knowing exactly which iPhone you’re dealing
with helps you determine whether that unit likely supports features such as accessibility, GPS,
and magnetometers.

 Recipe 1-2 Extending Device Information Gathering

 @implementation UIDevice (Hardware)

 + (NSString *) getSysInfoByName:(char *)typeSpecifier

 {

 // Recover sysctl information by name

 size_t size;

 sysctlbyname(typeSpecifier, NULL, &size, NULL, 0);

 char *answer = malloc(size);

 sysctlbyname(typeSpecifier, answer, &size, NULL, 0);

 NSString *results = [NSString stringWithCString:answer

 encoding: NSUTF8StringEncoding];

 free(answer);

 return results;

 }

10 Chapter 1 Device-Specific Development

 - (NSString *) platform

 {

 return [UIDevice getSysInfoByName:"hw.machine"];

 }

 - (NSUInteger) getSysInfo: (uint) typeSpecifier

 {

 size_t size = sizeof(int);

 int results;

 int mib[2] = {CTL_HW, typeSpecifier};

 sysctl(mib, 2, &results, &size, NULL, 0);

 return (NSUInteger) results;

 }

 - (NSUInteger) cpuFrequency

 {

 return [UIDevice getSysInfo:HW_CPU_FREQ];

 }

 - (NSUInteger) busFrequency

 {

 return [UIDevice getSysInfo:HW_BUS_FREQ];

 }

 - (NSUInteger) totalMemory

 {

 return [UIDevice getSysInfo:HW_PHYSMEM];

 }

 - (NSUInteger) userMemory

 {

 return [UIDevice getSysInfo:HW_USERMEM];

 }

 - (NSUInteger) maxSocketBufferSize

 {

 return [UIDevice getSysInfo:KIPC_MAXSOCKBUF];

 }

 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
6-Advanced-Cookbook and go to the folder for Chapter 1 .

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

11Recipe: Using Acceleration to Locate “Up”

 Recipe: Using Acceleration to Locate “Up”

 The iPhone provides three onboard sensors that measure acceleration along the iPhone’s
perpendicular axes: left/right (X), up/down (Y), and front/back (Z). These values indicate the
forces affecting the iPhone, from both gravity and user movement. You can get some neat force
feedback by swinging the iPhone around your head (centripetal force) or dropping it from a tall
building (freefall). Unfortunately, you might not recover that data after your iPhone becomes
an expensive bit of scrap metal.

 To subscribe an object to iPhone accelerometer updates, set it as the delegate. The object set as
the delegate must implement the UIAccelerometerDelegate protocol:

 [[UIAccelerometer sharedAccelerometer] setDelegate:self]

 When assigned, your delegate receives accelerometer:didAccelerate: callback messages, which
you can track and respond to. The UIAcceleration structure sent to the delegate method
consists of floating-point values for the x, y, and z axes. Each value ranges from –1.0 to 1.0:

 float x = acceleration.x;

 float y = acceleration.y;

 float z = acceleration.z;

 Recipe 1-3 uses these values to help determine the “up” direction. It calculates the arctangent
between the X and Y acceleration vectors, returning the up-offset angle. As new acceleration
messages are received, the recipe rotates a UIImageView instance with its picture of an arrow,
which you can see in Figure 1-1 , to point up. The real-time response to user actions ensures
that the arrow continues pointing upward, no matter how the user reorients the phone.

 Recipe 1-3 Catching Acceleration Events

 - (void)accelerometer:(UIAccelerometer *)accelerometer

 didAccelerate:(UIAcceleration *)acceleration

 {

 // Determine up from the x and y acceleration components

 float xx = -acceleration.x;

 float yy = acceleration.y;

 float angle = atan2(yy, xx);

 [arrow setTransform:

 CGAffineTransformMakeRotation(angle)];

 }

 - (void) viewDidLoad

 {

 // Initialize the delegate to start catching accelerometer events

 [UIAccelerometer sharedAccelerometer].delegate = self;

 }

12 Chapter 1 Device-Specific Development

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/
iOS-6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Working with Basic Orientation

 The UIDevice class uses the built-in orientation property to retrieve the physical orientation
of the device. iOS devices support seven possible values for this property:

 ■ UIDeviceOrientationUnknown — The orientation is currently unknown.

 ■ UIDeviceOrientationPortrait — The home button is down.

 ■ UIDeviceOrientationPortraitUpsideDown — The home button is up.

 ■ UIDeviceOrientationLandscapeLeft — The home button is to the right.

 ■ UIDeviceOrientationLandscapeRight — The home button is to the left.

 Figure 1-1 A little math recovers the “up” direction by performing an arctan function using the x
and y force vectors. In this example, the arrow always points up, no matter how the user reorients
the iPhone.

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

13Retrieving the Current Accelerometer Angle Synchronously

 ■ UIDeviceOrientationFaceUp — The screen is face up.

 ■ UIDeviceOrientationFaceDown — The screen is face down.

 The device can pass through any or all of these orientations during a typical application
session. Although orientation is created in concert with the onboard accelerometer, these orien-
tations are not tied in any way to a built-in angular value.

 iOS offers two built-in macros to help determine if a device orientation enumerated
value is portrait or landscape: namely UIDeviceOrientationIsPortrait() and
 UIDeviceOrientationIsLandscape() . It is convenient to extend the UIDevice class to
offer these tests as built-in device properties:

 @property (nonatomic, readonly) BOOL isLandscape;

 @property (nonatomic, readonly) BOOL isPortrait;

 - (BOOL) isLandscape

 {

 return UIDeviceOrientationIsLandscape(self.orientation);

 }

 - (BOOL) isPortrait

 {

 return UIDeviceOrientationIsPortrait(self.orientation);

 }

 Your code can subscribe directly to device reorientation notifications. To accomplish this, send
 beginGeneratingDeviceOrientationNotifications to the currentDevice singleton.
Then add an observer to catch the ensuing UIDeviceOrientationDidChangeNotification
updates. As you would expect, you can finish listening by calling endGeneratingDevice
OrientationNotification .

 Retrieving the Current Accelerometer Angle

Synchronously

 At times you may want to query the accelerometer without setting yourself up as a full dele-
gate. The following methods, which are meant for use within a UIDevice category, enable you
to synchronously return the current device angle along the x/y plane—the front face plane of
the iOS device. Accomplish this by entering a new run loop, wait for an accelerometer event,
retrieve the current angle from that callback, and then leave the run loop to return that angle:

 - (void)accelerometer:(UIAccelerometer *)accelerometer

 didAccelerate:(UIAcceleration *)acceleration

 {

 float xx = acceleration.x;

 float yy = -acceleration.y;

 device_angle = M_PI / 2.0f - atan2(yy, xx);

14 Chapter 1 Device-Specific Development

 if (device_angle > M_PI)

 device_angle -= 2 * M_PI;

 CFRunLoopStop(CFRunLoopGetCurrent());

 }

 - (float) orientationAngle

 {

 // Supercede current delegate

 id priorDelegate = [UIAccelerometer sharedAccelerometer].delegate;

 [UIAccelerometer sharedAccelerometer].delegate = self;

 // Wait for a reading

 CFRunLoopRun();

 // Restore delegate

 [UIAccelerometer sharedAccelerometer].delegate = priorDelegate;

 return device_angle;

 }

 This is not an approach to use for continuous polling—use the callbacks directly for that. But
for an occasional angle query, these methods provide simple and direct access to the current
screen angle.

 Calculating Orientation from the Accelerometer

 The UIDevice class does not report a proper orientation when applications are first
launched. It updates the orientation only after the device has moved into a new position or
 UIViewController methods kick in.

 An application launched in portrait orientation may not read as “portrait” until the user moves
the device out of and then back into the proper orientation. This condition exists on the simu-
lator and on the iPhone device and is easily tested. (Radars for this issue have been closed with
updates that the features are working as designed.)

 For a workaround, consider recovering the angular orientation directly as just shown. Then,
after you determine the device angle, convert from the accelerometer-based angle to a device
orientation. Here’s how that might work in code:

 // Limited to the four portrait/landscape options

 - (UIDeviceOrientation) acceleratorBasedOrientation

 {

 CGFloat baseAngle = self.orientationAngle;

 if ((baseAngle > -M_PI_4) && (baseAngle < M_PI_4))

 return UIDeviceOrientationPortrait;

 if ((baseAngle < -M_PI_4) && (baseAngle > -3 * M_PI_4))

15Retrieving the Current Accelerometer Angle Synchronously

 return UIDeviceOrientationLandscapeLeft;

 if ((baseAngle > M_PI_4) && (baseAngle < 3 * M_PI_4))

 return UIDeviceOrientationLandscapeRight;

 return UIDeviceOrientationPortraitUpsideDown;

 }

 Be aware that this example looks only at the x-y plane, which is where most user interface deci-
sions need to be made. This snippet completely ignores the z-axis, meaning that you’ll end up
with vaguely random results for the face-up and face-down orientations. Adapt this code to
provide that nuance if needed.

 The UIViewController class’s interfaceOrientation instance method reports the orienta-
tion of a view controller’s interface. Although this is not a substitute for accelerometer read-
ings, many interface layout issues rest on the underlying view orientation rather than device
characteristics.

 Be aware that, especially on the iPad, a child view controller may use a layout orientation that’s
distinct from a device orientation. For example, an embedded controller may present a portrait
layout within a landscape split view controller. Even so, consider whether your orientation-
detection code is satisfiable by the underlying interface orientation. It may be more reliable
than device orientation, especially as the application launches. Develop accordingly.

 Calculate a Relative Angle

 Screen reorientation support means that an interface’s relationship to a given device angle
must be supported in quarters, one for each possible front-facing screen orientation. As the
 UIViewController automatically rotates its onscreen view, the math needs to catch up to
account for those reorientations.

 The following method, which is written for use in a UIDevice category, calculates angles so
that the angle remains in synchrony with the device orientation. This creates simple offsets
from vertical that match the way the GUI is currently presented:

 - (float) orientationAngleRelativeToOrientation:

 (UIDeviceOrientation) someOrientation

 {

 float dOrientation = 0.0f;

 switch (someOrientation)

 {

 case UIDeviceOrientationPortraitUpsideDown:

 {dOrientation = M_PI; break;}

 case UIDeviceOrientationLandscapeLeft:

 {dOrientation = -(M_PI/2.0f); break;}

 case UIDeviceOrientationLandscapeRight:

 {dOrientation = (M_PI/2.0f); break;}

 default: break;

 }

16 Chapter 1 Device-Specific Development

 float adjustedAngle =

 fmod(self.orientationAngle - dOrientation, 2.0f * M_PI);

 if (adjustedAngle > (M_PI + 0.01f))

 adjustedAngle = (adjustedAngle - 2.0f * M_PI);

 return adjustedAngle;

 }

 This method uses a floating-point modulo to retrieve the difference between the actual screen
angle and the interface orientation angular offset to return that all-important vertical angular
offset.

 Note

 In iOS 6, use your Info.plist to allow and disallow orientation changes instead of
 shouldAutorotateToInterfaceOrientation: .

 Recipe: Using Acceleration to Move Onscreen Objects

 With a bit of programming, the iPhone’s onboard accelerometer can make objects “move”
around the screen, responding in real time to the way the user tilts the phone. Recipe 1-4
builds an animated butterfly that users can slide across the screen.

 The secret to make this work lies in adding what a “physics timer” to the program. Instead
of responding directly to changes in acceleration, the way Recipe 1-3 did, the accelerometer
callback measures the current forces. It’s up to the timer routine to apply those forces to the
butterfly over time by changing its frame. Here are some key points to keep in mind:

 ■ As long as the direction of force remains the same, the butterfly accelerates. Its velocity
increases, scaled according to the degree of acceleration force in the X or Y direction.

 ■ The tick routine, called by the timer, moves the butterfly by adding the velocity vector
to the butterfly’s origin.

 ■ The butterfly’s range is bounded. So when it hits an edge, it stops moving in that
direction. This keeps the butterfly onscreen at all times. The tick method checks for
boundary conditions. For example, if the butterfly hits a vertical edge, it can still move
horizontally.

 ■ The butterfly reorients itself so it always falling “down.” This happens by applying a
simple rotation transform in the tick method. Be careful when using transforms in
addition to frame or center offsets. Always reset the math before applying offsets, and
then reapply any angular changes. Failing to do so may cause your frames to zoom,
shrink, or skew unexpectedly.

17Recipe: Using Acceleration to Move Onscreen Objects

 Note

 Timers in their natural state do not work with blocks. If you’d rather use a block-based design,
check around github to find workarounds that do.

 Recipe 1-4 Sliding an Onscreen Object Based on Accelerometer Feedback

 - (void)accelerometer:(UIAccelerometer *)accelerometer

 didAccelerate:(UIAcceleration *)acceleration

 {

 // Extract the acceleration components

 float xx = -acceleration.x;

 float yy = acceleration.y;

 // Store the most recent angular offset

 mostRecentAngle = atan2(yy, xx);

 // Has the direction changed?

 float accelDirX = SIGN(xvelocity) * -1.0f;

 float newDirX = SIGN(xx);

 float accelDirY = SIGN(yvelocity) * -1.0f;

 float newDirY = SIGN(yy);

 // Accelerate. To increase viscosity lower the additive value

 if (accelDirX == newDirX) xaccel =

 (abs(xaccel) + 0.85f) * SIGN(xaccel);

 if (accelDirY == newDirY) yaccel =

 (abs(yaccel) + 0.85f) * SIGN(yaccel);

 // Apply acceleration changes to the current velocity

 xvelocity = -xaccel * xx;

 yvelocity = -yaccel * yy;

 }

 - (void) tick

 {

 // Reset the transform before changing position

 butterfly.transform = CGAffineTransformIdentity;

 // Move the butterfly according to the current velocity vector

 CGRect rect = CGRectOffset(butterfly.frame, xvelocity, 0.0f);

 if (CGRectContainsRect(self.view.bounds, rect))

 butterfly.frame = rect;

18 Chapter 1 Device-Specific Development

 rect = CGRectOffset(butterfly.frame, 0.0f, yvelocity);

 if (CGRectContainsRect(self.view.bounds, rect))

 butterfly.frame = rect;

 // Rotate the butterfly independently of position

 butterfly.transform =

 CGAffineTransformMakeRotation(mostRecentAngle + M_PI_2);

 }

 - (void) initButterfly

 {

 CGSize size;

 // Load the animation cells

 NSMutableArray *butterflies = [NSMutableArray array];

 for (int i = 1; i <= 17; i++)

 {

 NSString *fileName = [NSString stringWithFormat:@"bf_%d.png", i];

 UIImage *image = [UIImage imageNamed:fileName];

 size = image.size;

 [butterflies addObject:image];

 }

 // Begin the animation

 butterfly = [[UIImageView alloc]

 initWithFrame:(CGRect){.size=size}];

 [butterfly setAnimationImages:butterflies];

 butterfly.animationDuration = 0.75f;

 [butterfly startAnimating];

 // Set the butterfly's initial speed and acceleration

 xaccel = 2.0f;

 yaccel = 2.0f;

 xvelocity = 0.0f;

 yvelocity = 0.0f;

 // Add the butterfly

 butterfly.center = RECTCENTER(self.view.bounds);

 [self.view addSubview:butterfly];

 // Activate the accelerometer

 [[UIAccelerometer sharedAccelerometer] setDelegate:self];

 // Start the physics timer

 [NSTimer scheduledTimerWithTimeInterval: 0.03f

19Recipe: Accelerometer-Based Scroll View

 target: self selector: @selector(tick)

 userInfo: nil repeats: YES];

 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Recipe: Accelerometer-Based Scroll View

 Several readers asked me to include a tilt scroller recipe in this edition. A tilt scroller uses the
device’s built-in accelerometer to control movement around a UIScrollView ’s content. As the
user adjusts the device, the material “falls down” accordingly. Instead of a view being posi-
tioned onscreen, the content view scrolls to a new offset.

 The challenge in creating this interface lies in determining where the device should have its
resting axis. Most people would initially suggest that the display should stabilize when lying on
its back, with the Z-direction pointed straight up in the air. It turns out that’s actually a fairly
bad design choice. To use that axis means the screen must actually tilt away from the viewer
during navigation. With the device rotated away from view, the user cannot fully see what is
happening onscreen, especially when using the device in a seated position and somewhat when
looking at the device while standing overhead.

 Instead, Recipe 1-5 assumes that the stable position is created by the Z-axis pointing at approxi-
mately 45 degrees, the natural position users holding an iPhone or iPad in their hands. This
is halfway between a face-up and a face-forward position. The math in Recipe 1-5 is adjusted
accordingly. Tilting back and forward from this slanting position leaves the screen with
maximal visibility during adjustments.

 The other change in this recipe, compared to Recipe 1-4 , is the much lower acceleration
constant. This enables onscreen movement to happen more slowly, letting users more easily
slow down and resume navigation.

 Recipe 1-5 Tilt Scroller

 - (void)accelerometer:(UIAccelerometer *)accelerometer

 didAccelerate:(UIAcceleration *)acceleration

 {

 // extract the acceleration components

 float xx = -acceleration.x;

 float yy = (acceleration.z + 0.5f) * 2.0f; // between face-up and face-forward

 // Has the direction changed?

 float accelDirX = SIGN(xvelocity) * -1.0f;

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

20 Chapter 1 Device-Specific Development

 float newDirX = SIGN(xx);

 float accelDirY = SIGN(yvelocity) * -1.0f;

 float newDirY = SIGN(yy);

 // Accelerate. To increase viscosity lower the additive value

 if (accelDirX == newDirX) xaccel = (abs(xaccel) + 0.005f) * SIGN(xaccel);

 if (accelDirY == newDirY) yaccel = (abs(yaccel) + 0.005f) * SIGN(yaccel);

 // Apply acceleration changes to the current velocity

 xvelocity = -xaccel * xx;

 yvelocity = -yaccel * yy;

 }

 - (void) tick

 {

 xoff += xvelocity;

 xoff = MIN(xoff, 1.0f);

 xoff = MAX(xoff, 0.0f);

 yoff += yvelocity;

 yoff = MIN(yoff, 1.0f);

 yoff = MAX(yoff, 0.0f);

 // update the content offset based on the current velocities

 CGFloat xsize = sv.contentSize.width - sv.frame.size.width;

 CGFloat ysize = sv.contentSize.height - sv.frame.size.height;

 sv.contentOffset = CGPointMake(xoff * xsize, yoff * ysize);

 }

 - (void) viewDidAppear:(BOOL)animated

 {

 NSString *map = @"http://maps.weather.com/images/\

 maps/current/curwx_720x486.jpg";

 NSOperationQueue *queue = [[NSOperationQueue alloc] init];

 [queue addOperationWithBlock:

 ^{

 // Load the weather data

 NSURL *weatherURL = [NSURL URLWithString:map];

 NSData *imageData = [NSData dataWithContentsOfURL:weatherURL];

 // Update the image on the main thread using the main queue

 [[NSOperationQueue mainQueue] addOperationWithBlock:^{

 UIImage *weatherImage = [UIImage imageWithData:imageData];

 UIImageView *imageView =

 [[UIImageView alloc] initWithImage:weatherImage];

 CGSize initSize = weatherImage.size;

 CGSize destSize = weatherImage.size;

21Recipe: Core Motion Basics

 // Ensure that the content size is significantly bigger

 // than the screen can show at once

 while ((destSize.width < (self.view.frame.size.width * 4)) ||

 (destSize.height < (self.view.frame.size.height * 4)))

 {

 destSize.width += initSize.width;

 destSize.height += initSize.height;

 }

 imageView.userInteractionEnabled = NO;

 imageView.frame = (CGRect){.size = destSize};

 sv.contentSize = destSize;

 [sv addSubview:imageView];

 // Activate the accelerometer

 [[UIAccelerometer sharedAccelerometer] setDelegate:self];

 // Start the physics timer

 [NSTimer scheduledTimerWithTimeInterval: 0.03f

 target: self selector: @selector(tick)

 userInfo: nil repeats: YES];

 }];

 }];

 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Recipe: Core Motion Basics

 The Core Motion framework centralizes motion data processing. Introduced in the iOS 4 SDK,
Core Motion supersedes the direct accelerometer access you’ve just read about. It provides
centralized monitoring of three key onboard sensors. These sensors are composed of the gyro-
scope, which measures device rotation; the magnetometer, which provides a way to measure
compass bearings; and the accelerometer, which detects gravitational changes along three axes.
A fourth entry point called device motion combines all three of these sensors into a single moni-
toring system.

 Core Motion uses raw values from these sensors to create readable measurements, primarily in
the form of force vectors. Measurable items include the following properties:

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

22 Chapter 1 Device-Specific Development

 ■ Device attitude (attitude)— The device’s orientation relative to some frame of
reference. The attitude is represented as a triplet of roll, pitch, and yaw angles, each
measured in radians.

 ■ Rotation rate (rotationRate)— The rate at which the device rotates around each of its
three axes. The rotation includes x, y, and z angular velocity values measured in radians
per second.

 ■ Gravity (gravity)— The device’s current acceleration vector as imparted by the normal
gravitational field. Gravity is measured in g’s, along the x, y, and z axes. Each unit
represents the standard gravitational force imparted by Earth (namely 32 feet per second
per second, or 9.8 meters per second per second).

 ■ User acceleration (userAcceleration)— The acceleration vector being imparted by the
user. Like gravity , user acceleration is measured in g’s along the x, y, and z axes. When
added together, the user vector and the gravity vector represent the total acceleration
imparted to the device.

 ■ Magnetic field (magneticField)— The vector representing the overall magnetic field
values in the device’s vicinity. The field is measured in microteslas along the x, y, and
z axes. A calibration accuracy is also provided, to inform your application of the field
measurements quality.

 Testing for Sensors

 As you read earlier in this chapter, you can use the application’s Info.plist file to require or
exclude onboard sensors. You can also test an in-app for each kind of possible Core Motion
support:

 if (motionManager.gyroAvailable)

 [motionManager startGyroUpdates];

 if (motionManager.magnetometerAvailable)

 [motionManager startMagnetometerUpdates];

 if (motionManager.accelerometerAvailable)

 [motionManager startAccelerometerUpdates];

 if (motionManager.deviceMotionAvailable)

 [motionManager startDeviceMotionUpdates];

 Starting updates does not produce a delegate callback mechanism like you encountered with
the UIAccelerometer class. Instead, you are responsible for polling each value, or you can use
a block-based update mechanism that executes a block that you provide at each update (for
example, startAccelerometerUpdatesToQueue:withHandler:).

23Recipe: Core Motion Basics

 Handler Blocks

 Recipe 1-6 adapts Recipe 1-4 for use with Core Motion. The acceleration callback has been
moved into a handler block, and the x and y values are read from the data’s acceleration prop-
erty. Otherwise, the code remains unchanged. Here, you see the Core Motion basics: A new
motion manager is created. It tests for accelerometer availability. It then starts updates using a
new operation queue, which persists for the duration of the application run.

 The establishMotionManager and shutDownMotionManager methods enable your applica-
tion to start up and shut down the motion manager on demand. These methods are called
from the application delegate when the application becomes active and when it suspends:

 - (void) applicationWillResignActive:(UIApplication *)application

 {

 [tbvc shutDownMotionManager];

 }

 - (void) applicationDidBecomeActive:(UIApplication *)application

 {

 [tbvc establishMotionManager];

 }

 These methods provide a clean way to shut down and resume motion services in response to
the current application state.

 Recipe 1-6 Basic Core Motion

 @implementation TestBedViewController

 - (void) tick

 {

 butterfly.transform = CGAffineTransformIdentity;

 // Move the butterfly according to the current velocity vector

 CGRect rect = CGRectOffset(butterfly.frame, xvelocity, 0.0f);

 if (CGRectContainsRect(self.view.bounds, rect))

 butterfly.frame = rect;

 rect = CGRectOffset(butterfly.frame, 0.0f, yvelocity);

 if (CGRectContainsRect(self.view.bounds, rect))

 butterfly.frame = rect;

 butterfly.transform =

 CGAffineTransformMakeRotation(mostRecentAngle + M_PI_2);

 }

 - (void) shutDownMotionManager

 {

 NSLog(@"Shutting down motion manager");

24 Chapter 1 Device-Specific Development

 [motionManager stopAccelerometerUpdates];

 motionManager = nil;

 [timer invalidate];

 timer = nil;

 }

 - (void) establishMotionManager

 {

 if (motionManager)

 [self shutDownMotionManager];

 NSLog(@"Establishing motion manager");

 // Establish the motion manager

 motionManager = [[CMMotionManager alloc] init];

 if (motionManager.accelerometerAvailable)

 [motionManager

 startAccelerometerUpdatesToQueue:

 [[NSOperationQueue alloc] init]

 withHandler:^(CMAccelerometerData *data, NSError *error)

 {

 // Extract the acceleration components

 float xx = -data.acceleration.x;

 float yy = data.acceleration.y;

 mostRecentAngle = atan2(yy, xx);

 // Has the direction changed?

 float accelDirX = SIGN(xvelocity) * -1.0f;

 float newDirX = SIGN(xx);

 float accelDirY = SIGN(yvelocity) * -1.0f;

 float newDirY = SIGN(yy);

 // Accelerate. To increase viscosity,

 // lower the additive value

 if (accelDirX == newDirX)

 xaccel = (abs(xaccel) + 0.85f) * SIGN(xaccel);

 if (accelDirY == newDirY)

 yaccel = (abs(yaccel) + 0.85f) * SIGN(yaccel);

 // Apply acceleration changes to the current velocity

 xvelocity = -xaccel * xx;

 yvelocity = -yaccel * yy;

 }];

 // Start the physics timer

 timer = [NSTimer scheduledTimerWithTimeInterval: 0.03f

25Recipe: Core Motion Basics

 target: self selector: @selector(tick)

 userInfo: nil repeats: YES];

 }

 - (void) initButterfly

 {

 CGSize size;

 // Load the animation cells

 NSMutableArray *butterflies = [NSMutableArray array];

 for (int i = 1; i <= 17; i++)

 {

 NSString *fileName =

 [NSString stringWithFormat:@"bf_%d.png", i];

 UIImage *image = [UIImage imageNamed:fileName];

 size = image.size;

 [butterflies addObject:image];

 }

 // Begin the animation

 butterfly = [[UIImageView alloc]

 initWithFrame:(CGRect){.size=size}];

 [butterfly setAnimationImages:butterflies];

 butterfly.animationDuration = 0.75f;

 [butterfly startAnimating];

 // Set the butterfly's initial speed and acceleration

 xaccel = 2.0f;

 yaccel = 2.0f;

 xvelocity = 0.0f;

 yvelocity = 0.0f;

 // Add the butterfly

 butterfly.center = RECTCENTER(self.view.bounds);

 [self.view addSubview:butterfly];

 }

 - (void) loadView

 {

 [super loadView];

 self.view.backgroundColor = [UIColor whiteColor];

 [self initButterfly];

 }

 @end

26 Chapter 1 Device-Specific Development

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Recipe: Retrieving and Using Device Attitude

 Imagine an iPad sitting on a desk. There’s an image displayed on the iPad, which you can
bend over and look at. Now imagine rotating that iPad as it lays flat on the desk, but as the
iPad moves, the image does not. It maintains a perfect alignment with the world around it.
Regardless of how you spin the iPad, the image doesn’t “move” as the view updates to balance
the physical movement. That’s how Recipe 1-7 works, taking advantage of a device’s onboard
gyroscope—a necessary requirement to make this recipe work.

 The image adjusts however you hold the device. In addition to that flat manipulation, you can
pick up the device and orient it in space. If you flip the device and look at it over your head,
you see the reversed “bottom” of the image. You can also tilt it along both axes: the one that
runs from the home button to the camera, and the other that runs along the surface of the
iPad, from the midpoints between the camera and home button. The other axis, the one you
first explore, is coming out of the device from its middle, pointing to the air above the device
and passing through that middle point to behind it. As you manipulate the device, the image
responds to create a virtual still world within that iPad.

 Recipe 1-7 shows how to do this with just a few simple geometric transformations. It establishes
a motion manager, subscribes to device motion updates, and then applies image transforms
based on the roll, pitch, and yaw returned by the motion manager.

 Recipe 1-7 Using Device Motion Updates to Fix an Image in Space

 - (void) shutDownMotionManager

 {

 NSLog(@"Shutting down motion manager");

 [motionManager stopDeviceMotionUpdates];

 motionManager = nil;

 }

 - (void) establishMotionManager

 {

 if (motionManager)

 [self shutDownMotionManager];

 NSLog(@"Establishing motion manager");

 // Establish the motion manager

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

27Detecting Shakes Using Motion Events

 motionManager = [[CMMotionManager alloc] init];

 if (motionManager.deviceMotionAvailable)

 [motionManager

 startDeviceMotionUpdatesToQueue:

 [NSOperationQueue currentQueue]

 withHandler: ^(CMDeviceMotion *motion, NSError *error) {

 CATransform3D transform;

 transform = CATransform3DMakeRotation(

 motion.attitude.pitch, 1, 0, 0);

 transform = CATransform3DRotate(transform,

 motion.attitude.roll, 0, 1, 0);

 transform = CATransform3DRotate(transform,

 motion.attitude.yaw, 0, 0, 1);

 imageView.layer.transform = transform;

 }];

 }

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Detecting Shakes Using Motion Events

 When the iPhone detects a motion event, it passes that event to the current first responder, the
primary object in the responder chain. Responders are objects that can handle events. All views
and windows are responders and so is the application object.

 The responder chain provides a hierarchy of objects, all of which can respond to events. When
an object toward the start of the chain receives an event, that event does not get passed further
down. The object handles it. If it cannot, that event can move on to the next responder.

 Objects often become the first responder by declaring themselves to be so, via become
FirstResponder . In this snippet, a UIViewController ensures that it becomes the first
responder whenever its view appears onscreen. Upon disappearing, it resigns the first responder
position:

 - (BOOL)canBecomeFirstResponder {

 return YES;

 }

 // Become first responder whenever the view appears

 - (void)viewDidAppear:(BOOL)animated {

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

28 Chapter 1 Device-Specific Development

 [super viewDidAppear:animated];

 [self becomeFirstResponder];

 }

 // Resign first responder whenever the view disappears

 - (void)viewWillDisappear:(BOOL)animated {

 [super viewWillDisappear:animated];

 [self resignFirstResponder];

 }

 First responders receive all touch and motion events. The motion callbacks mirror UIView
touch callback stages. The callback methods are as follows:

 ■ motionBegan:withEvent: — This callback indicates the start of a motion event. At the
time of writing this book, there was only one kind of motion event recognized: a shake.
This may not hold true for the future, so you might want to check the motion type in
your code.

 ■ motionEnded:withEvent: — The first responder receives this callback at the end of the
motion event.

 ■ motionCancelled:withEvent: — As with touches, motions can be canceled by incoming
phone calls and other system events. Apple recommends that you implement all three
motion event callbacks (and, similarly, all four touch event callbacks) in production
code.

 The following snippet shows a pair of motion callback examples. If you test this on a device,
you can notice several things. First, the began and ended events happen almost simultaneously
from a user perspective. Playing sounds for both types is overkill. Second, there is a bias toward
side-to-side shake detection. The iPhone is better at detecting side-to-side shakes than the front-
to-back and up-down versions. Finally, Apple’s motion implementation uses a slight lockout
approach. You cannot generate a new motion event until a second or so after the previous one
was processed. This is the same lockout used by Shake to Shuffle and Shake to Undo events:

 - (void)motionBegan:(UIEventSubtype)motion

 withEvent:(UIEvent *)event {

 // Play a sound whenever a shake motion starts

 if (motion != UIEventSubtypeMotionShake) return;

 [self playSound:startSound];

 }

 - (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event

 {

 // Play a sound whenever a shake motion ends

 if (motion != UIEventSubtypeMotionShake) return;

 [self playSound:endSound];

 }

29Recipe: Using External Screens

 Recipe: Using External Screens

 There are many ways to use external screens. Take the newest iPads, for example. The second
and third generation models offer built-in screen mirroring. Attach a VGA or HDMI cable and
your content can be shown on external displays and on the built-in screen. Certain devices
enable you to mirror screens wirelessly to Apple TV using AirPlay, Apple’s proprietary cable-
free over-the-air video solution. These mirroring features are extremely handy, but you’re not
limited to simply copying content from one screen to another in iOS.

 The UIScreen class enables you to detect and write to external screens independently. You can
treat any connected display as a new window and create content for that display separate from
any view you show on the primary device screen. You can do this for any wired screen, and
starting with the iPad 2 (and later) and the iPhone 4S (and later), you can do so wirelessly using
AirPlay to Apple TV 2 (and later). A third-party app called Reflector enables you to mirror your
display to Mac or Windows computers using AirPlay.

 Geometry is important. Here’s why. iOS devices currently include the 320×480 old-style
iPhone displays, the 640×960-pixel Retina display units, and the 1024×768-pixel iPads. Typical
composite/component output is produced at 720×480 pixels (480i and 480p), VGA at 1024×768
and 1280×720 (720p), and then there’s the higher quality HDMI output available as well.

 Add to this the issues of overscan and other target display limitations, and Video Out quickly
becomes a geometric challenge. Fortunately, Apple has responded to this challenge with some
handy real-world adaptations. Instead of trying to create one-to-one correspondences with the
output screen and your built-in device screen, you can build content based on the available
properties of your output display. You just create a window, populate it, and display it.

 If you intend to develop Video Out applications, don’t assume that your users are strictly using
AirPlay. Many users still connect to monitors and projectors using old-style cable connections.
Make sure you have at least one of each type of cable on-hand (composite, component, VGA,
and HDMI) and an AirPlay-ready iPhone and iPad, so you can thoroughly test on each output
configuration. Third-party cables (typically imported from the Far East, not branded with Made
for iPhone/iPad) won’t work, so make sure you purchase Apple-branded items.

 Detecting Screens

 The UIScreen class reports how many screens are connected. You know that an external screen
is connected whenever this count goes above 1. The first item in the screens array is always
your primary device screen:

 #define SCREEN_CONNECTED ([UIScreen screens].count > 1)

 Each screen can report its bounds (that is, its physical dimensions in points) and its screen scale
(relating the points to pixels). Two standard notifications enable you to observe when screens
have been connected to and disconnected from the device.

30 Chapter 1 Device-Specific Development

 // Register for connect/disconnect notifications

 [[NSNotificationCenter defaultCenter]

 addObserver:self selector:@selector(screenDidConnect:)

 name:UIScreenDidConnectNotification object:nil];

 [[NSNotificationCenter defaultCenter]

 addObserver:self selector:@selector(screenDidDisconnect:)

 name:UIScreenDidDisconnectNotification object:nil];

 Connection means any kind of connection, whether by cable or via AirPlay. Whenever you
receive an update of this type, make sure you count your screens and adjust your user interface
to match the new conditions.

 It’s your responsibility to set up windows whenever new screens are attached and tear them
down upon detach events. Each screen should have its own window to manage content for
that output display. Don’t hold onto windows upon detaching screens. Let them release and
then re-create them when new screens appear.

 Note

 Mirrored screens are not represented in the screens array. Instead the mirror is stored in
the main screen’s mirroredScreen property. This property is nil when mirroring is disabled,
unconnected, or simply not supported by the device’s abilities.

 Creating a new screen and using it for independent external display always overrides mirroring.
So even if the user has enabled mirroring, when your application begins writing to and creating
an external display, it takes priority.

 Retrieving Screen Resolutions

 Each screen provides an availableModes property. This is an array of resolution objects
ordered from least-to-highest resolution. Each mode has a size property indicating a target
pixel-size resolution. Many screens support multiple modes. For example, a VGA display
might have as many as one-half dozen or more different resolutions it offers. The number of
supported resolutions varies by hardware. There will always be at least one resolution available,
but you should offer choices to users when there are more.

 Setting Up Video Out

 After retrieving an external screen object from the [UIScreens screens] array, query the
available modes and select a size to use. As a rule, you can get away with selecting the last
mode in the list to always use the highest possible resolution, or the first mode for the lowest
resolution.

 To start a Video Out stream, create a new UIWindow and size it to the selected mode. Add a
new view to that window for drawing on. Then assign the window to the external screen and
make it key and visible. This orders the window to display and prepares it for use. After you do

31Recipe: Using External Screens

that, make the original window key again. This allows the user to continue interacting with the
primary screen. Don’t skip this step. Nothing makes end users more cranky than discovering
their expensive device no longer responds to their touches:

 self.outputWindow = [[UIWindow alloc] initWithFrame:theFrame];

 outputWindow.screen = secondaryScreen;

 [outputWindow makeKeyAndVisible];

 [delegate.view.window makeKeyAndVisible];

 Adding a Display Link

 Display links are a kind of timer that synchronizes drawing to a display’s refresh rate. You
can adjust this frame refresh time by changing the display link’s frameInterval property. It
defaults to 1. A higher number slows down the refresh rate. Setting it to 2 halves your frame
rate. Create the display link when a screen connects to your device. The UIScreen class imple-
ments a method that returns a display link object for its screen. You specify the target for the
display link and a selector to call.

 The display link fires on a regular basis, letting you know when to update the Video Out
screen. You can adjust the interval up for less of a CPU load, but you get a lower frame rate in
return. This is an important trade-off, especially for direct manipulation interfaces that require
a high level of CPU response on the device side.

 The code you see in Recipe 1-8 uses common modes for the run loop, providing the least
latency. You invalidate your display link when you are done with it, removing it from the
run loop.

 Overscanning Compensation

 The UIScreen class enables you to compensate for pixel loss at the edge of display screens
by assigning a value to the overscanCompensation property. The techniques you can assign
are described in Apple’s documentation but basically correspond to whether you want to clip
content or pad it with black space.

 VIDEOkit

 Recipe 1-8 introduces VIDEOkit, a basic external screen client. It demonstrates all the features
needed to get up and going with wired and wireless external screens. You establish screen
monitoring by calling startupWithDelegate: . Pass it the primary view controller whose job it
will be to create external content.

 The internal init method starts listening for screen attach and detach events and builds and
tears down windows as needed. An informal delegate method (updateExternalView :) is called
each time the display link fires. It passes a view that lives on the external window that the
delegate can draw onto as needed.

32 Chapter 1 Device-Specific Development

 In the sample code that accompanies this recipe, the view controller delegate stores a local
color value and uses it to color the external display:

 - (void) updateExternalView: (UIImageView *) aView

 {

 aView.backgroundColor = color;

 }

 - (void) action: (id) sender

 {

 color = [UIColor randomColor];

 }

 Each time the action button is pressed, the view controller generates a new color. When
VIDEOkit queries the controller to update the external view, it sets this as the background
color. You can see the external screen instantly update to a new random color.

 Note

 Reflector App ($15/single license, $50/5-computer license, reflectorapp.com) provides an
excellent debugging companion for AirPlay, offering a no-wires/no-Apple TV solution that works
on Mac and Windows computers. It mimics an Apple TV AirPlay receiver, letting you broadcast
from iOS direct to your desktop and record that output.

 Recipe 1-8 VIDEOkit

 @interface VIDEOkit : NSObject

 {

 UIImageView *baseView;

 }

 @property (nonatomic, weak) UIViewController *delegate;

 @property (nonatomic, strong) UIWindow *outputWindow;

 @property (nonatomic, strong) CADisplayLink *displayLink;

 + (void) startupWithDelegate: (id) aDelegate;

 @end

 @implementation VIDEOkit

 static VIDEOkit *sharedInstance = nil;

 - (void) setupExternalScreen

 {

 // Check for missing screen

 if (!SCREEN_CONNECTED) return;

 // Set up external screen

 UIScreen *secondaryScreen = [UIScreen screens][1];

 UIScreenMode *screenMode =

33Recipe: Using External Screens

 [[secondaryScreen availableModes] lastObject];

 CGRect rect = (CGRect){.size = screenMode.size};

 NSLog(@"Extscreen size: %@", NSStringFromCGSize(rect.size));

 // Create new outputWindow

 self.outputWindow = [[UIWindow alloc] initWithFrame:CGRectZero];

 _outputWindow.screen = secondaryScreen;

 _outputWindow.screen.currentMode = screenMode;

 [_outputWindow makeKeyAndVisible];

 _outputWindow.frame = rect;

 // Add base video view to outputWindow

 baseView = [[UIImageView alloc] initWithFrame:rect];

 baseView.backgroundColor = [UIColor darkGrayColor];

 [_outputWindow addSubview:baseView];

 // Restore primacy of main window

 [_delegate.view.window makeKeyAndVisible];

 }

 - (void) updateScreen

 {

 // Abort if the screen has been disconnected

 if (!SCREEN_CONNECTED && _outputWindow)

 self.outputWindow = nil;

 // (Re)initialize if there's no output window

 if (SCREEN_CONNECTED && !_outputWindow)

 [self setupExternalScreen];

 // Abort if encountered some weird error

 if (!self.outputWindow) return;

 // Go ahead and update

 SAFE_PERFORM_WITH_ARG(_delegate,

 @selector(updateExternalView:), baseView);

 }

 - (void) screenDidConnect: (NSNotification *) notification

 {

 NSLog(@"Screen connected");

 UIScreen *screen = [[UIScreen screens] lastObject];

 if (_displayLink)

 {

 [_displayLink removeFromRunLoop:[NSRunLoop currentRunLoop]

 forMode:NSRunLoopCommonModes];

34 Chapter 1 Device-Specific Development

 [_displayLink invalidate];

 _displayLink = nil;

 }

 self.displayLink = [screen displayLinkWithTarget:self

 selector:@selector(updateScreen)];

 [_displayLink addToRunLoop:[NSRunLoop currentRunLoop]

 forMode:NSRunLoopCommonModes];

 }

 - (void) screenDidDisconnect: (NSNotification *) notification

 {

 NSLog(@"Screen disconnected.");

 if (_displayLink)

 {

 [_displayLink removeFromRunLoop:[NSRunLoop currentRunLoop]

 forMode:NSRunLoopCommonModes];

 [_displayLink invalidate];

 self.displayLink = nil;

 }

 }

 - (id) init

 {

 if (!(self = [super init])) return self;

 // Handle output window creation

 if (SCREEN_CONNECTED)

 [self screenDidConnect:nil];

 // Register for connect/disconnect notifications

 [[NSNotificationCenter defaultCenter]

 addObserver:self selector:@selector(screenDidConnect:)

 name:UIScreenDidConnectNotification object:nil];

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(screenDidDisconnect:)

 name:UIScreenDidDisconnectNotification object:nil];

 return self;

 }

 - (void) dealloc

 {

 [self screenDidDisconnect:nil];

 self.outputWindow = nil;

 }

35One More Thing: Checking for Available Disk Space

 + (VIDEOkit *) sharedInstance

 {

 if (!sharedInstance)

 sharedInstance = [[self alloc] init];

 return sharedInstance;

 }

 + (void) startupWithDelegate: (id) aDelegate

 {

 [[self sharedInstance] setDelegate:aDelegate];

 }

 @end

 Get This Recipe’s Code

 To find this recipe’s full sample project, point your browser to https://github.com/erica/iOS-
6-Advanced-Cookbook and go to the folder for Chapter 1 .

 Tracking Users

 Tracking is an unfortunate reality of developer life. Apple deprecated the UIDevice property
that provided a unique identifier tied to device hardware. It replaced it with two identifier
properties. Use identifierForAdvertising to return a device-specific string unique to the
current device. The identifierForVendor property supplies a string that’s tied to each app
vendor. This should return the same unique string regardless of which of your apps is in use.
This is not a customer id. The same app on a different device can return a different string, as
can an app from a different vendor.

 These identifiers are built using the new NSUUID class. You can use this class outside of the
tracking scenario to create UUID strings that are guaranteed to be globally unique. Apple writes,
“UUIDs (Universally Unique Identifiers), also known as GUIDs (Globally Unique Identifiers) or
IIDs (Interface Identifiers), are 128-bit values. A UUID is made unique over both space and time
by combining a value unique to the computer on which it was generated and a value represent-
ing the number of 100-nanosecond intervals since October 15, 1582 at 00:00:00.”

 The UUID class method can generate a new RFC 4122v4 UUID on demand. Use [NSUUID
UUID] to return a new instance. (Bonus: It’s all in uppercase!) From there, you can retrieve the
 UUIDString representation or request the bytes directly via getUUIDBytes: .

 One More Thing: Checking for Available Disk Space

 The NSFileManager class enables you to determine how much space is free on the iPhone and
how much space is provided on the device as a whole. Listing 1-1 demonstrates how to check

https://github.com/erica/iOS-6-Advanced-Cookbook
https://github.com/erica/iOS-6-Advanced-Cookbook

36 Chapter 1 Device-Specific Development

for these values and show the results using a friendly comma-formatted string. The values
returned represent the free space in bytes.

 Listing 1-1 Recovering File System Size and File System Free Size

 - (NSString *) commaFormattedStringWithLongLong: (long long) num

 {

 // Produce a properly formatted number string

 // Alternatively use NSNumberFormatter

 if (num < 1000)

 return [NSString stringWithFormat:@"%d", num];

 return [[self commasForNumber:num/1000]

 stringByAppendingFormat:@",%03d", (num % 1000)];

 }

 - (void) action: (UIBarButtonItem *) bbi

 {

 NSFileManager *fm = [NSFileManager defaultManager];

 NSDictionary *fattributes =

 [fm fileSystemAttributesAtPath:NSHomeDirectory()];

 NSLog(@"System space: %@",

 [self commaFormattedStringWithLongLong:[[fattributes

 objectForKey:NSFileSystemSize] longLongValue]]);

 NSLog(@"System free space: %@",

 [self commasForNumber:[[fattributes

 objectForKey:NSFileSystemFreeSize] longLongValue]]);

 }

 Summary

 This chapter introduced core ways to interact with an iPhone device. You saw how to recover
device info, check the battery state, and subscribe to proximity events. You learned how to
differentiate the iPod touch from the iPhone and iPad and determine which model you’re
working with. You discovered the accelerometer and saw it in use through several examples,
from the simple “finding up” to the more complex shake detection algorithm. You jumped
into Core Motion and learned how to create update blocks to respond to device events in real
time. Finally, you saw how to add external screen support to your applications. Here are a few
parting thoughts about the recipes you just encountered:

 ■ The iPhone’s accelerometer provides a novel way to complement its touch-based
interface. Use acceleration data to expand user interactions beyond the “touch here”
basics and to introduce tilt-aware feedback.

37Summary

 ■ Low-level calls can be App Store-friendly. They don’t depend on Apple APIs that may
change based on the current firmware release. UNIX system calls may seem daunting, but
many are fully supported by the iOS device family.

 ■ Remember device limitations. You may want to check for free disk space before
performing file-intensive work and for battery charge before running the CPU at full
steam.

 ■ Dive into Core Motion. The real-time device feedback it provides is the foundation for
integrating iOS devices into real-world experiences.

 ■ Now that AirPlay has cut the cord for external display tethering, you can use Video Out
for many more exciting projects than you might have previously imagined. AirPlay and
external video screens mean you can transform your iOS device into a remote control for
games and utilities that display on big screens and are controlled on small ones.

 ■ When submitting to iTunes, use your Info.plist file to determine which device capabilities
are required. iTunes uses this list of required capabilities to determine whether an
application can be downloaded to a given device and run properly on that device.

This page intentionally left blank

Index

 A

 ABStandin class, 299 - 302

 Accelerate, rotating images, 215 - 216

 acceleration

 catching events, 11

 moving onscreen objects, 16 - 19

 accelerometers

 retrieving current angle
synchronously, 13 - 16

 scroll view, 19 - 21

 sliding onscreen objects based on
feedback, 17 - 19

 achievements, Game Center

 checking, 382 - 383

 creating, 376 - 377

 reporting, 383 - 385

 resetting, 385

 activity item sources, Activity View

controller, 55

 Activity View controller, 54 - 62

 activity item sources, 55

 adding services, 58 - 62

 excluding activities, 62

 HTML e-mail support, 62

 item providers, 56

476 Activity View controller

 item source callbacks, 56 - 57

 items, 62 - 63

 services, 62 - 63

 activityImage method, 58

 activityTitle method, 58

 activityType method, 58

 activityViewController method, 59

 adding contacts, Address Book, 331 - 333

 Address Book, 297 , 338

 ABStandin class, 299 - 302

 addresses, 313 - 315

 contacts

 accessing contact image data,
325 - 326

 adding and removing, 331 - 333

 modifying and viewing, 334 - 335

 picking people, 326 - 331

 searching for, 318 - 319 , 322 - 325

 sorting, 319

 custom dictionaries, 311 - 312

 databases, 298

 date properties, 306 - 307

 frameworks, 297 - 322

 ABContact, 322

 AddressBook UI, 298

 instant-message properties,
 313 - 315

 multivalue items, 312 - 313

 retrieving and setting strings, 304 -
 306

 wrapping, 303

 groups, 319 - 322

 images, 315 - 316

 displaying in table cells, 326

 multivalue data, storing, 311 - 312

 querying, 302 - 303

 records, 298 - 299

 creating, 317

 functions, 304

 removing, 317 - 318

 social profile, 313 - 315

 Unknown Person Controller,
 335 - 337

 addresses, Address Book, 313 - 315

 alerts, localizing, 465

 altitude property (Core Location), 347

 ambient audio, creating, 270 - 272

 annotation property (document interaction

controller), 71

 annotations

 maps, 363 - 368

 user locations, 360 - 363

 API providers, request tokens, 188 - 189

 APNS (Apple Push Notification Service),

 448 - 451 , 473 - 474 . See also push

notifications

 feedback service, 471 - 472

 handling token request errors, 456

 multiple provider support, 448

 notification payloads, building,
 465 - 466

 responding to notifications, 456 - 458

 retrieving device token, 455 - 456

 security, 449 - 450

 sending notifications, 466 - 471

 App IDs, generating new, 451 - 454

 Apple Push Notification Service (APNS).

 See APNS (Apple Push Notification

Service)

 application bundles, images, 197

477Bezier paths

 apps

 in-app purchase items, creating,
 431 - 435

 developing and testing, 429

 fonts, adding custom to, 118

 registering, 454 - 458

 submitting, StoreKit, 429 - 430

 assets library, reading images from,

202 - 203

 attitude property (Core Motion), 22

 attribute stacks, Core Text, 100 - 105

 attributed strings, Core Text, 89 - 93

 drawing with, 109 - 111

 fonts, 116 - 117

 mutable, 95 - 98

 paragraph styles, 92 - 93

 Text View, 93 - 94

 attributed text

 Bezier paths, drawing along, 151 - 154

 creating, pseudo-HTML, 105 - 109

 drawing into PDFs, 120 - 122

 attributes

 Core Text, 87 - 88

 layering via iterated ranges, 97 - 98

 audio, 261 , 294 - 295

 Game Center, sessions, 411 - 415

 interruptions, handling, 272 - 274

 looping, 269 - 272

 Media Queries, creating, 288 - 290

 MPMusicPlayerController, 290 - 294

 picking, MPMediaPickerController,
 286 - 288

 playing with AVAudioPlayer,
261 - 269

 recording, 274 - 280

 audio queues, 280 - 286

 authentication, handling challenges,

 176 - 177

 authorization, Core Location, 339 - 344

 available disk space, checking, 35 - 36

 AVAudioPlayer

 audio, recording, 274 - 286

 audio interruptions, handling,
272 - 274

 monitoring audio levels, 265 - 269

 playback progress, 264 - 269

 playing audio, 261 - 269

 scrubbing, 264

 AVFoundation cameras, accessing,

235 - 242

 B

 battery state, devices, monitoring, 6 - 8

 Bezier paths, 166

 attributed text, drawing along,
 151 - 154

 bounding, 137 - 142

 elements, 144 - 148

 fitting, 142 - 144

 moving items along, 148 - 151

 points

 extracting, 127 - 129

 retrieving, 149 - 151

 thinning, 129 - 132

478 bitmap images

 bitmap images

 analyzing, 257 - 259

 representations, 210 - 214

 blocks, handler, Core Motion, 23 - 26

 Bluetooth limitations, GameKit, 416

 Bonjour sessions, GameKit, 416 - 417

 bounding Bezier paths, 137 - 142

 boxes, bounding, 138 - 141

 building simple web servers, 181 - 184

 C

 C-based Core Text, 88 - 89

 cameras, 229

 AVFoundation, accessing, 235 - 242

 CI (Core Image) filtering, 248 - 251

 face detection, 251 - 257

 enabling flashlights, 233 - 235

 Exchangeable Image File Format
(EXIF), 242 - 247

 image helper, 241 - 242

 image orientations, 247 - 248

 photographs, snapping, 229 - 233

 previews, 240

 laying out, 241

 querying, 236 - 237

 retrieving, 236 - 237

 sampling live feeds, 257 - 260

 sessions, establishing, 237 - 239

 switching, 239 - 240

 canPerformWithActivityItems method, 58

 catching, acceleration events, 11

 Catmull-Rom, splines, 133 - 134

 chat, Game Center, 411 - 415 , 423 - 424

 testing availability, 412

 CI (Core Image) filtering, 248 - 251

 face detection, 251 - 257

 classes

 GKLeaderboard, 378 - 380

 UIDevice, 1 - 2 , 5 - 9 , 12 - 13

 UIImage, 199 - 200

 UIScreen, 8 - 9 , 29 , 31

 code listings, 147 - 148 . See also recipes

 Adding Camera Previews (7-6), 241

 Adding Images to Core Text Flow
(3-4), 112 - 114

 Application Activities (2-1), 59 - 62

 Attributed String Core Text View
(3-3), 109

 Attributed String View (3-2), 109

 Bezier Elements (4-1), 145 - 146

 Building a Map Annotation Object
(10-1), 363

 Cameras (7-1), 236 - 237

 Capturing Output (7-3), 238 - 239

 Checking a Receipt (12-3), 444 - 445

 Converting Between RGB and HSB
(7-9), 259 - 260

 Converting Geometry from EXIF to
Image Coordinates (7-8), 252 - 254

 Creating a Session (7-2), 237 - 238

 Drawing an Image into a PDF File
(6-2), 222 - 223

 Embedding and Retrieving Previews
(7-5), 240

 Fitting Element-Based Bezier Paths
(4-2), 147 - 148

479Core Location

 Making a Screen Shot of a View
(6-1), 222

 Preparing Annotation Views for Use
(10-2), 365

 Products Request Callback Methods
(12-1), 437 - 438

 Recovering File System Size and File
System Free Size (1-1), 36

 Responding to Payments (12-2),
439 - 441

 Retrieving Image Metadata (7-7),
 243 - 244

 Returning a Font from Its Traits
(3-1), 99 - 100

 Selecting from Available Cameras
(7-4), 239 - 240

 Serializing and Deserializing Property
Lists (11-1), 396 - 397

 conformance

 retrieving lists, UTIs (Uniform Type
Identifiers), 43 - 45

 testing, UTIs (Uniform Type
Identifiers), 42 - 43 , 44 - 45

 conformance arrays, 44 - 45

 contacts, Address Book

 accessing contact image data,
325 - 326

 adding and removing, 331 - 333

 modifying and viewing, 334 - 335

 picking people, 326 - 331

 searching, 322 - 325

 searching for, 318 - 319

 sorting, 319

 controllers

 Activity View, 54 - 62

 activity item sources, 55

 adding services, 58 - 62

 excluding activities, 62

 HTML e-mail support, 62

 item providers, 56

 item source callbacks, 56 - 57

 items, 62 - 63

 services, 62 - 63

 document interaction, 69 - 75

 checking Open menu, 72 - 75

 creating instances, 69 - 71

 properties, 71

 Quick Look support, 71 - 72

 MPMediaPickerController, picking
audio, 286 - 288

 MPMusicPlayerController, 292 - 294

 Quick Look, 62 - 69

 adding actions, 66 - 69

 document interaction controllers,
providing support, 71 - 72

 Unknown Person Controller, Address
Book, 335 - 337

 converting between coordinate systems,

 210 - 211

 convex hulls, bounding, 138 - 141

 convolution, images, 216 - 219

 coordinate property (Core Location), 347

 coordinate systems, converting between,

 210 - 211

 Core Image (CI) filtering, 248 - 251

 face detection, 251 - 257

 Core Location, 339 , 344 - 347 , 369 - 370

 authorizing, 339 - 344

 geocoding, 353 - 355

 Geofencing, 348 - 350

 location and privacy, resetting, 341

 location properties, 346 - 347

480 Core Location

 maps, creating annotations, 363 - 368

 speed, tracking, 347 - 348

 testing, 339 - 341 , 343 - 344

 tracking north, 350 - 353

 user locations

 annotations, 360 - 363

 viewing, 355 - 360

 user permissions, checking, 343

 Core Motion, 21 - 26

 handler blocks, 23 - 26

 properties, 21 - 22

 testing for sensors, 22

 Core Text, 87 , 125 - 126

 adding images to, 112 - 114

 attributed strings, 89 - 93

 mutable, 95 - 98

 paragraph styles, 92 - 93

 Text View, 93 - 94

 attributed text

 creating using pseudo-HTML,
105 - 109

 drawing into PDFs, 120 - 122

 attributes, 87 - 88

 stacks, 100 - 105

 C-based, 88 - 89

 creating image cut-outs, 112 - 114

 drawing into scroll view, 114 - 116

 drawing with, 109 - 111

 fonts, 116 - 117

 adding custom to apps, 118

 large text, 122 - 125

 multipage, 119 - 120

 Objective-C, 88 - 89

 responder styles, 98 - 100

 UIKit, 89

 counting groups, Address Book, 319

 course property (Core Location), 347

 credentials

 entering, 171 - 176

 secure storage, 167 - 171

 current angle, accelerometers, retrieving

synchronously, 13 - 16

 curves, 144 - 148

 custom document types, creating, 77 - 78

 D

 data

 serializing, GameKit, 396 - 397

 uploading, 177 - 181

 date properties, Address Book, 306 - 307

 databases, Address Book, 298

 design, push notifications, 473

 detecting

 screens, 29 - 30

 shakes, motion events, 27 - 28

 development

 apps, 429

 push notifications, 467 - 471

 devices

 accessing basic information, 1 - 2 ,
 9 - 10

 adding capability restrictions, 2 - 5

 battery state, monitoring, 5 - 8

 orientation, 12 - 13

 permissions, 3

 proximity sensor, enabling/
disabling, 5

481frameworks Address Book

 required capabilities, 4

 Retina support, detecting, 8 - 9

 retrieving tokens, 455 - 456

 user permission descriptions, 3

 disabling proximity sensor, 5

 display links, screens, adding, 31

 distribution, push notifications, 467 - 471

 document file sharing, enabling, 49

 document interaction controllers, 69 - 75

 checking Open menu, 72 - 75

 creating instances, 69 - 71

 properties, 71

 Quick Look support, 71 - 72

 documents

 creating custom types, 77 - 78

 declaring support, 75 - 82

 Documents folder, scanning for new,
 50 - 53

 Documents folder

 monitoring, 48 - 53

 scanning for new documents, 50 - 53

 user controls, 49 - 50

 Xcode access, 50

 drawing, Core Text, 109 - 111

 drawings, smoothing, 132 - 135

 E

 Ecamm’s Printopia, 55

 emitters, 226 - 228

 enabling proximity sensor, 5

 ending game play, GameKit, 407 - 410

 entering credentials, 171 - 176

 events

 acceleration, catching, 11

 motion, detecting shakes, 27 - 28

 EXIF (Exchangeable Image File Format),

 242 - 247

 external screens, 29 - 35

 F

 face detection, CI (Core Image) filtering,

 251 - 257

 feedback service, APNS (Apple Push

Notification Service), 471 - 472

 file extensions, UTIs (Uniform Type

Identifiers), 40 - 41

 file system, recovering size, 36

 files, PDFs, drawing into, 222 - 223

 filtering images, CI (Core Image), 248 - 251

 fitting Bezier paths, 142 - 144

 flashlights, cameras, enabling, 233 - 235

 folders, Documents, monitoring, 48 - 53

 fonts

 apps, adding custom to, 118

 Core Text, 116 - 117

 frameworks Address Book, 297 - 322

 ABStandin class, 299 - 302

 AddressBook UI, 298

 databases, 298

 date properties, 306 - 307

 images, 315 - 316

 multivalue items, 307 - 309 , 312 - 313

 querying, 302 - 303

 record functions, 304

 records, 298 - 299

482 frameworks Address Book

 retrieving and setting strings,
304 - 306

 storing multivalue data, 311 - 312

 wrapping, 303

 G

 Game Center, 371 , 425 - 426 . See also
GameKit

 achievements

 checking, 382 - 383

 reporting, 383 - 385

 resetting, 385

 enabling, 371 - 373

 loading matches from, 403

 removing matches, 410 - 411

 scores, submitting, 381 - 382

 signing in to, 373 - 374

 view controller, displaying, 380

 voice, 411 - 415

 game play

 ending, GameKit, 407 - 410

 responding to, GameKit, 403 - 407

 GameKit 371 , 425 - 426

 achievements

 checking, 382 - 383

 creating, 376 - 377

 reporting, 383 - 385

 resetting, 385

 audio sessions, establishing, 412 - 413

 Bluetooth limitations, 416

 chat

 creating, 413

 implementing buttons, 414 - 415

 starting and stopping, 413

 state monitoring, 414

 testing availability, 412

 volume control, 415

 Game Center view controller,
displaying, 380

 game play, 393 - 394

 ending, 407 - 410

 responding to, 403 - 407

 handling player state changes,
 390 - 391

 invitation handlers, creating,
388 - 389

 leaderboards

 accessing, 378 - 380

 building, 375 - 376

 matches

 loading, 402 - 403

 removing, 410 - 411

 multiplayer matchmaking, 385 - 387

 managing match state, 390

 responses, 387 - 388

 turn-by-turn, 399 - 401

 peer services, 415 - 425

 Bonjour, 416 - 417

 creating helper, 422

 online connections, 424 - 425

 peer connection process, 417 - 421

 peer-to-peer voice chat, 422 - 423

 sending and receiving data, 421

 state changes, 422

 voice chat, 423 - 424

 player names, retrieving, 392 - 393

 scores, submitting, 381 - 382

 serializing data, 394 - 397

 session modes, 417

483images

 starting games, 388

 synchronizing data, 397 - 398

 turn-based invitations, responding
to, 401 - 402

 games, starting, GameKit, 388

 geocoding, Core Location, 353 - 355

 Geofencing, Core Location, 348 - 350

 geometry, 127 , 166

 Bezier paths

 drawing attributed text along,
 151 - 154

 fitting, 142 - 144

 moving items along, 148 - 151

 points, 127 , 129 - 132

 retrieving, 127 - 129

 curves, 144 - 148

 drawings, smoothing, 132 - 135

 transforms, 154 - 161

 velocity-based stroking, 136 - 137

 view intersections, testing, 161 - 165

 GKLeaderboard class, 378 - 380

 graphics. See images

 gravity property (Core Motion), 22

 groups, Address Book, 319 - 322

 GUIDs (Globally Unique Identifiers), 35

 H

 Hafeneger, Stefan, 467

 handler blocks, Core Motion, 23 - 26

 handling

 authentication challenges, 176 - 177

 player state changes, GameKit,
390 - 391

 hints, naming, 200 - 201

 horizontalAccuracy property (Core

Location), 347

 HSB (hue, saturation, brightness),

converting RGB (red, green, blue) to,

259 - 260

 I

 iCloud, images, 198

 icons property (document interaction

controller), 71

 IIDs (Interface Identifiers), 35

 image cut-outs, creating, Core Text,

112 - 114

 ImageIO framework, 242 - 243

 images, 197 , 228

 Address Book, 315 - 316

 applying aspect, 205 - 207

 assets library, reading from, 202 - 203

 bitmap representations, 210 - 214

 capturing view-based screen shots,
 221 - 222

 CI (Core Image) filtering, 248 - 251

 face detection, 251 - 257

 converting data to and from bitmap
data, 212 - 214

 convolution, 216 - 219

 emitters, 226 - 228

 Exchangeable Image File Format
(EXIF), 242 - 247

 fitting and filling, 203 - 207

 loading from URLs, 202

 metadata, exposing, 245 - 246

484 images

 orientations, 247 - 248

 processing, 215 - 216

 core, 219 - 221

 reading data, 199 - 203

 reflections, 223 - 226

 rotating, 208 - 210

 Accelerate, 215 - 216

 sandbox, finding, 201 - 202

 snapping, 229 - 233

 sources, 197

 UIImage, wrapping, 244 - 247

 in-app purchase items, creating, 431 - 435

 Info.plist file, 3 - 5

 inheritance, UTIs (Uniform Type

Identifiers), 40

 instances, document interaction controller,

creating, 69 - 71

 Internet, images, 198

 interruptions, audio, handling, 272 - 274

 invitation handlers, GameKit, creating,

 388 - 389

 invitations, responding to, GameKit, 401

 iPhone files, serving through Web service,

 181 - 184

 item providers, Activity View controller, 56

 item source callbacks, Activity View

controller, 56 - 57

 items, Activity View controller, 62 - 63

 iterated ranges, layering attributes

via, 97 - 98

 iTunes accounts, signing out, 438

 J-L

 JSON (JavaScript Object Notation)

 serialization, 394

 transforming from dictionary to, 465

 laying out camera previews, 241

 leaderboards

 accessing, GameKit, 378 - 380

 building, GameKit, 375 - 376

 levels, audio, monitoring, 265 - 269

 listings. See code listings; recipes

 lists, conformance, retrieving, 43 - 45

 live feeds, sampling, 257 - 260

 loading

 images from URLs, 202

 matches, GameKit, 402 - 403

 local notifications versus push

notifications, 451

 location services, testing for, 339 - 341

 locations, Core Location

 annotations, 360 - 363

 properties, 346 - 347

 resetting, 341

 viewing, 355 - 360

 looping audio, 269 - 272

 M

 magneticField property (Core Motion), 22

 MapKit, 339 , 369 - 370

 maps, annotations, Core Location,

363 - 368

 match state, GameKit, managing, 390

485overscanning compensation, screens

 matches, GameKit

 loading, 402 - 403

 removing, 410 - 411

 matchmaker fails, handling, 386 - 387

 Media Queries, creating, 288 - 290

 metadata

 images, exposing, 245 - 246

 querying, 243 - 244

 monitoring

 battery state and proximity, 6 - 8

 Documents folder, 48 - 53

 motion events, detecting shakes, 27 - 28

 MPMediaPickerController, picking audio,

 286 - 288

 MPMusicPlayerController, 292 - 294

 multipage Core Text, 120

 multiplayer matchmaking, GameKit,

385 - 387

 managing match state, 390

 responses, 387 - 388

 turn-by-turn, 399 - 401

 multivalue items, Address Book, 311 - 313

 N

 naming hints, 200 - 201

 networking, 167 , 196

 authentication, handling challenges,
 176 - 177

 credentials

 entering, 171 - 176

 secure storage, 167 - 171

 OAuth utilities, 184 - 196

 uploading data, 177 - 181

 web servers, building, 181 - 184

 north, tracking, Core Location, 350 - 353

 notifications (push), 447 - 449 , 473 - 474

 APNS (Apple Push Notification
Service), 448 - 451

 App IDs, generating new, 451 - 454

 building payloads, 465 - 466

 designing for, 473

 limitations, 450

 versus local notifications, 451

 multiple provider support, 448

 production, 467 - 471

 provisioning push, 451 - 454

 push client skeletons, 459 - 464

 registering apps, 454 - 458

 responding to, 456 - 458

 sandbox, 467 - 471

 security, 449 - 450

 sending, 466 - 471

 NSFileManager class, 36

 O

 OAuth utilities, 184 - 196

 Objective-C, Core Text, 88 - 89

 onscreen objects, sliding based on

accelerometer feedback, 17 - 19

 Open menu, document interaction

controllers, 72 - 75

 orientations

 devices, 12 - 13

 calculating from accelerometers,
 14 - 15

 images, 247 - 248

 overscanning compensation, screens, 31

486 paragraph styles, Core Text

 P

 paragraph styles, Core Text, 92 - 93

 passively updating, pasteboard, 47 - 48

 pasteboard, 45 - 48

 images, 198

 passively updating, 47 - 48

 properties, 46 - 47

 retrieving data, 47

 storing data, 46

 paths, Bezier, 166

 drawing attributed text along,
151 - 154

 elements, 144 - 148

 fitting, 142 - 144

 moving items along, 148 - 151

 points

 extracting, 127 - 129

 thinning, 129 - 132

 retrieving points and slopes, 149 - 151

 payloads, push notifications, building,

465 - 466

 payments, responding to, StoreKit,

438 - 441

 PDF (Portable Document Format) files,

drawing into, 222 - 223

 attributed text, 120 - 122

 peer services, GameKit, 415 - 425

 Bonjour, 416 - 417

 creating helper, 422

 online connections, 424 - 425

 peer connection process, 417 - 421

 peer-to-peer voice chat, 422 - 423

 sending and receiving data, 421

 state changes, 422

 voice chat, 423 - 424

 permissions, devices, 3

 photo album, 197

 photographs, snapping, 229 - 233 .

See also images

 picking audio, MPMediaPickerController,

 286 - 288

 pictures. See images

 player state changes, GameKit, handling,

 390 - 391

 predicates, 288 - 290

 prepareWithActivityItems method, 58

 previews, cameras, 240

 laying out, 241

 Printopia, 55

 privacy, Core Location, resetting, 341

 processing images, 215 - 216 , 219 - 221

 production, push notifications, 467 - 471

 properties

 Core Motion, 21 - 22

 document interaction controllers, 71

 system pasteboard, 46 - 47

 proximity sensor, enabling/disabling, 5

 pseudo-HTML, creating attributed text,

 105 - 109

 purchases

 registering, 441 , 442

 restoring, 441 - 442

 purchasing items, 438 - 442

 multiple, 442

 push client skeletons, 459 - 464

487recipes

 push notifications, 447 - 449 , 473 - 474

 APNS (Apple Push Notification
Service), 448 - 451

 App IDs, generating new, 451 - 454

 building payloads, 465 - 466

 designing for, 473

 limitations, 450

 versus local notifications, 451

 multiple provider support, 448

 production, 467 - 471

 provisioning push, 451 - 454

 push client skeletons, 459 - 464

 registering apps, 454 - 458

 responding to, 456 - 458

 sandbox, 467 - 471

 security, 449 - 450

 sending, 466 - 471

 Q

 queries, Media Queries, creating, 288 - 290

 querying

 Address Book, 302 - 303

 cameras, 236 - 237

 metadata, 243 - 244

 Quick Look controller, 62 - 66

 adding actions, 66 - 69

 document interaction controllers,
providing support, 71 - 72

 R

 reading image data, 199 - 203

 receipts, validating, 443 - 445

 recipes . See also code listings

 Activity View Controller (2-4), 56 - 57

 Adding a Simple Core Image Filter
(7-5), 250 - 251

 Adding Emitters (6-8), 226 - 228

 Analyzing Bitmap Samples (7-7),
 257 - 259

 Applying Image Aspect (6-1),
205 - 207

 Audio Recording with
AVAudioRecorder (8-4), 276 - 280

 Authentication with
NSURLCredential Instances (5-3),
 176 - 177

 Basic Core Motion (1-6), 23 - 25

 Basic OAuth Signing Utilities (5-6),
 185 - 188

 Big Text. Really Big Text (3-9),
123 - 125

 Bounding Boxes and Convex Hulls
(4-5), 138 - 141

 Building Attributed Strings with an
Objective-C Wrapper (3-3), 102 - 104

 Catching Acceleration Events
(1-3), 11

 Catmull-Rom Splining (4-3), 133 - 134

 Choosing Display Properties (9-4),
 330 - 331

 Controlling Torch Mode (7-2),
234 - 235

 Converting to and from Image
Bitmaps (6-3), 213 - 214

 Convolving Images with the
Accelerate Framework (6-5),
 217 - 218

 Core Image Basics (6-6), 220 - 221

488 recipes

 Core Text and Scroll Views (3-5),
 114 - 116

 Creating a Font List (3-6), 117

 Creating Ambient Audio Through
Looping (8-2), 270 - 272

 Creating an Annotated, Interactive
Map (10-7), 366 - 368

 Creating an Automatic Text-Entry to
Pasteboard Solution (2-2), 48

 Creating Reflections (6-7), 224 - 226

 Credential Helper (5-1), 169 - 171

 Detecting Faces (7-6), 255 - 257

 Detecting the Direction of North
(10-3), 351 - 352

 Displaying Address Book Images in
Table Cells (9-2), 326

 Document Interaction Controllers
(2-7), 73 - 75

 Drawing to PDF (3-8), 121

 Ending Games (11-17), 408 - 409

 Establishing a Game Center Player
(11-1), 374

 Establishing an Audio Session for
Voice Chat (11-19), 412 - 413

 Exposing Image Metadata (7-4),
245 - 246

 Extending Device Information
Gathering (1-2), 9 - 10

 Extracting Bezier Path Points (4-1),
 128 - 129

 Fitting Paths into Custom Rectangles
(4-6), 143 - 144

 Handling Incoming Documents
(2-8), 79 - 81

 Handling Invitations (11-14), 401

 Handling Turn Events (11-16),
 404 - 407

 Helper Class for Cameras (7-3),
241 - 242

 Implementing an Invitation Handler
(11-9), 389

 Layering Attributes Via Iterated
Ranges (3-2), 97 - 98

 Laying Out Text Along a Bezier Path
(4-8), 152 - 154

 Loading Matches from Game Center
(11-15), 403

 Loading Opponent Name (11-11),
 392

 Monitoring Proximity and Battery
(1-1), 6 - 8

 Multipage Core Text (3-7), 120

 OAuth Process (5-7), 192 - 195

 Obliterating Game Center Matches
for the Current Player (11-18),
410 - 411

 Password Entry View Controller
(5-2), 172 - 175

 Picking People (9-3), 328 - 329

 Playing Back Audio with
AVAudioPlayer (8-1), 265 - 269

 Presenting the Game Center View
Controller (11-3), 381

 Presenting User Location Within a
Map (10-5), 357 - 360

 Providing URL Scheme Support
(2-9), 84

 Pseudo HTML Markup (3-4), 106 - 109

 Push Client Skeleton (13-1), 461 - 464

 Pushing Payloads to the APNS Server
(13-2), 468 - 471

 Quick Look (2-5), 65 - 66

 Quick Look (2-6), 67 - 68

489records, Address Book

 Recording with Audio Queues: The
Recorder.m Implementation (8-5),
 280 - 285

 Recovering Address Information
from Coordinates and Descriptions
(10-4), 354 - 355

 Requesting a Match Through the
Match Maker (11-7), 386

 Responding to a Found Match
(11-8), 387 - 388

 Responding to Player State (11-10),
 391

 Retrieving Leaderboard Information
(11-2), 379 - 380

 Retrieving Points and Slopes from
Bezier Paths (4-7), 149 - 151

 Retrieving Transform Values (4-10),
 162 - 165

 Rolling for First Position (11-12),
 397 - 398

 Rotating an Image (6-2), 209 - 210

 Rotating Images with the Accelerate
Framework (6-4), 215 - 216

 Selecting and Displaying Contacts
with Search (9-1), 323 - 325

 Selecting Music Items from the iPod
Library (8-6), 287 - 288

 Serving iPhone Files Through a Web
Service (5-5), 181 - 184

 Simple Media Playback with the iPod
Music Player (8-7), 292 - 294

 Sliding an Onscreen Object Based
on Accelerometer Feedback (1-4),
 17 - 19

 Snapping Pictures (7-1), 232 - 233

 Starting a Match (11-13), 399 - 400

 Storing the Interruption Time for
Later Pickup (8-3), 272 - 274

 Submitting User Scores (11-4), 382

 Testing Achievements (11-5), 383

 Testing Conformance (2-1), 44 - 45

 Thinning Bezier Path Points (4-2),
 131 - 132

 Tilt Scroller (1-5), 19 - 21

 Tracking the Device Through the
MapView (10-6), 361 - 362

 Transformed View Access (4-9),
159 - 161

 Unlocking Achievements (11-6), 384

 Uploading Images to imgur (5-4),
 178 - 181

 Using a kqueue File Monitor (2-3),
 51 - 53

 Using Basic Attributed Strings with a
Text View (3-1), 93 - 94

 Using Core Location to Geofence
(10-2), 349 - 350

 Using Core Location to Retrieve
Latitude and Longitude (10-1),
345 - 346

 Using Device Motion Updates to Fix
an Image in Space (1-7), 26 - 27

 Using the New Person View
Controller (9-5), 331 - 333

 Velocity-Based Stroking (4-4),
136 - 137

 VIDEOkit (1-8), 32 - 35

 Working with the Unknown
Controller (9-6), 336 - 337

 recording audio, 274 - 280

 audio queues, 280 - 286

 records, Address Book, 298 - 299

 creating, 317

 functions, 304

 removing, 317 - 318

490 reflections, images

 reflections, images, 223 - 226

 registering

 apps, 454 - 458

 purchases, 441 - 442

 relative angles, calculating, 15 - 16

 removing contacts, Address Book, 331 - 333

 reporting, Game Center achievements,

 383 - 385

 request tokens, API providers, 188 - 189

 resetting achievements, GameKit, 385

 responder styles, Core Text, 98 - 100

 Retina support, detecting, 8 - 9

 retrieving

 cameras, 236 - 237

 current angle synchronously,
accelerometers, 13 - 16

 data, system pasteboard, 47

 strings, Address Book, 304 - 306

 RGB (red, green, blue) color codes,

converting to HSB, 259 - 260

 rotating images, 209 - 210 , 215 - 216

 rotationRate property (Core Motion), 22

 S

 sandbox

 images, 198

 finding, 201 - 202

 push notifications, 467 - 471

 schemes, URL, declaring, 82 - 83

 scores, submitting, GameKit, 381 - 382

 screen shots, capturing view-based ,

221 - 222

 screens

 detecting, 29 - 30

 display links, adding, 31

 external, 29 - 35

 overscanning compensation, 31

 retrieving resolutions, 30

 Video Out, setting up, 30 - 31

 VIDEOkit, 31 - 35

 scroll views

 accelerometer-based, 19 - 21

 Core Text, drawing into, 114 - 116

 searches, contacts, Address Book,

 318 - 319 , 322 - 325

 sending push notifications, 466 - 471

 sensors

 proximity, 5

 testing for, Core Motion, 22

 serializing data, GameKit, 394 - 397

 services, Activity View controller, 62 - 63

 adding, 58 - 62

 session modes, GameKit, 417

 sessions, cameras, establishing, 237 - 239

 setting strings, Address Book, 304 - 306

 shakes, detecting, motion events, 27 - 28

 shared data, images, 198 - 199

 signing in to Game Center, 373 - 374

 slopes, Bezier paths, retrieving, 149 - 151

 smoothing drawings, 132 - 135

 social profiles, Address Book, 313 - 315

 sorting contacts, Address Book, 319

 sound. See audio

 sources, images, 197 - 199

491turn events, handling

 speed, tracking, Core Location, 347 - 348

 storage, credentials, secure, 167 - 171

 storefront GUI, building, 435 - 438

 StoreKit, 427 - 430 , 445

 apps

 developing and testing, 429

 submitting, 429 - 430

 development paradox, 428

 in-app purchase items, creating,
431 - 435

 purchases

 registering, 441 - 442

 restoring, 441 - 442

 purchasing items, 438 - 442

 storefront GUI, building, 435 - 438

 test accounts, creating, 430 - 431

 validating receipts, 443 - 445

 storing data, system pasteboard, 46

 strings

 Address Book, retrieving and setting,
 304 - 306

 attributed, Core Text, 89 - 98

 support, documents, declaring, 75 - 82

 switching, cameras, 239 - 240

 synchronizing data, GameKit, 397 - 398

 system pasteboard, 45 - 48

 passively updating, 47 - 48

 properties, 46 - 47

 retrieving data, 47

 storing data, 46

 T

 TCP (Transmission Control Protocol), 393

 test accounts, StoreKit, creating, 430 - 431

 testing

 apps, 429

 conformance, UTIs (Uniform Type
Identifiers), 42 - 45

 Core Location, 343 - 344

 Game Center achievements, 382 - 383

 for location services, 339 - 341

 URLs, 83

 view intersections, 161 - 165

 text displays, large text, 122 - 125

 Text View, attributed strings, 93 - 94

 thinning Bezier path points, 129 - 132

 Tilt Scroller, 19 - 21

 timestamp property (Core Location), 347

 tokens, retrieving and storing, 189

 torch mode, controlling, 234 - 235

 tracking speed, Core Location , 347 - 348

 tracking users, 35

 transforms, 154 - 161

 basic, 154 - 155

 values

 retrieving, 156 - 157

 setting, 157 - 158

 view point locations, retrieving,
158 - 161

 Transmission Control Protocol (TCP), 393

 turn-based invitations, responding to,

GameKit, 401 - 402

 turn-by-turn matchmaking, GameKit,

 399 - 401

 turn events, handling, 404 - 407

492 UDP (User Datagram Protocol)

 U

 UDP (User Datagram Protocol), 393

 UIDevice class, 1 - 2 , 5 - 9 , 12 - 13

 UIImage class, 199 - 200

 orientations, 249 - 248

 wrapping, 244 - 247

 UIKit, Core Text, 89

 UIScreen class, 8 - 9 , 29 , 31

 Uniform Type Identifiers (UTIs). See UTIs

(Uniform Type Identifiers)

 Unknown Person Controller, Address Book,

 335 - 337

 uploading data, 177 - 181

 URL-based services, creating, 82 - 84

 URL property (document interaction

controller), 71

 URLs (uniform resource locators)

 declaring schemes, 82 - 83

 images, loading from, 202

 testing, 83

 user acceleration property (Core

Motion), 22

 user controls, Documents folder, 49 - 50

 User Datagram Protocol (UDP), 393

 user locations, Core Location

 annotations, 360 - 363

 viewing, 355 - 360

 user permissions, Core Location,

checking, 343

 users, tracking, 35

 UTI property (document interaction

controller), 71

 utilities, OAuth, 184 - 196

 UTIs (Uniform Type Identifiers), 39 - 45

 file extensions, 40 - 41

 inheritance, 40

 producing preferred extensions or
MIME types, 41 - 42

 testing conformance, 42 - 43

 UUIDs (Universally Unique Identifiers), 35

 V

 validating receipts, 443 - 445

 values, transforms

 retrieving, 156 - 157

 setting, 157 - 158

 velocity-based stroking, 135 - 137

 verticalAccuracy property (Core Location),

 347

 Video Out, setting up, 30 - 31

 VIDEOkit, 31 - 35

 view-based screen shots, capturing,

221 - 222

 View Controller, Address Book contacts,

 331 - 333

 view intersections, testing, 161 - 165

 view point locations, transforms, retrieving,

 158 - 161

 viewing user locations, Core Location,

355 - 360

 views, accelerometer-based scroll, 19 - 21

 voice, Game Center, 411 - 415

493Xcode access, Documents folder

 W-Z

 web servers, building, 181 - 184

 wrapping

 Address Book framework, 303

 UIImage, 244

 Xcode access, Documents folder, 50

This page intentionally left blank

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

	Table of Contents
	Preface
	1 Device-Specific Development
	Accessing Basic Device Information
	Adding Device Capability Restrictions
	Recipe: Checking Device Proximity and Battery States
	Recipe: Recovering Additional Device Information
	Recipe: Using Acceleration to Locate “Up”
	Working with Basic Orientation
	Retrieving the Current Accelerometer Angle Synchronously
	Recipe: Using Acceleration to Move Onscreen Objects
	Recipe: Accelerometer-Based Scroll View
	Recipe: Core Motion Basics
	Recipe: Retrieving and Using Device Attitude
	Detecting Shakes Using Motion Events
	Recipe: Using External Screens
	Tracking Users
	One More Thing: Checking for Available Disk Space
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

