
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321877581
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321877581
https://plusone.google.com/share?url=http://www.informit.com/title/9780321877581
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321877581
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321877581/Free-Sample-Chapter

Essential C# 5.0

Michaelis_FM.fm Page iii Wednesday, February 10, 2010 4:27 PM

The Windows Development Series grew out of the award-winning Microsoft .NET Development
Series established in 2002 to provide professional developers with the most comprehensive
and practical coverage of the latest Windows developer technologies. The original series has
been expanded to include not just .NET, but all major Windows platform technologies and tools.
It is supported and developed by the leaders and experts of Microsoft development technologies,
including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources
in this series provide a core resource of information and understanding every developer needs to
write effective applications for Windows and related Microsoft developer technologies.

“ This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert
perspective to reference and how-to. Books in this series are essential reading for those who want to
judiciously expand their knowledge and expertise.”

– JOHN MONTGOMERY, Principal Director of Program Management, Microsoft

“ This series is always where I go f irst for the best way to get up to speed on new technologies. With its
expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting
better and more relevant to the modern Windows developer.”

– CHRIS SELLS, Vice President, Developer Tools Division, Telerik

Visit informit.com/mswinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Microsoft Windows Development Series

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Essential
C# 5.0

 Mark Michaelis
 with Eric Lippert

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trade-
marks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information
or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Michaelis, Mark.
 Essential C# 5.0 / Mark Michaelis with Eric Lippert.
 pages cm
 Includes index.
 ISBN 0-321-87758-6 (pbk. : alk. paper)
1. C# (Computer program language) 2. Microsoft .NET Framework. I.
Lippert, Eric. II. Title.
 QA76.73.C154M5238 2013
 006.7'882—dc23	 2012036148

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-87758-1
ISBN-10: 	 0-321-87758-6
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Anne Arbor, Michigan.
First printing, November 2012

To my family: Elisabeth, Benjamin, Hanna, and Abigail,

You have sacrificed a husband and daddy for countless hours of writing, frequently at
times when he was needed most.

Thanks!

n

This page intentionally left blank

	 vii

Contents at a Glance

Contents  ix
Figures  xv
Tables  xvii
Foreword  xix
Preface  xxiii
Acknowledgments  xxxv
About the Authors  xxxvii

1	 Introducing C#  1

2	 Data Types  33

3	 Operators and Control Flow  85

4	 Methods and Parameters  155

5	 Classes  209

6	 Inheritance  277

7	 Interfaces  313

8	 Value Types  339

9	 Well-Formed Types  371

10	 Exception Handling  423

11	 Generics  443

12	 Delegates and Lambda Expressions  495

	 viii	

n
n 	 Contents at a Glance

13	 Events  533

14	 Collection Interfaces with Standard Query Operators  561

15	 LINQ with Query Expressions  613

16	 Building Custom Collections  635

17	 Reflection, Attributes, and Dynamic Programming   677

18	 Multithreading  727

19	 Thread Synchronization   811

20	 Platform Interoperability and Unsafe Code  845

21	 The Common Language Infrastructure  875

A	 �Downloading and Installing the C# Compiler and CLI
Platform  897

B	 Tic-Tac-Toe Source Code Listing  901

C	 �Interfacing with Mutithreading Patterns Prior to the
TPL and C# 5.0  907

D	 Timers Prior to the Async/Await Pattern of C# 5.0  937

Index  943

Index of C# 5.0 Topics  974

Index of C# 4.0 Topics  975

Index of C# 3.0 Topics  984

	 ix

Contents

Figures  xv
Tables  xvii
Foreword  xix
Preface  xxiii
Acknowledgments  xxxv
About the Authors  xxxvii

1	 Introducing C#  1

Hello, World  2
C# Syntax Fundamentals  4
Console Input and Output  17

2	 Data Types  33

Fundamental Numeric Types  34

More Fundamental Types  43

null and void  53

Categories of Types  57

Nullable Modifier  60

Conversions between Data Types  60

Arrays  67

3	 Operators and Control Flow  85

Operators  86

Introducing Flow Control   103

Code Blocks ({})  110

	 x	

n
n 	 Contents

Code Blocks, Scopes, and Declaration Spaces  112

Boolean Expressions  114

Bitwise Operators (<<, >>, |, &, ^, ~)  121

Control Flow Statements, Continued  127

Jump Statements  139

C# Preprocessor Directives  145

4	 Methods and Parameters  155

Calling a Method  156

Declaring a Method  163

The using Directive  168

Returns and Parameters on Main()  172

Advanced Method Parameters  175

Recursion  184

Method Overloading  186

Optional Parameters  189

Basic Error Handling with Exceptions  194

5	 Classes  209

Declaring and Instantiating a Class  213

Instance Fields  217

Instance Methods  219

Using the this Keyword  220

Access Modifiers  227

Properties  229

Constructors  244

Static Members  255

Extension Methods  265

Encapsulating the Data  267

Nested Classes  269

Partial Classes  272

6	 Inheritance  277

Derivation  278

	 xiContents

Overriding the Base Class  290

Abstract Classes  302

All Classes Derive from System.Object  308

Verifying the Underlying Type with the is Operator  309

Conversion Using the as Operator  310

7	 Interfaces  313

Introducing Interfaces  314

Polymorphism through Interfaces  315

Interface Implementation  320

Converting between the Implementing Class and Its Interfaces  326

Interface Inheritance  326

Multiple Interface Inheritance  329

Extension Methods on Interfaces  330

Implementing Multiple Inheritance via Interfaces  331

Versioning  334

Interfaces Compared with Classes  336

Interfaces Compared with Attributes  337

8	 Value Types  339

Structs  340

Boxing  349

Enums  358

9	 Well-Formed Types  371

Overriding object Members  371

Operator Overloading  385

Referencing Other Assemblies  393

Defining Namespaces  398

XML Comments  402

Garbage Collection  407

Resource Cleanup  410

Lazy Initialization  419

	 xii	

n
n 	 Contents

10	 Exception Handling  423

Multiple Exception Types  424

Catching Exceptions  426

General Catch Block  430

Guidelines for Exception Handling  432

Defining Custom Exceptions  435

Wrapping an Exception and Rethrowing  438

11	 Generics  443
C# without Generics  444

Introducing Generic Types  449

Constraints  462

Generic Methods  476

Covariance and Contravariance  481

Generic Internals  489

12	 Delegates and Lambda Expressions  495
Introducing Delegates  496

Lambda Expressions  506

Anonymous Methods  512

General-Purpose Delegates: System.Func and System.Action  514

13	 Events  533
Coding the Observer Pattern with Multicast Delegates  534

Events  548

14	 Collection Interfaces with Standard Query Operators  561
Anonymous Types and Implicitly Typed Local Variables  562

Collection Initializers  568

What Makes a Class a Collection: IEnumerable<T>  571

Standard Query Operators  577

15	 LINQ with Query Expressions  613
Introducing Query Expressions  614

Query Expressions Are Just Method Invocations  632

	 xiiiContents

16	 Building Custom Collections  635
More Collection Interfaces  636

Primary Collection Classes  638

Providing an Indexer  655

Returning Null or an Empty Collection  659

Iterators  660

17	 Reflection, Attributes, and Dynamic Programming   677
Reflection  678

Attributes  688

Programming with Dynamic Objects  714

18	 Multithreading  727
Multithreading Basics  730

Working with System.Threading  737

Asynchronous Tasks  745

Canceling a Task  764

The Task-Based Asynchronous Pattern in C# 5.0  770

Executing Loop Iterations in Parallel  794

Running LINQ Queries in Parallel  804

19	 Thread Synchronization   811
Why Synchronization?  813

Timers  841

20	 Platform Interoperability and Unsafe Code  845
Using the Windows Runtime Libraries from C#  846

Platform Invoke  849

Pointers and Addresses  862

Executing Unsafe Code via a Delegate  872

21	 The Common Language Infrastructure  875
Defining the Common Language
Infrastructure (CLI)  876

CLI Implementations  877

C# Compilation to Machine Code  879

	 xiv	

n
n 	 Contents

Runtime  881

Application Domains  887

Assemblies, Manifests, and Modules  887

Common Intermediate Language (CIL)  890

Common Type System (CTS)  891

Common Language Specification (CLS)  891

Base Class Library (BCL)  892

Metadata  892

A	 �Downloading and Installing the C# Compiler and CLI
Platform  897
Microsoft’s .NET   897

B	 Tic-Tac-Toe Source Code Listing  901

C	 �Interfacing with Mutithreading Patterns Prior to the
TPL and C# 5.0  907
Asynchronous Programming Model  908

Asynchronous Delegate Invocation  921

The Event-Based Asynchronous Pattern (EAP)  924

Background Worker Pattern  928

Dispatching to the Windows UI  932

D	 Timers Prior to the Async/Await Pattern of C# 5.0  937

Index  943

Index of C# 5.0 Topics  974

Index of C# 4.0 Topics  975

Index of C# 3.0 Topics  984

	 xv

Figures

	 Figure 2.1:	 Value Types Contain the Data Directly  58
	 Figure 2.2:	 Reference Types Point to the Heap  59

	 Figure 3.1:	 Corresponding Placeholder Values  121
	 Figure 3.2:	 Calculating the Value of an Unsigned Byte  122
	 Figure 3.3:	 Calculating the Value of a Signed Byte  122
	 Figure 3.4:	 The Numbers 12 and 7 Represented in Binary  124
	 Figure 3.5:	 Collapsed Region in Microsoft Visual Studio .NET  152

	 Figure 4.1:	 Exception-Handling Control Flow  198

	 Figure 5.1:	 Class Hierarchy  212

	 Figure 6.1:	 Refactoring into a Base Class  279
	 Figure 6.2:	 Simulating Multiple Inheritance Using Aggregation  289

	 Figure 7.1:	� Working around Single Inheritances with Aggregation and
Interfaces  334

	 Figure 8.1:	 Value Types Contain the Data Directly  341
	 Figure 8.2:	 Reference Types Point to the Heap  342

	 Figure 9.1:	 Identity  377
	 Figure 9.2:	 XML Comments As Tips in Visual Studio IDE  403

	 Figure 12.1:	 Delegate Types Object Model  503
	 Figure 12.2:	 Anonymous Function Terminology  507
	 Figure 12.3:	 The Lambda Expression Tree Type  526
	 Figure 12.4:	 Unary and Binary Expression Tree Types  526

	 xvi	

n
n 	 Figures

	 Figure 13.1:	 Delegate Invocation Sequence Diagram  543
	 Figure 13.2:	 Multicast Delegates Chained Together  544
	 Figure 13.3:	 Delegate Invocation with Exception Sequence Diagram  545

	 Figure 14.1:	 IEnumerator<T> and IEnumerator Interfaces  573
	 Figure 14.2:	 Sequence of Operations Invoking Lambda Expressions  589
	 Figure 14.3:	 Venn Diagram of Inventor and Patent Collections  593

	 Figure 16.1:	 Generic Collection Interface Hierarchy  637
	 Figure 16.2:	 List<> Class Diagrams  639
	 Figure 16.3:	 Dictionary Class Diagrams  646
	 Figure 16.4:	� SortedList<> and SortedDictionary<> Class

Diagrams  653
	 Figure 16.5:	 Stack<T> Class Diagram  654
	 Figure 16.6:	 Queue<T> Class Diagram  654
	 Figure 16.7:	� LinkedList<T> and LinkedListNode<T> Class

Diagrams  655
	 Figure 16.8:	 Sequence Diagram with yield return  665

	 Figure 17.1:	 MemberInfo Derived Classes  685
 	 Figure 17.2:	 BinaryFormatter Does Not Encrypt Data  708

	 Figure 18.1:	 Clock Speeds over Time  728
	 Figure 18.2:	� CancellationTokenSource and CancellationToken

Class Diagrams  767

	 Figure 20.1:	 Pointers Contain the Address of the Data  865
	 Figure 21.1:	 Compiling C# to Machine Code  880
	 Figure 21.2:	 Assemblies with the Modules and Files They Reference  889

	 Figure C.1:	 APM Parameter Distribution  911
	 Figure C.2:	� Delegate Parameter Distribution to BeginInvoke() and

EndInvoke()  924
	
	

	 xvii

Tables

	 Table 1.1:	 C# Keywords  5
	 Table 1.2:	 C# Comment Types  22
	 Table 1.3:	 C# and .NET Versions  27

	 Table 2.1:	 Integer Types  34
	 Table 2.2:	 Floating-Point Types  36
	 Table 2.3:	 decimal Type   36
	 Table 2.4:	 Escape Characters  45
	 Table 2.5:	 string Static Methods  49
	 Table 2.6:	 string Methods  50
	 Table 2.7:	 Array Highlights  68
	 Table 2.8:	 Common Array Coding Errors  82

	 Table 3.1:	 Control Flow Statements  104
	 Table 3.2:	 Relational and Equality Operators  116
	 Table 3.3:	 Conditional Values for the XOR Operator  118
	 Table 3.4:	 Preprocessor Directives  146
	 Table 3.5:	 Operator Order of Precedence  153

	 Table 4.1:	 Common Namespaces  159
	 Table 4.2:	 Common Exception Types  202

	 Table 6.1:	 Why the New Modifier?  296
	 Table 6.2:	 Members of System.Object  308

	xviii	

n
n 	 Tables

	 Table 7.1:	 Comparing Abstract Classes and Interfaces  337

	 Table 8.1:	 Boxing Code in CIL  350

	 Table 9.1:	 Accessibility Modifiers  398

	 Table 12.1:	 Lambda Expression Notes and Examples  511

	 Table 14.1:	 Simpler Standard Query Operators  608
	 Table 14.2:	 Aggregate Functions on System.Linq.Enumerable  609

	 Table 17.1:	 Deserialization of a New Version Throws an Exception  711

	 Table 18.1:	 List of Available TaskContinuationOptions Enums  754
	 Table 18.2:	 Control Flow within Each Task  780

	 Table 19.1:	 Sample Pseudocode Execution  814
	 Table 19.2:	 Interlocked’s Synchronization-Related Methods  825
	 Table 19.3:	 Execution Path with ManualResetEvent Synchronization  833
	 Table 19.4:	 Concurrent Collection Classes  836

	 Table 21.1:	 Primary C# Compilers  878
	 Table 21.2:	 Common C#-Related Acronyms  894

	 Table D.1:	 Overview of the Various Timer Characteristics  938
	

	 xix

Foreword

Welcome to one of the greatest collaborations you could dream of in the
world of C# books—and probably far beyond! Mark Michaelis’ Essential
C# series is already a classic, and teaming up with famous C# blogger Eric
Lippert on the new edition is another masterstroke!

You may think of Eric as writing blogs and Mark as writing books, but
that is not how I first got to know them.

In 2005 when LINQ (Language Integrated Query) was disclosed, I had
only just joined Microsoft, and I got to tag along to the PDC conference for
the big reveal. Despite my almost total lack of contribution to the technol-
ogy, I thoroughly enjoyed the hype. The talks were overflowing, the printed
leaflets were flying like hotcakes: It was a big day for C# and .NET, and I
was having a great time.

It was pretty quiet in the hands-on labs area, though, where people could
try out the technology preview themselves with nice scripted walkthroughs.
That’s where I ran into Mark. Needless to say, he wasn’t following the script.
He was doing his own experiments, combing through the docs, talking to
other folks, busily pulling together his own picture.

As a newcomer to the C# community, I think I may have met a lot of
people for the first time at that conference—people that I have since formed
great relationships with. But to be honest, I don’t remember it. The only
one I remember is Mark. Here is why: When I asked him if he was liking
the new stuff, he didn’t just join the rave. He was totally level-headed: “I
don’t know yet. I haven’t made up my mind about it.” He wanted to absorb and

	 xx	

n
n 	 Foreword

understand the full package, and until then he wasn’t going to let anyone
tell him what to think.

So instead of the quick sugar rush of affirmation I might have expected,
I got to have a frank and wholesome conversation, the first of many over
the years, about details, consequences, and concerns with this new technol-
ogy. And so it remains: Mark is an incredibly valuable community member
for us language designers to have, because he is super smart, insists on
understanding everything to the core, and has phenomenal insight into how
things affect real developers. But perhaps most of all because he is forthright
and never afraid to speak his mind. If something passes the Mark Test then
we know we can start feeling pretty good about it!

These are the same qualities that make Mark such a great writer. He goes
right to the essence and communicates with great integrity, no sugarcoating,
and a keen eye for practical value and real-world problems.

Eric is, of course, my colleague of seven years on the C# team. He’s been
here much longer than I have, and the first I recall of him, he was explaining
to the team how to untangle a bowl of spaghetti. More precisely, our C#
compiler code base at the time was in need of some serious architectural TLC,
and was exceedingly hard to add new features to—something we desperately
needed to be able to do with LINQ. Eric had been investigating what kind of
architecture we ought to have (Phases! We didn’t even really have those!), and
more importantly, how to get from here to there, step by step. The remarkable
thing was that as complex as this was, and as new as I was to the team and
the code base, I immediately understood what he was saying!

You may recognize from his blogs the super-clear and well-structured
untangling of the problem, the convincing clarity of enumerated solutions,
and the occasional unmitigated hilarity. Well, you don’t know the half of it!
Every time Eric is grappling with a complex issue and is sharing his thoughts
about it with the team, his emails about it are just as meticulous and every bit
as hilarious. You fundamentally can’t ignore an issue raised by Eric because
you can’t wait to read his prose about it. They’re even purple, too! So I es-
sentially get to enjoy a continuous supply of what amounts to unpublished
installments of his blog, as well as, of course, his pleasant and insightful
presence as a member of the C# compiler team and language design team.

In summary, I am truly grateful to get to work with these two amazing
people on a regular basis: Eric to help keep my thinking straight and Mark

	 xxiForeword

to help keep me honest. They share a great gift of providing clarity and
elucidation, and by combining their “inside” and “outside” perspective on
C#, this book reaches a new level of completeness. No one will help you get
C# 5.0 like these two gentlemen do.

Enjoy!

—Mads Torgersen,
C# Program Manager,

Microsoft

This page intentionally left blank

	 xxiii

Preface

throughout the history of software engineering, the methodology used
to write computer programs has undergone several paradigm shifts, each
building on the foundation of the former by increasing code organization
and decreasing complexity. This book takes you through these same para-
digm shifts.

The beginning chapters take you through sequential programming
structure in which statements are executed in the order in which they are
written. The problem with this model is that complexity increases exponen-
tially as the requirements increase. To reduce this complexity, code blocks
are moved into methods, creating a structured programming model. This
allows you to call the same code block from multiple locations within a
program, without duplicating code. Even with this construct, however,
programs quickly become unwieldy and require further abstraction. Ob-
ject-oriented programming, discussed in Chapter 5, was the response. In
subsequent chapters, you will learn about additional methodologies, such
as interface-based programming, LINQ (and the transformation it makes
to the collection API), and eventually rudimentary forms of declarative
programming (in Chapter 17) via attributes.

This book has three main functions.

•	 It provides comprehensive coverage of the C# language, going beyond
a tutorial and offering a foundation upon which you can begin effective
software development projects.

•	 For readers already familiar with C#, this book provides insight into
some of the more complex programming paradigms and provides

	xxiv	

n
n 	 Preface

in-depth coverage of the features introduced in the latest version of
the language, C# 5.0 and .NET Framework 4.5.

•	 It serves as a timeless reference, even after you gain proficiency with
the language.

The key to successfully learning C# is to start coding as soon as possible.
Don’t wait until you are an “expert” in theory; start writing software im-
mediately. As a believer in iterative development, I hope this book enables
even a novice programmer to begin writing basic C# code by the end of
Chapter 2.

A number of topics are not covered in this book. You won’t find coverage
of topics such as ASP.NET, ADO.NET, smart client development, distributed
programming, and so on. Although these topics are relevant to the .NET
Framework, to do them justice requires books of their own. Fortunately,
Addison-Wesley’s Microsoft Windows Development Series provides a
wealth of writing on these topics. Essential C# 5.0 focuses on C# and the
types within the Base Class Library. Reading this book will prepare you to
focus on and develop expertise in any of the areas covered by the rest of
the series.

Target Audience for This Book
My challenge with this book was to keep advanced developers awake
while not abandoning beginners by using words such as assembly, link,
chain, thread, and fusion, as though the topic was more appropriate for
blacksmiths than for programmers. This book’s primary audience is ex-
perienced developers looking to add another language to their quiver.
However, I have carefully assembled this book to provide significant value
to developers at all levels.

•	 Beginners: If you are new to programming, this book serves as a re-
source to help transition you from an entry-level programmer to a C#
developer, comfortable with any C# programming task that’s thrown
your way. This book not only teaches you syntax, but also trains you
in good programming practices that will serve you throughout your
programming career.

	 xxvPreface

•	 Structured programmers: Just as it’s best to learn a foreign language
through immersion, learning a computer language is most effective
when you begin using it before you know all the intricacies. In this
vein, this book begins with a tutorial that will be comfortable for those
familiar with structured programming, and by the end of Chapter 4,
developers in this category should feel at home writing basic control
flow programs. However, the key to excellence for C# developers is
not memorizing syntax. To transition from simple programs to en-
terprise development, the C# developer must think natively in terms
of objects and their relationships. To this end, Chapter 5’s Beginner
Topics introduce classes and object-oriented development. The role
of historically structured programming languages such as C, COBOL,
and FORTRAN is still significant but shrinking, so it behooves software
engineers to become familiar with object-oriented development. C# is
an ideal language for making this transition because it was designed
with object-oriented development as one of its core tenets.

•	 Object-based and object-oriented developers: C++ and Java programmers,
and many experienced Visual Basic programmers, fall into this cat-
egory. Many of you are already completely comfortable with semi
colons and curly braces. A brief glance at the code in Chapter 1 reveals
that, at its core, C# is similar to the C and C++ style languages that
you already know.

•	 C# professionals: For those already versed in C#, this book provides a
convenient reference for less frequently encountered syntax. Further-
more, it provides answers to language details and subtleties that are
seldom addressed. Most importantly, it presents the guidelines and
patterns for programming robust and maintainable code. This book
also aids in the task of teaching C# to others. With the emergence of
C# 3.0, 4.0, and 5.0, some of the most prominent enhancements are

–– Implicitly typed variables (see Chapter 2)
–– Extension methods (see Chapter 5)
–– Partial methods (see Chapter 5)
–– Anonymous types (see Chapter 11)
–– Generics (see Chapter 11)
–– Lambda statements and expressions (see Chapter 12)
–– Expression trees (see Chapter 12)

	xxvi	

n
n 	 Preface

–– Standard query operators (see Chapter 14)
–– Query expressions (see Chapter 15)
–– Dynamic programming (Chapter 17)
–– Multithreaded programming with the Task Programming Library

and async (Chapter 18)
–– Parallel query processing with PLINQ (Chapter 18)
–– Concurrent collections (Chapter 19)

These topics are covered in detail for those not already familiar with
them. Also pertinent to advanced C# development is the subject of
pointers, in Chapter 21. Even experienced C# developers often do not
understand this topic well.

Features of This Book
Essential C# 5.0 is a language book that adheres to the core C# Language
5.0 Specification. To help you understand the various C# constructs, it
provides numerous examples demonstrating each feature. Accompanying
each concept are guidelines and best practices, ensuring that code com-
piles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are
outlined using mind maps.

C# Coding Guidelines
One of the more significant enhancements added to Essential C# 5.0, and
not explicitly called out in previous editions, was the addition of C# cod-
ing guidelines, as shown in the following example taken from Chapter 16:

Guidelines
DO ensure that equal objects have equal hash codes.

DO ensure that the hash code of an object never changes while it is in a
hash table.

DO ensure that the hashing algorithm quickly produces a well-
distributed hash.

DO ensure that the hashing algorithm is robust in any possible object
state.

	 xxviiPreface

These guidelines are the key to differentiating a programmer who knows
the syntax from an expert who is able to discern the most effective code to
write based on the circumstances. Such an expert not only gets the code
to compile, but does so while following best practices that minimize bugs
and enable maintenance well into the future. The coding guidelines high-
light some of the key principles that readers will want to be sure to incor-
porate into their development.

Code Samples
The code snippets in most of this text can run on any implementation of
the Common Language Infrastructure (CLI), including the Mono, Rotor,
and Microsoft .NET platforms. Platform- or vendor-specific libraries are
seldom used, except when communicating important concepts relevant
only to those platforms (appropriately handling the single-threaded user
interface of Windows, for example). Any code that specifically requires C#
3.0, 4.0, or 5.0 compliance is called out in the C# version indexes at the end
of the book.

Here is a sample code listing.

Listing 1.9:  Declaring and Assigning a Variable

 Working with Variables 13

output, and so on. However, you cannot change the data type of the vari-
able. In Listing 1.9, string max is a variable declaration.

Listing 1.9: Declaring and Assigning a Variable

B E G I N N E R T O P I C

Local Variables
A variable refers to a storage location by a name that the program can later
assign and modify. Local indicates that the programmer declared the vari-
able within a method.

To declare a variable is to define it, which you do by

1. Specifying the type of data which the variable will contain

2. Assigning it an identifier (name)

Data Types
Listing 1.9 declares a variable with the data type string. Other common
data types used in this chapter are int and char.

• int is the C# designation of an integer type that is 32 bits in size.

• char is used for a character type. It is 16 bits, large enough for
(nonsurrogate) Unicode characters.

The next chapter looks at these and other common data types in more
detail.

class MiracleMax
{
static void Main()

 {

 string max;

 max = "Have fun storming the castle!";

 System.Console.WriteLine(max);
 }
}

data type

variable

Michaelis_ch01.fm Page 13 Saturday, January 30, 2010 2:10 PM

The formatting is as follows.

•	 Comments are shown in italics.

 /* Display a greeting to the console
 using composite formatting. */

•	 Keywords are shown in bold.

	xxviii	

n
n 	 Preface

 static void Main()

•	 Highlighted code calls out specific code snippets that may have
changed from an earlier listing, or demonstrates the concept described
in the text.

 System.Console.Write /* No new line */ (

Highlighting can appear on an entire line or on just a few characters
within a line.

 System.Console.WriteLine(
 "Your full name is {0} {1}.",

•	 Incomplete listings contain an ellipsis to denote irrelevant code that
has been omitted.

 // ...

•	 Console output is the output from a particular listing that appears
following the listing.

Output 1.4

>HeyYou.exe
Hey you!
Enter your first name: Inigo
Enter your last name: Montoya

User input for the program appears in boldface.

Although it might have been convenient to provide full code samples
that you could copy into your own programs, doing so would detract you
from learning a particular topic. Therefore, you need to modify the code
samples before you can incorporate them into your programs. The core
omission is error checking, such as exception handling. Also, code samples
do not explicitly include using System statements. You need to assume the
statement throughout all samples.

You can find sample code at intellitect.com/essentialcsharp and at
informit.com/mswinseries.

	 xxixPreface

Mind Maps
Each chapter’s introduction includes a mind map, which serves as an out-
line that provides at-a-glance reference to each chapter’s content. Here is
an example (taken from Chapter 5).

Declaring a Property

Naming Conventions

Using Properties with Validation

Read-Only and Write-Only Properties

Access Modifiers on Getters and Setters

Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

Instance
Fields

Declaring an Instance Field
Accessing an Instance Field
Const and readonly Modifiers

Properties

Static Fields
Static Methods

Static Constructors
Static Classes

Partial Classes
Nested Classes

Classes

2

3 Instance Methods

4

5

Static7

Access Modifiers

9 Special Classes
Declaring and Instantiating a Class1

8 Extension Methods

Declaring a Constructor
Default Constructors

Overloading Constructors
Calling one Constructor Using this

Finalizers

Constructors
& Finalizers6

The theme of each chapter appears in the mind map’s center. High-
level topics spread out from the core. Mind maps allow you to absorb the
flow from high-level to more detailed concepts easily, with less chance of
encountering very specific knowledge that you might not be looking for.

Helpful Notes
Depending on your level of experience, special code blocks will help you
navigate through the text.

•	 Beginner Topics provide definitions or explanations targeted specifi-
cally toward entry-level programmers.

•	 Advanced Topics enable experienced developers to focus on the mate-
rial that is most relevant to them.

•	 Callout notes highlight key principles in callout boxes so that readers
easily recognize their significance.

•	 Language Contrast sidebars identify key differences between C# and
its predecessors to aid those familiar with other languages.

	 xxx	

n
n 	 Preface

How This Book Is Organized
At a high level, software engineering is about managing complexity, and it
is toward this end that I have organized Essential C# 5.0. Chapters 1–4 in-
troduce structured programming, which enable you to start writing simple
functioning code immediately. Chapters 5–9 present the object-oriented
constructs of C#. Novice readers should focus on fully understanding
this section before they proceed to the more advanced topics found in the
remainder of this book. Chapters 11–13 introduce additional complexity-
reducing constructs, handling common patterns needed by virtually all
modern programs. This leads to dynamic programming with reflection
and attributes, which is used extensively for threading and interoperabil-
ity in the chapters that follow.

The book ends with a chapter on the Common Language Infrastructure,
which describes C# within the context of the development platform in which
it operates. This chapter appears at the end because it is not C# specific and
it departs from the syntax and programming style in the rest of the book.
However, this chapter is suitable for reading at any time, perhaps most
appropriately immediately following Chapter 1.

Here is a description of each chapter (in this list, chapter numbers shown
in bold indicate the presence of C# 3.0–5.0 material).

•	 Chapter 1—Introducing C#: After presenting the C# HelloWorld pro-
gram, this chapter proceeds to dissect it. This should familiarize read-
ers with the look and feel of a C# program and provide details on
how to compile and debug their own programs. It also touches on the
context of a C# program’s execution and its intermediate language.

•	 Chapter 2—Data Types: Functioning programs manipulate data, and
this chapter introduces the primitive data types of C#. This includes
coverage of two type categories, value types and reference types, along
with conversion between types and support for arrays.

•	 Chapter 3—Operators and Control Flow: To take advantage of the iterative
capabilities in a computer, you need to know how to include loops and
conditional logic within your program. This chapter also covers the C#
operators, data conversion, and preprocessor directives.

•	 Chapter 4—Methods and Parameters: This chapter investigates the de-
tails of methods and their parameters. It includes passing by value,

	 xxxiPreface

passing by reference, and returning data via an out parameter. In C#
4.0 default parameter support was added and this chapter explains
how to use them.

•	 Chapter 5—Classes: Given the basic building blocks of a class, this
chapter combines these constructs together to form fully functional
types. Classes form the core of object-oriented technology by defining
the template for an object.

•	 Chapter 6—Inheritance: Although inheritance is a programming fun-
damental to many developers, C# provides some unique constructs,
such as the new modifier. This chapter discusses the details of the
inheritance syntax, including overriding.

•	 Chapter 7—Interfaces: This chapter demonstrates how interfaces are
used to define the “versionable” interaction contract between classes.
C# includes both explicit and implicit interface member implementa-
tion, enabling an additional encapsulation level not supported by most
other languages.

•	 Chapter 8—Value Types: Although not as prevalent as defining reference
types, it is sometimes necessary to define value types that behave in
a fashion similar to the primitive types built into C#. This chapter
describes how to define structures, while exposing the idiosyncrasies
they may introduce.

•	 Chapter 9—Well-Formed Types: This chapter discusses more advanced
type definition. It explains how to implement operators, such as + and
casts, and describes how to encapsulate multiple classes into a single
library. In addition, the chapter demonstrates defining namespaces
and XML comments, and discusses how to design classes for garbage
collection.

•	 Chapter 10—Exception Handling: This chapter expands on the exception-
handling introduction from Chapter 4 and describes how exceptions
follow a hierarchy that enables creating custom exceptions. It also
includes some best practices on exception handling.

•	 Chapter 11—Generics: Generics is perhaps the core feature missing
from C# 1.0. This chapter fully covers this 2.0 feature. In addition,
C# 4.0 added support for covariance and contravariance—something
covered in the context of generics in this chapter.

	xxxii	

n
n 	 Preface

•	 Chapter 12—Delegates and Lambda Expressions: Delegates begin clearly
distinguishing C# from its predecessors by defining patterns for han-
dling events within code. This virtually eliminates the need for writing
routines that poll. Lambda expressions are the key concept that make
C# 3.0’s LINQ possible. This chapter explains how lambda expressions
build on the delegate construct by providing a more elegant and suc-
cinct syntax. This chapter forms the foundation for the new collection
API discussed next.

•	 Chapter 13—Events: Encapsulated delegates, known as events, are a
core construct of the Common Language Runtime. Anonymous meth-
ods, another C# 2.0 feature, are also presented here.

•	 Chapter 14—Collection Interfaces with Standard Query Operators: The
simple and yet elegantly powerful changes introduced in C# 3.0 begin
to shine in this chapter as we take a look at the extension methods of
the new Enumerable class. This class makes available an entirely new
collection API known as the standard query operators and discussed
in detail here.

•	 Chapter 15—LINQ with Query Expressions: Using standard query op-
erators alone results in some long statements that are hard to deci-
pher. However, query expressions provide an alternative syntax that
matches closely with SQL, as described in this chapter.

•	 Chapter 16—Building Custom Collections: In building custom APIs that
work against business objects, it is sometimes necessary to create cus-
tom collections. This chapter details how to do this, and in the process
introduces contextual keywords that make custom collection building
easier.

•	 Chapter 17—Reflection, Attributes, and Dynamic Programming: Object-
oriented programming formed the basis for a paradigm shift in pro-
gram structure in the late 1980s. In a similar way, attributes facilitate
declarative programming and embedded metadata, ushering in a
new paradigm. This chapter looks at attributes and discusses how
to retrieve them via reflection. It also covers file input and output via
the serialization framework within the Base Class Library. In C# 4.0
a new keyword, dynamic, was added to the language. This removed
all type checking until runtime, a significant expansion of what can
be done with C#.

	 xxxiiiPreface

•	 Chapter 18—Multithreading: Most modern programs require the use of
threads to execute long-running tasks while ensuring active response
to simultaneous events. As programs become more sophisticated, they
must take additional precautions to protect data in these advanced
environments. Programming multithreaded applications is complex.
This chapter discusses how to work with threads and provides best
practices to avoid the problems that plague multithreaded applications.

•	 Chapter 19—Thread Synchronization: Building on the preceding chapter,
this one demonstrates some of the built-in threading pattern support
that can simplify the explicit control of multithreaded code.

•	 Chapter 20—Platform Interoperability and Unsafe Code: Given that C# is a
relatively young language, far more code is written in other languages
than in C#. To take advantage of this preexisting code, C# supports
interoperability—the calling of unmanaged code—through P/Invoke.
In addition, C# provides for the use of pointers and direct memory
manipulation. Although code with pointers requires special privileges
to run, it provides the power to interoperate fully with traditional
C-based application programming interfaces.

•	 Chapter 21—The Common Language Infrastructure: Fundamentally, C#
is the syntax that was designed as the most effective programming
language on top of the underlying Common Language Infrastructure.
This chapter delves into how C# programs relate to the underlying
runtime and its specifications.

•	 Appendix A—Downloading and Installing the C# Compiler and CLI Plat-
form: This appendix provides instructions for setting up a C# compiler
and the platform on which to run the code, Microsoft .NET or Mono.

•	 Appendix B—Tic-Tac-Toe Source Code Listing: This appendix provides a
full listing of the source code displayed in parts within Chapter 3 and
Chapter 4.

•	 Appendix C—Interfacing with Mulithreading Patterns prior to the TPL and
C# 5.0: This appendix provides details on multithreading patterns for
development prior to C# 5.0 and/or the Task Parallel Library.

•	 Appendix D—Timers prior to the Async/Await Pattern of C# 5.0: This ap-
pendix describes three different types of timers for use when .NET
4.5/C# 5.0 is not available.

	xxxiv	

n
n 	 Preface

•	 C# 3.0, 4.0, 5.0 Index: These indexes provide a quick reference for the
features added in C# 3.0–5.0. They are specifically designed to help
programmers quickly update their language skills to a more recent
version.

I hope you find this book to be a great resource in establishing your C#
expertise and that you continue to reference it for those areas that you use
less frequently well after you are proficient in C#.

—Mark Michaelis
IntelliTect.com/mark

Twitter: @Intellitect, @MarkMichaelis

	 xxxv

Acknowledgments

no book can be published by the author alone, and I am extremely grate-
ful for the multitude of people who helped me with this one. The order
in which I thank people is not significant, except for those that come first.
By far, my family has made the biggest sacrifice to allow me to complete
this. Benjamin, Hanna, and Abigail often had a Daddy distracted by this
book, but Elisabeth suffered even more so. She was often left to take care
of things, holding the family’s world together on her own. I would like to
say it got easier with each edition but, alas, no; as the kids got older, life
became more hectic, and without me Elisabeth was stretched to the break-
ing point virtually all the time. A huge sorry and ginormous “Thank You!”

Many technical editors reviewed each chapter in minute detail to ensure
technical accuracy. I was often amazed by the subtle errors these folks still
managed to catch: Paul Bramsman, Kody Brown, Ian Davis, Doug Dechow,
Gerard Frantz, Thomas Heavey, Anson Horton, Brian Jones, Shane Kerche-
val, Angelika Langer, Eric Lippert, John Michaelis, Jason Morse, Nicholas
Paldino, Jon Skeet, Michael Stokesbary, Robert Stokesbary, John Timney,
and Stephen Toub. Thanks also to Mandy Frei who diligently kept notes of
changes needed for reprints.

Eric is no less than amazing. His grasp of the C# vocabulary is truly as-
tounding and I am very appreciative of his edits, especially when he pushed
for perfection in terminology. His improvements to the C# 3.0 chapters were
incredibly significant, and in the second edition my only regret was that I
didn’t have him review all the chapters. However, that regret is no longer.
Eric painstakingly reviewed every Essential C# 5.0 chapter with amazing

xxxvi	

n
n 	Acknowledgments

detail and precision. I am extremely grateful for his contribution to making
this book even better than the earlier editions. Thanks, Eric! I can’t imagine
anyone better for the job. You deserve all the credit for raising the bar from
good to great.

Like Eric and C#, there are fewer than a handful of people who know
.NET multithreading as well as Stephen Toub. Accordingly, Stephen focused
on the two rewritten (for a third time) multithreading chapters and their
new focus on asynchronous support in C# 5.0. Thanks, Stephen!

Thanks to everyone at Addison-Wesley for their patience in working with
me in spite of my frequent focus on everything else except the manuscript.
Thanks to Elizabeth Ryan, Audrey Doyle, Vicki Rowland, Curt Johnson, and
Joan Murray. Joan deserves a special medal of patience for the number of
times I delayed not only with deliverables but even responding to emails.

	 xxxvii

About the Authors

Mark Michaelis is the founder of IntelliTect and serves as the Chief Tech-
nical Architect and Trainer. Since 1996, he has been a Microsoft MVP for
C#, Visual Studio Team System, and the Windows SDK, and in 2007 he
was recognized as a Microsoft Regional Director. He also serves on sev-
eral Microsoft software design review teams, including C#, the Connected
Systems, Office/SharePoint, and Visual Studio. He speaks at developer
conferences and has written numerous articles and other books. He holds
a bachelor of arts degree in philosophy from the University of Illinois and
a master’s degree in computer science from the Illinois Institute of Tech-
nology. When not bonding with his computer, he is busy with his family
or training for another triathlon (having completed his first Ironman in
2008). He lives in Spokane, Washington, with his wife Elisabeth and three
children, Benjamin, Hanna, and Abigail.

Eric Lippert is a principal developer on the C# compiler team at Microsoft.
He has worked on the design and implementation of the Visual Basic, VB-
Script, Jscript, and C# languages and on Visual Studio Tools For Office, and
is a member of the C# language design team. When not writing or editing
books about C#, he does his best to keep his tiny sailboat upright. He lives
in Seattle with his wife, Leah.

This page intentionally left blank

	 85

Operators and Control Flow

In this chapter, you will learn about operators, control flow statements,
and the C# preprocessor. Operators provide syntax for performing dif-

ferent calculations or actions appropriate for the operands within the
calculation. Control flow statements provide the means for conditional
logic within a program or looping over a section of code multiple times.
After introducing the if control flow statement, the chapter looks at the
concept of Boolean expressions, which are embedded within many control
flow statements. Included is mention of how integers will not cast (even

	 85

2

34

5

6 1

Operators and
Control Flow

Operators

Arithmetic Binary
Operators

Assignment Operators
Increment and
Decrement Operators
Constant Expressions

Boolean Expressions

Bitwise OperatorsControl Flow
Statements

if
while

do-while
for

foreach
switch

Jump
Statements

break
continue

goto

Preprocessor
Directives

#if, #elif, #else, and #endif
#define and #undef

#error and #warning
#pragma

nowarn:<warn list>
#line

#region/#endregion

3

	 86	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

explicitly) to bool and the advantages of this restriction. The chapter ends
with a discussion of the C# preprocessor directives.

Operators
Now that you have been introduced to the predefined data types (refer
to Chapter 2), you can begin to learn more about how to use these data
types in combination with operators in order to perform calculations. For
example, you can make calculations on variables that you have declared.

	 b e ginn e r T opic

Operators
Operators are used to perform mathematical or logical operations on

values (or variables) called operands to produce a new value, called the
result. For example, in Listing 3.1 the subtraction operator, -, is used to
subtract two operands, the numbers 4 and 2. The result of the subtraction
is stored in the variable difference.

Listing 3.1:  A Simple Operator Example

int difference = 4 – 2;

Operators are generally broken down into three categories: unary, bi-
nary, and ternary, corresponding to the number of operands 1, 2, and 3,
respectively. This section covers some of the most basic unary and binary
operators. Introduction to the ternary operator appears later in the chapter.

Plus and Minus Unary Operators (+, -)
Sometimes you may want to change the sign of a numerical value. In these
cases, the unary minus operator (-) comes in handy. For example, List-
ing 3.2 changes the total current U.S. debt to a negative value to indicate
that it is an amount owed.

n
n

n
n

Operators 	 87

Listing 3.2:  Specifying Negative Values1

//National Debt to the Penny
decimal debt = -15236332233848.35M;

Using the minus operator is equivalent to subtracting the operand from zero.
The unary plus operator (+) rarely2 has any effect on a value. It is a

superfluous addition to the C# language and was included for the sake of
symmetry.

Arithmetic Binary Operators (+, -, *, /, %)
Binary operators require two operands. C# uses infix notation for binary
operators: The operator appears between the left and right operands. The
result of every binary operator other than assignment must be used some-
how: for example, by using it as an operand in another expression such as
an assignment.

Language Contrast: C++—Operator-Only Statements

In contrast to the rule mentioned above, C++ will allow a single binary

expression to form the entirety of a statement, such as 4+5;, to compile.

In C#, only call, increment, decrement, and object creation expressions are

allowed to be the entirety of a statement.

The subtraction example in Listing 3.3 is an example of a binary opera-
tor—more specifically, an arithmetic binary operator. The operands appear
on each side of the arithmetic operator and then the calculated value is
assigned. The other arithmetic binary operators are addition (+), division (/),
multiplication (*), and remainder (%)—sometimes called the mod operator.

Listing 3.3:  Using Binary Operators

class Division
{
 static void Main()

1.	 As of January 12, 2012, according to www.treasurydirect.gov.
2.	 The unary + operator is defined to take operands of type int, uint, long, ulong, float,

double, and decimal (and nullable versions of those types). Using it on other numeric types
such as short will convert its operand to one of these types as appropriate.

http://www.treasurydirect.gov

	 88	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

 {
 int numerator;
 int denominator;
 int quotient;
 int remainder;

 System.Console.Write("Enter the numerator: ");
 numerator = int.Parse(System.Console.ReadLine());

 System.Console.Write("Enter the denominator: ");
 denominator = int.Parse(System.Console.ReadLine());

 quotient = numerator / denominator;
 remainder = numerator % denominator;

 System.Console.WriteLine(
 "{0} / {1} = {2} with remainder {3}",
 numerator, denominator, quotient, remainder);
 }
}

Output 3.1 shows the results of Listing 3.3.

Output 3.1

Enter the numerator: 23
Enter the denominator: 3
23 / 3 = 7 with remainder 2

In the highlighted assignment statements above, the division and re-
mainder operations are executed before the assignments. The order in which
operators are executed is determined by their precedence and associativity.
The precedence for the operators used so far is as follows.

1.	*, /, and % have highest precedence.

2.	+ and - have lower precedence.

3.	= has the lowest precedence of these six operators.

Therefore, you can assume that the statement behaves as expected, with
the division and remainder operators executing before the assignment.

If you forget to assign the result of one of these binary operators, you
will receive the compile error shown in Output 3.2.

Operators 	 89

Output 3.2

... error CS0201: Only assignment, call, increment, decrement,
and new object expressions can be used as a statement

	 b e ginn e r T opic

Parentheses, Associativity, Precedence, and Evaluation
When an expression contains multiple operators it can be unclear what
precisely the operands of each operator are. For example, in the expression
x+y*z clearly the expression x is an operand of the addition and z is an
operand of the multiplication. But is y an operand of the addition or the
multiplication?

Parentheses allow you to unambiguously associate an operand with its
operator. If you wish y to be a summand, you can write the expression as
(x+y)*z; if you want it to be a multiplicand, you can write x+(y*z).

However, C# does not require you to parenthesize every expression con-
taining more than one operator; instead, the compiler can use associativity
and precedence to figure out from the context what parentheses you have
omitted. Associativity determines how similar operators are parenthesized;
precedence determines how dissimilar operators are parenthesized.

A binary operator may be “left-associative” or “right-associative,” de-
pending on whether the expression “in the middle” belongs to the operator
on the left or the right. For example, a-b-c is assumed to mean (a-b)-c,
and not a-(b-c); subtraction is therefore said to be “left-associative.”
Most operators in C# are left-associative; the assignment operators are
right-associative.

When the operators are dissimilar, the precedence for those operators
is used to determine which side the operand in the middle belongs to. For
example, multiplication has higher precedence than addition, and therefore,
the expression x+y*z is evaluated as x+(y*z) rather than (x+y)*z.

It is often still a good practice to use parentheses to make the code more
readable even when use of parentheses does not change the meaning of the
expression. For example, when performing a Celsius-to-Fahrenheit tempera-
ture conversion, (c*9.0/5.0)+32.0 is easier to read than c*9.0/5.0+32.0,
even though the parentheses are completely unnecessary.

n
n

n
n

	 90	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Guidelines
DO use parentheses to make code more readable, particularly if the
operator precedence is not clear to the casual reader.

Clearly, operators of higher precedence must execute before adjoining
operators of lower precedence: in x+y*z the multiplication must be executed
before the addition because the result of the multiplication is the left-hand
operand of the addition. However, it is important to realize that precedence
and associativity affect only the order in which the operators themselves are
executed; they do not in any way affect the order in which the operands are
evaluated.

Operands are always evaluated left-to-right in C#. In an expression with
three method calls such as A()+B()*C(), first A() is evaluated, then B(), then
C(), then the multiplication operator determines the product, and then the
addition operator determines the sum. Just because C() is involved in a
multiplication and A() is involved in a lower-precedence addition does not
imply that method invocation C() happens before method invocation A().

Language Contrast: C++: Evaluation Order of Operands

In contrast to the rule mentioned above, the C++ specification allows an

implementation broad latitude to decide the evaluation order of operands.

When given an expression such as A()+B()*C(), a C++ compiler can choose

to evaluate the function calls in any order, just so long as the product is one

of the summands. For example, a legal compiler could evaluate B(), then

A(), then C(), then the product, and then the sum.

Using the Addition Operator with Strings
Operators can also work with non-numeric operands. For example, it is
possible to use the addition operator to concatenate two or more strings,
as shown in Listing 3.4.

Operators 	 91

Listing 3.4:  Using Binary Operators with Non-Numeric Types

class FortyTwo
{
 static void Main()
 {
 short windSpeed = 42;
 System.Console.WriteLine(
 "The original Tacoma Bridge in Washington\nwas "
 + "brought down by a "
 + windSpeed + " mile/hour wind.");
 }
}

Output 3.3 shows the results of Listing 3.4.

Output 3.3

The original Tacoma Bridge in Washington
was brought down by a 42 mile/hour wind.

Because sentence structure varies among languages in different cultures,
developers should be careful not to use the addition operator with strings
that require localization. Composite formatting is preferred (refer to
Chapter 1).

Guidelines
DO favor composite formatting over the addition operator for concatenat-
ing strings.

Using Characters in Arithmetic Operations
When introducing the char type in the preceding chapter, we mentioned
that even though it stores characters and not numbers, the char type is an
integral type (“integral” means it is based on an integer). It can participate
in arithmetic operations with other integer types. However, interpretation
of the value of the char type is not based on the character stored within
it, but rather on its underlying value. The digit 3, for example, contains a
Unicode value of 0x33 (hexadecimal), which in base 10 is 51. The digit 4,

	 92	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

on the other hand, contains a Unicode value of 0x34, or 52 in base 10. Add-
ing 3 and 4 in Listing 3.5 results in a hexadecimal value of 0x167, or 103 in
base 10, which is equivalent to the letter g.

Listing 3.5:  Using the Plus Operator with the char Data Type

int n = '3' + '4';
char c = (char)n;
System.Console.WriteLine(c); // Writes out g.

Output 3.4 shows the results of Listing 3.5.

Output 3.4

g

You can use this trait of character types to determine how far two char-
acters are from each other. For example, the letter f is three characters away
from the letter c. You can determine this value by subtracting the letter c
from the letter f, as Listing 3.6 demonstrates.

Listing 3.6:  Determining the Character Difference between Two Characters

int distance = 'f' – 'c';
System.Console.WriteLine(distance);

Output 3.5 shows the results of Listing 3.6.

Output 3.5

3

Special Floating-Point Characteristics
The binary floating-point types, float and double, have some special
characteristics, such as the way they handle precision. This section looks
at some specific examples, as well as some unique floating-point type
characteristics.

A float, with seven decimal digits of precision, can hold the value
1,234,567 and the value 0.1234567. However, if you add these two floats

Operators 	 93

together, the result will be rounded to 1234567, because the exact result
requires more precision than the seven significant digits that a float can
hold. The error introduced by rounding off to seven digits can become large
compared to the value computed, especially with repeated calculations. (See
also the upcoming Advanced Topic, Unexpected Inequality with Floating-
Point Types.)
Note that internally the binary floating-point types actually store a
binary fraction, not a decimal fraction. This means that “representa-
tion error” inaccuracies can occur with a simple assignment, such as
double number = 140.6F. The exact value of 140.6 is the fraction 703/5,
but the denominator of that fraction is not a power of two, and therefore,
it cannot be represented exactly by a binary floating-point number. The
value actually represented is the closest fraction with a power of two in the
denominator that will fit into the 16 bits of a float.
Since the double can hold a more accurate value than the float
can store, the C# compiler will actually evaluate this expression to
double number = 140.600006103516 because 140.600006103516 is the
closest binary fraction to 140.6 as a float. This fraction is slightly larger
than 140.6 when represented as a double.

Guidelines
AVOID binary floating-point types when exact decimal arithmetic is
required; use the decimal floating-point type instead.

	 A d v anc e d T opic

Unexpected Inequality with Floating-Point Types
Because floating-point numbers can be unexpectedly rounded off to non-
decimal fractions, comparing floating-point values for equality can be
quite confusing. Consider Listing 3.7.

n
n

n
n

	 94	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Listing 3.7:  Unexpected Inequality Due to Floating-Point Inaccuracies

decimal decimalNumber = 4.2M;
double doubleNumber1 = 0.1F * 42F;
double doubleNumber2 = 0.1D * 42D;
float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNumber != (decimal)doubleNumber1);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(
 "{0} != {1}", decimalNumber, (decimal)doubleNumber1);

Trace.Assert((double)decimalNumber != doubleNumber1);
// Displays: 4.2 != 4.20000006258488
System.Console.WriteLine(
 "{0} != {1}", (double)decimalNumber, doubleNumber1);

Trace.Assert((float)decimalNumber != floatNumber);
// Displays: (float)4.2M != 4.2F
System.Console.WriteLine(
 "(float){0}M != {1}F",
 (float)decimalNumber, floatNumber);

Trace.Assert(doubleNumber1 != (double)floatNumber);
// Displays: 4.20000006258488 != 4.20000028610229
System.Console.WriteLine(
 "{0} != {1}", doubleNumber1, (double)floatNumber);

Trace.Assert(doubleNumber1 != doubleNumber2);
// Displays: 4.20000006258488 != 4.2
System.Console.WriteLine(
 "{0} != {1}", doubleNumber1, doubleNumber2);

Trace.Assert(floatNumber != doubleNumber2);
// Displays: 4.2F != 4.2D
System.Console.WriteLine(
 "{0}F != {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)4.2F != 4.2D);
// Display: 4.19999980926514 != 4.2
System.Console.WriteLine(
 "{0} != {1}", (double)4.2F, 4.2D);

Trace.Assert(4.2F != 4.2D);
// Display: 4.2F != 4.2D
System.Console.WriteLine(
 "{0}F != {1}D", 4.2F, 4.2D);

Output 3.6 shows the results of Listing 3.7.

Operators 	 95

Output 3.6

4.2 != 4.20000006258488
4.2 != 4.20000006258488
(float)4.2M != 4.2F
4.20000006258488 != 4.20000028610229
4.20000006258488 != 4.2
4.2F != 4.2D
4.19999980926514 != 4.2
4.2F != 4.2D

The Assert() methods alert the developer whenever their argument
evaluates to false. However, of all the Assert() calls in this code listing,
only half have arguments that evaluate to true. In spite of the apparent
equality of the values in the code listing, they are in fact not equivalent due
to the inaccuracies of a float.

Guidelines
AVOID using equality conditionals with binary floating-point types. Either
subtract the two values and see if their difference is less than a tolerance,
or use the decimal type.

You should be aware of some additional unique floating-point charac-
teristics as well. For instance, you would expect that dividing an integer
by zero would result in an error, and it does with data types such as int
and decimal. The float and double types instead allow for certain special
values. Consider Listing 3.8, and its resultant output, Output 3.7.

Listing 3.8:  Dividing a Float by Zero, Displaying NaN

float n=0f;
// Displays: NaN
System.Console.WriteLine(n / 0);

Output 3.7

NaN

	 96	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

In mathematics, certain mathematical operations are undefined, includ-
ing dividing zero by itself. In C#, the result of dividing the float zero by zero
results in a special “Not a Number” value; all attempts to print the output
of such a number will result in NaN. Similarly, taking the square root of a
negative number with System.Math.Sqrt(-1) will result in NaN.

A floating-point number could overflow its bounds as well. For example,
the upper bound of the float type is approximately 3.4 x 1038. Should the
number overflow that bound, the result would be stored as “positive infin-
ity” and the output of printing the number would be Infinity. Similarly,
the lower bound of a float type is –3.4 x 1038, and computing a value below
that bound would result in “negative infinity,” which would be represented
by the string -Infinity. Listing 3.9 produces negative and positive infinity,
respectively, and Output 3.8 shows the results.

Listing 3.9:  Overflowing the Bounds of a float

// Displays: -Infinity
System.Console.WriteLine(-1f / 0);
// Displays: Infinity
System.Console.WriteLine(3.402823E+38f * 2f);

Output 3.8

-Infinity
Infinity

Further examination of the floating-point number reveals that it can
contain a value very close to zero, without actually containing zero. If the
value exceeds the lower threshold for the float or double type, the value
of the number can be represented as “negative zero” or “positive zero,” de-
pending on whether the number is negative or positive, and is represented
in output as -0 or 0.

Compound Assignment Operators (+=, -=, *=, /=, %=)
Chapter 1 discussed the simple assignment operator, which places the
value of the right-hand side of the operator into the variable on the left-
hand side. Compound assignment operators combine common binary
operator calculations with the assignment operator. Take Listing 3.10, for
example.

Operators 	 97

Listing 3.10:  Common Increment Calculation

int x = 123;
x = x + 2;

In this assignment, first you calculate the value of x + 2 and then you
assign the calculated value back to x. Since this type of operation is relatively
frequent, an assignment operator exists to handle both the calculation and
the assignment with one operator. The += operator increments the variable
on the left-hand side of the operator with the value on the right-hand side
of the operator, as shown in Listing 3.11.

Listing 3.11:  Using the += Operator

int x = 123;
x += 2;

This code, therefore, is equivalent to Listing 3.10.
Numerous other combination assignment operators exist to provide

similar functionality. You can also use the assignment operator with sub-
traction, multiplication, division and the remainder operators (Listing 3.12
demonstrates).

Listing 3.12:  Other Assignment Operator Examples

x -= 2;
x /= 2;
x *= 2;
x %= 2;

Increment and Decrement Operators (++, --)
C# includes special unary operators for incrementing and decrementing
counters. The increment operator, ++, increments a variable by one each
time it is used. In other words, all of the code lines shown in Listing 3.13
are equivalent.

Listing 3.13:  Increment Operator

spaceCount = spaceCount + 1;
spaceCount += 1;
spaceCount++;

	 98	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Similarly, you can also decrement a variable by one using the decrement
operator, --. Therefore, all of the code lines shown in Listing 3.14 are also
equivalent.

Listing 3.14:  Decrement Operator

lines = lines - 1;
lines -= 1;
lines--;

	 b e ginn e r T opic

A Decrement Example in a Loop
The increment and decrement operators are especially prevalent in loops,
such as the while loop described later in the chapter. For example, List-
ing 3.15 uses the decrement operator in order to iterate backward through
each letter in the alphabet.

Listing 3.15:  Displaying Each Character’s Unicode Value in Descending Order

char current;
int unicodeValue;

// Set the initial value of current.
current='z';

do
{
 // Retrieve the Unicode value of current.
 unicodeValue = current;
 System.Console.Write("{0}={1}\t", current, unicodeValue);

 // Proceed to the previous letter in the alphabet;
 current--;
}
while(current>='a');

Output 3.9 shows the results of Listing 3.15.

Output 3.9

z=122 y=121 x=120 w=119 v=118 u=117 t=116 s=115 r=114
q=113 p=112 o=111 n=110 m=109 l=108 k=107 j=106 i=105
h=104 g=103 f=102 e=101 d=100 c=99 b=98 a=97

n
n

n
n

Operators 	 99

The increment and decrement operators are used to control how many
times a particular operation is performed. Notice also that in this example,
the increment operator is used on a character (char) data type. You can use
increment and decrement operators on various data types as long as some
meaning is assigned to the concept of the “next” or “previous” value for
that data type.

We saw that the assignment operator first computes the value to be as-
signed, and then causes the assignment. The result of the assignment opera-
tor is the value that was assigned. The increment and decrement operators
are similar: They compute the value to be assigned, perform the assignment,
and result in a value. It is therefore possible to use the assignment operator
with the increment or decrement operator, though doing so carelessly can
be extremely confusing. See Listing 3.16 and Output 3.10 for an example.

Listing 3.16:  Using the Post-Increment Operator

int count = 123;
int result;
result = count++;
System.Console.WriteLine(
 "result = {0} and count = {1}", result, count);

Output 3.10

result = 123 and count = 124

You might be surprised that result was assigned the value that was
count before count was incremented. Where you place the increment or
decrement operator determines whether the assigned value should be the
value of the operand before or after the calculation. If you want the value
of result to be the value assigned to count, you need to place the operator
before the variable being incremented, as shown in Listing 3.17.

Listing 3.17:  Using the Pre-Increment Operator

int count = 123;
int result;
result = ++count;
System.Console.WriteLine(
 "result = {0} and count = {1}", result, count);

	 100	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Output 3.11 shows the results of Listing 3.17.

Output 3.11

result = 124 and count = 124

In this example, the increment operator appears before the operand, so
the result of the expression is the value assigned to the variable after the
increment. If count is 123, ++count will assign 124 to count and produce the
result 124. By contrast, the postfix increment operator count++ assigns 124
to count and produces the value that count held before the increment: 123.
Regardless of whether the operator is postfix or prefix, the variable count
will be incremented before the value is produced; the only difference is
which value is produced. The difference between prefix and postfix behav-
ior appears in Listing 3.18. The resultant output is shown in Output 3.12.

Listing 3.18:  Comparing the Prefix and Postfix Increment Operators

class IncrementExample
{
 public static void Main()
 {
 int x = 123;
 // Displays 123, 124, 125.
 System.Console.WriteLine("{0}, {1}, {2}", x++, x++, x);
 // x now contains the value 125.
 // Displays 126, 127, 128
 System.Console.WriteLine("{0}, {1}, {2}", ++x, ++x, x);
 // x now contains the value 128.
 }
}

Output 3.12

123, 124, 125
126, 127, 128

As Listing 3.18 demonstrates, where the increment and decrement op-
erators appear relative to the operand can affect the result produced by the
expression. The result of the prefix operators is the value that the variable
had before it was incremented or decremented. The result of the postfix
operators is the value that the variable had after it was incremented or

Operators 	 101

decremented. Use caution when embedding these operators in the middle
of a statement. When in doubt as to what will happen, use these operators
independently, placing them within their own statements. This way, the
code is also more readable and there is no mistaking the intention.

Language Contrast: C++—Implementation-Defined Behavior

Earlier we discussed how in C++, the operands in an expression can be

evaluated in any order, whereas in C# they are always evaluated left to right.

Similarly, in C++ an implementation may legally perform the side effects of

increments and decrements in any order. For example, in C++ a call of the

form M(x++, x++) where x begins as 1 can legally call M(1,2) or M(2,1)

at the whim of the compiler; C# will always call M(1,2) because C# makes

two guarantees: first, that the arguments to a call are always computed left

to right, and second, that the assignment of the incremented value to the

variable always happens before the value of the expression is used. C++

makes neither guarantee.

Guidelines
AVOID confusing usages of the increment and decrement operators.

DO be cautious when porting code between C, C++, and C# that uses
increment and decrement operators; C and C++ implementations need
not follow the same rules as C#.

	 A d v anc e d T opic

Thread-Safe Incrementing and Decrementing
In spite of the brevity of the increment and decrement operators, these

operators are not atomic. A thread context switch can occur during the ex-
ecution of the operator and can cause a race condition. You could use a lock
statement to prevent the race condition. However, for simple increments and
decrements, a less expensive alternative is to use the thread-safe Increment()

n
n

n
n

	 102	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

and Decrement() methods from the System.Threading.Interlocked class.
These methods rely on processor functions for performing fast thread-safe
increments and decrements. See Chapter 19 for more details.

Constant Expressions and Constant Locals
The preceding chapter discussed literal values, or values embedded di-
rectly into the code. It is possible to combine multiple literal values in a
constant expression using operators. By definition, a constant expres-
sion is one that the C# compiler can evaluate at compile time (instead of
calculating it when the program runs) because it is composed entirely of
constant operands. Constant expressions can then be used to initialize con-
stant locals, which allow you to give a name to a constant value (similar
to the way local variables allow you to give a name to a storage location).
For example, the computation of the number of seconds in a day can be a
constant expression that is then used in other expressions by name.

The const keyword in Listing 3.19 declares a constant local. Since a con-
stant local is by definition the opposite of a variable—“constant” means
“not able to vary”—any attempt to modify the value later in the code would
result in a compile-time error.

Guidelines
DO NOT use a constant for any value that can possibly change over
time. The value of pi and the number of protons in an atom of gold are
constants; the price of gold, the name of your company, and the version
number of your program can change.

Note that the expression assigned to secondsPerWeek is a constant expres-
sion because all the operands in the expression are also constants.

Introducing Flow Control 	 103

Listing 3.19:  Declaring a Constant

Chapter 3: Operators and Control Flow98

Constant Expressions (const)
The preceding chapter discussed literal values, or values embedded
directly into the code. It is possible to combine multiple literal values in a
constant expression using operators. By definition, a constant expression
is one that the C# compiler can evaluate at compile time (instead of calcu-
lating it when the program runs) because it is composed of constant oper-
ands. For example, the number of seconds in a day can be assigned as a
constant expression whose result can then be used in other expressions.

The const keyword in Listing 3.19 locks the value at compile time. Any
attempt to modify the value later in the code results in a compile error.

Listing 3.19:

Note that even the value assigned to secondsPerWeek is a constant expres-
sion, because the operands in the expression are also constants, so the com-
piler can determine the result.

Introducing Flow Control

Later in this chapter is a code listing (Listing 3.43) that shows a simple way
to view a number in its binary form. Even such a simple program, how-
ever, cannot be written without using control flow statements. Such state-
ments control the execution path of the program. This section discusses
how to change the order of statement execution based on conditional
checks. Later on, you will learn how to execute statement groups repeat-
edly through loop constructs.

A summary of the control flow statements appears in Table 3.1. Note
that the General Syntax Structure column indicates common statement
use, not the complete lexical structure.

// ...
public long Main()
{
 const int secondsPerDay = 60 * 60 * 24;
 const int secondsPerWeek = secondsPerDay * 7;

 // ...
}

Constant

Constant Expression

Michaelis_ch03.fm Page 98 Saturday, January 30, 2010 6:23 PM

Introducing Flow Control
Later in this chapter is a code listing (Listing 3.43) that shows a simple
way to view a number in its binary form. Even such a simple program,
however, cannot be written without using control flow statements. Such
statements control the execution path of the program. This section dis-
cusses how to change the order of statement execution based on condi-
tional checks. Later on, you will learn how to execute statement groups
repeatedly through loop constructs.

A summary of the control flow statements appears in Table 3.1. Note that
the General Syntax Structure column indicates common statement use, not
the complete lexical structure.
An embedded-statement in Table 3.1 may be any statement other than a
labeled statement or a declaration, but it is typically a block statement.

Each C# control flow statement in Table 3.1 appears in the tic-tac-toe3
program and is available in Appendix B and for download with the rest of
the source code listings from the book. The program displays the tic-tac-toe
board, prompts each player, and updates with each move.

The remainder of this chapter looks at each statement in more detail.
After covering the if statement, it introduces code blocks, scope, Boolean
expressions, and bitwise operators before continuing with the remaining
control flow statements. Readers who find the table familiar because of
C#’s similarities to other languages can jump ahead to the section titled C#
Preprocessor Directives or skip to the Summary section at the end of the
chapter.

3.	 Known as noughts and crosses to readers outside the United States.

	104	
 n

n
	

Chapter �: �﻿
: O

perators and Control Flow
Table 3.1:  Control Flow Statements

Statement General Syntax Structure Example

if statement if(boolean-expression)
 embedded-statement

if (input == "quit")
{
 System.Console.WriteLine(
 "Game end");
 return;
}

if(boolean-expression)
 embedded-statement
else
 embedded-statement

if (input == "quit")
{
 System.Console.WriteLine(
 "Game end");
 return;
}
else
 GetNextMove();

while statement while(boolean-expression)
 embedded-statement

while(count < total)
{
 System.Console.WriteLine(
 "count = {0}", count);
 count++;
}

do while statement do
 embedded-statement while(boolean-expression);

do
{
 System.Console.WriteLine(
 "Enter name:");
 input =
 System.Console.ReadLine();
}
while(input != "exit");

In
trodu

cin
g

 Flow
 C

on
trol

	
105

Table 3.1:  Control Flow Statements, Continued

Statement General Syntax Structure Example

for statement for(for-initializer;
 boolean-expression;
 for-iterator)
 embedded-statement

for (int count = 1;
 count <= 10;
 count++)
{
 System.Console.WriteLine(
 "count = {0}", count);
}

foreach statement foreach(type identifier in
 expression)
 embedded-statement

foreach (char letter in email)
{
 if(!insideDomain)
 {
 if (letter == '@')
 {
 insideDomain = true;
 }
 continue;
 }
 System.Console.Write(
 letter);
}

continue statement continue;

Continues

	106	
 n

n
	

Chapter �: �﻿
: O

perators and Control Flow
Table 3.1:  Control Flow Statements, Continued

Statement General Syntax Structure Example

switch statement switch(governing-type-expression)
{
 ...
 case const-expression:
 statement-list
 jump-statement
 default:
 statement-list
 jump-statement
}

switch(input)
{
 case "exit":
 case "quit":
 System.Console.WriteLine(
 "Exiting app....");
 break;
 case "restart":
 Reset();
 goto case "start";
 case "start":
 GetMove();
 break;
 default:
 System.Console.WriteLine(
 input);
 break;
}

break statement break;

goto statement goto identifier;

goto case const-expression;

goto default;

Introducing Flow Control 	 107

The remainder of this chapter looks at each statement in more detail. After
covering the if statement, it introduces code blocks, scope, Boolean expres-
sions, and bitwise operators before continuing with the remaining control
flow statements. Readers who find the table familiar because of C#’s similari-
ties to other languages can jump ahead to the section titled C# Preprocessor
Directives or skip to the Summary section at the end of the chapter.

if Statement
The if statement is one of the most common statements in C#. It evaluates
a Boolean expression (an expression that results in either true or false)
called the condition. If the condition is true, the consequence statement
is executed. An if statement may optionally have an else clause that con-
tains an alternative statement to be executed if the condition is false. The
general form is as follows:

if (condition)
 consequence-statement
else
 alternative-statement

Listing 3.20:  if/else Statement Example

class TicTacToe // Declares the TicTacToe class.
{
 static void Main() // Declares the entry point of the program.
 {
 string input;

 // Prompt the user to select a 1- or 2-player game.
 System.Console.Write (
 "1 – Play against the computer\n" +
 "2 – Play against another player.\n" +
 "Choose:"
);
 input = System.Console.ReadLine();

 if(input=="1")
 // The user selected to play the computer.
 System.Console.WriteLine(
 "Play against computer selected.");
 else
 // Default to 2 players (even if user didn't enter 2).
 System.Console.WriteLine(
 "Play against another player.");
 }
}

	 108	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

In Listing 3.20, if the user enters 1, the program displays "Play against
computer selected.". Otherwise, it displays "Play against another
player.".

Nested if
Sometimes code requires multiple if statements. The code in Listing 3.21
first determines whether the user has chosen to exit by entering a number
less than or equal to 0; if not, it checks whether the user knows the maxi-
mum number of turns in tic-tac-toe.

Listing 3.21:  Nested if Statements

1.	 class TicTacToeTrivia
2.	 {
3.	 static void Main()
4.	 {
5.	 int input; // Declare a variable to store the input.
6.	
7.	 System.Console.Write(
8.	 "What is the maximum number " +
9.	 "of turns in tic-tac-toe?" +
10.	 "(Enter 0 to exit.): ");
11.	
12.	 // int.Parse() converts the ReadLine()
13.	 // return to an int data type.
14.	 input = int.Parse(System.Console.ReadLine());
15.	
16.	 if (input <= 0)
17.	 // Input is less than or equal to 0.
18.	 System.Console.WriteLine("Exiting...");
19.	 else
20.	 if (input < 9)
21.	 // Input is less than 9.
22.	 System.Console.WriteLine(
23.	 "Tic-tac-toe has more than {0}" +
24.	 " maximum turns.", input);
25.	 else
26.	 if(input>9)
27.	 // Input is greater than 9.
28.	 System.Console.WriteLine(
29.	 "Tic-tac-toe has fewer than {0}" +
30.	 " maximum turns.", input);
31.	 else
32.	 // Input equals 9.
33.	 System.Console.WriteLine(
34.	 "Correct, tic-tac-toe " +
35.	 "has a max. of 9 turns.");
36.	 }
37.	}

Introducing Flow Control 	 109

Output 3.13 shows the results of Listing 3.21.

Output 3.13

What is the maximum number of turns in tic-tac-toe? (Enter 0 to exit.): 9
Correct, tic-tac-toe has a max. of 9 turns.

Assume the user enters 9 when prompted at line 14. Here is the execution
path.

1.	Line 16: Check if input is less than 0. Since it is not, jump to line 20.

2.	Line 20: Check if input is less than 9. Since it is not, jump to line 26.

3.	Line 26: Check if input is greater than 9. Since it is not, jump to line 33.

4.	Line 33: Display that the answer was correct.

Listing 3.21 contains nested if statements. To clarify the nesting, the
lines are indented. However, as you learned in Chapter 1, whitespace does
not affect the execution path. Without indenting and without newlines,
the execution would be the same. The code that appears in the nested if
statement in Listing 3.22 is equivalent to Listing 3.21.

Listing 3.22:  if/else Formatted Sequentially

if (input < 0)
 System.Console.WriteLine("Exiting...");
else if (input < 9)
 System.Console.WriteLine(
 "Tic-tac-toe has more than {0}" +
 " maximum turns.", input);
else if(input < 9)
 System.Console.WriteLine(
 "Tic-tac-toe has less than {0}" +
 " maximum turns.", input);
else
 System.Console.WriteLine(
 "Correct, tic-tac-toe has a maximum " +
 " of 9 turns.");

Although the latter format is more common, in each situation use the for-
mat that results in the clearest code.

Each if statement listing above omits the use of braces. However, as dis-
cussed next, this is not in accordance with the guidelines, which advocate the
use of code blocks except, perhaps, in the simplest of single-line scenarios.

	 110	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Code Blocks ({})
In the previous if statement examples, only one statement follows if and
else: a single System.Console.WriteLine(), similar to Listing 3.23.

Listing 3.23:  if Statement with No Code Block

if(input < 9)
 System.Console.WriteLine("Exiting");

With curly braces, however, we can combine statements into a single
statement called a block statement or code block, allowing the grouping of
multiple statements into a single statement that is the consequence. Take, for
example, the highlighted code block in the radius calculation in Listing 3.24.

Listing 3.24:  if Statement Followed by a Code Block

class CircleAreaCalculator
{
 static void Main()
 {
 double radius; // Declare a variable to store the radius.
 double area; // Declare a variable to store the area.

 System.Console.Write("Enter the radius of the circle: ");

 // double.Parse converts the ReadLine()
 // return to a double.
 radius = double.Parse(System.Console.ReadLine());

 if(radius>=0)
 {
 // Calculate the area of the circle.
 area = 3.14*radius*radius;
 System.Console.WriteLine(
 "The area of the circle is: {0}", area);
 }
 else
 {
 System.Console.WriteLine(
 "{0} is not a valid radius.", radius);
 }
 }
}

Code Blocks ({ }) 	 111

Output 3.14 shows the results of Listing 3.24.

Output 3.14

Enter the radius of the circle: 3
The area of the circle is: 28.26

In this example, the if statement checks whether the radius is positive. If
so, the area of the circle is calculated and displayed; otherwise, an invalid
radius message is displayed.

Notice that in this example, two statements follow the first if. However,
these two statements appear within curly braces. The curly braces combine
the statements into a code block, which is itself a single statement.

If you omit the curly braces that create a code block in Listing 3.24, only
the statement immediately following the Boolean expression executes condi-
tionally. Subsequent statements will execute regardless of the if statement’s
Boolean expression. The invalid code is shown in Listing 3.25.

Listing 3.25:  Relying on Indentation, Resulting in Invalid Code

if(radius>=0)
 area = 3.14 * radius *radius;
 System.Console.WriteLine(
 "The area of the circle is: {0}", area);

In C#, indentation is for code readability only. The compiler ignores it,
and therefore, the previous code is semantically equivalent to Listing 3.26.

Listing 3.26:  Semantically Equivalent to Listing 3.25

if(radius>=0)
{
 area = 3.14*radius*radius;
}
System.Console.WriteLine(
 "The area of the circle is: {0}", area);

Programmers should take great care to avoid subtle bugs such as this,
perhaps even going so far as to always include a code block after a control

	 112	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

flow statement, even if there is only one statement. In fact, the guideline is
to avoid omitting braces, except possibly for the simplest of single-line if
statements.

Although unusual, it is possible to have a code block that is not lexically
a direct part of a control flow statement. In other words, placing curly braces
on their own (without a conditional or loop, for example) is legal syntax.

Guidelines
AVOID omitting braces, except for the simplest of single-line if
statements.

	 A d v anc e d T opic

Math Constants
In Listing 3.25 and Listing 3.26, the value of pi as 3.14 was hardcoded—a
crude approximation at best. There are much more accurate definitions
for pi and E in the System.Math class. Instead of hardcoding a value, code
should use System.Math.PI and System.Math.E.

Code Blocks, Scopes, and Declaration Spaces
Code blocks are often referred to as “scopes,” but the two terms are
not exactly interchangeable. The scope of a named thing is the region
of source code in which it is legal to refer to the thing by its unqualified
name. The scope of a local variable is exactly the text of the code block that
encloses it, which explains why it is common to refer to code blocks as
“scopes.”

Scopes are often confused with declaration spaces. A declaration space
is a logical container of named things in which two things may not have
the same name. A code block not only defines a scope, it also defines a local
variable declaration space; it is illegal for two local variable declarations
with the same name to appear in the same declaration space. Similarly, it is
not possible to declare two methods with the signature of Main() within the
same class. (Though the rule is relaxed somewhat for methods; two methods
may have the same name in a declaration space provided that they have

n
n

n
n

Code Blocks, Scopes, and Declaration Spaces 	 113

different signatures.) A code block not only defines a scope, it also defines
a local variable declaration space. That is to say, within a block a local can
be mentioned by name and must be the unique thing that is declared with
that name in the block. Outside the declaring block there is no way to refer
to a local by its name; the local is said to be “out of scope” outside the block.

In short: A scope is used to determine what thing a name refers to; a
declaration space determines when two things declared with the same name
conflict with each other. In Listing 3.27, declaring the local variable message
inside the block statement embedded in the if statement restricts its scope
to the block statement only; the local is “out of scope” when its name is used
later on in the method. To avoid the error, you must declare the variable
outside the if statement.

Listing 3.27:  Variables Inaccessible outside Their Scope

class Program
{
 static void Main(string[] args)
 {
 int playerCount;
 System.Console.Write(
 "Enter the number of players (1 or 2):");
 playerCount = int.Parse(System.Console.ReadLine());
 if (playerCount != 1 && playerCount != 2)
 {
 string message =
 "You entered an invalid number of players.";
 }
 else
 {
 // ...
 }
 // Error: message is not in scope.
 System.Console.WriteLine(message);
 }
}

Output 3.15 shows the results of Listing 3.27.

Output 3.15

...

...\Program.cs(18,26): error CS0103: The name 'message' does not exist
in the current context

	 114	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

The declaration space throughout which a local’s name must be unique
includes all the child code blocks textually enclosed within the block that
originally declared the local. The C# compiler prevents the name of a local
variable declared immediately within a method code block (or as a param-
eter) from being reused within a child code block. In Listing 3.27, because
args and playerCount are declared within the method code block, they
cannot be declared again anywhere within the method.

The name message refers to this local variable throughout the scope of
the local variable: that is, the block immediately enclosing the declaration.
Similarly, playerCount refers to the same variable throughout the block
containing the declaration, including within both of the child blocks that
are the consequence and alternative of the if statement.

Language Contrast: C++—Local Variable Scope

In C++, a local variable declared in a block is in scope from the point of the

declaration statement through the end of the block; an attempt to refer to

the local variable before its declaration will fail to find the local because the

local is not in scope. If there is another thing with that name “in scope,” the

C++ language will resolve the name to that thing, which might not be what

you intended. In C#, the rule is subtly different; a local is in scope throughout

the entire block in which it is declared, but it is illegal to refer to the local

before its declaration. That is, the attempt to find the local succeeds and

the usage is then treated as an error. This is just one of C#’s many rules that

attempt to prevent errors common in C++ programs.

Boolean Expressions
The parenthesized condition of the if statement is a Boolean expression.
In Listing 3.28, the condition is highlighted.

Listing 3.28:  Boolean Expression

if(input < 9)
{
 // Input is less than 9.

Boolean E xpressions 	 115

 System.Console.WriteLine(
 "Tic-tac-toe has more than {0}" +
 " maximum turns.", input);
}
// ...

Boolean expressions appear within many control flow statements. Their
key characteristic is that they always evaluate to true or false. For input<9
to be allowed as a Boolean expression, it must result in a bool. The compiler
disallows x=42, for example, because it assigns x and results in the value that
was assigned, instead of checking whether the value of the variable is 42.

Language Contrast: C++—Mistakenly Using = in Place of ==

C# eliminates a coding error common in C and C++. In C++, Listing 3.29 is

allowed.

Listing 3.29:  C++, But Not C#, Allows Assignment As a Condition

if(input=9) // Allowed in C++, not in C#.
 System.Console.WriteLine(
 "Correct, tic-tac-toe has a maximum of 9 turns.");

Although at a glance this appears to check whether input equals 9, Chap-

ter 1 showed that = represents the assignment operator, not a check for

equality. The return from the assignment operator is the value assigned to

the variable—in this case, 9. However, 9 is an int, and as such it does not

qualify as a Boolean expression and is not allowed by the C# compiler. The

C and C++ languages treat integers that are nonzero as true, and integers

that are zero as false. C#, by contrast, requires that the condition actually

be of a Boolean type; integers are not allowed.

Relational and Equality Operators
Relational and equality operators determine whether a value is greater
than, less than, or equal to another value. Table 3.2 lists all the relational
and equality operators. All are binary operators.

	 116	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Table 3.2:  Relational and Equality Operators

Operator Description Example

< Less than input<9;

> Greater than input>9;

<= Less than or equal to input<=9;

>= Greater than or equal to input>=9;

== Equality operator input==9;

!= Inequality operator input!=9;

The C# syntax for equality uses ==, just as many other programming
languages do. For example, to determine whether input equals 9 you use
input==9. The equality operator uses two equal signs to distinguish it from
the assignment operator, =. The exclamation point signifies NOT in C#, so
to test for inequality you use the inequality operator, !=.

Relational and equality operators always produce a bool value, as shown
in Listing 3.30.

Listing 3.30:  Assigning the Result of a Relational Operator to a bool Variable

bool result = 70 > 7;

In the tic-tac-toe program (see Appendix B), you use the equality op-
erator to determine whether a user has quit. The Boolean expression of
Listing 3.31 includes an OR (||) logical operator, which the next section
discusses in detail.

Listing 3.31:  Using the Equality Operator in a Boolean Expression

if (input == "" || input == "quit")
{
 System.Console.WriteLine("Player {0} quit!!", currentPlayer);
 break;
}

Logical Boolean Operators
The logical operators have Boolean operands and produce a Boolean re-
sult. Logical operators allow you to combine multiple Boolean expressions

Boolean E xpressions 	 117

to form more complex Boolean expressions. The logical operators are |,
||, &, &&, and ^, corresponding to OR, AND, and exclusive OR. The | and
& versions of OR and AND are only rarely used for Boolean logic, for rea-
sons which we discuss below.

OR Operator (||)

In Listing 3.31, if the user enters quit or presses the Enter key without typ-
ing in a value, it is assumed that she wants to exit the program. To enable
two ways for the user to resign, you use the logical OR operator, ||.

The || operator evaluates Boolean expressions and results in a true
value if either operand is true (see Listing 3.32).

Listing 3.32:  Using the OR Operator

if((hourOfTheDay > 23) || (hourOfTheDay < 0))
 System.Console.WriteLine("The time you entered is invalid.");

It is not necessary to evaluate both sides of an OR expression because if
either operand is true, the result is known to be true regardless of the value
of the other operand. Like all operators in C#, the left operand is evaluated
before the right one, so if the left portion of the expression evaluates to
true, the right portion is ignored. In the example above, if hourOfTheDay
has the value 33, (hourOfTheDay > 23) will evaluate to true and the OR
operator will ignore the second half of the expression, short-circuiting it.
Short-circuiting an expression also occurs with the Boolean AND operator.
(Note that the parentheses are not necessary here; the logical operators are
of higher precedence than the relational operators. However, it is clearer to
the novice reader to parenthesize the subexpressions for clarity.)

AND Operator (&&)
The Boolean AND operator, &&, evaluates to true only if both operands
evaluate to true. If either operand is false, the result will be false. List-
ing 3.33 writes a message if the given variable is both greater than 10 and
less than 24.4 Similarly to the OR operator, the AND operator will not al-
ways evaluate the right side of the expression. If the left operand is deter-
mined to be false, the overall result will be false regardless of the value
of the right operand, so the runtime skips evaluating the right operand.

4.	 The typical hours that programmers work.

	 118	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Listing 3.33:  Using the AND Operator

if ((10 < hourOfTheDay) && (hourOfTheDay < 24))
 System.Console.WriteLine(
 "Hi-Ho, Hi-Ho, it's off to work we go.");

Exclusive OR Operator (^)
The caret symbol, ^, is the “exclusive OR” (XOR) operator. When applied
to two Boolean operands, the XOR operator returns true only if exactly
one of the operands is true, as shown in Table 3.3.

Table 3.3:  Conditional Values for the XOR Operator

Left Operand Right Operand Result

True True False

True False True

False True True

False False False

Unlike the Boolean AND and Boolean OR operators, the Boolean XOR op-
erator does not short-circuit: It always checks both operands, because the result
cannot be determined unless the values of both operands are known. Note
that the XOR operator is exactly the same as the Boolean inequality operator.

Logical Negation Operator (!)
The logical negation operator, or NOT operator, !, inverts a bool value.
This operator is a unary operator, meaning it requires only one operand.
Listing 3.34 demonstrates how it works, and Output 3.16 shows the results.

Listing 3.34:  Using the Logical Negation Operator

bool valid = false;
bool result = !valid;
// Displays "result = True".
System.Console.WriteLine("result = {0}", result);

Output 3.16

result = True

Boolean E xpressions 	 119

To begin, valid is set to false. You then use the negation operator on
valid and assign the value to result.

Conditional Operator (?:)
In place of an if-else statement used to select one of two values, you can
use the conditional operator. The conditional operator uses both a ques-
tion mark and a colon; the general format is as follows:

condition ? consequence : alternative

The conditional operator is a “ternary” operator because it has three
operands: condition, consequence, and alternative. (As it is the only
ternary operator in C#, it is often called “the ternary operator,” but it is
clearer to refer to it by its name than by the number of operands it takes.)
Like the logical operators, the conditional operator uses a form of short-
circuiting. If the condition evaluates to true, the conditional operator evalu-
ates only consequence. If the conditional evaluates to false, it evaluates
only alternative. The result of the operator is the evaluated expression.

Listing 3.35 is an example of how to use the conditional operator. The
full listing of this program appears in Appendix B.

Listing 3.35:  Conditional Operator

public class TicTacToe
{
 public static string Main()
 {
 // Initially set the currentPlayer to Player 1;
 int currentPlayer = 1;

 // ...

 for (int turn = 1; turn <= 10; turn++)
 {
 // ...

 // Switch players
 currentPlayer = (currentPlayer == 2) ? 1 : 2;
 }
 }
}

The program swaps the current player. To do this, it checks whether
the current value is 2. This is the conditional portion of the conditional

	 120	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

expression. If the result of the condition is true, the conditional operator
results in the “consequence” value 1. Otherwise, it results in the “alterna-
tive” value 2. Unlike an if statement, the result of the conditional operator
must be assigned (or passed as a parameter). It cannot appear as an entire
statement on its own.

Guidelines
CONSIDER using an if/else statement instead of an overly complicated
conditional expression.

The C# language requires that the consequence and alternative expres-
sions in a conditional operator be consistently typed, and that the consistent
type be determined without examination of the surrounding context of
the expression. For example, f ? "abc" : 123 is not a legal conditional
expression because the consequence and alternative are a string and a num-
ber, neither of which is convertible to the other. Even if you say object
result = f ? "abc" : 123; the C# compiler will still flag this expression
as illegal because the type that is consistent with both expressions (that is,
object) is found outside the conditional expression.

Null Coalescing Operator (??)
The null coalescing operator is a concise way to express “if this value is
null then use this other value.” Its form is:

expression1 ?? expression2;

The null coalescing operator also uses a form of short-circuiting. If
expression1 is not null, its value is the result of the operation and the other
expression is not evaluated. If expression1 does evaluate to null, the value
of expression2 is the result of the operator. Unlike the conditional operator,
the null coalescing operator is a binary operator.

Listing 3.36 is an example of how to use the null coalescing operator.

Listing 3.36:  Null Coalescing Operator

string fileName = GetFileName();
// ...
string fullName = fileName ?? "default.txt";
// ...

Bitwise Operators (<<, >>, | , &, ^, ~) 	 121

In this listing, we use the null coalescing operator to set fullName to
"default.txt" if fileName is null. If fileName is not null, fullName is sim-
ply assigned the value of fileName.

The coalescing operator “chains” nicely; an expression of the form
x ?? y ?? z results in x if x is not null; otherwise, it results in y if y is not
null; otherwise, it results in z. That is, it goes from left to right and picks out
the first non-null expression, or uses the last expression if all the previous
expressions were null.

The null coalescing operator was added to C# in version 2.0 along with
nullable value types; the null coalescing operator works on both operands
of nullable value types and reference types.

Bitwise Operators (<<, >>, |, &, ^, ~)
An additional set of operators that is common to virtually all program-
ming languages is the set of operators for manipulating values in their
binary formats: the bit operators.

	 b e ginn e r T opic

Bits and Bytes
All values within a computer are represented in a binary format of 1s and
0s, called binary digits (bits). Bits are grouped together in sets of eight,
called bytes. In a byte, each successive bit corresponds to a value of 2
raised to a power, starting from 20 on the right, to 27 on the left, as shown
in Figure 3.1.

 Bitwise Operators (<<, >>, |, &, ^, ~) 115

If the expression (expression1) is not null, then expression1 is
returned. In other words, the null coalescing operator returns expression1
directly unless expression1 evaluates to null, in which case expression2
is returned. Unlike the conditional operator, the null coalescing operator is
a binary operator.

Listing 3.36 is an example of how to use the null coalescing operator.

Listing 3.36: Null Coalescing Operator

string fileName;

// ...

// ...

In this listing, we use the null coalescing operator to set fullName to
“default.txt” if fileName is null. If fileName is not null, fullName is simply
assigned the value of fileName.

Bitwise Operators (<<, >>, |, &, ^, ~)

An additional set of operators that is common to virtually all program-
ming languages is the set of operators for manipulating values in their
binary formats: the bit operators.

B E G I N N E R T O P I C

Bits and Bytes
All values within a computer are represented in a binary format of 1s and 0s,
called binary digits (bits). Bits are grouped together in sets of eight, called
bytes. In a byte, each successive bit corresponds to a value of 2 raised to a
power, starting from 20 on the right, to 27 on the left, as shown in Figure 3.1.

Figure 3.1: Corresponding Placeholder Values

In many instances, particularly when dealing with low-level or system
services, information is retrieved as binary data. In order to manipulate these
devices and services, you need to perform manipulations of binary data.

string fullName = fileName??"default.txt";

0 0 0 0 0 0 0 0

27 26 25 24 23 22 21 20

Michaelis_ch03.fm Page 115 Saturday, January 30, 2010 6:23 PM

Figure 3.1:  Corresponding Placeholder Values

In many scenarios, particularly when dealing with low-level or system
services, information is retrieved as binary data. In order to manipulate these
devices and services, you need to perform manipulations of binary data.

n
n

n
n

	 122	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.

Chapter 3: Operators and Control Flow116

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.

Figure 3.2: Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a 2s
complement notation. This is so that addition continues to work when
adding a negative number to a positive number as though both were posi-
tive operands. With this notation, negative numbers behave differently
than positive numbers. Negative numbers are identified by a 1 in the left-
most location. If the leftmost location contains a 1, you add the locations
with 0s rather than the locations with 1s. Each location corresponds to the
negative power of 2 value. Furthermore, from the result, it is also neces-
sary to subtract 1. This is demonstrated in Figure 3.3.

Figure 3.3: Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to –1 and 1111 1111 1111
1001 holds the value –7. 1000 0000 0000 0000 corresponds to the lowest
negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)
Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation are
shifted to the left by the number of locations specified by the operand on the
right of the shift operator. Zeroes are then used to backfill the locations on
the right side of the binary number. A right-shift operator does almost the

0 0 0 0 0 1 1 1

7= 4 + 2 + 1

1 1 1 1 1 0 0 1

-7 = -4 -2 + 0 -1

Michaelis_ch03.fm Page 116 Saturday, January 30, 2010 6:23 PM

Figure 3.2:  Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a “twos
complement” notation. This is so that addition continues to work when add-
ing a negative number to a positive number as though both were positive
operands. With this notation, negative numbers behave differently than
positive numbers. Negative numbers are identified by a 1 in the leftmost
location. If the leftmost location contains a 1, you add the locations with 0s
rather than the locations with 1s. Each location corresponds to the nega-
tive power of 2 value. Furthermore, from the result, it is also necessary to
subtract 1. This is demonstrated in Figure 3.3.

Chapter 3: Operators and Control Flow116

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.

Figure 3.2: Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a 2s
complement notation. This is so that addition continues to work when
adding a negative number to a positive number as though both were posi-
tive operands. With this notation, negative numbers behave differently
than positive numbers. Negative numbers are identified by a 1 in the left-
most location. If the leftmost location contains a 1, you add the locations
with 0s rather than the locations with 1s. Each location corresponds to the
negative power of 2 value. Furthermore, from the result, it is also neces-
sary to subtract 1. This is demonstrated in Figure 3.3.

Figure 3.3: Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to –1 and 1111 1111 1111
1001 holds the value –7. 1000 0000 0000 0000 corresponds to the lowest
negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)
Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation are
shifted to the left by the number of locations specified by the operand on the
right of the shift operator. Zeroes are then used to backfill the locations on
the right side of the binary number. A right-shift operator does almost the

0 0 0 0 0 1 1 1

7= 4 + 2 + 1

1 1 1 1 1 0 0 1

-7 = -4 -2 + 0 -1

Michaelis_ch03.fm Page 116 Saturday, January 30, 2010 6:23 PM

Figure 3.3:  Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to –1 and
1111 1111 1111 1001 holds the value –7. 1000 0000 0000 0000 corresponds
to the lowest negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)
Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation
are shifted to the left by the number of locations specified by the operand
on the right of the shift operator. Zeroes are then used to backfill the loca-
tions on the right side of the binary number. A right-shift operator does

Bitwise Operators (<<, >>, | , &, ^, ~) 	 123

almost the same thing in the opposite direction. However, if the number is
a negative value of a signed type, the values used to backfill the left side of
the binary number are ones and not zeroes. The shift operators are >> and
<<, the right-shift and left-shift operators, respectively. In addition, there
are combined shift and assignment operators, <<= and >>=.

Consider the following example. Suppose you had the
int value -7, which would have a binary representation of
1111 1111 1111 1111 1111 1111 1111 1001. In Listing 3.37, you right-shift
the binary representation of the number –7 by two locations.

Listing 3.37:  Using the Right-Shift Operator

int x;
x = (-7 >> 2); // 11111111111111111111111111111001 becomes
 // 11111111111111111111111111111110
// Write out "x is -2."
System.Console.WriteLine("x = {0}.", x);

Output 3.17 shows the results of Listing 3.37.

Output 3.17

x = -2.

Because of the right shift, the value of the bit in the rightmost location has
“dropped off” the edge and the negative bit indicator on the left shifts by
two locations to be replaced with 1s. The result is -2.

Although legend has it that x << 2 is faster than x * 4, do not use bit
shift operators for multiplication or division. This might have been true in
certain C compilers in the 1970s, but modern compilers and modern micro-
processors are perfectly capable of optimizing arithmetic. Using shifting for
multiplication or division is confusing and frequently leads to errors when
code maintainers forget that the shift operators are lower precedence than
the arithmetic operators.

Bitwise Operators (&, |, ^)
In some instances, you might need to perform logical operations, such as
AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via
the &, |, and ^ operators, respectively.

	 124	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

	 b e ginn e r T opic

Logical Operators Explained
If you have two numbers, as shown in Figure 3.4, the bitwise operations
will compare the values of the locations beginning at the leftmost signifi-
cant value and continuing right until the end. The value of “1” in a location
is treated as “true,” and the value of “0” in a location is treated as “false.”

Chapter 3: Operators and Control Flow118

value and continuing right until the end. The value of “1” in a location is
treated as “true,”and the value of “0” in a location is treated as “false.”

Figure 3.4: The Numbers 12 and 7 Represented in Binary

Therefore, the bitwise AND of the two values in Figure 3.4 would be the
bit-by-bit comparison of bits in the first operand (12) with the bits in the
second operand (7), resulting in the binary value 000000100, which is 4.
Alternatively, a bitwise OR of the two values would produce 00001111, the
binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.38 demonstrates how to use these bitwise operators. The
results of Listing 3.38 appear in Output 3.18.

Listing 3.38: Using Bitwise Operators

byte and, or, xor;

and = 12 & 7; // and = 4

or = 12 | 7; // or = 15

xor = 12 ^ 7; // xor = 11

System.Console.WriteLine(

 "and = {0} \nor = {1}\nxor = {2}"

 and, or, xor);

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate spe-
cific bits within the first operand using the particular operator expression.

In order to convert a number to its binary representation, you need to
iterate across each bit in a number. Listing 3.39 is an example of a program

OUTPUT 3.18:

and = 4
or = 15
xor = 11

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1

12:

7:

Michaelis_ch03.fm Page 118 Saturday, January 30, 2010 6:23 PM

Figure 3.4:  The Numbers 12 and 7 Represented in Binary

Therefore, the bitwise AND of the two values in Figure 3.4 would be
the bit-by-bit comparison of bits in the first operand (12) with the bits in
the second operand (7), resulting in the binary value 000000100, which is 4.
Alternatively, a bitwise OR of the two values would produce 00001111, the
binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.38 demonstrates how to use these bitwise operators. The results
of Listing 3.38 appear in Output 3.18.

Listing 3.38:  Using Bitwise Operators

byte and, or, xor;
and = 12 & 7; // and = 4
or = 12 | 7; // or = 15
xor = 12 ^ 7; // xor = 11
System.Console.WriteLine(
 "and = {0} \nor = {1}\nxor = {2}",
 and, or, xor);

Output 3.18

and = 4
or = 15
xor = 11

n
n

n
n

Bitwise Operators (<<, >>, | , &, ^, ~) 	 125

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate
specific bits within the first operand using the particular operator expres-
sion. Note that, unlike the AND (&&) operator, the & operator always evalu-
ates both sides even if the left portion is false. Similarly, the | version of the
OR operator is not “short-circuiting.” It always evaluates both operands
even if the left operand is true. The bit versions of the AND and OR opera-
tors, therefore, are not short-circuiting.

In order to convert a number to its binary representation, you need to
iterate across each bit in a number. Listing 3.39 is an example of a program
that converts an integer to a string of its binary representation. The results
of Listing 3.39 appear in Output 3.19.

Listing 3.39:  Getting a String Representation of a Binary Display

public class BinaryConverter
{
 public static void Main()
 {
 const int size = 64;
 ulong value;
 char bit;

 System.Console.Write ("Enter an integer: ");
 // Use long.Parse() so as to support negative numbers
 // Assumes unchecked assignment to ulong.
 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....
 ulong mask = 1UL << size - 1;
 for (int count = 0; count < size; count++)
 {
 bit = ((mask & value) != 0) ? '1': '0';
 System.Console.Write(bit);
 // Shift mask one location over to the right
 mask >>= 1;
 }
 System.Console.WriteLine();
 }
}

Output 3.19

Enter an integer: 42
00101010

	 126	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Notice that within each iteration of the for loop (discussed later in this
chapter), you use the right-shift assignment operator to create a mask cor-
responding to each bit position in value. By using the & bit operator to
mask a particular bit, you can determine whether the bit is set. If the mask
test produces a nonzero result, you write 1 to the console; otherwise, 0 is
written. In this way, you create output describing the binary value of an
unsigned long.

Note also that the parentheses in (mask & value) != 0 are necessary
because inequality is higher precedence than the AND operator; without
the explicit parentheses this would be equivalent to mask & (value != 0),
which does not make any sense; the left side of the & is a ulong and the right
side is a bool.

Bitwise Compound Assignment Operators (&=, |=, ^=)
Not surprisingly, you can combine these bitwise operators with assign-
ment operators as follows: &=, |=, and ^=. As a result, you could take a
variable, OR it with a number, and assign the result back to the original
variable, which Listing 3.40 demonstrates.

Listing 3.40:  Using Logical Assignment Operators

byte and = 12, or = 12, xor = 12;
and &= 7; // and = 4
or |= 7; // or = 15
xor ^= 7; // xor = 11
System.Console.WriteLine(
 "and = {0} \nor = {1}\nxor = {2}",
 and, or, xor);

The results of Listing 3.40 appear in Output 3.20.

Output 3.20

and = 4
or = 15
xor = 11

Combining a bitmap with a mask using something like
fields &= mask clears the bits in fields that are not set in the mask. The
opposite, fields &= ~mask, clears out the bits in fields that are set in mask.

Control Flow Statements, Continued 	 127

Bitwise Complement Operator (~)
The bitwise complement operator takes the complement of each
bit in the operand, where the operand can be an int, uint, long,
or ulong. ~1, therefore, returns the value with binary notation
1111 1111 1111 1111 1111 1111 1111 1110, and ~(1<<31) returns the
number with binary notation 0111 1111 1111 1111 1111 1111 1111 1111.

Control Flow Statements, Continued
Now that we’ve described Boolean expressions in more detail we can more
clearly describe the control flow statements supported by C#. Many of
these statements will be familiar to experienced programmers, so you can
skim this section looking for details specific to C#. Note in particular the
foreach loop, as this may be new to many programmers.

The while and do/while Loops
Thus far you have learned how to write programs that do something only
once. However, computers can easily perform similar operations multiple
times. In order to do this, you need to create an instruction loop. The first
instruction loop we will discuss is the while loop, because it is the simplest
conditional loop. The general form of the while statement is as follows:

while (condition)

 statement

The computer will repeatedly execute the statement that is the “body”
of the loop as long as the condition (which must be a Boolean expression)
evaluates to true. If the condition evaluates to false, code execution skips
the body and executes the code following the loop statement. Note that
statement will continue to execute even if it causes the condition to become
false. It isn’t until the condition is reevaluated “at the top of the loop” that
the loop exits. The Fibonacci calculator shown in Listing 3.41 demonstrates
the while loop.

Listing 3.41:  while Loop Example

class FibonacciCalculator
{
 static void Main()
 {

	 128	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

 decimal current;
 decimal previous;
 decimal temp;
 decimal input;

 System.Console.Write("Enter a positive integer:");

 // decimal.Parse convert the ReadLine to a decimal.
 input = decimal.Parse(System.Console.ReadLine());

 // Initialize current and previous to 1, the first
 // two numbers in the Fibonacci series.
 current = previous = 1;

 // While the current Fibonacci number in the series is
 // less than the value input by the user.
 while(current <= input)
 {
 temp = current;
 current = previous + current;
 previous = temp; // Executes even if previous
 // statement caused current to exceed input
 }

 System.Console.WriteLine(
 "The Fibonacci number following this is {0}",
 current);
 }
}

A Fibonacci number is a member of the Fibonacci series, which includes
all numbers that are the sum of the previous two numbers in the series,
beginning with 1 and 1. In Listing 3.41, you prompt the user for an integer.
Then you use a while loop to find the first Fibonacci number that is greater
than the number the user entered.

	 b e ginn e r T opic

When to Use a while Loop
The remainder of this chapter considers other statements that cause a block
of code to execute repeatedly. The term loop body refers to the statement
(frequently a code block) that is to be executed within the while statement,
since the code is executed in a “loop” until the exit condition is achieved. It
is important to understand which loop construct to select. You use a while
construct to iterate while the condition evaluates to true. A for loop is used

n
n

n
n

Control Flow Statements, Continued 	 129

most appropriately whenever the number of repetitions is known, such as
counting from 0 to n. A do/while is similar to a while loop, except that it
will always execute the loop body at least once.

The do/while loop is very similar to the while loop except that a do/while
loop is preferred when the number of repetitions is from 1 to n and n is not
known when iterating begins. This pattern frequently occurs when prompt-
ing a user for input. Listing 3.42 is taken from the tic-tac-toe program.

Listing 3.42:  do/while Loop Example

// Repeatedly request player to move until he
// enter a valid position on the board.
bool valid;
do
{
 valid = false;

 // Request a move from the current player.
 System.Console.Write(
 "\nPlayer {0}: Enter move:", currentPlayer);
 input = System.Console.ReadLine();

 // Check the current player's input.
 // ...

} while (!valid);

In Listing 3.42, you always initialize valid to false at the beginning of
each iteration, or loop repetition. Next, you prompt and retrieve the number
the user input. Although not shown here, you then check whether the input
was correct, and if it was, you assign valid equal to true. Since the code
uses a do/while statement rather than a while statement, the user will be
prompted for input at least once.

The general form of the do/while loop is as follows:

do
 statement
while (condition);

As with all the control flow statements, a code block is generally used as
the single statement in order to allow multiple statements to be executed as
the loop body. However, any single statement except for a labeled statement
or a local variable declaration can be used.

	 130	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

The for Loop
The for loop iterates a code block until a specified condition is reached.
In that way, it is very similar to the while loop. The difference is that the
for loop has built-in syntax for initializing, incrementing, and testing the
value of a counter, known as the loop variable. Because there is a specific
location in the loop syntax for an increment operation, the increment and
decrement operators are frequently used as part of a for loop.

Listing 3.43 shows the for loop used to display an integer in binary form.
The results of this listing appear in Output 3.21.

Listing 3.43:  Using the for Loop

public class BinaryConverter
{
 public static void Main()
 {
 const int size = 64;
 ulong value;
 char bit;

 System.Console.Write ("Enter an integer: ");
 // Use long.Parse() so as to support negative numbers
 // Assumes unchecked assignment to ulong.
 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....
 ulong mask = 1UL << size - 1;
 for (int count = 0; count < size; count++)
 {
 bit = ((mask & value) > 0) ? '1': '0';
 System.Console.Write(bit);
 // Shift mask one location over to the right
 mask >>= 1;
 }
 }
}

Output 3.21

Enter an integer: -42
11010110

Listing 3.43 performs a bit mask 64 times, once for each bit in the number.
The three parts of the for loop header first declare and initialize the variable
count, then describe the condition that must be met for the loop body to be

Control Flow Statements, Continued 	 131

executed, and finally describe the operation that updates the loop variable.
The general form of the for loop is as follows:

for (initial ; condition ; loop)
 statement

Here is a breakdown of the for loop.

•	 The initial section performs operations that precede the first itera-
tion. In Listing 3.43, it declares and initializes the variable count. The
initial expression does not have to be a declaration of a new variable
(though it frequently is). It is possible, for example, to declare the vari-
able beforehand and simply initialize it in the for loop, or to skip the
initialization section entirely by leaving it blank. Variables declared
here are in scope throughout the header and body of the for statement.

•	 The condition portion of the for loop specifies an end condition. The
loop exits when this condition is false exactly like the while loop
does. The for loop will execute the body only as long as the condition
evaluates to true. In the preceding example, the loop exits when count
is greater than or equal to 64.

•	 The loop expression executes after each iteration. In the preceding ex-
ample, count++ executes after the right shift of the mask (mask >>= 1),
but before the condition is evaluated. During the sixty-fourth iteration,
count is incremented to 64, causing the condition to become false, and
therefore terminating the loop.

•	 The statement portion of the for loop is the “loop body” code that
executes while the conditional expression remains true.

If you wrote out each for loop execution step in pseudocode without
using a for loop expression, it would look like this.

1.	Declare and initialize count to 0.

2.	 If count is less than 64, continue to step 3; otherwise, go to step 7.

3.	Calculate bit and display it.

4.	Shift the mask.

5.	 Increment count by one.

6.	 Jump back to line 2.

7.	Continue the execution of the program after the loop.

	 132	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

The for statement doesn’t require any of the elements in its header.
for(;;){ ... } is perfectly valid; although there still needs to be a means
to escape from the loop to avoid executing infinitely. (If the condition is
missing, it is assumed to be the constant true.)

The initial and loop expressions have an unusual syntax to support loops
that require multiple loop variables, as shown in Listing 3.44.

Listing 3.44:  for Loop Using Multiple Expressions

for(int x=0, y=5; ((x<=5) && (y>=0)); y--, x++)
{
 System.Console.Write("{0}{1}{2}\t",
 x, (x>y? '>' : '<'), y);
}

The results of Listing 3.44 appear in Output 3.22.

Output 3.22

0<5 1<4 2<3 3>2 4>1 5>0

Here the initialization clause contains a complex declaration that declares
and initializes two loop variables, but this is at least similar to a decla-
ration statement that declares multiple local variables. The loop clause is
quite unusual, as it can consist of a comma-separated list of expressions,
not just a single expression.

Guidelines
CONSIDER refactoring the method to make the control flow easier
to understand if you find yourself writing for loops with complex
conditionals and multiple loop variables.

The for loop is little more than a more convenient way to write a while
loop; you can always rewrite a for loop like this:

{
 initial;
 while(condition)
 {

Control Flow Statements, Continued 	 133

 statement;
 loop;
 }
}

Guidelines
DO use the for loop when the number of loop iterations is known in
advance and the “counter” that gives the number of iterations executed
is needed in the loop.

DO use the while loop when the number of loop iterations is not known
in advance and a counter is not needed.

The foreach Loop
The last loop statement in the C# language is foreach. The foreach loop
iterates through a collection of items, setting a loop variable to represent
each item in turn. In the body of the loop, operations may be performed on
the item. A nice property of the foreach loop is that every item is iterated
over exactly once; it is not possible to accidentally miscount and iterate
past the end of the collection as can happen with other loops.

The general form of the foreach statement is as follows:

foreach(type variable in collection)
 statement

Here is a breakdown of the foreach statement.

•	 type is used to declare the data type of the variable for each item
within the collection. It may be var, in which case the compiler infers
the type of the item from the type of the collection.

•	 variable is a read-only variable into which the foreach loop will au-
tomatically assign the next item within the collection. The scope of the
variable is limited to the body of the loop.

•	 collection is an expression, such as an array, representing any number
of items.

•	 statement is the loop body that executes for each iteration of the loop.

	 134	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Consider the foreach loop in the context of the simple example shown
in Listing 3.45.

Listing 3.45:  Determining Remaining Moves Using the foreach Loop

class TicTacToe // Declares the TicTacToe class.
{
 static void Main() // Declares the entry point of the program.
 {
 // Hardcode initial board as follows
 // ---+---+---
 // 1 | 2 | 3
 // ---+---+---
 // 4 | 5 | 6
 // ---+---+---
 // 7 | 8 | 9
 // ---+---+---
 char[] cells = {
 '1', '2', '3', '4', '5', '6', '7', '8', '9'
 };

 System.Console.Write(
 "The available moves are as follows: ");

 // Write out the initial available moves
 foreach (char cell in cells)
 {
 if (cell != 'O' && cell != 'X')
 {
 System.Console.Write("{0} ", cell);
 }
 }
 }
}

Output 3.23 shows the results of Listing 3.45.

Output 3.23

The available moves are as follows: 1 2 3 4 5 6 7 8 9

When the execution engine reaches the foreach statement, it assigns to the
variable cell the first item in the cells array—in this case, the value '1'.
It then executes the code within the block that makes up the foreach loop
body. The if statement determines whether the value of cell is 'O' or 'X'.

Control Flow Statements, Continued 	 135

If it is neither, the value of cell is written out to the console. The next itera-
tion then assigns the next array value to cell, and so on.

It is important to note that the compiler prevents modification of the vari-
able (cell) during the execution of a foreach loop. Also, the loop variable
has a subtly different behavior in C# 5 than it did in previous versions; the
difference is only apparent when the loop body contains a lambda expres-
sion or anonymous method that uses the loop variable. See Chapter 12 for
details.

	 b e ginn e r T opic

Where the switch Statement Is More Appropriate
Sometimes you might compare the same value in several continuous if
statements, as shown with the input variable in Listing 3.46.

Listing 3.46:  Checking the Player’s Input with an if Statement

// ...

bool valid = false;

// Check the current player's input.
if((input == "1") ||
 (input == "2") ||
 (input == "3") ||
 (input == "4") ||
 (input == "5") ||
 (input == "6") ||
 (input == "7") ||
 (input == "8") ||
 (input == "9"))
{
 // Save/move as the player directed.
 // ...

 valid = true;
}
else if((input == "") || (input == "quit"))
{
 valid = true;
}
else
{
 System.Console.WriteLine(
 "\nERROR: Enter a value from 1-9. "
 + "Push ENTER to quit");

n
n

n
n

	 136	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

}

// ...

This code validates the text entered to ensure that it is a valid tic-tac-toe
move. If the value of input were 9, for example, the program would have
to perform nine different evaluations. It would be preferable to jump to
the correct code after only one evaluation. To enable this, you use a switch
statement.

The switch Statement
A switch statement is simpler to understand than a complex if statement
when you have a value that must be compared against may different con-
stant values. The switch statement looks like this:

switch(expression)
{
 case constant:

 statements

 default:
 statements
}

Here is a breakdown of the switch statement.

•	 expression is the value that is being compared against the different
constants. The type of this expression determines the “governing type”
of the switch. Allowable governing data types are bool, sbyte, byte,
short, ushort, int, uint, long, ulong, char, any enum type (covered in
Chapter 8), the corresponding nullable types of each of those value
types, and string.

•	 constant is any constant expression compatible with the governing type.

•	 A group of one or more case labels (or the default label) followed by a
group of one or more statements is called a switch section. The pattern
above has two switch sections; Listing 3.47 shows a switch statement
with three switch sections.

•	 statements is one or more statements to be executed when the expres-
sion equals one of the constant values mentioned in a label in the

Control Flow Statements, Continued 	 137

switch section. The end point of the group of statements must not be
reachable. Typically the last statement is a jump statement such as a
break, return, or goto statement.

Guidelines
DO NOT use continue as the jump statement that exits a switch
section. This is legal when the switch is inside a loop, but it is easy to
become confused about the meaning of break in a later switch section.

A switch statement should have at least one switch section; switch(x){}
is legal but will generate a warning. Also, earlier the guideline was to avoid
omitting braces in general. One exception is to omit braces for case and
break statements because they serve to indicate the beginning and end of
a block.

Listing 3.47, with a switch statement, is semantically equivalent to the
series of if statements in Listing 3.46.

Listing 3.47:  Replacing the if Statement with a switch Statement

static bool ValidateAndMove(
 int[] playerPositions, int currentPlayer, string input)
{
 bool valid = false;

 // Check the current player's input.
 switch (input)
 {
 case "1" :
 case "2" :
 case "3" :
 case "4" :
 case "5" :
 case "6" :
 case "7" :
 case "8" :
 case "9" :
 // Save/move as the player directed.
 ...
 valid = true;
 break;

 case "" :
 case "quit" :
 valid = true;

	 138	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

 break;
 default :
 // If none of the other case statements
 // is encountered then the text is invalid.
 System.Console.WriteLine(
 "\nERROR: Enter a value from 1-9. "
 + "Push ENTER to quit");
 break;
 }

 return valid;
}

In Listing 3.47, input is the test expression. Since input is a string, the gov-
erning type is string . If the value of input is one of the strings 1, 2, 3, 4,
5, 6, 7, 8, or 9, the move is valid and you change the appropriate cell to
match that of the current user’s token (X or O). Once execution encounters
a break statement, control leaves the switch statement.

The next switch section describes how to handle the empty string or the
string quit; it sets valid to true if input equals either value. The default
switch section is executed if no other switch section had a case label that
matched the test expression.

Language Contrast: C++—switch Statement Fall-Through

In C++, if a switch section does not end with a jump statement, control

“falls through” to the next switch section, executing its code. Because un-

intended fall-through is a common error in C++, C# does not allow control

to accidentally fall through from one switch section to the next. The C#

designers believed it was better to prevent this common source of bugs and

encourage better code readability than to match the potentially confusing

C++ behavior. If you do want one switch section to execute the statements

of another switch section, you may do so explicitly with a goto statement,

as demonstrated later in this chapter.

There are several things to note about the switch statement.

•	 A switch statement with no switch sections will generate a compiler
warning, but the statement will still compile.

Jump Statements 	 139

•	 Switch sections can appear in any order; the default section does not
have to appear last. In fact, the default switch section does not have
to appear at all; it is optional.

•	 The C# language requires that the end point of every switch section,
including the last section, be unreachable. This means that switch sec-
tions usually end with a break, return, or goto.

Jump Statements
It is possible to alter the execution path of a loop. In fact, with jump state-
ments, it is possible to escape out of the loop or to skip the remaining por-
tion of an iteration and begin with the next iteration, even when the loop
condition remains true. This section considers some of the ways to jump
the execution path from one location to another.

The break Statement
To escape out of a loop or a switch statement, C# uses a break statement.
Whenever the break statement is encountered, control immediately leaves
the loop or switch. Listing 3.48 examines the foreach loop from the tic-tac-
toe program.

Listing 3.48:  Using break to Escape Once a Winner Is Found

class TicTacToe // Declares the TicTacToe class.
{
 static void Main() // Declares the entry point of the program.
 {
 int winner=0;
 // Stores locations each player has moved.
 int[] playerPositions = {0,0};

 // Hardcoded board position
 // X | 2 | O
 // ---+---+---
 // O | O | 6
 // ---+---+---
 // X | X | X
 playerPositions[0] = 449;
 playerPositions[1] = 28;

 // Determine if there is a winner
 int[] winningMasks = {
 7, 56, 448, 73, 146, 292, 84, 273 };

	 140	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

 // Iterate through each winning mask to determine
 // if there is a winner.
 foreach (int mask in winningMasks)
 {
 if ((mask & playerPositions[0]) == mask)
 {
 winner = 1;
 break;
 }
 else if ((mask & playerPositions[1]) == mask)
 {
 winner = 2;
 break;
 }
 }

 System.Console.WriteLine(
 "Player {0} was the winner", winner);
 }
}

Output 3.24 shows the results of Listing 3.48.

Output 3.24

Player 1 was the winner

Listing 3.48 uses a break statement when a player holds a winning posi-
tion. The break statement forces its enclosing loop (or a switch statement) to
cease execution, and control moves to the next line outside the loop. For this
listing, if the bit comparison returns true (if the board holds a winning posi-
tion), the break statement causes control to jump and display the winner.

	 b e ginn e r T opic

Bitwise Operators for Positions
The tic-tac-toe example (the full listing is available in Appendix B) uses the
bitwise operators to determine which player wins the game. First, the code
saves the positions of each player into a bitmap called playerPositions.
(It uses an array so that the positions for both players can be saved.)

To begin, both playerPositions are 0. As each player moves, the bit
corresponding to the move is set. If, for example, the player selects cell

n
n

n
n

Jump Statements 	 141

3, shifter is set to 3 – 1. The code subtracts 1 because C# is zero-based
and you need to adjust for 0 as the first position instead of 1. Next, the
code sets position, the bit corresponding to cell 3, using the shift operator
000000000000001 << shifter, where shifter now has a value of 2. Lastly,
it sets playerPositions for the current player (subtracting 1 again to shift
to zero-based) to 0000000000000100. Listing 3.49 uses |= so that previous
moves are combined with the current move.

Listing 3.49:  Setting the Bit That Corresponds to Each Player’s Move

int shifter; // The number of places to shift
 // over in order to set a bit.
int position; // The bit which is to be set.

// int.Parse() converts "input" to an integer.
// "int.Parse(input) – 1" because arrays
// are zero-based.
shifter = int.Parse(input) - 1;

// Shift mask of 00000000000000000000000000000001
// over by cellLocations.
position = 1 << shifter;

// Take the current player cells and OR them to set the
// new position as well.
// Since currentPlayer is either 1 or 2,
// subtract one to use currentPlayer as an
// index in a 0-based array.
playerPositions[currentPlayer-1] |= position;

Later in the program, you can iterate over each mask corresponding to
winning positions on the board to determine whether the current player
has a winning position, as shown in Listing 3.48.

The continue Statement
You might have a block containing a series of statements within a loop. If
you determine that some conditions warrant executing only a portion of
these statements for some iterations, you can use the continue statement
to jump to the end of the current iteration and begin the next iteration. The
continue statement exits the current iteration (regardless of whether ad-
ditional statements remain) and jumps to the loop condition. At that point,
if the loop conditional is still true, the loop will continue execution.

	 142	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Listing 3.50 uses the continue statement so that only the letters of the
domain portion of an email are displayed. Output 3.25 shows the results
of Listing 3.50.

Listing 3.50:  Determining the Domain of an Email Address

class EmailDomain
{
 static void Main()
 {
 string email;
 bool insideDomain = false;
 System.Console.WriteLine("Enter an email address: ");

 email = System.Console.ReadLine();

 System.Console.Write("The email domain is: ");

 // Iterate through each letter in the email address.
 foreach (char letter in email)
 {
 if (!insideDomain)
 {
 if (letter == '@')
 {
 insideDomain = true;
 }
 continue;
 }

 System.Console.Write(letter);
 }
 }
}

Output 3.25

Enter an email address:
mark@dotnetprogramming.com
The email domain is: dotnetprogramming.com

In Listing 3.50, if you are not yet inside the domain portion of the email
address, you can use a continue statement to move control to the end of
the loop, and process the next character in the email address.

You can almost always use an if statement in place of a continue state-
ment, and this is usually more readable. The problem with the continue
statement is that it provides multiple flows of control within a single

Jump Statements 	 143

iteration, and this compromises readability. In Listing 3.51, the sample has
been rewritten, replacing the continue statement with the if/else construct
to demonstrate a more readable version that does not use the continue
statement.

Listing 3.51:  Replacing a continue with an if Statement

foreach (char letter in email)
{
 if (insideDomain)
 {
 System.Console.Write(letter);
 }
 else
 {
 if (letter == '@')
 {
 insideDomain = true;
 }
 }
}

The goto Statement
Early programming languages lacked the relatively sophisticated “struc-
tured” control flows that modern languages such as C# have as a matter
of course, and instead relied upon simple conditional branching (if) and
unconditional branching (goto) statements for most of their control flow
needs. The resultant programs were often hard to understand. The con-
tinued existence of a goto statement within C# seems like an anachronism
to many experienced programmers. However, C# supports goto, and it is
the only method for supporting fall-through within a switch statement. In
Listing 3.52, if the /out option is set, code execution jumps to the default
case using the goto statement; similarly for /f.

Listing 3.52:  Demonstrating a switch with goto Statements

// ...
static void Main(string[] args)
{
 bool isOutputSet = false;
 bool isFiltered = false;

 foreach (string option in args)
 {

	 144	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

 switch (option)
 {
 case "/out":
 isOutputSet = true;
 isFiltered = false;
 goto default;
 case "/f":
 isFiltered = true;
 isRecursive = false;
 goto default;
 default:
 if (isRecursive)
 {
 // Recurse down the hierarchy
 // ...

 }
 else if (isFiltered)
 {
 // Add option to list of filters.
 // ...
 }
 break;
 }

 }

 // ...

}

Output 3.26 shows how to execute the code shown in Listing 3.52.

Output 3.26

C:\SAMPLES>Generate /out fizbottle.bin /f "*.xml" "*.wsdl"

To branch to a switch section label other than the default label, you can
use the syntax goto case constant; where constant is the constant associ-
ated with the case label you wish to branch to. To branch to a statement
that is not associated with a switch section, precede the target statement
with any identifier followed by a colon; you can then use that identifier
with the goto statement. For example, you could have a labeled statement
myLabel : Console.WriteLine(); and then the statement goto myLabel;
would branch to the labeled statement. Fortunately, C# prevents using goto
to branch into a code block; it may only be used to branch within a code

C# Preprocessor Directives 	 145

block or to an enclosing code block. By making these restrictions, C# avoids
most of the serious goto abuses possible in other languages.

In spite of the improvements, using goto is generally considered to be
inelegant, difficult to understand, and symptomatic of poorly structured
code. If you need to execute a section of code multiple times or under differ-
ent circumstances, either use a loop or extract code to a method of its own.

Guidelines
AVOID using goto.

C# Preprocessor Directives
Control flow statements evaluate expressions at runtime. In contrast, the
C# preprocessor is invoked during compilation. The preprocessor com-
mands are directives to the C# compiler, specifying the sections of code to
compile or identifying how to handle specific errors and warnings within
the code. C# preprocessor commands can also provide directives to C# edi-
tors regarding the organization of code.

Language Contrast: C++—Preprocessing

Languages such as C and C++ use a preprocessor to perform actions on

the code based on special tokens. Preprocessor directives generally tell the

compiler how to compile the code in a file and do not participate in the

compilation process itself. In contrast, the C# compiler handles “preproces-

sor” directives as part of the regular lexical analysis of the source code. As a

result, C# does not support preprocessor macros beyond defining a constant.

In fact, the term preprocessor is generally a misnomer for C#.

Each preprocessor directive begins with a hash symbol (#), and all
preprocessor directives must appear on one line. A newline rather than a
semicolon indicates the end of the directive.

A list of each preprocessor directive appears in Table 3.4.

	 146	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Table 3.4:  Preprocessor Directives

Statement or
Expression General Syntax Structure Example

#if directive #if preprocessor-expression
 code
#endif

#if CSHARP2
 Console.Clear();
#endif

#elif directive #if preprocessor-expression1
 code
#elif preprocessor-expression2
 code
#endif

#if LINUX
...
#elif WINDOWS
...
#endif

#else directive #if
 code
#else
 code
#endif

#if CSHARP1
...
#else
...
#endif

#define directive #define conditional-symbol #define CSHARP2

#undef directive #undef conditional-symbol #undef CSHARP2

#error directive #error preproc-message #error Buggy
implementation

#warning
directive

#warning preproc-message #warning Needs code
review

#pragma directive #pragma warning #pragma warning
disable 1030

#line directive
#line org-line new-line

#line 467
"TicTacToe.cs"
...
#line default

#line default

#region directive
#region pre-proc-message
 code
#endregion

#region Methods
 ...
#endregion

Excluding and Including Code (#if, #elif, #else, #endif)
Perhaps the most common use of preprocessor directives is in controlling
when and how code is included. For example, to write code that could
be compiled by both C# 2.0 and later compilers and the prior version 1.2
compilers, you use a preprocessor directive to exclude C# 2.0-specific code

C# Preprocessor Directives 	 147

when compiling with a 1.2 compiler. You can see this in the tic-tac-toe ex-
ample and in Listing 3.53.

Listing 3.53:  Excluding C# 2.0 Code from a C# 1.x Compiler

#if CSHARP2
System.Console.Clear();
#endif

In this case, you call the System.Console.Clear() method, which is avail-
able only in 2.0 CLI and later versions. Using the #if and #endif prepro-
cessor directives, this line of code will be compiled only if the preprocessor
symbol CSHARP2 is defined.

Another use of the preprocessor directive would be to handle differences
among platforms, such as surrounding Windows- and Linux-specific APIs
with WINDOWS and LINUX #if directives. Developers often use these direc-
tives in place of multiline comments (/*...*/) because they are easier to
remove by defining the appropriate symbol or via a search and replace. A
final common use of the directives is for debugging. If you surround code
with an #if DEBUG, you will remove the code from a release build on most
IDEs. The IDEs define the DEBUG symbol by default in a debug compile and
RELEASE by default for release builds.

To handle an else-if condition, you can use the #elif directive within
the #if directive, instead of creating two entirely separate #if blocks, as
shown in Listing 3.54.

Listing 3.54:  Using #if, #elif, and #endif Directives

#if LINUX
...
#elif WINDOWS
...
#endif

Defining Preprocessor Symbols (#define, #undef)
You can define a preprocessor symbol in two ways. The first is with the
#define directive, as shown in Listing 3.55.

Listing 3.55:  A #define Example

#define CSHARP2

	 148	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

The second method uses the define option when compiling for .NET,
as shown in Output 3.27.

Output 3.27

>csc.exe /define:CSHARP2 TicTacToe.cs

Output 3.28 shows the same functionality using the Mono compiler.

Output 3.28

>mcs.exe -define:CSHARP2 TicTacToe.cs

To add multiple definitions, separate them with a semicolon. The ad-
vantage of the define complier option is that no source code changes are
required, so you may use the same source files to produce two different
binaries.

To undefine a symbol you use the #undef directive in the same way you
use #define.

Emitting Errors and Warnings (#error, #warning)
Sometimes you may want to flag a potential problem with your code. You
do this by inserting #error and #warning directives to emit an error or
warning, respectively. Listing 3.56 uses the tic-tac-toe sample to warn that
the code does not yet prevent players from entering the same move mul-
tiple times. The results of Listing 3.56 appear in Output 3.29.

Listing 3.56:  Defining a Warning with #warning

#warning "Same move allowed multiple times."

Output 3.29

Performing main compilation...
...\tictactoe.cs(471,16): warning CS1030: #warning: '"Same move allowed
multiple times."'

Build complete -- 0 errors, 1 warnings

C# Preprocessor Directives 	 149

By including the #warning directive, you ensure that the compiler will re-
port a warning, as shown in Output 3.29. This particular warning is a way
of flagging the fact that there is a potential enhancement or bug within the
code. It could be a simple way of reminding the developer of a pending task.

Turning Off Warning Messages (#pragma)
Warnings are helpful because they point to code that could potentially
be troublesome. However, sometimes it is preferred to turn off particular
warnings explicitly because they can be ignored legitimately. C# 2.0 and
later compilers provide the preprocessor #pragma directive for just this
purpose (see Listing 3.57).

Listing 3.57:  Using the Preprocessor #pragma Directive to Disable the #warning Directive

#pragma warning disable 1030

Note that warning numbers are prefixed with the letters CS in the com-
piler output. However, this prefix is not used in the #pragma warning di-
rective. The number corresponds to the warning error number emitted by
the compiler when there is no preprocessor command.

To reenable the warning, #pragma supports the restore option following
the warning, as shown in Listing 3.58.

Listing 3.58:  Using the Preprocessor #pragma Directive to Restore a Warning

#pragma warning restore 1030

In combination, these two directives can surround a particular block of
code where the warning is explicitly determined to be irrelevant.

Perhaps one of the most common warnings to disable is CS1591, as this
appears when you elect to generate XML documentation using the /doc
compiler option, but you neglect to document all of the public items within
your program.

nowarn:<warn list> Option
In addition to the #pragma directive, C# compilers generally support the
nowarn:<warn list> option. This achieves the same result as #pragma,
except that instead of adding it to the source code, you can insert the com-
mand as a compiler option. In addition, the nowarn option affects the entire

	 150	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

compilation, and the #pragma option affects only the file in which it ap-
pears. Turning off the CS1591 warning, for example, would appear on the
command line as shown in Output 3.30.

Output 3.30

> csc /doc:generate.xml /nowarn:1591 /out:generate.exe Program.cs

Specifying Line Numbers (#line)
The #line directive controls on which line number the C# compiler reports
an error or warning. It is used predominantly by utilities and designers
that emit C# code. In Listing 3.59, the actual line numbers within the file
appear on the left.

Listing 3.59:  The #line Preprocessor Directive

124 #line 113 "TicTacToe.cs"
125 #warning "Same move allowed multiple times."
126 #line default

Including the #line directive causes the compiler to report the warning
found on line 125 as though it was on line 113, as shown in the compiler
error message shown in Output 3.31.

Output 3.31

Performing main compilation...
...\tictactoe.cs(113,18): warning CS1030: #warning: '"Same move allowed
multiple times."'

Build complete -- 0 errors, 1 warnings

Following the #line directive with default reverses the effect of all
prior #line directives and instructs the compiler to report true line numbers
rather than the ones designated by previous uses of the #line directive.

Hints for Visual Editors (#region, #endregion)
C# contains two preprocessor directives, #region and #endregion, that are
useful only within the context of visual code editors. Code editors, such

C# Preprocessor Directives 	 151

as the one in the Microsoft Visual Studio .NET IDE, can search through
source code and find these directives to provide editor features when
writing code. C# allows you to declare a region of code using the #region
directive. You must pair the #region directive with a matching #endregion
directive, both of which may optionally include a descriptive string fol-
lowing the directive. In addition, you may nest regions within one another.

Again, Listing 3.60 shows the tic-tac-toe program as an example.

Listing 3.60:  A #region and #endregion Preprocessor Directive

...
#region Display Tic-tac-toe Board

#if CSHARP2
 System.Console.Clear();
#endif

// Display the current board;
border = 0; // set the first border (border[0] = "|")

// Display the top line of dashes.
// ("\n---+---+---\n")
System.Console.Write(borders[2]);
foreach (char cell in cells)
{
 // Write out a cell value and the border that comes after it.
 System.Console.Write(" {0} {1}", cell, borders[border]);

 // Increment to the next border;
 border++;

 // Reset border to 0 if it is 3.
 if (border == 3)
 {
 border = 0;
 }
}
#endregion Display Tic-tac-toe Board
...

One example of how these preprocessor directives are used is with
Microsoft Visual Studio .NET. Visual Studio .NET examines the code and
provides a tree control to open and collapse the code (on the left-hand side
of the code editor window) that matches the region demarcated by the
#region directives (see Figure 3.5).

	 152	

n
n 	 Chapter �: �﻿ : Operators and Control Flow

Figure 3.5:  Collapsed Region in Microsoft Visual Studio .NET

Summary

This chapter began with an introduction to the C# operators related to
assignment and arithmetic. Next, you used the operators along with the
const keyword to declare constants. Coverage of all the C# operators
was not sequential, however. Before discussing the relational and logical
comparison operators, the chapter introduced the if statement and the
important concepts of code blocks and scope. To close out the coverage of
operators we discussed the bitwise operators, especially regarding masks.
We also discussed other control flow statements such as loops, switch,
and goto, and ended the chapter with a discussion of the C# preprocessor
directives.

Operator precedence was discussed earlier in the chapter; Table 3.5 sum-
marizes the order of precedence across all operators, including several that
are not yet covered.

	 153Summar y

Table 3.5:  Operator Order of Precedence*

Category Operators

Primary x.y f(x) a[x] x++ x-- new
typeof(T) checked(x) unchecked(x) default(T)
delegate{} ()

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational and type testing < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Null coalescing ??

Conditional ?:

Assignment and lambda = *= /= %= += -= <<= >>= &= ^= |= =>

* Rows appear in order of precedence from highest to lowest.

Perhaps one of the best ways to review all of the content covered in
Chapters 1–3 is to look at the tic-tac-toe program found in Appendix B. By
reviewing the program, you can see one way in which you can combine all
that you have learned into a complete program.

This page intentionally left blank

	 943

! logical negation operator,
118–119

!=, <, <=, ==, >= relational
operators, 386

&&, ||, ^ logical Boolean opera-
tors, 116–118, 122–126

with flag enums, 365
() (cast/conversion) operators,

61–64,
custom conversion operators,

391–393
%=, *=, /=, +=, -= (compound

assignment) operators, 97
overloading compound

assignment operators,
387–389

%, *, +, -, / (arithmetic) opera-
tors, 87

+ (string) operator, 90–91
%, *, +, -, / operator overload-

ing 387–389
++/-- (increment/decrement)

operators, 97–102
+, - (unary plus/minus) opera-

tors, 86–87
+, +=, -, -= delegate operators,

540–542
= assignment operators, 15
?: (conditional) operators,

119–120
?? (null coalescing) operators,

120–121
@ characters, 8, 47
[] (square brackets), 67–75

attributes, 687–692

indexers, 655–657
\ (escape sequence), 44
\n (newline) characters, 46,

50
^ (exclusive OR) operators,

118, 122
{} (curly braces), 2, 10, 110–114
|| (OR) operators, 116, 117, 122

constraints, 473–474
with flag enums, 365

~ (bitwise complement) opera-
tors, 127, 64

Abort() method, 740
aborting threads, 741–743
abstract classes

inheritance, 302–308
compared to interfaces, 337

abstract members, 302,
303–304, 305

access modifiers, 227–229,
397–398

internal, 396–398
private, 227–229, 284–285,

397–398
public, 227–229, 398
protected, 285–286,

397–398
protected internal, 398
on property getters/setters,

239–240
on classes, 397

array accessors, 74
Active Template Library. See

ATL

Add() method, 249, 352, 473,
568–569, 641

add/remove event handlers,
customizing, 558

aliases qualifiers
addition (+) operators, 87, 387,

541
guidelines, 91
strings, 90–91
overloading, 387–389
delegate operators, 540–542

addresses, 862–872
advanced parameters, meth-

ods, 175–184
AggregateException, 547,

757–764, 768, 779, 798–800
aggregation for multiple

inheritance, 287–290
algorithms

hill climbing, 798
mark-and-compact, 407
mark-and-sweep-based, 882
work stealing, 798

aliasing with using, 171, 401–402
allocating

data on call stacks, 868
virtual memory, 851

AllocExecutionBlock()
method, 855

AllowMultipleAttribute
parameter, 700

alternative statements, 107
AND (&&) operator, 117–118,

122–126
with flag enums, 365

Index

NOTE: Page references marked with an n are footnotes

	 944	

n
n 	 Index

anonymous methods, 495,
512–514

internals, 517–518
anonymous types, 56–57, 562–564,

566–568
array initialization, 570–571
constructors, 253–255
projecting to, 583

antecedent tasks, 753
APIs (application programming

interfaces), 27
APM (Asynchronous Program-

ming Model), 908–921
AppDomain, 762
application programming inter-

faces. See APIs
Appointment class, 278
ArgumentException, 424
ArgumentNullException, 424
ArgumentOutOfRangeException,

424
arguments

command-line, passing, 173
methods, 161–162
named, 191

arithmetic (binary) operators,
87–96,

overloading, 387–389
arity, 460–461
ArrayList method, 350, 352
arrays, 67–82

access, 68
applying, 74–79
assigning, 68, 70–74
command-line options, 80
covariance, support, 488–489
declaring, 68, 69–70
errors, 72, 81–82
foreach loops, 571–572
instantiation, 70–74
jagged, 73, 75
length, 75–76
literal values, 71
methods, 77–79
parameters, 181–184
redimensioning, 78
runtime, defining size at, 72
strings, 79–81, 80–81
three-dimensional, 73
two-dimensional, 69, 72, 74–75

as operator, conversions, 310–311
AsParallel() method, 584
assemblies, 4. See also libraries

CLI, 887–890
metadata, viewing, 678. See also

reflection
targets, modifying, 394–395
versioning, 889
well-formed types, referencing,

393–398
Assert() method, 95
assigning

arrays, 68
indexers, 657–658
null to strings, 54
pointers, 866–869
text, 42
variables, 13, 15–16

assignment operators
applying, 548
binary operators, combining

with, 389
compound, 96–103
events, 541

associating
classes, 259
data types, 57
relationships, 217
XML comments, 403–405

associativity, 88
async keyword, 777–781, 937–942
asynchronous delegate invoca-

tion, 921–924
asynchronous programming, 732

high-latency operations, 772–777
lambda expressions, 782–783
methods, customizing, 783–786
models, 908–921
System.Threading.Thread

class, 737–739
Task-based Asynchronous

Pattern (TAP), 770–794
task-based asynchrony, 848–849

asynchronous tasks, 745–764
ATL (Active Template Library),

287
atomic operation, 734, 745, 829
attributes, 677, 688–714

backward compatibility, 712
constructors, initializing,

694–699
customizing, 692–693, 893
FlagsAttribute class, 367,

701–702
IndexerNameAttribute, 657
interfaces, comparing, 337–338

named parameters, 700–714
naming, 692
predefined, 703
searching, 693–694
serialization, 706–714
System.AttributeUsageAt-

tribute class, 699–700
System.ConditionalAttribute

class, 703–705
System.ObsoleteAttribute

class, 705–706
System.SerializableAttrib-

ute class, 438, 713–714
automatically shimmed inter-

faces, 848
automatically implemented

properties, 232–234
Average() method, 609
await keyword, 741, 777–781,

937–942

background worker patterns,
928–932

backing field declarations, 232,
244

backslash (\) escape sequence, 44
Base Class Library. See BCL
base classes
base member, 300–301
finalizers in, 412
inheritance, overriding, 290–302
new modifier, 295–299
refactoring, 279
sealed modifiers, 299–301
virtual modifiers, 290–295

base members, 300–301
base types, 212
BCL (Base Class Library), 25, 34,

743, 885, 892, 894
BeginGetResponse() method,

908
BeginX() method, 908
behaviors

boxing, 349–357
dynamic objects, 716–718
implementation-defined, 101
polymorphism, data types, 310

best practices, thread synchroni-
zation design, 827–829

binary floating-point types, 37,
92–96

binary (arithmetic) operators,
87–96, 387–389

Index 	 945

BinarySearch() method, 643, 644
BinaryTree<T> class, 462–463, 658
binding

dynamic objects, 719–720
late, 893
methods, 714
runtime, XML elements,

719–720
bits, 121–122
bitwise

complement () operators, 127,
644

compound assignment opera-
tors, 126

operators, 121–127, 140
blocks

catch, 199–200, 203, 204, 428–432
code blocks ({}), 110–114
finally, 199–200
try, 197
unsafe, 863, 864

Boolean
expressions, 107, 114–121
number conversions, 64
types, 43

boxing
avoiding, 356–357
value types, 349–357

Break() method, 803
break statements, 139–141
breaking parallel loops, 803–804
brittle base classes, 295
BubbleSort() method, 496–497
buffers, overrun, 76, 883
bugs, runtime performance,

885–886
building custom collections,

635. See also collections,
customizing

bytes, 121–122

C language, 1
pointers, declaring, 865

C++ language, 1, 890
arrays, declaring, 69
buffer overrun, 76
delete operator, 216
deterministic destruction, 418,

882
evaluation order of operands, 90
global methods, 164
global variables/functions, 256
header files, 168

implementation-defined
behavior, 101

implicit overriding, 292
implicitly typed variables, 565
local variable scope, 114
Main method, 10
methods, calling, 295
multiple inheritance, 287
operator errors, 115
operator-only statements, 87
pointers, declaring, 865
preprocessors, 145
pure virtual functions, 305
short data types, 35
string concatenation at compile

time, 48
struct, defining with public

members, 348
switch statements, 138
templates, 466
void, 55

C# without generics, 444–449
caches, avoiding repeated, 590
calculating

compound assignment opera-
tors, 96–103

financial, 36
operators, 86. See also operators
pi, 794–795
values, bytes, 122

callers, 157
variables, matching with pa-

rameter names, 176
calling

APM methods, 915–921
constructors, 245
methods, 11, 156–163, 295

avoiding boxing, 356–357
statements, 163

P/Invoke
APIs, 861–86–
external functions, 858–861

SelectMany() method, 604–606
sites, 175
stacks, 175, 868
Task.ContinueWith method,

752, 789
camelCase, 7, 15
Cancel() method, 766
CancellationToken class, 764,

767
CancellationTokenSource class,

767

cancelling
parallel loops, 800
PLINQ queries, 807
tasks, 764–770

Capacity() method, 639
capitalizing variables, 15
capturing

loop variables, 521–522
variables, 518

Cartesian products, 598, 631
CAS (code access security), 884

permissions, 686
case-sensitivity, 2

multiple strings, 43
cast (()) operators, 61, 391–392
casting

inheritance, chaining, 282–283
multicast delegates, 533
operators, defining, 283
types, 65–66, 281–282

catch blocks, 199–200, 203, 204,
428–432

catch clause, 779
catching exceptions, 196–197,

426–427
categories of types, 57–60, 340
centralizing initialization, 252–253
chaining

constructors, 251–253
inheritance

casting, 282–283
exceptions, 437

multicast delegates, 544
change() method, 942
char data types, 92
characteristics of parameter

arrays, 183
characters

@, 47
escape, 45
newline (\n), 46, 50
operators, applying, 91–92
Unicode, 43–46, 98

checking
conversions, 62–64, 440
for null, 538–539
types, 883

child collections, formatting, 602
Church, Alonzo, 513
CIL (Common Intermediate

Language), 24, 876, 877, 894
boxing, 350
CLI, 890. See also CLI

	 946	

n
n 	 Index

CIL (Common Intermediate
Language) (cont’d)

dynamic objects, 718–719
empty catch blocks, 432
events, 556–557
extension methods, 266
generics, 490–491

best practices, 452–453
HelloWorld output, 29–30
ILDASM, 28–29
indexers, 657
iterators, defining, 661
machine code, compilation to,

879–880
objects

deriving, 309
initializers, 248

outer variables, implementing,
520–521

properties, 243–244
runtime, 881–886
Stack<T> class, 490
System.SerializableAttrib-

ute class, 713–714
circumventing encapsulation, 883
class keyword constraints,

468–469
classes, 209–210

abstract, 302–308, 337
access modifiers, 227–229, 397
associating, 259
base. See also base classes

base member, 300–301
new modifier, 295–299
overriding, 290–302
refactoring, 279
sealed modifiers, 299–301

constructors, 244–255
anonymous types, 253–255
chaining, 251–253
common initializers, 249
declaring, 245–246
defaults, 247
finalizers, 249–250
object initializers, 247–248
overloading, 250–251

declaring, 8, 213–216
definitions, 214
encapsulation, 215, 267–269
extension methods, 265–266
finalizers, 416
generics, 450–452
hierarchies, 212, 324

inheritance, 277. See also
inheritance

initializers, 247–248
instances

fields, 217–219
methods, 219–220

instantiation, 213–216
interfaces

comparing, 336–337
conversions, 326

Java inner classes, 272
locations, 408
members, 216
memory, garbage collection, 408
methods, 157. See also methods
naming, 4, 8
nested, 269–272
object-oriented programming,

210–213
partial, 272–273, 272–276
properties, 229–244

access modifiers on getters/
setters, 239–240

guidelines, 234–235
parameter values, 242–244
read-only/write-only, 237–239
validation, 236–237
virtual fields, 240–242

sealed, inheritance, 290
static members, 255–265
this keyword, 220–227
types, constraints, 467–468

cleanup
collection interfaces after itera-

tion, 575
resources

APM, 914
using statements, 575
well-formed types, 410–419

CLI (Common Language Infra-
structure), 1, 24–26, 894, xxvii

application domains, 887
assemblies, 887–890
BCL, 892
CIL, 890
CLS, 891–892
CTS, 891
manifests, 887–890
metadata, 892–893
modules, 887–890

closed over variables, 518
CLR (Common Language Run-

time), 881, 894

CLS (Common Language Specifi-
cation), 25, 877, 891–892, 895

CLU language, 660
COBOL, 890
code, xxiii

access security, 25, 884
blocks, 110–114
machine, 24, 876, 879–880
managed, 24, 881
native, 24
preprocessor directives, exclud-

ing/including, 146–147
reuse, 394
runtime performance, 885–886
unsafe, 845–846, 863–864, 867,

872–873
whitespace, formatting, 13

collections
child, formatting, 602
classes, 638–655
concurrency, 835–837
customizing, 635
dictionaries, 636, 646–650, 696
empty, 659–660
filtering, 614
generics, 637
indexers, 655–659
initializers, 568–571
interfaces, 249, 561–562, 636–638
iterators, 660–674

compiling, 671–672
creating multiple in single

classes, 673–674
defining, 661
examples of, 666–667
recursive, 669
state, 664–666
syntax, 661–662
yield break statements,

670–671
yield return statements,

674
yielding values, 662–664

linked lists, 654–655
lists, 639–641, 643–644
multiple items, searching, 645
projecting, 614
queues, 654
sorting, 641, 652
stacks, 652–654
total ordering, 643
yield return statements, plac-

ing in loops, 667–669

Index 	 947

collisions, type names, 158
COM (Component Object Model)

DLL registration, 890
STAThreadAttribute class,

842–843
combining assignment operators

with binary operators, 389
command-line

arguments, passing, 173
array options, 80

CommandLine class, 270
CommandLineAliasAttribute

class, 694
CommandLineInfo class, 681, 684,

688, 689
CommandLineSwitchRequired

Attribute class, 692, 694
commands

preprocessor directives, 145
xcopy, 889

commas (,), 165
comments

code, 21–23
well-formed types, 402–407
XML, 678

Common Intermediate Lan-
guage. See CIL

Common Language Infrastruc-
ture. See CLI

Common Language Runtime.
See CLR

Common Language Specifica-
tion. See CLS

Common Type System. See CTS
Compare() method, 495
CompareTo() method, 323, 641

generics, 463
comparison operators, 386–387
ComparisonHandler delegate, 499
comparisons

equality, requirements of, 651
interfaces

attributes, 337–338
classes, 336–337

compilers, 878
installing, 897–899
paths, configuring, 898

compiling
applications, 3–4
checked/unchecked conver-

sions, 63
just-in-time compilation, 24,

466, 879

keywords, 4. See also keywords
machine code, 879–880
static compilation versus

dynamic programming,
720–721

components, 1
composite formatting, 20
compound assignment operators,

96–103
Concat() method, 608
concatenation, strings

addition (+) operators, 90–91
at compile time, 48

concrete classes, 302, 305
concurrency, 732, 835–837
conditional logical operators, 389
conditional (?:) operators, 119–120
consequence statements, 107
consistency, integers, 35
console executable assemblies, 394
ConsoleListControl class,

316–317, 320
consoles

input, 17–19
output, 19–21
synchronization, 920–921

Console.WriteLine() method,
340, 352, 871

const values, 267
constants

expressions, 102–103
fields, declaring, 267
math, 112
public, 268

constraints, 462–476
class keyword, 468–469
class types, 467–468
constructors, 470
defaults, 474–476
inheritance, 471–472
interfaces, 465–467
limitations, 472–473
multiple, 469
specifying, 479–480
struct keyword, 468–469

constructors
attributes, initializing, 694–699
base, specifying base, 301–302
classes, 244–255

anonymous types, 253–255
chaining, 251–253
common initializers, 249
declaring, 245–246

defaults, 247
finalizers, 249–250
object initializers, 247–248
overloading, 250–251

constraints, 470, 474–476
exceptions, 418, 437
generics, defining, 457
static, 261–262

Contains() method, 643
context

switches, 732
synchronization, 788–790

contextual keywords, 6, 672–673
continuation

passing style. See CPS
query expressions, 629–630
tasks, 789

continue statement, 141–143
ContinueWith() method, 753,

775, 919–920
contravariance

enabling, 485–488
generics, 481–489

control flow
asynchronous tasks, 751
await keyword, 792–794
statements, 85, 103–110, 127–139

do/while loops, 127–129
exception-handling, 198
foreach loops, 133–136
if statements, 107–110
for loops, 120–133
switch statements, 135–139
while loops, 127–129

tasks, 780
conversions
as operator, 310–311
Boolean types, numbers, 64
boxing, 349–357
checked, 62–64, 440
CIL, 879
classes, interfaces, 326
covariant, 482. See also

covariance
customizing, 283–283
data types, 60–67
enums, strings, 362–364
exception handling without, 207
explicit, 392
implicit, 64, 392
objects, deriving, 282
operators, 391, 393
strings, 65

	 948	

n
n 	 Index

conversions (cont’d)
types

checking, 883
without casting, 65–66

unchecked, 62–64, 440
cooperative cancellation, 764
coordinates, 388–389, 395
CopyTo() method, 638
cores, 730n2
Count() method, 585–586, 609,

622
Count property, 638
CountdownEvent class, 835
counting items, 585–586
CountLines() method, 157
covariance

enabling, 483–485
generics, 481–489
support, 488–489

CPS (continuation passing style),
911–913, 915

CPUs (central processing units),
730

LINQ queries, running in paral-
lel, 584

CTS (Common Type System), 25,
877, 891, 895

curly braces ({}), 2, 10
code blocks, 110–114

customizing
add/remove handlers, 558
attributes, 692–693, 893
collections, 635. See also

collections
classes, 638–655
dictionaries, 646–650
empty, 659–660
indexers, 655–659
interfaces, 636–638
iterators, 660–674
linked lists, 654–655
List<T> class, 639–641
queues, 654
searching items, 645
searching List<T> class,

643–644
sorting, 641, 652
stacks, 652–654
total ordering, 643

conversions, 283–283
dictionaries, equality, 649–650
dynamic objects, 721–724
events, implementing, 558–559

exceptions, defining, 435–438
LINQ, providers, 609
methods, asynchronous,

783–786
serialization, 708–710
synchronization contexts, 790

cycles, processors, 728, 741

data
managed, 881
persistence to files, 224
retrieval from files, 225
types, 14, 33–34

DataStorage class, 403
de-allocating objects, 882. See also

allocating
deadlocks, 736, 745, 827–828
decimal types, 36–37
declaration spaces, 112–114
decrement (--) operators, 97–102
default

keyword, 68
operator, 348, 458

default constructors, 247
default constructor constraints,

474–476
deferred execution

implementing, 623
query expressions, 619
standard query operators,

586–590
#define preprocessor directive,

147–148
delegate keyword, 542
delegates, 495

asynchronous delegate invoca-
tion, 921–924

data types, 498–500
events, 554–555

operators, 540–542
sequential invocation, 542

expression trees, 527–528
generics, declaring types, 552
instances, returning, 539
instantiation, 500–502
internals, 503–506
invoking

events, 537–538
pass-by references, 547–548
returning methods, 547–548
thread-safe, 539–540

multicast, 533
internals, 542–544

observer patterns, 534–548
overview of, 496–506
P/Invoke, 862
passing, 510
sequence diagrams, 545
synchronous, 747
syntax, 502
System.Func/System.Action,

514–530
types, declaring, 500
unsafe code, executing via,

872–873
delete (C++) operator, 216
delimited comments, 22
denominators, 35
deployment, xcopy, 889
Dequeue() method, 654
dereferencing pointers, 869–871
deriving

inheritance, 278–290
casting between types,

281–282
customizing conversions,

283–283
private access modifiers,

284–285
protected access modifiers,

285–286
System.Object class, 308–309
types, 212

deserialization, 711. See also
serialization

deterministic destruction (C++),
418, 882

deterministic finalization, 412–415
device drivers, 886
dictionaries

collections, 636, 646–650, 696
equality, customizing, 649–650

Dictionary<T> class, 646–650
directives. See also commands

preprocessor, 145–152
code editors, 151–152
errors/warnings, 148–150
#pragma preprocessor direc-

tive, 149
specifying line numbers, 150
symbols, 147–148

using, 168–172
DirectoryCountLines() method,

185, 187, 191
Directory.GetFiles() method,

617

Index 	 949

DirectoryInfoExtension.
Copy() methods, 260

DirectoryInfo.GetFiles()
method, 597

disabling parallelism, 802
disambiguating multiple Main()

methods, 174
Dispose() method, 6n6, 413,

416, 575
tasks, 770

distinct members, 631–632
Distinct() method, 608, 613
distribution, APM parameters,

911
division (/) operators, 87
DLL (Dynamic Link Library), 4

COM registration, 890
do/while loops, control flow

statements, 127–129
documents

saving, 706–708
XML, 402–407, 678

domains, applications, 887
dot (.) operator, 871
DotGNU, 878
dotPeek, 30
double quotes ("), 47
double.TryParse() method, 207
downloading .NET (Microsoft),

897–899
drivers, devices, 886
duck typing, 576
Dump() method, 325
Dynamic Link Library. See DLL
dynamic objects

behaviors/principles, 716–718
binding, 719–720
CIL, 718–719
customizing, 721–724
programming, 714–724
reflection, invoking, 714–716
static compilation versus,

720–721
dynamic programming, 677

EAP (Event-based Asynchronous
Pattern), 924–927

editors, code, 151–152
elements

deleting, 641
indexes, retrieving, 640
XML, runtime binding, 719–720

#elif preprocessor directive,
146–147

else clauses, 107
#else preprocessor directive,

146–147
empty catch blocks, 432. See also

catch blocks
empty collections, 659–660
empty memory, retrieving, 246
Empty<T> method, 659
encapsulation, 211, 215

APIs, 859–860
circumventing, 883
classes, 267–269
publishers, 549–550
subscribers, 548–549
of types, 396

encryption. See also security
serialization, 708
strings, 804

EndGetResponse() method, 908
#endif preprocessor directive,

146–147
#endregion preprocessor direc-

tive, 151–152
EndX() method, 908
Enqueue() method, 654
Enter() method, 353
EntityBase, EntityBase<T>

class, 468, 471
EntityDictionary, EntityDic

tionary<T> class, 469, 476
enumeration, values, 702
enums, 358–368
Enum.Parse() method, 363, 680
flags, 364–368
string conversions, 362–364
type compatibility, 361–362

equality, 93. See also inequality
dictionaries, customizing,

649–650
operators, 115–116
structural, delegates, 516–517

Equals() method, 349, 651
overriding, 376–385

equals (==) operator, 386
#error preprocessor directive,

148–150
errors

arrays, 72, 81–82
buffer overrun, 76
handling

platform interoperability/
unsafe code, 854–856

sequential notification,
544–547

using statements, 575
infinite recursion, 186
methods, 194–208
namespace alias qualifiers, 401
operators, 115
preprocessor directives, 148–150
reporting, 204–207
rounding, 37
trapping, 195–201
Windows Error Reporting, 425

escape sequences, 44
verbatim string literals, 47

Etch A Sketch, 444
evaluation, 89

order of operands, 90
Event-based Asynchronous

Pattern. See EAP
event keyword, 550, 551
events, 533–534

CIL code, 556–557
code conventions, 552–554
declaring, 550–551
delegates, 554–555

invoking, 537–538
operators, 540–542
sequential invocation, 542

generics, 554–555
handlers

adding, 846–848
removing, 846–848

implementing, customizing,
558–559

internals, 556–558
multicast delegates, 534–548
notifications

firing, 553
multiple threads, 826–827

null, checking for, 538–539
publishers

connecting subscribers and,
536–537

defining, 536
resetting, 831–837
WinRT, 846–848

examples of iterators, 666–667
exceptions
AggregateException, 547,

757–764, 768
parallel loop exception

handling, 798–800
ArgumentException, 424

	 950	

n
n 	 Index

exceptions (cont’d)
ArgumentNullException, 424
ArgumentOutOfRangeExcep-

tion, 424
asynchronous high-latency

operations, 775–776
catching, 196–197, 426–427
classes, inheritance, 201
common exception types, 202
constructors, 418, 437
defining custom exceptions,

435–438
handling, 423

general catch blocks, 428–432
guidelines, 432–435
multiple exception types,

424–425
hiding, 432
InnerExceptions property, 760
InvalidAddressException, 435
InvalidCastException, 353,

464
InvalidOperationException,

427, 439
NotImplementedException, 321
NullReferenceException, 424,

538, 551, 659, 826
OperationCanceledException,

807
OutOfMemoryException, 433
reporting, 433
rethrowing, 206, 438–442
sequences, diagrams, 545
serializable, 438
specifiers, 427
SqlException, 437
StackOverflowException, 433
suffixes, 437
System.ComponentModel.

Win32Exception, 854
System.FormatException, 198,

199
System.InvalidCastExcep-

tion, 393
System.Runtime.Serializa-

tion.Serialization
Exception, 710

TaskCancelledException, 767,
768

ThreadAbortException, 741,
742

throwing, 195, 204–205, 321
arrays, 75

checked/unchecked conver-
sions, 63

deserialization, 711
UnauthorizedAccessExcep-

tion, 438
unhandled, 195, 761–764
wrapping, 438–442

excluding code, preprocessor
directives, 146–147

exclusive OR (^) operator, 118,
122

execution
agents, 881
deferred

implementing, 623
query expressions, 619
standard query operators,

586–590
delegates, unsafe code, 872–873
managed, 881
managing, 24–26

Exit() method, 353
explicit conversions, 392
explicit deterministic resource

cleanup, 216
explicit member implementation,

322–323
exponential notation, 40
expressions

Boolean, 107, 114–121
constants, 102–103
generics, 6n6
lambda, 495, 506–512

asynchronous programming,
782–783

expression trees, 524
internals, 517–518
lazy loading, 420
statements, 507–510

queries
continuation, 629–630
filtering, 623–624
flattening sequences, 630–622
grouping, 626–629
invoking methods, 632–634
let clause, 625–626
LINQ, 561, 613
overview of, 614–632
projecting, 616–619
sorting, 624–625

trees, 496, 523–530
Extensible Markup Language.

See XML

extensions
methods, 265–266

IEnumerable<T> interface,
562

inheritance, 287
interfaces, 330–331

Reactive Extensions library, 729
external functions

declaring, 849–850
P/Invoke, calling, 858–861

f-reachable queues, 416
factory interfaces, 475
factory methods, 461
FCL (Framework Class Library),

892, 895
features, adding, 278. See also

inheritance
Fibonacci numbers/series, 128,

351
fields, 51

backing, declaring, 232, 244
constants, declaring, 267
guidelines, 234–235
instances, 217–219
readonly modifiers, declaring,

268, 269
static, 256–258
virtual, properties, 240–242
volatile, declaring as, 823–824

FileInfo object, 625–626
files

data
persistence to, 224
retrieval from, 225

headers, 168
loading, 224
metadata, 892–893
references, assemblies, 889
storing, 224
XML, 23, 402–407. See also XML

FileSettingsProvider, 329
FileStream property, 419
filtering

collections, 614
query expressions, 623–624
System.Linq.Enumerable.

Where(), 568–569
WHERE clause, 623–624

finalizers, 249–250, 347, 410–412
finally blocks, 199–200
FindAll() method, 645
firing events, 548, 553

Index 	 951

first in, first out (FIFO), collec-
tions, 654

fixed statements, 867, 868
flags

enums, 364–368
values, 702

FlagsAttribute class, 367,
701–702

flattening sequences, 630–622
floating-point types, 35–36, 92–96,

351
flow control, 730. See also control

flow statements
for loops, 120–133
foreach loops, 133–136

arrays, 571–572
IEnumerable<T> interface,

572–577
ForEach() method, 801
foreground threads, 739
formal declaration, methods,

165–166
format items, 20
Format() method, 48
format strings, 20
formatting

comments, 21–23
if/else statement sequences,

109
indentation, code blocks, 111
numbers as hexadecimal, 41
round-trip, 42–43
string length, 51
variables, 15
whitespace, 12–13

forms, Windows Forms, 932–934
FORTRAN, 890
fractions, 35
fragile base classes, 295
frames, removing activation, 175
Framework (Microsoft .NET), 878
Framework Class Library. See FCL
frameworks, 877
FROM clause, 615
from clause, flattening sequences,

630–632
FromCurrentSynchronization-

Context() method, 788
full outer joins, 594
functionality, CLI, 888n5
functions

external
declaring, 849–850

P/Invoke, 858–861
global, 256
pointers, 862

fundamental numeric types, 34–43

garbage collection, 25, 215
.NET (Microsoft), 882–883
resource cleanup, 415–418
runtime, 881–882
value types, 347
well-formed types, 407–410

gating parallelism, 802
GC.ReRegisterFinalize()

method, 419
general catch blocks, 203, 428–432
general-purpose delegates, Sys-

tem.Func/System.Action,
514–530

generating
anonymous types, 568
XML documentation files,

405–407
generics, 443

arity, 460–461
benefits of, 452–453
C# without, 444–449
CIL, 490–491
classes, 450–452
collections, interface hierar-

chies, 637
constraints, 462–476
constructors, defining, 457
contravariance, 481–489
covariance, 481–489
default values, specifying,

458–459
delegates, declaring types, 552
events, 554–555
expressions, 6n6
finalizers, defining, 457
instantiation

reference types, 492–493
value types, 491–492

interfaces, 454–455, 456–457
internals, 489–493
Java, 493
lazy loading, 420
methods, 476–481

casting inside, 480–481
type inference, 478–479

multiple type parameters,
459–460

nested types, 461–462
structs, 454–455

types, 449–462, 686–688
GetCustomAttributes()

method, 694
GetDynamicMemberNames()

method, 724
GetEnumerator() method, 576,

577, 610, 661, 662, 664, 787n8
GetFiles() method, 157
GetFirstName() method, 232
GetFullName() method, 166
GetGenericArguments()

method, 687
GetHashCode() method, 349,

373–376, 651
GetInvocationList() method,

547, 548
GetLength() method, 79
GetName() method, 219
GetResponse() method, 772
GetResponseAsync() method,

779
GetReverseEnumerator()

method, 673
GetSetting() method, 327
GetSummary() method, 305
GetSwitches() method, 696
getters, 51

access modifiers, 239–240
accessibility, modifying, 237–239
declaring, 230

GetType() method, 679–680
GetUserInput() method, 166
GetValue() method, 685
GhostDoc, 406n3
global functions, 256
global methods, 164
global variables, 256
goto statements, 143–145
graphs, expression trees, 525–527
GreaterThan method, 507
groupby clause, 627
GroupBy() method, grouping

results, 600–601
grouping

encapsulation, 215
methods, 502
namespaces, 158
query expressions, 626–629
results, 600–601
statements into methods,

156–157
types, defining namespaces,

398–402

	 952	

n
n 	 Index

GroupJoin() method, 613
guest computers, 872
guidelines

addition (+) operators, 91
anonymous methods, 513
attributes

assemblies, 692
AttributeUsageAttribute

class, 700
constructors, 699
custom, 693

catch blocks, 204
classes

access modifiers, 240
naming, 8, 214

collections, 649
comments, 23
constants, fields, 267
constructors

defaults, 248
naming, 251

conversion operators, 393
Count() method, 586
covariance, 489
curly braces ({}), 112
custom collections, 643
delegates, types, 515
empty collections, 660
Equals() method, 385
events, declaring, 554
exceptions

customizing, 437
handling, 207, 432–435
multiple exception types,

425
reporting, 435
throwing, 106, 201
wrapping, 439

extension methods, 266
fields, 234–235
finalizers, 417
floating-point types, 93, 95
generics

implementing multiple
interfaces, 457

methods, 481
type parameters, 462

goto statements, 145
identifiers, 7
if/else statements, 120
increment/decrement opera-

tors, 101
integers, 35

interfaces
adding members, 335
attributes, 338
comparing to classes, 337
explicit/implicit implemen-

tations, 324–325
implementations, 326
multiple inheritance, 333
naming, 315

lambda parameters, 509
literal suffixes, 40
local variables, 15
locking, avoiding, 823
long-running tasks, 770
for loops, 132, 133
managed wrappers/unman-

aged methods, 856
methods, naming, 157
multiple type parameters, 460
multithreading, 733, 736

aborting threads, 743
thread pools, 745
Thread.Sleep() method,

741
unhandled exceptions, 764

namespaces, 161, 401
nested classes, 272
.NET (Microsoft), 6
null, invoking delegates, 539
OrderBy()/ThenBy() methods,

592
P/Invoke, 862
parallel loops, 797
parameters, 166, 191, 192
parentheses (()), 90
properties, 234–235

get-only, 239
validating, 237

query expressions, 634
static initialization, 262
switch statements, 137
synchronization, avoiding, 823
System.EventHandler<T> class,

555
thread synchronization, 811–841

best practices, 827–829
Monitor, 817–819

ToString() method, 373
types, naming parameters,

453–454
value types

avoiding mutable types, 355
creating enums, 361

defaults, 347
defining structs, 369
direct enum/string conver-

sions, 3656
enum underlying types, 360
flag enums, 366
immutable, 345
memory, 341
overloading equality opera-

tors, 349
XML comments, 407

Handle() method, 760
handlers, events

adding, 846–848
removing, 846–848

handling
aliasing, 697–699
errors

platform interoperability/
unsafe code, 854–856

sequential notification,
544–547

using statements, 575
exceptions, 423

asynchronous high-latency
operations, 775–776

avoiding, 206–207
background worker pat-

terns, 931–932
catching, 426–427
defining custom exceptions,

435–438
general catch blocks, 428–432
guidelines, 432–435
multiple exception types,

424–425
rethrowing, 438–442
wrapping, 438–442

exceptions, parallel loops,
798–800

hard coding values, 38–40
hash codes, 651
headers, files, 168
heaps

memory, 349
reference types, 59, 342

Heater objects, 534–535
HelloWorld program, 1, 2–4

output, 29–30
static keyword, 255

Help property, 689
hexadecimal notation, 40–41

Index 	 953

hiding exceptions, 432
hierarchies

classes, 212, 324
interfaces, generic collections,

637
organizing, 161

high-latency operations, invok-
ing, 771–772, 772–777

hill climbing, 798
hot tasks, 748. See also tasks
Hyper-Threading, 730

I/O-bound latency, 728, 732
IAngle.MoveTo interface, 354
IAsyncAction<T> interface, 848,

849
ICollection<T> interface, 638
IComparable interface, 323, 324
IComparable<T> interface, con-

straints, 465
IComparer<T> class, 495
identifiers, 6–7

keywords as, 8
namespaces, nesting, 400

IDictionary<T> interface,
636–638

IDisposable interface
finalization, 415–418
resource cleanup with, 413
tasks, 770

IDispose() method, 915
IDistributedSettingsProvider

interface, 335
IEnumable<T> interface, 571–577
IEnumerable interface, 331
IEnumerable<T> interface, 616n1

extension methods, 562
query expressions, 616
standard query operators,

577–610
if/else statements, guidelines,

120
#if preprocessor directive,

146–147
if statements, 80, 107–110

Boolean expressions, 114–121
IFileCompression interface,

314, 315
IFormattable interface, 357
ILDASM, CIL, 28–29
IListable interface, 331
IList<T> interface, 636–638
ILMerge utility, 889

ILSpy, 30
immutable strings, 17, 51, 52

modifying, 869–870
implementation-defined behav-

ior, 101
implementing

CIL, outer variables, 520–521
CLI, 877–878
conversion operators, 392
deferred execution, 623
dynamic objects, 714
Equals() method, 382
events, customizing, 558–559
GetHashCode() method,

375–376
interfaces, 313–315, 316–319,

320–326, 456–457
members

explicit, 322–323
implicit, 323–326

multiple inheritance, interfaces,
331–334

new operator, 246
object-oriented programming,

210–213
one-to-many relationships,

601–604
outer joins, 603–604
properties, automating, 232–234
System.Runtime.Serializa-

tion.ISerializable
class, 709–710

implicit base type casting, 281
implicit conversions, 64, 392
implicit deterministic resource

cleanup, 216
implicit local variables, 562–568
implicit members, implementing,

323–326
implicit nondeterministic re-

source cleanup, 216
implicit overriding, Java, 292
implicitly typed local variables,

55–57
in type parameter, 485–488
including code, preprocessor

directives, 146–147
Increment() method, 825
increment (++) operators, 97–102
indenting

code blocks, 111
whitespace, 12

IndexerNameAttribute, 657

indexers
assigning, 657–658
collections, 655–659

indexes, retrieving elements, 640
IndexOf() method, 643
inequality, floating-point types,

93–96
inferences, types, 478–479
infinity

negative, 96
recursion errors, 186

infrastructure, CLI, 875–877. See
also CLI

inheritance, 211–212, 277, 310–311
abstract classes, 302–308
aggregation, 289
base classes

base member, 300–301
new modifier, 295–299
overriding, 290–302
sealed modifiers, 299–301

chaining
casting, 282–283
exceptions, 437

classes, exceptions, 201
constraints, 471–472
definitions, 277–278
derivation, 278–290

casting between types,
281–282

customizing conversions,
283–283

private access modifiers,
284–285

protected access modifiers,
285–286

extension methods, 287
interfaces, 326–329

multiple, 329–330, 331–334
value types, 348–349

is operator, verifying underly-
ing type, 309–310

multiple, 287
polymorphism, 306
sealed classes, 290
single, 287–289
System.object, deriving

classes, 308–309
virtual modifiers, 290–295

initialization
anonymous types, arrays,

570–571
centralizing, 252–253

	 954	

n
n 	 Index

initialization (cont’d)
clauses, 132
collection initializers, 568–571
lazy, 419–421
NextId, 261
static, 262
static fields, 257
structs, 346–347

Initialize() methods, 236
initializers

common, 249
constructors, 251
objects, 247–248

initializing attributes, construc-
tors, 694–699

inner classes, Java, 272
inner joins, 593
Join() method, 597–600

InnerExceptions property, 437,
439, 760

input, consoles, 17–19
inserting newline (\n) characters,

46
installing .NET (Microsoft),

897–899
instances

applications, formatting single,
829–830

delegates, returning, 539
fields, 217–219. See also static

fields
methods, 48, 78–79, 219–220
polymorphism, 321

instantiation, 10
arrays, 70–74
classes, 213–216
delegates, 500–502
generics

reference types, 492–493
value types, 491–492

integers, 34–35
42 as, 195
adding, 351
values, overflowing, 62, 440

integral types, 91
IntelliSense, enabling, 615
interfaces, 313–315

APIs, 27, 438, 439
attributes, comparing, 337–338
automatically shimmed, 848
classes

comparing, 336–337
conversions, 326

collection, 561–562, 636–638
anonymous types, 562–564
implicit local variables,

564–565, 566–568
constraints, 465–467
diagrams, 333–334
extension methods, 330–331
factory, 475
generics, 454–455, 456–457
hierarchies, generic collections,

637
IAngle.MoveTo, 354
IAsyncAction<T>, 848, 849
ICollection<T>, 638
IComparable, 323, 324
IComparable<T>, 465
IDictionary<T>, 636–638
IDisposable

finalization, 415–418
resource cleanup with, 413
tasks, 770

IEnumable<T>, 571–577
IEnumerable, 331
IEnumerable<T>

extension methods, 562
query expressions, 616
standard query operators,

577–610
IFileCompression, 314, 315
IFormattable, 357
IList<T>, 636–638
implementing, 316–319, 320–326
inheritance, 326–329

multiple, 329–330, 331–334
value types, 348–349

IObsolete, 338
IOrderedEnumerable<T>, 592
IQueryable<T>, 609–610
IReadOnlyPair<T>, 484
ISerializable, 709
ITrace, 325
multithreading, prior to TPL

and C# 5.0, 907–936
naming, 315
PairInitializer<T>, 487
parameters, 192
polymorphism, 315–320
versioning, 334–336
Windows UIs, 790–792, 932–936

internal access modifier, 397
internals

anonymous methods, 517–518
delegates, 503–506

events, 556–558
generics, 489–493
lambda expressions, 517–518
multicast delegates, 542–544

interoperability, 25
CIL, 890. See also CIL
languages, 25
platforms, 845–846, 862–872

Intersect() method, 608
into keyword, 629–630
InvalidAddressException, 435
InvalidCastException, 353, 464
InvalidOperationException,

427, 439
Invoke() method, 685, 932
InvokeRequired property, 932
invoking

asynchronous delegate invoca-
tion, 921–924

asynchronous tasks, 747–748
delegates

events, 537–538
exception sequence dia-

grams, 545
pass-by references, 547–548
returning methods, 547–548
sequences, 542
thread-safe, 539–540

finalizers, 412
high-latency operations, 771–777
members, reflection, 681–686
methods, query expressions,

632–634
reflection, dynamic objects,

714–716
type members, 678. See also

reflection
IObsolete interface, 338
IOrderedEnumerable<T> inter-

face, 592
IProducerConsumer-

Collection<T> class, 835
IQueryable<T> interface, 609–610
IReadableSettingsProvider

interface, 327
IReadOnlyPair<T> interface, 484
is operator, verifying underlying

types, 309–310
IsAlive property, 740
IsBackground property, 739
IsCancellationRequested prop-

erty, 766, 767, 801
IsCompleted property, 750, 804

Index 	 955

ISerializable interface, 709
ISettingsProvider interface,

327
IsKeyword() method, 620
items

collections, searching, 645
counting, 585–586
format, 20
grouping, 600–601

Items property, 456
iterations

collection interfaces, 573
continue statements, 141
long-running loops, 802
loops, 129, 794–804

iterators
collections, 660–674

compiling, 671–672
contextual keywords,

672–673
creating multiple in single

classes, 673–674
defining, 661
examples of, 666–667
state, 664–666
struct versus class, 670
syntax, 661–662
yield break statements,

670–671
yield return statements,

674
yielding values, 662–664

recursive, 669
ITrace interface, 325
IWriteableSettingsProvider

interface, 329

jagged arrays, 73, 75
Java, 1

arrays, declaring, 69
classes, naming, 4
exceptions, specifiers, 427
generics, 493
implicit overriding, 292
inner classes, 272
Main method, 10
virtual methods, 291

JavaScript, implicitly typed
variables, 565

jitting, 879
Join() method, 739, 748

inner joins, 597–600
joining

collections, 593
data types, 57

jump statements, 139–145
break statements, 139–141
continue statement, 141–143
goto statement, 143–145

just-in-time compilation, 24, 466,
879

JustDecompile, 30

keys, 637
keywords, 2, 4–6
into, 629–630
async, 777–781, 937–942
await, 741, 777–781, 937–942
class, constraints, 468
contextual, iterators, 672–673
default, 68
delegate, 542
event, 550, 551
as identifiers, 8
integers, 34
lock

applying, 819–821
selecting objects, 821–822

new, 71, 205
null, 53–54
operator, 392
override, 292, 323
private, 229
properties, defining, 232
static, 264
string, avoiding locking,

822–823
struct, 343, 468
this, 220–227

avoiding locking, 822–823
chaining constructors,

251–253
try, 197
typeof, 363, 822–823
unchecked, 442
void, 53, 54–55
where, 465

lambda expressions, 495, 506–512
asynchronous programming,

782–783
expression trees, 524
internals, 517–518
lazy loading, 420
statements, 507–510
tables, 511–512

languages
CIL, 876
CLI. See CLI
CLR, 881
CLS, 25, 891–892
CLU, 660
COBOL, 890
FORTRAN, 890
overview of, 1–2
Pascal, 7
source, 890
XML, 23–24. See also XML

last in, first out (LIFO), 444, 652
LastIndexOf() method, 643
late binding, 893
latency, 728

invoking high-latency opera-
tions, 771–777

lazy initialization, 419–421
left outer joins, 593
length

arrays, 75–76
strings, 51

let clause, 625–626
libraries

assemblies, 394
ATL, 287
BCL, 25, 26, 34, 885, 892, 894
classes, 394
code, creating, 4
DLL, 4
FCL, 892, 895
Reactive Extensions library, 729
Task Parallel Library (TPL), 729,

790. See also TPL
WinRT, 846–849

limitations, constraints, 472–473
line-based statements (Visual

Basic), 11
#line preprocessor directive, 150
lines, specifying numbers, 150
linked lists, collections, 654–655
LinkedListNode<T> class, 655
LinkedList<T> class, 654–655
links, DLL, 4
LINQ

expression trees, 527
providers, customizing, 609
queries. See also queries

expressions, 561, 613
running in parallel, 584–585,

804–808
support, 27

	 956	

n
n 	 Index

Linux, installing platforms, 898
Liskov, Barbara, 660
listings

anonymous methods, passing,
512

APM patterns
accessing user interfaces,

933–934
asynchronous delegate

invocation, 922–923
background worker pat-

terns, 928–929
ContinueWith() method,

919
EAP, 926–927
invoking user interface

objects, 935–936
invoking with callback/

state, 911–912
passing state, 913–914
System.Net.WebRequest

class, 908–909
using TPL to call, 915–918

arrays
accessing, 74
assigning, 70
command-line options, 80
declaring, 69
defining size at runtime, 72
errors, 72
initializing two-dimensional

arrays of integers, 72
jagged, 73, 75
length, 75, 76
literal values, 71
methods, 77
new keyword, 71
retrieving dimension size, 79
reversing strings, 80–81
swapping data, 74
three-dimensional, 73
throwing exceptions, 75
two-dimensional arrays, 69,

72, 74–75
attributes

applying named parameters,
700

assembles within Assembly-
Info.cs, 690–691

AttributeUsageAttribute,
699–700

backward compatibility, 712
constructors, 695

decorating properties with,
689, 690

defining custom, 693
FlagsAttribute class,

701–702
implementing System.

Runtime.Serializa-
tion.ISerializable
class, 709–710

restricting constructs, 699
retrieving custom, 693–694
retrieving specific attributes,

695–696
saving documents, 706–708
specifying return attributes,

691
System.AttributeUsage-

Attribute class,
699–700

System.ConditionalAt-
tribute class, 703–705

System.ObsoleteAttribute
class, 705–706

System.SerializableAt-
tribute class, 713

updating CommandLineHan-
dler.TryParse(),
697–699

break statements, 139–140
case-sensitivity of multiple

strings, 43
checked blocks, 62–63
classes

access modifiers, 229
accessing fields, 218, 219–220
accessing static fields,

257–258
assigning static fields at

declaration, 257
automatically implemented

properties, 233–234
avoiding ambiguity, 221–222
calling constructors, 245–246,

251–252
calling object initializers,

248, 249
CIL code from properties,

243–244
data persistence to files, 224
data retrieval from files, 225
declaring, 8
declaring constant fields, 267
declaring fields, 217

declaring getter/setter
methods, 230

declaring static classes,
263–264

declaring static constructors,
261

declaring static fields, 256
declaring static properties,

262
declaring variables of class

types, 214
defining, 213
defining constructors, 245
defining nested classes,

270–271, 273, 274–275
defining partial classes,

272–273
defining properties, 231,

240–242
defining read-only proper-

ties, 238
defining static methods,

259–260
explicit construct properties,

244
implicit local variables, 254
initialization methods, 253
instantiation, 215
overloading constructors,

250
passing this keyword in

method calls, 223
placing access modifiers on

setters, 239–240
readonly modifiers, 268, 269
setting initial values of

fields, 217
this keyword, 220–221, 222
validating properties, 236

code blocks
if statements, 110
indentation, 111

collection interfaces
filtering with System.Linq.

Enumerable.Where(),
568–569

foreach with arrays, 572
implicit local variables with

anonymous types,
562–563

initializing anonymous type
arrays, 570–571

iterating, 573

Index 	 957

resource cleanup with us-
ing statements, 575

results of foreach, 575–576
separate enumerators dur-

ing iteration, 574–575
type safety, 566–567

comments, 21
continue statement, 141–143
control flow statements

do/while loops, 129
foreach loops, 134
if/else formatted sequen-

tially, 109
if/else statements, 107
if statements, 135
multiple expressions (for

loops), 132
nested if statements, 108
while loops, 127

custom collections
adding items to Diction-

ary<T> class, 647
applying Pair<T>.Get-

Enumeator() method,
667

applying yield statements,
666

bitwise complement ()
operator, 644

compiling iterators, 671–672
defining index operators,

658–659
defining indexers, 655–657
FindAll() method, 645
implementing

IComparer<T> inter-
face, 642

implementing IEquality
Comparer<T> inter-
face, 650

inserting items to
Dictionary<T> class
using index operators,
647

iterating over
Dictionary<T> class
with foreach, 648–649

iterator interface patterns,
661–662

List<T> class, 640
modifying indexer default

names, 658

yield break statements,
670–671

yield return statements,
673

yielding C# keywords
sequentially, 663–664

delegates
applying method names as

arguments, 501–502
applying variance, 516–517
BubbleSort() method,

496–497
BubbleSort() method,

ascending/descend-
ing, 497–498

BubbleSort() method,
parameters, 498–499

capturing loop variables,
521–522, 523

CIL code for outer variables,
520

CIL for lambda expressions,
517–518

declaring Comparison-
Handler, 501

declaring Func/Action,
514–515

declaring nested types, 500
declaring types, 500
expression trees, 525
outer variables, 518–519
passing as parameters, 502
viewing expression trees,

528–530
dynamic objects

customizing, 721–723
overriding members, 723–724
runtime binding, 719–720

equality operators, overriding,
376–380

Equals() method, overriding,
383–384

escape sequences, 44
events

applying assignment opera-
tors, 548

CIL code, 556–557
connecting publishers/

subscribers, 536–537
custom add/remove

handlers, 558
custom delegate types,

554–555

declaring generic delegate
types, 552

declaring OnTemperature
Change event, 556

defining Heater/Cooler
objects, 534–535

defining publishers, 536
delegate operators, 540, 541
event keyword, 550–551
firing, 549
firing notifications, 553
handling exceptions from

subscribers, 546–547
invoking delegates, 537–538
OnTemperatureChanged()

method, 544
exceptions

catching, 426, 428–431
checked blocks, 440–441
customizing, 436
defining serializable, 438
overflowing integer values,

440
throwing, 424
unchecked blocks, 441–442

explicit casts, 61
generics

arity, 460
BinaryTree<T> class,

462–463, 480
CIL code for Stack<T> class,

490
CIL with Exclamation Point

Notation, 491
combining constraints,

473–474
combining covariance and

contravariance, 487
ComparisonHandler,

504–505
compile errors, 458
compiler validation of

variance, 488
constraint expressions, 473
contravariance, 486
converting generics, 482
covariance, 482, 483–484
covariance using out type

parameter modifier,
484

Create() method, 461
declaring class type con-

straints, 467

	 958	

n
n 	 Index

listings, generics (cont’d)
declaring constructors, 457
declaring generic classes,

Stack<T>, 452
declaring interface con-

straints, 465
declaring interfaces, 454
declaring nullable types, 449
declaring variables of type

scatter<T>, 491
declaring versions of value

types, 448
default constructor con-

straints, 470, 475
default operator, 458
defining methods, 477
defining specialized stack

classes, 447
duplicating interface imple-

mentations, 456
EntityDictionary<T> class,

476
factory interfaces, 475
implementing interfaces, 455
implementing Undo with

Stack class, 450–451
inferring type arguments,

478
inheritance constraints, 474
inheritance constraints,

specified explicitly, 471
interface support, 463
multiple constraints, 469
multiple type parameters,

459, 460
nested types, 462
repeating inherited con-

straints, 472
specifying constraints,

479–480
specifying type parameters,

478
struct/class keywords,

468
supporting Undo, 444–445
System.Collections.Stack

method signatures, 444
System.Delegate class, 504
type parameter support, 464

GetHashCode() method, over-
riding, 375

goto statements, 143–144
HelloWorld, 2

breaking apart, 9
output, 29–30

hexadecimal notation, 41
implicit conversions, 64
implicit local variables, 56–57
inheritance

accessing base members, 300
accessing private members,

284
accessing protected mem-

bers, 285–286
applying methods, 280
applying polymorphism,

306–307
defining abstract classes, 303
defining abstract members,

303–304
defining cast operators, 283
deriving classes, 279, 280
implicit base type casting,

281
is operator determining

underlying type, 309
new modifier, 297–298
as operator conversions,

310–311
overriding properties, 291
preventing derivation, 290
Run() method, 294
sealing members, 299
single using aggregation, 288
specifying base constructors,

301–302
System.Object derivation,

309
virtual methods, 292, 293

integers, overflowing values, 62
interfaces

applying base interfaces in
class declarations, 328

calling explicit member
implementations, 322

declaring explicit members,
327

defining, 315
deriving, 326–327, 335
explicit interface implemen-

tation, 322–323
implementing, 316–319,

320–321
multiple inheritance, 329
single inheritance using

aggregation, 331–332

lambda expressions
omitting parameter types,

508
parameterless statements,

509
passing delegates, 510
single input parameters, 509
statements, 507

literal values, 38, 39
for loops, 130
Main() method, 10
methods

aliasing, 171–172
calling, 158
catching exceptions, 196–197
converting a string to an

int, 194
counting lines, 184–185,

187–189
declaring, 163–164
finally blocks without catch

blocks, 199–200
general catch blocks, 203
grouping statements,

156–157
optional parameters, 189–191
passing command-line

arguments, 173
passing return values, 162
passing variable parameter

lists, 181–182
passing variables by refer-

ence, 177–178
passing variables by values,

175–176
passing variables out only,

179–180
rethrowing exceptions, 206
return statements, 167
specifying parameters by

names, 191–192
throwing exceptions,

204–205
using directive, 170–171

multiple statements on one
line, 12

multithreading
applying Task.Factory.

StartNew() method,
769

asynchronous Web requests,
773–774, 777–778

await keyword, 787–788

Index 	 959

calling Task.ContinueWith
method, 752, 789

cancelling parallel loops,
800–801

cancelling PLINQ queries,
807–808

cancelling tasks, 765–766
customizing asynchronous

methods, 784–785,
785–786

handling tasks, unhandled
exceptions, 758–759

invoking asynchronous
tasks, 747–748

iterating over await opera-
tions, 792–793

lambda expressions,
782–783

LINQ Select() method,
804

long-running tasks, 769–770
for loops, 794–795, 796
observing unhandled excep-

tions, 760–761
parallel execution of

foreach loops, 797
PLINQ Select() method,

805
PLINQ with query expres-

sions, 806
polling Task<T> classes, 749
registering for notifications,

756
registering for unhandled

exceptions, 762–763
starting methods, 737–738
synchronous high-latency

invocation with WPF,
791–792

synchronous Web requests,
772–773

ThreadPool, 743–744
unhandled exception

handling, parallel
iterations, 799

\n character, 46
no indentation formatting, 12
nullable modifiers, 60
operators, 86

AND (&&), 118
binary, 87–88
bitwise, 124
char data types, 92

character differences, 92
common increment calcula-

tions, 97
conditional, 119
constants, 103
decrement (- -), 98
dividing a float by zero, 95
equality, 116
examples of assignment, 97
increment (++), 97
inequality with floating-

point types, 94–95
logical assignment, 126
negative values, 87
non-numeric types, 91
NOT, 118
null coalescing, 120
overflowing bounds of

float, 96
post-increment, 99
pre-increment, 99
prefix/postfix, 100
relational, 116
Unicode values in descend-

ing order, 98
Parse() method, 65
placeholders, 20
platform interoperability/

unsafe code
accessing referent type

members, 871–872
allocating data on call

stacks, 868
applying ref/out rather

than pointers, 852
declaring external methods,

849–850
declaring types, 853
designating unsafe code,

863, 872–873
encapsulating APIs, 859–860
fixed statements, 867, 868
invalid referent types, 866
managed resources, 857–858
modifying immutable

strings, 869–870
SafeHandle, 856–857
Win32 error handling,

854–855
WinRT patterns, 847–848
wrapping APIs, 861

#pragma preprocessor directive,
149

preprocessor directives, 147
#define, 147
excluding/including code,

147
#region/#endregion, 151
#warning, 148

query expressions, 614–615,
632–633

anonymous types, 618
continuation, 630
deferred execution, 619–622
distinct members, 631–632
filtering, 623–624
grouping, 626–627
multiple selection, 630
ordering results, 616
projection using, 617
selecting anonymous types,

628–629
sorting, 624
sorting by file size, 625
standard query operator

syntax, 633
reflection

declaring Stack<T> class,
686

dynamic programming
using, 715

dynamically invoking
members, 681–684

generics, 687, 688
using Type.GetProper-

ties() method,
679–680

using typeof() method, 680
round-trip formatting, 42
single statements, splitting, 12
standard query operators

calling SelectMany()
method, 604–605

classes, 578–580
counting items, 585
creating child collections,

602
executing LINQ queries in

parallel, 584
filtering with System.Linq.

Enumerable.Where()
method, 581, 586–587

grouping items, 600–601
inner joins, 597–598, 599
ordering, 590–591
outer joins, 603–604

	 960	

n
n 	 Index

listings, standard query operators 	
	 (cont’d)

projection to anonymous
types, 583

projection with System.
Linq.Enumerable.
Select() method, 582

sample employee/depart-
ment data, 594–596

System.Linq.Enumerable()
method calls, 606–607

strings
applying, 52–53
assigning null to, 54
binary displays, 125
immutable, 52
implicitly typed local vari-

ables, 55–56
length, 51

switch statements, 137–138
System.Console.ReadLine()

method, 17–18
System.Console.WriteLine()

method, 19–20
System.Convert class, 65
System.Threading.Timer class,

941–942
System.Timers.Timer class,

939–940
thread synchronization, 811–841

best practices, 827–829
creating single instance

applications, 829–830
firing event notifications,

826
lock keyword, 820
ManualResetEventSlim,

832–833
Monitor class, 817–818
System.Threading.Inter-

locked class, 824–825
Task.Delay() method, 842
thread-safe event notifica-

tion, 826
ThreadLocal<T> class, 838
ThreadStaticAttribute

class, 839–840
unsynchronized local vari-

ables, 815–816
unsynchronized state, 813

Tic-Tac-Toe source code,
901–905

timers, 939–942

ToString() method, 65, 372–373
unchecked blocks, 63
Unicode characters (smiley

faces), 45–46
value types

accessing properties, 346
avoiding copying/unbox-

ing, 357
boxing idiosyncrasies, 353
boxing/unboxing instruc-

tions, 351
casting between arrays/

enums, 362
comparing integer switches/

enum switches, 358
converting strings to enums,

363
declaring enums, 359
declaring structs, 344–345
default operator, 348
defining enum values, 366
defining enums, 359
enums as flags, 364
FlagsAttribute, 367
initializing structs, 346
OR/AND operators with

flag enums, 365
referencing Equals()

method, 381
unboxing to underlying

types, 353
variables

assigning, 16
declaring, 13
modifying values, 15
one statement, declaring

with, 15
scopes, 113

verbatim string literals, 47
well-formed types

adding operators, 387–388
applying alias directives, 402
calling binary operators, 388
comparison operators, 386
conversion operators, 392
defining finalizers, 411
defining namespaces, 399
invoking using statements,

415
lazy loading properties, 419,

420
making types available, 396
nesting namespaces, 400

overloading unary opera-
tors, 390, 391

resource cleanup, 413
weak references, 409
XML comments, 403–406

whitespace, removing, 12
lists

collections, 640
formal parameters, 165
linked, collections, 654–655
type parameters, 165

List<T> class, 482, 639–641
searching, 643–644

literals
strings, 46–48
values, 37–38

arrays, 71
readonly fields, 269

loading
files, 224
lazy. See lazy initialization

local negation (!) operator, 118–119
local storage, threads, 837–841
local variables, 14

anonymous types, 562–563
declaring, 165–166
implicit, 564–565, 566–568
implicitly typed, 55–57
multiple threads, 815–816
scope, 114

locations
keywords, 4
objects, 408
reference types, 341–345

lock keyword
applying, 819–821
objects, selecting, 821–822

lock statements, 736
value types, 353–255

locking, 828–829
avoiding, 822–823
consoles, synchronization,

920–921
multithreading, 736

lockTaken parameter, 819
logical Boolean operators,

116–121, 122–126
Logon() method, 228
long-running

loops, 802
tasks, 769–770

loops
for, 120–133

Index 	 961

decrement (--) operators, 98
do/while, control flow state-

ments, 127–129
executing, iterations in parallel,

794–804
foreach, 133–136

arrays, 571–572
IEnumerable<T> interface,

572–577
iterations, 129
parallel

breaking, 803–804
executing iterations in,

794–804
options, 802–803

variables, capturing, 521–522
while, control flow statements,

127–129
yield return statements,

placing in, 667–669
LowestBreakIteration property,

804

machine code, 24, 876
compilation to CIL, 879–880

macros, preprocessors, 145
Main() method, 8, 9, 156, 821

declaring, 10
methods, refactoring, 165
multiple, disambiguating, 174
returns and parameters,

172–175
_makeref keyword, 8
MakeValue() method, 470
managed code, 24, 881

runtime performance, 885–886
managed data, 881
managed execution, 881
managing

execution, 24–26
hierarchies, 161
memory, 412. See also garbage

collection
object-oriented programming,

210–213
threading, 739–740

manifests, CLI, 887–890
many-to-many relationships, 594
mark-and-compact algorithms,

407
mark-and-sweep-based algo-

rithms, 882
masks, 125

matching parameter names, 176
math constants, 112
Max() method, 609
Max<T> method, 479
MemberInfo class, 685
members

abstract, 302, 303–304, 305
base, 300–301
classes, 216
distinct, 631–632
dynamic objects, overriding,

723–724
explicit, implementing, 322–323
implicit, implementing, 323–326
interfaces, adding, 335
object, overriding, 371–385
overloading, 292
referent types, accessing,

871–872
reflection, invoking, 681–686
sealing, 299
static, classes, 255–265
of System.Object, 308
types

access modifiers, 397–398
invoking, 678. See also

reflection
variables, 217

memory
garbage collection, 408
heaps, 349
managing, 412. See also garbage

collection
models, 735
retrieving, 246
virtual, allocating, 851

messages
exceptions, 426. See also

exceptions
warnings, turning off, 149–150

metadata, 23, 25, 877
CLI, 892–893
reflection, 678
System.Type class, accessing

using, 679–680
MethodImplAttribute, avoiding

with synchronization, 823
methods, 155, xxiii
Abort(), 740
Add(), 249, 352, 473, 568–569,

641
adding, 476, 544
AllocExecutionBlock(), 855

anonymous, 495, 512–514,
517–518

APM, calling, 915–921
arguments, 161–162
arrays, 77–79
AsParallel(), 584
Assert(), 95
asynchronous, customizing,

783–786
Average(), 609
BeginGetResponse(), 908
BeginX(), 908
BinarySearch(), 643, 644
binding, 714
boxing, avoiding, 356–357
Break(), 803
BubbleSort(), 496–497
calling, 11, 156–163, 295
Cancel(), 766
Capacity(), 639
change(), 942
Clear(), 78
Close(), 412, 416
Collect(), 408
Combine(), 175, 178, 182, 542
Compare(), 495
CompareTo(), 323, 463, 641
Compress(), 325
Concat(), 608
Console.WriteLine(), 340, 352
Contains(), 643
ContinueWith(), 753, 775,

919–920
CopyTo(), 638
Count(), 585–586, 609, 622
CountLines(), 157
Create(), 461
declaring, 163–168
Decrement(), 814, 821, 825
default(), 71
DefaultIfEmpty(), 603
definitions, 9
delegates, returning, 547–548
Dequeue(), 654
DirectoryCountLines(), 185,

187, 191
Directory.GetFiles(), 617
DirectoryInfoExtension.

Copy(), 260
DirectoryInfo.GetFiles(),

597
Dispose(), 6n6, 413, 416, 575,

770

	 962	

n
n 	 Index

methods (cont’d)
Distinct(), 608, 613, 631–632
DoStuffAsync(), 787
double.TryParse(), 207
Dump(), 325
EAP, 925
Empty<T>, 659
encapsulation, 215
EndGetResponse(), 908
EndX(), 908
Enqueue(), 654
Enter(), 353
Enum.Parse(), 363, 680
Equals(), 349, 376–385, 651
errors, 194–208
Event(), 474
exceptions, 194–208
Exit(), 353
extension, 265–266

inheritance, 287
interfaces, 330–331

extensions, IEnumerable<T>
interface, 562

factory, 461
FindAll(), 645
ForEach(), 801
Format(), 48
FromCurrentSynchronization-

Context(), 788
GC.ReRegisterFinalize(), 419
generics, 476–481

casting inside, 480–481
type inference, 478–479

GetCustomAttributes(), 694
GetDynamicMemberNames(),

724
GetEnumerator(), 576, 577, 610,

661, 662, 664, 787n8
GetFiles(), 157
GetFirstName(), 232
GetFullName(), 166
GetGenericArguments(), 687
GetHashCode(), 349, 373–376,

651
GetInvocationList(), 547,

548
GetLength(), 79
GetName(), 219
GetResponse(), 772
GetResponseAsync(), 779
GetReverseEnumerator(), 673
GetSetting(), 327
GetSummary(), 305

GetSwitches(), 696
GetType, 679–680
GetUserInput(), 166
GetValue(), 685
global, 164
GreaterThan, 507
GroupBy(), grouping results,

600–601
GroupJoin(), 601–604, 613
groups, 502
Handle(), 760
IDispose(), 915
Increment(), 825
IndexOf(), 643
Initialize(), 236
instances, 48, 219–220
Intersect(), 608
Invoke(), 685, 932
invoking, 632–634
IsKeyword(), 620
Join(), 597–600, 739, 748
LastIndexOf(), 643
Logon(), 228
Main(), 8, 9, 156, 821

declaring, 10
refactoring, 165
returns and parameters,

172–175
MakeValue(), 470
Max(), 609
Max<T>, 479
Min(), 609
Monitor.Enter(), 818
Monitor.Exit(), 818
Move(), 345
MoveNext(), 573, 576, 664
NameChanging(), 276
namespaces, 158–160
naming, 161
OfType<T>(), 608
OnFirstNameChanging(), 276
OnLastNameChanging(), 276
OnTemperatureChanged(), 535,

544
OrderBy(), 590–596
overloading, 186–189
Parallel.For(), 795, 803
parameters, 161–162

advanced, 175–184
formal declaration, 165–166
optional, 189–193

Parse(), 65, 195
partial, 273–276

person.NonExistentMethod-
CallStillCompiles (),
717

PiCalculator.Calculate(),
749

Ping.Send(), 791
Pop(), 444, 652
Print(), 306
ProcessKill(), 785
Program.MethodB(), 704
Pulse(), 819
Push(), 444, 652
ReadToEnd(), 772
ReadToEndAsync(), 775
recursion, 184–186
refactoring, 165
ReferenceEquals(), 380, 387
Remove(), 542, 641
RemoveAt(), 641
Reset(), 573, 834
resolution, 193
Reverse(), 608
Run(), 293, 294, 748
Save(), 310
scope, 161
Select(), 582–584, 804
SelectMany(), 603, 604–606,

613
SendTaskAsync(), 792
SequenceEquals(), 608
SetName(), 221, 222
Sleep(), 740
standard query operators,

577–610
Start(), 293, 737
StartX(), 908
statements

calling, 163
grouping, 156–157

static, 259–261
Stop(), 293, 803
strings, 48–50
subscriber, defining, 534–535
Sum(), 609
SuppressFinalize(), 416
Swap(), 178
System.Console.Clear(), 147
System.Console.ReadLine(),

17, 18
System.Console.WriteLine(),

19–20, 30, 157
System.Enum.IsDefined(),

366

Index 	 963

System.Linq.Enumerable.
Where(), filtering with,
568–569

Task.ContinueWith(), 793
Task.ContinueWith, calling,

752, 789
TaskDelay(), 741
Task.Delay(), 843
Task.Factory(), 768
Task.Factory.StartNew(),

769
Task.Run(), 768, 785
TextNumberParser.Parse(),

424
ThenBy(), 590–596
Thread.Sleep(), 740–741
ThrowIfCancellationRe-

quested(), 768
ToArray(), 588
ToCharArray(), 80
ToLookup(), 588
ToString(), 65, 357

enum conversions, 362
overriding, 372–373

TrimToSize(), 639
TryGetMember(), 723
TryGetPhoneButton(), 179,

180
TryParse(), 66–67, 207–208,

684
TrySetMember(), 723
typeof(), 680
types

inference, 478
naming, 160–161

Undo(), 446
Union(), 608
using directive, 168–172
values, returns, 162
VerifyCredentials(), 333
virtual, defaults, 291
Wait(), 750
WaitAll(), 831
WaitAny(), 831
WaitForExit(), 784
WebRequest.GetResponse-

Async(), 774
Where(), 509, 580–591
WriteLine(), 157
WriteWebRequestSizeAsync(),

779
Microsoft

FCL, 892, 895

ILMerge utility, 889
.NET, 894, 897–899, xxvii

compilers, 878
delegates, 503
garbage collection, 882–883
guidelines, 6
platform portability, 885, 886
regions, 152
versioning, 26–28

Silverlight, 878
XNA, 878

Min() method, 609
mind maps, xxix
mod operator. See remainder (%)

operators
models

asynchronous programming,
908–921

COM, STAThreadAttribute
class, 842–843

memory, 735
structured programming model

definitions, xxiii
threading, 730

modifiers
access, 227–229. See also access

modifiers
classes, 397
runtime, 883
type members, 397–398

new, 295–299
nullable, 60
readonly, 268, 269
sealed, 299–301
virtual, 290–295
volatile, declaring fields as,

823–824
modifying

access, 237–239
assemblies, targets, 394–395
collections, 577
immutable strings, 869–870
strings, 53

modules
assemblies, 395
CLI, 887–890

Monitor class, synchronization,
817–819

Monitor.Enter() method, 818
Monitor.Exit() method, 818
monitoring asynchronous opera-

tion state for completion,
745

Mono Project, 3n4, 878, 898, xxvii
Move() method, 345
MoveNext() method, 573, 576, 664
moving objects, 408
multicast delegates, 533

internals, 542–544
observer patterns, 534–548

multidimensional arrays, errors,
72

multiple constraints, 469
multiple definitions, adding, 148
multiple exception types, 424–425
multiple inheritance, 287

aggregation, 289
interfaces, 329–330, 331–334

multiple items, searching collec-
tions, 645

multiple iterators, creating single
classes, 673–674

multiple Main() methods, disam-
biguating, 174

multiple selection, query expres-
sions, 631

multiple threads
event notification, 826–827
local variables, 815–816

multiple type parameters,
459–460

multiplication (*) operators, 87
multithreading, 727–729

asynchronous tasks, 745–764
interfaces, prior to TPL and C#

5.0, 907–936
LINQ queries, running in paral-

lel, 804–808
loops, executing iterations in

parallel, 794–804
overview of, 730–736
performance, 732–733
System.Threading class,

737–745
Task-based Asynchronous

Pattern (TAP), 770–794
tasks

AggregateException,
757–764

canceling, 764–770
continuation, 751–757

troubleshooting, 734–736

Name property, 240
NameChanging() method, 276
named arguments, 191

	 964	

n
n 	 Index

namespaces, 168
aliasing, 171, 401–402
defining, 398–402
methods, 158–160
System.Collections.Generic,

638
naming. See also aliasing; naming
_FirstName, conventions,

234n3
attributes, 692
classes, 4, 8
IndexerNameAttribute, 657
indexers, 657–658
integer types, 34
interfaces, 315
methods, 157, 161
parameters, 166, 176, 453–454
PascalCasing, 235
types, 160–161

native code, 24
NDoc, 406n4
negative

infinity, 96
values, 87

nesting
classes, 269–272
if statements, 108
types, generics, 461–462

.NET (Microsoft), 894, 897–899,
xxvii

compilers, 878
delegates, 503
garbage collection, 407–408,

882–883
guidelines, 6
platform portability, 885, 886
regions, 152
versioning, 26–28

new keyword, 71
throwing exceptions, 205

new modifier, 295–299
new operator

implementing, 246
value types, 347–348

newline (\n) characters, 50
NextId initialization, 261
no-op, 703
non-numeric operands, 90–91
nonprimitive value types, 71
nonstatic fields, 257. See also static

fields
normalization, 597
not equals (!=) operator, 386

NOT (local negation) operators,
118–119

notation
Alonzo Church, 513
exponential, 40
hexadecimal, 40–41

notifications
events

firing, 553
multiple threads, 826–827

registering for, 756
sequential, error handling,

544–547
NotImplementedException, 321
nowarn:<warn list> option,

149–150
null, 53–54

events, checking for, 538–539
returning, 659–660

null coalescing (??) operators,
120–121

nullable
modifiers, 60
value types, 447–448

NullReferenceException, 424,
538, 551, 659, 826

numbers
Boolean type conversions, 64
Fibonacci, 128, 351
hexadecimal, formatting as, 41
lines, specifying, 150

numeric types, 34–43

object, overriding members,
371–385

object-oriented programming,
210–213

objects
associating, 259
COM, STAThreadAttribute

class, 842–843
de-allocating, 882
deterministic destruction, 882
lock keyword, selecting, 821–822

observer patterns, 846
multicast delegates, 534–548

OfType<T>() method, 608
one-to-many relationships, 594

implementing, 601–604
OnFirstNameChanging() method,

276
OnLastNameChanging() method,

276

OnTemperatureChanged()
method, 535, 544

operands, 86
non-numeric, 90–91
order of, evaluation, 90

operational polymorphism, 187
OperationCanceledException,

807
operator keyword, 392
operators, 85, 86–103, 117–118,

122–126, 310–311, 365
+=, 97, 540
-=, 539, 540
adding, 387–388
addition (+), 87, 387, 541

guidelines, 91
strings, 90–91

arithmetic binary, 87–96
assignment

applying, 548
events, 541

await, 741
binary (arithmetic), 387–389
bitwise, 121–127, 140
bitwise complement (), 127, 644
cast (()), 61, 283, 391–392
characters, applying, 91–92
comparison, 386–387
compound assignment, 96–103
conditional (?:), 119–120
conditional logical, 389
constraints, 473
conversions, 391, 393
decrement (- -), 97–102
default, 348, 458
delegates, 540–542
delete, 216
division (/), 87
dot (.), 871
equality, 115–116, 376–380
equals (==), 386
errors, 115
exclusive OR (^), 118
floating-point types, 92–96
increment (++), 97–102
index, defining, 658–659
is, verifying underlying types,

309–310
local negation (!), 118–119
logical Boolean, 116–121,

122–126
multiplication (*), 87
new

Index 	 965

implementing, 246
value types, 347–348

not equals (!=), 386
null coalescing (??), 120–121
OR (||), 116, 117, 122

constraints, 473–474
with flag enums, 365

order of precedence, 153
postfix, 100
prefix, 100
queries, 561–562, 577–610
relational, 115–116
remainder (%), 87
shift, 122–123
simple assignment (=), 15
standard query. See also stan-

dard query operators
subtraction (-), 541
unary, 390

minus (-), 86–87, 387
plus (+), 86–87

well-formed types, overload-
ing, 385–393

options
command-line, arrays, 80
methods, parameters, 189–193
nowarn:<warn list>, 149–150
parallel loops, 802–803
TaskCreationOptions.Long-

Running, 798
OR (||) operators, 116, 117, 122

constraints, 473–474
with flag enums, 365

order of precedence, operators,
153

orderby clause, 624–625
OrderBy() method, 590–596
ordering total collections, 643
organizing

hierarchies, 161
object-oriented programming,

210–213
out parameter values, 242–244
Out property, 689
out type parameter, 483–485
outer joins, 593, 603–604
outer variables, 518–519

CIL implementations, 520–521
OutOfMemoryException, 433
output

consoles, 19–21
HelloWorld, 29–30
parameters, 178–181

overflowing
floating-points numbers, 95
integer values, 440

overloading
constructors, 250–251
members, 292
methods, 186–189
operators, well-formed types,

385–393
types, applying arity, 460

override keyword, 292, 323
overriding

abstract members, 305
base classes, 290–302
equality operators, 376–380
Equals() method, 376–385
GetHashCode() method,

373–376
implicit, 292
members, dynamic objects,

723–724
object members, 371–385
properties, 291
ToString() method, 372–373
virtual modifiers, 290–295

overrun, buffers, 76, 883

P/Invoke (Platform Invoke),
849–862

API calls with wrappers, 861
external functions, calling,

858–861
guidelines, 862

PairInitializer<T> interface,
487

Pair<T> class, 482
palindrome, 79
Parallel LINQ. See PLINQ
parallel programming, 732
Parallel.For() method, 795,

803
parallelism

disabling, 802
LINQ queries, running in,

804–808
loops

breaking, 803–804
executing iterations in,

794–804
options, 802–803

TPL. See TPL
ParallelOptions parameter, 802
ParallelOptions type, 801

ParallelQuery<T> class, 806
parameters, 155

advanced, methods, 175–184
AllowMultiple, 700
arrays, 181–184
data types, 850–852
distribution, APM, 911
IListable, 331
lockTaken, 819
Main() method, 172–175
methods, 161–162

formal declaration, 165–166
optional, 189–193

named, attributes, 700–714
naming, 166
output, 178–181
ParallelOptions, 802
parameterless anonymous

methods, 513
references, 177–178
types, 449, 452

in, 485–488
multiple, 459–460
naming, 453–454
out, 483–485

values, 175–176, 242–244
variables, defining index opera-

tors, 658–659
parentheses (()), 89, 90
Parse() method, 65, 195
parsing values, 702
partial classes, 272–276
partial methods, 273–276
Pascal, 7
PascalCase, 6, 8, 161, 235, 251. See

also naming
pass-by references, 547–548
passing

anonymous methods, 512
arguments, values, 175–176
command-line arguments, 173
CPS, 911–913
delegates, 510
method return values, 162
state, APM, 913–914

paths, configuring compilers, 898
patterns

APM, 908–910
async/await, timers prior to,

937–942
background worker, 928–932
EAP, 924–927
event-coding, 550

	 966	

n
n 	 Index

patterns (cont’d)
multicast delegates, 534–548
observer, 846
publish-subscribe, 533
TAP, 729, 770–794, 920
token cancellation, 801

PDAs (Personal Digital Assis-
tants), 278

performance
multithreading, 732–733
runtime, 885–886
synchronization, 828
Task Parallel Library (TPL), 798

permissions, CAS, 686
persistence, 224
Personal Digital Assistants. See

PDAs
person.NonExistentMethod-

CallStillCompiles ()
method, 717

pi, calculating, 794–795
PiCalculator.Calculate()

method, 749
Ping.Send() method, 791
placeholders

formatting, 20
values, 121

placing yield return statements
in loops, 667–669

platforms
addresses/pointers, 862–872
CLI. See CLI
installing, 897–899
interoperability, 845–846
.NET (Microsoft), 897–899
portability, 25, 884–885
WPF, 934–936

PLINQ (Parallel LINQ), 729,
804–808

pointers, 862–872
assigning, 866–869
declaring, 864–866
dereferencing, 869–871
functions, 862

polling
cancellation tasks, 766
Task<T> classes, 749

polymorphism, 213, 306
behavior, data types, 310
interfaces, 315–320
operational, 187

pools
temporary storage, 341

threading, 731, 743–745, 746
Pop() method, 444, 652
portability of platforms, 25,

884–885
positions, bitwise operators for,

140
post-increment operators, 99
#pragma preprocessor directive,

149
pre-increment operators, 99
precedence, operators, 88, 89, 153
predefined

attributes, 703
types, 33

predicates, 510
query expressions, 623
Where() method, 580

prefixes
@ as, 8
hexadecimal notation, 41
operators, 100

preprocessor directives, 145–152
code

editors, 151–152
excluding/including,

146–147
errors/warnings, 148–150
line numbers, specifying, 150
#pragma preprocessor directive,

149
symbols, 147–148

primitives, 33
principles, dynamic objects,

716–718
Print() method, 306
private access modifiers, 229,

284–285
private keyword, 229
processes, 730
ProcessKill() method, 785
processors

cycles, 741
processor-bound latency, 728

products, Cartesian, 598, 631
Program class, 264
Program.MethodB() method, 704
programming

asynchronous, 732, 908–921
comments, 21–23
constructs, associating XML

comments, 403–405
dynamic, 677, 714–724
object-oriented, 210–213

parallel, 732
sequential programming struc-

ture definitions, xxiii
syntax, overview of, 4–17

programs
HelloWorld, 1, 2–4
multithreading, 729. See also

multithreading
Tic-Tac-Toe, 901–905

Project Wizard (Visual Studio),
690

projecting
to anonymous types, 583
collections, 614
query expressions, 616–619
with Select() method, 582–584

propagating exceptions from
constructors, 418

properties, 50–51
access modifiers, getters/setters,

239–240
automating, implementing,

232–234
classes, 229–244
Count, 638
declaring, 230–232
FileStream, 419
guidelines, 234–235
Help, 689
InnerExceptions, 437, 439,

760
InvokeRequired, 932
IsAlive, 740
IsBackground, 739
IsCancellationRequested,

766, 767, 801
IsCompleted, 750, 804
Items, 456
lazy loading, 419
LowestBreakIteration, 804
Out, 689
overriding, 291
parameter values, 242–244
read-only, 51, 237–239
static, 262
System.Reflection.Method-

Info, 503
Type.ContainsGenericParam-

eters, 687
validation, 236–237
virtual fields, 240–242

protected access modifiers,
285–286

Index 	 967

providers, customizing LINQ,
609

pseudocode. See also code
execution, 814
loop execution, 131

public
constants, 268
getter/setter methods, 230

publish-subscribe pattern, 533
publishers

encapsulation, 549–550
events

connecting subscribers and,
536–537

defining, 536
Pulse() method, 819
punctuation

identifiers, 7
syntax, 2
variables, 15

pure virtual functions, 305
Push() method, 444, 652

qualifiers, aliasing namespaces,
401–402

quantum, 732
queries

expressions
continuation, 629–630
deferred execution, 619
filtering, 623–624
flattening sequences, 630–622
grouping, 626–629
invoking methods, 632–634
let clause, 625–626
LINQ, 561, 613
overview of, 614–632
projecting, 616–619
sorting, 624–625

IQueryable<T> interface,
609–610

LINQ, running in parallel,
584–585, 804–808

operators, 561–562, 577–610.
See also standard query
operators

queues
collections, 654
f-reachable, 416

Queue<T> class, 654

race conditions, 734–735
ranges, variables, 615

rank, identifying, 69
Reactive Extensions library, 729n1
read-only properties, 51, 237–239
readonly modifiers, 268, 269
ReadToEnd() method, 772
ReadToEndAsync() method, 775
recursion methods, 184–186
recursive iterators, 669
Redeem statement, 78
redimensioning arrays, 78
redundancy, avoiding, 478
reentrant deadlocks, 828
ref parameter values, 242–244,

852
refactoring

base classes, 279
classes, 278
methods, 165

ReferenceEquals() method,
380, 387

references
files, assemblies, 889
instantiation generics, 492–493
NullReferenceException, 659
parameters, 177–178
pass-by, 547–548
pointers, declaring, 864
types, 58–60, 177, 341–345

referencing
assemblies, well-formed types,

393–398
root references, 407
strong references, 408
weak references, 408–410

referent types, accessing mem-
bers, 871–872

reflection, 677–688, 883
dynamic objects, invoking,

714–716
on generic types, 686–688
members, invoking, 681–686
metadata, 893
System.Type class, accessing

using, 679–680
Reflector, 30
_reftype keyword, 8
_refvalue keyword, 8
#region preprocessor directive,

151–152
regions, .NET (Microsoft), 152
registering

COM DLL, 890
for notifications, 756

relational operators, 115–116
relationships

associating, 217
many-to-many, 594
one-to-many, 594, 601–604

remainder (%) operators, 87
remoting, 921
remove handlers, customizing,

558
Remove() method, 542, 641
RemoveAt() method, 641
removing

activation frames, 175
elements, 641
event handlers, 846–848

reporting
errors, 204–207
exceptions, 433
Windows Error Reporting, 425

requests
asynchronous Web, 773–774
cancellation, 768. See also

cancelling
synchronous Web, 772–773

requirements of equality com-
parisons, 651

reserved keywords, 6, 8. See also
keywords

Reset() method, 573, 834
resetting events, 831–837
resolution, methods, 193
resources

cleanup
APM, 914
using statements, 575
well-formed types, 410–419

explicit deterministic cleanup,
216

implicit deterministic cleanup,
216

implicit nondeterministic
cleanup, 216

results, grouping, 600–601
resurrecting objects, 418–419
rethrowing exceptions, 206, 433,

438–442
retrieving

data from files, 225
elements from indexes, 640
empty memory, 246

return statements, methods, 167
returning, 17

dictionaries, collections, 696

	 968	

n
n 	 Index

returning (cont’d)
instances, delegates, 539
Main() method, 172–175
methods, delegates, 547–548
null, 659–660
types, declaring methods,

166–168
values, 157, 162

reuse
assemblies, 393
code, 394

Reverse() method, 608
right outer joins, 593
root references, 407
Rotor, 878, xxvii
round-trip formatting, 42–43
rounding

errors, 37
inequality with floating-point

types, 93–96
rules, keywords, 4. See also

guidelines
Run() method, 293, 294, 748
running

applications, 3–4
LINQ queries in parallel,

584–585, 804–808
runtime, 25. See also WinRT

arrays, defining size at, 72
buffer overrun, 76
CIL, 881–886
CLR, 894. See CLR
exceptions, 200. See also

exceptions
garbage collection, 881–882
Main() method, 173
members, overloading, 292
performance, 885–886
WinRT, 895
XML elements, binding,

719–720

SafeHandle class, 856–857
safety

thread-safe. See thread-safe
types, 25, 883
unsafe code. See unsafe code

Save() method, 310
saving documents, 706–708
schedulers, tasks, 746, 788–790
scopes, 112–114, 161
sealed classes, inheritance, 290
sealed modifiers, 299–301

sealing members, 299
searching

attributes, 693–694
List<T> class, 643–644
multiple items, collections, 645

security
CAS permissions, 686
code access, 25, 884

SELECT clause, 615
Select() method, 804

projecting with, 582–584
selecting

multiple query expressions, 631
objects, lock keyword, 821–822

SelectMany() method, 603,
604–606, 613, 630

Semaphore class, 835
semaphores, System.Threading.

AutoResetEvent class, 834
SemaphoreSlim class, 835
semicolons (;), 2

statements without, 11
SendTaskAsync() method, 792
SequenceEquals() method, 608
sequences

delegates, invoking, 542
escape, 44, 47
exceptions, diagrams, 545
flattening, 630–622
if/else statements, formatting,

109
notification, error handling,

544–547
programming structures, defini-

tions, xxiii
SelectMany, 630
yield return statement, 665

serializable exceptions, 438
serialization, 678

attributes, 706–714
customizing, 708–710
System.SerializableAttrib-

ute class, 713–714
versioning, 710–713

series, Fibonacci, 128
ServiceStatus, 865
SetName() method, 221, 222
sets, keys, 637
setters, 51

access modifiers, 239–240
accessibility, modifying, 237–239
declaring, 230

shadowing type parameters, 462

sharing
assemblies, 395
state, collection interfaces, 574

shift operators, 122–123
short data types, 35
signatures, APM, 910–911
Silverlight (Microsoft), 878
simple assignment (=) operator, 15
simultaneous multithreading, 730
single classes, creating multiple

iterators, 673–674
single inheritance, 287–289
single instance applications,

formatting, 829–830
single-line comments, 22
single-threaded programs, 730.

See also programs
sites, calling, 175
Sleep() method, 740
slicing time, 732
Smalltalk, 890
software

multithreading, 729. See also
multithreading

virtual, 872
SortedDictionary<T> class, 652,

653
SortedList class, 653
sorting

collections, 641, 652
OrderBy() method/ ThenBy()

method, 590–596
query expressions, 624–625

source languages, 890. See also
languages

spaces
declaration, 112–114
dirty, 882

specialization, types, 213
specifiers

exceptions, 427
round-trip formatting, 42

specifying
constraints, 479–480
line numbers, 150

SqlException, 437
square brackets ([]), 68, 69, 367

attributes, 689
indexers, 655

Stack class, 450–451
stackalloc data, 868
StackOverflowException, 433
stacks

Index 	 969

calling, 175, 868
collections, 652–654
temporary storage pools, 341
unwinding, 175

Stack<T> class, 652–654
CIL, 490

standard query operators,
577–610

Count() method, counting
items with, 585–586

deferred execution, 586–590
GroupBy() method, grouping

results with, 600–601
GroupJoin() method, imple-

menting one-to-many
relationships, 601–604

IQueryable<T> interface,
609–610

Join() method, inner joins,
597–600

LINQ queries, running in paral-
lel, 584–585

OrderBy() method/ ThenBy()
method, 590–596

Select() method, projecting
with, 582–584

SelectMany() method, 604–606
Where() method, filtering with,

580–591
star (*), 756
Start() method, 293, 737
StartX() method, 908
state

APM, passing, 913–914
collection interfaces, 574
iterators, 664–666

statements, xxiii
alternative, 107
block, 110
break, 139–141
consequence, 107
Console.WriteLine(), 871
continue, 141–143
control flow, 85, 103–110, 127–

139, 198. See also control
flow statements

definitions, 11–12
fixed, 867, 868
goto, 143–145
if, 80, 107–110, 114–121
if/else guidelines, 120
jump, 139–145. See also jump

statements

lambda expressions, 507–510
line-based, Visual Basic, 11
lock, 353–255, 736
methods

calling, 163
grouping, 156–157

nested if, 108
operator-only, 87
Redim, 78
return, methods, 167
string.join, 796
switch, 135–139, 426
throw, reporting errors,

204–207
using, 6n6, 185n3, 412–415, 575
yield break, 670–671
yield return, 665, 667–669,

674
STAThreadAttribute class,

842–843
static

classes, 263–265
compilation versus dynamic

programming, 720–721
constructors, 261–262
fields, 256–258
initialization, 262
members, classes, 255–265
methods, 48, 259–261
properties, 262

static keyword, 264
Stop() method, 293, 803
storing

files, 224
local threads, 837–841
reference types, 341
static fields, 257
temporary storage pools, 341

string keyword, avoiding lock-
ing, 822–823

string.join statement, 796
strings, 46–53

42 as a, 195
addition (+) operator, 90–91
applying, 52–53
arrays, 79–81, 80–81
concatenation at compile time,

48
conversions, 65
encryption, 804
enum conversions, 362–364
format, 20
immutable, 17, 51, 52, 869–870

length, 51
methods, 48–50
round-trip formatting, 42
System.Text.StringBuilder,

53
strong references, 408
struct keyword, 343, 468–469
StructLayoutAttribute, 853
structs, 340–349

defining, 369
generics, 454–455
initialization, 346–347

structural equality, delegates,
516–517

structured programming model
definitions, xxiii

structures
object-oriented programming,

210–213
sequential programming defini-

tions, xxiii
styles

ambiguity, avoiding, 221
CPS, 911–913

subscriber methods, defining,
534–535

subscribers
encapsulation, 548–549
publishers, connecting, 536–537

subtraction (-) operators, 541
subtypes, 212
suffixes, 39

exceptions, 437
literals, 40

Sum() method, 609
super types, 212
support

covariance, 488–489
delegates, syntax, 502
finalizers, 347
generics, 491
LINQ, 27
OR (||) operators, 473–474

SuppressFinalize() method,
416

Swap() method, 178
switch statements, 135–139

exceptions, 426
switches

context, 732
unsafe, 864

symbols, preprocessor directives,
147–148

	 970	

n
n 	 Index

synchronization
consoles, 920–921
context, 788–790
delegates, 747
Monitor class, 817–819
operations, invoking high-

latency, 771–772
threading, 811–812

applying lock keywords,
819–821

avoiding locking, 822–823
avoiding with Method-

ImplAttribute, 823
declaring fields as vola-

tile, 823–824
design best practices, 827–829
event notification, 826–827
local storage, 837–841
overview of, 813–841
resetting events, 831–837
selecting lock objects,

821–822
System.Threading.Inter-

locked class, 824–826
timers, 841–843
types, 829–837

syntax
delegates, support, 502
iterators, 661–662
overview of, 4–17
properties, 230
punctuation, 2

System.Action delegate, 514–530
System.ApplicationException

class, 425
System.Array class, 362, 474
System.AsyncCallback class,

911–913
System.Attribute class, 692
System.AttributeUsage

Attribute class, 699–700
System.Collection.Generic.

Stack class, 451
System.Collections.Generic

namespace, 638
System.Collections.Generic.

IEnumerator<T> class, 572
System.ComponentModel.Win-

32Exception method, 854
System.ConditionalAttribute

class, 703–705
System.Console.Clear()

method, 147

System.Console.ReadLine()
method, 17, 18, 195

System.Delegate class, 474, 503,
542

System.Enum class, 363, 474
System.Enum.IsDefined()

method, 366
System.Environment class, 425
System.EventArgs class, 552
System.EventHandler<T> class,

555
System.Exception class, 424,

425, 433
System.FormatException, 198,

199
System.Func delegate, 514–530
System.GC class, 408
System.InvalidCastException,

393
System.IO.FileAttributes

class, 364
System.Lazy<T> class, 420
System.Linq.Enumerable class,

577
System.Linq.Enumerable.

Where() method, filtering,
568–569

System.MulticastDelegate class,
474, 503, 542

System.Net.WebRequest class,
908

System.NonSerializable class,
708–710

System.Nullable<T> class, 468
System.Object class

deriving, 308–309
interfaces, 336n2

System.ObsoleteAttribute class,
705–706

System.Reflection.MethodInfo
property, 503

System.Runtime.Serializa-
tion.ISerializable class,
709–710

System.Runtime.Serialization
.SerializationException,
710

System.SerializableAttribute
class, 438, 706–708, 713–714

System.Text.StringBuilder
class, 53

System.Threading class, 730,
737–745, 812

System.Threading.AutoReset
Event class, semaphores, 834

System.Threading.Interlocked
class, 824–826

System.Threading.Manual
ResetEvent class, 831–834

System.Threading.ManualRe-
setEventSlim class, 831–834

System.Threading.Monitor
class, 353

System.Threading.Mutex class,
829–830

System.Threading.WaitHandle
class, 831

System.Timer class, 937–942
System.Timer.Timer type, 171
System.Type class, accessing

metadata using, 679–680
System.ValueType class, 348–349.

See also types; values
System.WeakReference class, 409

T type parameter, 461
tables

accessibility modifiers, 398
acronyms, 894–895
aggregate functions on System.

Linq.Enumerable, 609
arrays, 68
boxing code in CIL, 350
common exception types, 202
common namespaces, 159–160
compilers, 878
concurrent collection classes,

836–837
control flow statements, 104–106
control flow within tasks, 780
decimal types, 36
deserialization, 711
equality/relational operators,

116
escape characters, 45
floating point types, 36
integer types, 34
interfaces, comparing abstract

classes, 337
keywords, 5
lambda expressions, 511–512
ManualResetEvent synchroniza-

tion, 833
members of System.Object,

308
.NET versions, 27

Index 	 971

new modifiers, 296
operators, order of precedence,

153
preprocessor directives, 146
sample pseudocode execution,

814
standard query operators, 608
strings

methods, 50
static methods, 49

System.Threading.Inter-
locked class, 825

TaskContinuationOptions
enums, 754–755

types of comments, 22
XOR operator values, 118

TAP (Task-based Asynchronous
Pattern), 729

APM methods, 920
multithreading, 770–794

targets, modifying assemblies,
394–395

Task-based Asynchronous Pat-
tern. See TAP

task-based asynchrony, 848–849
Task Parallel Library (TPL). See

TPL
TaskCanceledException, 767,

768
TaskCompletionSource<T> class,

784
TaskContinuationOptions

enums, 754–755
Task.ContinueWith() method,

752, 789, 793
TaskCreationOptions.LongRun-

ning option, 798
TaskDelay() method, 741
Task.Delay() method, 843
Task.Factory() method, 768
Task.Factory.StartNew()

method, applying, 769
Task.Run() method, 768, 785
tasks, 731
AggregateException, 757–764
antecedent, 753
asynchronous, 745–764
canceling, 764–770
continuation, 751–757, 789
control flow, 780
IDisposable interface, 770
long-running, 769–770
schedulers, 746, 788–790

TaskScheduler class, 788
Task<T> class, 731, 779
await keyword, 787–788
polling, 749

templates, 449
ATL, 287
C++ language, 466

temporary storage pools, 341
TemporaryFileStream, 412, 419
text

assigning, 42
XML comments, 402–407

TextNumberParser.Parse()
method, 424

ThenBy() method, 590–596
Thermostat class, 535
this keyword, 220–227

constructors, chaining, 251–253
locking, avoiding, 822–823

thread-safe, 730, 815
delegates, invoking, 539–540
event notification, 826
incrementing/decrementing,

101–102
ThreadAbortException, 741, 742
threading, 727, 730. See also

multithreading
foreground threads, 739
managing, 739–740
multiple threads, local vari-

ables, 815–816
pools, 731, 743–745, 746
synchronization, 811–812

applying lock keywords,
819–821

avoiding locking, 822–823
avoiding with Method

ImplAttribute, 823
declaring fields as vola-

tile, 823–824
design best practices, 827–829
event notification, 826–827
local storage, 837–841
Monitor class, 817–819
overview of, 813–841
resetting events, 831–837
selecting lock objects,

821–822
System.Threading.Inter-

locked class, 824–826
timers, 841–843
types, 829–837

troubleshooting, 734–736

unhandled exceptions, 761–764
ThreadLocal<T> class, 838
Thread.Sleep() method,

740–741
ThreadStaticAttribute class,

839
three-dimensional arrays, 73
three-forward-slash delimiters

(///), 405
throw statements, reporting

errors, 204–207
ThrowIfCancellation

Requested() method, 768
throwing exceptions, 195,

204–205, 321
arrays, 75
checked/unchecked conver-

sions, 63
deserialization, 711

Tic-Tac-Toe source code,
901–905

time slicing, 732
timers

prior to async/await patterns,
937–942

threading, 841–843
ToArray() method, 588
ToCharArray() method, 80
token cancellation, 801
ToLookup() method, 588
ToString() method, 65, 357

enum conversions, 362
overriding, 372–373

total ordering, collections, 643
TPL (Task Parallel Library), 729,

790
interfaces, multithreading prior

to C# 5.0, 907–936
performance, 798

trapping errors, 195–201
trees, expressions, 496, 523–530
triggering events, 548
TrimToSize() method, 639
troubleshooting. See also errors

arrays, 81–82
multithreading, 734–736

try blocks, 197
TryGetMember() method, 723
TryGetPhoneButton() method,

179, 180
TryParse() method, 66–67,

207–208, 684
TrySetMember() method, 723

	 972	

n
n 	 Index

Tuple class, 461
turning off warning messages,

149–150
two-dimensional arrays, 69, 74–75
Type.ContainsGenericParam-

eters property, 687
typeof keyword, 363

locking, avoiding, 822–823
typeof() method, 680
types

aliasing, 171
anonymous, 56–57, 562–564,

564–565, 566–568. See also
anonymous types

constructors, 253–255
initializing arrays, 570–571

ArrayList, 350
of assemblies, 394–395
base, 212
casting, 65–66, 281–282
categories of, 57–60, 340
checking, 883
classes, 157, 467–468. See also

classes
compatibility, enums, 361–362
ConnectionState, 360
conversions without casting,

65–66
CSharpBuiltInTypes, 665
CTS, 25, 891
data, 14. See also data types

delegates, 498–500
parameters, 850–852

definitions, 8–9
delegates, declaring, 500
derived, 212
duck typing, 576
encapsulation of, 396
exceptions, 202
floating-point, 92–96, 351
fundamental numeric, 34–43
generics, 449–462, 686–688
grouping, defining namespaces,

398–402
inference, 478–479
integral, 91
interface constraints, 467
members

access modifiers, 397–398
invoking, 678. See also

reflection
metadata, 892–893
multiple exception, 424–425

namespaces, grouping, 158
naming, 160–161
nested, generics, 461–462
overloading, applying arity, 460
ParallelOptions, 801
parameters, 449, 452

in, 485–488
lists, 165
multiple, 459–460
naming, 453–454
out, 483–485

predefined, 33
references, 58–60, 177, 341–345,

492–493
referent, accessing members,

871–872
returns, declaring methods,

166–168
safety, 25, 883
specialization, 213
subtypes, 212
super, 212
thread synchronization, 829–837
underlying, verifying, 309–310
unmanaged, 864
values, 57–58, 177, 339–340

avoiding boxing, 356–357
boxing, 349–357
default operator, 348
enums, 358–368
instantiation generics, 491–492
interface inheritance, 348–349
lock statements, 353–255
new operator, 347–348
nullable, 447–448
structs, 340–349

well-formed, 371–385
defining namespaces,

398–402
garbage collection, 407–410
lazy initialization, 419–421
overloading operators,

385–393
overriding object members,

371–385
referencing assemblies,

393–398
resource cleanup, 410–419
XML comments, 402–407

UIs (user interfaces), Windows,
790–792, 932–936

unary minus (-) operators, 86–87
unary operators, 390

minus (-), 387
plus (+), 86–87

UnauthorizedAccessException,
438

unboxing, 350. See also boxing
unchecked conversions, 62–64,

440
unchecked keyword, 442
#undef preprocessor directive,

147–148
underlying types

enums, 360
verifying, 309–310

underscore (_), 15
Undo() method, 446
unhandled exceptions, 195

threading, 761–764
Unicode characters, 43–46. See also

characters
values, descending order, 98

Union() method, 608
unmanaged

code, 24
types, 864

unsafe blocks, 863, 864
unsafe code, 845–846, 863–864, 867

delegates, executing via, 872–873
unsafe covariance in arrays,

support, 488–489
unwinding stacks, 175
using directives, 168–172
using statements, 6n6, 185n3, 575

deterministic finalization,
412–415

utilities, ILMerge, 889

validation
constructors, 244. See also

constructors
properties, 236–237

values
byte calculations, 122
const, 267
flags, enumeration, 702
generics, defaults, 458–459
hardcoding, 38–40
integers, overflowing, 62, 440
iterators, yielding, 662–664
literals, 37–38

arrays, 71
readonly fields, 269

negative, 87
parameters, 175–176, 242–244

Index 	 973

placeholders, 121
public constants, 268
returns, 157, 162
types, 57–58, 177, 339–340

avoiding boxing, 356–357
boxing, 349–357
default operator, 348
enums, 358–368
instantiation generics,

491–492
interface inheritance,

348–349
lock statements, 353–255
new operator, 347–348
nullable, 447–448
structs, 340–349

Unicode characters, descending
order, 98

XOR operators, 118
variables

applying, 16–17
assigning, 15–16
callers, matching with param-

eter names, 176
declaring, 11, 13, 14–15
global, 256
instances, 217
local, 14. See also local variables

declaring, 165–166
implicitly typed, 55–57
multiple threads, 815–816
scope, 114

loops, 130, 521–522
outer, 518–519, 520–521
parameters, defining index

operators, 658–659
ranges, 615
reference types, 341–345

Venn diagrams, join operations,
593

verbatim string literals, 47
VerifyCredentials() method,

333
verifying underlying types,

309–310
versioning

assemblies, 889
.NET (Microsoft), 26–28
serialization, 710–713

VES (Virtual Execution System),
24, 876, 877, 881, 895

viewing assemblies, metadata,
678. See also reflection

Virtual Execution System. See VES
virtual fields, properties, 240–242
virtual memory, 851
virtual method defaults, 291
virtual modifiers, 290–295
virtual software, 872
VirtualAllocEx API, 850–852
Visual Basic

arrays, redimensioning, 78
classes, accessing, 222
global methods, 164
global variables/functions, 256
implicitly typed variables, 565
line-based statements, 11
void, 55

Visual Studio Project Wizard, 690
void, 53, 54–55
volatile modifier, declaring

fields as, 823–824
vulnerabilities, buffer overruns,

883

Wait() method, 750
WaitAll() method, 831
WaitAny() method, 831
WaitForExit() method, 784
WaitHandle finalizer, 770
#warning preprocessor directive,

148–150
warnings
nowarn:<warn list> option,

149–150
preprocessor directives, 148–150

WCF (Windows Communication
Foundation), 27

weak references, 408–410
WebRequest.GetResponse

Async() method, 774
well-formed types, 371–385

assemblies, referencing, 393–398
garbage collection, 407–410
lazy initialization, 419–421
namespaces, defining, 398–402
object, overriding members,

371–385
operators, overloading, 385–393
resource cleanup, 410–419
XML comments, 402–407

WF (Windows Workflow), 27
WHERE clause, 615

filtering, 623–624
where keyword, 465
Where() method, 509

filtering with, 580–591
while loops, control flow state-

ments, 127–129
whitespace, definitions, 12–13
Win32, error handling, 854–855
Windows

Communication Foundation.
See WCF

Error Reporting, 425
executable assemblies, 394
Forms, 932–934
Presentation Foundation. See

WPF
UIs (user interfaces), 790–792,

932–936
Workflow. See WF

WinRT (Windows Runtime), 27,
845, 895

libraries, 846–849
wizards, Project Wizard (Visual

Studio), 690
work stealing, 798
WPF (Windows Presentation

Foundation), 27, 934–936
wrappers, APIs (P/Invoke),

861
wrapping exceptions, 438–442
write-only properties, 237–239
WriteLine() method, 157
WriteWebRequestSizeAsync()

method, 779

xcopy deployment, 889
XML (Extensible Markup

Language)
comments, 402–407, 678
delimited comments, 22
elements, runtime binding,

719–720
overview of, 23–24
single-line comments, 22

XNA (Microsoft), 878
XOR (exclusive OR) operators,

118, 122

yield break statements, 670–671
yield keyword, 6n5
yield return statements, 665,

667–669, 674
yielding values from iterators,

662–664

ZipCompression class, 325

	Contents
	Figures
	Tables
	Foreword
	Preface
	Acknowledgments
	About the Authors
	3 Operators and Control Flow
	Operators
	Introducing Flow Control
	Code Blocks ({})
	Code Blocks, Scopes, and Declaration Spaces
	Boolean Expressions
	Bitwise Operators (<<, >>, |, &, ^, ~)
	Control Flow Statements, Continued
	Jump Statements
	C# Preprocessor Directives

	Index

