

Stylin’ with CSS:
A Designer’s Guide

Third Edition
C h a r l e s W y k e - S m i t h

Stylin’ with CSS: A Designer’s Guide, Third Edition
Charles Wyke-Smith

New Riders
Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2013 by Charles Wyke-Smith

Project Editor: Nancy Peterson
Development Editor: Beth Bast
Technical Editor: Curtis Blanton
Production Editor: Katerina Malone
Proofreader: Darren Meiss
Indexer: Karin Arrigoni
Compositor: Beth Bast
Cover design: Aren Straiger
Interior design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While every pre-
caution has been taken in the preparation of the book, neither the author nor Peachpit shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the instructions contained in this book or by the computer software
and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of
a trademark claim, the designations appear as requested by the owner of the trademark. All other
product names and services identified throughout this book are used in editorial fashion only and
for the benefit of such companies with no intention of infringement of the trademark. No such use,
or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13:	 978-0-321-85847-4
ISBN 10:	 0-321-85847-6

9  8  7  6  5  4  3  2  1

Printed and bound in the United States of America

http://www.newriders.com

Acknowledgements
My thanks and appreciation to the Peachpit team: Michael Nolan
for encouraging me to write the third edition and getting it green-
lighted, to my project editor Nancy Peterson for her guidance,
insight, and patience, and to publisher Nancy Ruenzel for seven
years of publishing my books.

On the development team, my thanks go to proofer Darren Meiss
for his meticulous grammar, production editor Katerina Malone for
her management skills, and Karin Arrigoni for the detailed work on
the index.

A big thank you goes to my good friend and technical editor of this
book, Curtis Blanton, for his detailed feedback and suggestions on
the code and the explanations—a really great job, Curtis! Thanks
also to programmers, Jeffrey Johnson and Isaac Shapira, for their
advice and support.

Finally, a very special thanks goes to my wife Beth Bast who, as
both development editor and compositor, has endlessly read and
edited my drafts, created the book’s graphics, and laid out the
entire book in InDesign. It has been an intense five months of work
and her efforts and attention to detail are in every page of this
book. Thanks, my love, I couldn’t have done it without you.

A big hug for my daughters, Jemma and Lucy, who have been very
patient while their parents have focused on writing this book. We
love you both.

	 —�Charles Wyke-Smith
Charleston, South Carolina, September 24, 2012

ac k n o w le d g e m e nt s iii

S t y li n ’ w ith C S Siv

About the Author
Charles Wyke-Smith has been involved in media production for
his entire career. In the mid-80s, he co-founded PRINTZ Electronic
Design, an early, all-computerized design studio in San Francisco.
He has worked in management and consulting roles at Wells Fargo,
ESPN Videogames, and Benefitfocus, where he was Director of User
Experience. In 2009, he co-founded PeopleMatter, an HR platform
for the services industries. He is currently CEO of a new startup,
Bublish, a book discovery platform.

Charles is a performing musician and author of several Web
development books, including Stylin’ with CSS, Codin’ for the
Web, Scriptin’ with AJAX, and Visual Stylin’ with CSS3. He lives in
Charleston, South Carolina with his wife and two daughters.

Photo–Kelly Roper
Photography, Charleston, SC

Contents
Acknowledgements  •  iii

About the Author  •  iv

Contents  •  v

Introduction  •  x

C hap ter 1 : H TM L Mar k u p and D o c u ment S tr u ct u re   •   1

The Basics of Markup  •  2

Enclosing Tags for Text  •  2

Non-Enclosing Tags for Referenced Content  •  3

Attributes  •  4

Headings and Paragraphs  •  5

Compound Elements  •  5

About Nested Tags  •  6

Anatomy of an HTML Document  •  7

An HTML Template  •  7

Block and Inline Elements  •  10

Nested Elements  •  16

The Document Object Model  •  20

Summary	 22

C hap ter 2 : H o w C S S W o r k s   •   23

The Anatomy of a CSS Rule  •  24

CSS Rule Naming Conventions  •  26

Contextual Selectors  •  28

Specialized Contextual Selectors  •  32

Child Selector >  •  32

Adjacent Sibling Selector +  •  33

General Sibling Selector ~  •  33

The Universal Selector *  •  34

IDs and Classes  •  35

The Class Attribute  •  35

The ID Attribute  •  38

ta b le o f c o nte nt s v

S t y li n ’ w ith C S Svi

When to Use an ID and When to Use a Class  •  39

IDs and Classes Summary  •  41

Attribute Selectors  •  41

The Attribute Name Selector  •  41

The Attribute Value Selector  •  42

Summary of Attribute Selectors  •  42

Pseudo-Classes  •  43

UI Pseudo-Classes  •  43

Structural Pseudo-Classes  •  46

Pseudo-Elements  •  47

Inheritance  •  49

The Cascade  •  50

Sources of Styles  •  50

The Cascade Rules  •  52

Calculating Specificity  •  53

Rule Declarations  •  55

Word Values  •  55

Numerical Values  •  56

Color Values  •  57

Summary  •  61

c hap ter 3 : P o s iti o n i ng E lements   •   62

Understanding the Box Model  •  62

Box Border  •  63

Box Padding  •  66

Box Margin  •  67

Collapsing Margins  •  68

Setting Units for Margins  •  69

How Big Is a Box?  •  70

Floating and Clearing  •  75

The Float Property  •  76

Three Ways to Enclose Floated Elements  •  78

The Position Property  •  85

Static Positioning  •  86

Relative Positioning  •  87

Absolute Positioning •  87

Fixed Positioning	 •  89

Positioning Context  •  90

The Display Property  •  92

Backgrounds  •  93

CSS Background Properties  •  94

Background Color  •  95

Background Image  •  95

Background Repeat  •  96

Background Position  •  97

Background Size  •  99

Background Attachment  •  100

Background Shorthand  •  101

Other CSS3 Background Properties  •  101

Multiple Background Images  •  102

Background Gradients  •  104

Summary  •  107

C hap ter 4 : S t y li n ’ Fo nts and Te x t   •   10 8

Fonts  •  108

Font-Family Property  •  109

Font-Size Property  •  112

Font-Style Property  •  115

Font-Weight Property  •  116

Font-Variant Property  •  116

Font Property  •  117

Text Properties  •  117

Text-Indent Property  •  118

Letter-Spacing Property  •  119

Word-Spacing Property  •  121

Text-Decoration Property  •  122

Text-Align Property  •  122

Line-Height Property  •  123

Text-Transform Property  •  124

Vertical-Align Property  •  125

ta b le o f c o nte nt s vii

S t y li n ’ w ith C S Sviii

Web Fonts Demystified  •  126

Hosted Font Libraries  •  127

Packaged @font-face Kit  •  128

Generated @font-face Kit  •  130

Stylin’ Text  •  130

Basic Text Layout  •  131

Stylin’ Text on a Grid  •  135

An Exercise in Classic Typography  •  141

Summary  •  150

C HAP TE R 5 : Page L ayo u ts   •   151

Basic Layout Concepts  •  151

Layout Height and Layout Width  •  152

Creating Columns  •  153

Setting Padding and Borders on Columns  •  161

Three-Column, Fluid Center Layouts  •  172

A Three-Column, Fluid Center Layout with Negative Margins  •  172

A Three-Column, Fluid Center Layout with CSS3 Table Properties  •  177

A Multi-Row, Multi-Column Layout  •  179

Real-World CSS Selectors  •  182

Inner Divs in Action  •  184

Summary  •  185

C hap ter 6 : Interface C o m p o nents   •   18 6

Creating Navigation Menus  •  186

A Vertical Menu  •  186

A Horizontal Menu  •  189

Drop-Down Menus  •  191

Forms  •  201

The HTML Elements of a Form  •  201

Form Markup Strategies  •  209

Styling the Form  •  210

A Search Form  •  221

A Popup Overlay  •  224

Stacking Context and z-index  •  227

Summary  •  230

C hap ter 7 : A C S S 3 - E nhanced We b Page   •   231

Structuring the Page  •  231

Planning the HTML  •  232

Styling the Header  •  236

The Title  •  237

The Search Form  •  239

The Menu  •  242

The Feature Area  •  249

Styling the Sign-In Form  •  253

The Blog Links  •  258

The Book Area  •  260

The Footer  •  268

Summary  •  271

C hap ter 8 : R es p o ns i v e D es i gn   •   272

Large Layouts on Small Devices  •  272

Media Queries  •  274

The @media Rule  •  274

The Link Tag Media Attribute  •  276

About Breakpoints  •  277

The Viewport Meta Tag  •  278

Optimizing the Layout for Tablets  •  278

Optimizing the Layout for Smartphones  •  282

Fine-Tuning for Portrait Format  •  285

Finishing Touches  •  287

The Scaling Bug in Safari Mobile  •  287

Making the Drop-Down Menus Work on Touch Screens  •  288

Conclusion  •  290

Append i x   •   291

Inde x   •   29 9

ta b le o f c o nte nt s ix

S t y li n ’ w ith C S Sx

Introduction
This is an exciting time to be a Web designer. The Web is now the
way we consume almost all media, as cable TV, CDs, and DVDs are
replaced by on-demand Web-delivered services like Hulu, Netflix,
Pandora, and Spotify.

We also have a variety of devices on which to consume this
media—desktop computers, laptops, tablets, smartphones, and
massive 60-inch flat screen displays.

Supporting the delivery of content across all these different devices
and media is an emerging technology standard—centered around
browsers that use HTML5, CSS3, and JavaScript.

When I wrote the second edition of Stylin’ with CSS almost five
years ago, a rigid and complex XML-based version of HTML, called
XHTML, had become the standard. Because XHTML was unsuited
to the free-wheeling and fast-moving world of Web development,
Apple, Mozilla, and Opera formed the Web Hypertext Application
Technology Working Group. The purpose of this organization
was to revive the development of HTML that the World Wide Web
Consortium had abandoned after HTML4 in favor of XHTML.
The phoenix that arose from the ashes became known as HTML5,
and in the last three years, the move from XHTML to HTML5 has
occurred swiftly and with good reason.

HTML5 is designed for today’s multimedia Web, with a rich set
of APIs (Application Programming Interfaces) that provide built-
in support for video, audio, graphics, geo-location, data storage,
and much more. HTML5 also offers many new elements for bet-
ter of structuring documents (section, article, nav, and so on).
Previously, semantically meaningless divs with identifying classes
and IDs had been used for this purpose, which limited the portabil-
ity and meaning of the markup.

During HTML’s transition from HTML4 to XHTML and then to
HTML5, CSS3 has been steadily implemented by every browser.
The visual-rendering toolbox that is CSS3 is a massive set of recom-
mendations, so large that it has been divided into numerous mod-
ules so that different teams can plan how each module will work.

Finally, you can utilize long-awaited CSS3 features, such as gradi-
ents, transitions, transformations, shadows, and radiused corners,
and be confident that the vast majority of users will see these fea-
tures correctly rendered. For older browsers, where CSS3 is not fully
supported, Modernizr, a JavaScript file that you link to your pages,
enables you to detect support for specific CSS3 features. You can
then provide fallbacks (alternative code) or polyfills (JavaScript
code that simulates build-in CSS3 functionality) for those fea-
tures. You can learn more about these fallbacks and polyfills in the
Appendix section of this book.

Today, the Web is a much more user-friendly, and developer-
friendly, place than it has ever been. Writing this latest version of
Stylin’ with CSS has, as always, been a labor of hundreds of hours
of coding and writing, countless late nights and endless cups of
tea, but it has also felt like a kind of celebration. That’s because,
behind the examples and exercises, this book describes a new state
of the Web—the realization of a vision that has long been imagined.
Thanks to the work and advocacy of Jeffrey Zeldman, Ian Hicks,
and countless others, the long quest for Web standards appears
to have been realized. It’s like inching your way up the side of a
mountain and suddenly realizing you’re at the top. The fact that I
no longer have to write (and waste pages of this book teaching you
to write) hacks for older browsers for even the most simple layouts;
that I can create shadows or radiused corners with a single line of
CSS instead of using complex graphics and layers of divs; that every
current browser displays my pages in a complete and consistent
way—is a massive breakthrough.

So, in this book, I am looking forward to the future. Rather than
spend pages showing you how to work around old browser incom-
patibilities as I did in previous editions, I am focusing on the vast
scope of what is possible now and in the future with HTML5, CSS3,
and modern browsers. Internet Explorer 9 and up, and Firefox,
Chrome, Safari, and Opera (which automatically update users to
the latest versions) all behave in remarkably consistent ways. The
number of users on older browsers (specifically IE8 and below)
decreases every day. I provide information in the Technical Notes in
the Appendix about how to work with older browsers, but the main
narative of this book is to show you how CSS works today and in
the future.

i nt r o d u c ti o n xi

S t y li n ’ w ith C S Sxii

A Focus on Essential Techniques
You don’t need to be a brilliant artist or a computer programmer to
be successful with CSS, although both those abilites can be put to
good use. What you do need to do is have a solid grounding in the
workings of HTML and CSS, and understand some key techniques
and best practices. This book is designed to provide you with this
understanding and provide a strong foundation for building your
skills. CSS3 is so extensive that there are many features of it I didn’t
even mention in this book. No matter, I believe that once you have
read and worked thought the examples in this book, you will be
able to rapidly extend your knowledge and skills—that at least is
the sincere objective in what I have written here.

Download My Code, Don’t Rewrite It
All the code shown in this book is available for download at the
book’s Web site, www.stylinwithcss.com. I recommend you use the
download code rather than copying the code from the book; not
only is it much quicker and easier to do that, but I will also update
the download code to correct any errors that are found. I will also
run an errata section on the site and post any reported inaccura-
cies in the book. The site will have a new blog that I am starting, so
please come by for information and maybe inspiration, and post
comments and make suggestions for articles you would like to see.

Thanks for buying this book. I hope it’s a big help to you, and good
luck with your Web endeavors.

http://www.stylinwithcss.com

C h a p t e r 4

Stylin’ Fonts and Text
Much of Web design deals with text, in paragraphs, headings, lists,
menus, and forms, so understanding the CSS properties in this
chapter is essential to making a site that looks professional. Almost
more than any other factor, type makes the clearest visual state-
ment about the quality of your site’s offerings. Graphics are the
icing on the cake; typography is where good design begins.

In this chapter, you’ll learn about fonts and text, and the respective
CSS properties you can use to style them. I’ll also introduce you to
the wonderful world of Web fonts, which download to your user
along with your pages. Now you no longer have to rely on the user
having your font choices installed on his device, and you can be
confident that every user will see your typography in the way you
intend.

Let’s start with fonts.

Fonts
The fonts you specify in your Web pages can come from three
sources.

•	 The fonts that are installed on the user’s device. (Until recently,
these have been the only fonts reliably available to your Web
pages.)

•	 Fonts that are hosted on third-party sites, most notably Typekit
and Google, and linked to your page using the link tag.

•	 Fonts that are hosted on your Web server and served to the
user’s browser along with the page, using the @font-face rule.

In the font property descriptions that follow, the examples will
show the first of these sources: the fonts that are installed on the
user’s computer. See Web Fonts Demystified later in this chapter for
a discussion of the other two sources.

s t y li n ’ fo nt s an d te x t 109

Now let’s look at the six properties that relate to font styling:

•	 font-family

•	 font-size

•	 font-style

•	 font-weight

•	 font-variant

•	 font (shorthand)

Font-Family Property
Example: h2 {font-family:times, serif;}

font-family determines the font in which an element is displayed.
Typically, you set a primary font for the entire page, and then only
add font-family styles to elements that you want to display in a
different font. To specify the font for the entire page, you set the
font-family of the body element:

body {font-family:verdana, sans-serif;}

Aren’t Fonts and Text the Same Thing?
The answer is “No,” and here’s why.

Fonts are the different kinds of typefaces. Each font is a set of letters, numbers, and symbols with a unique visual
appearance. Fonts are categorized into collections, based on their general look, such as serif, sans-serif, or mono-
space. Fonts are made up of families, with names such as Times and Helvetica. A font family in turn can be bro-
ken down into font faces, which are variations on the basic design of the font, such as Times Roman, Times Bold,
Helvetica Condensed, and Bodoni Italic.

Text simply describes words and characters, like this sentence or the heading of a chapter, regardless of the font
in which it is set.

CSS has a set of properties relating to fonts and a set of properties relating to text. Font properties relate to the
size and appearance of collections of type. What is its family (Times or Helvetica, for example)? What size is it?
Is it bold or italic? Text properties relate to the font’s treatment. What is its line height and letter spacing? Is it
underlined or indented? And so on.

Here’s a way I think about this perhaps seemingly subtle distinction. You can apply font styles, such as bold and
italic, to a single character, but text properties, such as line height and text indent, only really make sense in the
context of a block of text, such as a headline or a paragraph.

S t y li n ’ w ith C S S - chap te r 4110

font-family is an inherited property, so its value is passed to all its
descendants, which in the case of body is all the other elements in
the markup.

Because fonts must either be on the user’s computer, or delivered
over the Web, there is always a possibility that a particular font you
specify might not be available to a page. For this reason, fonts are
always specified in lists called font stacks.

S pe c i f y i n g I n sta lle d Fo nts U s i n g Fo nt S tac k s

Fonts are installed in the operating system of a device, which
allows all resident applications to share them. Only a limited set of
fonts come installed in the typical operating system, and fonts can
be added and removed by the user, so you can never be absolutely
certain what fonts will be available to display your pages. Because
of this, when stating the font in which you want text to display, you
must also list additional “fallback” fonts in case your first choice
isn’t available on the user’s system. This list of choices is called a
font stack.

In short, font stacks ensure that the user sees your page text in the
intended font if it is installed on her device, and if it is not, then in
a font that you specify as an acceptable substitute.

body {font-family:”trebuchet ms”, tahoma, sans-serif;}

This font stack effectively tells the browser “Display this document
in Trebuchet MS, and if the system doesn’t have it, use Tahoma, and
if neither is installed, use whatever generic sans-serif font is avail-
able.” It is very important to make the last item of a font-family
declaration a generic declaration, typically “serif” or “sans-serif”, as
a final fallback.

There are five generic font-family names:

Serif—serif fonts have small details at the terminals (tips) of the
characters (like this text)

Sans-serif—sans-serif fonts have no details at the terminals (like
the headings of this book)

Monospace—every monospace font character occupies the same
amount of horizontal space (like the code examples in this book)

Because the font name,
Trebuchet MS, is more

than one word, it has to be in
quotes.

From my own testing
I’ve observed that

font-family names are not case
sensitive, but do not alter the
case of a font name generated
by Google or another hosted
font service or your font may
not display.

s t y li n ’ fo nt s an d te x t 111

Cursive—cursive fonts look like handwriting (like the headline of
The Hound of the Baskervilles example later in this chapter).

Fantasy—fonts that don’t fit the other categories (typically the
strange and bizarre)

The purpose of these generic fonts is to ensure, that if none of your
choices are available that, at a minimum, your document displays
in the right type (no pun intended) of font.

It’s worth taking some care when selecting the fonts that you put
in a font stack. For example, Dreamweaver offers a list of selectable
font stacks that pop up every time you type font-family: in your
CSS file, but these fonts are not ideal substitutes for one another.
For example, here is a font stack that Dreamweaver offers:

verdana, arial, helvetica, sans-serif;

Verdana is a bulky font that has a much larger x-height than Arial,
so if a user does not have Verdana installed, your page will be dis-
played in Arial, a font that is smaller than the one you intended.
More words will fit on each line, and the vertical height of text
blocks may be shorter.

A good test is to view your pages with each font in the stack as the
first choice so that you can see how the layout changes if it displays
in one of the fallback fonts.

A better fallback for Verdana might be Tahoma, which has the same
large x-height.

verdana, tahoma, sans-serif

For a stack of lighter sans-serif fonts, you might use

helvetica, arial, sans-serif

Here’s a stack of serif fonts starting with a font that the user may
not have.

{font-family:“hoefler text”, georgia, times, serif;}

In a case like this, always complete the stack with fonts that are
supplied with most computer’s operating systems, here Georgia
and Times, and end with the generic, serif.

x-height is the main area
of the letters, excluding

the ascenders and descenders
of letters like d and p, which the
letter x does not have, hence
the name.

You can learn more
about selecting fonts for

your font stacks at http://unitint-
eractive.com/blog/2008/06/26/
better-css-font-stacks.

http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks
http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks
http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks

S t y li n ’ w ith C S S - chap te r 4112

Font-Size Property
Example: h2 {font-size:18px;}

Every HTML text element has a default font-size set by the
browser style sheet, so when you set an element’s font-size, you
are changing its font size from that default. Font sizing can appear
to act unpredictably if you don’t understand how the inheritance
of font sizes down the hierarchy is affected by which font size units
you use. There are two types of units that you can use to set the
font-size: absolute units, such as pixels or points, and relative
units, such as percentages or ems. Let me explain the difference
between them.

font-size is an inherited property, so a change to the font size of
an element will result in a proportional change of size in the font
sizes of its descendant elements. This means that if you set the
font-size of the body element to 200%, then the text of all the ele-
ments on your page will double in size.

This effect occurs because in the browser style sheet, all element
font sizes are set in the relative unit, em. For example, the h1

So, Which Fonts Are Available to All Users’ Browsers?
That is a common question which has no definitive answer but you have a high probability that any Mac or PC
will have these fonts installed:

Serif

Georgia

Palatino/Book Antiqua

Times New Roman

Sans-serif

Arial

Arial Black

Arial Narrow

Tahoma

Trebuchet MS

Verdana

Monospace

Courier New

Lucida Console/Monaco

Cursive

Comic Sans MS

Fantasy

Impact

Because of the often obscure fonts on today’s phones and tablets, it is more important than ever to include
fallback generic font families in your font stacks. If you want to specify a specific font, use a hosted Web font or
one that is downloaded from your Web server—see Web Fonts Demystified, later in the chapter.

s t y li n ’ fo nt s an d te x t 113

element is 2em, the h2 element is 1.5em, and p (paragraph) is 1em.
By default, 1em is equivalent to 16 pixels—this is known as the
font-size baseline. So by default, h1 is 32 pixels (16 × 2em = 32 pix-
els), h2 is 24 pixels, and p is 16 pixels.

If you set the body text to 20px, you are resetting the baseline, so
now h1 would be 40px (20 pixels × 2em = 40 pixels), h2 would be 30
pixels, and p would be 20 pixels. However, font-size inheritance
will not occur in descendant elements that have been sized with
absolute units such as pixels—these elements will always display at
their specified size.

Let’s learn more about font sizing by looking at each method of siz-
ing fonts in turn.

A bs o lut e Fo nt S i z i n g

Sizing text with absolute units such as pixels, picas, or inches is
simple; when you set the size of an element using absolute units, it
stays that size no matter what font sizing is applied to its ancestors.
The downside of absolute sizing is that if you decide to proportion-
ally change the overall size of the text on your page, you have to
change every absolute font-size in the style sheet; an absolutely-
sized page requires more effort to fine tune.

In short, if you change the size of the body tag’s font, any abso-
lutely-sized elements do not change size, but elements that have
not been sized in your CSS will change proportionally to the size
stated on body.

R e l ati v e Fo nt S i z i n g

Sizing text with relative units such as percentages, ems, or rems is
slightly more complex; when you set the size of an element using
relative units, the size of the text is set relative to the size of the
nearest “sized” ancestor.

Let’s consider this simple markup

<body>

	 <p>This is very important!</p>

</body>

Fonts can also be sized
using keywords such as

x-small, medium, and x-large.
Medium is equal to the baseline
size and the other keywords
produce smaller or larger text.
Because keywords produce a
limited set of sizes, they are not
widely used, but you can learn
more about them at http://css-
discuss.incutio.com/wiki/Using_
Keywords.

http://cssdiscuss.incutio.com/wiki/Using_Keywords
http://cssdiscuss.incutio.com/wiki/Using_Keywords
http://cssdiscuss.incutio.com/wiki/Using_Keywords

S t y li n ’ w ith C S S - chap te r 4114

and this CSS

p {font-size:.75em;}

strong {font-size:.75em;}

In this example, the p tag text would be 12 pixels (the body tag’s 16
pixel baseline × .75 = 12). Because strong is a child of p, its point
size would be 9 points. What you see is that relative sizes com-
pound down through the hierarchy—strong is 16 pixels × .75 ×
.75 = 9 pixels. Relative units can take practice to master, as unlike
absolute sizes, changing the relative font size of an element also
changes all the child elements by the same proportion.

However, with relative sizing, you have the ability to tweak the
size of all elements proportionally by resizing body, or a number
of elements by changing a shared ancestor element. This can be
time saving as you experiment with your layout, but it also takes
planning for the same reason; a change to an element’s font-size
affects all its descendant elements, too.

You cannot tweak font sizes like this if you work in absolute font-
size units—each absolutely-sized element must be resized indi-
vidually. Of course, if you do size in absolute units, you can size an
element without getting the often-unwanted “knock-on” effect of a
change of size in its ancestors.

However, with today’s wide range of screen sizes, from massive
monitors to tiny phones, the need for text that can be easily scaled
makes relative sizing the preferred approach.

A N ote o n r e m U n its

The new relative rem (root em) unit is a CSS3 addition that is gen-
erating a lot of excitement in the Web community. When you size
an element in rems, the size is relative, but only to the root HTML
element. This gives you the best of both relative and absolute
worlds; you can use relative sizing to proportionally change the
overall font size by changing the font size of the HTML element,
but unlike ems, font sizes are not compounded down through the
hierarchy. Rems are supported by all the current browsers, but not
by IE8 and earlier. The fallback is simple, however, and that is to
provide absolute pixel sizing to browsers that don’t understand,
and therefore ignore, rem declarations, like this

Set your font sizes
working down the

hierarchy when using relative
sizes.

If you want to use ems
but also need to set

specific pixels sizes, a good trick
is to set body’s font-size to
62.5%. By doing this, the baseline
size is changed from 16 to 10 pix-
els (16 × 62.5% = 10). Now it’s
simple to translate ems to pixels:
1em equals 10px, 1.5em equals
15px, 2em equals 20px, and so
on.

IE9 and earlier will only
scale text set in relative

units (not absolute units such as
pixels) when the user changes the
text size of the layout using the
browser’s View > Text Size menu.
This means that the minor down-
side of using rems is that if IE7
and IE6 users want larger type,
they have to use View > Zoom
and increase the text size of the
entire page. Just another reason
for them to upgrade to a modern
browser.

s t y li n ’ fo nt s an d te x t 115

p {font-size:14px; font-size:.875rem;}

Let’s now look at the other font-related CSS properties.

Font-Style Property
Values: italic, oblique, normal

Example: h2 {font-style:italic;}

font-style determines whether a font is italicized or not. You can
also write oblique instead of italic—the result is the same.

There are only two useful settings for the font-style property:
italic to make regular text italicized, and normal to make a section
within italicized type regular “upright” text. In this example

p {font-style:italic;}

span {font-style:normal;}

<p>This is italicized text with a piece of non-italic
text in the middle.</p>

the code produces the result in Figure 4.1.

Fig u r e 4 .1 The normal value for
the font-style property causes
a specified section of text to
appear normal within a bit of
italicized text.

Note that the main purpose of italic text is to indicate emphasis, as
in “It’s very hot today!” If you want to indicate emphasis, use the em
tag, which styles the text as italic by default.

The Normal Value
normal causes any of the possible effects of a property not to be applied. Why might you want to do this?

The reason this option is available is so you can selectively override a default or a global property you have set.
Headlines h1 through h6 are bold by default, so if you want to unbold the h3 element, for example, you need to
write h3 {font-weight:normal;}. If your style sheet states a {font-variant:small-caps;} so that all links are in
small caps, and you want one special set of links to be in regular upper- and lowercase type, you might write a
declaration such as a.speciallink {font-variant:normal;}.

IE8 and earlier use 14px

S t y li n ’ w ith C S S - chap te r 4116

Font-Weight Property
Possible values: 100, 200, and so on to 900, or lighter, normal, bold,
and bolder.

Example: a {font-weight:bold;}

Despite all the numerical options listed here, browsers only dis-
play two visual results for all font-weight values—bold or normal.
Because interpretation of the numerical values differs among
browsers, you’ll see the switch from normal to bold at various val-
ues—typically around 400. It’s best to avoid using all values except
bold and normal, as illustrated in Figure 4.2.

p.shows_weight {font-weight:bold;}

p.shows_weight span {font-weight:normal;}

<p class=”shows_weight”>This is bolded text with a
piece of non-bolded text in the middle.</p>

Fig u r e 4 . 2 The normal value for
the font-weight property causes a
specified section of text to appear
normal within the bolded text.

Note that the primary purpose of bold text is to indicate impor-
tance, as in “Danger!” Mark up important text with the strong tag,
which styles the text as bold by default.

Font-Variant Property
Values: small-caps, normal

Example: blockquote {font-variant:small-caps;}

This property accepts just one value (besides normal), and that is
small-caps. This causes all lowercase letters to be set in small caps,
like this:

h3 {font-variant:small-caps;}

The code above produces the result in Figure 4.3.

Fig u r e 4 . 3 Here is a heading
styled in small caps. Note the
first letter of this text is in upper-
case in the markup and remains
unchanged.

s t y li n ’ fo nt s an d te x t 117

I often use small-caps with the ::first-line pseudo-element as I
demonstrate in The Hound of the Baskervilles example at the end of
this chapter. Use this styling sparingly because text in all uppercase
is harder to read as it lacks the visual cues provided by the ascend-
ers and descenders of lowercase type.

Font Property
Example: p {font: bold italic small-caps .9em helvetica,
arial, sans-serif;}

<p>Here’s a piece of text loaded up with every possible font
property.</p>

The code above produces the result in Figure 4.4.

Fig u r e 4 .4 Bolded, italicized,
small-capped, sized, and font-
family specified—all in a single
CSS rule.

The font property is a shorthand styling that lets you apply all of
the font properties in a single declaration, reducing the amount of
CSS you have to write. You must follow two rules, however, so that
the browser can interpret the properties correctly.

Rule 1: Values for font-size and font-family must always be
declared.

Rule 2: The sequence for the values is as follows:

1.	 font-weight, font-style, font-variant, in any order, then

2.	 font-size, then

3.	 font-family

Text Properties
Now that you’ve looked at how to style font properties, it’s time to
look at how to style text properties. If you want to indent a para-
graph, create a superscript such as the 6 in 106, create more space
between each letter of a headline, and many other type formatting
tasks, you will use the CSS text properties.

Jumping ahead in this
chapter somewhat, you

can write the font-size property
to also include the line-height
property (which is a text property
rather than a font property) by
writing the size as 12px/1.5 or
similar. You’ll learn more about
the line-height property in the
“Text Properties” section next.

S t y li n ’ w ith C S S - chap te r 4118

Here are the most useful text-related CSS properties:

•	 text-indent

•	 letter-spacing

•	 word-spacing

•	 text-decoration

•	 text-align

•	 line-height

•	 text-transform

•	 vertical-align

Text-Indent Property
Values: any length value (positive or negative)

Example: p {text-indent:3em;}

This property sets the start position of the text box in relation to
the containing element. By default, that is the top-left corner of the
container.

If you set a positive value to the text-indent, then the text moves to
the right, creating an indented paragraph (Figure 4.5, example 1).

Fig u r e 4 . 5 These four examples illustrate the text-indent property.

s t y li n ’ fo nt s an d te x t 119

However, if you set a negative value for text-indent, the first line
hangs out to the left of the containing element, so make sure that
there is a place for it to go. If there’s an element to the left, the
hanging text can overlap it, or if it’s close to the edge of the browser
window, it is clipped (Figure 4.5, example 2). The way to avoid this
problem is always to specify a positive left margin value greater
than the specified negative indent. In Figure 4.5 example 2, the
negative indent is –1.5 ems, but in Figure 4.5, example 3, there is
also a left margin value of 2 ems. Here is how this is written.

p {text-indent:-1.5em; margin-left:2em; border:1px solid
red;}

Indents can help give text a professionally-styled look and also give
the reader clear visual entry points into the text blocks. Remember
to set indents and related margins in ems, as I have done here, so
that the indent remains proportional to the line length if the user
(or you) changes the font size.

Letter-Spacing Property
Values: any length values (positive or negative)

Example: p {letter-spacing:.2em;}

Positive letter-spacing values increase the overall space between
letters, while negative values decrease it. Always use relative values
such as ems for letter spacing, even if you are setting the font size
in pixels, so that the spacing remains proportional if the font size

Inherited Values are Computed Values
One more important note here: text-indent is inherited by child elements. For example, if you set a text-
indent on a div, all the paragraphs inside the div will have that text-indent value. However, as with all
inherited CSS values, it’s not the defined value that’s passed down but the computed value. Here’s an example
that explains the implications of this fact.

Let’s say you have a div containing text that’s 400 pixels wide with a 5 percent text indent. In this case, the
indent for that text is 20 pixels (5 percent of 400). Within the div is a paragraph that’s 200 pixels wide. As a child
element, the paragraph inherits any text-indent value, so it is indented too, but the value it inherits is the
result of the calculation made on the parent, that is, 20 pixels, not the defined 5 percent. As a result, it too has a
20 pixel indent even though it’s half the width of the parent element. This ensures that all the paragraphs have
nice matching indents, regardless of their widths. Of course, you can override this behavior by explicitly setting a
different text-indent for child elements.

S t y li n ’ w ith C S S - chap te r 4120

Meet the Text Snake
A very important concept of how CSS manages text is that CSS puts an invisible box around the text inside an
element. For example, if you put a block of text in a paragraph p element, CSS sees the actual text as a long line
of text, even if it gets broken across multiple lines in order to fit in the container. To make this clear, in Figure 4.6,
the border of the containing element (the paragraph) is in red, and the border of the text box is in green. Text
properties are applied to the green text box.

Fig u r e 4 . 6 Text is contained within a long, skinny box that is often broken across multiple lines.

In this example, I mark up the text like this

<p>Here is a long paragraph…</p>

and apply the following styles

p {border:3px solid red;}

span {border:1px solid green;}

Note that the text box is broken across the lines and is only closed at the beginning of the first line and the end
of the last line. Knowing this can help you get things looking the way you want faster. For example, if you want to
indent the first line of a paragraph, you can use the text property text-indent, as I do in Figure 4.5, and then
you are moving the start position of the text box. Subsequent lines are not indented because to CSS, it’s just one
long piece of text.

If you want the whole paragraph indented, then you need to set the margin-left property of the paragraph; in
other words, you have to push the whole container to the right. All you need to remember is that text properties
are applied to the long, thin, snake-like inner text box, not the box of the containing element.

s t y li n ’ fo nt s an d te x t 121

changes. Examples are shown in Figure 4.7. letter-spacing con-
trols tracking, which is the typographical term for the letter spacing
applied to all characters in a block of text. This contrasts with kern-
ing, which is the term for adjusting the space between two specific
characters.

Fig u r e 4 .7 You can see how
changing the letter-spacing
value changes the look of
your text.

The default letter spacing of a font appears looser as the text gets
larger, so tightening the letter spacing of a headline adds refine-
ment to your Web page. Note the text and headline I tightened in
Figure 4.7 only have .05 em (a twentieth of an em) of letter spacing
removed from between each character; much more and the letters
would start to merge into each other.

Word-Spacing Property
Values: any length values (positive or negative)

Example: p {word-spacing:.2em;}

Word spacing is very similar to letter spacing except, as you might
imagine, the space changes between each word rather than
between each letter. CSS treats any character or group of characters
with white space around them as a word. Second, even more than
letter spacing, word spacing can easily be overdone and result in
some very hard-to-read text (Figure 4.8).

Fig u r e 4 . 8 Paragraphs and
headlines with normal, negative,
and positive word spacing.

If you use wide letter
spacing, then the spaces

between the words aren’t as easy
to differentiate, so that’s a good
time to add in a little word spac-
ing, too.

S t y li n ’ w ith C S S - chap te r 4122

Text-Decoration Property
Values: underline, overline, line-through, blink, none

Example: .retailprice {text-decoration:line-through;}

These values, with the exception of blink, are displayed in Figure
4.9. blink, which makes text flash on and off, is truly annoying, and
should be used sparingly, or better yet, not at all.

Fig u r e 4 . 9 These are the vari-
ous text-decoration values, but
the most useful application is the
control of underlining on links.

The primary application of text decoration is controlling the under-
lining of links. Here’s an example that removes the underlining of
links in a navigation bar, where the text is obviously clickable and
underlining is just clutter, but adds it back when the user rolls over
a link, providing a little tactile feedback.

nav a {text-decoration:none;}

a:hover {text-decoration:underline;}

Text-Align Property
Values: left, right, center, justify

Example: p {text-align:right;}

There are only four values for this property: left, right, center,
and justify. The text aligns horizontally within the element. Note
that center will also center a smaller fixed-width element or image
horizontally within a larger element. Figure 4.10 shows the four
possible text-align values in action.

Note that Web users are
so used to underlining

as the visual cue for links that you
are setting them up for frustration
and a lot of useless clicking if you
underline text that is not in fact
a link.

s t y li n ’ fo nt s an d te x t 123

Fig u r e 4 .10 The four text-align
values.

Line-Height Property
Values: any numerical value (value type is optional)

Example: p {line-height:1.5;}

line-height is the CSS equivalent of leading (pronounced like the
metal) in the world of print. Leading creates space between the
lines of a block of text.

Line height is distributed above and below the text. For example,
if you have a font size of 12 pixels and you set the line height to
20 pixels, the browser adds 4 pixels of space above and 4 pixels of
space below to achieve the 20 pixel line height.

On a single line of text like a headline, line-height acts like another
margin, and large headlines (h1 and h2, for example) have a sig-
nificant amount of default line height. This is worth remembering,
because sometimes you will find that even after removing mar-
gins and padding, you still can’t eliminate all the space above and
below a headline. To do this you need to reduce the line height also,
sometimes to a height less than that of the text, i.e., less than 1.

In case you’re wonder-
ing where the term

“leading” comes from, in the early
days of printing, a strip of lead
was used to space the lines
of type.

S t y li n ’ w ith C S S - chap te r 4124

Fig u r e 4 .11 A variation of the
standard line height is a simple
way to give a distinctive look to
your pages.

As shown in Figure 4.11, the simplest way to change this default
line height is to use the font shorthand property and write a
compound value for both font-size and line-height in one.
For example:

div#intro {font:1.2em/1.4 helvetica, arial, sans-serif;}

In this case, the leading is 1.4 times the font size of 1.2 ems. Note
that you don’t need any units, such as ems or pixels, specified for
the line-height part of the value, just a number. In this case, CSS
simply takes the calculated size of whatever number of onscreen
pixels 1.2 ems works out to be and multiplies it by 1.4 to arrive at
the line height. If you later increase the font size to 1.5 ems, the line
height (leading) is still 1.4 times the calculated amount of 1.5 ems.
Note if you specify a line height in a fixed unit, such as pixels, and
you increase the font size, then the lines of text may start to overlap
one another.

Text-Transform Property
Values: none, uppercase, lowercase, capitalize

Example: p {text-transform:capitalize;}

text-transform changes the capitalization of text within an ele-
ment. You can force a line of text to have initial letters capitalized,
all text uppercase, or all text lowercase. Figure 4.12 illustrates these
options.

capitalize capitalizes the first letter of every word. This emulates
the style of many headlines in ads, newspapers, and magazines,
except that a human applying such styling tends to leave the capi-
talization off minor words such as “of,” “as,” and “and,” as in “Tom

If you want large and
small caps, then you

need font-variant:capitalize.

s t y li n ’ fo nt s an d te x t 125

and Jerry Go to Vegas.” CSS capitalization simply produces “Tom
And Jerry Go To Vegas.”

Fig u r e 4 .12 text-transform lets you add newspaper-style headline formatting to text.

Vertical-Align Property
Values: any length value, sub, sup, top, middle, bottom

Example: span {vertical-align:60%;}

vertical-align moves text up or down with respect to the baseline,
but note that it only affects inline elements. If you want to vertically
align a block-level element, you must also set its display property
to inline. One of the most common uses is for superscript and
subscript numbers in formulas and mathematical expressions,
such as x4–y-5 or N3O. It’s also the correct way to style asterisks and
other markers within text to indicate footnotes. I don’t like the way
most browsers style sub- and superscripts by default—the font size
is too large and too high (or low, for subscript) for my liking. A little
styling can render better, and more consistent cross-browser, pro-
portions.

Here’s the HTML for this example

<h4>Default <code>sub</code> and <code>sup</code> styles</
h4>

<p>Enjoy mountain spring H₂O. It’s 10⁵
times better than tap^{†} water!</p>

<p class=”customsmall”>^{†}This means
water provided through a municipal distribution system</
em></p>

<h4>Custom <code>sub</code> and <code>sup</code> styles</h4>

S t y li n ’ w ith C S S - chap te r 4126

<p class=”custom”>Enjoy mountain spring H₂O.
It’s 10⁵ times better than tap^{†}
water!</p>

<p class=”customsmall”>^{†}This means
water provided through a municipal distribution system</
em></p>

and the CSS

p.custom sub {font-size:60%; vertical-align:-.4em;}

p.custom sup {font-size:65%; vertical-align:.65em;}

p.customsmall {font-size:.8em; vertical-align:1em;}

Fig u r e 4 .13 Superscripting and
subscripting vary the vertical
position and size of text.

While the HTML tags sup and sub create superscript or subscript
text automatically, it’s worth using vertical-align and font-size in
combination to produce a more pleasing result (Figure 4.13). This
covers the font and text properties of CSS. Now let’s look at how
fonts can be downloaded into your Web pages.

Web Fonts Demystified
A now widely implemented CSS feature is the capability to embed
downloadable fonts into your pages, using the @font-face rule.

@font-face gives designers greatly expanded font options beyond
the basic system fonts. Now you can ensure that the fonts you
specify are available to your user’s browser because they are down-
loaded to the browser from a Web server and you no longer have to
rely on your font choices being installed on the user’s device.

There are three ways to specify Web fonts:

s t y li n ’ fo nt s an d te x t 127

•	 Use a hosted font library that delivers fonts to your Web pages,
such as Google Web Fonts or Adobe’s Typekit

•	 Use a pre-packaged @font-face kit

•	 Generate an @font-face kit from one of your own fonts using
Font Squirrel

Let’s start with the easiest method—accessing a hosted font library.

Hosted Font Libraries
The two largest hosted font libraries are Google Web Fonts, which
offers free use of their 500-plus font collection, and Adobe’s Typekit,
which offers subscription-based access to their collection of 739
font families. Both have easy-to-use interfaces.

Here’s how the process works on Google Web Fonts. Go to http://
www.google.com/webfonts, find the font you want, click the Add
to Collection button, then click Use at the bottom of the page
(Figure 4.14). Google then generates a link tag with a reference to
your selected fonts that you paste into the head of your HTML file.

Fig u r e 4 .14 The font, Niconne, is added to my collection so Google will generate a link to this font.

http://www.google.com/webfonts
http://www.google.com/webfonts

S t y li n ’ w ith C S S - chap te r 4128

Multiple fonts can be linked in a single line of code. This link tag
references the Anton, Niconne, and Prata fonts.

<link href=’http://fonts.googleapis.com/css?
family=Anton|Niconne|Prata’ rel=’stylesheet’ type=’text/css’>

Once you have added the link in the head of the page, you can then
use the fonts in the same way as you would use any other font.
When your page is viewed, the font is served into your user’s page
directly from Google. For example

h3 {font: 20px “Prata”, serif;}

displays as shown in Figure 4.15.

Fig u r e 4 .15 Your users now see
the headline in Prata.

Using a hosted font library offers a quick and reliable way to extend
the otherwise limited palette of system fonts. You can add Google
fonts to your pages in minutes, and by using them in your designs
you can be virtually certain that your users will view your pages in
the font that you intended.

Packaged @font-face Kit
The second method of embedding fonts in your pages uses the
@font-face rule, which requires that the fonts are accessible from
your site’s, or a third-party, Web server. Fonts served in this way
download to the browser when the first page that uses each font
loads; after that, they are cached in the user’s browser and don’t
have to download again. Note that the user can’t use the font for
any purpose except to display Web pages that include that font.

The @font-face approach involves more effort, but offers the pos-
sibility to use virtually any font you wish. Because of licensing
restrictions, you must either purchase a font, or use a royalty-free
font, that is licensed for embedding.

One issue with using @font-face is that different browsers require
different font formats. The Firefox browser, and Webkit brows-
ers such as Safari, Chrome, and mobile Safari iOS since v4.1, use
OpenType (OTF) or TrueType (TTF) font formats. Internet Explorer
uses the Embedded OpenType (EOT) format, and some other

s t y li n ’ fo nt s an d te x t 129

browsers, such as mobile Safari pre-iOS 4.1, use the Scalable Vector
Graphics (SVG) format. However, the different font formats are
available in ready-to-use kits, or can be readily generated from a
font on your computer (again, ensure you have a license to use the
font in this way).

Font Squirrel (www.fontsquirrel.com) offers an extensive library of
fonts in ready-to-use “font kits.” Each font kit includes the font in
all the required font formats, and the related CSS code to ensure
that each browser is served the correct format. FontSquirrel also
has a converter that allows you to upload and convert any font into
a font kit.

Here is an example of Font Squirrel’s @font-face CSS code for the
font Ubuntu Titling Bold, but this format will work for fonts from
other sources, too.

@font-face {

	 font-family: ‘UbuntuTitlingBold’;

	 src:	 url(‘UbuntuTitling-Bold-webfont.eot’);

	 src:	 url(‘UbuntuTitling-Bold-webfont.eot?#iefix’)
				 format(‘embedded-opentype’),

				 url(‘UbuntuTitling-Bold-webfont.woff’)
				 format(‘woff’),

				 url(‘UbuntuTitling-Bold-webfont.ttf’)
				 format(‘truetype’),

				 url(‘UbuntuTitling-Bold-webfont.
				 svg#UbuntuTitlingBold’) format(‘svg’);

	 font-weight: normal;

	 font-style: normal;

}

Once this code is added to the page you can reference it with a
font-family rule in the normal way, using the font-family name
that is stated in the font-family value of the @font-face rule.

this is the font name that you
reference in your font stack

There is also the inter-
esting “smiley face”

variation of cross-browser @font-
face code devised by Web
maven, Paul Irish, which further
ensures that in the unlikely event
that a font with the same name is
already installed on a user’s com-
puter, it won’t be confused with
the one you want that user to see
(http://paulirish.com/2009/bul-
letproof-font-face-implementa-
tion-syntax).

www.fontsquirrel.com
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax

S t y li n ’ w ith C S S - chap te r 4130

Generated @font-face Kit
Sometimes, you need to use a specific font in your design—a typi-
cal situation is that a client has a corporate font that you must use
in the Web site you are designing. Today, as long as you have licens-
ing rights to use that font as a Web font (check the font’s license
agreement or check with the company that manufactured the font),
you can convert that font into an @font-face kit at Font Squirrel
(http://www.fontsquirrel.com/fontface/generator). Just follow the
simple steps and in a few minutes, you will have downloaded an @
font-face kit that is ready to go onto your server.

Before I move on to some examples of designing with type, I’ll
make a couple of observations on embedded fonts. Until the day
that all browsers manufacturers settle on one font format (which
probably should be OpenType), you will have to deal with the com-
plexities of multiple font formats. You can learn all about the pre-
ceding multi-font @font-face syntax, and how it ensures Internet
Explorer gets the required .eot format font, at Fontspring’s Blog
(http://www.fontspring.com/blog/fixing-ie9-font-face-problems).
Fontspring also sells fonts that are licensed for use with
@font-face.

Since the inception of the Web, designers have been limited, except
with great effort, to fonts that are generally available on the PC
and Mac operating systems. The long-awaited implementation of
@font-face in all modern browsers, including IE9 and later, finally
gives Web designers the access to the same smorgasbord of fonts
available to their print brethren. The fallback for older browsers
that don’t support @font-face is simple: Those users simply get the
next font listed in the font stack, so be sure to list other more com-
mon fonts that are found on users’ systems after your preferred
embedded ones.

Stylin’ Text
It’s time to put all your new-found knowledge about fonts and
text into practice. I’m going to conclude this chapter with three
examples of how you can create good-looking typography, from the
quick and simple to the considered and sophisticated.

If you want to gain a
greater understanding

of @font-face, I recommend you
read Tim Brown’s blog article
How to Use CSS @font-face
(http://nicewebtype.com/
notes/2009/10/30/how-to-use-
css-font-face).

http://www.fontsquirrel.com/fontface/generator
http://nicewebtype.com/notes/2009/10/30/how-to-usecss-font-face
http://nicewebtype.com/notes/2009/10/30/how-to-usecss-font-face
http://nicewebtype.com/notes/2009/10/30/how-to-usecss-font-face
http://www.fontspring.com/blog/fixing-ie9-font-face-problems

s t y li n ’ fo nt s an d te x t 131

There is the notion of rhythm in typography, that defines the regu-
lar flow of the type down the page, generally achieved by working
to an underlying grid. Good rhythm helps the eye move smoothly
over the page.

Let’s start with some quick and basic text styling, and rather than
use an underlying grid to organize our type, simply space each ele-
ment proportionately to its type size. This exercise will allow you to
see how to get a result fast if that’s what’s needed.

Basic Text Layout
As you saw in Chapter 1, the default browser stylings for headings,
paragraphs, lists, and other text elements have a very wide range of
sizes, and the vertical margins between them are too big. To illus-
trate how to style these defaults into a more pleasing presentation,
here’s markup with some commonly used text elements.

<article>

	 <h1>CSS</h1>

	 <p>CSS stands for Cascading Style Sheets. CSS controls the
presentational aspects of your Web pages.</p>

	 <h2>Block-Level Elements</h2>

	 <p>Block-level elements stack down the page. They
include:</p>

	

		 <code>header</code>

		 <code>section</code>

		 <code>h1, h2, etc.</code>

	

	 <h2>Inline Elements</h2>

	 <p>Inline elements sit next to each other, if there is
room. They include:</p>

	

		 <code>img</code>

		 <code>a</code>

S t y li n ’ w ith C S S - chap te r 4132

		 <code>em</code>

	

	 <blockquote>

		 <q>Typography maketh the Web site.</q><cite>CWS</cite>

	 </blockquote>

</article>

Figure 4.16 shows this markup displayed in a browser.

Fig u r e 4 .16 Unstyled markup is
not very attractive.

Here are some steps to quickly style this markup into a more pleas-
ing layout. First, let’s remove the margins that are creating all the
space between the elements, set the overall font, and style the
article tag that encloses all the text elements into a visual con-
tainer that surrounds the text and centers it on the page.

* {margin:0; padding:0;}

body {font:1.0em helvetica, arial, sans-serif;}

article {width:500px; margin:20px auto; padding:20px;
border:2px solid #999;}

The font-size of 1em
simply states the default

size, and doesn’t change anything
yet, but I have to state a font size
along with the font family in the
font shorthand property. Also,
because I am setting the type in a
relative size, ems, if I later want
to change the size of all the type
on the page, I can make a single
adjustment here.

remove all margins

set overall font size and family

a centered box

s t y li n ’ fo nt s an d te x t 133

Figure 4.17 shows the displayed result in the browser.

Fig u r e 4 .17 Removing the
default margins greatly reduces
the vertical height of the content.

Next, there needs to be some strategically-placed vertical space
between the elements. Also, with the margins gone, the list bullets
hang into the margin so I’ll fix that, too.

h1, h2, h3, h4, h5, h6 {line-height:1.15em;
margin-bottom:.1em;}

p, ul, blockquote {line-height:1.15em;
margin-bottom:.75em;}

ul {margin-left:32px;}

Fig u r e 4 .18 Space has been
added after the paragraphs.

indent on lists

space around headings

space around other text elements

S t y li n ’ w ith C S S - chap te r 4134

As you can see in Figure 4.18, I have tightened up the line-height
of all the elements, making each element’s line-height only
slightly larger than the height of the text. This is because line-
height is added equally above and below the text and I only want
to add space below each element, which I do by applying margins.
However, I have to leave some line-height or the adjacent lines of
the paragraph text (and the headings if they run over to a second
line) will touch.

Note there are only two settings for the margins, the exact amount
of space of which is relative to each element’s font size. I give the
headings very small bottom margins (equal to 15% of each one’s
font size) so they sit close above elements that follow them. I give
all the other text elements a larger bottom margin (equal to 75% of
each one’s font size) to create white space after them in the layout.

As a final step, I want to get a better balance between the headings,
so that the bigger headings stand out and the smallest ones don’t
get lost, and also increase the size of the inline code elements.

h1		 {font-size:1.9em;}

h2		 {font-size:1.6em;}

h3		 {font-size:1.4em;}

h4		 {font-size:1.2em;}

h5		 {font-size:1em;}

h6		 {font-size:.9em;}

p			 {font-size:.9em;}

code	 {font-size:1.3em;}

While this example is quick and basic, it shows that some minimal
text styling can greatly improve the appearance of the page and
readability of the content (Figure 4.19). Let’s now look at how to
achieve a more sophisticated look through the use of grids.

size heading text

size paragraph text

size code text (too small by
default)

s t y li n ’ fo nt s an d te x t 135

Fig u r e 4 .19 Now with larger
heading and code text, the page is
more visually pleasing and helps
the viewer understand the hierar-
chy of the information.

Stylin’ Text on a Grid
Using a grid to lay out your type provides a rhythm and visual flow
to the page. Because I am looking at type in this chapter, I’ll focus
on using a grid to create the vertical flow of text.

In this example, I’ll create a layout based on a vertical 18-pixel
grid and every element will align with it. Because a graphic can be
added into the background of an element, in this case body, I can
temporarily add a simple spacing guide into the page.

Here I use Adobe Fireworks (you can use the graphics program of
your choice) to make a white rectangle 100 by 18 pixels and add a
1 pixel gray line along the bottom. I save it in .png format (.jpg or
.gif work just fine, too) with the name grid_18px.png. Figure 4.20
shows how it looks (shown on a pale blue background for clarity).

Fig u r e 4 . 20 The tile that I will
use in the background of the
page. A thin gray line runs along
its bottom edge.

I add this image into the background of the body element

body {background-image:url(images/grid_18px.png);}

and it tiles itself across and down the page (Figure 4.21).

add the grid lines

S t y li n ’ w ith C S S - chap te r 4136

Fig u r e 4 . 21 A tiled image added
to the body element creates a
ruled background on which type
can be vertically aligned

With the horizontal lines of the grid in the background, I now start
positioning the text elements, using the grid as a guide.

For this example, I use just a few common text elements but it’s
easy, once you get the hang of how this works, to build a text style
sheet with a full set of “grid-aligned” HTML text elements that you
can use as the basis for all your sites.

I’ll start with a simple paragraph

<p>In traditional typography, text is composed…</p>

and this CSS

* {margin:0; padding:0;}

body {

	 background-image:url(images/grid_18px.png);

	 font:100% helvetica, arial, sans-serif;

	 margin:0 40px 0;

	 }

p {

	 font-size:13px;

	 line-height:18px;

	 }

Note that I match the text’s line-height to the grid distance: 18
pixels. With all default margins and padding removed, I now know
every line will be 18 pixels apart (Figure 4.22).

add the grid lines

set the font

set the font size

large left and right margins create
a crude column for this demo

set line-height equal to grid
distance

remove padding and margins
off all elements

s t y li n ’ fo nt s an d te x t 137

Fig u r e 4 . 22 The 18-pixel line
height causes the spacing of the
lines to match the grid distance.

Next I add 4 pixels of padding to the container, body, to push this
element down and align the baseline of its text with the grid. Once
this first element aligns to the grid, it will be easy to get the ele-
ments that follow it to do the same. Actually, I’ll add 22 pixels (4 +
18) to also give an empty line of breathing space at the top, by add-
ing this declaration to body.

padding-top:22px;

While I’m at it, I’ll add this declaration onto the paragraph:

p {

	 font-size:13px;

	 line-height:18px;

	 margin-bottom:18px;

	 }

This will create exactly one empty grid line between each para-
graph. Adding another paragraph will help show the effect of these
two changes (Figure 4.23).

Fig u r e 4 . 23 With padding
added to body, the text now aligns
perfectly with the grid.

set the font size

set line-height = to grid height

S t y li n ’ w ith C S S - chap te r 4138

Now that the text and grid are aligned, and the paragraphs are cor-
rectly spaced, I’ll set font sizes for the other text elements. I start
with the h3 tag, which I set at 18 pixels. Of course, it too will have a
line-height of 18 pixels so that it occupies exactly one line of the
grid. To test its spacing, I’ll insert it in the markup between the two
paragraphs.

<p>In traditional typography, text is composed…</p>

<h3>Type for Every Use</h3>

<p>The ubiquity of type has led typographers…</p>

Here’s the CSS for the new heading:

h3 {font-size:18px; line-height:18px;}

Fig u r e 4 . 24 The baseline of
the h3 element’s text sits slightly
below the grid line.

As you can see, the headline sits a couple of pixels below the base-
line but, surprisingly, does not push the following paragraph down
by the same amount (Figure 4.24). The reason is, that while the
headline’s line-height is correct, at this size and with this font the
text is slightly offset within it. Here’s how to correct this.

Fig u r e 4 . 25 A small negative
top margin and an equal positive
bottom margin pulls the headline
up into perfect alignment on
the grid.

s t y li n ’ fo nt s an d te x t 139

h3 {font-size:18px; line-height:18px; margin-top:-2px;
margin-bottom:2px;}

The negative top margin pulls the type up, and the same amount
of positive bottom margin offsets this change to keep the element
that follows exactly where it was (Figure 4.25).

A second and similar alignment technique is needed for those ele-
ments, usually headings, that are larger than the grid distance. To
illustrate, I’ll next add a 24 pixel h1 headline. Obviously, 24-pixel
text is going to occupy more than one line of the grid, so in this
case I’ll set the line-height to span two lines—36 pixels. I’ll put the
h1 element where it usually appears—the first element on the page.

<h1>Typography</h1>

<p>In traditional typography…</p>

Let’s start with this CSS:

h1 {font-size:24px; line-height:36px;}

Fig u r e 4 . 26 Because the line-
height is equal to two lines of the
grid, the type does not sit on a
grid line.

This big headline sits uncomfortably between two lines (Figure
4.26). Its descenders will touch the paragraph text if I move it down
onto the nearest line, so I’ll move it up instead. With a little trial
and error, I determine this distance to be 13 pixels.

h1 {font-size:24px; line-height:36px; margin-top:-13px;
margin-bottom:13px;}

This h1 now has some white space below it to set it off from the text
(Figure 4.27). I could do this with the smaller headline too, but I
think it looks better close to the element that follows it.

An alternative approach
here would to be to

exactly position the baseline of
this headline halfway between
two grid lines. It can be a nice
change of pace to do this, but be
sure the next element is aligned
to the grid again.

S t y li n ’ w ith C S S - chap te r 4140

Fig u r e 4 . 27 The h1 headline
now sits correctly on a grid line.

To finish this exercise, I’ll add some different sized headings, an
unordered list, and a blockquote to show what a more complete
page looks like once the grid is removed.

* {margin:0; padding:0;}

body {font:100% helvetica, arial, sans-serif; background-
image:url(images/grid_18px.png); margin:0 20px 0;
padding:21px;}

p {font-size:14px; line-height:18px; margin-bottom:18px;}

h1 {font-size:24px; line-height:36px; margin-top:-13px;
margin-bottom:13px;}

h2 {font-size:18px; line-height:18px; margin-top:-2px;
margin-bottom:2px;}

h3 {font-size:16px; line-height:18px; margin-top:-2px;
margin-bottom:2px;}

ul {margin-bottom:18px;}

li {font-size:13px; list-style-type:none; padding:0 20px;
line-height:18px;}

a {color:#777; text-decoration:none;}

blockquote {font-size:12px; line-height:18px; padding-
top:2px; margin-bottom:16px;}

You can see the HTML
for this exercise in the

download code at http://www.
stylinwithcss.com.

http://www.stylinwithcss.com
http://www.stylinwithcss.com

s t y li n ’ fo nt s an d te x t 141

Fig u r e 4 . 28 A page layout based
on an 18-pixel grid.

As you can see in Figure 4.28, there’s something pleasing about a
page that’s laid out on a grid. From a technical perspective, if you
style your type on a grid-based layout for a site where the content
will be managed by others, then the page will always lay out nicely,
regardless of the order of the elements.

An Exercise in Classic Typography
To end this chapter, I’ll lay out a small excerpt of The Hound of the
Baskervilles (edited for the purpose of this example), using many
of the font and text properties you have seen in this chapter. You’ll
see a number of techniques to achieve high-quality typography,

S t y li n ’ w ith C S S - chap te r 4142

including the use of HTML entities, letter and word spacing, drop
caps, a vertical grid (this time 24 pixels), and downloaded fonts.

The markup is quite simple: two headings, a number of para-
graphs, and a blockquote.

<h2>an excerpt from</h2>

<h1>The Hound of the Baskervilles</h1>

	 <p>Holmes stretched out his hand for the manuscript and
flattened it upon his knee. “You will observe, Watson,
the alternative use of the long s and the short. It is
one of several indications which enabled me to fix the
date.” At the head was written: “Baskerville
Hall,” and below in large, scrawling figures:
“1742.”</p>

	 <p>“It appears to be a statement of some
sort.”</p>

	 <p>“Yes—it is a statement of a certain legend
which runs in the Baskerville family.”</p>
	 <blockquote>

	 <q>Of the origin of the Hound of the Baskervilles there
have been many statements, yet as I come in a direct line
from Hugo Baskerville, and as I had the story from my
father…</q>

	 </blockquote>

	 <p>When Dr. Mortimer had finished reading this singular
narrative he pushed his spectacles up on his forehead and
stared across at Mr. Sherlock Holmes.</p>

You can see in this markup that I have highlighted instances of the
four different HTML entities that I am using for the punctuation,
specifically left double-quote (“) to open dialogue, right
double-quote (”) to close dialogue, ellipsis (…) for
omission, and em dash (—) for the long dashes that indicate
pauses or as a replacement for parentheses.

S te p 1 – S e tt i n g th e Fo nts an d th e U n d e r ly i n g Gr i d

I’m using the FontSquirrel font Crimson Roman for the overall text
in this example. I downloaded the font kit, put it on my Web server

s t y li n ’ fo nt s an d te x t 143

(and also stored it locally for development), and I added the pro-
vided @font-face rule to my style sheet. I can then specify it in a
font-family rule.

@font-face {

	 font-family:’CrimsonRoman’;

	 src: url(‘fonts/Crimson-fontfacekit/Crimson-Roman-webfont.
	 eot’);

	 src: url(‘fonts/Crimson-fontfacekit/Crimson-Roman-webfont.
				 eot?#iefix’) format(‘embedded-opentype’),

				 url(‘fonts/Crimson-fontfacekit/Crimson-Roman-webfont.
				 woff’) format(‘woff’),

				 url(‘fonts/Crimson-fontfacekit/Crimson-Roman-webfont.
				 ttf’) format(‘truetype’),

				 url(‘fonts/Crimson-fontfacekit/Crimson-Roman-webfont.
				 svg#CrimsonRoman’) format(‘svg’);

	 font-weight: normal;

	 font-style: normal;}

* {margin:0; padding:0;}

HTML Entity Reference
These Web sites provide tables that list the HTML entities.

http://htmlhelp.com/reference/html40/entities/special.html

http://code.stephenmorley.org/html-and-css/character-entity-references-cheat-sheet

The first URL above includes both HTML entity values, and the hex values that you need when adding entities
as content in the ::before and ::after pseudo-elements. For example, a hex code shown in the table as
“ (left double-quote) needs to be modified for pseudo-element content, like this

e::before {content:”\201C”;}

Note the backslash in front of the number. The hex value for the right double-quote is \201D.

Within the text of your HTML content, you must always replace all ampersands and all < (less-than) symbols
with their HTML entities, which are & and > respectively. This is because “&” is reserved for the first
character of HTML entities, and “<” is reserved for the first character of HTML tags. That’s what browsers expect
to see when they encounter these characters.

http://htmlhelp.com/reference/html40/entities/special.html
http://code.stephenmorley.org/html-and-css/character-entity-references-cheat-sheet

S t y li n ’ w ith C S S - chap te r 4144

body {font-family:”CrimsonRoman”, georgia, times, serif;
background-color:#fff;

margin:0 10% 0; background-image:url(grid_24px.png);}

I follow my standard procedure of removing all margins and pad-
ding, assigning the primary font, and adding left and right margins;
I also add the temporary grid for aligning the type, as shown in
Figure 4.29.

Fig u r e 4 . 29 Text and grid are in place, ready to be aligned.

S te p 2 — S t y li n g th e H e ad i n g s

I now work my way, element by element, down the page, aligning
each element with the grid as I go. I want the first, minor headline
to contrast with the main heading, which I plan to style in a large
cursive font, so I’ll style this smaller heading in widely-spaced
small capital letters.

body {font-family:”CrimsonRoman”, georgia, times, serif;
background-color:#fff; margin:29px 10% 0; background-
image:url(grid_24px.png);}

h2 {font-size:18px; line-height:24px; font-weight:bold;
text-align:center; font-variant:small-caps; word-
spacing:.5em; letter-spacing:.6em;}

s t y li n ’ fo nt s an d te x t 145

For this heading I first use the font-variant property to convert
the text to small caps and then apply the word-spacing and letter-
spacing properties to get the look I want (Figure 4.30).

Fig u r e 4 . 30 The small heading
is now aligned with the grid and
styled with a mix of font and text
properties.

Next, I go to Google Web Fonts, where I find a cursive font called
Pinyon that has a styling compatible with my subject matter. I copy
the link tag generated by Google Web Fonts into the head of my
HTML document so I can now reference the font in a font-family
declaration. I again need my little negative/positive margin trick
that I first showed in Figure 4.25 to pull the type into exact align-
ment with the grid. Figure 4.31 shows the result.

<link href=’http://fonts.googleapis.com/
css?family=Pinyon+Script’ rel=’stylesheet’ type=’text/css’>

h1 {font-size:60px; line-height:96px; font-family:”Pinyon
Script”, cursive; margin:4px 0 -4px; text-align:center;
font-weight:normal; position:relative;}

Fig u r e 4 . 31 The large headline
is now styled and aligned with
the grid.

Typography Resources
http://ilovetypography.com On this site you can follow the typographic musings of designer John Boardley and
enjoy the unique typographic treatments on each page.

http://www.thinkingwithtype.com This is the Web site for the book, Thinking with Type by Ellen Lupton. The
site features beautiful and classic typographic examples along with information on letterforms and type families.

http://webtypography.net This site calls itself The Elements of Typographic Style Applied to the Web—A practi-
cal guide to web typography. It is neatly organized by a Table of Contents that lists common typographic consid-
erations and tips.

Note the line-height
is set to a four-times

multiple of the grid distance.

http://ilovetypography.com
http://www.thinkingwithtype.com
http://webtypography.net

S t y li n ’ w ith C S S - chap te r 4146

S te p 3 — S t y li n g th e Para g raph an d th e B lo c k q u ote

The first paragraph is sitting a little high, so let’s set its font size,
and most importantly, its line height.

p {font-size:18px; line-height:24px;}

Fig u r e 4 . 32 Setting the paragraph line-height aligns it with the grid.

While the first three paragraphs are now aligned with the grid, the
subsequent paragraphs are not, because the line height of the block
quote that follows the first paragraph also needs to be aligned
(Figure 4.32). The blockquote text is wrapped in an inline q (quote)
tag, which by default, adds quote marks at its beginning and end.
I’ll indent the containing blockquote, but I’ll set the font size and
line height on the child quote element, because it contains the text.

blockquote {margin:0px 20%;}

q {font-size:18px; font-style:italic; line-height:24px;}

Fig u r e 4 . 33 The block quote is now aligned with the grid.

s t y li n ’ fo nt s an d te x t 147

Indenting and italicizing the quotation adds variation to the page.
Notice that with the blockquote correctly positioned, the subse-
quent paragraphs fall into place, too (Figure 4.33).

S te p 4 — Ad d i n g a Dr o p Cap

Next, I’ll add a distinctive drop cap on the first character of the first
paragraph. A drop cap is a large letter that starts a paragraph. There
are a number of variations on drop caps, but in this case, I’ll align
its top edge with the top of the first line of the paragraph and its
bottom edge with the baseline of the third line.

Typically, when you see this technique, the first letter is wrapped in
a span, but this is not feasible or reliable in a site where text is sup-
plied from a content management system. The technique I show
here requires no modification to the markup.

I need to select the first letter of the first paragraph that follows
the h1 headline. I do this with a combination of two selectors: the
::first-letter pseudo-element in combination with a sibling +
selector. Once selected, that character can be enlarged and floated
into position.

h1 + p::first-letter {font-family:times, serif; font-
size:90px; float:left; border:1px solid;}

Fig u r e 4 . 3 4 The border is
turned on to show that the
drop cap’s line-height is being
inherited from the smaller line-
height of the paragraph text.

The first letter is now enlarged, but is not where I want it to be
positioned (Figure 4.34). I’ve turned on the pseudo-element’s bor-
der as a guide, because what I really need to size and position is
its box. The border shows me that this box is only large enough to
force two lines of the paragraph to wrap around it because the box
is inheriting its size and alignment from the paragraph. I need
to set the pseudo-element’s line-height so its box encloses the
drop cap.

I set line-height to less
than 1 so that the drop

cap is tightly enclosed by its line
height and will not force the
fourth line of the paragraph
to wrap.

S t y li n ’ w ith C S S - chap te r 4148

h1 + p::first-letter {font-family:times, serif; font-
size:90px; float:left; line-height:.65; border:1px solid;}

Fig u r e 4 . 35 The element box
now tightly surrounds the
drop cap.

With the box line-height increased, the third line now also wraps
(Figure 4.35). All that is left to do is add a little padding to the top
of the element to push it down and align the bottom edge of the
letter with the baseline of the paragraph’s third line.

h1 + p::first-letter {font-family:times, serif; font-size:-
90px; float:left; line-height:.65; padding:.085em 3px 0 0;}

Note that I also add 3 pixels of right padding to give visual space
between the drop cap and the paragraph text. Also, I no longer
need the border so I remove it (Figure 4.36).

Fig u r e 4 . 3 6 The drop cap is now
complete.

S te p 5 — S t y li n g th e Fi rst Li n e

The drop cap is now in place, but I’d like to see a visual transition
between the large drop cap and the small paragraph text, so I’ll add
a small cap style to the entire first line of the paragraph text.

h1 + p::first-line {font-variant:small-caps; letter-
spacing:.15em;}

s t y li n ’ fo nt s an d te x t 149

Fig u r e 4 . 37 The first line of the paragraph is now set in small caps.

I again use the sibling selector, this time in combination with the
::first-line pseudo-element to set the first line of the paragraph
in small caps. By using the pseudo-element, rather than just typing
the first few words in capital letters, the capitalization will adjust
if the line length changes. You can see how nicely this styling con-
nects the drop cap with the rest of the paragraph in Figure 4.37.

S te p 6 — Fi n i sh i n g To u c h e s

Without some space between the paragraphs, it’s hard to see
where each one starts. In keeping with convention in books, rather
than space the paragraphs apart, I’ll instead add a small indent to
every paragraph that follows a paragraph; a paragraph that starts
a sequence of paragraphs doesn’t need the indent. Also, I don’t like
the anemic quotation marks around the quote, so I will update the
default ::before and ::after pseudo-elements of the q tag and
insert nicer ones from the Crimson font. Finally, I am done with the
grid so I’ll remove that from the body tag (not shown).

p + p {text-indent:14px;}

q::before {content:”\201C”}

q::after {content:”\201D”}

Both these small changes are worth comment. The indents are
achieved with the sibling selector, which cause only paragraphs
that follow a paragraph to be indented. The paragraph that begins
“When Dr. Mortimer...” follows the blockquote, not a paragraph,
and so does not get the indent, giving a solid lead off to that para-
graph by aligning it with the margin (Figure 4.38).

The quotation marks added by the ::before and ::after pseudo-
elements have to be defined with hex entities. I cannot use the nor-
mal HTML entities in the content value, as they don’t work in this
situation; only hex entities work here, and only in a slightly modi-
fied state. See the sidebar, HTML Entity Reference, earlier in this
chapter, for details.

indent any paragraph that
follows a paragraph

quotation marks before quote

quotation marks after quote

S t y li n ’ w ith C S S - chap te r 4150

Fig u r e 4 . 3 8 Here is the completed page.

With these final touches, the layout is complete. It may seem like a
lot of work for a small excerpt like this, but of course, these styles
could easily be applied to the entire book.

Summary
In this chapter, you have seen the many CSS properties associated
with fonts and text, seen the different ways that fonts can be speci-
fied for your pages, and looked at various approaches to styling
text. Next, I will expand the text layouts you have just seen, and
look at techniques to create multi-column page layouts.

299I n d e x

Index
+ (adjacent sibling selector), 33
& (ampersand), 19, 142
* (asterisk), 215
> (child selector), 32–33
> *(“child-star” selector), 166
/ (forward slash), 2
~ (general sibling selector), 33–34
(hash symbol), 38–39, 58
* (star selector), 34–35, 166
~ (tilde), 33
* (universal selector), 34–35
: (colon), 44
, (comma), 27
:: (double colon), 44
. (period), 36, 38
; (semicolon), 27
< > (angle brackets), 2

A

a (anchor) tag, 9
A (alpha) value, 61
abbr tag, 20
abbreviations, 20
absolute positioning, 87–88
absolute values, 56
action attribute, 206
Active state, 44
adjacent sibling selector (+), 33
Adobe Typekit, 127
::after pseudo-element, 48–49
alpha channels, 61
alpha (A) value, 61
alt attribute, 42
alt attribute text, 4
alt tags, 4, 42
& entity, 19
ampersand (&), 19
ancestors, 21, 22
anchor (a) tag, 9
Android devices, 274
angle brackets (< >), 2
animation, 222
APIs (Application Programming Interfaces), x
Apple Retina screens, 275
Application Programming Interfaces (APIs), x
article elements, 154, 182
article tag, 2, 28–29
asterisk (*), 215
attribute name selector, 41–42

attribute selectors, 28, 41–43
attribute value selector, 42
attributes, 2

class, 35–41
input, 208
names, 41–42
overview, 4
type, 208

author style sheets, 51
auto, 70

B

background images, 95–96, 102
background properties, 94–103
background-attachment property, 100–101
background-break property, 102
background-clip property, 102, 194
background-color property, 95
background-image property, 95–96
background-origin property, 102
background-position property, 97–99
background-repeat property, 96–97
backgrounds, 93–109

attached, 100–101
color, 95
fallbacks, 295–296
gradients, 104–107
multiple, 102
position, 97–99
properties, 94–107
repeat options, 96–97
shorthand, 101
size, 99–100

background-size property, 99–100
::before pseudo-element, 48–49
block elements, 10–16, 93
block property, 10–16
block quotes, 146–147
blockquote tag, 18–19
blog links, 249, 258–260
body element, 16, 112
body tag, 8, 22, 110
bold text, 20, 115, 116
book area, 260–268, 281
borderBoxModel.js polyfill, 298
border property, 62, 63–66
borders

boxes, 62, 63–66
color, 95
columns, 161–171
transparent, 194, 229

box model, 62–70, 171

S t y li n ’ w ith C S S300

box-sizing property, 168
boxes, 62–75

borders, 62, 63–66
margins, 63, 67–70
nesting, 16–18
padding, 63, 66–67, 68
shadows, 239, 241
size, 70–75
text, 118, 120
unwidthed, 70–73
widthed, 73–75

breakpoints, 277–278, 282, 285
Brill, Ryan, 172
browser sniffing, 295
browsers

considerations, xi
CSS3 and, xi, 295–298
fallbacks, 295–296
fonts and, 114, 128–129
HTML5 and, 295–298
media queries and, 274–278
missing features, 296
older, xi, 295–298
Safari Mobile, 287
smaller screens and, 272
style sheet, 50
support for, xi, 295–298

buttons, radio, 202, 204, 208–210, 217

C

captions, 224–229
“Cascade” mechanism, 50–54
Cascade rules, 52–54
Cascading Style Sheets. See CSS
centering elements, 244–246, 248, 271
characters, typographical, 19
Charlie’s Simple Cascade Summary, 54
charset attribute, 8
checkboxes, 203–204, 208, 210, 217
child selector (>), 32–33
children, 21, 22
child-star selector, 166
citation, 18
cite tag, 19
Clarke, Andy, 277
class attribute, 35–41
class selectors, 28, 36
classes, 35–41

multiple, 37–38
names, 35
overuse of, 41
pseudo-classes, 43–47

purpose of, 39, 41
vs. IDs, 39–41
when to use, 40–41

clear property, 75, 76, 80–85
cleared elements, 75, 76, 80–85
clearfix code, 81, 82, 84–85
closing tags, 2, 3
code. See also HTML code

debugging, 293–294
example, xii
testing, 293–294

collapsing margins, 68–69
colon (:), 44
color

alpha channels, 61
backgrounds, 95
fonts, 27
hexadecimal, 58, 60
HSL, 59–60
links, 40, 44
names, 57–58
opacity, 61
percentages, 57, 59
resources, 61
RGB, 58–59, 60
values, 55, 57–61
Web-safe, 58

color keywords, 57–58
color wheel, 59, 60
columns

considerations, 151
creating, 153–171
CSS3 table properties, 177–179
elastic layouts, 152
faux columns technique, 176–177
fixed-width layouts, 151–152, 154
float property, 76–78
fluid. See fluid layouts
margins, 161, 172–177
multi-row, multi-column layouts, 179–185
padding/borders, 161–171
width, 153, 163

comma (,), 27
comments, 7, 23, 296
comments tag, 7
compound elements, 5–6
conditional comments, 296
content

considerations, 1
non-enclosing tags for, 3
non-text, 3
pseudo-element, 48
referenced, 3

301I n d e x

context
positioning, 90–92
stacking, 227–228

contextual selectors, 28–35, 41
controls, 202, 207–208, 209
CSS

“Cascade” mechanism in, 50–54
fallbacks, 295–296
how it works, 23–61
methods for adding, 25
order, 292
organizing, 292–293
purpose of, 1, 23
selectors, 182-184
testing code, 293–294
writing, 291–293

CSS declarations. See declarations
CSS rules

anatomy of, 24–28
Cascade mechanism, 52–54
described, 24
inheritance, 49–50
multiple, 27–28
naming conventions, 26–28
order, 293
organizing, 293
sort rules, 52–54
specificity, 52–54

CSS styles. See styles
CSS triangle, 228–230
CSS3

browser support, xi, 295–298
fallbacks, 295–296
improved features, xi
polyfills, 297–298
table properties, 177–179
transforms, 263, 264

CSS3 example
book area, 260–268
completed page, 232
feature area, 249–260
footers, 268–271
headers, 236–248
page structure, 231–236
transitions, 221–223, 248
web pages, 231–236

CSS3Pie polyfill, 297

D

debugging, 293–294
declarations, 55–61

multiple, 27, 291–292

organizing, 292
structure, 26–27
weight of, 52

descendents, 21, 22
devices. See smartphones; tablets
display properties, 10–16
display property, 62, 92–93
displaying elements, 92–93
DOCTYPE, 7
document flow, 10
Document Object Model. See DOM
documents. See HTML documents
DOM (Document Object Model), 20–22
DOM hierarchy, 21–22, 29–30
don’t repeat yourself (DRY) principle, 268
double colon (::), 44
drop caps, 147–148
drop-down menus

adding to menus, 246–248
lists in, 191–201
on touch screens, 288–289

DRY (don’t repeat yourself) principle, 268

E

elastic layouts, 152
elements. See also tags

attributes, 2
backgrounds, 93–109
block, 10–16, 93
boxes. See boxes
centering, 244–246, 248, 271
cleared, 75, 76, 80–85
compound, 5–6
display property, 92–93
floated, 75, 76–85
inline, 10–16, 93
length, 56
nested, 16–20, 236
non-floated, 80–82
order, 292
oversized, 171
positioning. See positioning elements
pseudo-elements, 47–49, 149
required, 7
stacking order, 227–228
visibility, 93

em (emphasis) tag, 6, 20, 31–32
em value, 56, 57
embedded styles, 25
emphasis (em) tag, 6, 20, 31–32
emphasis text, 20
enclosing floated elements, 71

S t y li n ’ w ith C S S302

enclosing tags, 2–3
error messages, 207, 215–216, 220, 258
ex value, 56, 57

F

fallbacks, 295–296
faux columns, 176
feature area, 249–260, 281
fieldset element, 206–207
files. See HTML documents
Firebug, 294
:first-child pseudo-class, 46
::first-letter pseudo-element, 47
::first-line pseudo-element, 47–48
fixed positioning, 89
fixed-width layouts, 151–152, 154
float property, 62, 75, 76–85
floated elements, 75, 76–85
float-slip, 161
fluid layouts

described, 152
fluid center, 172–179
smaller devices and, 274, 278–282

:focus pseudo-class, 45
font libraries, 127–128
font properties, 109–117
font property, 117
Font Squirrel, 127, 129
font stacks, 110–111, 129
@font-face kits, 127, 128–130
@fontface rule, 126, 128
font-family property, 109–112
fonts, 108–117. See also text

browser issues, 114, 128–129
color, 27
generic, 110–111, 112
Google Web Fonts, 127–128, 239
inherited, 49–50, 110, 119
installed, 110–112
names, 110–111
overview, 108
size, 112–115, 132
style, 115, 116
variants, 116–117
vs. text, 109
Web, 126–130
weight, 116
x-height, 56, 111

font-size property, 112–115, 117
font-style property, 115, 116
font-variant property, 116–117
font-weight property, 116

footers, 268–271
form data, 201
form element, 205–206, 212
form elements, 205–209
forms, 201–223

checkboxes, 203–204, 208, 210, 217
considerations, 201
controls, 202, 207–208, 209
error messages, 207, 215–216, 220
example, 201–206
fields, 207
fieldsets, 206–207
HTML elements of, 201–209
HTML5 and, 201
labels, 202, 207–208, 209, 210
legend, 202, 206–207, 212
markup strategies, 209–210
processing, 201, 206
radio buttons, 202, 204, 208–210, 217
required fields, 215–216
resources, 201, 206
search, 239–242
search field, 221–223
selects, 208, 209
sign-in, 253–258
styling, 210–220
submitting, 206
validating data, 201

forward slash (/), 2

G

general sibling selector (~), 33–34
Google Web Fonts, 127–128, 239
gradients

backgrounds, 104–107
linear, 104–105
radial, 104, 106–107

H

h1 tag, 21–22
hash symbol (#), 38–39, 58
hash tags, 38
head tag, 8
headers

example, 157–160
smaller devices, 279–287
styling, 236–248

headings, 3, 5, 12
headlines, 8–10, 144–145
hexadecimal notation, 58, 60
Hicks, Ian, x

303I n d e x

hidden property, 93
high-resolution screens, 275
hooks, 182–183, 184
hosted font libraries, 127–128
hot area, 188–189
Hover state, 43
href (hyperlink reference) tag, 9
href value, 38
HSL color, 59–60
HTML attributes. See attributes
HTML code

considerations, 291
debugging, 293–294
hierarchy, 21
testing, 293–294

HTML comments tag, 8
HTML documents

anatomy of, 7–20
document flow, 10
structure of, 7

HTML elements. See elements
HTML entities, 19, 143
HTML markup

basics, 2–6
nesting examples, 18–20
planning, 232–236
presentational effect, 164
purpose of, 1
template, 7–10

html tag, 7
HTML tags. See tags
HTML templates, 7–10
HTML5

advantages of, x, 7
“bare-bones” template, 7–10
browser support, 295–298
closing tags, 3
considerations, 1–2, 253
forms and, 201
polyfills, 297–298
syntax overview, 3

html5shiv.js polyfill, 297
hue, 59–60
hyperlink reference (href) tag, 9
hyperlinks. See links

I

“ICE” formula, 53–54
ID attribute, 35–41
ID selectors, 28
IDs, 35–41

in-page navigation links, 38

JavaScript-related, 39
names, 35
purpose of, 39, 41
vs. classes, 39–41
when to use, 39–40

IE9.js polyfill, 297
image tag (img), 4, 9
images

adding, 9–10, 13
alternative text for, 4
background, 95–96, 102
failure to load, 4
flexible, 274
floating text around, 76–78
as inline elements, 10, 13–15
source of, 4

img (image tag), 4, 9
!important declaration, 52
inheritance, 49–50, 110, 119
inherited values, 119
inline element boxes, 16
inline elements, 10–16, 93
inline property, 10–16
inline styles, 25
inline-block value, 245
inner divs, 164–168, 184–185
in-page navigation links, 38
input attributes, 208
input element, 203, 208
inset keyword, 241
interface components, 186–230

considerations, 186
forms. See forms
lists. See lists
menus. See menus
popup overlays (tooltips), 224–230, 263–268
selection path, 200–201

iPad, 272–274, 278–282
iPhone, 272–274, 275, 285–287
Irish, Paul, 129, 171, 297
italic text, 20, 115

J

JavaScript, 39, 295, 297
jQuery functions, 289

K

keyword colors, 57–58

S t y li n ’ w ith C S S304

L

labels, 202, 207–208, 209, 210
:last-child pseudo-class, 46
layouts. See page layouts
leading, 123–124
legends, 202, 206–207, 212
letter-spacing property, 119–121
line-height property, 117, 123–124, 134
Link state, 43
link tag, 276–277
linked styles, 25
links. See also URLs

blog, 249, 258–260
color, 40, 44
hot area, 188–189
in-page navigation links, 38
pseudo-links, 43–47
states, 43–45
underlining and, 122

lists
in drop-down menus, 191–201
in horizontal menus, 189–191
hot areas, 188–189
nested, 191–201
ordered, 5–6
unordered, 5, 258
in vertical menus, 186–189

luminance, 59–60

M

Marcotte, Ethan, 274
margins

auto, 271
boxes, 63, 67–70
columns, 161, 172–177

markup. See HTML markup
media attribute, 276–277
media queries, 272, 274–278
@media rule, 274–276
media types, 276
menus, 186–201

centering, 244–246
described, 186
drop-down. See drop-down menus
example, 242–248
horizontal, 189–191
opacity, 247–248
selection path highlight, 200–201
submenus, 196–197
third level, 197–200
vertical, 186–189

meta tag, 8, 278
method attribute, 206
Meyer, Eric, 68
mobile devices. See smartphones; tablets
Modernizr, 101, 248, 288, 297
multiple background images, 102
multiple classes selector, 37–38

N

naming conventions, 26–28
nav tag, 1–2
navigation, 38, 234
navigation menus, 186–201
nested elements, 16–20, 236
nested tags, 6, 16–20
nesting examples, 18–20
non-enclosing tags, 3
non-floated elements, 80–82
normal value, 115
“not-first-child” selector, 187–188
:nth-child pseudo-class, 46–47
numbers, 35
numerical values, 55, 56–57

O

opacity, 247–248
opening tags, 2–3
overflow:hidden, 79–80, 171

P

p tag, 21–22
padding

boxes, 63, 66–67, 68
columns, 161–171

page layouts, 151–185
basic concepts, 151–153
columns. See columns
elastic layouts, 152
fixed-width layouts, 151–152, 154
fluid. See fluid layouts
inner divs, 184–185
layout height/width, 152–153
optimizing for smartphones, 282–287
optimizing for tablets, 278–282
templates, 7-10
text layout example, 131–135

page styles, 25
paragraphs, 5, 8–10, 12
parent elements, 21, 22, 80
percentage widths, 278

305I n d e x

percentages, 57, 59
period (.), 36, 38
pixels, 56
polyfills, 170, 171, 288, 297–298
popup overlays, 224–230, 263–268
portrait format, 285–287
position property, 62, 85–92
positioning context, 90–92
positioning elements, 62–107

absolute positioning, 87–88
backgrounds. See backgrounds
boxes. See boxes
cleared elements, 75, 76, 80–85
display property, 92–93
fixed positioning, 89
floated elements, 75, 76–85
position property, 85–92
positioning context, 90–92
relative positioning, 87
static positioning, 86
types of positioning, 86–92

-prefix-free polyfill, 298
presentational markup, 164
properties. See also specific properties

animated, 222
background, 94–107
font, 109–117
normal value and, 115
table, 177–179
text, 109, 117–126

pseudo-classes, 43–47
pseudo-elements, 47–49, 149

Q

quirks mode, 70
quotation marks, 19, 149
quotations, 18, 147

R

radial gradients, 106–107
radio buttons, 202, 204, 208–210, 217
radiused corners, 239, 240, 295
referenced content, 3
relative positioning, 87
relative units, 56, 114
rem (root em) units, 114–115
reset.css style sheet, 68
Respond.js polyfill, 298
responsive design, 272–290

considerations, 272, 290
elements of, 274

media queries, 272, 274–278
portrait format, 285–287
smartphones, 272–274, 282–287
tablets, 272–274, 278–282
touch screens, 288–289

returns, 291
RGB color, 58–59, 60
RGB percentages, 59
root em (rem) units, 114–115
root level tag, 7
rows, 47, 179–185, 218
rule declarations. See declarations
rules. See CSS rules

S

Safari Mobile scaling bug, 287
saturation, 59–60
scaling issues, 287
search engines, 48
search form, 221–223, 239–242
section tag, 21, 22
selection path, 200–201
selectivizr polyfill, 297
selectors. See also specific selectors

attribute, 28, 41–43
class, 28, 36
contextual, 28–35, 41
grouping, 27
ID, 28
multiple, 27
specificity of, 52–54
structure, 26–28
tips for using, 182–184

semantic markup, 1
semicolon (;), 27
shadows, 239, 241, 254
Shapira, Isaac, 289
shorthand styling, 64
siblings, 21, 22, 33–34
sign-in form, 253–258
smartphones

optimizing layout for, 282–287
overview, 272–274

SnapzProX, 278
sort order, 52–54
sort rules, 52–53
spaces

nesting and, 18
white space, 27, 291, 292

spacing
letter, 119–121
word, 121

S t y li n ’ w ith C S S306

span tag, 37
specificity, 52–54
stacking context, 227–228
star selector (*), 34–35, 166
states, links, 43–45
static positioning, 86
stop points, 105–106
strong tag, 20
structural pseudo-classes, 43, 46–47
style attribute, 25
style sheet styles, 25
style sheets

author, 51
linked, 25
tips for, 293
user, 51

style tag, 24, 26
styles

adding to documents, 25
considerations, 25
embedded, 25
fonts, 115, 116
forms, 210–220
inherited, 49–50
inline, 25
linked, 25
page vs. style sheet, 25
sources of, 50–51

stylinwithcss.com, xii, 23, 26, 183, 299
symbols, 35

T

table properties, 177–179
tables, 177–179
tablets

optimizing layout for, 278–282
overview, 272–274

tabs, 291
tags. See also attributes; elements; specific tags

closing, 3
considerations, 1
enclosing, 2–3
hierarchy, 21–22
names, 2
nested, 6, 16–20
non-enclosing, 3
opening, 2–3
root level, 7

tag-with-class selector, 36–37
:target pseudo-class, 45–46
technical notes, 291–299
testing code, 293–294

text, 117–150. See also fonts
abbreviations, 20
aligning horizontally, 122–123, 271
aligning vertically, 125–126
basic layout example, 131–135
bold, 20, 115, 116
browser issues, 114, 128–129
capitalization, 116–117, 124–125
captions, 224–229
centering, 167, 271
classic typography, 141–150
decoration values, 122
drop caps, 147–148
enclosing tags for, 2–3
floating around images, 76–78
indent, 118–119, 120
italics, 20, 115
leading, 123–124
letter spacing, 119–121
line height, 117, 123–124, 134
properties, 109, 117–126
rotated, 263, 264
shadows, 254
superscript/subscript, 125–126
underlined, 122
using grids, 135–141
vs. fonts, 109
word spacing, 121
word wrapping, 171

text boxes, 118, 120. See also boxes
text snake, 120
text-align property, 122–123, 271
text-decoration property, 122
text-indent property, 118–119
text-transform property, 124–125
tilde (~), 33
title area, 232–236
title attribute, 42
title tag, 7
tooltips, 224–230
transform property, 263, 264
transforms, 263, 264
transitions, 221–223, 248
transparent borders, 194
type attributes, 208
Typekit, 127
typographical characters, 19
typography resources, 145

U

UI components. See interface components
UI pseudo-classes, 43–46

307I n d e x

universal selector (*), 34–35
URLs, 44, 187. See also links
user style sheets, 51

V

vendor specific prefixes (VSPs), 103
vertical centering, 248
vertical-align property, 125–126
viewpoint meta tag, 278
visibility property, 93, 248, 288
Visited state, 43
VSPs (vendor specific prefixes), 103

W

W3C site, 52
web browsers

browser sniffing, 295
considerations, xi
CSS3 and, xi , 295–298
fallbacks, 295–296
fonts and, 114, 128–129
HTML5 and, 295–298
media queries and, 274–278
missing features, 296
older, xi, 295–298
Safari Mobile, 287
smaller screens and, 272
support for, xi, 295–298

Web Developer extension, 14
Web fonts, 126–130
Web Inspector, 293-294
web pages

book area, 260–268, 281
CSS-enhanced, 231–271
example, 231–236
feature area, 249–260, 281
footers, 268–271
headers, 236–248
optimizing for smartphones, 282–287
optimizing for tablets, 278–282
planning HTML markup, 232–236
responsive design, 272–290
on smartphones/tablets, 272–274
structuring, 231–236
title area, 232–236

Web sites
box model resources, 63, 171
color resources, 57, 61
CSS3 transition resources, 222
font resources, 111, 113, 127, 129, 130
form resources, 201, 203, 206, 208

HTML entity resources, 143
HTML resources, 4, 19
menu resources, 289
mobile device resources, 272, 274, 275–278
polyfill resources, 288, 298–299
pseudo-element information, 44
quirks mode, 70
reset.css style sheet, 68
stylinwithcss.com, xii, 23, 26, 183, 299
typography resources, 145
VSP information, 103
XHTML resources, 3

Webkit redraw problem, 288
Web-safe color palette, 58
white space, 27, 291, 292
word values, 55–56
word-spacing property, 121
word-wrap, 171
wrapper elements, 154–161, 172–177
Wroblewski, Luke, 201

X

x-height, 56, 111
XHTML, 3

Z

Zeldman, Jeffrey, x, 41
z-index property, 227–228, 267

	Contents
	Acknowledgements
	About the Author
	Introduction
	CHAPTER 4: STYLIN’ FONTS AND TEXT
	Fonts
	Font-Family Property
	Font-Size Property
	Font-Style Property
	Font-Weight Property
	Font-Variant Property
	Font Property

	Text Properties
	Text-Indent Property
	Letter-Spacing Property
	Word-Spacing Property
	Text-Decoration Property
	Text-Align Property
	Line-Height Property
	Text-Transform Property
	Vertical-Align Property

	Web Fonts Demystified
	Hosted Font Libraries
	Packaged @font-face Kit
	Generated @font-face Kit

	Stylin’ Text
	Basic Text Layout
	Stylin’ Text on a Grid
	An Exercise in Classic Typography

	Summary

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

