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Introduction

Performance is one of the most important qualities of software programs. You can’t
have world-beating software without world-beating performance. For a long time,
hardware improvements meant that worrying about software performance seemed a
waste of time, but with Moore’s Law no longer automatically providing significant
automatic performance improvements, performance optimization is coming back to
the forefront of both computer science and engineering.

In addition, performance for end users seems to have gotten only marginally
better, whereas the performance of the underlying hardware has improved by many
orders of magnitude. Bill Gates quipped that “the speed of software halves every 18
months,” whereas Wirth’s law in A Plea for Lean Software states, “Software is getting
slower more rapidly than hardware becomes faster.”1

We are so used to this sorry state of affairs that industry veterans were surprised at
the original iPad’s fluid UI, despite having a CPU with “only” 1 GHz. That’s more
than 1,000 times faster than my Apple ][, and 40 times faster than my NeXT cube
that had a larger screen to deal with. If anything, the surprise should have been that it
wasn’t faster, especially when considering that it also had a GPU to handle the screen.

This book will try to give insights into the underlying reasons for these
developments in the context of Objective-C, Cocoa, and CocoaTouch, and attempt
to provide techniques for taking full advantage of the raw power of our amazing
computing machines—power that we tend to squander with reckless abandon. It will
also try to show when it is actually OK to squander that power, and when it is
necessary to pay careful attention. Programmer attention is also a scarce resource, too
often squandered attempting to optimize parts of the program that do not matter.

General themes will include latency versus bandwidth, and transactions costs
(overhead) versus actual work done, themes that are universal and manifest themselves
in different forms at every level of the hardware and software stack.

What you will notice is that due to the speed of our machines, any single
operation is, in fact, always more than fast enough, so the crucial equation is
items ∗ cost. Most optimization is about reducing one or both of the parts of that
formula, usually by breaking it up first.

1. Niklaus Wirth, A Plea for Lean Software (Los Alamitos, CA: IEEE Computer Society Press, 1995), pp. 64–
68. http://dx.doi.org/10.1109/2.348001

http://dx.doi.org/10.1109/2.348001
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One frequent method for reducing cost is to realize that cost is actually composed
of two separate costs, cost1 and cost2, and only one of these needs to be applied to all
items: items× (cost1 + cost2) → cost1 + items× cost2. I would probably call this
the fundamental optimization equation; a large part of the optimization techniques
fall into this category, and it is also fundamental to the organization of most of the
hardware/software stack we deal with every day.

This book has a very regular structure, with four basic areas of performance
discussed in turn:

1. CPU performance
2. Memory
3. I/O
4. Graphics and responsiveness

Although an effort has been made to keep the treatment of each subject area
independent, there is a logical progression, so at least a passing familiarity with earlier
topics helps with later topics.

Within each of these four broad topics, there are again four specific areas of
interest:

1. Principles
2. Measurement and tools
3. Pitfalls and techniques
4. Larger real-world examples of applying the techniques

Again, there is a logical structure: You need to have some idea about the principles
and know how to measure before you can meaningfully think about actual
performance optimization techniques, but again, you should also be able to dip into
specific areas of interest if you have a passing familiarity with earlier topics.

This structure yields a total of 4× 4 = 16 chapters, with a special chapter on Swift
tucked between memory and I/O for a total of 17. Swift is also used throughout the
book where appropriate, but it deserves a chapter of its own due to its unique
performance characteristics.

For me, software performance is a passion and a calling that has been a common
thread throughout my career. I have learned that performance is something you can’t
automate, nor can you leave it until the last minute. On the other hand, there are
many times when you shouldn’t worry about performance in order to have the
capacity to concentrate on performance where it is really needed. If that weren’t
paradoxical enough, having excellent base performance levels is often what makes it
possible to get to that state of not having to worry about performance most of the
time.

In short, this book is about making software that performs beautifully.



3
CPU: Pitfalls and Techniques

Having had a look at the parameters driving performance and techniques for
identifying slow code, let’s now turn to actual techniques for making code run fast.
We will look at efficient object representations and ways for those objects to
communicate and access data. We will also examine streamlining computation. In all
this, the objective will typically be to effectively combine the “Objective” and the
“C” parts of Objective-C to achieve the desired balance between performance and
encapsulation.

In general, the basic idea is for objects to have C on the inside and messages on the
outside, and for the objects themselves to be fairly coarse-grained, mostly static
entities. When following these principles, it is possible to start with a fully
object-oriented implementation without worries, but with the knowledge that it will
be possible to later optimize away any inefficiencies. It has been my experience that it
is quite possible to achieve the performance of plain C, and sometimes even beyond.

However, there are pitfalls that not only make an Objective-C program slow
(slower than so-called scripting languages), but even worse can be major obstacles to
later optimization efforts. These pitfalls usually lie in library constructs that are easy to
use but have hidden performance costs, costs that are not localized within a single
object where they could be eliminated, but present in interfaces and therefore spread
throughout the system and much harder to expunge.

The following will show different options for data representation, communication,
and computation, along with their respective trade-offs in terms of coupling,
cohesion, and performance.

Representation
One of the primary tasks of a program, especially an object-oriented program, is to
represent data. Due to the hybrid nature of the language, an Objective-C
programmer has many options available for this task.

Without any claims of completeness, structured data can be represented using a C
struct, Objective-C object, or various forms of key-value stores, most prominently
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Foundation’s NSDictionary and CoreFoundation’s CFDictionary, which are
both getting more and more use. Simple scalars can be represented as C float,
double, or int and their multitude of variations, Foundation NSInteger and
CoreGraphics CGFloat typedefs, and finally Foundation NSNumber and
CoreFoundation CFNumber objects. Note that the naming conventions are a bit
confusing here: The names NSInteger and NSNumber strongly suggest that these
two types are related—for example, with NSInteger being a specific subclass of
NSNumber—but in fact they are completely unrelated. NSInteger is a typedef that
resolves to a 32-bit int on 32-bit architectures and to a 64-bit long on 64-bit
architectures, whereas int is 32 bits in both cases. Similar with CGFloat, which
turns into a 32-bit float on 32-bit architectures and a 64-bit double on 64-bit
architectures. Example 3.1 shows a few of the possible number representations.

Example 3.1 Numbers as primitives and objects

#import <Foundation/Foundation.h>

int main()
{

int a=1;
float b=2.0;
NSNumber *c=[NSNumber numberWithInt:3];
CFNumberRef d=CFNumberCreate(kCFAllocatorDefault,

kCFNumberFloatType, (const void*)&b );
NSNumber *e=@(5);
NSLog(@"a=%d b=%g c=%@ d=%@ e=%@",a,b,c,d,e);
return 0;

}

In order to come to a good solution, the programmer must weigh trade-offs
between decoupling and encapsulation on one hand and performance on the other
hand, ideally getting as much decoupling and encapsulation without compromising
performance, or conversely maximizing performance while minimizing coupling.

Primitive Types
Possibly the easiest call to make is in the representation of simple scalar types like
characters/bytes, integers, and floating point numbers: use the built-in C primitive
types whenever possible, and avoid object wrappers whenever possible.

With the language supporting them natively, scalars are convenient to use and
perform anywhere from 10 to more than 100 times better than their corresponding
Foundation object NSNumber or its CoreFoundation equivalent CFNumber.
Table 3.1 gives the details: the first three columns are times for different arithmetic
operations on scalar types. The differences in timings for 32- and 64-bit addition and
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Table 3.1 Primitive operations in 32- and 64-bit architectures

Operation add multiply divide -intVal NS(int) CF(float) NS(float)

64-bit (ns) 0.67 0.79 14 15 44 169 190
32-bit (ns) 0.72 0.76 7.8 22 232 182 211

multiplication are probably measuring artifacts, though they were stable when
preparing these measurements and it is important to report actual results as measured,
not what we think the results should be.

Division is slower than the other arithmetic operations because dividers in CPUs
usually only handle a few bits at a time, rather than a full word, which also explains
why 64-bit division is significantly slower than 32-bit division.

Compared to entities that can usually be stored in registers and manipulated in a
single clock cycle (or less on superscalar designs), any object representation has
excessive overhead, and Objective-C’s fairly heavyweight objects are doubly so.
Foundation and CoreFoundation make this overhead even worse by providing only
immutable number objects, meaning any manipulation must create new objects.
Finally, scalars like numbers and characters tend to be at the leaves of any object graph
and therefore are the most numerous entities in a program, with every object
containing at least one but more likely many instances of them.

On the flip side, there is little variation or private data that would benefit from the
encapsulation and polymorphism that are made possible by an object representation,
and number objects are in many ways even less capable than primitive types, for
example, by not providing any arithmetic capabilities. This could change in the future
if Foundation or another framework provided a number and magnitudes hierarchy
similar to that of Smalltalk or LISP, where small integers automatically morph into
infinite precision integers, fractions, floating point, or even complex numbers as
needed. Alas, Foundation provides none of these capabilities, though the introduction
of tagged integers in the 64-bit runtime on OS X 10.7 along with the addition of
number literals in 10.8 could be a sign of improvements in the future.

Of course, there are times when an object is required by some other interface, for
example, when adding content to an NSArray or NSDictionary. In this case, you
must either use NSNumber or an equivalent or provide alternatives to those
interfaces—an option we will explore more later in the chapter.

One wrinkle of Table 3.1 is that although most times are similar between 32 and
64 bits, two numbers are different. The division result is about twice as slow on 64
bit, whereas the creation of integer NSNumber objects is six times faster. The
division result is easily explained by the fact that the integer division hardware on the
particular CPU used processes a fixed number of bits per cycle, and 64-bit operands
simply have twice as many bits. The multiply and add circuits, on the other hand,
operate on full 64-bit words at once.
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Table 3.2 Tagged and regular pointers

Bits 8–32/64 4–7 3 2 1 0

Regular pointer upper address bits 0
Tagged pointer value subtype tag id 1

The difference in allocation speeds for integer objects on the other hand has
nothing to do with the CPU differences and everything with the fact that Apple
introduced tagged integers in OS X, but only in the modern runtime, and only for
the 64-bit version of that runtime. Tagged integers are a technique taken from old
LISP and Smalltalk systems where the value of an integer object is encoded not in an
allocated structure pointed to by the object, as usual, but rather in the object pointer
itself. This saves the pointer indirection when accessing and especially the memory
allocation when creating or destroying the data (integers in this case). This
representation takes advantage of the fact that object pointers are at least word
aligned, so the lower 2 or 3 bits of a valid object pointer are always 0 on 32-bit and
64-bit systems, respectively. Table 3.2 shows how the tagged pointer representation
puts a “1” in the low bit to distinguish tagged pointers from regular pointers, another
7 bits for typing the value, and the remaining 24 or 56 bits to store a value.

In fact, it is puzzling that the performance for integer NSNumber creation isn’t
much better than it is, since all it takes is the bit-shift and arithmetic OR shown in
the makeInt() function of Example 3.2, possibly with some tests depending on the
source and target number type—operations that should be in the 1 to 2 ns total range.

Example 3.2 Summing manually created tagged NSNumber objects

#import <Foundation/Foundation.h>

#define kCFTaggedObjectID_Integer ((3 << 1) + 1)
#define kCFNumberSInt32Type 3
#define kCFTaggedIntTypeOffset 6
#define kCFTaggedOffset 2
#define kCFTaggedIntValueOffset (kCFTaggedIntTypeOffset+kCFTaggedOffset)
#define MASK (kCFNumberSInt32Type<<kCFTaggedIntTypeOffset)
#define kCFTaggedIntMask (kCFTaggedObjectID_Integer | MASK)

static inline int getInt( NSNumber *o ) {
long long n=(long long)o;
if ( n & 1 ) {

return n >> kCFTaggedIntValueOffset;
} else {

return [o intValue];
}

}

static inline NSNumber *makeInt( long long o ) {



Representation 45

return (NSNumber*)((o << kCFTaggedIntValueOffset) | kCFTaggedIntMask);
}

int main( int argc , char *argv[] )
{

NSNumber* sum = nil;
for (int k=0;k<1000000; k++ ) {
sum =makeInt(0);
for (int i=1;i<=1000;i++) {
sum =makeInt(getInt(sum)+i);

}
}
NSLog(@"%@/%@ -> '%@'",sum,[sum class],[sum stringValue]);
return 0;

}

The reason of course is that Apple has so far hidden this change behind the
existing messaging and function call application programming interfaces (APIs) going
through CoreFoundation. We are also advised that the representation, including the
actual tags, is private and subject to change. What we are leaving on the table is
significant: The code in Example 3.2 runs in 1.4 s, compared to 11.4 s for the
Foundation/CoreFoundation-based code from Chapter 1.

Hopefully this will change in the future, and the compiler will become aware of
these optimizations and be able to generate tagged pointers for integer objects and
some of the other tagged types that have been added in the meantime. But as of OS
X 10.11 and Xcode 7.3, it hasn’t happened.

Strings
A data type that almost qualifies as a primitive in use is the string, even though it is
actually variable in length and doesn’t fit in a processor register. In fact, Objective-C
strings were the first and for a long time the only object that had compiler support for
directly specifying literal objects.

There are actually several distinct major uses for strings:

1. Human readable text
2. Bulk storage of serialized data as raw bytes or characters
3. Tokens or keys for use in programming

While these cases were traditionally all handled uniformly in C using char*
pointers, with some NUL terminated and others with a length parameter handled out
of band, conflating the separate cases is no longer possible now that text goes beyond
7-bit ASCII.

Cocoa has the NSString class for dealing with human readable text. It handles
the subtleties of the Unicode standard, delegating most of the details to iconv
library. This sophistication comes at a cost: roughly one order of magnitude slower
performance than raw C strings. Table 3.3 shows the cost of comparing 10- and
32-byte C-Strings with 10- and 32-character NSString objects.



46 Chapter 3 CPU: Pitfalls and Techniques

Table 3.3 NSString and C-String operations

Operation 1 ns !strcmp(10) strcmp(32) !nscmp(10) ns append nscmp(32)

1 ns 1 3.3 10 76 77 82
!strcmp(10) 1 3 23 23 25
strcmp(32) 1 7.5 7.6 8.2
!nscmp(10) 1 1 1.1
ns append 1 1.1
nscmp(32) 1

Although NSStrings are expensive, this is an expense well spent when the
subject matter really is human-readable text. Implementing correct Unicode handling
is complex, error prone, and inherently expensive. In addition, the option of having
multiple representations with a common interface is valuable, allowing string
representations optimized for different usage scenarios to be used interchangeably. For
example, literal NSStrings are represented by the NSConstantString class that
stores 8-bit characters, whereas the standard NSCFString class (backed by
CFString CoreFoundation objects) stores 16-bit unichars internally. Subclasses
could also interchangeably provide more sophisticated implementations such as ropes,
which store the string as a binary tree of smaller strings and can efficiently
insert/delete text into large strings.

Starting with OS X 10.10, string objects on the 64-bit runtime also got the tagged
pointer treatment that we previously saw for integers. This may seem odd, as strings
are variable-length data structures, arrays of characters. However, 64 is quite a lot of
bits, enough to store seven 8-bit characters and some additional identifying
information such as the length. In fact, when I myself proposed tagged pointer strings
back in 2007, I also had variants with eight 7-bit ASCII strings, or an even tighter
packing that ignores most of the control and special characters to use only 6 bits and
thus have room for 9 characters. I don’t know if any of those variants are
implemented.

Example 3.3 illustrates the different NSString implementation types: a literal is
an instance of __NSCFConstantString, a CF variant of NSConstantString.
Creating a mutable copy creates a new string object, whereas creating a copy of that
mutable copy creates a tagged pointer string because the string is only 5 characters
long. All of this is implementation dependent, but the differences are relevant when
looking at NSDictionary lookup performance.

Example 3.3 Show differences between normal, constant, and tagged strings

#import <Foundation/Foundation.h>

void printString( NSString *a ) {
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NSLog(@"string=%@ %p class: %@",a,a,[a class]);
}

int main()
{

NSString *cs=@"Const";

printString(cs);
printString([cs mutableCopy]);
printString([[cs mutableCopy] copy]);

}
cc -Wall -o taggedstring taggedstring.m -framework Foundation
./taggedstring
string=Const 0x108fe2040 class: __NSCFConstantString
string=Const 0x7fb359c0d630 class: __NSCFString
string=Const 0x74736e6f4355 class: NSTaggedPointerString

While great for human readable text, NSString objects are somewhat
heavyweight to be used for serialized data, which is handled more safely and
efficiently by the NSData class. Unlike NSString, which requires an encoding to
be known for text data and can therefore not be safely used on arbitrary incoming
data (it will raise an exception if the data does not conform to the encoding),
NSData can be used with arbitrary, potentially binary data read from the network or
a disk. For performance, it is possible to get a pointer to the NSData’s contents via
the -byte or -mutableBytes methods for processing using straight memory
access, whereas NSString (rightfully) protects its internal data representation, with
processing only possible by sending high-level messages or by copying the data out of
the NSString as 16-bit unichar character data or encoded 8-bit bytes.

When parsing or generating serialized data formats, even textual ones, it is
significantly more efficient to treat the serialized representation such as the JSON in
Example 3.4 as raw bytes in an NSData, parse any structure delimiters, numbers, and
other non-textual entities using C character processing, and create NSString objects
exclusively for actual textual content, rather than reading the serialized representation
into an NSString and using NSScanner or other high-level string processing
routines.

Example 3.4 Textual content of JSON file is shown in bold

[ { "name": "AAPL", "price": 650.1, "change": 20.41 },
{ "name": "MSFT", "price": 62.79, "change": -0.9 },
{ "name": "GOOG", "price": 340.79, "change": -5.2 }, ]

Even the strings that appear in such a file tend to be structural rather than actual
content, such as the dictionary keys in Example 3.4. These types of structural strings
are also represented as NSString objects in Cocoa, just like human-readable text.
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While convenient due to the literal NSString syntax (@"This is a constant
string"), this conflating of human-readable text and functional strings can at times
be unfortunate in terms of performance. Fortunately, many types of keys that are
more optimized exist—for example, basic C strings, message names, and instance
variable names.

Objects
Since you’re programming in Objective-C, it is likely that objects are going to be
your major data-structuring mechanism.

Use C inside the objects. The messaging interface hides the representation, and
users are none the wiser. Try to avoid using fine-grain, semantic-free objects to
implement the coarse-grain, semantics-bearing objects.

Accessors
Accessors are methods that just read or write an object’s internal data, corresponding
roughly to memory read and write instructions. According to good object-oriented
style, attributes of an object should not be accessed directly, certainly not from
outside the object, but preferably also from within. Objective-C 2.0 properties handle
the burden of creating accessors.

However, accessors should also at least be minimized and ideally should be
eliminated altogether, because they turn objects from intelligent agents that respond
to high-level requests for service to simple data-bearing structures with a higher cost
of access. Apart from a cleaner design, passing high-level requests into an object also
makes sense from a performance point of view because this means the transaction
costs of a message send is paid only once, at which point the method in question has
access to all parameters of the message and the object’s instance variables, instead of
using multiple message sends to gather one piece of data from the object at a time.

Of course, in reality, accessors or property definitions are a common feature of
Objective-C programs, partly because program architecture deviates from object-
oriented ideals and partly because accessors for object references in Objective-C are
also needed to help with reference counting, as shown in Example 3.5.

Example 3.5 Object accessors need to maintain reference counts

-(void)setInteger:(int)newInteger {
_integer=newInteger;

}
-(void)setObject:(id)newObject {

[newObject retain];
[_object release];
_object=newObject;

}
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As with other repetitive boilerplate, it makes sense to automate accessor
generation, for example, by using Xcode macros, preprocessor macros that generate
the accessor code. Alternately, the language can take over: Since Objective-C 2.0
properties can automatically synthesize accessors and with Automatic Reference
Counting (ARC), the actual reference counting code was moved from the accessors
to the code-generation of all variable access.

A caveat with using properties for generating accessors is that the generated code is
not under user control, with the default atomic read accessors up to five times
slower than a straightforward implementation, because they retain and
autorelease the result, place a lock around the read in case of multithreaded
access, and finally need to wrap all of that in an exception handler in order to release
the lock in case of an exception. An alternative is the accessor macros shown in
Example 3.6. These macros generate the correct accessor code just like properties.
However, this generation is under user control, meaning not only that you get to
decide what code gets run, but also that you can (a) change your mind and (b) extend
the idea further without having to modify the compiler, as I will show later.

Example 3.6 Accessor macros

#if !__has_feature(objc_arc)
#define ASSIGN_ID(var,value)\

{\
id tempValue=(value);\
if ( tempValue!=var) { \
if ( tempValue!=(id)self ) \
[tempValue retain]; \

if ( var && var!=(id)self) \
[var release]; \

var = tempValue; \
} \

}
#else
#define ASSIGN_ID(var,value) var=value
#endif

#ifndef AUTORELEASE
#if !__has_feature(objc_arc)
#define AUTORELEASE(x) ([(x) autorelease])
#else
#define AUTORELEASE(x) (x)
#endif
#endif

#define setAccessor( type, var,setVar ) \
-(void)setVar:(type)newVar { \

ASSIGN_ID(var,newVar);\
} \
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#define readAccessorName( type, var , name )\
-(type)name { return var; }

#define readAccessor( type, var ) readAccessorName( type, var, var )

#define objectAccessor( objectType, var, setVar ) \
readAccessor( objectType*, var )\
setAccessor( objectType*, var,setVar )

In OS X 10.11, the slowdown has apparently been reduced to around 35%, with
or without ARC enabled.

Due to the pervasiveness of accessors, this overhead is serious enough that teams at
Apple sped up whole programs by more than 10% just by switching properties from
atomic to nonatomic. An improvement of 10% may not seem much when we are
frequently talking about improvements of 10 to 100 times, but it is actually huge
when we are talking about the whole program, where significant engineering effort is
often expended for single-digit percentage improvements. And here we get double
digits with a single change that had no other effect. So why does atomic exist? And
why is it the default?

The idea was to protect against code such as that shown in Example 3.7. This code
has a stale reference to an object instance variable that was actually released when the
pointer went stale, similar to some early Unix malloc() implementations having a
free() function that delayed freeing its memory until the next call to malloc(),
in essence avoiding a potential crash in buggy code such as that in Example 3.7.

Example 3.7 Stale pointer reference

...
id myWindowTitle=[window title];
[window setTitle:@"New Window title"]; // windowTitle goes stale
[self reportTitle:myWindowTitle]; // crashes pre-ARC

....

The crash will occur if title is held onto by the window, and only by the
window, because in that case setTitle: will release the title and the reference to
this object in myWindowTitle will not only be stale, that is, no longer pointing to
the window’s title—but also invalid. Having auto-releasing accessors such as the ones
provided by the atomic keyword will prevent a crash in this case, but at the cost of
hiding the fact that the reference has, in fact, gone stale. I can see two potential
reasons for writing this code. The first is that of a simple but slightly premature
optimization if the title is used several times and we don’t want to go fetch it from the
window every time. In this case the code is simply wrong, because you’d actually
want to get the new value from the window after it was set, and atomic in this case
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just masks the incorrect code. A crash would alert the programmer to the fact that the
logic is amiss. The second case is that in which the programmer actually intended to
stash away the old value. In this case, the code is also plain buggy, because the
programmer is well aware that the new value will make the old value invalid—that’s
why they are stashing it! The corrected code in Example 3.8 not only doesn’t need
atomic, it also makes the intention of the code clear.

Example 3.8 Non-stale pointer reference

...
id oldWindowTitle=[[window title] retain] autorelease];
[window setTitle:@"New Window title"];
[oldWindowTitle doSomething]; // clear that we want old title

....

Note that ARC also prevents the crash, and therefore also hides the staleness of the
pointer, just like atomic did—by aggressively retaining objects even when they are
stored into local variables. The advantage is that you don’t have to think as much
about the lifetime of your objects. The disadvantage is that you don’t have to think as
much about the lifetime of your objects, and you get significantly more
reference-counting traffic, which impacts performance.

So while it is unclear whether atomic would be beneficial at all even if there were
no performance penalty, the significant slowdown in a very common operation makes
it highly questionable at best. The fact that the collection classes do not support this
pattern (for performance reasons) and iOS’s UIKit explicitly sets nonatomic for over
99% of its property declarations shows that Apple itself is not of one mind in this case.

Even slower than atomic accessors is access via key-value coding (KVC): A call
such as [aTester valueForKey:@"attribute"] is not only more verbose
than the equivalent direct message send [aTester attribute], and not only
more error prone because the compiler cannot check the validity of the string passed
to valueForKey:, it is also 20 times slower. If runtime parameterization of the
value to get is required, using [aTester performSelector:@selector
(attribute)]; is only twice as slow as a straight message send and 10 times
faster than valueForKey:.

You might expect from these basic performance parameters that technologies built
on top of KVC such as key-value observing (KVO) and Cocoa Bindings can’t be too
speedy, and you’d be right: Adding a single KVO observer adds a factor of 100 to the
time of a basic set accessor (600 ns vs. 6 ns) and a single binding a factor of 150
(900 ns).

KVO and bindings also do not protect against cascading update notifications,
which can lead to at least quadratic performance if there are transitive dependencies
(b depending on a and c depending on both a and b will result in c being evaluated
twice), and can lead to infinite recursion and crashes if there are dependency loops. So
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for larger data sets or complex dependencies, it is probably a good idea to investigate
using a proper constraint solver in the tradition of the 1978 Xerox PARC ThingLab
or later developments such as DeltaBlue, Amulet, or Cassowary. In fact, it appears that
Cassowary was adopted by Apple for Mountain Lion’s auto-layout mechanism.

Public Access
When sending messages to access instance variables is too slow, those instance
variables can be made @public. In this case, access time is essentially the same as for
a C struct, (non-fragile instance variables mean that the offset is looked up in the
class instead of being hard-coded at compile-time, slightly affecting the result) but
then again so is safety and encapsulation: none of either. The case can therefore be
made that if @public access is required, one should use a struct instead. In fact,
there are some additional benefits to a struct, mainly that it can be allocated on the
stack in an auto variable, passed by value to a function, or directly embedded into
another object or struct or array, whereas an Objective-C object must be
expensively allocated on the heap and can only be accessed indirectly via pointer.

However, there are also some benefits to keeping such an open object a true
Objective-C object—namely, it can have additional functionality attached to it, access
can be granted or denied on a per-field basis, and it may be used compatibly with
other objects that are not aware of its publicly accessible instance variables. As an
example, the PostScript interpreter mentioned in Chapter 1 uses a string object that
has all its instance variables public, shown in Example 3.9, but at the same time can
be used largely interchangeably with Cocoa NSString objects.

Example 3.9 Full public string object definition

@interface MPWPSString : MPWPSCompoundObject
{

@public
unsigned char *bytes;
unsigned length,capacity;

}

Of course, breaking encapsulation this way makes evolution of the software harder
and should be considered as a last resort when all other techniques have been tried,
performance is still not adequate, and careful measurement has determined that the
access in question is the bottleneck.

Object Creation and Caching
As we have seen so far, object creation is expensive in Objective-C, so it is best to use
objects as fairly static and coarse-grained entities that exchange information via
messages, preferably with mostly scalar/primitive arguments. If complex arguments
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cannot be avoided and high rates of creation/exchange need to be maintained, both
Objective-C and Swift can resort to structs instead of objects, which like
primitives can be stack allocated, allocated in groups with a single malloc(), and
passed by value as well as by reference. However, this often means either switching
between objects and structs when modeling the problem domain, or even foregoing
object modeling altogether.

Another option to lessen or even eliminate the performance impact of object
creation when high rates of (temporary) object creation cannot be avoided, is object
caching: reusing objects that have already been allocated. The advantage of object
caching over using structs is that performance considerations do not interfere with
the modeling of the problem domain and all the code involved. Instead, a pure
performance fix can be applied if and when performance turns out to be a problem.

Table 1.2 shows that reusing just one object instead of allocating a new one, we
have not only saved some memory, but also CPU time equivalent to approximately
50 message sends, allowing us to use objects where otherwise we might have had to
revert to C for performance reasons. Object reuse was common in object-oriented
languages until generation-scavenging copying garbage collectors with “bump
pointer” allocation came online that made temporary objects extremely cheap. Alas,
C’s memory model with explicit pointers makes such collectors that need to move
objects nigh impossible, so object reuse it is!

In order to reuse an object, we have to keep a reference to it in addition to the
reference we hand out, for example, in an instance variable or a local collection. We
can either do this when we would have otherwise deallocated the object, or we can
keep a permanent reference. Then, when it comes time to create another object of
the desired class, we check whether we already have a copy of it and use that already
allocated copy instead.

Mutability and Caching
When is it safe to reuse an object? Immutable value objects, for example, can be
reused as often as desired, because different copies of the same value object are
supposed to be indistinguishable. Foundation uses this strategy in a number of places
for some global uniquing. Small number objects are kept in a cache once allocated,
and constant string objects are merged by the compiler and linker and shared.

In order to cache objects behind the client’s back, these objects must be
immutable, because sharing between unwitting clients becomes impossible if changes
made by one client become visible to another. However, immutability forces creating
a new object on every change, and creating a new (uncached) number object every
time a new value is needed is around 30 to 40 times more expensive than just setting a
new value, even if done safely via an accessor. So how can we reuse mutable objects?

One way, chosen by the UIKit for table cells, is to have a documented API
contract that guarantees reusability. Another is to take advantage of the Foundation
reference counting mechanism, which we use to track if the only reference left to the
object is the one from the cache, in which case the object can be reused. Instead of
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Table 3.4 Reference counts for object caching

in-use unused unused action

retain/release RC > 0 RC = 0 deallocate
object caching RC > 1 RC = 1 reuse

using the 1→0 transition to see whether the object needs to be deallocated, we use
the RC = 1 state to see whether the object can be reused, because the cache is
keeping a single reference. Table 3.4 summarizes this information.

Example 3.10 shows how this reference-count-aware1 cache can be implemented,
though the actual implementation that’s part of a generic object-cache class is much
more heavily optimized. The instance variables referenced here are defined in
Example 3.18 and discussed in detail in the “IMP Caching” section in this chapter.

Example 3.10 Circular object cache implementation

-getObject
{

id obj;
objIndex++;
if ( objIndex >= cacheSize ) {

objIndex=0;
}
obj=objs[objIndex];
if ( obj == nil || [obj retainCount] > 1 ) {

if ( obj != nil ) {
[obj release]; //--- removeFromCache

}
obj=[[objClass alloc] init];
objs[objIndex]=obj;

} else {
obj=[obj reinit];

}
return obj;

}

The MPWObjectCache keeps a circular buffer of objects in its cache that’s a C
array of ids. When getObject2 method is called to create or fetch an object, it

1. Though Apple generally recommends against calling retainCount, this use is not of the problematic
kind.
2. id is the default return type and elided.
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looks at the current location and determines whether it can reuse the object or needs
to allocate a new one and then bump the location. It assumes objects know how to
reinitialize themselves from an already initialized but no longer valid state. The
circular buffer structure gives objects that were vended by the cache some time before
we try to reuse them, similar to the young space in a generation-scavenging collector.
At around 9.5 ns per pop, allocating from the (optimized) object cache is around 15
times faster than straight object allocation, so this is a very worthwhile optimization.

Wraparound of the index is handled via an if-check rather than a modulo
operation, because a modulo is a division, and as we saw earlier in this chapter,
division is one of the few arithmetic operations that is still fairly slow even on
modern CPUs. A different way of implementing a modulo would be by and-ing the
low bits of the index, but that would restrict the cache size to powers of 2. Finally,
there are many variations of probing and retirement policies that will have different
performance characteristics, for example, attempting at least n consecutive slots or
using random probing. So far, this very simple algorithm has proved to be the best
balance for a wide variety of use-cases.

Another potential way of using reference counts is to stick to the 1→0 transition
the way traditional reference counting does and then override dealloc to enqueue
the object in a global cache instead of deallocating regularly. However, that sort of
approach, unlike the object cache presented here, couples the target class tightly to
the caching behavior and requires use of a global cache. I therefore recommend
against that type of global cache, despite the fact that it is quite popular. Not
requiring locking, scoping the cache to the lifetime of another object and the specific
circumstance of that object’s use patterns are a large part of what makes object
caching via a cache object powerful and fast.

Lazy Evaluation
Another use of caching is lazy evaluation of properties. When a message requests a
property of an object that is expensive to compute and may not even be always
needed, the object can delay that computation until the property is actually requested
instead of computing the property during object initialization. Alternately, the result
of an expensive computation can be cached if it is likely that the computation will be
used in the future and if it is known that the parameters of the computation haven’t
changed.

Lazy accessors have become common enough in my code that they warrant a
specialized accessor macro, shown in Example 3.11.

Example 3.11 Lazy accessor macro

#define lazyAccessor( type, var ,setVar, computeVar ) \
readAccessorName( type,var, _##var ) \
setAccessor( type, var, setVar ) \

-(type)var { \
if ( ![self _##var] ) { \
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[self setVar:[self computeVar]]; \
} \
return [self _##var]; \

} \

The accessor builds on the macros from Example 3.6 but also has a parameter
computeVar that defines the message to be sent to compute the result. When the
getter is called, it checks whether it has a result. If it has a result, it just returns it; if
not, it calls the computeVar method and then stores the result before returning it.
Another less frequent accessor macro is the relay accessor that simply forwards the
request to an instance variable.

Caching Caveats
There are only two hard things in Computer
Science: cache invalidation and naming
things.

Phil Karlton

With all this caching going on, it is important to remember that caching isn’t
without pitfalls of its own. In fact, a friend who became professor for computer
science likes to ask the following question in his exams: “What is a cache and how
does it slow down a computer?”

In the worst case of a thrashing cache with a hit rate of 0%, the cache simply adds
the cost of maintaining the cache to the cost of doing the non-cached computation,
and an easy way of reaching a 0% hit rate with the very simple cache policy used so
far is invalidating a cache item just before it is needed again, for example, by having a
linear or circular access pattern and a cache size that is smaller than the working set
size, even by just a single item.

Additionally, caches use up memory by extending the lifetime of objects, and
therefore increase the working set size, making it more likely to either push
working-set items to a slower memory class (L1 cache to L2 cache, L2 cache to main
memory, main memory to disk...) or even run out of memory completely on iOS
devices, resulting in the process being killed. Global, transparent caches like
CoreFoundation’s CFNumber cache fare worst in this regard, because they have
effectively no application-specific information helping them determine an
appropriate size, leading to caches with arbitrary fixed sizes, like 12.

In addition, they can have puzzling bugs and side effects that, because of their
transparent nature, are hard for clients to work around. Example 3.12 demonstrates
how different constant strings and number objects allocated by completely different
means but with the same numeric value turn out to be the same actual object, as
shown by logging the object pointer with the “%p” conversion directive.
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Example 3.12 Globally uniqued Foundation string and number objects in 32 bit

#import <Foundation/Foundation.h>

NSString *b=@"hello world";
int main( int argc, char *argv[] ) {

NSString *a=@"hello world";
printf("NSStrings a=%p=b=%p\n",a,b);
for ( int i=1; i<15; i++) {

NSNumber *c=[NSNumber numberWithLongLong:i];
CFNumberRef d=CFNumberCreate(NULL, kCFNumberIntType,&i);
printf("%d NSNumber: %p type: %s \

CFNumberCreate: %p type: %s\n",
i,c,[c objCType],d,[(id)d objCType]);

}
return 0;

}
cc -Wall -m32 -o uniqueobjs uniqueobjs.m -framework Foundation
./uniqueobjs
NSStrings a=0x6b014=b=0x6b014
11 NSNumber: 0x78e7ac30 type: i CFNumberCreate 0x78e7ac30 type: i
12 NSNumber: 0x78e7ac40 type: i CFNumberCreate 0x78e7ac40 type: i
13 NSNumber: 0x78e7ac60 type: q CFNumberCreate 0x78e7ab90 type: i
14 NSNumber: 0x78e7aba0 type: q CFNumberCreate 0x78e7abb0 type: i

At the time this test was run, the cutoff for the cache was 12, requests up to that
value get a globally unique, cached object, whereas values larger than that result in an
allocation. Also note that the objCType of all cached values is “i,” a 32-bit integer,
despite the fact that we specifically asked for a long long, type code “q”. Once
outside the cacheable area, the requested type is honored.

The reason for this odd behavior is that the cache used to always cache the first
object created for a specific value, regardless of the type requested. So if the first
request for the integer 5 was for a long long, then all subsequent requests for a “5”
would return that long long NSNumber. However, this could and did break code
that was not expecting a “q” (long long) type code in its NSNumber objects, for
example, object serializers that used the type code and did not handle the “q” code!
This bug was fixed by ignoring the requested type-code for the cached numbers and
using “i” instead, which is in fact just as incorrect as the other case, but in practice
appears to cause fewer problems. On the 64-bit runtimes, the cache is disabled
because all these small integers are implemented as tagged pointers.

Another pitfall is the use of NSDictionary or NSSet instances to cache
de-duplicate string objects. While they may reduce peak memory usage in some
cases, they can also increase memory usage by unnecessarily and arbitrarily extending
the lifetime of the stored strings. Furthermore, the fact that NSString objects have
to be created before they can be tested for membership means that the CPU cost has
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already been paid before the cache is tested, so the cache actually increases CPU use.
The way to improve this situation is to create a cache that can be queried using
C-strings, either with a custom cache or with a custom set of callbacks for
CFDictionary.

Pitfall: Generic (Intermediate) Representations
One of the fun features of the NeXTStep system that is the ancestor of OS X and
iOS was its programmable graphics and window system based on DisplayPostscript.
Just as the transition to OPENSTEP brought us Foundation with the basic object
model of NSString, NSNumber, NSDictionary, and NSArray, I happened to
be working on a kind of “PostScript virtual machine” that redefined PostScript
operators to return graphical objects in a structured format rather than paint them on
the screen, similar to the “distillery” code that to the best of my knowledge still
powers Adobe’s Acrobat Distiller PostScript to PDF converter to this day.

As I looked at my fresh install of OPENSTEP, I noticed that the binary object
sequence (BOS) format created by the interpreter’s printobject command
included numbers, dictionary, arrays, and strings, mapping perfectly onto the data
types provided by the brand new Foundation framework! So all I had to do was create
a generic mapper to convert BOS format to Foundation, access the information
encoded in those Foundation objects, and use that information to populate my
domain objects, which included paths, images, text, and various graphics state
parameters such as colors, transformation matrices, font names, and sizes.

While this approach allowed me to construct a prototype graphical object reader
reasonably quickly, the performance was “majestic.” In a complete surprise, the
limiting factor was neither the PostScript procedures that had to emulate the drawing
commands and produce output, nor the serialization operator in the PostScript
interpreter or the deserialization code, or even the somewhat pokey byte-oriented
communications channel. No, the major limiting factor was the creation of
Foundation objects, a factor I never would have thought of. After the shock of my
disbelief wore off, I replaced the parts that had converted the BOS to Foundation
objects with a simple cover object that kept the original data “as-is” but was able to
access parts using a generic messaging interface. The parser then accessed this
messaging interface instead of converted objects, and performance improved
threefold.

This was the first time I learned the lesson that generic intermediate object
representations, also known as data transfer objects, are just a Bad Idea™, at least if
you care about performance and are using Objective-C. While the general principle
holds true in other languages, Objective-C drives that message home with a
particular vengeance because of the 1:5:200 performance ratio between basic
machine operations, messaging, and object allocation.

Of course, I had to relearn that lesson a couple of times before it finally managed
to stick, but the reason why it is true is actually pretty simple: a generic representation
will usually have significantly more objects than a final object representation because



Objects 59

it needs to use dictionaries (object header + key and value storage) instead of plain
old Objective-C objects (somehow the “POOO” acronym as analogous to Java’s
Plain Old Java Objects [POJO] never caught on), object keys where objects can use
instance variable offsets, and object values where objects can use simple scalar
primitive types. So not only will you be creating objects that are significantly more
expensive individually, but you will also need to create many more of these objects.
Multiplying out these two factors makes generic intermediate object representations
pretty deadly for performance in Objective-C and Swift.

Alas, Apple also makes this anti-pattern extremely convenient, so it has become
pretty much the default for accessing any sort of serialized representation. A typical
example is JSON parsing, with the only method directly supported by the
frameworks being converting the JSON to and from in-memory property lists, that
is, Foundation collections, NSNumber, and NSString objects. Even the plethora of
Swift JSON “parsing” examples that have sprung up on the Internet essentially all
first call NSJSONSerialization to do the actual parsing and generation.

Arrays and Bulk Processing
When dealing with a collection of entities accessed by integer indexes, Foundation
NSArray improves on plain C arrays (array[index]) with a number of
convenient services: automatic handling of memory management (retain /
release), automatic growth, sorting, searching, subarray generation, and a memory
model that allows efficient addition and removal of objects at both ends of the array.

What’s missing is a set of arrays of primitives types such as float, double, or int
with similar sets of services, as it should be clear by now that wrapping the scalar
values in NSNumber objects and sticking those in an NSArray will not perform
particularly well. Such a wrapper is easy to write, and a number of them exist; for
example, the author’s MPWRealArray, the arrays in FScript, or
SMUGRealVector.

As Figure 3.1 shows, the performance benefits of having a homogenous collection
of scalars are overwhelming: Summing the values in an array filled with 10,000
numbers is 5 times faster than summing NSNumbers in an NSArray even if the
individual numbers are accessed via a messages send, and 17 times faster when the
array is asked to perform the operation in bulk.

The differences are even more pronounced for creating such an array and filling it
with the values from 1 to 10,000: The homogenous array is 20 times faster than
creating the same values as an NSArray of NSNumbers, even when every real value
is added inefficiently using a separate message send. Moving to bulk operations,
where the loop is executed inside the real array, takes the difference to a factor of 270.

Better yet, representing the numbers as a contiguous C array of floats allows us to
use the vector processing tools built into OS X such as vDSP library. Using vDSP
functions, summing using the MPWRealArray code in Example 3.13 becomes yet
another 10 times faster than even the bulk processing scalar code, bringing the
performance relative to the NSArray + NSNumber combination to 1.3 μs.
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Figure 3.1 Time to create and sum a numeric 10,000-element array (microseconds)

Example 3.13 Summing using vDSP

@interface MPWRealArray : NSObject
{

int capacity;
NSUInteger count;
float *floatStart;

}

-(float)vec_reduce_plus
{

float theSum=0;
vDSP_sve ( floatStart, 1, &theSum, count );
return theSum;

}

This takes the time for a single addition to only 0.13 ns, showing off the true
power of our computing buzz saws. Creation is also another 4 times faster when
adding vector functions bulk real processing; at 3.5 μs for the entire array, this is now
1,000 times faster than creating an equivalent NSArray of NSNumbers.
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To bring this into perspective, a factor of 1,000 is close to the difference between
the clock speed of a Mac Pro and that of the author’s Apple ][+ with its 1-MHz 6502
processor!

Of course, you don’t have to use an array object. If performance is critical, you can
also always use a plain C array, which can store any type of primitive, struct, or
object. However, this method is without the conveniences of growability, taking care
of reference counting, safe access, or convenience methods.

Swift crosses the NSArray of Foundation with plain C arrays to get the Swift
array type: It provides most or all of the conveniences of an array object like
NSArray or MPWRealArray, while at the same time using generics to be applicable
to all types like a plain C array. The big advantage is that the temptation to use an
array of NSNumber objects or similar when you just wanted to store some integers or
reals has lessened dramatically. You just write [Int] when you want an array of
integers, or with type inference provide a literal array of integers. Access times are
reasonable and you still get growability and bounds checking.

The downside is that while it is harder to get unreasonably bad performance, it is
also currently hard to get the best possible performance. In my tests, the Swift
summation code was around 4 to 5 times slower than the equivalent Objective-C
code, though that is probably going to change as the optimizer is improved. Speaking
of the optimizer, unoptimized Swift array code was a shocking 1,000 times slower
than reasonably optimized Objective-C code, on par with the object-based code
provided here as a counterexample despite using primitives.

It is not exactly clear how Swift manages to be this slow without the optimizer,
the typical factor for C code being in the 3 to 4 range, and Objective-C often not
affected much at all. What is clear is that with this type of performance difference,
unoptimized debug builds are probably out of the question for any code that is even
remotely performance sensitive: when a task taking 100 ms optimized would take
almost 2 minutes in a debug build, you can’t really debug.

Dictionaries
The use of strings as keys mentioned in the “Strings” section of this chapter is usually
in conjunction with some sort of key-value store, and in Cocoa this is usually an
NSDictionary. An NSDictionary is a hash table mapping from object keys to
object values, so features average case constant O(k) read access time.3

However, the generic nature of the keys means that, as Table 3.5 and Table 3.6
show, k is a relatively large number in this case, 23 to 100 ns or 10 to 50 times slower
than a message-send. Furthermore, NSDictionary requires primitive types to be
wrapped in objects, with the performance consequences that were discussed in the
“Primitive Types” section in this chapter.

3. The average constant access time isn’t guaranteed by the documentation, but it has always been true, and
the CFLite source code available at http://opensource.apple.com confirms it.

http://opensource.apple.com
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Table 3.5 Cost of dictionary lookups by type of stored and lookup key, large key

Time to lookup by lookup key type (ns)

Stored keys Constant Regular Mutable CoreFoundation
string string string

Constant string 35 78 78 83
Regular string 78 80 80 85

Table 3.5 shows the more general cost of dictionary access, which is around 80 ns
per read if you don’t have hash collisions (when two or more keys map onto to the
same slot in the hash table). A single collision adds another 20 ns or so. The only time
that deviates from the roughly 80 ns standard is when you have constant strings both
as the keys of the dictionary and the key to look up. In this case, the lookup can be
more than twice as fast, probably due to the fact that constant strings can be
compared for equality using pointer equality due to being uniqued.

For small keys up to 7 characters, the tagged pointer optimization introduced in
OS X 10.10 also helps. As with constant strings, pointer comparison is sufficient here
because the value is stored in the pointer, but only if both strings are of the same type,
either both tagged pointers or both constant strings. Table 3.6 shows this effect:
When the key classes match, both constant strings and tagged pointer strings take
around 22 ns for a single lookup, but there is no benefit if the classes do not match.

So in order to get optimized dictionary performance, you need to make sure that
the class of the key used to store the value into the dictionary and the class of the key
used to retrieve the value match. If a string literal (@"key") was used to store the
value, it is best if a string literal is used to retrieve it.

If you cannot use a string literal on retrieval, your keys are short enough to fit in a
tagged pointer string. And if you retrieve values more often than you store them, it
may be helpful to convert the keys you use to store the values to tagged pointer
strings as was shown in Example 3.3: first do a mutable copy of the original key and
then a copy of the mutable copy. This will make your retrievals 2 to 4 times faster,
depending on the circumstances. (The detour via a mutable copy is necessary because

Table 3.6 Cost of dictionary lookups by type of stored and lookup key, small key

Time to lookup by lookup key type (ns)

Stored keys Constant Tagged Mutable CoreFoundation
string string string

Constant string 23 64 52 74
Tagged string 51 21 44 47
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all immutable strings, including constant strings, will just return self when asked to
copy themselves.)

Even with these optimizations for small and constant strings, it is therefore best to
look for alternatives to NSDictionary when there is a chance that performance
may be relevant, unless what is needed exactly matches the capabilities of
NSDictionary. The vast majority of dictionary uses are much more specialized, for
example, using only fixed strings as keys, and often having only a bounded and small
set of relevant or possible keys. The XML parser in Chapter 4 uses two types of
specialized dictionaries: MPWXMLAttributes for storing XML attributes that
supports XML semantics such as ordering and multiple values for a key and is tuned
for those use-cases, and the MPWSmallStringTable that maps directly from a
predefined set of C strings to objects.

MPWSmallStringTable does not use a hash-table but operates directly on the
byte-by-byte character representation, trying to eliminate nonmatching strings as
quickly as possible. While it is also approximately 4 times faster than NSDictionary
for the small constant string cases that NSDictionary is specially optimized for, its
main use is in dealing with externally generated string values, and for this use-case it
is anywhere from 5 to 15 times faster than NSDictionary.

Swift dictionaries, which are and use value types, and which benefit from generics,
are obviously faster than heavyweight NSDictionary objects that use slow objects,
right? Alas, that is currently not the case: In all my tests, Swift Dictionary access
was significantly slower than even NSDictionary. For example, a [String:Int]
map, which maps two value types and is therefore unencumbered by any legacy
Objective-C objects and “slow” dynamic dispatch, took anywhere from 140 ns to
280 ns per lookup, depending mostly on whether the key was a string literal or was
provided externally, respectively. This slowdown of 3 to 7 times, compared to
NSDictionary (and 17 to 25 times compared to MPWSmallStringTable) was
largely independent of compiler flags, though as typical of Swift, compiling without
any optimization causes a significant slowdown.

The easiest alternative to NSDictionary is to just define objects and use plain
messaging to access their contents, especially when the dictionary in question has a
reasonably small and mostly fixed set of keys. Not only is the first line of
Example 3.14 anywhere from 10 to 100 times faster, it is also a cleaner design because
message names are scoped by their class, whereas dictionary keys pollute the global
namespace and must therefore use unwieldy long names.

Example 3.14 One of these is 100 times faster

[myParagraph setLeading: 10.0];
[myParagraph setAttribute:[NSNumber numberWithFloat:10.0]

forKey:kMPWParaStyleLeading];

Why might one prefer to use a dictionary instead of an object? With the
nonfragile instance variables of the Objective-C 2.0 64-bit runtime and associated
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storage, future-proofing against additional required instance variable is no longer an
issue. Potentially sparsely populated objects can be handled by partitioning into one
or more subobjects to which the corresponding message are delegated and that are
allocated as needed.

As long as clients are provided with a messaging interface, the implementation can
be varied and optimized to fit. While it is tempting to provide a key-value based
interface instead, the flexibility it appears to offer is an illusion. Once an
NSDictionary-like key-value interface is provided to clients, the performance
characteristics are pretty much locked in, because mapping from NSString external
keys to messages or instance variable offsets internally is just about as costly in terms
of CPU usage as an NSDictionary proper. So instead, if an NSDictionary-based
internal representation is desired, it can and probably should be wrapped in an object
that maps its accessor messages to the dictionary.

The Macro in Example 3.15 allows you to add a messaging interface to a key in a
dictionary either statically by writing dictAccessor( var, setVar , [self
_myDict] ) in your implementation, where var is the key and [self
_myDict] is an expression that returns the dict to be used, or dynamically at
runtime, using the imp_implementationWithBlock() function to turn a block
into a method implementation.

Messaging
I’m sorry that I long ago coined the term
“objects” for this topic because it gets many
people to focus on the lesser idea. The big
idea is “messaging.”

Alan Kay

Whereas objects in Objective-C are little more than slightly specialized C
structures, the efficient and highly flexible message dispatch system is at the heart of
Objective-C. It combines true object encapsulation and the dynamicism of languages
such as Ruby or Smalltalk. Not only are Objective-C messages powerful, they are
also relatively cheap, only around twice the cost of a C function call and within an
order of magnitude of basic machine operations. Even an unoptimized message send
is around 10 times faster than keyed access via NSString, and 50 times faster than
object-creation, despite the fact that in the current Objective-C runtime, an
Objective-C selector, is really just a C string.

The reason that messaging via string selectors is so quick is that the compiler,
linker, and runtime conspire to guarantee that every C string representing an
Objective-C selector has a unique address, and therefore the Objective-C messenger
function objc_msgSend() does not have to concern itself with the string that the
selectors point at, but just uses the pointer itself as an uninterpreted unique integer
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Example 3.15 Generate and test dictionary-backed accessor method (statically or
dynamically)

#import <Foundation/Foundation.h>
#import <objc/runtime.h>
#define dictAccessor( objectType, var, setVar, someDict ) \

-(objectType*)var { return someDict[@""#var]; } \
-(void)setVar:(objectType*)newValue { \

someDict[@""#var]=newValue;\
}\

@interface MyObject : NSObject
@property (retain) NSMutableDictionary *dict;
@end
@interface MyObject(notimplemented)
@property (retain) NSString *a;
@property (retain) NSString *b;
@end
@implementation MyObject
-(instancetype)init {

self=[super init];
self.dict=[NSMutableDictionary new];
return self;

}
-(void)addDictAccessorForKey:(NSString*)key
{

SEL selector=NSSelectorFromString( key );
id (^block)()=^{
return self.dict[key];

};
imp=imp_implementationWithBlock( block );
class_addMethod([self class], selector, imp , "@:");

}
dictAccessor( NSString, b, setB , self.dict )
@end
int main()
{

MyObject *m=[MyObject new];

[m addDictAccessorForKey:@"a"];
m.dict[@"a"]=@"Hello";
m.b=@"World!";
NSLog(@"m.a: %@ m.b: %@",m.a,m.b);
return(0);

}
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value. In fact, as Brad Cox writes in Object-Oriented Programming: An Evolutionary
Approach, this selector-uniquing process was the main driver for converting
Objective-C from a set of C macros to an actual preprocessor, which then made it
possible to create a distinct syntax.

On Mac OS X 10.11 with Xcode 7.3.1, the code in Example 3.16 prints
selector: 'hasPrefix:', but the compiler already warns that cast of type
'SEL' to 'char *' is deprecated; use sel_getName instead. In
the GNU runtime, selectors are structure that reference both the message name and
its type encoding.

Example 3.16 Printing a selector as a C string using Apple’s runtime

#import <Foundation/Foundation.h>

int main()
{

SEL a=@selector(hasPrefix:);
printf("selector: %s\n",(char*)a);
return 0;

}

IMP Caching
Although developers new to Objective-C tend to worry most about message sending,
for example, compared to C++ virtual function invocation, the Objective-C
messenger function objc_msgSend() (or objc_msg_lookup() in GNU-objc) has been
highly optimized and is usually not a bottleneck.

In the rare cases that it does become a factor, it is possible to retrieve the function
pointer from the runtime and call that instead. The technique is known as IMP
caching because the type definition of an Objective-C method pointer is called an
IMP (implementation method pointer, or just IMPlementation). IMP caching can be
useful in a tight loop with a fixed receiver when the method itself is trivial and
therefore message dispatch is a major contributor. Example 3.17 shows a greater than
2.5-times improvement in runtime from 2.8 ns to 1.08 ns after subtracting loop
overhead.

Example 3.17 Replacing a plain message send with an IMP-cached message send

#import <MPWFoundation/MPWFoundation.h>
@interface MyInteger : NSObject
@property (assign) int intValue;
@end

@implementation MyInteger
@end
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int main()
{

MyInteger *myObject=[MyInteger new];
int a=0;
myObject.intValue=42;
for ( int i=0; i<1000; i++) {

a+=[myObject intValue];
}

IMP intValueFun=[myObject methodForSelector:@selector(intValue)];
for ( int i=0; i<1000; i++) {

a+=(int)intValueFun( myObject, @selector(intValue) );
}

}

Due to the dynamic nature of Objective-C, there is no automatic way of
determining at compile time whether this optimization is safe, which is one reason
the Objective-C compiler doesn’t do it for you. Fortunately, it is usually very easy for
a developer to make that determination. While there are numerous ways for the IMP
to change during execution (for example, loading a bundle that includes a category,
and using runtime functions to add, remove, or change method implementations or
even change the class of the object in question), all of these are rare events that
happen fairly predictably.

It is the developer’s job to ensure that either none of these events happen, or
alternately, that they do not have an impact on the computation.

A special case that needs to be considered when doing IMP caching is the nil
receiver. The Objective-C messenger quietly ignores messages to nil, simply
returning zero instead of dispatching the message. This short-circuiting protects
receivers from having to worry about a nil self pointer, and sender from having to
special case nil-receivers. IMP caching breaks this protection on several counts: If
the receiver is nil when requesting the IMP, a NULL function pointer will be
returned, and invoking such a NULL function pointer will crash the program. On the
other hand, if a correct function pointer was obtained from an earlier, non-nil object
pointer, calling that function pointer will call a method with a nil self pointer.
Any instance variable access from within that method will also crash the program.

So you will need to ensure both that you are not getting a NULL IMP and that
you don’t call an IMP with a nil receiver.

IMP caching can be particularly useful when sending messages to “known” objects
such as delegates or even self. Example 3.18 shows part of the actual header of the
object cache discussed in the “Mutability and Caching” section of this chapter. In
addition to the cache itself ( objs, cacheSize ) and the current pointer into the
cache objIndex, it also maintains IMP pointers for all the message sent in the
-getObject method from Example 3.10, allowing the actual -getObject to run
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without once invoking the messenger. In addition, it makes the IMP for the
-getObject method itself available in a @public instance variable, along with a
GETOBJECT() C-preprocessor macro to invoke it. The GETOBJECT macro is
actually slightly less code to write than a normal alloc-init-autorelease, is
8% faster even with a cache miss, is 15 times faster with a cache hit, and last but not
least decouples the user of the cache from the specific class used.

Example 3.18 Definition and use of an object cache for integer objects

@interface MPWObjectCache : MPWObject
{

id *objs;
int cacheSize,objIndex;
Class objClass;
SEL allocSel,initSel,reInitSelector;
IMP allocImp,initImp,reInitImp,releaseImp;
IMP retainImp,autoreleaseImp;
IMP retainCountImp,removeFromCacheImp;
@public
IMP getObject;

}

+(instancetype)cacheWithCapacity:(int)newCap class:(Class)newClass;
-(instancetype)initWithCapacity:(int)newCap class:(Class)newClass;
-getObject;
#define GETOBJECT( cache )

((cache)->getObject( (cache), @selector(getObject)))
...
@end
integerCache=[[MPWObjectCache alloc] initWithCapacity:20

class:[MPWInteger class]];
MPWInteger *integer=GETOBJECT( integerCache );
[integer setIntValue:2];

If IMP caching is insufficient and you have the source code of the method you
need to call available, you can always turn it into a C function, an inline function, or
even a preprocessor Macro.

Considering how little of a problem dynamic dispatch is in practice, and how easy
it is to remove the problem in the rare cases it does come up, it is a little surprising
how much emphasis the Swift team has placed on de-emphasizing and removing
dynamic dispatch from Swift for performance reasons.
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Forwarding
While close to C function call speeds on one end, Objective-C messages are flexible
enough to take the place of reified messaging and control structures on the other end.
For example, Cocoa does not have to use the Command pattern because messages
carry enough runtime information to be reified, stored, and introspected about so
something like the NSUndoManager can be built using the fast built-in messaging
system.

For your own projects, I would always recommend mapping any requirements for
dynamic runtime behavior onto the messaging infrastructure if at all possible, and
with a full reflective capabilities what is possible is very broad. The code in
Example 3.19 will execute the message to the object in question as a Unix shell
command, so [object ls] will execute the ls command, and [object date]
the date command. A more elaborate example would translate message arguments
to script arguments.

Example 3.19 Mapping sent messages to shell commands

#import <Foundation/Foundation.h>
@interface Shell:NSObject
@end
@interface Shell(notimplemented)
-(void)ls;
@end
@implementation Shell

-(void)forwardInvocation:(NSInvocation*)invocation {
system( [NSStringFromSelector( [invocation selector])

fileSystemRepresentation] );
}
-(void)dummy {}
-methodSignatureForSelector:(SEL)sel
{

NSMethodSignature *sig=[super methodSignatureForSelector:sel];
if (!sig) {

sig=[super methodSignatureForSelector:@selector(dummy)];
}
return sig;

}
@end

int main()
{

Shell *sh=[Shell new];
[sh ls];
return 0;

}
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Example 3.20 reads the file that is named by the sent message instead of executing
it, and perhaps somewhat more realistically, Example 3.21 looks up the selector in a
local dictionary.

Example 3.20 Mapping sent messages to file contents

#import <Foundation/Foundation.h>
@interface Filer:NSObject
@end
@interface Filer(notimplemented)
-(NSString*)hello;
@end
@implementation Filer

-(void)forwardInvocation:(NSInvocation*)invocation {
NSString *filename=NSStringFromSelector( [invocation selector]);
NSString *contents=[[NSString alloc]

initWithContentsOfFile:filename
encoding:NSISOLatin1StringEncoding
error:nil];

[invocation setReturnValue:&contents];
}
-(NSString*)dummy { return @""; }
-methodSignatureForSelector:(SEL)sel
{

NSMethodSignature *sig=[super methodSignatureForSelector:sel];
if (!sig) {

sig=[super methodSignatureForSelector:@selector(dummy)];
}
return sig;

}
@end

int main()
{

Filer *filer=[Filer new];
NSLog(@"filer: %@",[filer hello]);
return 0;

}

Example 3.21 Mapping sent messages to dictionary keys

-(void)forwardInvocation:(NSIvocation*)invocation {
id result=[[self dictionary] objectForKey:

NSStringFromSelectr([invocation selector])];
[invocation setReturnValue:&result];

}
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Uniformity and Optimization
Although there is no actual performance benefit for the implementations of
Examples 3.19 to 3.21, the benefit comes from using the fastest plausible interface, an
interface that can be kept the same all the way from reading files (3.20) via using
runtime introspection to look up keys (3.21), generating accessors to a keyed store at
runtime or compile time (3.15) or switching to an accessor for an actual instance
variable, and finally IMP caching that message send. You don’t have to start out fast,
but you have to use interfaces that allow you to become fast should the need arise.

The more I have followed Alan’s advice to focus on the messages, the better my
programs have become, and the easier it has been to make them go fast.

Methods
Objective-C methods generally fall into two rough categories: lean and mean C data
manipulation on one hand and high-level coordination using message sends on the
other.

For the data-manipulation methods, all the usual tricks in the C repertoire apply:
moving expensive operations out of loops (if there is no loop, how is the method
taking time?), strength reduction, use of optimized primitives such as the built-in
memory byte copy functions or libraries such as vDSP, and finding semantically
equivalent but cheaper replacements. Fortunately, the compiler will help with most of
this if optimization is turned on. In fact, instead computing the end-results of the
loops, LLVM/clang managed to optimize away most of the simple loops from our
benchmark programs unless we specifically stopped it.

In order to keep data manipulation methods lean and mean, it is important to
design the messaging interface appropriately, for example, passing all the data required
into the method in question, rather than having the method pull the data in from
other sources.

High-level coordination methods should generally not be executed very often and
therefore do not require much if any optimization. In fact, I’ve had excellent
performance results even implementing such methods in interpreted scripting
languages. A method triggering an animation lasting half a second, for example, will
take less than 0.2% of available running time even if it takes a full millisecond to
execute, which simply won’t be worth worrying about.

Pitfall: CoreFoundation
One of the recurring themes in this chapter has been leveraging C for speed and
making careful tradeoffs between the “C” and the “Objective” parts of the language
in order to get a balance between ease of use, performance, and decoupling and
dynamicism that works for the project at hand.

However, it is possible to get this terribly wrong, as in the case of
CoreFoundation. CoreFoundation actually throws out the fast and powerful bits of
Objective-C (messaging, polymorphism, namespace handling) and manages to
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provide a cumbersome monomorphic interface to the slow bits (heap allocated
objects). It then encourages the use of dictionaries, which are an order of magnitude
slower still. The way CoreFoundation provides largely monomorphic interfaces to
CoreFoundation objects that actually have varying internal implementations means
that each of those functions, with few exceptions, has to check dynamically what
representation is active and then run the appropriate code for that representation. You
can see this in the OpenSource version of CoreFoundation available at
http://opensource.apple.com/source/CF.

An Objective-C implementation leaves that task to the message dispatcher,
meaning that both method implementations can be clean because they will only be
called with their specific representation, also making it easier to provide a greater
number of optimized representations.

While I’ve often heard words to the effect that “our code is fast because it just uses
C and CoreFoundation and is therefore faster than it would be if it were to use
Objective-C,” this appears to be a myth. I’ve never actually found this claim to be
true in actual testing. In fact, in my testing, pure Objective-C equivalents to
CoreFoundation objects are invariably faster than their CoreFoundation counterparts,
and often markedly so. Sending the -intValue message shown in Example 3.17 is
already 30% faster than calling the CoreFoundation CFGetIntValue() function,
despite the message-passing overhead. Dropping down to C using IMP caching
makes it over 3 times faster than the CoreFoundation equivalent.

The same observations were made and documented when CoreFoundation was
first introduced, with users noticing significant slowdowns compared to the
non-CoreFoundation OPENSTEP Foundation (apps twice as slow on machines that
were supposed to be faster4). This obviously does not apply to the NSCF* classes that
Apple’s Foundation currently uses; these cannot currently be faster than their
CoreFoundation counterparts because they call down to CoreFoundation.

Multicore
As we saw in Chapter 1, Moore’s Law is still providing more transistors but no longer
significant increases in clock frequency or performance per clock cycle. This shift in
capabilities means that our single-threaded programs are no longer getting faster just
by running them on newer hardware. Instead, we now have to turn to multithreading
in order to take advantage of the added capabilities, which come in the form of
additional cores. Getting multithreading right is a hard problem, not just due to the
potential for race conditions and deadlocks, but also because the addition of thread
management and synchronization actually adds significant overhead that can be
difficult to break even on, despite the additional CPU resources that are unlocked
with multithreading.

4. http://www.cocoabuilder.com/archive/cocoa/20773-does-ppc-suck-or-has-apple-crippled-
cocoa.html#20773

http://opensource.apple.com/source/CF
http://www.cocoabuilder.com/archive/cocoa/20773-does-ppc-suck-or-has-apple-crippled-cocoa.html#20773
http://www.cocoabuilder.com/archive/cocoa/20773-does-ppc-suck-or-has-apple-crippled-cocoa.html#20773
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Due to the pretty amazing single-core performance of today’s CPUs, it turns out
that the vast majority of CPU performance problems are not, in fact, due to limits of
the CPU, but rather due to suboptimal program organization.5 I hope the factors 3 to
4, 10 to 20, and 100 to 1,000 of often easily attainable performance improvements I
have presented so far will convince you to at least give the code-tuning option serious
consideration before jumping into multithreading, which at best can achieve a
speedup to the number of cores in the system—and this is only for perfectly
parallelizable, so-called “embarrassingly parallel” problems.

S(N ) =
1

(1 − P) + P
N

(3.1)

Amdahl’s Law (Equation 3.1), relating the potential speedup (S ) due to
parallelization with N cores (S(N )) to the fraction of the program that can be
parallelized (P ) shows that the benefit of newer cores peters off very quickly when
there are even small parts of the program that cannot be parallelized. So even with a
very good 90% parallelizable program, going from 2 to 4 cores gives a 70% speedup,
but going from 8 to 12 cores only another 21%. And the maximum speedup even
with an infinite number of cores is factor 10. For a program that is 50% parallelizable,
the speedup with 2 cores is 33%, 4 cores 60% and 12 cores 80%, so approaching the
limit of 2.

While I can’t possibly do this topic justice here, it being worthy of at least a whole
book by itself, I can give some pointers on the specifics of the various multithreading
mechanisms that have become available over the years, from pthreads via
NSThread and NSOperationQueue all the way to the most recent addition,
Grand Central Dispatch (GCD).

Threads
Threading on OS X is essentially built on a kernel-thread implementation of POSIX
threads (pthreads). These kernel threads are relatively expensive entities to manage,
somewhat similar to Objective-C objects, only much more so. Running a function
my_computation( arg ) on a new POSIX thread using pthread_create, as
in Example 3.22, takes around 7 μs to of threading overhead on my machine in
addition to the cost of running my_computation() by itself, so your
computation needs to take at least those 7 μs to break even, and at least 70 μs to have
a chance of getting to the 90% parallelization (assuming we have a perfect distribution
of tasks for all cores).

Creating a new thread using Cocoa’s NSThread class method
+detachNewThreadSelector:… adds more than an order of magnitude of
overhead to the tune of 120 μs to the task at hand, as does the NSObject
convenience method -performSelectorInBackground:… (also Example 3.22).

5. James R. Larus. “Spending Moore’s dividend,” Communications of the ACM No. 5 (2009).
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Taking into account Amdahl’s Law, your task should probably take at least around
1 ms before you consider parallelizing, and you should probably consider other
optimization options first.

Example 3.22 Creating new threads using pthreads, Cocoa NSThread, or convenience
messages

pthread_create( &pthread, attrs, my_computation, arg );
[NSThread detachNewThreadSelector:@selector(myComputation:)

toTarget:self
withObject:arg];

[self performSelectorInBackground:@selector(myComputation:)
withObject:arg];

So, similar to the balancing of OOP vs. C, getting good thread performance
means finding independent tasks that are sufficiently coarse-grained to be worth
off-loading into a thread, but at the same time either sufficiently fine-grained or
uniformly sized that there are sufficient tasks to keep all cores busy.

In addition to the overhead of thread creation, there is also the overhead of
synchronizing access to shared mutable state, or of ensuring that state is not
shared—at least, if you get it right. If you get it wrong, you will have crashes, silently
inconsistent and corrupted data, or deadlocks. One of the cheapest ways to ensure
thread-safe access is actually pthread thread-local variables, accessing to such a
variable via pthread_getspecific() is slightly cheaper than a message send. But
this is obviously only an option if you actually want to have multiple separate values,
instead of sharing a single value between threads.

In case data needs to be shared, access to that data generally needs to be protected
with pthread_mutex_lock() (43 ns) or more conveniently and safely with an
Objective-C @synchronized section, which also protects against dangling locks
and thus deadlocks by handling exceptions thrown inside the @synchronized
section. Atomic functions can be used to relatively cheaply (at 8 ns, around 10 times
slower than a simple addition in the uncontended case) increment simple integer
variables or build more complex lock-free or wait-free structures.

Work Queues
Just like the problem of thread creation overhead is similar to the problem of
object-allocation overhead, so work queues are similar to object caches as a solution
to the problem: They reuse the expensive threads to work on multiple work items,
which are inserted into and later fetched from work queues.

Whereas Cocoa’s NSOperations actually take slightly longer to create and
execute than a pthread (8 μs vs. 7 μs), dispatching a work item using GCD
introduced in Snow Leopard really is 10 times faster than a pthread, at 700 ns per
item for a simple static block, and around 1.8 μs for a slightly more complex block
with arguments like the one in Example 3.23.
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Example 3.23 Enqueuing GCD work using straight blocks

dispatch_async(
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
^{ [self myComputation:arg];} );

I personally prefer convenience messages such as the -async Higher Order
Message (HOM),6 which simplifies this code to the one shown in Example 3.24 at a
cost of an extra microsecond.

Example 3.24 Enqueuing GCD work using HOM convenience messages

[[self async] myComputation:arg];

In the end, I’ve rarely had to use multithreading for speeding up a CPU-bound
task in anger, and chances are good that I would have made my code slower rather
than faster. The advice to never optimize without measuring as you go along goes
double for multithreading. On the flip side, I frequently use concurrency for
overlapping and hiding I/O latencies (Chapter 12) or keeping the main thread
responsive when there is a long running task, be it I/O or CPU bound (Chapter 16).
I’ve also used libraries that use threading internally, for example, the vDSP routines
mentioned earlier or various image-processing libraries.

Mature Optimization
We should forget about small efficiencies,
say about 97% of the time; premature
optimization is the root of all evil.

D.E. Knuth

Optimizing Objective-C programs is, in the end, not necessarily hard. In fact, this
very amenability to optimization in general and late-in-the-game optimization in
particular is a large part of what makes this language popular with expert
programmers: you really can leave the “small efficiencies,” a few of which we’ve
shown, for later.

Although Knuth’s quote above is well-known, what is less well-known is that it is
just an introduction to extolling the importance and virtues of optimization. It
continues as follows:

Yet we should not pass up our opportunities in that critical 3%. A good
programmer will not be lulled into complacency by such reasoning, he will be wise
to look carefully at the critical code; but only after that code has been identified.

6. Implementation can be found at https://github.com/mpw/HOM.

https://github.com/mpw/HOM


76 Chapter 3 CPU: Pitfalls and Techniques

And the section before the one in question couldn’t be more different:

The conventional wisdom shared by many of today’s software engineers calls for
ignoring efficiency in the small; but I believe this is simply an overreaction to the
abuses they see being practiced by penny-wise-and-pound-foolish programmers,
who can’t debug or maintain their “optimized” programs. In established
engineering disciplines a 12% improvement, easily obtained, is never considered
marginal; and I believe the same viewpoint should prevail in software engineering.
Of course I wouldn’t bother making such optimizations on a one-shot job, but
when it’s a question of preparing quality programs, I don’t want to restrict myself
to tools that deny me such efficiencies.

“Structured Programming with Go To Statements,” Knuth, 1974.

The quote is embedded in the paper “Structured Programming with Go To
Statements” from 1974, which is largely about achieving better performance via the
use of go to statements. It is in fact, in large part, an advocacy piece for program
optimization, not against it, containing such gems as the idea that engineers in other
disciplines would be excluded from practicing their profession if they gave up
performance as readily as programmers.

What makes Objective-C so powerful is that once you have the information as to
what needs optimization, you can really pounce, smash-bits, and exploit all the
hardware has to give. Both until that point and for the parts that don’t need it, you
can enjoy the remarkable productivity of a highly dynamic object-oriented language.

Swift takes a different approach: make everything much more static up-front and
then let the compiler figure it out. While superficially sound, this approach inverts
Knuth’s dictum by making microperformance a deciding factor in not just application
modeling, but language design. In addition to the approach being questionable in
principle, it currently just doesn’t work: Swift is not just slower than optimized
Objective-C, it is often significantly slower than non-optimized Objective-C,
without any further recourse than waiting for the compiler to get better or rewriting
your code in C. So that questionable premature optimization doesn’t even pay off.

That said, a little bit of structural forethought and planning is extremely helpful in
order to enjoy the benefits of late optimization: You should have an idea of the order
of magnitude of data you will be dealing with (one, a thousand, a million?), what
operations you need to support, and whether the machine you are targeting can
handle this amount of data, at least in principle.

As you are designing the system, keep in mind the asymmetric 1:5:50:200
relationship for primitive operations : messaging : key-value access : object creation
that we have illuminated throughout this chapter. With that in mind, see if your most
numerous pieces of data can be mapped to primitives, and try to keep your interfaces
as message-centric as possible. The messaging system has a nice sweet spot in the
relationship between cost and expressiveness.

The arguments of those messages should be as simple (primitive types preferred)
and expressive as possible. Large-volume data should be contained in bulk objects and
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hidden behind bulk interfaces. Key-value stores, if needed, should be hidden behind
messaging interfaces and temporary objects should be avoided, especially as a
requirement for an interface. If temporary objects can’t be avoided, try to keep your
APIs defined in such a way that you will be able to “cheat” with object caches or
other techniques for reusing those objects when the time comes.

Fortunately, these measures tend to simplify code, rather than make it more
complicated. Simpler, smaller, well-factored code is not only often faster than
complicated code, because code that isn’t there doesn’t take any time to run, it also
makes a much better basis for future optimization efforts because modifying a few
spots will have a much greater impact.
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I/O latency, 155
managing memory, 146
network, 208
throughput and, 205

Launch, Weather app, 350

Launch performance, comparing warm and
cold launch speeds, 228–230

lazy collection, Swift, 278

Lazy evaluation, using caching, 55–56

LCDs, graphics hardware, 301

Leaks, avoiding object leaks in reference
counting, 139–141

leaks command, 124–125

Leaks instrument, 126–127
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LevelDB, hybrid forms of Event Poster pattern,
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libcache library, in memory management,
153

Line drawings, on iPhone, 338–340

LISP, number and magnitudes hierarchy, 43–44
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M
Mac OS X

AppKit, 296, 340
archiving/unarchiving objects, 249
based on NeXTStep, 58
cost of operations, 13–14
death of optimizing compilers and, 199
device memory, 99
garbage collection, 116
graphics files supported, 345–346
memory management considerations,
157

network stack, 213
NSPersistantContainer class, 254
as Objective-C client, 350–351
OpenGL and, 300, 305
parsers, 86
progress reports on long-running tasks,
330

property lists, 246
response to lack of free memory, 126,
155

shared key dictionaries, 289
SQLite use with, 261
URL-loading system, 235
virtual memory, 105
WAL (write-ahead logging), 262

Mach memory, layout of, 108

Macros

accessor macros, 49–50
lazy accessors, 55–56

madvise system

dealing with anomaly in memory
mapping, 226—227

in memory management, 156–157
Mail stores, 265–266

Main memory, comparing speed with CPU
memory, 100–101

malloc function

in heap allocation, 110, 112–113
program leaks and, 124–125
viewing allocated memory with heap
command, 121–122

viewing information about memory
managed by, 125

malloc_debug command, 124–125

MallocStackLogging, enabling, 124

Manual reference counting (MRC), 114

Mapping

comparing memory mapping with
read()_, 226

file into memory, 268
memory-mapping anomaly, 226–228
memory mapping files, 153–156

MAX (Messaging API for XML)

implementing, 96–97
optimizing XML parsing, 95–96

MC 68000 Assembler/7.1 MHz, 9

MC 68000 CPU, trends in CPU performance,
11

Measurement

CPU. See CPU measurement and tools
graphics and UI. See Graphics and UI
measurement and tools

I/O. See I/O measurement and tools
memory. See Memory measurement and
tools

Memory

caching caveats, 56
I/O principles, 208

Memory dumps, 244

Memory measurement and tools

Allocations instrument, 127–133



Index 371

command-line tools, 120
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heap command, 121–124
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leaks and malloc_debug
commands, 124–125
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overview of, 119
summary, 136
top command, 120–122
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Xcode gauges, 119–120
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architectural impacts on memory use,
147–151

avoiding leaks, 139–141
comparing Foundation objects with
primitives, 141–142

compression, 145
concurrency, 146–147
conserving memory by economic use of
smaller structures, 142–144

example. See FilterStreams
iOS-specific considerations, 157
madvise system, 156–157
memory mapping files, 153–156
NSCache and libcache library, 153
optimizing ARC, 157–160
overview of, 137
purgeable memory, 145–146
reference counting, 137–139
summary, 160
temporary allocations and object caching,
151–153
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benefits of virtual memory, 105–106
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framework, 114–115
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process-level resource reclamation, 117
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resource management, 113
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summary, 117
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Messages

CPU pitfalls and techniques, 64–66
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uniformity and optimization, 71
Messaging API for XML (MAX)

implementing, 96–97
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CoreFoundation pitfall, 71–72
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overview of, 71
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Moore’s Law, 1, 197
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Multicore (multithreading)

overview of, 72–73
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N
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216–218
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asynchronous I/O, 237–238
data handling, 236–237
HTTP servers, 238–242
overlapping transfers of network requests,
233–234

overview of, 232–233
throttling network requests, 234–236

Network stack, I/O principles, 213–214

Networks, I/O principles, 208

NeXTStep system

generic representation, 58
image drawing and, 327
property lists, 246–247, 249
resource management, 113–114

nginx HTTP parser, Swift example, 188

nmap(), reading bytes into memory, 230–232

Notifications, NSNotificationCenter, 331
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bulk processing, 59–61
collect and parallel collect
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comparing with Swift Array, 176
constructing and filling, 276
distinguishing from other object types,
164–166

FilterStream interacting with, 167
Foundation object model, 58, 114
Foundation overhead overwhelming I/O
overhead, 271

generics specialization, 193–194
lazy reading, 277–278
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mutually recursive objects, 168
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solving problem of quadratic complexity,
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sorting, 190, 193–194
tree structure, 243
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NSCoding protocol, 249–252
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memory dumps, 244
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242
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memory, 230–231

NSDate

CSV parsing and, 288
property lists, 246

NSDictionary

adding content to, 43
caching pitfalls, 57
comparing Swift with Objective-C,
186–188

CSV parsing and, 289
description stream with double dispatch,
166

evaluating parser performance, 91
fetch specification, 259
Foundation object model, 58, 114
lookup performance, 46
memory costs, 141–142
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NSNotificationCenter, 331, 356

NSNumber

allocation, 21–22
arithmetic operations, 43–45
bulk processing, 59–61
comparing Swift with Objective-C, 186
CSV parsing and, 291
data mining, 32
Foundation object model, 58–59, 114
memory costs, 141–142
object caching order, 57
property lists, 246–249
representing structured data, 42
summing integers, 5–6

NSOperations, 74

NSPersistantContainer, 254

NSProgress, 330

NSSet

caching pitfalls, 57
converting NSArray to, 15

NSString

comparing Swift with Objective-C,
186–187

cost of string comparison or lookups, 95
CPU costs, 57
CSV parsing and, 288–289, 291
evaluating object caching, 91
Foundation object model, 58–59, 114
Foundation overhead overwhelming I/O
overhead, 271

memory costs, 64–65, 142, 161
object allocation, 87–89, 268–270, 288
overview of, 45–47
property lists, 246–249

public access and, 52
tree structure, 243

NSUInteger, 143–144
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requests, 233–234
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graphics widgets based on, 296
pitfall of unneeded subclassing, 144
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fetching and parsing feed directory, 233
parsing speed, 90–92, 95–96
XML parsing in iOS, 86

O
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limitations of Objective-C, 10
object allocators, 113
representation of data, 41–42

Objective-C

accessors, 48–52
arithmetic features, 9
automatic reference counting. See ARC
(Automatic Reference Counting)

benchmarks for Objective-C and Swift
performance, 190

caching and, 53
call-return architecture, 151
clients, 350–351, 353
CMS (Content Management system), 79
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expressiveness, 2

comparing compile time with Swift,
191–193

comparing dictionary access with Swift,
186–188

comparing parsing techniques, 86, 92
comparing summation assembly code
with Swift, 178–179
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comparing threads to objects, 73–74
comparing to other languages, 7–10
comparing with Swift, 6, 61, 174–176,
181–183

CPU performance and, 1
creating property list reader, 271–276
dictionaries, 61–64
fetch techniques, 257–260
forwarding, 69–70
garbage collection, 116
generic representation pitfalls, 58–59
heap allocation, 110
IMP caching, 66–68
lacking support for lazy evaluation, 290
load/saving documents or structured data
as objects, 242

mapping callbacks to messages, 83–85
mature optimization in, 75–77
MAX (Messaging API for XML)
leveraging runtime, 95

message protocol, 352–353
messaging, 64–66
methods, 71–72
null Filterstream, 163
object allocation, 113
object overhead, 43
objects for data structuring, 48
optimizing code, 201–204
power of hybrid languages, 10–11
public access and, 52
recasting from C to, 271
reduce method, 180
relationship to Swift, 173
representing structured data, 41–42
stack allocation, 113, 152
strings, 45–48
summing integers, 2–5, 20
temporary allocations and object caching,
151–153

web services and, 238–242
whole-module optimization and, 194

Objective-Smalltalk project, 204

Objects

accessors, 48–52
archiving/unarchiving, 249–252
avoiding leaks in reference counting,
139–141

comparing Foundation objects with
primitives, 141–142

comparing summing integers in various
languages, 9

comparing Swift with Objective-C, 176
costs of creation/allocation, 87–90
creating/updating in batches, 254–256
creation and caching, 52–53
evaluating caching, 90–93
filters, 163–164
interaction of CoreData objects, 260
mutability and caching, 53–55
ownership, 114–115
public access, 52
in representation of data, 48
representing numbers, 5
stack allocation, 152
temporary allocations and object caching,
151–153

OLEDs, graphics hardware, 301

OpenGL

accelerating drawing, 327
Core Animation instrument options, 315
GPU cards, 302
graphics API, 296–297
overview of, 300–301
triangle drawing benchmark, 303–304
Window Server working with, 307

OPENSTEP system

compared to CoreFoundation, 72
dealing with generic representation
pitfalls, 58

Foundation classes, 114
object ownership and, 114

Operating systems (OSs)

abstraction of byte streams, 208–210
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I/O principles, 208
iOS. See iOS
OS X. See Mac OS X

Optimization

of ARC, 157–160
balancing costs with outcomes, 12
comparing Objective-C with Swift,
181–183

CPU measurement and tools and, 38–39
death of optimizing compilers, 199–201
of I/O, 215, 256–260
mature optimization in Objective-C,
75–77

MAX (Messaging API for XML) and,
95–96

optimizer-oriented programming,
195–197

performance of optimized XML parser,
91

SSC (sufficiently smart compiler),
197–199

suggestions for optimizing Objective-C
code, 201–204

uniformity and, 71
whole-module optimization, 194–195

Optimizers

comparing Objective-C to other
languages, 7–8

optimizer-oriented programming,
195–197

summing integers in Objective-C, 3–4
OSs (operating systems)

abstraction of byte streams, 208–210
I/O principles, 208
iOS. See iOS
OS X. See Mac OS X

Owens II, David, 189

P
Page cache, Unix, 211–212

Page walker, 156

Pages, organization of address space as,
105–106

Parallelization

faster CSV parsing, 290–293
ILP (instruction-level parallelism), 11
multicore and, 72–73

Parsers

architectural impacts on memory use,
147

binary property list, 273–275
construction toolkits, 79
faster CSV parsing, 288–293
Freddy JSON parser, 189
nginx HTTP parser, 188
performance of non-optimized XML
parser, 88–89

pro/cons of DOM parsers, 94
pro/cons of SAX parsers, 94–95
simple XML parser, 80–83
speed of NSXMLParser class, 90–92
tuning up XML parser, 93–94
XML parsing in iOS, 86
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based on PostScript, 299
thumbnails from, 318

Performance Counters. See Counters
instrument

Performance, Swift

basic characteristics, 177–179
claims, 173–175
reasons supporting, 175–177

PhysMem option, top command, 120

Pipelining, trends in CPU performance, 11

Pipes and filters architecture, Unix, 151,
161–163

Pitfalls and techniques

CPU. See CPU pitfalls and techniques
graphics and UI. See Graphics and UI
pitfalls and techniques

I/O. See I/O pitfalls and techniques
memory. See Memory pitfalls and
techniques

Plasma screens, 301
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plist. See Property lists

PNG format

brainstorming image format options,
345–346

JPNG and, 349–350
loading prerendered gradient, 318,
322–323

measuring performance issue in Weather
app, 347–349

in Weather app, 344–345
Pointers, memory costs, 141

Polymorphism

combining pipes and filters style with,
161

FilterStreams and, 170
object representation and, 43

POSIX

asynchronous I/O functions, 237–238
threads and, 73–74

PostScript

Quartz and PDF based on, 299–300
summing integers in, 9

Preprocessor, comparing Objective-C with
Swift, 182

Primitive types

comparing Foundation objects with,
141–142

comparing Swift with Objective-C, 176
mapping Quartz primitives to GPU
commands, 305

optimizing Objective-C code, 203
Quartz, 299–300
representation of data, 42–45
summing integers in Objective-C, 2–4
summing integers in various languages, 9

Process-level resource reclamation, 117

Proebsting’s Law, 197

Profiles

CPU profiling, 310–311
Instruments for, 25–27

Progress reports, installers, 329–330

Properties, generating accessors and, 49–50

Property lists

avoiding intermediate representation,
279–281

binary reader, 271–276

I/O examples, 271

lazy reading, 276–278

OS X and iOS support, 246–249

Pruning feature, data mining using
Instruments, 34–35

Public access, to objects, 52

Public transport schedule, 283–287

purge command, emptying buffer cache, 216

Purgeable memory

comparing memory mapping with,
153–154

memory conservation techniques,
145–146

Python, comparing with Swift, 173–174

Q

Quadratic algorithms, computational
complexity of, 15–16

Quartz

accelerating drawing, 327

comparing OpenGL with, 300–301

debugging, 311–312

graphics API, 296–297

imaging model, 299–300

large, complex paths as issue in, 326

mapping primitives to GPU commands,
305

triangle drawing benchmark, 304

Window Server working with, 307

Quartz Debug

Autoflush drawing option, 312

overview of, 311

when CPU is not the problem, 314–318

Quartz Extreme, 305–307
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R
RAID arrays, in I/O performance, 208

RAM

comparing access time with cache, SSD,
and hard disks, 104–105

comparing warm and cold launch speeds,
228–230

GPUs (graphics processing units) and,
302

memory mapping and, 154–155
Raster images, 299–300, 305–306

read()

comparing memory mapping with, 226
reading bytes into memory with Unix
functions, 230–232

Reader

creating binary property list reader,
271–276

for CSV, 282–283
realloc function, in heap allocation, 110

Record Options, Instruments tool, 26

Record Waiting Times, Time Profiler, 219

Recursion, eliminating infinite, 168–170

reduce method, summing arrays and,
180–182

Reference counting

automatic. See ARC (Automatic
Reference Counting)

avoiding leaks, 139–141
comparing Swift with Objective-C, 176
manual, 114–115
optimizing, 157–160
strategy, 137–139
tracing garbage collection, 115–116

Reference cycle, 114

Reference semantics, heap allocation and,
110

Refresh rates, avoiding excessive, 329

Relational databases

Event Poster as alternative to, 264–265
memory demands of object graphs in,
258

SQLite, 263

Representation of data

generic representation pitfall, 58–59
objects, 48
overview of, 41–42
primitive types, 42–45
string types, 45–48

Resident memory, top command, 121

Resolution, image format options, 345–346

Resource management

automatic reference counting, 116
garbage collection, 114, 115–116
object ownership, 114–115
overview of, 113
process-level resource reclamation, 117

Responsiveness

graphics and UI principles, 295–296
pitfalls of graphics and UI, 325
Wunderlist 3 app, 355–357

REST

In-Process, 352–353
operation queues, 354–355

Retained-mode graphics, 297–298

Rotational speed, hard disks, 206–207

RPRVT option, top command, 121

RSS feeds, handling network data, 236–237

Ruby

arithmetic features, 9
comparing with Swift, 6
encapsulation, 64
as interpreted language, 7–8

S
sample command, analyzing CPU
performance, 20–22

Sampler Instrument, viewing I/O performance,
220–221

SAX (Simple API for XML)

architectural impacts on memory use,
147

performance of non-optimized XML
parser, 88–89
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SAX (Simple API for XML) (continued )

performance of optimized XML parser,
91

pro/cons of SAX parsers, 94–95
XML parsing for very large documents,
85–87

Scalar types

benefits of homogeneous collection,
59–60

representation of data using primitive
types, 42

Scaling images, 333–335

Sectors, in rotating disks, 205–206

Segregated stores, 265–266

Serialization

archiving/unarchiving objects, 249–252
memory dumps, 244
overview of, 242–243
property lists, 246–249
SQLite, 262
summary, 252–253
XML format and, 244–246

Shell commands, mapping sent messages to,
69–70

Simple API for XML. See SAX (Simple API for
XML)

Smalltalk

arithmetic features, 9
comparing with Objective-C, 8, 10, 173
comparing with Swift, 6, 202–204
compile times, 191
encapsulation, 64
as interpreted language, 7–8
number and magnitudes hierarchy, 43–44
performance issues in early Mac and Lisa
computers, 1–2

Squeak Smalltalk, 229
summing integers, 8–9
vectorized summation, 184

Software, graphics and UI principles, 296–298

Solid-state disks. See SSDs (solid-state disks)

Source code, viewing with Instruments, 29–30

SQLite, 261–262

Squeak

bytecode interpreter, 8
memory dumps, 244–246
Squeak Smalltalk, 229

SSC (sufficiently smart compiler), 197–199

SSDs (solid-state disks)

comparing access times with cache,
RAM, and hard disks, 104–105

comparing warm and cold launch speeds,
229

getting summary of I/O activity, 218
I/O principles, 207
measuring I/O performance, 218
speed of, 102

Stack allocation

compared with heap allocation, 151–152
comparing Swift with Objective-C, 176
dynamic memory, 108–110
resource management, 113

Static types, optimizing Objective-C code, 203

Stonebraker, Michael, 263

Stream of bytes, Unix

abstraction of, 208–210, 213–214
file I/O, 210–213

Streams

FilterStreams. See FilterStreams
impact on memory use, 156
pipes-and-filters architectural style, 161

String table

faster version, 269
initializing, 268
naive string table class, 267
searching, 269–270

String types. See also NSString

combining with key-value stores, 61–64
generics specialization, 193
public access and, 52
representation of data, 45–48
uses of, 45
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Strongtalk, 8–9, 202

struct

public access and, 52
representation of structured data, 41–42

Subclasses

avoiding unneeded, 144
FilterStreams, 170

Subsets, CoreData, 260–261

Sufficiently smart compiler (SSC), 197–199

Summary information, of I/O activity, 217–218

Summing arrays, with Swift

floating point numbers, 179–180
macro applied to sum, 183
reduce method applied to sum,
180–182

vectorized summation, 183–184
with/without optimization, 184–185

Supercomputers, 205

Swap files, 157

Swift

arithmetic features, 9
array type, 61
basic performance characteristics,
177–179

benchmarks, 177, 190
caching and, 53
comparing with other languages, 190
compile times, 191, 195
death of optimizing compilers, 199–201
dictionaries, 63–64
Freddy JSON parser example, 189
generic representation pitfalls, 58–59
generics specialization, 193–194
image processing example, 189–190
lazy collection, 278
macro applied to sum, 183
nginx HTTP parser example, 188
object allocators, 113
optimizer-oriented programming,
195–197

optimizing Objective-C code and,
201–204

overview of, 173
performance claims, 173–175
practical advice for use of, 201
reasons behind language characteristics,
175–177

reduce method applied to sum,
180–182

SSC (sufficiently smart compiler),
197–199

summary, 204
summing array of floating point numbers,
179–180

summing array with/without
optimization, 184–185

summing integers, 6–9
type inference, 191–193
vectorized summation, 183–184
whole-module optimization, 194–195

sysctl, accessing memory information,
99–100

System architecture, 99–100

System callls, 208

T
Tag-soup parsing

CMS import and, 85
in HTML parser, 79–80

Tagged objects, 9

Tagged pointers

avoiding heap allocation, 5
summing integers, 44

Tags, HTML, 81

TCP

congestion control, 234–235
I/O performance and network stack, 213

TCP/IP, 213–214

Thrashing, caching caveats, 56

Threads

atomic property modifier in thread
safety, 138–139

concurrency, 146–147
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Threads (continued )

iOS memory management
considerations, 157

multicore (multithreading), 73–74
Throttling

display throttle, 327–329
network requests, 234–236

Throughput

latency and, 205
Web server handling of large files, 241

Thumbnails

how not to draw, 335–337
how to draw, 337–338
overview of, 335

time command

analyzing negative space in I/O
measurement, 216–217

viewing running processes, 19
Time limit, Instruments Record Options, 27

Time Profiler

analyzing bottlenecks in object
allocation, 87

Instruments tool, 24–25
measuring I/O performance, 218–221
Record Waiting Times, 219

top command

analyzing negative space in I/O
measurement, 216–217

CPU measurement, 18–19
memory measurement, 120–122
purgeable memory and, 145–146

Traces/tracing, using fs_usage, 221–224

Tracks, in rotating disks, 205–206

Translation lookaside buffer, 105

Type inference, Swift, 191–193

U
UBC (unified buffer cache), Unix, 212–213

UDP, 213

UI (user interface)

examples. See Graphics and UI examples

measurement and tools. See Graphics and
UI measurement and tools

pitfalls and techniques. See Graphics and
UI pitfalls and techniques

principles. See Graphics and UI principles
UIKit

dirty rectangles, 326
hybrid of retained and immediate-mode
graphics, 298

for iOS, 295–296
reusing mutable objects, 53–54
when to use, 340

UIView, 140, 296

Unified buffer cache (UBC), Unix, 212–213

A Unified Theory of Garbage Collection (Bacon,
Cheng, and Rajan), 114

Uniformity, optimization and, 71

Unit tests, for internal measurement of
performance, 37

Unix

asynchronous I/O types, 237–238
Byte_Stream subtree, 170
cache/caching, 211–213
mapping sent messages to shell
commands, 69–70

pipes and filters architecture, 151,
161–163

reading bytes into memory, 230–232
stream of bytes, 208–210, 213–214
time profile of I/O, 219

Updates, Weather app, 343–344

URIs

In-Process REST and, 352–353
smoothness and responsiveness features,
355–357

V
Value semantics, 110

vDSP

cache pollution and, 146
death of optimizing compilers and,
200–201

image-processing, 75
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improving implementation of sum(),
180, 183–184

Objective-C methods and, 71
for summing, 59–60

vImage, 146

Virtual memory, 105–106

VM Tracker instrument

capturing graphics memory allocations,
133, 135

memory measurement, 133–135
VPRVT option, top command, 121

W
WAL (write-ahead logging), 262

Weather app

brainstorming image format options,
345–346

JPNG and JPJP formats, 349–350
launching, 350
measuring performance issues, 347–349
overview of, 343
updates, 343–344
using JPEG data points, 347
using PNG images, 344–345

Web servers, request handling, 238–242

Whole-module optimization, 194–195

Widgets, graphics, 296

Window limit, Instruments Record Options, 27

Window Manager, working with graphics APIs,
305–307

Wired memory, 120

Work queues, 74–75

Working set, speed of, 102

Write-ahead logging (WAL), 262

Wunderlist 2, 351

Wunderlist 3

architecture of, 351–352
consistent asynchronous data store,
353–354

overview of, 350–351
REST operation queues, 354–355
smoothness and responsiveness of UI,
355–357

summary, 357
URIs and In-Process REST, 352–353
Wunderlist 2 and, 351

X
Xcode

profiling options, 22, 25–26, 119–120
starting Instruments from, 23

XML

creating simple XML format, 244–246
encoding, 245
Infoset, 85–86

XML parsing

APIs for, 85–87
costs of object allocation, 87–90
evaluating object caching, 90–93
HTML scanner, 80–83
implementing MAX, 96–97
mapping callbacks to messages, 83–85
optimizing, 94–96
overview of, 79–80
raw XML parsing, 245–246
summary, 97–98
tune-ups, 93–94

Y
Y2K (year 2000) scare, 144

Z
Zawinski, Jamie, 263

Zero-filled, address space, 121
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