Hacker’s Delight

SEcoND EDITION

HENRY S. WARREN,]JRr.

FREE SAMPLE CHAPTER

£ 3 in I

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321842688
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321842688
https://plusone.google.com/share?url=http://www.informit.com/title/9780321842688
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321842688
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321842688/Free-Sample-Chapter

Hacker’s Delight

This page intentionally left blank

Hacker’s Delight

Second Edition

Henry S. Warren, Jr.

vvAddison-Wesley

Upper Saddle River, NJ Boston ¢ Indianapolis * San Francisco
New York ¢ Toronto ¢« Montreal « London ¢ Munich ¢ Paris ¢ Madrid
Capetown < Sydney ¢ Tokyo ¢ Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liabil-
ity is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Warren, Henry S.

Hacker's delight / Henry S. Warren, Jr. -- 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-84268-5 (hardcover : alk. paper)
1. Computer programming. 1. Title.
QA76.6.W375 2013
005.1—dc23

2012026011

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-84268-8
ISBN-10: 0-321-84268-5
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, October 2013

To Joseph W. Gauld,
my high school algebra teacher,
for sparking in me a delight
in the simple things in mathematics

This page intentionally left blank

CONTENTS

Foreword —
Preface

CHAPTER 1. INTRODUCTIONttt
I=1 Notation
1-2 Instruction Set and Execution Time Model

CHAPTER 2. BASICS ... i
2-1 Manipulating Rightmost Bits ~—
2-2 Addition Combined with Logical Operations
2-3 Inequalities among Logical and Arithmetic Expressions
2-4 Absolute Value Function —
2-5 Average of Two Integers
2-6 Sign Extension
2-7 Shift Right Signed from Unsigned
2-8 SignFunction
2-9 Three-Valued Compare Function
2-10 Transfer of Sign Function
2-11 Decoding a “Zero Means 2" Field
2-12 Comparison Predicates
2-13 Overflow Detectionttt iinen...
2-14 Condition Code Result of Add, Subtract, and Multiply
2-15 Rotate Shifts
2-16 Double-Length Add/Subtract
2-17 Double-Length Shifts
2-18 Multibyte Add, Subtract, Absolute Value
2-19 Doz, Max, Min
2-20 Exchanging Registers
2-21 Alternating among Two or More Values
2-22 A Boolean Decomposition Formula
2-23 Implementing Instructions for all 16 Binary Boolean

OPerationsottt e

CHAPTER 3. POWER-OF-2 BOUNDARIES
3-1 Rounding Up/Down to a Multiple of a Known Power of 2
3-2 Rounding Up/Down to the Next Powerof 2
3-3 Detecting a Power-of-2 Boundary Crossing

vil

viii CONTENTS
CHAPTER 4. ARITHMETIC BOUNDS 67
4-1 Checking Bounds of Integers 67
4-2 Propagating Bounds through Add’s and Subtract’s 70
4-3 Propagating Bounds through Logical Operations 73
CHAPTER 5. COUNTINGBITS 81
5-1 Counting 1-Bits 81
52 Parity . 96
5-3 Counting Leading 0’s 99
5-4 Counting Trailing 0’s 107
CHAPTER 6. SEARCHING WORDSc.iiuitiininannenan.. 117
6-1 FindFirst0-Byte 117
62 Find First String of 1-Bits of a Given Length 123
6-3 Find Longest String of 1-Bits 125
6—4 Find Shortest String of 1-Bits 126
CHAPTER 7. REARRANGING BITSAND BYTES 129
7-1 ReversingBitsand Bytes 129
72 Shuffling Bits 139
7-3 Transposing a Bit Matrix 141
7-4 Compress, or Generalized Extract —...................... 150
7-5 Expand, or Generalized Insert 156
7-6 Hardware Algorithms for Compress and Expand 157
7-7 General Permutations, Sheep and Goats Operation 161
7-8 Rearrangements and Index Transformations 165
7-9 AnLRU Algorithm 166
CHAPTER 8. MULTIPLICATION ...ttt tte et ene 171
8-1 Multiword Multiplication 171
82 High-Order Half of 64-Bit Product 173
83 High-Order Product Signed from/to Unsigned 174
84 Multiplication by Constants 175
CHAPTER 9. INTEGERDIVISION, 181
9—1 Preliminariesc.irinii 181
9-2 Multiword Division — 184
9-3 Unsigned Short Division from Signed Division 189

94
9-5

CONTENTS

Unsigned Long Division ,
Doubleword Division from Long Division

CHAPTER 10. INTEGER DIVISION BY CONSTANTS cov...

10-1
102
10-3
104
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23

Signed Division by a Known Powerof 2
Signed Remainder from Division by a Known Power of 2

Signed Division and Remainder by Non-Powers of 2
Signed Division by Divisors >2
Signed Division by Divisors <2
Incorporation into a Compiler
Miscellaneous Topics ... ovvin i
Unsigned Division ...,
Unsigned Division by Divisors > 1
Incorporation into a Compiler (Unsigned)
Miscellaneous Topics (Unsigned)
Applicability to Modulus and Floor Division
Similar Methods
Sample Magic Numbers —
Simple Code in Python
Exact Division by Constants
Test for Zero Remainder after Division by a Constant
Methods Not Using Multiply High
Remainder by Summing Digits
Remainder by Multiplication and Shifting Right
Converting to Exact Division
ATiming Test
A Circuit for Dividingby 3

CHAPTER 11. SOME ELEMENTARY FUNCTIONS

11-1
11-2
11-3
114

Integer Square Root
Integer Cube Root i
Integer Exponentiation ,
Integer Logarithm

CHAPTER 12. UNUSUAL BASES FOR NUMBER SYSTEMS

12-1
12-2
12-3
124

Base —2 ...
Base —1+i ...
Other Bases
What Is the Most Efficient Base?

X CONTENTS

CHAPTER 13. GRAY CODE ...ttt e e i

13-1 GrayCodeot
13-2 Incrementing a Gray-Coded Integer
13-3 Negabinary Gray Codeo, .
13-4 Brief History and Applications

CHAPTER 14. CYCLIC REDUNDANCY CHECKoviiiiiinn.

14-1 Introduction i,
14-2 Theory
14-3 PractiCe i e

CHAPTER 15. ERROR-CORRECTING CODES

15-1 Introductionot
152 The Hamming Codeccoiiininon...
15-3 Software for SEC-DED on 32 Information Bits
154 Error Correction Considered More Generally

CHAPTER 16. HILBERT'S CURVEttt

16-1 A Recursive Algorithm for Generating the Hilbert Curve

162 Coordinates from Distance along the Hilbert Curve
16-3 Distance from Coordinates on the Hilbert Curve
164 Incrementing the Coordinates on the Hilbert Curve
16-5 Non-Recursive Generating Algorithms
16-6 Other Space-Filling Curves
16=7 Applications ...ttt

CHAPTER 17. FLOATING-POINT i,

17-1 IEEE Formatoiouniiiniiineinenn.
17-2 Floating-Point To/From Integer Conversions —
17-3 Comparing Floating-Point Numbers Using Integer Operations

17-4 An Approximate Reciprocal Square Root Routine
17-5 The Distribution of Leading Digits
17-6 Table of Miscellaneous Values

CHAPTER 18. FORMULAS FOR PRIMES ,

18—1 Introduction
18-2 Willans’s Formulas
18-3 Wormell’s Formula
18—4 Formulas for Other Difficult Functions

CONTENTS xi

ANSWERS TO EXERCISES ...ttt i e e e 405
APPENDIX A. ARITHMETIC TABLES FOR A 4-BIT MACHINE 453
APPENDIX B. NEWTON’S METHODiiuiiininnannan.. 457
APPENDIX C. A GALLERY OF GRAPHS OF DISCRETE FUNCTIONS 459
C-1 Plots of Logical Operations on Integers — 459
C-2 Plots of Addition, Subtraction, and Multiplication 461
C-3 Plots of Functions Involving Division 463
C—4 Plots of the Compress, SAG, and Rotate Left Functions 464
C-5 2D Plots of Some Unary Functions 466
Bibliography 471

Index 481

This page intentionally left blank

FOREWORD

Foreword from the First Edition

When I first got a summer job at MIT’s Project MAC almost 30 years ago, I was
delighted to be able to work with the DEC PDP-10 computer, which was more fun
to program in assembly language than any other computer, bar none, because of
its rich yet tractable set of instructions for performing bit tests, bit masking, field
manipulation, and operations on integers. Though the PDP-10 has not been manu-
factured for quite some years, there remains a thriving cult of enthusiasts who
keep old PDP-10 hardware running and who run old PDP-10 software—entire
operating systems and their applications—by using personal computers to simu-
late the PDP-10 instruction set. They even write new software; there is now at
least one Web site with pages that are served up by a simulated PDP-10. (Come
on, stop laughing—it’s no sillier than keeping antique cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research
memo called HAKMEM, a bizarre and eclectic potpourri of technical trivia.! The
subject matter ranged from electrical circuits to number theory, but what intrigued
me most was its small catalog of ingenious little programming tricks. Each such
gem would typically describe some plausible yet unusual operation on integers or
bit strings (such as counting the 1-bits in a word) that could easily be programmed
using either a longish fixed sequence of machine instructions or a loop, and then
show how the same thing might be done much more cleverly, using just four or
three or two carefully chosen instructions whose interactions are not at all obvious
until explained or fathomed. For me, devouring these little programming nuggets
was like eating peanuts, or rather bonbons—I just couldn’t stop—and there was a
certain richness to them, a certain intellectual depth, elegance, even poetry.

“Surely,” I thought, “there must be more of these,” and indeed over the years
I collected, and in some cases discovered, a few more. “There ought to be a book
of them.”

I was genuinely thrilled when I saw Hank Warren’s manuscript. He has sys-
tematically collected these little programming tricks, organized them thematically,
and explained them clearly. While some of them may be described in terms of
machine instructions, this is not a book only for assembly language programmers.
The subject matter is basic structural relationships among integers and bit strings

1. Why “HAKMEM”? Short for “hacks memo”; one 36-bit PDP-10 word could hold six 6-bit
characters, so a lot of the names PDP-10 hackers worked with were limited to six characters.
We were used to glancing at a six-character abbreviated name and instantly decoding the
contractions. So naming the memo “HAKMEM” made sense at the time—at least to the
hackers.

Xiii

Xiv FOREWORD

in a computer and efficient techniques for performing useful operations on them.
These techniques are just as useful in the C or Java programming languages as
they are in assembly language.

Many books on algorithms and data structures teach complicated techniques
for sorting and searching, for maintaining hash tables and binary trees, for deal-
ing with records and pointers. They overlook what can be done with very tiny
pieces of data—Dbits and arrays of bits. It is amazing what can be done with just
binary addition and subtraction and maybe some bitwise operations; the fact that
the carry chain allows a single bit to affect all the bits to its left makes addition a
peculiarly powerful data manipulation operation in ways that are not widely
appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands,
and it’s terrific. If you write optimizing compilers or high-performance code, you
must read this book. You otherwise might not use this bag of tricks every single
day—but if you find yourself stuck in some situation where you apparently need
to loop over the bits in a word, or to perform some operation on integers and it just
seems harder to code than it ought, or you really need the inner loop of some inte-
ger or bit-fiddly computation to run twice as fast, then this is the place to look. Or
maybe you’ll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts
April 2002

PREFACE

Caveat Emptor: The cost of software
maintenance increases with the square of
the programmer s creativity.

First Law of Programmer Creativity,
Robert D. Bliss, 1992

This is a collection of small programming tricks that I have come across over
many years. Most of them will work only on computers that represent integers in
two’s-complement form. Although a 32-bit machine is assumed when the register
length is relevant, most of the tricks are easily adapted to machines with other reg-
ister sizes.

This book does not deal with large tricks such as sophisticated sorting and
compiler optimization techniques. Rather, it deals with small tricks that usually
involve individual computer words or instructions, such as counting the number
of 1-bits in a word. Such tricks often use a mixture of arithmetic and logical
instructions.

It is assumed throughout that integer overflow interrupts have been masked
off, so they cannot occur. C, Fortran, and even Java programs run in this environ-
ment, but Pascal and Ada users beware!

The presentation is informal. Proofs are given only when the algorithm is not
obvious, and sometimes not even then. The methods use computer arithmetic,
“floor” functions, mixtures of arithmetic and logical operations, and so on. Proofs
in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have
been executed. This is why they are given in a real programming language, even
though, like every computer language, it has some ugly features. C is used for the
high-level language because it is widely known, it allows the straightforward mix-
ture of integer and bit-string operations, and C compilers that produce high-quality
object code are available.

Occasionally, machine language is used, employing a three-address format,
mainly for ease of readability. The assembly language used is that of a fictitious
machine that is representative of today’s RISC computers.

Branch-free code is favored, because on many computers, branches slow
down instruction fetching and inhibit executing instructions in parallel. Another
problem with branches is that they can inhibit compiler optimizations such as
instruction scheduling, commoning, and register allocation. That is, the compiler
may be more effective at these optimizations with a program that consists of a few
large basic blocks rather than many small ones.

XV

Xvi PREFACE

The code sequences also tend to favor small immediate values, comparisons
to zero (rather than to some other number), and instruction-level parallelism.
Although much of the code would become more concise by using table lookups
(from memory), this is not often mentioned. This is because loads are becoming
more expensive relative to arithmetic instructions, and the table lookup methods
are often not very interesting (although they are often practical). But there are
exceptional cases.

Finally, I should mention that the term “hacker” in the title is meant in the
original sense of an aficionado of computers—someone who enjoys making com-
puters do new things, or do old things in a new and clever way. The hacker is usu-
ally quite good at his craft, but may very well not be a professional computer
programmer or designer. The hacker’s work may be useful or may be just a game.
As an example of the latter, more than one determined hacker has written a pro-
gram which, when executed, writes out an exact copy of itself. ! This is the sense
in which we use the term “hacker.” If you’re looking for tips on how to break into
someone else’s computer, you won’t find them here.

Acknowledgments

First, I want to thank Bruce Shriver and Dennis Allison for encouraging me to
publish this book. I am indebted to many colleagues at IBM, several of whom are
cited in the Bibliography. One deserves special mention: Martin E. Hopkins,
whom I think of as “Mr. Compiler” at IBM, has been relentless in his drive to
make every cycle count, and I’'m sure some of his spirit has rubbed off on me.
Addison-Wesley’s reviewers have improved the book immensely. Most of their
names are unknown to me, but the review by one whose name I did learn was
truly outstanding: Guy L. Steele, Jr., completed a 50-page review that included
new subject areas to address, such as bit shuffling and unshuftling, the sheep and
goats operation, and many others. He suggested algorithms that beat the ones I
used. He was extremely thorough. For example, I had erroneously written that the
hexadecimal number AAAAAAAA factors as 2-3-17-257-65537; Guy
pointed out that the 3 should be a 5. He suggested improvements to style and did
not shirk from mentioning minutiae. Wherever you see “parallel prefix” in this
book, the material is due to Guy.

H. S. Warren, Jr.

See www.HackersDelight.org Yorktown, New York
for additional material related June 2012
to this book.

1. One such program, written in C, is:
main() {char*p="main() {char*p=%c%s%c;(void)printf(p,34,p,34,10);} %c";(void)printf(p,34,p,34,10);}

http://www.HackersDelight.org

CHAPTER 2
BASICS

2—1 Manipulating Rightmost Bits

Some of the formulas in this section find application in later chapters.
Use the following formula to turn off the rightmost 1-bit in a word, producing
0 if none (e.g., 01011000 = 0101 0000):

x&(x-1)

This can be used to determine if an unsigned integer is a power of 2 or is 0: apply
the formula followed by a O-test on the result.

Use the following formula to turn on the rightmost 0-bit in a word, producing
all 1’s if none (e.g., 10100111 = 10101111):

x| (x+1)

Use the following formula to turn off the trailing 1°s in a word, producing x if
none (e.g., 10100111 = 10100000):

x&(x+1)

This can be used to determine if an unsigned integer is of the form 27— 1, 0, or all
1’s: apply the formula followed by a 0-test on the result.

Use the following formula to turn on the trailing 0’s in a word, producing x if
none (e.g., 10101000 = 10101111):

x| (x-1)

Use the following formula to create a word with a single 1-bit at the position
of the rightmost 0-bit in x, producing 0 if none (e.g., 10100111 = 0000 1000):

—x&(x+1)

Use the following formula to create a word with a single 0-bit at the position
of the rightmost 1-bit in x, producing all 1’s if none (e.g., 10101000 =
11110111):

—x | (x-1)

11

12 BASICS 2-1

Use one of the following formulas to create a word with 1’s at the positions of
the trailing 0’s in x, and 0’s elsewhere, producing 0 if none (e.g., 01011000 =
00000111):

—~x&(x-1), or
—(x | —x), or
(x&—-x)-1
The first formula has some instruction-level parallelism.
Use the following formula to create a word with 0’s at the positions of the

trailing 1’s in x, and 1’s elsewhere, producing all 1’s if none (e.g., 10100111 =
11111000):

—x | (x+1)

Use the following formula to isolate the rightmost 1-bit, producing 0 if none
(e.g., 01011000 = 00001000):

x & (—x)

Use the following formula to create a word with 1’s at the positions of the
rightmost 1-bit and the trailing 0’s in x, producing all 1’s if no 1-bit, and the inte-
ger 1 if no trailing 0’s (e.g., 01011000 = 0000 1111):

x®(x-1)

Use the following formula to create a word with 1’s at the positions of the
rightmost 0-bit and the trailing 1’s in x, producing all 1’s if no 0-bit, and the inte-
ger 1 if no trailing 1’s (e.g., 01010111 = 00001111):

x®(x+1)

Use either of the following formulas to turn off the rightmost contiguous
string of 1’s (e.g., 01011100 ==> 01000000) [Wood]:

(x| (x=1))+1)&x), or
(x&—x)+x)&x

These can be used to determine if a nonnegative integer is of the form 2/ — 2k for
some j > k > 0 : apply the formula followed by a 0-test on the result.

De Morgan’s Laws Extended

The logical identities known as De Morgan’s laws can be thought of as distribut-
ing, or “multiplying in,” the not sign. This idea can be extended to apply to the
expressions of this section, and a few more, as shown here. (The first two are De
Morgan’s laws.)

2-1 MANIPULATING RIGHTMOST BITS 13

—(x&y) = —x [—w

(x| y) = x&—p
—(x+1) = —x—-1
—(x-1) = wx+1

—x = x-1

—(x®y) = x®y =x=y
—(x=y) = x=y=x®Dy
—(x+y) = —xy
—(x-y) = —~xty

As an example of the application of these formulas, —(x | -(x+1)) =
~x&—-—(x+1)=x&((x+1)-1) =—x&x = 0.

Right-to-Left Computability Test

There is a simple test to determine whether or not a given function can be imple-
mented with a sequence of add’s, subtract’s, and’s, or’s, and not’s [War]. We can,
of course, expand the list with other instructions that can be composed from the
basic list, such as shift left by a fixed amount (which is equivalent to a sequence of
add’s), or multiply. However, we exclude instructions that cannot be composed
from the list. The test is contained in the following theorem.

THEOREM. 4 function mapping words to words can be implemented with
word-parallel add, subtract, and, or, and not instructions if and only if
each bit of the result depends only on bits at and to the right of each input
operand.

That is, imagine trying to compute the rightmost bit of the result by looking
only at the rightmost bit of each input operand. Then, try to compute the next bit
to the left by looking only at the rightmost two bits of each input operand, and
continue in this way. If you are successful in this, then the function can be com-
puted with a sequence of add’s, and’s, and so on. If the function cannot be com-
puted in this right-to-left manner, then it cannot be implemented with a sequence
of such instructions.

The interesting part of this is the latter statement, and it is simply the contra-
positive of the observation that the functions add, subtract, and, or, and not can all
be computed in the right-to-left manner, so any combination of them must have
this property.

To see the “if” part of the theorem, we need a construction that is a little awk-
ward to explain. We illustrate it with a specific example. Suppose that a function
of two variables x and y has the right-to-left computability property, and suppose
that bit 2 of the result » is given by

1y = Xy | (xg&yy). (1

14 BASICS 2-1

We number bits from right to left, 0 to 31. Because bit 2 of the result is a function
of bits at and to the right of bit 2 of the input operands, bit 2 of the result is “right-
to-left computable.”

Arrange the computer words x, x shifted left two, and y shifted left one, as
shown below. Also, add a mask that isolates bit 2.

X3 X309 ... X3 Xy X| X
Xpg Xpg ... X1 X 0 0

V30 Y29 -+ Y2 V1 Vo O
0 0 ..0100
00 ...0r00

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (follow-
ing Equation (1)), and and the result with the mask (row 4 above). The result is a
word of all 0’s except for the desired result bit in position 2. Perform similar com-
putations for the other bits of the result, or the 32 resulting words together, and the
result is the desired function.

This construction does not yield an efficient program; rather, it merely shows
that it can be done with instructions in the basic list.

Using the theorem, we immediately see that there is no sequence of such
instructions that turns off the leftmost 1-bit in a word, because to see if a certain
1-bit should be turned off, we must look to the left to see if it is the leftmost one.
Similarly, there can be no such sequence for performing a right shift, or a rotate
shift, or a left shift by a variable amount, or for counting the number of trailing 0’s
in a word (to count trailing 0’s, the rightmost bit of the result will be 1 if there are
an odd number of trailing 0’s, and we must look to the left of the rightmost posi-
tion to determine that).

A Novel Application

An application of the sort of bit twiddling discussed above is the problem of find-
ing the next higher number after a given number that has the same number of 1-
bits. You might very well wonder why anyone would want to compute that. It has
application where bit strings are used to represent subsets. The possible members
of a set are listed in a linear array, and a subset is represented by a word or
sequence of words in which bit 7 is on if member i is in the subset. Set unions are
computed by the logical or of the bit strings, intersections by and’s, and so on.

You might want to iterate through all the subsets of a given size. This is easily
done if you have a function that maps a given subset to the next higher number
(interpreting the subset string as an integer) with the same number of 1-bits.

A concise algorithm for this operation was devised by R. W. Gosper [HAK,
item 175]." Given a word x that represents a subset, the idea is to find the

1. A variation of this algorithm appears in [H&S] sec. 7.6.7.

2-1 MANIPULATING RIGHTMOST BITS 15

rightmost contiguous group of 1’s in x and the following 0’s, and “increment” that
quantity to the next value that has the same number of 1’s. For example, the string
xxx0 1111 0000, where xxx represents arbitrary bits, becomes xxx1 0000 0111.
The algorithm first identifies the “smallest” 1-bit in x, with § = x & —x, giving
0000 0001 0000. This is added to x, giving r =xxx1 0000 0000. The 1-bit here is
one bit of the result. For the other bits, we need to produce a right-adjusted string
of n—1 1’s, where n is the size of the rightmost group of 1’s in x. This can be
done by first forming the exclusive or of r and x, which gives 0001 1111 0000 in
our example.

This has two too many 1’s and needs to be right-adjusted. This can be accom-
plished by dividing it by s, which right-adjusts it (s is a power of 2), and shifting it
right two more positions to discard the two unwanted bits. The final result is the
or of this and r.

In computer algebra notation, the result is y in

s—x&—x
r<st+x 2)
yer| (x®r)%2)%s)

A complete C procedure is given in Figure 2—1. It executes in seven basic
RISC instructions, one of which is division. (Do not use this procedure with
x = 0; that causes division by 0.)

If division is slow but you have a fast way to compute the number of trailing
zeros function ntz(x), the number of leading zeros function nlz(x), or population
count (pop(x) is the number of 1-bits in x), then the last line of Equation (2) can be
replaced with one of the following formulas. (The first two methods can fail on a
machine that has modulo 32 shifts.)

yer| (x®r) % (2 +ntz(x)))
y<r| (x®r)= (33 —nlz(s)))
y<r | (1<(pop(x®r)-2))-1)

unsigned snoob(unsigned x) {
unsigned smallest, ripple, ones;
// x = xxx0 1111 0000

smallest = x & -X; // 0000 0001 0000
ripple = x + smallest; // xxx1l 0000 0000
ones = x " ripple; // 0001 1111 0000
ones = (ones >> 2)/smallest; // 0000 0000 0111
return ripple | ones; // xxxl 0000 0111

FIGURE 2-1. Next higher number with same number of 1-bits.

16 BASICS 2-2

2-2 Addition Combined with Logical Operations

We assume the reader is familiar with the elementary identities of ordinary alge-
bra and Boolean algebra. Below is a selection of similar identities involving addi-
tion and subtraction combined with logical operations.

a. -x = ax+1

b. = (x-1)

c. —x = -x-1

d. ——x =x+1

e. ——x =x—-1

f. x+ty =x——yp-1

g = (x@y)+2(x&y)
h. = x| pytx&y)

i =2x[y)-(xDy)
] x—y =x+—y+1

k. = (x®y)-2(~x&y)
L = (x&—p)-(—x&y)
m. =2(x&—p)-(xDy)
n. xOp = (x| y)-(x&y)

0. x&—y=(x|[p-y

p. =x—-(x&y)

qQ —(x-y) =y-x-1

I. =ty

. X=y =(x&y)-(x]y)-1
t. = (x&y)t—=(x|y)
u x|y =x&-wy)ty

V. x&y = (=x [y)——x

Equation (d) can be applied to itself repeatedly, giving ————-x = x+2,
and so on. Similarly, from (¢) we have =————x = x—2. So we can add or sub-
tract any constant using only the two forms of complementation.

Equation (f) is the dual of (j), where (j) is the well-known relation that shows
how to build a subtracter from an adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation
(g) forms a sum by first computing the sum with carries ignored (x @ y), and
then adding in the carries. Equation (h) is simply modifying the addition oper-
ands so that the combination 0 + 1 never occurs at any bit position; it is replaced
with 1+0.

2-3 INEQUALITIES AMONG LOGICAL AND ARITHMETIC EXPRESSIONS 17

It can be shown that in the ordinary addition of binary numbers with each bit
independently equally likely to be O or 1, a carry occurs at each position with
probability about 0.5. However, for an adder built by preconditioning the inputs
using (g), the probability is about 0.25. This observation is probably not of value
in building an adder, because for that purpose the important characteristic is the
maximum number of logic circuits the carry must pass through, and using (g)
reduces the number of stages the carry propagates through by only one.

Equations (k) and (1) are duals of (g) and (h), for subtraction. That is, (k) has
the interpretation of first forming the difference ignoring the borrows (x @ y),
and then subtracting the borrows. Similarly, Equation (1) is simply modifying the
subtraction operands so that the combination 1 — 1 never occurs at any bit posi-
tion; it is replaced with 0 — 0.

Equation (n) shows how to implement exclusive or in only three instructions
on a basic RISC. Using only and-or-not logic requires four instructions
((x | y) & —(x&y)). Similarly, (u) and (v) show how to implement and and
or in three other elementary instructions, whereas using DeMorgan’s laws
requires four.

2-3 Inequalities among Logical and Arithmetic Expressions

Inequalities among binary logical expressions whose values are interpreted as
unsigned integers are nearly trivial to derive. Here are two examples:

(x®p)<(x | p), and
(x&y)<(x=y).

These can be derived from a list of all binary logical operations, shown in Table 2—1.

Let fix,y) and g(x, y) represent two columns in Table 2—1. If for each row
in which flx,y) is 1, g(x,y) also is 1, then for all (x,y), fx,y)<%g(x,).
Clearly, this extends to word-parallel logical operations. One can easily read off
such relations (most of which are trivial) as (x & y) <x < (x | =), and so on.
Furthermore, if two columns have a row in which one entry is 0 and the other is 1,

TABLE 2—1. THE 16 BINARY LOGICAL OPERATIONS

= =
> ~ A ~

=1 T 3 I ES r B

I | R 2 @|—[Z Bl s ?\5
X o|lxr|=r[®|T]|a]l=r|=|T|r|T]=x M| —
ojojofoOjO]J]O|O]O]O0]O 1 1 1 1 1 1 1 1
01 1 010]0]0{|1 1 1 1 010|001 1 1 1
1 0(0]O0 1 1 00 1 00 1 1 00 1
1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1

18 BASICS 2-4

and another row in which the entries are 1 and 0, respectively, then no inequality
relation exists between the corresponding logical expressions. So the question of
whether or not f{x, y) < g(x, y) is completely and easily solved for all binary logi-
cal functions fand g.

Use caution when manipulating these relations. For example, for ordinary
arithmetic, if x + y<a and z <x, then z + y < g, but this inference is not valid if
“+” is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more
interesting. Below is a small selection.

a. (x | y) = max(x, y)

b. (x & y) < min(x, y)

c. (x | y) £x+y ifthe addition does not overflow
d. (x | y)¥x+y ifthe addition overflows

e. -yl < (x@y)

The proofs of these are quite simple, except possibly for the relation |x —y| <
(x @ y). By |x —y| we mean the absolute value of x — y, which can be computed
within the domain of unsigned numbers as max(x, y) — min(x, y). This relation
can be proven by induction on the length of x and y (the proof is a little easier if
you extend them on the left rather than on the right).

2—4 Absolute Value Function

If your machine does not have an instruction for computing the absolute value,
this computation can usually be done in three or four branch-free instructions.
First, compute y <— x = 31, and then one of the following:

abs nabs
(x®y)-y y-(x®y)
(x+y)®y y-x)®@y

x—2x&y) 2x&y)—-x

By “2x” we mean, of course, x +x or x << 1.
If you have fast multiplication by a variable whose value is 1, the following
will do:

(x330) | 1)*x

2-5 AVERAGE OF TWO INTEGERS 19

2-5 Average of Two Integers

The following formula can be used to compute the average of two unsigned inte-
gers, | (x +y)/2 |, without causing overflow [Dietz]:

(x&y) +((x@y)=1) ©)

The formula below computes [(x +y)/2] for unsigned integers:

x| »)-((x®p)=>1)

To compute the same quantities (“floor and ceiling averages”) for signed inte-
gers, use the same formulas, but with the unsigned shift replaced with a signed
shift.

For signed integers, one might also want the average with the division by 2
rounded toward 0. Computing this “truncated average” (without causing overflow)
is a little more difficult. It can be done by computing the floor average and then
correcting it. The correction is to add 1 if, arithmetically, x + y is negative and odd.
But x+y is negative if and only if the result of (3), with the unsigned shift
replaced with a signed shift, is negative. This leads to the following method (seven
instructions on the basic RISC, after commoning the subexpression x @ y):

t—x&p)+((x®p)S1);
t+((t53) & (xDy))

Some common special cases can be done more efficiently. If x and y are signed
integers and known to be nonnegative, then the average can be computed as simply
(x +y) = 1. The sum can overflow, but the overflow bit is retained in the register
that holds the sum, so that the unsigned shift moves the overflow bit to the proper
position and supplies a zero sign bit.

Ifx and y are unsigned integers and x £ y, orifx and y are signed integers and
x <y (signed comparison), then the average is given by x + ((y —x) 5> 1). These
are floor averages, for example, the average of —1 and 0 is —1.

2—6 Sign Extension

By “sign extension,” we mean to consider a certain bit position in a word to be the
sign bit, and we wish to propagate that to the left, ignoring any other bits present.
The standard way to do this is with shif left logical followed by shift right signed.
However, if these instructions are slow or nonexistent on your machine, it can be

20 BASICS 2-7

done with one of the following, where we illustrate by propagating bit position 7
to the left:

((x+0x00000080) & 0x000000FF) — 0x00000080
((x & 0x000000FF) © 0x00000080) — 0x00000080
(x & 0x0000007F) — (x & 0x00000080)

The “+” above can also be “—" or “@®.” The second formula is particularly useful if
you know that the unwanted high-order bits are all 0’s, because then the and can
be omitted.

2-7 Shift Right Signed from Unsigned

If your machine does not have the shift right signed instruction, it can be com-
puted using the formulas shown below. The first formula is from [GM], and the
second is based on the same idea. These formulas hold for 0 <#n <31 and, if the
machine has mod-64 shifts, the last holds for 0 <» < 63. The last formula holds
for any » if by “holds” we mean “treats the shift amount to the same modulus as
does the logical shift.”

When 7 is a variable, each formula requires five or six instructions on a
basic RISC.

((x + 0x80000000) =% 1) — (0x80000000 = 1)
t < 0x80000000 % #; (xEm@1n -t
t < (x & 0x80000000) = n; (x> n)—(t+1)
(x%5n) | (-(x%31)<31-n)
t——(x%31) (x®t)Sn) @t

In the first two formulas, an alternative for the expression 0x80000000 = » is
1«31-n.

If n is a constant, the first two formulas require only three instructions on
many machines. If » = 31, the function can be done in two instructions with
—(x=31).

2-8 Sign Function
The sign, or signum, function is defined by

-1, x<0,
sign(x) =4 0, x=0,
, x>0.

—_—

2-9 THREE-VALUED COMPARE FUNCTION 21

It can be calculated with four instructions on most machines [Hop]:

(x331) | (—x£31)

If you don’t have shift right signed, then use the substitute noted at the end of
Section 2—7, giving the following nicely symmetric formula (five instructions):

—(x%£31) | (x£31)

Comparison predicate instructions permit a three-instruction solution, with
either

(x>0)—(x<0), or

4
(x20)—(x<0). @

Finally, we note that the formula (—x = 31) — (x = 31) almost works; it
fails only for x = —231,

2-9 Three-Valued Compare Function

The three-valued compare function, a slight generalization of the sign function, is
defined by

-1, x<y,
cmp(x,y) =4 0, x=y,
I, x>y

There are both signed and unsigned versions, and unless otherwise specified, this
section applies to both.

Comparison predicate instructions permit a three-instruction solution, an
obvious generalization of Equations in (4):

(x>y)—(x<y), or
(x2y)-(x<p).

A solution for unsigned integers on PowerPC is shown below [CWG]. On
this machine, “carry” is “not borrow.”

subf R5,Ry,Rx # R5 <-- RXx - Ry.

subfc R6,Rx,Ry # R6 <-- Ry - Rx, set carry.

subfe R7,Ry,Rx # R7 <-- Rx - Ry + carry, set carry.
subfe R8,R7,R5 # R8 <-- R5 - R7 + carry, (set carry).

22 BASICS 2-10

If limited to the instructions of the basic RISC, there does not seem to be any
particularly good way to compute this function. The comparison predicates x <y,
x <y, and so on, require about five instructions (see Section 2—12), leading to a
solution in about 12 instructions (using a small amount of commonality in com-
puting x <y and x >y). On the basic RISC it’s probably preferable to use com-
pares and branches (six instructions executed worst case if compares can be
commoned).

2-10 Transfer of Sign Function
The transfer of sign function, called ISIGN in Fortran, is defined by

abs(x), y =0,

ISIGN(x, y) =
&) {abs(x), y<0.

This function can be calculated (modulo 232) with four instructions on most
machines:

t<—y=31; t< (x®y)S 31;
ISIGN(x, y) = (abs(x) ®¢)—t¢ ISIGN(x,y) = (x®t)—t¢
= (abs(x)+1) D¢t =(x+tt)Dt

2-11 Decoding a “Zero Means 2"” Field

Sometimes a 0 or negative value does not make much sense for a quantity, so it is
encoded in an n-bit field with a 0 value being understood to mean 2%, and a non-
zero value having its normal binary interpretation. An example is the length field
of PowerPC’s load string word immediate (1swi) instruction, which occupies
five bits. It is not useful to have an instruction that loads zero bytes when the
length is an immediate quantity, but it is definitely useful to be able to load 32
bytes. The length field could be encoded with values from 0 to 31 denoting
lengths from 1 to 32, but the “zero means 32” convention results in simpler logic
when the processor must also support a corresponding instruction with a variable
(in-register) length that employs straight binary encoding (e.g., PowerPC’s 1swx
instruction).

It is trivial to encode an integer in the range 1 to 2” into the “zero means 27
encoding—simply mask the integer with 27 — 1. To do the decoding without a
test-and-branch is not quite as simple, but here are some possibilities, illustrated
for a 3-bit field. They all require three instructions, not counting possible loads of
constants.

2-12 COMPARISON PREDICATES 23

(x-1)&7)+1 ((x+7) | -8)+9 8 (x&7)
(x+7)&T)+1 (x+7) | 8)-7 ~(—x | -8)
(x-1) | -8)+9 (x-1)&8)+x

2-12 Comparison Predicates

A “comparison predicate” is a function that compares two quantities, producing a
single bit result of 1 if the comparison is true, and 0 if the comparison is false.
Below we show branch-free expressions to evaluate the result into the sign posi-
tion. To produce the 1/0 value used by some languages (e.g., C), follow the code
with a shift right of 31. To produce the —1/0 result used by some other languages
(e.g., Basic), follow the code with a shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS and
our model RISC, which have comparison instructions that compute many of these
predicates directly, placing a 0/1-valued result in a general purpose register.

xX=y: abs(x—y)—1
abs(x —y + 0x80000000)
nlz(x —y) < 26
—(nlz(x - y) = 5)
—(x-y [y-x)

X#y: nabs(x —y)
nlz(x —y) — 32
x-y|y-x
x<y: (x=y)O[(xDy) &((x-y) D x)]
(x&=y) | (x=p) &(x-y))
nabs(doz(y, x)) [GSO]
X<y (x [&((x®y) | =(y—x))
(x=p)> 1)+ (x&—y) [GSO]
x<y: (=x&y) | (x=y) &(x-y))
(=x&y) | (-x [y) & (x-p))
x<y (—x [) &(xDp) | =(y—x))

A machine instruction that computes the negative of the absolute value is
handy here. We show this function as “nabs.” Unlike absolute value, it is well
defined in that it never overflows. Machines that do not have nabs, but have the
more usual abs, can use —abs(x) for nabs(x). If x is the maximum negative

24 BASICS 2-12

number, this overflows twice, but the result is correct. (We assume that the absolute
value and the negation of the maximum negative number is itself.) Because some
machines have neither abs nor nabs, we give an alternative that does not use them.

The “nlz” function is the number of leading 0’s in its argument. The “doz”
function (difference or zero) is described on page 41. For x >y, x>y, and so on,
interchange x and y in the formulas for x <y, x <y, and so on. The add of
0x8000 0000 can be replaced with any instruction that inverts the high-order bit
(inx,y,or x—y).

Another class of formulas can be derived from the observation that the predi-
cate x <y is given by the sign of x/2 —y/2, and the subtraction in that expres-
sion cannot overflow. The result can be fixed up by subtracting 1 in the cases in
which the shifts discard essential information, as follows:

x<y: (xS>D-@>1)-(~x&y&l)
XLy)L) —(—x &y &1)

These execute in seven instructions on most machines (six if it has and not),
which is no better than what we have above (five to seven instructions, depending
upon the fullness of the set of logic instructions).

The formulas above involving nlz are due to [Shep], and his formula for the
x = y predicate is particularly useful, because a minor variation of it gets the
predicate evaluated to a 1/0-valued result with only three instructions:

nlz(x —y) = 5.

Signed comparisons to 0 are frequent enough to deserve special mention.
There are some formulas for these, mostly derived directly from the above. Again,
the result is in the sign position.

x=0: abs(x) — 1
abs(x + 0x80000000)
nlz(x) < 26
—(nlz(x) = 5)
—(x [—x)
—x&(x-1)
x#0: nabs(x)
nlz(x) — 32
x| —x

(x51)-x [CWG]

2-12 COMPARISON PREDICATES 25

x<0: X

x<0: x| (x-1)
X | =—x

x>0: X @ nabs(x)
(x=>1)-x
X & —x

x20: —X

Signed comparisons can be obtained from their unsigned counterparts by
biasing the signed operands upward by 23! and interpreting the results as
unsigned integers. The reverse transformation also works.> Thus, we have

x<y=x+231 2 y+231
x&y=x-23<y-2%
Similar relations hold for <, %, and so on. In these relations, one can use addi-
tion, subtraction, or exclusive or with 231, They are all equivalent, as they simply
invert the sign bit. An instruction like the basic RISC’s add immediate shifted is
useful to avoid loading the constant 231,

Another way to get signed comparisons from unsigned is based on the fact
that if x and y have the same sign, then x <y = x £y, whereas if they have oppo-
site signs, then x <y = x ¥y [Lamp]. Again, the reverse transformation also
works, so we have

x<y = (x<y)®x; @y; and

x&y = (x<y)®x;, Dy;,
where x5, and y;, are the sign bits of x and y, respectively. Similar relations hold
for <, ¥, and so on.

Using either of these devices enables computing all the usual comparison
predicates other than = and # in terms of any one of them, with at most three addi-
tional instructions on most machines. For example, let us take x <y as primitive,
because it is one of the simplest to implement (it is the carry bit from y —x). Then
the other predicates can be obtained as follows:

—(p+231 % x+23)

x<y

x<y=x+23< y+2¥4

2. This is useful to get unsigned comparisons in Java, which lacks unsigned integers.

26 BASICS 2-12

x>y = —(x+231 % y+230)

x>y =y+231 & x+23

u

x&y=-(y<x)
xZy=—(x<y)

Xty=y<x

Comparison Predicates from the Carry Bit

If the machine can easily deliver the carry bit into a general purpose register, this
may permit concise code for some of the comparison predicates. Below are sev-
eral of these relations. The notation carry(expression) means the carry bit gener-
ated by the outermost operation in expression. We assume the carry bit for the
subtraction x —y is what comes out of the adder for x +y + 1, which is the com-
plement of “borrow.”

x=y: carry(0 — (x —y)), or carry((x +y) + 1), or
carry((x—y—1)+1)

X#y: carry((x —y)—1), i.e., carry((x —y) + (-1))

x<y: —carry((x +231) — (p + 231)), or —carry(x —y) @ x5, @ y5,

x<y: carry((y +231) — (x + 231)), or carry(y — x) @ x5, © y,

x<y: —carry(x —y)

x<y: carry(y — x)

x=0: carry(0 — x), or carry(x + 1)

x#0: carry(x — 1), i.e., carry(x + (-1))

x<0: carry(x + x)

x<0: carry(231 — (x +231))

For x >y, use the complement of the expression for x <y, and similarly for other
relations involving “greater than.”

The GNU Superoptimizer has been applied to the problem of computing pred-
icate expressions on the IBM RS/6000 computer and its close relative PowerPC
[GK]. The RS/6000 has instructions for abs(x), nabs(x), doz(x, y), and a number of
forms of add and subtract that use the carry bit. It was found that the RS/6000 can

2-12 COMPARISON PREDICATES 27

compute all the integer predicate expressions with three or fewer elementary (one-
cycle) instructions, a result that surprised even the architects of the machine. “All”
includes the six two-operand signed comparisons and the four two-operand
unsigned comparisons, all of these with the second operand being 0, and all in
forms that produce a 1/0 result or a —1/0 result. PowerPC, which lacks abs(x),
nabs(x), and doz(x, y), can compute all the predicate expressions in four or fewer
elementary instructions.

How the Computer Sets the Comparison Predicates

Most computers have a way of evaluating the integer comparison predicates to a
1-bit result. The result bit may be placed in a “condition register” or, for some
machines (such as our RISC model), in a general purpose register. In either case,
the facility is often implemented by subtracting the comparison operands and then
performing a small amount of logic on the result bits to determine the 1-bit com-
parison result.

Below is the logic for these operations. It is assumed that the machine com-
putes x —y as x +y + 1, and the following quantities are available in the result:

C,, the carry out of the high-order position

C;, the carry into the high-order position

N, the sign bit of the result

Z, which equals 1 if the result, exclusive of C,, is all-0, and is otherwise 0

Then we have the following in Boolean algebra notation (juxtaposition denotes
and, + denotes or):

V. C,o®ecC, (signed overflow)
xX=y: V4
xX#y: Z
x<y: NV
x<y: (N®W)+Z
x>y: (N=WZ
x2y: N=V
xZy: C,
x<y: C,+7
x3y: Cc,Z

u

xX>y: C

28 BASICS 2-13

2-13 Overflow Detection

“Overflow” means that the result of an arithmetic operation is too large or too
small to be correctly represented in the target register. This section discusses
methods that a programmer might use to detect when overflow has occurred, with-
out using the machine’s “status bits” that are often supplied expressly for this pur-
pose. This is important, because some machines do not have such status bits (e.g.,
MIPS), and even if the machine is so equipped, it is often difficult or impossible to
access the bits from a high-level language.

Signed Add/Subtract

When overflow occurs on integer addition and subtraction, contemporary
machines invariably discard the high-order bit of the result and store the low-order
bits that the adder naturally produces. Signed integer overflow of addition occurs
if and only if the operands have the same sign and the sum has a sign opposite to
that of the operands. Surprisingly, this same rule applies even if there is a carry
into the adder—that is, if the calculation is x +y + 1. This is important for the
application of adding multiword signed integers, in which the last addition is a
signed addition of two fullwords and a carry-in that may be 0 or +1.

To prove the rule for addition, let x and y denote the values of the one-word
signed integers being added, let ¢ (carry-in) be 0 or 1, and assume for simplicity a
4-bit machine. Then if the signs of x and y are different,

-8<x<-1,and
0<y<7,

or similar bounds apply if x is nonnegative and y is negative. In either case, by
adding these inequalities and optionally adding in 1 for c,

-8<x+y+ec<T.

This is representable as a 4-bit signed integer, and thus overflow does not occur
when the operands have opposite signs.
Now suppose x and y have the same sign. There are two cases:

(a) (b)
-8<x<-1
-8<y<-1 0<y<7
Thus,
(a) (b)

—-16<x+y+c<-1 0<x+y+c<15.

2-13 OVERFLOW DETECTION 29

Overflow occurs if the sum is not representable as a 4-bit signed integer—
that is, if

(a) (b)

-16<x+y+c<-9 8<x+y+c<1s.

In case (a), this is equivalent to the high-order bit of the 4-bit sum being 0, which
is opposite to the sign of x and y. In case (b), this is equivalent to the high-order bit
of the 4-bit sum being 1, which again is opposite to the sign of x and y.

For subtraction of multiword integers, the computation of interest is
x —y—c, where again c is 0 or 1, with a value of 1 representing a borrow-in.
From an analysis similar to the above, it can be seen that overflow in the final
value of x —y — ¢ occurs if and only if x and y have opposite signs and the sign of
X —y —c is opposite to that of x (or, equivalently, the same as that of y).

This leads to the following expressions for the overflow predicate, with the
result being in the sign position. Following these with a shift right or shift right
signed of 31 produces a 1/0- or a —1/0-valued result.

xty+ec xX—y—c¢
(x=y)&((x+ty+c)Dx) (x®y) &((x-y-c)®x)
(xFy+0)@x) & ((x+y+e)@y) ((x-y-0)Ox)&((x-y-c)=y)

By choosing the second alternative in the first column, and the first alternative in
the second column (avoiding the equivalence operation), our basic RISC can eval-
uate these tests with three instructions in addition to those required to compute
x+y+c or x—y—c. A fourth instruction (branch if negative) can be added to
branch to code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to
test to see if a certain addition or subtraction will cause overflow, in a way that
does not cause it. One branch-free way to do this is as follows:

xty+tec xX—-y—c
7 < (x=y) & 0x80000000 7 (x®y) & 0x80000000
z&((x®z)tyte)=y) z& ((x®z)-y-c)Dy)

The assignment to z in the left column sets z = 0x80000000 if x and y have the
same sign, and sets z = 0 if they differ. Then, the addition in the second expres-
sion is done with x @ z and y having different signs, so it can’t overflow. If x and
y are nonnegative, the sign bit in the second expression will be 1 if and only if
(x =231 +y+¢>0—thatis, iff x +y + ¢ >23!, which is the condition for over-
flow in evaluating x + y + ¢. If x and y are negative, the sign bit in the second
expression will be 1 iff (x +231) +y + ¢ < 0 —that is, iff x + y + ¢ <231, which

30 BASICS 2-13

again is the condition for overflow. The and with z ensures the correct result (0 in
the sign position) if x and y have opposite signs. Similar remarks apply to the
case of subtraction (right column). The code executes in nine instructions on the
basic RISC.

It might seem that if the carry from addition is readily available, this might
help in computing the signed overflow predicate. This does not seem to be the
case; however, one method along these lines is as follows.

If x is a signed integer, then x + 23! is correctly represented as an unsigned
number and is obtained by inverting the high-order bit of x. Signed overflow in the
positive direction occurs if x +y > 231 —that is, if (x +231)+ (y +231) >3 .23,
This latter condition is characterized by carry occurring in the unsigned add
(which means that the sum is greater than or equal to 232) and the high-order bit
of the sum being 1. Similarly, overflow in the negative direction occurs if the
carry is 0 and the high-order bit of the sum is also 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute (x ® 231) + (y @ 231), giving sum s and carry c.
Overflow occurred iff ¢ equals the high-order bit of s.

The sum is the correct sum for the signed addition, because inverting the high-
order bits of both operands does not change their sum.

For subtraction, the algorithm is the same except that in the first step a sub-
traction replaces the addition. We assume that the carry is that which is generated
by computing x —y as x +y + 1. The subtraction is the correct difference for the
signed subtraction.

These formulas are perhaps interesting, but on most machines they would not
be quite as efficient as the formulas that do not even use the carry bit (e.g., over-
flow = (x=y) & (s ® x) for addition, and (x ® y) & (d ® x) for subtraction,
where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract

Machines often set “overflow” for signed addition by means of the logic “the
carry into the sign position is not equal to the carry out of the sign position.” Curi-
ously, this logic gives the correct overflow indication for both addition and sub-
traction, assuming the subtraction x —y is done by x + y + 1. Furthermore, it is
correct whether or not there is a carry- or borrow-in. This does not seem to lead to
any particularly good methods for computing the signed overflow predicate in
software, however, even though it is easy to compute the carry into the sign posi-
tion. For addition and subtraction, the carry/borrow into the sign position is given
by the sign bit after evaluating the following expressions (where ¢ is 0 or 1):

carry borrow
(xty+tce)®xDy (x-y—-c)®xdy

In fact, these expressions give, at each position i, the carry/borrow into position i.

2-13 OVERFLOW DETECTION 31

Unsigned Add/Subtract

The following branch-free code can be used to compute the overflow predicate for
unsigned add/subtract, with the result being in the sign position. The expressions
involving a right shift are probably useful only when it is known that ¢ = 0. The
expressions in brackets compute the carry or borrow generated from the least sig-
nificant position.

x +y+ ¢, unsigned

(x&y) | ((x | y)&=(x+y+o))
x>D+@SD+H((x&y) | (x| p) &) &1]

X —y—c, unsigned
(=x&y) | (x=p)&(x-y-c))
(—x&y) | (-x [) &(x-y—c))
(x=>D-@=>D-[((=x&y) | (x| p) &) &1]

For unsigned add’s and subtract’s, there are much simpler formulas in terms
of comparisons [MIPS]. For unsigned addition, overflow (carry) occurs if the sum
is less (by unsigned comparison) than either of the operands. This and similar for-
mulas are given below. Unfortunately, there is no way in these formulas to allow
for a variable c¢ that represents the carry- or borrow-in. Instead, the program must
test ¢, and use a different type of comparison depending upon whether ¢ is 0 or 1.

x+yp,unsigned x+y+1,unsigned x—y,unsigned x-—y-—1,unsigned
-x<y —Xx<y x<y x<y
x+tylx x+y+1%x x—-y¥x x-y-1%x

The first formula for each case above is evaluated before the add/subtract that may
overflow, and it provides a way to do the test without causing overflow. The sec-
ond formula for each case is evaluated after the add/subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for
computing the signed overflow predicate.

Multiplication

For multiplication, overflow means that the result cannot be expressed in 32 bits
(it can always be expressed in 64 bits, whether signed or unsigned). Checking for
overflow is simple if you have access to the high-order 32 bits of the product. Let
us denote the two halves of the 64-bit product by hi(x x y) and lo(x x y). Then
the overflow predicates can be computed as follows [MIPS]:

32 BASICS 2-13

X x y, unsigned x x y, signed
hi(x x y) # 0 hi(x x p) = (lo(x x y) = 31)

One way to check for overflow of multiplication is to do the multiplication
and then check the result by dividing. Care must be taken not to divide by 0, and
there is a further complication for signed multiplication. Overflow occurs if the
following expressions are true:

Unsigned Signed
T X*®Y gEX*xy
y20&zly#x (P<0&x=-23) | (p20&z+y#x)
The complication arises when x = —231 and y = —1. In this case the multiplica-

tion overflows, but the machine may very well give a result of —231. This causes
the division to overflow, and thus any result is possible (for some machines).
Therefore, this case has to be checked separately, which is done by the term
y<0 & x =-23 The above expressions use the “conditional and” operator to
prevent dividing by 0 (in C, use the && operator).

It is also possible to use division to check for overflow of multiplication with-
out doing the multiplication (that is, without causing overflow). For unsigned inte-
gers, the product overflows iff xy > 2321, or x > ((232—1)/y), or, since x is an
integer, x > | (232 —1)/y |. Expressed in computer arithmetic, this is

y#0 &x ¥ (0xXFFFFFFFF %y).

For signed integers, the determination of overflow of x * y is not so simple.
If x and y have the same sign, then overflow occurs iff xy > 23! — 1. If they have
opposite signs, then overflow occurs iff xy < —231. These conditions can be tested
as indicated in Table 2-2, which employs signed division. This test is awkward to
implement, because of the four cases. It is difficult to unify the expressions very
much because of problems with overflow and with not being able to represent the
number +231,

The test can be simplified if unsigned division is available. We can use the
absolute values of x and y, which are correctly represented under unsigned integer
interpretation. The complete test can then be computed as shown below. The vari-
able ¢ = 231 -1 if x and y have the same sign, and ¢ = 23! otherwise.

TABLE 2-2. OVERFLOW TEST FOR SIGNED MULTIPLICATION

y>0 y<0

x>0 x > 0x7FFFFFFF +y y < 0x80000000 + x

x<0 x < 0x80000000 - y x#0 &y < OXTFFFFFFF =+ x

2-13 OVERFLOW DETECTION 33

¢ ((x=y)=>31)+23
X < abs(x)

y < abs(y)
y£0&xL(cly)

The number of leading zeros instruction can be used to give an estimate of
whether or not x * y will overflow, and the estimate can be refined to give an
accurate determination. First, consider the multiplication of unsigned numbers. It
is easy to show that if x and y, as 32-bit quantities, have m and n leading 0’s,
respectively, then the 64-bit product has either m +n or m+n + 1 leading 0’s (or
64, if either x = 0 or y = 0). Overflow occurs if the 64-bit product has fewer
than 32 leading 0’s. Hence,

nlz(x) + nlz(y) > 32: Multiplication definitely does not overflow.
nlz(x) + nlz(y) < 30: Multiplication definitely does overflow.

For nlz(x) + nlz(y) = 31, overflow may or may not occur. In this case, the
overflow assessment can be made by evaluating # = x| y/2 |. This will not over-
flow. Since xy is 2¢ or, if y is odd, 27 + x, the product xy overflows if # > 23!, These
considerations lead to a plan for computing xy, but branching to “overflow” if the
product overflows. This plan is shown in Figure 2-2.

For the multiplication of signed integers, we can make a partial determination
of whether or not overflow occurs from the number of leading 0’s of nonnegative
arguments, and the number of leading 1’s of negative arguments. Let

nlz(x) + nlz(x), and

nlz(y) + nlz(p).

m

n

unsigned x, y, 2z, m, n, t;

m nlz(x);
n = nlz(y);
if (m + n <= 30) goto overflow;
t = xx(y > 1);
if ((int)t < 0) goto overflow;
z = t*2;
if (y & 1) {
z = 2 + X;
if (z < x) goto overflow;

}

// z is the correct product of x and y.

FIGURE 2-2. Determination of overflow of unsigned multiplication.

34 BASICS 2-13

Then, we have

m + n > 34: Multiplication definitely does not overflow.
m + n < 31: Multiplication definitely does overflow.

There are two ambiguous cases: 32 and 33. The case m + n = 33 overflows
only when both arguments are negative and the true product is exactly 23!
(machine result is —231), so it can be recognized by a test that the product has the
correct sign (that is, overflow occurred if m@® n® (m +n)<0). When
m+n = 32, the distinction is not so easily made.

We will not dwell on this further, except to note that an overflow estimate for
signed multiplication can also be made based on nlz(abs(x)) + nlz(abs(y)), but
again there are two ambiguous cases (a sum of 31 or 32).

Division
For the signed division x + p, overflow occurs if the following expression is true:

y =0 (x=0x80000000 & y = 1)

Most machines signal overflow (or trap) for the indeterminate form 0 + 0.

Straightforward code for evaluating this expression, including a final branch
to the overflow handling code, consists of seven instructions, three of which are
branches. There do not seem to be any particularly good tricks to improve on this,
but here are a few possibilities:

[abs(y © 0x80000000) | (abs(x) & abs(y = 0x80000000))] <0

That is, evaluate the large expression in brackets, and branch if the result is less
than 0. This executes in about nine instructions, counting the load of the constant
and the final branch, on a machine that has the indicated instructions and that gets
the “compare to 0” for free.

Some other possibilities are to first compute z from

7 < (x ® 0x80000000) | (y+1)

(three instructions on many machines), and then do the test and branch on
y =0] z = 0 in one of the following ways:

(&]-2)20
(nabs(y) & nabs(z)) > 0
((nlz(y) | nlz(z)) = 5)=0

These execute in nine, seven, and eight instructions, respectively, on a machine
that has the indicated instructions. The last line represents a good method for
PowerPC.

2-13 OVERFLOW DETECTION 35

For the unsigned division x £y, overflow occurs if and only if y = 0.

Some machines have a “long division” instruction (see page 192), and you
may want to predict, using elementary instructions, when it would overflow. We
will discuss this in terms of an instruction that divides a doubleword by a fullword,
producing a fullword quotient and possibly also a fullword remainder.

Such an instruction overflows if either the divisor is 0 or if the quotient cannot
be represented in 32 bits. Typically, in these overflow cases both the quotient and
remainder are incorrect. The remainder cannot overflow in the sense of being too
large to represent in 32 bits (it is less than the divisor in magnitude), so the test that
the remainder will be correct is the same as the test that the quotient will be correct.

We assume the machine either has 64-bit general registers or 32-bit registers
and there is no problem doing elementary operations (shifts, adds, and so forth) on
64-bit quantities. For example, the compiler might implement a doubleword inte-
ger data type.

In the unsigned case the test is trivial: for x +y with x a doubleword and y a
fullword, the division will not overflow if (and only if) either of the following
equivalent expressions is true.

y20&x<(y<«32)
y£0& (x5 32)<y

On a 32-bit machine, the shifts need not be done; simply compare y to the register
that contains the high-order half of x. To ensure correct results on a 64-bit machine,
it is also necessary to check that the divisor y is a 32-bit quantity (e.g., check that
(y=32) =0).

The signed case is more interesting. It is first necessary to check that y # 0
and, on a 64-bit machine, that y is correctly represented in 32 bits (check that
((r<32)=32) = y). Assuming these tests have been done, the table that fol-
lows shows how the tests might be done to determine precisely whether or not the
quotient is representable in 32 bits by considering separately the four cases of the
dividend and divisor each being positive or negative. The expressions in the table
are in ordinary arithmetic, not computer arithmetic.

In each column, each relation follows from the one above it in an if-and-only-
if way. To remove the floor and ceiling functions, some relations from Theorem D1
on page 183 are used.

x20,y>0 x20,y<0 x<0,y>0 x<0,y<0

Lx/y <23 [x/y]=-231 [x/y]=-231 Lx/y | <231

x/y <231 [x/y]>-231-1 [x/y]>-231-1 x/y<23

x <23y x/y>=231-1 x/y>=231-1 x> 231y
x<—23y—y x>-23y—y —x < 231(—y)

x<2PY)+ () x<2ly+y

36 BASICS 2-14

As an example of interpreting this table, consider the leftmost column. It
applies to the case in which x >0 and y > 0. In this case the quotient is | x/y |,
and this must be strictly less than 23! to be representable as a 32-bit quantity. From
this it follows that the real number x/y must be less than 231, or x must be less than
231y, This test can be implemented by shifting y left 31 positions and comparing
the result to x.

When the signs of x and y differ, the quotient of conventional division is
[x/y’]. Because the quotient is negative, it can be as small as —23!.

In the bottom row of each column the comparisons are all of the same type
(less than). Because of the possibility that x is the maximum negative number, in
the third and fourth columns an unsigned comparison must be used. In the first two
columns the quantities being compared begin with a leading 0-bit, so an unsigned
comparison can be used there, too.

These tests can, of course, be implemented by using conditional branches to
separate out the four cases, doing the indicated arithmetic, and then doing a final
compare and branch to the code for the overflow or non-overflow case. However,
branching can be reduced by taking advantage of the fact that when y is negative,
—y is used, and similarly for x. Hence the tests can be made more uniform by using
the absolute values of x and y. Also, using a standard device for optionally doing
the additions in the second and third columns results in the following scheme:

x' = |x]|
y' =1yl
8= ((x®y)>63) &y’

if (x' £ (' < 31) + 8) then {will not overflow}

Using the three-instruction method of computing the absolute value (see page 18),
on a 64-bit version of the basic RISC this amounts to 12 instructions, plus a condi-
tional branch.

2-14 Condition Code Result of Add, Subtract, and Multiply

Many machines provide a “condition code” that characterizes the result of integer
arithmetic operations. Often there is only one add instruction, and the character-
ization reflects the result for both unsigned and signed interpretation of the oper-
ands and result (but not for mixed types). The characterization usually consists of
the following:

e Whether or not carry occurred (unsigned overflow)
e Whether or not signed overflow occurred

e Whether the 32-bit result, interpreted as a signed two’s-complement inte-
ger and ignoring carry and overflow, is negative, 0, or positive

2-15 ROTATE SHIFTS 37

Some older machines give an indication of whether the infinite precision
result (that is, 33-bit result for add’s and subtract’s) is positive, negative, or 0.
However, this indication is not easily used by compilers of high-level languages,
and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible.
The ones that cannot occur are “no carry, overflow, result > 0,” “no carry, over-
flow, result = 0,” and “carry, overflow, result < 0.” Thus, four bits are, just barely,
needed for the condition code. Two of the combinations are unique in the sense
that only one value of inputs produces them: Adding O to itself is the only way to
get “no carry, no overflow, result = 0,” and adding the maximum negative number
to itself is the only way to get “carry, overflow, result = 0.”

For subtraction, let us assume that to compute x —y the machine actually
computes x + y + 1, with the carry produced as for an add (in this scheme the
meaning of “carry” is reversed for subtraction, in that carry = 1 signifies that the
result fits in a single word, and carry = 0 signifies that the result does not fit in a
single word). Then for subtraction, only seven combinations of events are possi-
ble. The ones that cannot occur are the three that cannot occur for addition, plus
“no carry, no overflow, result = 0,” and “carry, overflow, result = 0.”

If a machine’s multiplier can produce a doubleword result, then two multiply
instructions are desirable: one for signed and one for unsigned operands. (On a
4-bit machine, in hexadecimal, F x F = 01 signed, and F x F = E1 unsigned.)
For these instructions, neither carry nor overflow can occur, in the sense that the
result will always fit in a doubleword.

For a multiplication instruction that produces a one-word result (the low-
order word of the doubleword result), let us take “carry” to mean that the result
does not fit in a word with the operands and result interpreted as unsigned inte-
gers, and let us take “overflow” to mean that the result does not fit in a word with
the operands and result interpreted as signed two’s-complement integers. Then
again, there are nine possible combinations of results, with the missing ones being
“no carry, overflow, result > 0,” “no carry, overflow, result = 0,” and “carry, no
overflow, result = 0.” Thus, considering addition, subtraction, and multiplication
together, ten combinations can occur.

2—-15 Rotate Shifts

These are rather trivial. Perhaps surprisingly, this code works for » ranging from 0
to 32 inclusive, even if the shifts are mod-32.

Rotate left n: y<« (x<n) | (x=>(32—-n))
Rotate right n: y <« (x> n) | (x<(32—-n))

If your machine has double-length shifts, they can be used to do rotate shifts.
These instructions might be written

38 BASICS 2-16

shldi RT,RA,RB,I
shrdi RT,RA,RB,I

They treat the concatenation of RA and RB as a single double-length quantity, and
shift it left or right by the amount given by the immediate field I. (If the shift
amount is in a register, the instructions are awkward to implement on most RISCs
because they require reading three registers.) The result of the left shift is the high-
order word of the shifted double-length quantity, and the result of the right shift is
the low-order word.

Using sh1di, a rotate left of Rx can be accomplished by

shldi RT,Rx,Rx,I

and similarly a rotate right shift can be accomplished with shrdi.

A rotate left shift of one position can be accomplished by adding the contents
of a register to itself with “end-around carry” (adding the carry that results from the
addition to the sum in the low-order position). Most machines do not have that
instruction, but on many machines it can be accomplished with two instructions:
(1) add the contents of the register to itself, generating a carry (into a status regis-
ter), and (2) add the carry to the sum.

2-16 Double-Length Add/Subtract

Using one of the expressions shown on page 31 for overflow of unsigned addition
and subtraction, we can easily implement double-length addition and subtraction
without accessing the machine’s carry bit. To illustrate with double-length addi-
tion, let the operands be (x|, x,) and (y,,y,), and the result be (z,, z,) . Sub-
script 1 denotes the most significant half, and subscript 0 the least significant. We
assume that all 32 bits of the registers are used. The less significant words are
unsigned quantities.

2o <Xyt Yo
e [(xg &) | ((xg | ¥o) & =29)]13 31
z1<—x1 +y1+c

This executes in nine instructions. The second line can be ¢ «— (z, < x,)), permit-
ting a four-instruction solution on machines that have this comparison operator in
a form that gives the result as a 1 or 0 in a register, such as the “SLTU” (Set on
Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction (x —y) is

20 < X0~ Yo

b [(—xy&yy) | ((xg=y) &z()] %31

< x, -y —b

2-17 DOUBLE-LENGTH SHIFTS 39

This executes in eight instructions on a machine that has a full set of logical
instructions. The second line can be b < (x, < y,), permitting a four-instruction
solution on machines that have the “SLTU” instruction.

Double-length addition and subtraction can be done in five instructions on
most machines by representing the multiple-length data using only 31 bits of the
least significant words, with the high-order bit being 0 except momentarily when
it contains a carry or borrow bit.

2-17 Double-Length Shifts

Let (x;,x,) be a pair of 32-bit words to be shifted left or right as if they were a
single 64-bit quantity, with x; being the most significant half. Let (y,, y,) be the
result, interpreted similarly. Assume the shift amount # is a variable ranging from
0 to 63. Assume further that the machine’s shift instructions are modulo 64 or
greater. That is, a shift amount in the range 32 to 63 or —32 to —1 results in an all-0
word, unless the shift is a signed right shift, in which case the result is 32 sign bits
from the word shifted. (This code will not work on the Intel x86 machines, which
have mod-32 shifts.)

Under these assumptions, the shift left double operation can be accomplished
as follows (eight instructions):

Vi <x,<n|x;332-n) | xy<(n-32)

Vo< Xg<nhn

The main connective in the first assignment must be or, not plus, to give the cor-
rect result when » = 32. If it is known that 0 < » < 32, the last term of the first
assignment can be omitted, giving a six-instruction solution.
Similarly, a shift right double unsigned operation can be done with
Vo Xo>n | x,<(32-n) | x; % (n-32)

U
Yi&<x >n

Shift right double signed is more difficult, because of an unwanted sign prop-
agation in one of the terms. Straightforward code follows:

ifn<32theny,«xy>n | x;, <(32-n)
else yy « x, > (n—32)
yi<x,>n

If your machine has the conditional move instructions, it is a simple matter to
express this in branch-free code, in which form it takes eight instructions. If the
conditional move instructions are not available, the operation can be done in ten

40 BASICS 2-18

instructions by using the familiar device of constructing a mask with the shift right
signed 31 instruction to mask the unwanted sign propagating term:

Vo< XoSn | x, <(32-n) | [(x,>(n-32)) &((32-n) = 31)]

S
yi<x>n

2-18 Multibyte Add, Subtract, Absolute Value

Some applications deal with arrays of short integers (usually bytes or halfwords),
and often execution is faster if they are operated on a word at a time. For definite-
ness, the examples here deal with the case of four 1-byte integers packed into a
word, but the techniques are easily adapted to other packings, such as a word con-
taining a 12-bit integer and two 10-bit integers, and so on. These techniques are of
greater value on 64-bit machines, because more work is done in parallel.

Addition must be done in a way that blocks the carries from one byte into
another. This can be accomplished by the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there
will then be no carries across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands
and the carry into that bit.

The carry into the high-order bit of each byte is given by the high-order bit of
each byte of the sum computed in step 1. The subsequent similar method works
for subtraction:

Addition
§ < (x & 0x7F7F7F7F) + (y & 0x7F7F 7F7F)
s« ((x®y) & 0x80808080) @ s

Subtraction
d <« (x | 0x80808080)— (y & 0x7F7F7F7F)
d< ((x®@y) | OX7FTF7F7F)=d

These execute in eight instructions, counting the load of 0x7F7F 7F7F, on a
machine that has a full set of logical instructions. (Change the and and or of
0x80808080 to and not and or not, respectively, of 0x7F7F 7F7F.)

There is a different technique for the case in which the word is divided into
only two fields. In this case, addition can be done by means of a 32-bit addition fol-
lowed by subtracting out the unwanted carry. On page 30 we noted that the expres-
sion (x+y)®x Dy gives the carries into each position. Using this and similar
observations about subtraction gives the following code for adding/subtracting two
halfwords modulo 216 (seven instructions):

2-19 DOZ, MAX, MIN 41

Addition Subtraction

s<x+ty d<x-y

c— (sDxDy) & 0x00010000 b« (d®x®y)& 0x00010000
s<s—c¢ d<—d+b

Multibyte absolute value is easily done by complementing and adding 1 to
each byte that contains a negative integer (that is, has its high-order bit on). The
following code sets each byte of y equal to the absolute value of each byte of x
(eight instructions):

a < x & 0x80808080 // Tsolate signs.

beax7 // Integer 1 where x is negative.
m<«(a—>b) | a // OXFF where ¥ is negative.
y<—(x®m)+b // Complement and add 1 where negative.

The third line could as well be m <— a + a— b . The addition of b in the fourth line
cannot carry across byte boundaries, because the quantity x @ m has a high-order
0 in each byte.

2-19 Doz, Max, Min
The “doz” function is “difference or zero,” defined as follows:

Signed Unsigned
_ > _ u
doz(x,y) = {¥ 7V *=P dozu(x, y) = 4 XY *¥2)
y y u
0, x<y. 0, x<y.

It has been called “first grade subtraction” because the result is 0 if you try to take
away too much.? If implemented as a computer instruction, perhaps its most impor-
tant use is to implement the max(x, y) and min(x, y) functions (in both signed and
unsigned forms) in just two simple instructions, as will be seen. Implementing
max(x, y) and min(x, y) in hardware is difficult because the machine would need
paths from the output ports of the register file back to an input port, bypassing the
adder. These paths are not normally present. If supplied, they would be in a region
that’s often crowded with wiring for register bypasses. The situation is illustrated in
Figure 2-3. The adder is used (by the instruction) to do the subtraction x — y. The
high-order bits of the result of the subtraction (sign bit and carries, as described on
page 27) define whether x > y or x < y. The comparison result is fed to a multiplexor

3. Mathematicians name the operation monus and denote it with —. The terms positive differ-
ence and saturated subtraction are also used.

42 BASICS 2-19

Register File

x y

Adder

FIGURE 2-3. Implementing max(x, y) and min(x, y).

(MUX) that selects either x or y as the result to write into the target register. These
paths, from register file outputs x and y to the multiplexor, are not normally present
and would have little use. The difference or zero instructions can be implemented
without these paths because it is the output of the adder (or 0) that is fed back to the
register file.

Using difference or zero, max(x, y) and min(x, y) can be implemented in two
instructions as follows:

Signed Unsigned
max(x, y) = y + doz(x, y) maxu(x, y) = y+dozu(x, y)

min(x, y) = x—doz(x, y) minu(x, y) = x— dozu(x, y)

In the signed case, the result of the difference or zero instruction can be nega-
tive. This happens if overflow occurs in the subtraction. Overflow should be
ignored; the addition of y or subtraction from x will overflow again, and the result
will be correct. When doz(x, y) is negative, it is actually the correct difference if it
is interpreted as an unsigned integer.

Suppose your computer does not have the difference or zero instructions, but
you want to code doz(x, y), max(x, y), and so forth, in an efficient branch-free way.
In the next few paragraphs we show how these functions might be coded if your
machine has the conditional move instructions, comparison predicates, efficient
access to the carry bit, or none of these.

If your machine has the conditional move instructions, it can get doz(x, y) in
three instructions, and destructive* max(x, y) and min(x, y) in two instructions. For
example, on the full RISC, z <« doz(x, y) can be calculated as follows (10 is a per-
manent zero register):

4. A destructive operation is one that overwrites one or more of its arguments.

2-19 DOZ, MAX, MIN 43

sub Z,X,Y Set z = x - vy.
cmplt t,x,y Set t = 1 if x < y, else 0.
movne z,t,r0 Set z = 0 if x < y.

Also on the full RISC, x <— max(x, y) can be calculated as follows:

cmplt t,x,y Set t =1 if x <y, else 0.
movne XxX,t,y Set x =y if x < y.

The min function, and the unsigned counterparts, are obtained by changing the
comparison conditions.

These functions can be computed in four or five instructions using compari-
son predicates (three or four if the comparison predicates give a result of —1 for
“true”):

doz(x,y) = (x—p) & —(x>y)
max(x,y) = y+doz(x, y)
(x®@y)&—(x2y)) Dy
min(x, y) = x —doz(x, y)

(x®y)&—(x<y)) @y

On some machines, the carry bit may be a useful aid to computing the
unsigned versions of these functions. Let carry(x —y) denote the bit that comes
out of the adder for the operation x+y+1, moved to a register. Thus,
carry(x —y) = 1 iff x > y. Then we have

dozu(x, y) = ((x —y) & —(carry(x —y) — 1))
maxu(x, y) = x—((x-y) & (carry(x —y) — 1))
minu(x, y) = y+((x-y) & (carry(x —y) — 1))

On most machines that have a subtract that generates a carry or borrow, and
another form of subtract that uses that carry or borrow as an input, the expression
carry(x —y) — 1 can be computed in one more instruction after the subtraction of y
from x. For example, on the Intel x86 machines, minu(x, y) can be computed in
four instructions as follows:

sub eax,ecx ; Inputs x and y are in eax and ecx resp.
sbb edx,edx ; edx = 0 if x >= y, else -1.

and eax,edx ; 0 if x >= y, else x - y.

add eax,ecx ; Add y, giving y if x >= y, else x.

In this way, all three of the functions can be computed in four instructions (three
instructions for dozu(x, y) if the machine has and with complement).

44 BASICS 2-19

A method that applies to nearly any RISC is to use one of the above expres-
sions that employ a comparison predicate, and to substitute for the predicate one of
the expressions given on page 23. For example:

d<—x—-y

doz(x,y) = d& [(d=((x®y) & (d D x))) > 31]

dozu(x,y) = d & —[((—x &) | ((x=y) & d)) = 31]
These require from seven to ten instructions, depending on the computer’s instruc-
tion set, plus one more to get max or min.

These operations can be done in four branch-free basic RISC instructions if it
is known that —23! <x -y <231 — 1 (that is an expression in ordinary arithmetic,
not computer arithmetic). The same code works for both signed and unsigned inte-
gers, with the same restriction on x and y. A sufficient condition for these formulas

to be valid is that, for signed integers, —23% <x, y <230 — 1, and for unsigned inte-
gers, 0<x,y <231 -1,

doz(x, y) = dozu(x,y) = (x—y) & =((x—y) = 31)
max(x,) = maxu(x,y) = x—((x—y) & ((x—y) = 31))
min(x, y) = minux,y) = y+((x-y) & ((x—y) > 31))

Some uses of the difference or zero instruction are given here. In these, the
result of doz(x, y) must be interpreted as an unsigned integer.

1. It directly implements the Fortran IDIM function.

2. To compute the absolute value of a difference [Knu7]:

|x —y| = doz(x,y) +doz(y, x), signed arguments,
= dozu(x, y) + dozu(y, x), unsigned arguments.

Corollary: |x| = doz(x, 0) + doz(0, x) (other three-instruction solutions
are given on page 18).

3. To clamp the upper limit of the true sum of unsigned integers x and y to
the maximum positive number (232 —1) [Knu7]:

—dozu(—x, y).

4. Some comparison predicates (four instructions each):

x>y = (doz(x,y) | —doz(x, y)) = 31,
x ¥y = (dozu(x, y) | —dozu(x,y)) = 31.

2-20 EXCHANGING REGISTERS 45

5. The carry bit from the addition x + y (five instructions):

carry(x +y) = x ¥ —y = (dozu(x, —y) | —dozu(x, —p)) = 31.

The expression doz(x, —y), with the result interpreted as an unsigned integer, is
in most cases the true sum x + y with the lower limit clamped at 0. However, it fails
if y is the maximum negative number.

The IBM RS/6000 computer, and its predecessor the 801, have the signed ver-
sion of difference or zero. Knuth’s MMIX computer [Knu7] has the unsigned ver-
sion (including some varieties that operate on parts of words in parallel). This
raises the question of how to get the signed version from the unsigned version, and
vice versa. This can be done as follows (where the additions and subtractions sim-
ply complement the sign bit):

doz(x,y) = dozu(x + 231,y +231),
dozu(x, y) = doz(x — 231,y —231).

Some other identities that may be useful are:

doz(—x, —y) = doz(y, x),
dozu(—x, —y) = dozu(y, x).

The relation doz(—x, —y) = doz(y, x) fails if either x or y, but not both, is the max-
imum negative number.

2-20 Exchanging Registers

A very old trick is exchanging the contents of two registers without using a third
[IBM]:

X<—x®y
y<y@x
X<xQy
This works well on a two-address machine. The trick also works if @ is

replaced by the = logical operation (complement of exclusive or) and can be made
to work in various ways with add’s and subtract’s:

XXty X< XxX—y X<y—x
y&x—y y<ytx y<<y—x
X—XxX—)y X<<y—x X<<x+ty

Unfortunately, each of these has an instruction that is unsuitable for a two-address
machine, unless the machine has “reverse subtract.”

46 BASICS 2-20

This little trick can actually be useful in the application of double buffering,
in which two pointers are swapped. The first instruction can be factored out of the
loop in which the swap is done (although this negates the advantage of saving a
register):

Outside the loop: < x@y
Inside the loop: x < x@ ¢
y<—yodt

Exchanging Corresponding Fields of Registers

The problem here is to exchange the contents of two registers x and y wherever a
mask bit m; = 1, and to leave x and y unaltered wherever m; = 0. By “corre-
sponding” fields, we mean that no shifting is required. The 1-bits of m need not be
contiguous. The straightforward method is as follows:

X (x&m)| (y&m)
y<—(py&m)| (x&m)
X<« X'

By using “temporaries” for the four and expressions, this can be seen to require
seven instructions, assuming that either m or m can be loaded with a single
instruction and the machine has and not as a single instruction. If the machine is
capable of executing the four (independent) and expressions in parallel, the execu-
tion time is only three cycles.

A method that is probably better (five instructions, but four cycles on a
machine with unlimited instruction-level parallelism) is shown in column (a)
below. It is suggested by the “three exclusive or” code for exchanging registers.

(a) (b) ()
xX<x®y XXx=y < (xDy)&m
yy®(x&m) ye—y=(x| m) X—xdt
X<x®y X< XxX=y y<—yDt

The steps in column (b) do the same exchange as that of column (a), but column
(b) is useful if m does not fit in an immediate field, but m does, and the machine
has the equivalence instruction.

Still another method is shown in column (c¢) above [GLS1]. It also takes five
instructions (again assuming one instruction must be used to load m into a regis-
ter), but executes in only three cycles on a machine with sufficient instruction-
level parallelism.

2-20 EXCHANGING REGISTERS 47

Exchanging Two Fields of the Same Register

Assume a register x has two fields (of the same length) that are to be swapped,
without altering other bits in the register. That is, the object is to swap fields B and
D without altering fields 4, C, and E, in the computer word illustrated below. The
fields are separated by a shift distance £.

e —
X: A B C D E

Straightforward code would shift D and B to their new positions, and com-
bine the words with and and or operations, as follows:

t = (x&m)<k
t, = (x>k &m

X = (x&m) | 1, | 1,

Here, m is a mask with 1’s in field D (and 0’s elsewhere), and m’ is a mask with
I’s in fields 4, C, and E. This code requires 11 instructions and six cycles on a
machine with unlimited instruction-level parallelism, allowing for four instruc-
tions to generate the two masks.

A method that requires only eight instructions and executes in five cycles,
under the same assumptions, is shown below [GLS1]. It is similar to the code in
column (c) on page 46 for interchanging corresponding fields of two registers.
Again, m is a mask that isolates field D.

t=[x@(x>kh)]&m
L =t <k
X' =x@dt,

The idea is that ¢, contains B @ D in position D (and 0’s elsewhere), and #, con-
tains B @ D in position B. This code, and the straightforward code given earlier,
work correctly if B and D are “split fields”—that is, if the 1-bits of mask m are not
contiguous.

Conditional Exchange

The exchange methods of the preceding two sections, which are based on exclu-
sive or, degenerate into no-operations if the mask m is 0. Hence, they can perform
an exchange of entire registers, or of corresponding fields of two registers, or of
two fields of the same register, if m is set to all 1’s if some condition c is true, and
to all 0’s if ¢ is false. This gives branch-free code if m can be set up without
branching.

48 BASICS 2-21

2-21 Alternating among Two or More Values

Suppose a variable x can have only two possible values a and b, and you wish to
assign to x the value other than its current one, and you wish your code to be inde-
pendent of the values of @ and b. For example, in a compiler x might be an opcode
that is known to be either branch true or branch false, and whichever it is, you
want to switch it to the other. The values of the opcodes branch true and branch
false are arbitrary, probably defined by a C #define or enum declaration in a
header file.
The straightforward code to do the switch is

if (x == a) x = b;
else x = a;

or, as is often seen in C programs,
Xx =x==a?b: a;
A far better (or at least more efficient) way to code it is either

xX<a+b—x, or
X<—ad®bdx.

If @ and b are constants, these require only one or two basic RISC instructions. Of
course, overflow in calculating @ + b can be ignored.

This raises the question: Is there some particularly efficient way to cycle
among three or more values? That is, given three arbitrary but distinct constants a,
b, and ¢, we seek an easy-to-evaluate function f'that satisfies

fa) = b,
f(b) = ¢, and
flc) = a.

It is perhaps interesting to note that there is always a polynomial for such a
function. For the case of three constants,

fix) = (xfa)(xfb)aJr (xfb)()cfc)bJr (xfc)(xfa)c. (5)
(c—a)(c=b) (a-b)a-c) (b-c)(b-a)

(The idea is that if x = a, the first and last terms vanish, and the middle term sim-
plifies to b, and so on.) This requires 14 arithmetic operations to evaluate, and for
arbitrary a, b, and c, the intermediate results exceed the computer’s word size. But it
is just a quadratic; if written in the usual form for a polynomial and evaluated using

2-21 ALTERNATING AMONG TWO OR MORE VALUES 49

Horner’s rule,’ it would require only five arithmetic operations (four for a quadratic
with integer coefficients, plus one for a final division). Rearranging Equation (5)
accordingly gives

1) = i@ b+ (b= b+ (e~ a)ely?
+[(a=b)b2+(b-c)c?+(c—a)a?]x

+[(a=b)a?b+ (b—-c)b%c+ (c—a)ac?]}.

This is getting too complicated to be interesting, or practical.
Another method, similar to Equation (5) in that just one of the three terms
survives, is

Jx) = ((x=c) &a)+((-(x=a)) &b) + ((-(x=b)) &).

This takes 11 instructions if the machine has the equal predicate, not counting
loads of constants. Because the two addition operations are combining two 0 val-
ues with a nonzero, they can be replaced with or or exclusive or operations.

The formula can be simplified by precalculating @ — ¢ and b — ¢, and then
using [GLS1]:

fx) = (((x=¢c)) &(a-c))+((-(x=a) &(b-c)) +c, or
Jx) = ((x=¢)&(@®c) D ((-(x=a)) & (bDc)) De.

Each of these operations takes eight instructions, but on most machines these are
probably no better than the straightforward C code shown below, which executes
in four to six instructions for small a, b, and c.

if (x == a) x = b;
else if (x == b) x = c;
else x = a;

Pursuing this matter, there is an ingenious branch-free method of cycling
among three values on machines that do not have comparison predicate instruc-
tions [GLS1]. It executes in eight instructions on most machines.

Because a, b, and ¢ are distinct, there are two bit positions, 7, and »,, where
the bits of @, b, and ¢ are not all the same, and where the “odd one out” (the one

5. Horner’s rule simply factors out x. For example, it evaluates the fourth-degree polynomial
axt+ bx3 + cx? +dx+e as x(x(x(ax + b) + c) + d) + e. For a polynomial of degree
it takes » multiplications and » additions, and it is very suitable for the multiply-add
instruction.

50 BASICS 2-21

whose bit differs in that position from the other two) is different in positions »,
and n,. This is illustrated below for the values 21, 31, and 20, shown in binary.

10101 c
11111
10100 b
ny ny

Without loss of generality, rename a, b, and ¢ so that a has the odd one out
in position #; and b has the odd one out in position #,, as shown above. Then
there are two possibilities for the values of the bits at position »;, namely
(anl, bnl, cnl) =(0, 1, 1) or (1, 0, 0). Similarly, there are two possibilities for the
bits at position 7,, namely (anz, ny nz) (0, 1,0) or (1, 0, 1). This makes four
cases in all, and formulas for each of these cases are shown below.

Case 1. (a (0.1,1), (a,,.b,.¢,) =(0,1,0):

l’l’ I’ll ”1)
f(x) = x, #(a-b)+x, *(c—a)+b

Case 2. (anl,bn]) ©, 1, 1), (a (1,0, 1):

ny’ nz’ nz)

fx) = x, «(a-b)+x, «(a—c)+(b+c—a)

Case 3. (a c)—(lOO) (an, n,c)—(OlO)

flx) = x, x(b—a)tx, x(c-a)*ta
Case4. (a,,b,,c,) =(1,0,0),(a,,b,.c,) =(1,0,1)
f(x) =xnl*(b—a)+xnz*(a—c)+c

In these formulas, the left operand of each multiplication is a single bit. A
multiplication by 0 or 1 can be converted into an and with a value of 0 or all 1°s.
Thus, the formulas can be rewritten as illustrated below for the first formula.

£x) = (x < (31-n,)) = 3)&(a— b) + ((x < (31-1,)) = 31)&(c —a) + b

Because all variables except x are constants, this can be evaluated in eight instruc-
tions on the basic RISC. Here again, the additions and subtractions can be
replaced with exclusive or.

This idea can be extended to cycling among four or more constants. The
essence of the idea is to find bit positions n,, n,, ..., at which the bits uniquely
identify the constants. For four constants, three bit positions always suffice. Then

2-22 A BOOLEAN DECOMPOSITION FORMULA 51

(for four constants) solve the following equation for s, ¢, u, and v (that is, solve the
system of four linear equations in which f{(x) is a, b, ¢, or d, and the coefficients
x, are Oor 1):

Sx) = x,stx,1+x, utv

If the four constants are uniquely identified by only two bit positions, the equation
to solve is

fx) =x,s+x,t+x,x, utv.

2-22 A Boolean Decomposition Formula

In this section, we have a look at the minimum number of binary Boolean opera-
tions, or instructions, that suffice to implement any Boolean function of three, four,
or five variables. By a “Boolean function” we mean a Boolean-valued function of
Boolean arguments.

Our notation for Boolean algebra uses “+” for or, juxtaposition for and, ® for
exclusive or, and either an overbar or a prefix — for not. These operators can be
applied to single-bit operands or “bitwise” to computer words. Our main result is
the following theorem:

THEOREM. Iff(x, y, z) is a Boolean function of three variables, then it can
be decomposed into the form g(x, y) @ zh(x, y), where g and h are Bool-
ean functions of two variables.

Proof [Ditlow]. f(x, y, z) can be expressed as a sum of minterms, and then z
and z can be factored out of their terms, giving

Because the operands to “+” cannot both be 1, the or can be replaced with exclu-
sive or, giving

fx, 3, 2) = 2fo(x,¥) @ zf1(x, »)

(1 ®2)fo(x,») ® zf1(x,)

= fo(x,») @ 2/ (x,) ® 2 (x, y)
= fo(x,») @ z(fo(x, ¥) @ f1(x,),

where we have twice used the identity (a @ b)c = ac @ bc.

6. Logic designers will recognize this as Reed-Muller, a.k.a positive Davio, decomposition.
According to Knuth [Knu4, 7.1.1], it was known to L. I. Zhegalkin [Matematicheskii Sbornik
35(1928), 311-369]. It is sometimes referred to as the Russian decomposition.

52 BASICS 2-22

This is in the required form with g(x,y) = fy(x,») and h(x,y) =

fo(x,») @ f1(x,¥). fo(x,y), incidentally, is f(x, y, z) withz = 0, and f|(x, y) is
flx,y,z) withz = 1.

COROLLARY. If a computer s instruction set includes an instruction for
each of the 16 Boolean functions of two variables, then any Boolean
function of three variables can be implemented with four (or fewer)
instructions.

One instruction implements g(x,y), another implements /(x, y), and these are
combined with and and exclusive or.

As an example, consider the Boolean function that is 1 if exactly two of x, y,
and z are 1:

f(x,y,2) = xyz+xyz+Xyz.

Before proceeding, the interested reader might like to try to implement £ with four
instructions, without using the theorem.
From the proof of the theorem,

f(x,y,z) = fO(xsy) (_BZ(fO(xay) @fl(x’y))

xy ®z(xy ® (xy+xy))
=xy®@z(x+y),

which is four instructions.

Clearly, the theorem can be extended to functions of four or more variables.
That is, any Boolean function f{x,, x,, ..., x,,) can be decomposed into the form
gxy, Xy, o0y X, 1) @ x,h(xy, X5, ..., x,_,). Thus, a function of four variables can
be decomposed as follows:

g(Waxay) = gl(wax)®yhl(wax) and
h(W, an/) = gZ(Wa x)®yh2(wa x)'

This shows that a computer that has an instruction for each of the 16 binary Bool-
ean functions can implement any function of four variables with ten instructions.
Similarly, any function of five variables can be implemented with 22 instructions.

However, it is possible to do much better. For functions of four or more vari-
ables there is probably no simple plug-in equation like the theorem gives, but
exhaustive computer searches have been done. The results are that any Boolean
function of four variables can be implemented with seven binary Boolean instruc-
tions, and any such function of five variables can be implemented with 12 such
instructions [Knu4, 7.1.2].

2-23 IMPLEMENTING INSTRUCTIONS 53

In the case of five variables, only 1920 of the 22° = 4,294,967,296 functions
require 12 instructions, and these 1920 functions are all essentially the same func-
tion. The variations are obtained by permuting the arguments, replacing some
arguments with their complements, or complementing the value of the function.

2-23 Implementing Instructions for All 16 Binary Boolean
Operations

The instruction sets of some computers include all 16 binary Boolean operations.
Many of the instructions are useless in that their function can be accomplished with
another instruction. For example, the function f{x, y) = 0 simply clears a register,
and most computers have a variety of ways to do that. Nevertheless, one reason a
computer designer might choose to implement all 16 is that there is a simple and
quite regular circuit for doing it.

Refer to Table 2—1 on page 17, which shows all 16 binary Boolean functions.
To implement these functions as instructions, choose four of the opcode bits to be
the same as the function values shown in the table. Denoting these opcode bits by
cg» Cy» Cy, and ¢, reading from the bottom up in the table, and the input registers
by x and y, the circuit for implementing all 16 binary Boolean operations is
described by the logic expression

Ccoxy t e xy t Xy + c3xy.

For example, with ¢,= ¢, = ¢,= ¢;= 0, the instruction computes the zero func-
tion, f{xx, y) = 0. With ¢,= 1 and the other opcode bits 0 it is the and instruction.
With ¢,= c;=0and ¢, = ¢, =1 it is exclusive or, and so forth.

This can be implemented with n 4:1 MUXs, where # is the word size of the
machine. The data bits of x and y are the select lines, and the four opcode bits are
the data inputs to each MUX. The MUX is a standard building block in today’s
technology, and it is usually a very fast circuit. It is illustrated below.

C()—>
4:1
‘1 MUX |, output
Cy—>

C3—> select

I

Xy
The function of the circuit is to select ¢, ¢, ¢, or c3 to be the output, depending on
whether x and y are 00, 01, 10, or 11, respectively. It is like a four-position rotary switch.
Elegant as this is, it is somewhat expensive in opcode points, using 16 of them.
There are a number of ways to implement all 16 Boolean operations using only
eight opcode points, at the expense of less regular logic. One such scheme is illus-
trated in Table 2-3.

54

BASICS

TABLE 2-3. EIGHT SUFFICIENT BOOLEAN INSTRUCTIONS

Function Instruction

Values Formula Mnemonic (Name)
0001 Xy and
0010 Xy andc (and with complement)
0110 x®y xor (exclusive or)
0111 xty or
1110 xy nand (negative and)
1101 5‘;’ orx+y cor (complement and or)
1001 @, orx=y | eqv(equivalence)
1000 m nor (negative or)

The eight operations not shown in the table can be done with the eight instruc-
tions shown, by interchanging the inputs or by having both register fields of the
instruction refer to the same register. See exercise 13.

IBM’s POWER architecture uses this scheme, with the minor difference that
POWER has or with complement rather than complement and or. The scheme
shown in Table 2-3 allows the last four instructions to be implemented by comple-
menting the result of the first four instructions, respectively.

Historical Notes

The algebra of logic expounded in George Boole’s An Investigation of the Laws of
Thought (1854)7 is somewhat different from what we know today as “Boolean
algebra.” Boole used the integers 1 and 0 to represent truth and falsity, respec-
tively, and he showed how they could be manipulated with the methods of ordinary
numerical algebra to formalize natural language statements involving “and,” “or,”
and “except.” He also used ordinary algebra to formalize statements in set theory
involving intersection, union of disjoint sets, and complementation. He also for-
malized statements in probability theory, in which the variables take on real num-
ber values from 0 to 1. The work often deals with questions of philosophy, religion,
and law.

Boole is regarded as a great thinker about logic because he formalized it,
allowing complex statements to be manipulated mechanically and flawlessly with
the familiar methods of ordinary algebra.

Skipping ahead in history, there are a few programming languages that include
all 16 Boolean operations. IBM’s PL/I (ca. 1966) includes a built-in function
named BOOL. In BOOL(x, y, z), z is a bit string of length four (or converted to that

7. The entire 335-page work is available at www.gutenberg.org/etext/15114.

http://www.gutenberg.org/etext/15114

EXERCISES 55

if necessary), and x and y are bit strings of equal length (or converted to that if nec-
essary). Argument z specifies the Boolean operation to be performed on x and y.
Binary 0000 is the zero function, 0001 is xy, 0010 is xy, and so forth.

Another such language is Basic for the Wang System 2200B computer (ca.
1974), which provides a version of BOOL that operates on character strings rather
than on bit strings or integers [Neum].

Still another such language is MIT PDP-6 Lisp, later called MacLisp [GLS1].

Exercises

1. David de Kloet suggests the following code for the snoob function, for x = 0,
where the final assignment to y is the result:

yx+(x&—x)
X<—x&—y
while((x & 1) =0) x <« x5 1
x<x31

yeylx

This is essentially the same as Gosper’s code (page 15), except the right shift
is done with a while-loop rather than with a divide instruction. Because divi-
sion is usually costly in time, this might be competitive with Gosper’s code if
the while-loop is not executed too many times. Let # be the length of the bit
strings x and y, k the number of 1-bits in the strings, and assume the code is
executed for all values of x that have exactly & 1-bits. Then for each invocation
of the function, how many times, on average, will the body of the while-loop
be executed?

2. The text mentions that a left shift by a variable amount is not right-to-left com-
putable. Consider the function x << (x & 1) [Knu8]. This is a left shift by a
variable amount, but it can be computed by

x+(x&1)*x, or

x+(x&(—(x&1))),

which are all right-to-left computable operations. What is going on here? Can
you think of another such function?

3. Derive Dietz’s formula for the average of two unsigned integers,

(x&y) +H((x@y)>1).

56

11.

12.

13.

14.

15.

BASICS

Give an overflow-free method for computing the average of four unsigned
integers, | (a+b+c+d)/4].

. Many of the comparison predicates shown on page 23 can be simplified sub-

stantially if bit 31 of either x or y is known. Show how the seven-instruction
expression for x £y can be simplified to three basic RISC, non-comparison,
instructions if y;; = 0.

. Show that if two numbers, possibly distinct, are added with “end-around

carry,” the addition of the carry bit cannot generate another carry out of the
high-order position.

. Show how end-around carry can be used to do addition if negative numbers

are represented in one’s-complement notation. What is the maximum number
of bit positions that a carry (from any bit position) might be propagated
through?

. Show that the MUX operation, (x & m) | (v & ~m), can be done in three

instructions on the basic RISC (which does not have the and with complement
instruction).

. Show how to implement x @ y in four instructions with and-or-not logic.

10.

Given a 32-bit word x and two integer variables 7 and j (in registers), show
code to copy the bit of x at position # to position j. The values of i and j have
no relation, but assume that 0 <, j < 31.

How many binary Boolean instructions are sufficient to evaluate any »-variable
Boolean function if it is decomposed recursively by the method of the theorem?

Show that alternative decompositions of Boolean functions of three variables
are

(a) fix,y,z) = glx,y) ® zh(x, y) (the “negative Davio decomposition”), and
(®) fix, 3, 2) = g(x,) ® (z + h(x, y)).

It is mentioned in the text that all 16 binary Boolean operations can be done
with the eight instructions shown in Table 2-3, by interchanging the inputs or
by having both register fields of the instruction refer to the same register.
Show how to do this.

Suppose you are not concerned about the six Boolean functions that are really
constants or unary functions, namely f{x, y) =0, 1, x, y, ¥, and y, but you want
your instruction set to compute the other ten functions with one instruction.
Can this be done with fewer than eight binary Boolean instruction types
(opcodes)?

Exercise 13 shows that eight instruction types suffice to compute any of the 16
two-operand Boolean operations with one R-R (register-register) instruction.
Show that six instruction types suffice in the case of R-I (register-immediate)

16.

EXERCISES 57

instructions. With R-I instructions, the input operands cannot be interchanged
or equated, but the second input operand (the immediate field) can be comple-
mented or, in fact, set to any value at no cost in execution time. Assume for
simplicity that the immediate fields are the same length as the general purpose
registers.

Show that not all Boolean functions of three variables can be implemented
with three binary logical instructions.

This page intentionally left blank

This page intentionally left blank

INDEX

0-bits, leading zeros. See nlz function.
0-bits, trailing zeros. See also ntz (number
of trailing zeros) function.
counting, 107-114.
detecting, 324. See also CRC (cyclic
redundancy check).
plots and graphs, 466
0-bytes, finding, 117-121
1-bits, counting. See Counting bits.
3:2 compressor, 90-95
The 16 Boolean binary operations, 53-57

A

Absolute value
computing, 18
multibyte, 4041
negative of, 23-26
add instruction
condition codes, 3637
propagating arithmetic bounds, 70-73
Addition
arithmetic tables, 453
combined with logical operations,
16-17
double-length, 38-39
multibyte, 40—41
of negabinary numbers, 301-302
overflow detection, 28-29
plots and graphs, 461
in various number encodings, 304-305
Advanced Encryption Standard, 164
Alternating among values, 4851
Alverson's method, 237-238
and
plots and graphs, 459
in three instructions, 17
and with complement, 131
Answers to exercises, by chapter
1: Introduction, 405406
2: Basics, 407415
3: Power-of-2 Boundaries, 415-416
4: Arithmetic Bounds, 416417
5: Counting Bits, 417418

481

6: Searching words, 418423
7: Rearranging Bits and Bytes,
423-425
8: Multiplication, 425-428
9: Integer Division, 428-430
10: Integer Division by Constants,
431-434
Some Elementary Functions,
434-435
Unusual Bases for Number Sys-
tems, 435-439
Gray Code, 439441
Cyclic Redundancy Check,
441-442
Error-Correcting Codes, 442—445
Hilbert's Curve, 446
17: Floating-Point, 446-448
18: Formulas for Primes, 448-452
Arithmetic, computer vs. ordinary, 1
Arithmetic bounds
checking, 67-69
of expressions, 70-71
propagating through, 70-73
range analysis, 70
searching for values in, 122
Arithmetic tables, 4-bit machine, 453-456
Arrays
checking bounds. See Arithmetic
bounds.
counting 1-bits, 89-96
indexes, checking. See Arithmetic
bounds.
indexing a sparse array, 95
permutation, 161-163
rearrangements, 165-166
of short integers, 40—41
Autodin-II polynomial, 323
Average, computing, 19, 55-56

11:
12:

13:
14:

15:
16:

B

Base —1 + i number system, 306308
extracting real and imaginary parts, 310
Base —1 — i number system, 308-309

482 INDEX

Base —2 number system, 299-306
Gray code, 315
rounding down, 310
Basic RISC instruction set, 5-6
Basic, Wang System 2200B, 55
Big-endian format, converting to little-
endian, 129
Binary decomposition, integer exponentia-
tion, 288-290
Binary forward error-correcting block
codes (FEC), 331
Binary search
counting leading 0's, 99-104
integer logarithm, 291-297
integer square root, 279-287
Bit matrices, multiplying, 98
Bit operations
compress operation, 150-156
computing parity. See Parity.
counting bits. See Counting bits.
finding strings of 1-bits, 123—128
flipping bits, 135
general permutations, 161-165
generalized bit reversal, 135
generalized extract, 150-156
half shuffle, 141
inner perfect shuffle, plots and graphs,
468-469
inner perfect unshuffle, plots and
graphs, 468
inner shuffle, 139-141
numbering schemes, 1
outer shuffle, 139-141, 373
perfect shuffle, 139-141
reversing bits. See Reversing bits and
bytes.
on rightmost bits. See Rightmost bits.
searching words for bit strings, 107,
123-128
sheep and goats operation, 161-165
shuffling bits, 139-141, 165-166
transposing a bit matrix, 141-150
unshuffling bits, 140-141, 150, 162
Bit reversal function, plots and graphs, 467
Bit vectors, 1
bitgather instruction, 163—-165
Bits. See specific topics.
bitsize function, 106-107

Bliss, Robert D., xv
Bonzini, Paolo, 263
BOOL function, 54-55
Boole, George, 54
Boolean binary operations, all 16, 53-57
Boolean decomposition formula, 51-53,
56-57
Boundary crossings, powers of 2, 63—64
Bounds, arithmetic. See Arithmetic
bounds.
Bounds checking. See Checking arithmetic
bounds.
branch on carry and register result non-
zero instruction, 63
Bytes. See also specific topics.
definition, 1
finding first 0-byte, 117-121

C

C language
arithmetic on pointers, 105, 240
GNU extensions, 105
ilterative statements, 4, 10
referring to same location with different
types, 104
representation of character strings, 117
summary of elements, 2—4
Caches, 166-167
Carry-save adder (CSA) circuit, 90-95
CCITT (Le Comité Consultatif Internatio-
nale...), 321
Ceiling function, identities, 183—184
Chang, Albert, 123
Character strings, 117
Check bits
Hamming code, 332
SEC-DED code, 334-335
Checking arithmetic bounds, 67-69
Chinese ring puzzle, 315
Chipkill technology, 336
Code, definition, 343
Code length, 331, 343
Code rate, 343
Code size, 343
Comparison predicates
from the carry bit, 26-27
definition, 23

number of leading zeros (nlz) function,

23-24, 107

signed comparisons, from unsigned, 25

true/false results, 23
using negative absolute values, 23-26
Comparisons
computer evaluation of, 27
floating-point comparisons using inte-
ger operations, 381-382

three-valued compare function, 21-22.

See also sign function.
Compress function, plots and graphs,
464-465
compress operation, 119, 150-161
with insert and extract instruc-
tions, 155-156

Computability test, right-to-left, 13—14, 55

Computer algebra, 2-4
Computer arithmetic
definition, 1
plots and graphs, 461-463
Condition codes, 36-37
Constants

dividing by. See Division of integers by

constants.
multiplying by, 175-178
Counting bits. See also ntz (number of

trailing zeros) function; nlz (number

of leading zeros) function; popula-
tion count function.
1-bits in
7- and 8-bit quantities, 87
an array, 89-95
a word, 81-88
bitsize function, 106-107
comparing two words, 88—89
divide and conquer strategy, 81-82
leading 0's, with
binary search method, 99—100
floating-point methods, 104—-106
population count instruction,
101-102
rotate and sum method, 85-86
search tree method, 109
with table lookup, 8687
trailing 0's, 107-114
by turning off 1-bits, 85

INDEX 483

CRC (cyclic redundancy check)
background, 319-320
check bits, generating, 319-320
checksum, computing
generator polynomials, 322-323,
329
with hardware, 324-326
with software, 327-329
with table lookup, 328-329
techniques for, 320
code vector, 319
definition, 319
feedback shift register circuit, 325-326
generator polynomial, choosing,
322-323, 329
parity bits, 319-320
practice
hardware checksums, 324-326
leading zeros, detecting, 324
overview, 323-324
residual/residue, 324
software checksums, 327-329
trailing zeros, detecting, 324
theory, 320-323
CRC codes, generator polynomials, 322,
323
CRC-CITT polynomial, 323
Cryptography
Advanced Encryption Standard, 164
bitgather instruction, 164-165
DES (Data Encryption Standard), 164
Rijndael algorithm, 164
SAG method, 162-165
shuffling bits, 139-141, 165
Triple DES, 164
CSA (carry-save addr) circuit, 90-95
Cube root, approximate, floating-point, 389
Cube root, integer, 287-288
Curves. See also Hilbert's curve.
Peano, 371-372
space-filling, 355-372
Cycling among values, 48-51

D

Davio decomposition, 51-53, 56-57
de Bruijn cycles, 111-112
de Kloet, David, 55

484

De Morgan's laws, 12—13
DEC PDP-10 computer, xiii, 84
Decryption. See Cryptography.
DES (Data Encryption Standard), 164
Dietz's formula, 19, 55
difference or zero (doz) function, 4145
Distribution of leading digits, 385-387
Divide and conquer strategy, 81-82
Division
arithmetic tables, 455
doubleword
from long division, 197-202
signed, 201-202
by single word, 192-197
unsigned, 197-201
floor, 181-182, 237
modulus, 181-182, 237
multiword, 184-188
of negabinary numbers, 302-304
nonrestoring algorithm, 192-194
notation, 181
overflow detection, 34-36
plots and graphs, 463-464
restoring algorithm, 192-193
shift-and-subtract algorithms (hard-
ware), 192-194
short, 189-192, 195-197
signed
computer, 181
doubleword, 201-202
long, 189
multiword, 188
short, 190-192
unsigned
computer, 181
doubleword, 197-201
long, 192-197
short from signed, 189-192
Division of integers by constants
by 3,207-209, 276-277
by 5 and 7, 209-210
exact division
converting to, 274-275
definition, 240
multiplicative inverse, Euclidean
algorithm, 242-245
multiplicative inverse, Newton's
method, 245-247

multiplicative inverse, samples,
247-248
floor division, 237
incorporating into a compiler, signed,
220-223
incorporating into a compiler,
unsigned, 232-234
magic numbers
Alverson's method, 237-238
calculating, signed, 212-213,
220-223
calculating, unsigned, 231-234
definition, 211
sample numbers, 238-239
table lookup, 237
uniqueness, 224
magicu algorithm, 232-234
magicu2 algorithm, 236
modulus division, 237
remainder by multiplication and shift-
ing right
signed, 273-274
unsigned, 268-272
remainder by summing digits
signed, 266268
unsigned, 262-266
signed
by divisors < -2, 218-220
by divisors > 2, 210-218
by powers of 2, 205-206
incorporating into a compiler,
220-223
not using mulhs (multiply high
signed), 259-262
remainder by multiplication and
shifting right, 273-274
remainder by summing digits,
266-268
remainder from powers of 2,
206-207
test for zero remainder, 250-251
uniqueness, 224
timing test, 276
unsigned
best programs for, 234-235
by 3 and 7, 227-229
by divisors > 1, 230-232
by powers of 2, 227

INDEX 485

Division of integers by constants, unsigned
(continued)
incorporating into a compiler,
232-234
incremental division and remainder
technique, 232-234
not using mulhu (multiply high
unsigned) instruction, 251-259
remainder by multiplication and
shifting right, 268-272
remainder by summing digits,
262-266
remainder from powers of 2, 227
test for zero remainder, 248-250
Double buffering, 46
Double-length addition/subtraction, 38-39
Double-length shifts, 39-40
Doubleword division
by single word, 192197
from long division, 197-202
signed, 201-202
unsigned, 197-201
Doublewords, definition, 1
doz (difference or zero) function, 41-45
Dubé, Danny, 112

E

ECCs (error-correcting codes)
check bits, 332
code, definition, 343
code length, 331, 343
code rate, 343
code size, 343
coding theory problem, 345-351
efficiency, 343
FEC (binary forward error-correcting
block codes), 331
Gilbert-Varshamov bound, 348-350
Hamming bound, 348, 350
Hamming code, 332-342
converting to SEC-DED code,
334-337
extended, 334-337
history of, 335-337
overview, 332-334
SEC-DED on 32 information bits,
337-342

Hamming distance, 95, 343-345
information bits, 332
linear codes, 348-349
overview, 331, 342-343
perfect codes, 333, 349, 352
SEC (single error-correcting) codes,
331
SEC-DED (single error-correcting,
double error-detecting) codes
on 32 information bits, 337-342
check bits, minimum required, 335
converting from Hamming code,
334-337
definition, 331
singleton bound, 352
sphere-packing bound, 348, 350
spheres, 347-351
Encryption. See Cryptography.
End-around-carry, 38, 56, 304-305
Error detection, digital data. See CRC
(cyclic redundancy check).
Estimating multiplication overflow, 33-34
Euclidean algorithm, 242-245
Euler, Leonhard, 392
Even parity, 96
Exact division
definition, 240
multiplicative inverse, Euclidean algo-
rithm, 242-245
multiplicative inverse, Newton's
method, 245-247
multiplicative inverse, samples,

247-248
overview, 240-242
Exchanging

conditionally, 47
corresponding register fields, 46
two fields in same register, 47
two registers, 4546
exclusive or
plots and graphs, 460
propagating arithmetic bounds through,
77-78
scan operation on an array of bits, 97
in three instructions, 17
Execution time model, 9-10
Exercise answers. See Answers to exercises.

486 INDEX

Expand operation, 156—157, 159-161
Exponentiation
by binary decomposition, 288290
in Fortran, 290
Extended Hamming code, 334342
on 32 information bits, 337-342
Extract, generalized, 150-156

F

Factoring, 178
FEC (binary forward error-correcting
block codes), 331
feedback shift register circuit, 325-326
Fermat numbers, 391
FFT (Fast Fourier Transform), 137-139
find leftmost 0-byte, 117-121
find rightmost 0-byte, 118—121
Finding
decimal digits, 122
first 0-byte, 117-121
first uppercase letter, 122
length of character strings, 117
next higher number, same number of 1-
bits, 14-15
the nth prime, 391-398, 403
strings of 1-bits
first string of a given length,
123-125
longest string, 125-126
shortest string, 126—128
values within arithmetic bounds, 122
Flipping bits, 135
Floating-point numbers, 375-389
distribution of leading digits, 385-387
formats (single/double), 375-376
gradual underflow, 376
IEEE arithmetic standard, 375
IEEE format, 375-377
NaN (not a number), 375-376
normalized, 375-377
subnormal numbers, 375-377
table of miscellaneous values, 387-389
ulp (unit in the last position), 378
Floating-point operations
approximate cube root, 389
approximate reciprocal square root,
383-385

approximate square root, 389
comparing using integer operations,
381-382
conversion table, 378-381
converting to/from integers, 377-381
counting leading 0's with, 104-106
simulating, 107
Floor division, 181-182, 237
Floor function, identities, 183, 202-203
Floyd, R. W,, 114
Formula functions, 398-403
Formulas for primes, 391-403
Fortran
IDIM function, 44
integer exponentiation, 290
ISIGN function, 22
MOD function, 182
Fractal triangles, plots and graphs, 460
Full adders, 90
Full RISC instruction set, 7
Fundamental theorem of arithmetic, 404

G

Gardner, Martin, 315
Gaudet, Dean, 110
Gaudet's algorithm, 110
generalized extract operation, 150-156
Generalized unshuffle. See SAG (sheep
and goats) operation.
Generator polynomials, CRC codes,
321-323
Gilbert-Varshamov bound, 348-350
Golay, M. J. E., 331
Goryavsky, Julius, 103
Gosper, R. W.
iterating through subsets, 1415
loop-detection, 114-116
Gradual underflow, 376
Graphics-rendering, Hilbert's curve,
372-373
Graphs. See Plots and graphs.
Gray, Frank, 315
Gray code
applications, 315-317
balanced, 317
converting integers to, 97, 312-313
cyclic, 312

INDEX 487

definition, 311

history of, 315-317

incrementing Gray-coded integers,

313-315

negabinary Gray code, 315

plots and graphs, 466

reflected, 311-312, 315

single track (STGC), 316-317
Greatest common divisor function, plots

and graphs, 464

GRP instruction, 165

H

Hacker, definition, xvi
HAKMEM (hacks memo), xiii
Half shuffle, 141
Halfwords, 1
Hamiltonian paths, 315
Hamming, R. W., 331
Hamming bound, 348, 350
Hamming code
on 32 information bits, 337-342
converting to SEC-DED code, 334-337
extended, 334-337
history of, 335-337
overview, 332-334
perfect, 333, 352
Hamming distance, 95, 343-345
triangle inequality, 352
Hardware checksums, 324-326
Harley, Robert, 90, 101
Harley's algorithm, 101, 103
Hexadecimal floating-point, 385
High-order half of product, 173-174
Hilbert, David, 355
Hilbert's curve. See also Space-filling
curves.
applications, 372-373
coordinates from distance
curve generator driver program, 359
description, 358-366
Lam and Shapiro method, 362-364,
368
parallel prefix operation, 3
65-366
state transition table, 361, 367
description, 355-356

distance from coordinates, 366—368

generating, 356-358

illustrations, 355, 357

incrementing coordinates, 368—371

non-recursive generation, 371

ray tracing, 372

three-dimensional analog, 373
Horner's rule, 49

I

IBM
Chipkill technology, 336
Harvest computer, 336
PCs, error checking, 336
PL/I language, 54
Stretch computer, 81, 336
System/360 computer, 385
System/370 computer, 63
IDIM function, 44
IEEE arithmetic standard, 375
IEEE format, floating-point numbers,
375-377
IEEE Standard for Floating-Point Arith-
metic, 375
Image processing, Hilbert's curve, 372
Incremental division and remainder tech-
nique, 232-234
Inequalities, logical and arithmetic expres-
sions, 17-18
Information bits, 332
Inner perfect shuffle function, plots and
graphs, 468-469
Inner perfect unshuffle function, plots and
graphs, 468
Inner shuffle, 139141
insert instruction, 155-156
Instruction level parallelism, 9
Instruction set for this book, 5-8
integer cube root function, 287-288, 297
Integer exponentiation, 288-290
integer fourth root function, 297
integer log base 2 function, 106, 291
integer log base 10 function, 292-297
Integer quotient function, plots and graphs,
463
integer remainder function, 463
integer square root function, 279-287

488 INDEX

Integers. See also specific operations on
integers.
complex, 306-309
converting to/from floating-point,
377-381
converting to/from Gray code, 97,
312-313
reversed, incrementing, 137-139
reversing, 129-137
Inverse Gray code function
formula, 312
plots and graphs, 466
An Investigation of the Laws of Thought,
54
ISIGN (transfer of sign) function, 22
Iterating through subsets, 14-15
ITU-TSS (International Telecommunica-
tions Union...), 321
ITU-TSS polynomial, 323

K

Knuth, Donald E., 132

Knuth's Algorithm D, 184—188

Knuth's Algorithm M, 171-172, 174-175
Knuth's mod operator, 181

Kronecker, Leopold, 375

L
Lam and Shapiro method, 362-364, 368
Landry, F., 391

Leading 0's, counting, 99—106. See also nlz
(number of leading zeros) function.
Leading 0’s, detecting, 324. See also CRC
(cyclic redundancy check).
Leading digits, distribution, 385-387
Least common multiple function, plots and
graphs, 464
Linear codes, 348-349
Little-endian format, converting to/from
big-endian, 129
load word byte-reverse (Lwbrx) instruc-
tion, 118
Logarithms
binary search method, 292-293
definition, 291
log base 2, 106-107, 291
log base 10, 291-297

table lookup, 292, 294-297
Logical operations
with addition and subtraction, 16—17
and, plots and graphs, 459
binary, table of, 17
exclusive or, plots and graphs, 460
or, plots and graphs, 459
propagating arithmetic bounds through,
74-76, 78
tight bounds, 74-78
Logical operators on integers, plots and
graphs, 459—460
Long Division, definition, 189
Loop detection, 114-115
LRU (least recently used) algorithm,
166-169
lwbrx (load word byte-reverse) instruc-
tion, 118

M

MacLisp, 55
magic algorithm
incremental division and remainder
technique, 232-234
signed division, 220-223
unsigned division, 232-234
Magic numbers
Alverson's method, 237-238
calculating, signed, 212-213, 220-223
calculating, unsigned, 232-234
calculating, Python code for
definition, 211
samples, 238-239
table lookup, 237
uniqueness, 224
magicu algorithm, 232-234
in Python, 240
magicu2 algorithm, 236-237
max function, 4145
Mills, W. H., 403
Mills’s theorem, 403-404
min function, 41-45
MIT PDP-6 Lisp, 55
MOD function (Fortran), 182
modu (unsigned modulus) function, 98
Modulus division, 181-182, 237
Moore, Eliakim Hastings, 371-372

mulhs (multiply high signed) instruction
division with, 207-210, 212, 218, 222,
235
implementing in software, 173—-174
not using, 259-262

mulhu (multiply high unsigned) instruction

division with, 228-229, 234-235, 238
implementing in software, 173
not using, 251-259
Multibyte absolute value, 40—41
Multibyte addition/subtraction, 40—41
Multiplication
arithmetic tables, 454
of complex numbers, 178-179
by constants, 175178
factoring, 178
low-order halves independent of signs,
178
high-order half of 64-bit product,
173-174
high-order product signed from/to
unsigned, 174-175
multiword, 171-173
of negabinary numbers, 302
overflow detection, 31-34
plots and graphs, 462
Multiplicative inverse
Euclidean algorithm, 242-245
Newton's method, 245-247, 278
samples, 247-248
multiply instruction, condition codes,
36-37
Multiword division, 184—-189
Multiword multiplication, 171-173
MUX (multiplex) operation, 42, 56, 131,
163, 406

N

NAK (negative acknowledgment), 319
NaN (not a number), 375-376
Negabinary number system, 299-306
Gray code, 315
Negative absolute value, 23-26
Negative overflow, 30
Newton-Raphson calculation, 383
Newton's method, 457458
integer cube root, 287288

INDEX 489

integer square root, 279-283
multiplicative inverse, 245-248
Next higher number, same number of 1-
bits, 14-15
Nibbles, 1
nlz (number of leading zeros) function
applications, 79, 107, 128
bitsize function, 106—-107
comparison predicates, 23-24, 107
computing, 99-106
for counting trailing 0's, 107
finding 0-bytes, 118
finding strings of 1-bits, 123-124
incrementing reversed integers, 138
and integer log base 2 function, 106
rounding to powers of 2, 61
Nonrestoring algorithm, 192—-194
Normalized numbers, 376
Notation used in this book, 1-4
nth prime, finding
formula functions, 398-401
Willans's formulas, 393-397
Wormell's formula, 397-398
ntz (number of trailing zeros) function
applications, 114-116
from counting leading 0's, 107
loop detection, 114-115
ruler function, 114
Number systems
base —1 + i, 306-308
base —1 — i, 308-309
base -2, 299-306, 315
most efficient base, 309-310
negabinary, 299-306, 315

(0]

0dd parity, 96
1-bits, counting. See Counting bits.
or
plots and graphs, 459
in three instructions, 17
Ordinary arithmetic, 1
Ordinary rational division, 181
Outer perfect shuffle bits function, plots
and graphs, 469
Outer perfect shuffle function, plots and
graphs, 467

490 INDEX

Outer perfect unshuffle function, plots and
graphs, 468
Outer shuffle, 139-141, 373
Overflow detection
definition, 28
division, 34-36
estimating multiplication overflow,
33-34
multiplication, 31-34
negative overflow, 30
signed add/subtract, 28-30
unsigned add/subtract, 31

P

Parallel prefix operation
definition, 97
Hilbert's curve, 364-366
inverse, 116
parity, 97
Parallel suffix operation
compress operation, 150-155
expand operation, 156-157, 159-161
generalized extract, 150-156
inverse, 116
Parity
adding to 7-bit quantities, 98
applications, 98
computing, 96-98
definition, 96
parallel prefix operation, 97
scan operation, 97
two-dimensional, 352
Parity bits, 319-320
PCs, error checking, 336
Peano, Giuseppe, 355
Peano curves, 371-372. See also Hilbert's
curve.
Peano-Hilbert curve. See Hilbert's curve.
Perfect codes, 333, 349
Perfect shuffle, 139-141, 373
Permutations on bits, 161-165. See also
Bit operations.

Planar curves, 355. See also Hilbert's curve.

Plots and graphs, 459469
addition, 461
bit reversal function, 467
compress function, 464—465

division, 463—464
fractal triangles, 460
Gray code function, 466
greatest common divisor function, 464
inner perfect shuffle, 468-469
inner perfect unshuffle, 468
integer quotient function, 463
inverse Gray code function, 466
least common multiple function, 464
logical and function, 459
logical exclusive or function, 460
logical operators on integers, 459-460
logical or function, 459
multiplication, 462
number of trailing zeros, 466
outer perfect shuffle, 467-469
outer perfect unshuffle, 468
population count function, 467
remainder function, 463
rotate left function, 465
ruler function, 466
SAG (sheep and goats) function,
464-465
self-similar triangles, 460
Sierpinski triangle, 460
subtraction, 461
unary functions, 466469
unsigned product of x and y, 462
Poetry, 278, 287
population count function. See also Count-
ing bits.
applications, 95-96
computing Hamming distance, 95
counting 1-bits, 81
counting leading 0's, 101-102
counting trailing 0's, 107-114
plots and graphs, 467
Position sensors, 315-317
Powers of 2
boundary crossings, detecting, 63—64
rounding to, 59-62, 64
signed division, 205-206
unsigned division, 227
PPERM instruction, 165
Precision, loss of, 385-386
Prime numbers
Fermat numbers, 391

INDEX 491

finding the nth prime
formula functions, 398403
Willans's formulas, 393-397
Wormell's formula, 397-398
formulas for, 391-403
from polynomials, 392
Propagating arithmetic bounds
add and subtract instructions, 70-73
logical operations, 73—78
signed numbers, 71-73
through exclusive or, 77-78
PSHUFB (Shuffle Packed Bytes) instruc-
tion, 163
PSHUFD (Shuffle Packed Doublewords)
instruction, 163
PSHUFW (Shuffle Packed Words) instruc-
tion, 163

Q
Quicksort, 81

R

Range analysis, 70
Ray tracing, Hilbert's curve, 372
Rearrangements and index transforma-
tions, 165-166
Reed-Muller decomposition, 51-53,
56-57
Reference matrix method (LRU), 166—169
Reflected binary Gray code, 311-312,
315
Registers
exchanging, 45-46
exchanging conditionally, 47
exchanging fields of, 4647
reversing contents of, 129—-135
RISC computers, 5
Reiser, John, 113
Reiser's algorithm, 113-114
Remainder function, plots and graphs,
463
Remainders
arithmetic tables, 456
of signed division
by multiplication and shifting right,
273-274
by summing digits, 266268

from non-powers of 2, 207-210
from powers of 2, 206207
test for zero, 248-251
of unsigned division
by multiplication and shifting right,
268-272
by summing digits, 262-266
and immediate instruction, 227
incremental division and remainder
technique, 232-234
test for zero, 248-250
remu function, 119, 135-136
Residual/residue, 324
Restoring algorithm, 192-193
Reversing bits and bytes, 129-137
6-, 7-, 8-, and 9-bit quantities, 135-137
32-bit words, 129-135
big-endian format, converting to little-
endian, 129
definition, 129
generalized, 135
load word byte-reverse (lwbrx)
instruction, 118
rightmost 16 bits of a word, 130
with rotate shifts, 129-133
small integers, 135-137
table lookup, 134
Riemann hypothesis, 404
Right justify function, 116
Rightmost bits, manipulating, 11-12, 15
De Morgan's laws, 12-13
right-to-left computability test, 13—14,
55
Rijndael algorithm, 164
RISC
basic instruction set, 5-6
execution time model, 9-10
extended mnemonics, 6, 8
full instruction set, 7-8
registers, 5-6
Rotate and sum method, 85-86
Rotate left function, plots and graphs,
464-465
Rotate shifts, 37-38, 129-133
Rounding to powers of 2, 59-62, 64
Ruler function, 114, 466
Russian decomposition, 51-53, 5657

492 INDEX

S

SAG (sheep and goats) operation
description, 162—165
plots and graphs, 464-465
Scan operation, 97
Seal, David, 90, 110
Search tree method, 109
Searching. See Finding.
SEC (single error-correcting) codes, 331
SEC-DED (single error-correcting, double
error-detecting) codes
on 32 information bits, 337-342
check bits, minimum required, 335
converting from Hamming code,
334-335
definition, 331
Select instruction, 406
Self-reproducing program, xvi
Self-similar triangles, plots and graphs, 460
shift left double operation, 39
shift right double signed operation, 39-40
shift right double unsigned operation, 39
shift right extended immediate (shrx1i)
instruction, 228-229
shift right signed instruction
alternative to, for sign extension, 19-20
division by power of 2, 205-206
from unsigned, 20
Shift-and-subtract algorithm
hardware, 192-194
integer square root, 285-287
Shifts
double-length, 39-40
rotate, 37-38
Short division, 189-192, 195-196
Shroeppel's formula, 305-306
shrxi (shift right extended immediate)
instruction, 228-229
Shuffle Packed Bytes (PSHUFB) instruc-
tion, 163
Shuffle Packed Doublewords (PSHUFD)
instruction, 163
Shuffle Packed Words (PSHUFW) instruc-

tion, 163
Shuffling
arrays, 165-166
bits

half shuffle, 141

inner perfect shuffle, plots and
graphs, 468469
inner perfect unshuffle, plots and
graphs, 468
inner shuffle, 139-141
outer shuffle, 139141, 373
perfect shuffle, 139-141
shuffling bits, 139-141, 165-166
unshuffling, 140-141, 150, 162,
165-166
Sierpinski triangle, plots and graphs, 460
Sign extension, 19-20
sign function, 20-21. See also three-valued
compare function.
Signed bounds, 78
Signed comparisons, from unsigned, 25
Signed computer division, 181-182
Signed division
arithmetic tables, 455
computer, 181
doubleword, 201-202
long, 189
multiword, 188
short, 190-192
Signed division of integers by constants
best programs for, 225-227
by divisors < -2, 218-220
by divisors > 2, 210-218
by powers of 2, 205-206
incorporating into a compiler,
220-223
remainder from non-powers of 2,
207-210
remainder from powers of 2, 206-207
test for zero remainder, 250-251
uniqueness of magic number, 224
Signed long division, 189
Signed numbers, propagating arithmetic
bounds, 71-73
Signed short division, 190-192
signum function, 20-21
Single error-correcting, double error-
detecting (SEC-DED) codes. See
SEC-DED (single error-correcting,
double error-detecting) codes.
Single error-correcting (SEC) codes, 331
snoob function, 14-15
Software checksums, 327-329

INDEX 493

Space-filling curves, 371-372. See also
Hilbert's curve.
Sparse array indexing, 95
Sphere-packing bound, 348-350
Spheres, ECCs (error-correcting codes),
347-350
Square root, integer
binary search, 281-285
hardware algorithm, 285-287
Newton's method, 279-283
shift-and-subtract algorithm, 285-287
Square root, approximate, floating-point,
389
Square root, approximate reciprocal, float-
ing-point, 383-385
Stibitz, George, 308
Strachey, Christopher, 130
Stretch computer, 81, 336
Strings. See Bit operations; Character
strings.
strlen (string length) C function, 117
Subnormal numbers, 376
Subnorms, 376
subtract instruction
condition codes, 3637
propagating arithmetic bounds, 70-73
Subtraction
arithmetic tables, 453
difference or zero (doz) function, 4145
double-length, 38-39
combined with logical operations,
16-17
multibyte, 4041
of negabinary numbers, 301-302
overflow detection, 29-31
plots and graphs, 461
Swap-and-complement method, 362-365
Swapping pointers, 46
System/360 computer, 385
System/370 computer, 63

T

Table lookup, counting bits, 86—87
three-valued compare function, 21-22. See
also sign function.
Tight bounds
add and subtract instructions, 70-73
logical operations, 74—79

Timing test, division of integers by
constants, 276
Toggling among values, 48-51
Tower of Hanoi puzzle, 116, 315
Trailing zeros. See also ntz (number of
trailing zeros) function.
counting, 107-114
detecting, 324. See also CRC (cyclic
redundancy check).
plots and graphs, 466
Transfer of sign (ISIGN) function, 22
Transposing a bit matrix
8 x 8, 141-145
32 x 32, 145-149
Triangles
fractal, 460
plots and graphs, 460
self-similar, 460
Sierpinski, 460
Triple DES, 164
True/false comparison results, 23
Turning off 1-bits, 85

U

Ulp (unit in the last position), 378
Unaligned load, 65
Unary functions, plots and graphs,
466-469
Uniqueness, of magic numbers, 224
Unshuffling
arrays, 162
bits, 140-141, 162, 468
Unsigned division
arithmetic tables, 455
computer, 181
doubleword, 197-201
long, 192-197
short from signed, 189-192
Unsigned division of integers by constants
best programs for, 234-235
by 3 and 7, 227-229
by divisors > 1, 230-232
by powers of 2, 227
incorporating into a compiler, 232-234
incremental division and remainder
technique, 232-234
remainders, from powers of 2, 227
test for zero remainder, 248-250

494

unsigned modulus (modu) function, 84

Unsigned product of x and y, plots and
graphs, 462

Uppercase letters, finding, 122

\%
Voorhies, Douglas, 373

W

Willans, C. P., 393
Willans's formulas, 393-397
Wilson's theorem, 393, 403
Word parity. See Parity.
Words
counting bits, 81-87
definition, 1
division

doubleword by single word, 192-197

INDEX

Knuth's Algorithm D, 184—-188
multiword, 184-189
signed, multiword, 188
multiplication, multiword, 171-173
reversing, 129-134
searching for
first 0-byte, 117-121
first uppercase letter, 122
strings of 1-bits, 123—-128
a value within a range, 122
word parallel operations, 13
Wormell, C. P., 397
Wormell's formula, 397-398

Z

zbytel function, 117-121
zbyter function, 117-121
Zero means 2", 22-23

	Contents
	Foreword
	Preface
	CHAPTER 2. BASICS
	2–1 Manipulating Rightmost Bits
	2–2 Addition Combined with Logical Operations
	2–3 Inequalities among Logical and Arithmetic Expressions
	2–4 Absolute Value Function
	2–5 Average of Two Integers
	2–6 Sign Extension
	2–7 Shift Right Signed from Unsigned
	2–8 Sign Function
	2–9 Three-Valued Compare Function
	2–10 Transfer of Sign Function
	2–11 Decoding a “Zero Means 2[sup(n)]" Field
	2–12 Comparison Predicates
	2–13 Overflow Detection
	2–14 Condition Code Result of Add, Subtract, and Multiply
	2–15 Rotate Shifts
	2–16 Double-Length Add/Subtract
	2–17 Double-Length Shifts
	2–18 Multibyte Add, Subtract, Absolute Value
	2–19 Doz, Max, Min
	2–20 Exchanging Registers
	2–21 Alternating among Two or More Values
	2–22 A Boolean Decomposition Formula
	2–23 Implementing Instructions for all 16 Binary Boolean Operations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

