
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321833877
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321833877
https://plusone.google.com/share?url=http://www.informit.com/title/9780321833877
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321833877
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321833877/Free-Sample-Chapter

MySQL

Fifth Edition

00_9780321833877_fm.indd i 3/6/13 9:45 AM

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with unique, high-
quality references and tutorials on the programming languages and technologies they use in
their daily work.

All books in the Developer’s Library are written by expert technology practitioners who are
especially skilled at organizing and presenting information in a way that’s useful for other
programmers.

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-321-83387-7

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0-321-77640-2

Developer’s Library books are available in print and in electronic formats at most retail and
online bookstores, as well as by subscription from Safari Books Online at safari.informit.com

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

00_9780321833877_fm.indd ii 3/6/13 9:45 AM

MySQL

Fifth Edition

Paul DuBois

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

00_9780321833877_fm.indd iii 3/6/13 9:45 AM

Acquisitions
Editor
Mark Taber

Managing Editor
Sandra Schroeder

Senior Project
Editor
Tonya Simpson

Copy Editor
Water Crest
Publishing

Indexer
Heather McNeill

Proofreader
Jess DeGabriele

Technical Editor
Stephen Frein

Publishing
Coordinator
Vanessa Evans

Designer
Chuti Prasertsith

Compositor
Bumpy Design

MySQL, Fifth Edition
Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

ISBN-13: 978-0-321-83387-7

ISBN-10: 0-321-83387-2

Library of Congress Cataloging-in-Publication Data will be inserted once available.

Printed in the United States of America

First Printing March 2013

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

 International Sales
 international@pearsoned.com

00_9780321833877_fm.indd iv 3/6/13 9:45 AM

Con tents at a Glance

 Introduction 1

Part I: General MySQL Use

 1 Getting Started with MySQL 11

 2 Using SQL to Manage Data 95

 3 Data Types 179

 4 Views and Stored Programs 261

 5 Query Optimization 277

Part II: Using MySQL Programming Interfaces

 6 Introduction to MySQL Programming 307

 7 Writing MySQL Programs Using C 319

 8 Writing MySQL Programs Using Perl DBI 395

 9 Writing MySQL Programs Using PHP 485

Part III: MySQL Administration

 10 Introduction to MySQL Administration 537

 11 The MySQL Data Directory 543

 12 General MySQL Administration 563

 13 Security and Access Control 645

 14 Database Maintenance, Backups, and Replication 699

Part IV: Appendixes

 A Software Required to Use This Book 735

 B Data Type Reference 747

 C Operator and Function Reference 763

 D System, Status, and User Variable Reference 835

 E SQL Syntax Reference 897

 F MySQL Program Reference 999

 Index 1073

Note: Appendixes G, H, and I are located online and are accessible either by registering this
book at informit.com/register or by visiting www.kitebird.com/mysql-book.

 G C API Reference Web: 1073

 H Perl DBI API Reference Web: 1129

 I PHP API Reference Web: 1157

00_9780321833877_fm.indd v 3/6/13 9:45 AM

http://www.kitebird.com/mysql-book

Table of Contents

Introduction 1

Why Choose MySQL? 2

What You Can Expect from This Book 4

Road Map to This Book 4

Part I: General MySQL Use 4

Part II: Using MySQL Programming Interfaces 5

Part III: MySQL Administration 5

Part IV: Appendixes 6

How to Read This Book 6

Versions of Software Covered in This Book 7

Conventions Used in This Book 9

Additional Resources 9

Part I: General MySQL Use

 1 Getting Started with MySQL 11

1.1 How MySQL Can Help You 11

1.2 A Sample Database 14

1.2.1 The U.S. Historical League Project 15

1.2.2 The Grade-Keeping Project 17

1.2.3 How the Sample Database Applies to You 17

1.3 Basic Database Terminology 18

1.3.1 Structural Terminology 18

1.3.2 Query Language Terminology 20

1.3.3 MySQL Architectural Terminology 21

1.4 A MySQL Tutorial 22

1.4.1 Obtaining the Sample Database Distribution 23

1.4.2 Preliminary Requirements 23

1.4.3 Establishing and Terminating Connections to the MySQL Server 25

1.4.4 Executing SQL Statements 27

1.4.5 Creating a Database 30

1.4.6 Creating Tables 31

1.4.7 Adding New Rows 49

1.4.8 Resetting the sampdb Database to a Known State 53

1.4.9 Retrieving Information 54

00_9780321833877_fm.indd vi 3/6/13 9:45 AM

viiContents

1.4.10 Deleting or Updating Existing Rows 85

1.5 Tips for Interacting with mysql 87

1.5.1 Simplifying the Connection Process 87

1.5.2 Issuing Statements with Less Typing 90

1.6 Where to Now? 94

 2 Using SQL to Manage Data 95

2.1 The Server SQL Mode 96

2.2 MySQL Identifier Syntax and Naming Rules 97

2.3 Case Sensitivity in SQL Statements 99

2.4 Character Set Support 101

2.4.1 Specifying Character Sets 102

2.4.2 Determining Character Set Availability and Current Settings 103

2.4.3 Unicode Support 104

2.5 Selecting, Creating, Dropping, and Altering Databases 105

2.5.1 Selecting Databases 105

2.5.2 Creating Databases 106

2.5.3 Dropping Databases 107

2.5.4 Altering Databases 107

2.6 Creating, Dropping, Indexing, and Altering Tables 107

2.6.1 Storage Engine Characteristics 108

2.6.2 Creating Tables 113

2.6.3 Dropping Tables 121

2.6.4 Indexing Tables 122

2.6.5 Altering Table Structure 127

2.7 Obtaining Database Metadata 130

2.7.1 Obtaining Metadata with SHOW 130

2.7.2 Obtaining Metadata with INFORMATION_SCHEMA 132

2.7.3 Obtaining Metadata from the Command Line 135

2.8 Performing Multiple-Table Retrievals with Joins 136

2.8.1 Inner Joins 137

2.8.2 Qualifying References to Columns from Joined Tables 139

2.8.3 Left and Right (Outer) Joins 139

2.9 Performing Multiple-Table Retrievals with Subqueries 143

2.9.1 Subqueries with Relative Comparison Operators 144

2.9.2 IN and NOT IN Subqueries 145

2.9.3 ALL, ANY, and SOME Subqueries 146

00_9780321833877_fm.indd vii 3/6/13 9:45 AM

viii Contents

2.9.4 EXISTS and NOT EXISTS Subqueries 147

2.9.5 Correlated Subqueries 148

2.9.6 Subqueries in the FROM Clause 149

2.9.7 Rewriting Subqueries as Joins 149

2.10 Performing Multiple-Table Retrievals with UNION 151

2.11 Multiple-Table Deletes and Updates 154

2.12 Performing Transactions 156

2.12.1 Using Transactions to Ensure Safe Statement Execution 157

2.12.2 Using Transaction Savepoints 161

2.12.3 Transaction Isolation 162

2.13 Foreign Keys and Referential Integrity 164

2.14 Using FULLTEXT Searches 170

2.14.1 Natural Language FULLTEXT Searches 172

2.14.2 Boolean Mode FULLTEXT Searches 174

2.14.3 Query Expansion FULLTEXT Searches 175

2.14.4 Configuring the FULLTEXT Search Engine 176

 3 Data Types 179

3.1 Data Value Categories 181

3.1.1 Numeric Values 181

3.1.2 String Values 182

3.1.3 Temporal (Date and Time) Values 191

3.1.4 Spatial Values 191

3.1.5 Boolean Values 192

3.1.6 The NULL Value 192

3.2 MySQL Data Types 192

3.2.1 Data Type Overview 193

3.2.2 Specifying Column Types in Table Definitions 194

3.2.3 Specifying Column Default Values 196

3.2.4 Numeric Data Types 196

3.2.5 String Data Types 204

3.2.6 Temporal (Date and Time) Data Types 218

3.3 How MySQL Handles Invalid Data Values 228

3.4 Working with Sequences 230

3.4.1 General AUTO_INCREMENT Properties 230

3.4.2 Storage Engine-Specific AUTO_INCREMENT Properties 232

3.4.3 Issues to Consider with AUTO_INCREMENT Columns 235

00_9780321833877_fm.indd viii 3/6/13 9:45 AM

ixContents

3.4.4 Tips for Working with AUTO_INCREMENT Columns 235

3.4.5 Generating Sequences Without AUTO_INCREMENT 237

3.5 Expression Evaluation and Type Conversion 239

3.5.1 Writing Expressions 240

3.5.2 Type Conversion 247

3.6 Choosing Data Types 255

3.6.1 What Kind of Values Will the Column Hold? 257

3.6.2 Do Your Values Lie Within Some Particular Range? 259

 4 Views and Stored Programs 261

4.1 Using Views 262

4.2 Using Stored Programs 265

4.2.1 Compound Statements and Statement Delimiters 266

4.2.2 Stored Functions and Procedures 268

4.2.3 Triggers 272

4.2.4 Events 274

4.3 Security for Views and Stored Programs 275

 5 Query Optimization 277

5.1 Using Indexing 277

5.1.1 Benefits of Indexing 278

5.1.2 Costs of Indexing 281

5.1.3 Choosing Indexes 281

5.2 The MySQL Query Optimizer 285

5.2.1 How the Optimizer Works 286

5.2.2 Using EXPLAIN to Check Optimizer Operation 290

5.3 Choosing Data Types for Efficient Queries 296

5.4 Choosing Table Storage Formats for Efficient Queries 299

5.5 Loading Data Efficiently 300

5.6 Scheduling, Locking, and Concurrency 303

Part II: Using MySQL Programming Interfaces

 6 Introduction to MySQL Programming 307

6.1 Why Write Your Own MySQL Programs? 307

6.2 APIs Available for MySQL 310

6.2.1 The C API 311

6.2.2 The Perl DBI API 311

6.2.3 The PHP API 313

00_9780321833877_fm.indd ix 3/6/13 9:45 AM

x Contents

6.3 Choosing an API 314

6.3.1 Execution Environment 314

6.3.2 Performance 315

6.3.3 Development Time 316

6.3.4 Portability 317

 7 Writing MySQL Programs Using C 319

7.1 Compiling and Linking Client Programs 320

7.2 Connecting to the Server 323

7.3 Handling Errors and Processing Command Options 327

7.3.1 Checking for Errors 327

7.3.2 Getting Connection Parameters at Runtime 330

7.3.3 Incorporating Option Processing into a Client Program 344

7.4 Processing SQL Statements 348

7.4.1 Handling Statements That Modify Rows 350

7.4.2 Handling Statements That Return a Result Set 351

7.4.3 A General-Purpose Statement Handler 354

7.4.4 Alternative Approaches to Statement Processing 356

7.4.5 mysql_store_result() Versus mysql_use_result() 357

7.4.6 Using Result Set Metadata 359

7.4.7 Encoding Special Characters and Binary Data 364

7.5 An Interactive Statement-Execution Program 368

7.6 Writing Clients That Include SSL Support 370

7.7 Using Multiple-Statement Execution 375

7.8 Using Server-Side Prepared Statements 377

7.9 Using Prepared CALL Support 389

 8 Writing MySQL Programs Using Perl DBI 395

8.1 Perl Script Characteristics 396

8.2 Perl DBI Overview 396

8.2.1 DBI Data Types 396

8.2.2 A Simple DBI Script 397

8.2.3 Handling Errors 402

8.2.4 Handling Statements That Modify Rows 406

8.2.5 Handling Statements That Return a Result Set 407

8.2.6 Quoting Special Characters in Statement Strings 416

00_9780321833877_fm.indd x 3/6/13 9:45 AM

xiContents

8.2.7 Placeholders and Prepared Statements 419

8.2.8 Binding Query Results to Script Variables 422

8.2.9 Specifying Connection Parameters 423

8.2.10 Debugging 426

8.2.11 Using Result Set Metadata 430

8.2.12 Performing Transactions 434

8.3 Putting DBI to Work 436

8.3.1 Generating the Historical League Directory 436

8.3.2 Sending Membership Renewal Notices 442

8.3.3 Historical League Member Entry Editing 448

8.3.4 Finding Historical League Members with Common Interests 454

8.3.5 Putting the Historical League Directory Online 455

8.4 Using DBI in Web Applications 459

8.4.1 Setting Up Apache for CGI Scripts 460

8.4.2 A Brief CGI.pm Primer 461

8.4.3 Connecting to the MySQL Server from Web Scripts 468

8.4.4 A Web-Based Database Browser 471

8.4.5 A Grade-Keeping Project Score Browser 475

8.4.6 Historical League Common-Interest Searching 479

 9 Writing MySQL Programs Using PHP 485

9.1 PHP Overview 487

9.1.1 A Simple PHP Script 489

9.1.2 Using PHP Library Files for Code Encapsulation 492

9.1.3 A Simple Data-Retrieval Page 497

9.1.4 Processing Statement Results 500

9.1.5 Testing for NULL Values in Query Results 504

9.1.6 Using Prepared Statements 505

9.1.7 Using Placeholders to Handle Data Quoting Issues 505

9.1.8 Handling Errors 507

9.2 Putting PHP to Work 509

9.2.1 An Online Score-Entry Application 510

9.2.2 Creating an Interactive Online Quiz 522

9.2.3 Historical League Online Member Entry Editing 528

00_9780321833877_fm.indd xi 3/6/13 9:45 AM

xii Contents

Part III: MySQL Administration

 10 Introduction to MySQL Administration 537

10.1 MySQL Components 538

10.2 General MySQL Administration 539

10.3 Access Control and Security 540

10.4 Database Maintenance, Backups, and Replication 540

 11 The MySQL Data Directory 543

11.1 The Data Directory Location 544

11.2 Structure of the Data Directory 545

11.2.1 How the MySQL Server Provides Access to Data 546

11.2.2 Representation of Databases in the Filesystem 547

11.2.3 Representation of Tables in the Filesystem 548

11.2.4 Representation of Views and Triggers in the Filesystem 549

11.2.5 How SQL Statements Map onto Table File Operations 549

11.2.6 Operating System Constraints on Database Object Names 550

11.2.7 Factors That Affect Maximum Table Size 551

11.2.8 Implications of Data Directory Structure for System Performance 553

11.2.9 MySQL Status and Log Files 554

11.3 Relocating Data Directory Contents 556

11.3.1 Relocation Methods 557

11.3.2 Relocation Precautions 558

11.3.3 Assessing the Effect of Relocation 558

11.3.4 Relocating the Entire Data Directory 559

11.3.5 Relocating Individual Databases 559

11.3.6 Relocating Individual Tables 560

11.3.7 Relocating the InnoDB System Tablespace 561

11.3.8 Relocating Status and Log Files 561

 12 General MySQL Administration 563

12.1 Securing a New MySQL Installation 564

12.1.1 Establishing Passwords for the Initial MySQL Accounts 564

12.1.2 Setting Up Passwords for Additional Servers 569

12.2 Arranging for MySQL Server Startup and Shutdown 570

12.2.1 Running the MySQL Server On Unix 570

12.2.2 Running the MySQL Server On Windows 575

12.2.3 Specifying Server Startup Options 577

00_9780321833877_fm.indd xii 3/6/13 9:45 AM

xiiiContents

12.2.4 Controlling How the Server Listens for Connections 579

12.2.5 Stopping the Server 580

12.2.6 Regaining Control of the Server When You Cannot Connect to It 581

12.3 Using System and Status Variables 583

12.3.1 Checking and Setting System Variable Values 584

12.3.2 Checking Status Variable Values 588

12.4 The Plugin Interface 589

12.5 Storage Engine Configuration 593

12.5.1 Selecting Storage Engines 593

12.5.2 Selecting a Default Storage Engine 594

12.5.3 Configuring the InnoDB Storage Engine 594

12.6 Globalization Issues 601

12.6.1 Configuring Time Zone Support 601

12.6.2 Selecting the Default Character Set and Collation 603

12.6.3 Selecting the Language for Error Messages 604

12.6.4 Selecting the Locale 604

12.7 Server Tuning 605

12.7.1 General-Purpose System Variables for Server Tuning 606

12.7.2 Storage Engine Tuning 609

12.7.3 Using the Query Cache 614

12.7.4 Hardware Optimizations 616

12.8 Server Logs 617

12.8.1 The Error Log 620

12.8.2 The General Query Log 621

12.8.3 The Slow Query Log 621

12.8.4 The Binary Log 622

12.8.5 The Relay Log 624

12.8.6 Using Log Tables 624

12.8.7 Log Management 625

12.9 Running Multiple Servers 632

12.9.1 General Multiple Server Issues 632

12.9.2 Configuring and Compiling Different Servers 635

12.9.3 Strategies for Specifying Startup Options 636

12.9.4 Using mysqld_multi for Server Management 637

12.9.5 Running Multiple Servers on Windows 639

12.9.6 Running Clients of Multiple Servers 641

12.10 Updating MySQL 642

00_9780321833877_fm.indd xiii 3/6/13 9:45 AM

xiv Contents

 13 Security and Access Control 645

13.1 Securing Filesystem Access to MySQL 646

13.1.1 How to Steal Data 647

13.1.2 Securing Your MySQL Installation 648

13.2 Managing MySQL User Accounts 654

13.2.1 High-Level MySQL Account Management 655

13.2.2 Granting Privileges 660

13.2.3 Displaying Account Privileges 671

13.2.4 Revoking Privileges 671

13.2.5 Changing Passwords or Resetting Lost Passwords 672

13.2.6 Avoiding Access-Control Risks 673

13.2.7 Pluggable Authentication and Proxy Users 676

13.3 Grant Table Structure and Contents 679

13.3.1 Grant Table Scope-of-Access Columns 683

13.3.2 Grant Table Privilege Columns 683

13.3.3 Grant Table Authentication Columns 684

13.3.4 Grant Table SSL-Related Columns 685

13.3.5 Grant Table Resource Management Columns 685

13.4 How the Server Controls Client Access 686

13.4.1 Scope Column Contents 687

13.4.2 Statement Access Verification 689

13.4.3 Scope Column Matching Order 690

13.4.4 A Privilege Puzzle 691

13.5 Setting Up Secure Connections Using SSL 694

 14 Database Maintenance, Backups, and Replication 699

14.1 Principles of Preventive Maintenance 699

14.2 Performing Database Maintenance with the Server Running 701

14.2.1 Locking Individual Tables for Read-Only or Read/Write Access 702

14.2.2 Locking All Databases for Read-Only Access 705

14.3 General Preventive Maintenance 705

14.3.1 Using the Server’s Auto-Recovery Capabilities 706

14.3.2 Scheduling Preventive Maintenance 706

14.4 Making Database Backups 707

14.4.1 Storage Engine Portability Characteristics 709

14.4.2 Making Text Backups with mysqldump 711

14.4.3 Making Binary Database Backups 714

14.4.4 Backing Up InnoDB Tables 715

00_9780321833877_fm.indd xiv 3/6/13 9:45 AM

xvContents

14.5 Copying Databases to Another Server 716

14.5.1 Copying Databases Using a Backup File 716

14.5.2 Copying Databases from One Server to Another 717

14.6 Checking and Repairing Database Tables 718

14.6.1 Checking Tables with CHECK TABLE 719

14.6.2 Repairing Tables with REPAIR TABLE 720

14.6.3 Using mysqlcheck to Check and Repair Tables 720

14.7 Using Backups for Data Recovery 722

14.7.1 Recovering Entire Databases 722

14.7.2 Recovering Individual Tables 723

14.7.3 Re-Executing Statements in Binary Log Files 723

14.7.4 Coping with InnoDB Auto-Recovery Problems 725

14.8 Setting Up Replication Servers 726

14.8.1 How Replication Works 727

14.8.2 Establishing a Master-Slave Replication Relationship 728

14.8.3 Binary Logging Formats 731

14.8.4 Using a Replication Slave for Making Backups 731

Part IV: Appendixes

 A Software Required to Use This Book 735

A.1 Obtaining the sampdb Sample Database Distribution 735

A.2 Obtaining MySQL and Related Software 736

A.3 MySQL Installation Notes 737

A.3.1 Creating a Login Account for the MySQL User 738

A.3.2 Installing MySQL 739

A.3.3 Setting Your PATH Environment Variable 739

A.3.4 Initializing the Data Directory and Grant Tables 740

A.3.5 Starting the Server 741

A.3.6 Initializing Other System Tables 742

A.4 Perl DBI Installation Notes 743

A.5 PHP and PDO Installation Notes 743

 B Data Type Reference 747

B.1 Numeric Types 748

B.1.1 Integer Types 749

B.1.2 Fixed-Point Types 751

B.1.3 Floating-Point Types 751

B.1.4 BIT Type 752

00_9780321833877_fm.indd xv 3/6/13 9:45 AM

xvi Contents

B.2 String Types 753

B.2.1 Binary String Types 755

B.2.2 Nonbinary String Types 756

B.2.3 ENUM and SET Types 758

B.3 Temporal (Date and Time) Types 759

 C Operator and Function Reference 763

C.1 Operators 764

C.1.1 Operator Precedence 764

C.1.2 Grouping Operators 765

C.1.3 Arithmetic Operators 766

C.1.4 Comparison Operators 768

C.1.5 Bit Operators 773

C.1.6 Logical Operators 774

C.1.7 Cast Operators 775

C.1.8 Pattern-Matching Operators 776

C.2 Functions 780

C.2.1 Comparison Functions 781

C.2.2 Cast Functions 783

C.2.3 Numeric Functions 784

C.2.4 String Functions 789

C.2.5 Date and Time Functions 802

C.2.6 Summary Functions 817

C.2.7 Security and Compression Functions 821

C.2.8 Advisory Locking Functions 824

C.2.9 IP Address Functions 826

C.2.10 XML Functions 828

C.2.11 Spatial Functions 828

C.2.12 Miscellaneous Functions 829

 D System, Status, and User Variable Reference 835

D.1 System Variables 835

D.1.1 InnoDB System Variables 870

D.2 Status Variables 881

D.2.1 InnoDB Status Variables 888

D.2.2 Query Cache Status Variables 891

D.2.3 SSL Status Variables 892

D.3 User-Defined Variables 894

00_9780321833877_fm.indd xvi 3/6/13 9:45 AM

xviiContents

 E SQL Syntax Reference 897

E.1 SQL Statement Syntax (Noncompound Statements) 898

E.2 SQL Statement Syntax (Compound Statements) 987

E.2.1 Control Structure Statements 987

E.2.2 Declaration Statements 989

E.2.3 Cursor Statements 991

E.2.4 Condition-Handling Statements 992

E.3 Comment Syntax 996

 F MySQL Program Reference 999

F.1 Displaying a Program’s Help Message 1000

F.2 Specifying Program Options 1001

F.2.1 Standard MySQL Program Options 1003

F.2.2 Option Files 1007

F.2.3 Environment Variables 1011

F.3 myisamchk 1013

F.3.1 Standard Options Supported by myisamchk 1014

F.3.2 Options Specific to myisamchk 1015

F.3.3 Variables for myisamchk 1018

F.4 mysql 1019

F.4.1 Standard Options Supported by mysql 1021

F.4.2 Options Specific to mysql 1021

F.4.3 Variables for mysql 1025

F.4.4 mysql Commands 1026

F.4.5 mysql Prompt Definition Sequences 1028

F.5 mysql.server 1030

F.5.1 Options Supported by mysql.server 1030

F.6 mysql_config 1030

F.6.1 Options Specific to mysql_config 1031

F.7 mysql_install_db 1031

F.7.1 Standard Options Supported by mysql_install_db 1032

F.7.2 Options Specific to mysql_install_db 1032

F.8 mysql_upgrade 1033

F.8.1 Standard Options Supported by mysql_upgrade 1033

F.8.2 Options Specific to mysql_upgrade 1033

F.9 mysqladmin 1034

F.9.1 Standard Options Supported by mysqladmin 1034

00_9780321833877_fm.indd xvii 3/6/13 9:45 AM

xviii Contents

F.9.2 Options Specific to mysqladmin 1034

F.9.3 Variables for mysqladmin 1035

F.9.4 mysqladmin Commands 1035

F.10 mysqlbinlog 1038

F.10.1 Standard Options Supported by mysqlbinlog 1038

F.10.2 Options Specific to mysqlbinlog 1038

F.10.3 Variables for mysqlbinlog 1041

F.11 mysqlcheck 1041

F.11.1 Standard Options Supported by mysqlcheck 1042

F.11.2 Options Specific to mysqlcheck 1042

F.12 mysqld 1045

F.12.1 Standard Options Supported by mysqld 1046

F.12.2 Options Specific to mysqld 1046

F.12.3 Variables for mysqld 1056

F.13 mysqld_multi 1056

F.13.1 Standard Options Supported by mysqld_multi 1057

F.13.2 Options Specific to mysqld_multi 1057

F.14 mysqld_safe 1058

F.14.1 Standard Options Supported by mysqld_safe 1058

F.14.2 Options Specific to mysqld_safe 1058

F.15 mysqldump 1060

F.15.1 Standard Options Supported by mysqldump 1060

F.15.2 Options Specific to mysqldump 1061

F.15.3 Data Format Options for mysqldump 1067

F.15.4 Variables for mysqldump 1068

F.16 mysqlimport 1068

F.16.1 Standard Options Supported by mysqlimport 1068

F.16.2 Options Specific to mysqlimport 1069

F.16.3 Data Format Options for mysqlimport 1070

F.17 mysqlshow 1070

F.17.1 Standard Options Supported by mysqlshow 1071

F.17.2 Options Specific to mysqlshow 1071

F.18 perror 1072

F.18.1 Standard Options Supported by perror 1072

Note: Appendixes G, H, and I are located online and are accessible either by registering this
book at informit.com/register or by visiting www.kitebird.com/mysql-book.

00_9780321833877_fm.indd xviii 3/6/13 9:45 AM

http://www.kitebird.com/mysql-book

xixContents

 G C API Reference 1073

G.1 Compiling and Linking 1074

G.2 C API Data Structures 1075

G.2.1 Scalar Data Types 1075

G.2.2 Nonscalar Data Structures 1076

G.2.3 Accessor Macros 1087

G.3 C API Functions 1088

G.3.1 Client Library Initialization and Termination Routines 1088

G.3.2 Connection Management Routines 1089

G.3.3 Error-Reporting Routines 1101

G.3.4 Statement Construction and Execution Routines 1102

G.3.5 Result Set Processing Routines 1104

G.3.6 Multiple Result Set Routines 1113

G.3.7 Information Routines 1113

G.3.8 Transaction Control Routines 1116

G.3.9 Prepared Statement Routines 1116

G.3.10 Administrative Routines 1125

G.3.11 Threaded Client Routines 1126

G.3.12 Debugging Routines 1127

 H Perl DBI API Reference 1129

H.1 Writing Scripts 1130

H.2 DBI Methods 1130

H.2.1 DBI Class Methods 1132

H.2.2 Database-Handle Methods 1137

H.2.3 Statement-Handle Methods 1142

H.2.4 General Handle Methods 1146

H.2.5 MySQL-Specific Administrative Methods 1147

H.3 DBI Utility Functions 1148

H.4 DBI Attributes 1149

H.4.1 Database-Handle Attributes 1149

H.4.2 General Handle Attributes 1149

H.4.3 MySQL-Specific Database-Handle Attributes 1150

H.4.4 Statement-Handle Attributes 1152

00_9780321833877_fm.indd xix 3/6/13 9:45 AM

xx Contents

H.4.5 MySQL-Specific Statement-Handle Attributes 1154

H.4.6 Dynamic Attributes 1155

H.5 DBI Environment Variables 1156

 I PHP API Reference 1157

I.1 Writing PHP Scripts 1157

I.2 PDO Classes 1158

I.3 PDO Methods 1159

I.3.1 PDO Class Methods 1159

I.3.2 PDOStatement Object Methods 1166

I.3.3 PDOException Object Methods 1172

I.3.4 PDO Constants 1173

 Index 1175

00_9780321833877_fm.indd xx 3/6/13 9:45 AM

About the Author
Paul DuBois is a writer, database administrator, and leader in the open source and MySQL
communities. He has contributed to the online documentation for MySQL and is the
author of MySQL and Perl for the Web (New Riders), MySQL Cookbook, Using csh and tcsh, and
Software Portability with imake (O’Reilly). He is currently a technical writer with the MySQL
documentation team at Oracle Corporation.

Acknowledgments
My technical reviewer, Stephen Frein, provided good insights and suggestions for improvement.
In addition, because this edition would not have been possible without the previous ones, my
continued thanks go to everyone listed in those editions who served as technical reviewer or
who patiently answered my questions.

The staff at Pearson responsible for this edition were Mark Taber, acquisitions editor; Tonya
Simpson, project editor; Sarah Kearns, copy editor; Kim Scott, compositor; Jess DeGabriele,
proofreader; Heather McNeill, indexer; and Chuti Prasertsith, cover designer. My thanks to each
of them.

Thanks to my wife Karen for her support and encouragement throughout the production of
this edition.

00_9780321833877_fm.indd xxi 3/6/13 9:45 AM

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail we receive, we might not be able to reply to every
message.

When you write, please be sure to include this book’s title and author, as well as your name
and phone or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Your purchase of this book includes access to a free online edition for 45 days through the
Safari Books Online subscription service. Details are on the last page of this book.

00_9780321833877_fm.indd xxii 3/6/13 9:45 AM

http://www.informit.com/register

 Introduction

 A relational database management system (RDBMS) is an essential tool in many environments,
from uses in business, research, and educational contexts, to content delivery on the Internet.
However, despite the importance of a good database system for managing and accessing infor-
mation resources, many organizations have found them to be out of reach of their financial
resources. Historically, database systems have been an expensive proposition, with vendors
charging healthy fees both for software and for support. Also, because database engines often
had substantial hardware requirements to run with any reasonable performance, the cost was
even greater.

 Times have changed, on both the hardware and software sides of the picture. Small desktop
systems and servers are inexpensive but powerful, and there is a thriving movement devoted
to writing high-performance operating systems for them. These operating systems are avail-
able free over the Internet or at the cost of an inexpensive CD. They include several BSD Unix
derivatives and several distributions of Linux.

 Production of free operating systems has proceeded in concert with—and to a large extent
has been made possible by—the development of freely available Open Source tools like the
 gcc GNU C compiler; Apache, the most widely used Web server on the Internet; and well-
established general-purpose scripting languages such as Perl, PHP, Python, and Ruby. These all
stand in contrast to proprietary solutions that lock you into high-priced products from vendors
that don’t even provide source code.

 Database software has become more accessible, too, and Open Source database systems are
freely available. One of the most important is MySQL, a SQL client/server relational database
management system originating from Scandinavia. MySQL includes an SQL server, client
programs for accessing the server, administrative tools, and a programming interface for writing
your own programs.

 MySQL’s roots begin in 1979, with the UNIREG database tool created by Michael “Monty”
Widenius for the Swedish company TcX. In 1994, TcX began searching for an RDBMS with an
SQL interface for use in developing Web applications. Commercial servers tested were all found
too slow for TcX’s large tables, and the freely available mSQL lacked features that TcX required.
Consequently, Monty began developing a new server.

01_9780321833877_intro.indd 1 3/1/13 9:57 AM

2 Introduction

 In 1995, David Axmark of Detron HB began to push for TcX to release MySQL on the Internet.
David also worked on the documentation and on getting MySQL to build with the GNU config-
uration autotools. MySQL 3.11.1 was unleashed on the world in 1996 in the form of binary
distributions for Linux and Solaris. The company MySQL AB was formed to provide distribu-
tions of MySQL and to offer commercial services. In 2008, Sun Microsystems acquired MySQL
AB, and in 2010, Oracle acquired Sun. Today, MySQL is available in both binary and source
form and works on many more platforms.

 Initially, MySQL became widely popular because of its speed and simplicity. But there was criti-
cism, too: It lacked features such as transactions and foreign key support. MySQL continued
to develop, adding not only those features but others such as replication, subqueries, stored
routines, triggers, and views.

 These capabilities take MySQL into the realm of enterprise applications. As a result, people who
once would have considered only “big iron” database systems for their applications now give
serious consideration to MySQL, which runs on anything from modest hardware all the way
up to enterprise servers. Its performance rivals any database system you care to put up against
it, and it can handle large databases with billions of rows. In the business world, MySQL’s pres-
ence continues to increase as companies discover it capable of handling their database needs,
with the cost for commercial licensing and support a fraction of what they are used to paying.

 MySQL lies squarely within the picture that unfolds before us: freely available operating
systems running on powerful but inexpensive hardware, putting substantial processing power
and capabilities in the hands of businesses and individuals on a wider variety of systems than
ever before. This lowering of the economic barriers to computing puts the power of a high-
performance RDBMS to work for more organizations than at any time in the past, for very little
cost. This is true for individuals as well. For example, I use MySQL with Perl, PHP, and Apache
on my Apple laptop running Mac OS X. This enables me to carry my work with me anywhere.
Total cost: the cost of the laptop.

 Why Choose MySQL?
 Several free or low-cost database management systems are available from which to choose, such
as MySQL, PostgreSQL, or SQLite. When you compare MySQL with other database systems,
think about what’s most important to you. Performance, features (such as SQL conformance or
extensions), support, licensing conditions, and price all are factors to take into account. Given
these considerations, MySQL has many attractive qualities:

 ■ Speed. MySQL is fast, and getting faster; see http://www.mysql.com/why-mysql/
benchmarks . There have been many improvements recently, particularly within InnoDB
(which is now the default storage engine) and the query optimizer.

 ■ Ease of use. MySQL is a high-performance but relatively simple database system and is
much less complex to set up and administer than larger systems.

 ■ Query language support. MySQL understands SQL (Structured Query Language), the
standard language of choice for all modern database systems.

01_9780321833877_intro.indd 2 3/1/13 9:57 AM

http://www.mysql.com/why-mysql/benchmarks
http://www.mysql.com/why-mysql/benchmarks

3Why Choose MySQL?

 ■ Capability. The MySQL server is multi-threaded, so many clients can connect to it at the
same time. Each client can use multiple databases simultaneously. You can access MySQL
interactively using several interfaces that let you enter queries and view the results:
command-line clients, Web browsers, or GUI clients. In addition, programming interfaces
are available for many languages, such as C, Perl, Java, PHP, Python, and Ruby. You can
also access MySQL using applications that support ODBC and .NET (protocols developed
by Microsoft). This gives you the choice of using prepackaged client software or writing
your own for custom applications.

 ■ Connectivity and security. MySQL is fully networked, and databases can be accessed
from anywhere on the Internet, so you can share your data with anyone, anywhere. But
MySQL has access control so that one person who shouldn’t see another’s data cannot.
To provide additional security, MySQL supports encrypted connections using the Secure
Sockets Layer (SSL) protocol.

 ■ Portability. MySQL runs on many varieties of Unix and Linux, as well as on other
systems such as Windows. MySQL runs on hardware from small devices such as routers
and personal computers up to high-end servers with many CPUs and huge amounts of
memory.

 ■ Availability and cost. MySQL is an Open Source project available under multiple
licensing terms. First, it is available under the terms of the GNU General Public License
(GPL). This means that MySQL is available without cost for most in-house uses. Second,
for organizations that prefer or require formal arrangements or that do not want to be
bound by the conditions of the GPL, commercial licenses are available.

 ■ Open distribution and source code. MySQL is easy to obtain; just use your Web
browser. If you don’t understand how something works, are curious about an algorithm,
or want to perform a security audit, you can get the source code and examine it. If you
think you’ve found a bug, please report it; the developers want to know.

 What about support? Good question; a database system isn’t much use if you can’t get help for
it. This book is one form of assistance, and I like to think that it’s useful in that regard. (That
the book has reached its fifth edition suggests that it accomplishes that goal.) There are other
resources open to you as well, and you’ll find that MySQL has good support:

 ■ The MySQL Reference Manual is included in MySQL distributions, and is easily accessible
online. The Reference Manual regularly receives good marks in the MySQL user
community. This is important; the value of a good product is diminished if no one can
figure out how to use it.

 ■ Technical support contracts and educational resources such as training classes are
available from Oracle.

 ■ MySQL mailing lists and forums are invaluable support resources that anyone may access.
These have many helpful participants, including several MySQL developers.

01_9780321833877_intro.indd 3 3/1/13 9:57 AM

4 Introduction

 The MySQL community, developers and nondevelopers alike, is very responsive. Answers to
questions on the mailing lists often arrive within minutes. When bugs are reported, the devel-
opers generally fix them quickly, and new releases appear regularly.

 If you are in the database-selection process, MySQL is an ideal candidate for evaluation. You
can try it with no risk or financial commitment. Time for installation and setup is less than for
many other systems. If you get stuck, you can use the mailing lists to get help.

 Perhaps you’re currently running another database system but feel constrained by it:
Performance of your current system is a concern; it’s proprietary and you don’t like being
locked into it; you’d like to run on hardware that’s not supported by your current system; your
software is provided in binary-only format but you want to have the source available; or maybe
it just costs too much! All of these are reasons to look into MySQL. Use this book to familiarize
yourself with MySQL’s capabilities, contact the MySQL sales crew, ask questions on the mailing
lists, and you’ll find the answers you need to make a decision.

 What You Can Expect from This Book
 You’ll learn how to use MySQL effectively so that you can get your work done more produc-
tively. You’ll be able to figure out how to get your information into a database, and you’ll learn
how to get it back out by formulating queries that answer the questions you want to ask of
that data.

 You need not be a programmer to understand or use SQL. This book shows you how it works.
But there’s more to understanding how to use a database system properly than knowing SQL
syntax. This book emphasizes MySQL’s unique capabilities and shows how to use them.

 You’ll also see how MySQL integrates with other tools. The book shows how to write your own
programs that access MySQL databases, and you’ll learn to use MySQL with Perl and PHP to
generate dynamic Web pages created from the result of database queries.

 If you’ll be responsible for administering a MySQL installation, this book will tell you what
your duties are and how to carry them out. You’ll learn how to create user accounts, perform
database backups, set up replication, and make sure your site is secure.

 Road Map to This Book
 This book has four parts. The first concentrates on general concepts of database use. The second
focuses on writing your own programs that use MySQL. The third is for readers who have
administrative duties. The fourth provides a set of reference appendixes.

 Part I: General MySQL Use
 ■ Chapter 1 , “Getting Started with MySQL.” Discusses how MySQL can be useful to you,

provides a tutorial that introduces the interactive mysql client program, covers the basics
of SQL, and demonstrates MySQL’s general capabilities.

01_9780321833877_intro.indd 4 3/1/13 9:57 AM

5Road Map to This Book

 ■ Chapter 2 , “Using SQL to Manage Data.” Every major RDBMS now available understands
SQL, but every database engine implements a slightly different SQL dialect. This chapter
discusses SQL with particular emphasis on those features that make MySQL distinctive.

 ■ Chapter 3 , “Data Types.” Discusses the data types that MySQL provides for storing
your information, properties and limitations of each type, when and how to use them,
expression evaluation, and type conversion.

 ■ Chapter 4 , “Views and Stored Programs.” How to write and use SQL objects that are
stored on the server side. These include views (virtual tables) and stored programs
(functions and procedures, triggers, and events).

 ■ Chapter 5 , “Query Optimization.” How to make your queries run faster.

 Part II: Using MySQL Programming Interfaces
 ■ Chapter 6 , “Introduction to MySQL Programming.” Discusses some of the application

programming interfaces (APIs) for MySQL and provides a general comparison of the APIs
that the book covers in detail.

 ■ Chapter 7 , “Writing MySQL Programs Using C.” How to write C programs using the API
provided by the MySQL C client library.

 ■ Chapter 8 , “Writing MySQL Programs Using Perl DBI.” How to write Perl scripts using
the DBI module. Covers standalone command-line scripts and scripts for Web site
programming.

 ■ Chapter 9 , “Writing MySQL Programs Using PHP.” How to use the PHP scripting
language and the PHP Data Objects (PDO) database-access extension to write dynamic
Web pages that access MySQL databases.

 Part III: MySQL Administration
 ■ Chapter 10 , “Introduction to MySQL Administration.” An overview of the database

administrator’s duties and what you should know to run a MySQL site successfully.

 ■ Chapter 11 , “The MySQL Data Directory.” An in-depth look at the organization and
contents of the data directory, the area under which MySQL stores databases, logs, and
status files.

 ■ Chapter 12 , “General MySQL Administration.” How to make sure your operating system
starts and stops the MySQL server properly when your system comes up and shuts down.
Also discusses configuring storage engines, tuning the server, log maintenance, and
running multiple servers.

 ■ Chapter 13 , “Security and Access Control.” What you need to know to make your
MySQL installation safe from intrusion, both from other users on the server host and
from clients connecting over the network. Discusses how to set up MySQL user accounts,
explains the structure of the grant tables that control client access to the MySQL server,
and describes how to set up your server to support secure connections over SSL.

01_9780321833877_intro.indd 5 3/1/13 9:57 AM

6 Introduction

 ■ Chapter 14 , “Database Maintenance, Backups, and Replication.” Discusses how to
reduce the likelihood of disaster through preventive maintenance, how to back up your
databases, how to perform crash recovery if disaster strikes in spite of your preventive
measures, and how to set up replication servers.

 Part IV: Appendixes
 ■ Appendix A , “Software Required to Use This Book.” Where to get the major tools and

sample database files described in the book.

 ■ Appendix B , “Data Type Reference.” The characteristics of MySQL’s data types.

 ■ Appendix C , “Operator and Function Reference.” The operators and functions that are
used to write expressions in SQL statements.

 ■ Appendix D , “System, Status, and User Variable Reference.” Describes each variable
maintained by the MySQL server, and how to use your own variables in SQL statements.

 ■ Appendix E , “SQL Syntax Reference.” Describes each SQL statement supported by
MySQL.

 ■ Appendix F , “MySQL Program Reference.” The programs provided in MySQL
distributions.

 ■ Appendix G , “C API Reference.” The data types and functions in the MySQL C client
library.

 ■ Appendix H , “Perl DBI API Reference.” The methods and attributes provided by the Perl
DBI module.

 ■ Appendix I , “PHP API Reference.” The methods provided for MySQL support in PHP by
the PDO extension.

 How to Read This Book
 Whatever part of the book you happen to be reading, it’s best to try the examples as you go
along. That means you should do two things:

 ■ If MySQL isn’t installed on your system, install it or ask someone to do so for you.

 ■ Get the files needed to set up the sampdb sample database used throughout the book.

 Appendix A , “Software Required to Use This Book,” indicates where to obtain all the necessary
components.

 If you’re new to MySQL or SQL, begin with Chapter 1 , “Getting Started with MySQL.” It
provides you with a tutorial introduction that grounds you in basic MySQL and SQL concepts
and brings you up to speed for the rest of the book. Then proceed to Chapter 2 , “Using SQL to
Manage Data,” Chapter 3 , “Data Types,” and Chapter 4 , “Views and Stored Programs,” to find

01_9780321833877_intro.indd 6 3/1/13 9:57 AM

7Versions of Software Covered in This Book

out how to describe and manipulate your own data so that you can exploit MySQL’s capabili-
ties for your own applications.

 If you already know some SQL, you should still read Chapter 2 , “Using SQL to Manage Data,”
and Chapter 3 , “Data Types.” SQL implementations vary, and you’ll want to find out what
makes MySQL’s implementation distinctive in comparison to others with which you may be
familiar. If you have experience with MySQL but need more background on performing particu-
lar tasks, use the book as a reference, looking up topics on a need-to-know basis. You’ll find the
reference appendixes especially useful.

 If you’re interested in writing your own programs to access MySQL databases, read the API
chapters, beginning with Chapter 6 , “Introduction to MySQL Programming.” To produce a
Web-based front end to your databases for easier access to them, or, conversely, to provide
a database back end for your Web site to enhance your site with dynamic content, check
out Chapter 8 , “Writing MySQL Programs Using Perl DBI,” and Chapter 9 , “Writing MySQL
Programs Using PHP.”

 If your responsibilities include administering a MySQL installation, read the chapters beginning
with Chapter 10 , “Introduction to MySQL Administration.”

 If you’re evaluating MySQL to find out how it compares to your current RDBMS, several parts
of the book are useful. Read the SQL syntax and data type chapters in Part I to compare MySQL
to the version of SQL that you’re used to, the programming chapters in Part II if you need
to write custom applications, and the administrative chapters in Part III to assess the level of
administrative support a MySQL installation requires. This information is also useful if you’re
not currently using a database but are performing a comparative analysis of MySQL along with
other database systems for the purpose of choosing one of them.

 Versions of Software Covered in This Book
 The first edition of this book covered MySQL 3.22 and the beginnings of MySQL 3.23. The
second edition expanded that range to include MySQL 4.0 and the first release of MySQL 4.1.
The third edition covered MySQL 4.1 and the initial releases of MySQL 5.0. The fourth edition
covered MySQL 5.0 and the initial releases of MySQL 5.1.

 For this fifth edition, the baseline is MySQL 5.5. That is, the book covers MySQL 5.5 and the
early releases of MySQL 5.6. Most of this book still applies if you have a version older than 5.5,
but differences specific to older versions usually are not explicitly noted.

 The MySQL 5.5 series has reached General Availability (GA) status, which means that it is
suitable for production environments. There have been many changes compared to earlier
pre-production 5.5 releases, so use the most recent version if possible (5.5.30 as I write). The
MySQL 5.6 series currently is a development series (not intended for production use yet) but
will reach GA status soon, and may have done so by the time you read this.

 For information about older versions, check the MySQL Web site at http://dev.mysql.com/
doc , where you can access the Reference Manual for each version.

01_9780321833877_intro.indd 7 3/1/13 9:57 AM

http://dev.mysql.com/doc
http://dev.mysql.com/doc

8 Introduction

 When updating each edition with new material, it’s always a challenge to keep the length
down. In the interest of space, I have removed some information present in previous editions.
The most pervasive change is that InnoDB is now the default storage engine (not MyISAM), so
in keeping with the greater emphasis on InnoDB, there is less on MyISAM. Other more minor
storage engines such as FEDERATED and BLACKHOLE are mentioned only in passing. I have
removed information about libmysqld (the embedded server), mysqlhotcopy , myisampack ,
spatial data types and functions, and replaced detailed installation material with more general
instructions. For information about any of those topics, I recommend the MySQL Reference
Manual.

 I also draw your attention to some other topics not covered in this book:

 ■ The MySQL Connectors, which provide client access for Java, ODBC, and .NET programs.

 ■ The NDB storage engine and MySQL Cluster, which provide in-memory storage, high
availability, and redundancy. See the MySQL Reference Manual for details.

 ■ The graphical user interface (GUI) tool, MySQL Workbench, which helps you use MySQL
in a windowing environment.

 ■ MySQL Enterprise, the commercial version of MySQL that includes features such as
MySQL Enterprise Monitor that provides server monitoring and diagnostic capabilities,
and MySQL Enterprise Backup for hot backups.

 To acquire any of these products or see their documentation, visit http://www.mysql.com/
products or http://dev.mysql.com/doc .

 For the other major software packages discussed in the book, any recent versions should be
sufficient for the examples shown. The following table shows the current versions at the time
of writing.

 Package Version

 Perl DBI module 1.623

 Perl DBD::mysql module 4.020

 PHP 5.4.10

 Apache 2.4.3

 CGI.pm 3.63

 All software discussed in this book is available on the Internet. Appendix A , “Software Required
to Use This Book,” provides assistance for getting MySQL, Perl DBI, PHP and PDO, Apache, and
CGI.pm onto your system. The appendix also contains instructions for obtaining the sampdb
sample database that is used in examples throughout the book and contains the programs
developed in the programming chapters.

01_9780321833877_intro.indd 8 3/1/13 9:57 AM

http://www.mysql.com/products
http://www.mysql.com/products
http://dev.mysql.com/doc

9Additional Resources

 If you are using Windows, I assume that you have Windows 2000 or newer. Some features
covered in this book, such as named pipes and Windows services, are not available in older
versions.

 Conventions Used in This Book
 This book uses the following typographical conventions:

 ■ Monospaced font indicates hostnames, filenames, directory names, commands, options,
and Web sites.

 ■ Bold monospaced font is used in command examples to indicate input that you type.

 ■ Italic monospaced font is used in commands to indicate where you should substitute
a value of your own choosing.

 Interactive examples assume that you enter commands by typing them into a terminal window
or console window. To provide context, the prompt in command examples indicates the
program from which you run the command. For example, SQL statements that are issued from
within the mysql client program are shown preceded by the mysql> prompt. For commands
that you issue from your command interpreter, the % prompt usually is used. In general, this
prompt indicates commands that can be run either on Unix or Windows, although the particu-
lar prompt you see will depend on your command interpreter. (The command interpreter is
your login shell on Unix, or cmd.exe on Windows.) More specialized command-line prompts
are # , which indicates a command run on Unix as the root user with su or sudo , and C:\> to
indicate a command intended specifically for Windows.

 The following example shows a command that should be entered from your command inter-
preter. The % indicates the prompt (which you do not type). To issue the command, you’d
enter the boldface characters as shown, and substitute your own username for the italic word:

 % mysql --user= user_name sampdb

 In SQL statements, SQL keywords and function names are written in uppercase. Database, table,
and column names generally appear in lowercase.

 In syntax descriptions, square brackets ([]) indicate optional information. In lists of alterna-
tives, vertical bar (|) is used as a separator between items. A list enclosed within [] is optional
and indicates that an item may be chosen from the list. A list enclosed within {} is mandatory
and indicates that an item must be chosen from the list.

 Additional Resources
 If you have a question that this book doesn’t answer, where should you turn? Useful docu-
mentation resources include the Web sites for the software you need help with, shown in the
following table.

01_9780321833877_intro.indd 9 3/1/13 9:57 AM

10 Introduction

 Package Primary Web Site

 MySQL http://dev.mysql.com/doc

 Perl DBI http://dbi.perl.org

 PHP http://www.php.net

 Apache http://httpd.apache.org

 CGI.pm http://search.cpan.org/dist/CGI.pm

 Those sites provide information such as reference manuals, frequently asked-question (FAQ)
lists, and mailing lists:

 ■ Reference manuals. The primary documentation included with MySQL itself is the
Reference Manual. It’s available in several formats, including online and downloadable
versions.

 ■ Manual pages. Documentation for the DBI module and its MySQL-specific driver,
DBD::mysql, can be read from the command line with the perldoc command. Try
 perldoc DBI and perldoc DBD::mysql . The DBI document provides general concepts,
and the MySQL driver document discusses capabilities specific to MySQL.

 ■ FAQs. There are frequently-asked-question lists for DBI, PHP, and Apache.

 ■ Mailing lists. Several mailing lists centering around the software discussed in this book
are available. It’s a good idea to subscribe to the ones that deal with the tools you want
to use. It’s also a good idea to use the archives for those lists that have them. When
you’re new to a tool, you will have many of the same questions that have been asked
(and answered) many times, and there is no reason to ask again when you can find the
answer with a quick search of the archives.

 Instructions for subscribing to the mailing lists vary. The following table indicates where
you can find the necessary information.

 Package Mailing List Instructions

 MySQL http://lists.mysql.com

 Perl DBI http://dbi.perl.org/support

 PHP http://www.php.net/mailing-lists.php

 Apache http://httpd.apache.org/lists.html

 ■ Ancillary Web sites. Besides the official Web sites, some of the tools discussed here have
ancillary sites that provide more information, such as sample source code or topical
articles. Check for a “Links” area on the official site you’re visiting.

01_9780321833877_intro.indd 10 3/1/13 9:57 AM

http://dev.mysql.com/doc
http://dbi.perl.org
http://www.php.net
http://httpd.apache.org
http://search.cpan.org/dist/CGI.pm
http://lists.mysql.com
http://dbi.perl.org/support
http://www.php.net/mailing-lists.php
http://httpd.apache.org/lists.html

 2
 Using SQL to Manage Data

 The MySQL server understands Structured Query Language (SQL). Therefore, SQL is the means
by which you tell the server how to perform data management operations, and fluency with it
is necessary for effective communication. When you use a program such as the mysql client, it
functions primarily as a way for you to send SQL statements to the server to be executed. If you
write programs in a language that has a MySQL interface, such as the Perl DBI module or PHP
PDO extension, these interfaces enable you to communicate with the server by issuing SQL
statements.

 Chapter 1 , “Getting Started with MySQL,” presented a tutorial introducing many of MySQL’s
capabilities, including some basic use of SQL. We’ll build on that material here to go into more
detail on several topics:

 ■ Changing the SQL mode to affect server behavior

 ■ Referring to elements of databases

 ■ Using multiple character sets

 ■ Creating and destroying databases, tables, and indexes

 ■ Obtaining information about databases and their contents

 ■ Retrieving data using joins, subqueries, and unions

 ■ Using multiple-table deletes and updates

 ■ Performing transactions that enable statements to be grouped or canceled

 ■ Setting up foreign key relationships

 ■ Using the FULLTEXT search engine

 The items just listed cover a broad range of topics of what you can do with SQL. Other chapters
provide additional SQL-related information:

 ■ Chapter 4 , “Views and Stored Programs,” discusses how to create and use views (virtual
tables that provide alternative ways of looking at data) and stored programs (functions
and procedures, triggers, and events).

03_9780321833877_ch02.indd 95 3/1/13 9:58 AM

96 Chapter 2 Using SQL to Manage Data

 ■ Chapter 12 , “General MySQL Administration,” describes how to use administrative
statements such as GRANT and REVOKE to manage user accounts. It also discusses the
privilege system that controls what operations accounts are permitted to perform.

 ■ Appendix E , “SQL Syntax Reference,” shows the syntax for SQL statements implemented
by MySQL and the privileges required to use them. It also covers the syntax for using
comments in your SQL statements.

 See also the MySQL Reference Manual, especially for changes made in recent versions of
MySQL.

 2.1 The Server SQL Mode
 The MySQL SQL mode affects several aspects of SQL statement execution, and the server has
a system variable named sql_mode that enables you to configure this mode. The variable can
be set globally to affect all clients, and each individual client can change the mode to affect its
own session with (connection to) the server. This means that any client can change how the
server treats it without impact on other clients.

 The SQL mode affects behaviors such as handling of invalid values during data entry and iden-
tifier quoting. The following list describes a few of the possible mode values:

 ■ STRICT_ALL_TABLES and STRICT_TRANS_TABLES enable “strict” mode. In strict mode,
the server is more restrictive about accepting bad data values. (Specifically, it rejects bad
values rather than changing them to the closest legal value.)

 ■ TRADITIONAL is a composite mode. It is like strict mode, but enables other modes that
impose additional constraints for even stricter data checking. Traditional mode causes the
server to behave like more traditional SQL servers with regard to how it handles bad data
values.

 ■ ANSI_QUOTES tells the server to recognize double quote as an identifier quoting character.

 ■ PIPES_AS_CONCAT causes || to be treated as the standard SQL string concatenation
operator rather than as a synonym for the OR operator.

 ■ ANSI is another composite mode. It turns on ANSI_QUOTES , PIPES_AS_CONCAT , and
several other mode values that cause the server to conform more closely to standard SQL.

 When you set the SQL mode, specify a value consisting of one or more mode values separated
by commas, or an empty string to clear the value. Mode values are not case sensitive.

 To set the SQL mode when you start the server, set the sql_mode system variable on the
 mysqld command line or in an option file. On the command line, you might use a setting like
one of these:

 --sql_mode="TRADITIONAL"
 --sql_mode="ANSI_QUOTES,PIPES_AS_CONCAT"

03_9780321833877_ch02.indd 96 3/1/13 9:58 AM

972.2 MySQL Identifier Syntax and Naming Rules

 To change the SQL mode at runtime, set the sql_mode system variable with a SET statement.
Any client can set its own session-specific SQL mode:

 SET sql_mode = 'TRADITIONAL';

 To set the SQL mode globally, add the GLOBAL keyword:

 SET GLOBAL sql_mode = 'TRADITIONAL';

 Setting the global variable requires the SUPER administrative privilege. The global value
becomes the default SQL mode for clients that connect afterward.

 To determine the current value of the session or global SQL mode, use these statements:

 SELECT @@SESSION.sql_mode;
 SELECT @@GLOBAL.sql_mode;

 The value returned consists of a comma-separated list of enabled modes, or an empty value if
no modes are enabled.

 Section 3.3 , “How MySQL Handles Invalid Data Values,” discusses the SQL mode values that
affect handling of erroneous or missing values during data entry. Appendix D , “System, Status,
and User Variable Reference,” describes the full set of permitted mode values for the sql_mode
variable. For additional information about using system variables, see Section 12.3.1 , “Checking
and Setting System Variable Values.”

 2.2 MySQL Identifier Syntax and Naming Rules
 Almost every SQL statement uses identifiers in some way to refer to a database or its constitu-
ent elements such as tables, views, columns, indexes, stored routines, triggers, or events. When
you refer to elements of databases, identifiers must conform to the following rules.

 Legal characters in identifiers. Unquoted identifiers may consist of latin letters a-z in any
lettercase, digits 0-9 , dollar, underscore, and Unicode extended characters in the range U+0080
to U+FFFF . Identifiers can start with any character that is legal in an identifier, including a
digit. However, an unquoted identifier cannot consist entirely of digits because that would
make it indistinguishable from a number. MySQL’s support for identifiers that begin with
a number is somewhat unusual among database systems. If you use such an identifier, take
particular care if it contains an ‘ E ’ or ‘ e ’ because those characters can lead to ambiguous expres-
sions. For example, the expression 23e + 14 (with spaces surrounding the ‘ + ’ sign) means
column 23e plus the number 14 , but what about 23e+14 ? Does it mean the same thing, or is it
a number in scientific notation?

 Identifiers can be quoted (delimited) within backtick characters (‘ ̀ ’), which permits use of any
character except a NUL byte or Unicode supplementary characters (U+10000 and up):

 CREATE TABLE `my table` (`my-int-column` INT);

03_9780321833877_ch02.indd 97 3/1/13 9:58 AM

98 Chapter 2 Using SQL to Manage Data

 Quoting is useful when an identifier is an SQL reserved word or contains spaces or other special
characters. Quoting an identifier also enables it to be entirely numeric, something not true
of unquoted identifiers. To include an identifier quote character within a quoted identifier,
double it.

 Your operating system might impose additional constraints on database and table identifiers.
See Section 11.2.6 , “Operating System Constraints on Database Object Names.”

 Aliases for column and table names can be fairly arbitrary. You should quote an alias within
identifier quoting characters if it is an SQL reserved word, is entirely numeric, or contains
spaces or other special characters. Column aliases also can be quoted with single quotes or
double quotes.

 Server SQL mode. If the ANSI_QUOTES SQL mode is enabled, you can quote identifiers with
double quotes (although backticks still are permitted).

 CREATE TABLE "my table" ("my-int-column" INT);

 Enabling ANSI_QUOTES has the additional effect that string literals must be written using single
quotes. If you use double quotes, the server interprets the value as an identifier, not as a string.

 Names of built-in functions normally are not reserved and can be used as identifiers without
quotes. However, if the IGNORE_SPACE SQL mode is enabled, function names become reserved
and must be quoted if used as identifiers.

 For instructions on setting the SQL mode, see Section 2.1 , “The Server SQL Mode.”

 Identifier length. Most identifiers have a maximum length of 64 characters. The maximum
length for aliases is 256 characters.

 Identifier qualifiers. Depending on context, an identifier might need to be qualified to clarify
what it refers to. To refer to a database, just specify its name:

 USE db_name ;
 SHOW TABLES FROM db_name ;

 To refer to a table, you have two choices:

 ■ A fully qualified table name consists of a database identifier and a table identifier:

 SHOW COLUMNS FROM db_name.tbl_name ;
 SELECT * FROM db_name.tbl_name ;

 ■ A table identifier by itself refers to a table in the default (current) database. If sampdb is
the default database, the following statements are equivalent:

 SELECT * FROM member;
 SELECT * FROM sampdb.member;

 If no database is selected, it is an error to refer to a table without a database qualifier because
the database to which the table belongs is unknown.

 The same considerations about qualifying table names apply to names of views (which are
“virtual” tables) and stored programs.

03_9780321833877_ch02.indd 98 3/1/13 9:58 AM

992.3 Case Sensitivity in SQL Statements

 To refer to a table column, you have three choices:

 ■ A name written as db_name.tbl_name.col_name is fully qualified.

 ■ A partially qualified name written as tbl_name.col_name refers to a column in the
named table in the default database.

 ■ An unqualified name written simply as col_name refers to whatever table the
surrounding context indicates. The following two queries use the same column names,
but the context supplied by the FROM clause of each statement indicates the table from
which to select the columns:

 SELECT last_name, first_name FROM president;
 SELECT last_name, first_name FROM member;

 Usually, it’s unnecessary to supply fully qualified names, although it’s always legal to do so.
If you select a database with a USE statement, it becomes the default database for subsequent
statements and is implicit in every unqualified table reference. If you write a SELECT statement
that refers to only one table, that table is implicit for every column reference in the state-
ment. It’s necessary to qualify identifiers only when a table or database cannot be determined
from context. For example, if a statement refers to tables from multiple databases, you must
reference any table not in the default database using db_name.tbl_name syntax to let MySQL
know which database contains the table. Similarly, if a query uses multiple tables and refers to
a column name that is used in more than one table, qualify the column identifier with a table
identifier to make it clear which column you mean.

 If you use quotes when referring to a qualified name, quote individual identifiers within the
name separately. For example:

 SELECT * FROM `sampdb`.`member` WHERE `sampdb`.`member`.`member_id` > 100;

 Do not quote the name as a whole. This statement is incorrect:

 SELECT * FROM `sampdb.member` WHERE `sampdb.member.member_id` > 100;

 The requirement that a reserved word be quoted if used as an identifier is waived if the word
follows a qualifier period because context then dictates that the reserved word is an identifier.

 2.3 Case Sensitivity in SQL Statements
 Case sensitivity rules in SQL statements vary for different statement elements, and also depend
on what you are referring to and the operating system of the machine on which the server is
running.

 SQL keywords and function names. Keywords and function names are not case sensitive.
They can be given in any lettercase. The following statements are equivalent:

 SELECT NOW();
 select now();
 sElEcT nOw();

03_9780321833877_ch02.indd 99 3/1/13 9:58 AM

100 Chapter 2 Using SQL to Manage Data

 Database, table, and view names. MySQL represents databases and tables using directories and
files in the underlying filesystem on the server host. As a result, the default case sensitivity of
database and table names depends on how the operating system on that host treats filenames.
Windows filenames are not case sensitive, so a MySQL server running on Windows does not
treat database and table names as case sensitive. Servers running on Unix usually treat database
and table names as case sensitive because Unix filenames are case sensitive. An exception is
that names in Mac OS X Extended filesystems can be case insensitive.

 MySQL represents each view using a file, so the preceding remarks about tables also apply to
views.

 Stored program names. Stored function and procedure names and event names are not case
sensitive. Trigger names are case sensitive, which differs from standard SQL.

 Column and index names. Column and index names are not case sensitive in MySQL. The
following statements are equivalent:

 SELECT name FROM student;
 SELECT NAME FROM student;
 SELECT nAmE FROM student;

 Alias names. By default, table aliases are case sensitive. You can specify an alias in any letter-
case (upper, lower, or mixed), but if you use it multiple times in a statement, you must use the
same lettercase each time. If the lower_case_table_names system variable is nonzero, table
aliases are not case sensitive.

 String values. Case sensitivity of a string value depends on whether it is a binary or nonbinary
string, and, for a nonbinary string, on the collation of its character set. This is true for literal
strings and the contents of string columns. For further information, see Section 3.1.2 , “String
Values.”

 You should consider lettercase issues when you create databases and tables on a machine with
case sensitive filenames if you might someday move them to a machine where filenames are
not case sensitive. Suppose that you create two tables named abc and ABC on a Unix server
where those names are considered distinct. You would have problems moving the tables to a
Windows machine: abc and ABC are not distinguishable because names are not case sensitive.
You would also have trouble replicating the tables from a Unix master server to a Windows
slave server.

 To avoid having case sensitivity become an issue, pick a given lettercase and always create
databases and tables using names in that lettercase. Then case of names won’t be a problem if
you move a database to a different server. I recommend lowercase, particularly if you are using
InnoDB tables, because InnoDB stores database and table names internally in lowercase.

 To force creation of databases and tables with lowercase names even if not specified that way
in CREATE statements, configure the server by setting the lower_case_table_names system
variable. For more information, see Section 11.2.6 , “Operating System Constraints on Database
Object Names.”

03_9780321833877_ch02.indd 100 3/1/13 9:58 AM

1012.4 Character Set Support

 Regardless of whether a database or table name is case sensitive on your system, you must refer
to it using the same lettercase throughout a given query. That is not true for SQL keywords,
function names, or column and index names, all of which may be referred to in varying letter-
case style throughout a query.

 2.4 Character Set Support
 MySQL supports multiple character sets, and character sets can be specified independently at
the server, database, table, column, or string constant level. For example, if you want a table’s
columns to use latin1 by default, but also to include a Hebrew column and a Greek column,
you can do that. In addition, you can explicitly specify collations (sorting orders). It is possible
to find out what character sets and collations are available, and to convert data from one char-
acter set to another.

 This section provides general background on using character set support in MySQL. Chapter
 3 , “Data Types,” provides more specific discussion of character sets, collations, binary versus
nonbinary strings, and how to define and work with character-based table columns.

 MySQL provides the following character set features:

 ■ The server supports simultaneous use of multiple character sets.

 ■ A given character set can have one or more collations. You can choose the collation most
appropriate for your applications.

 ■ Unicode support is provided by the utf8 and ucs2 character sets, which include Basic
Multilingual Plane (BMP) characters, and the utf16 , utf32 , and utf8mb4 character sets,
which include BMP and supplementary characters. MySQL 5.6.1 adds utf16le , which is
like utf16 but uses little-endian rather than big-endian encoding.

 ■ You can specify character sets at the server, database, table, column, and string constant
level:

 ■ The server has a default character set.

 ■ CREATE DATABASE enables you to assign the database character set, and ALTER
DATABASE enables you to change it.

 ■ CREATE TABLE and ALTER TABLE have clauses for table- and column-level
character set assignment.

 ■ The character set for string constants is determined by context or can be specified
explicitly.

 ■ Several functions and operators are available for converting individual values from one
character set to another, and the CHARSET() function returns the character set of a value.
Similarly, the COLLATE operator can be used to alter the collation of a string and the
 COLLATION() function returns the collation of a string.

03_9780321833877_ch02.indd 101 3/1/13 9:58 AM

102 Chapter 2 Using SQL to Manage Data

 ■ SHOW statements and INFORMATION_SCHEMA tables provide information about the
available character sets and collations.

 ■ The server automatically reorders indexes when you change the collation of an indexed
character column.

 You cannot mix character sets within a string, or use different character sets for different rows
of a given column. However, you can implement multi-lingual support by using a Unicode
character set (which represents characters for many languages within a single encoding).

 2.4.1 Specifying Character Sets
 Character set and collation assignments can be made at several levels, from the default used by
the server to the character set used for individual strings.

 The server’s default character set and collation are built in at compile time. You can override
them at server startup or at runtime by setting the character_set_server and collation_
server system variables, as described in Section 12.6.2 , “Selecting the Default Character Set
and Collation.” If you specify only the character set, its default collation becomes the server’s
default collation. If you specify a collation, it must be compatible with the character set. A
collation is compatible with a character set if its name begins with the character set name. For
example, utf8_danish_ci is compatible with utf8 but not with latin1 .

 In SQL statements that create databases and tables, two clauses specify database, table, and
column character set and collation values:

 CHARACTER SET charset
 COLLATE collation

 CHARSET can be used as a synonym for CHARACTER SET . charset is the name of a character set
supported by the server, and collation is the name of one of that character set’s collations.
These clauses can be specified together or separately. If both are given, the collation name must
be compatible with the character set. If only CHARACTER SET is given, its default collation is
used. If only COLLATE is given, the character set is implicit in the first part of the character set
name. These rules apply at several levels:

 ■ To specify a default character set and collation for a database when you create it, use this
statement:

 CREATE DATABASE db_name CHARACTER SET charset COLLATE collation ;

 If no character set or collation is given, the database uses the server defaults.

 ■ To specify a default character set and collation for a table, use CHARACTER SET and
 COLLATE table options at table creation time:

 CREATE TABLE tbl_name (...) CHARACTER SET charset COLLATE collation ;

 If no character set or collation is given, the table uses the database defaults.

03_9780321833877_ch02.indd 102 3/1/13 9:58 AM

1032.4 Character Set Support

 ■ Columns in a table can be assigned a character set and collation explicitly with
 CHARACTER SET and COLLATE attributes. For example:

 c CHAR(10) CHARACTER SET charset COLLATE collation

 If no character set or collation is given, the column uses the table defaults. These
attributes apply to the CHAR , VARCHAR , TEXT , ENUM , and SET data types.

 It’s also possible to sort string values according to a specific collation by using the COLLATE
operator. For example, if c is a latin1 column that has a collation of latin1_swedish_ci , but
you want to order it using Spanish sorting rules, do this:

 SELECT c FROM t ORDER BY c COLLATE latin1_spanish_ci;

 2.4.2 Determining Character Set Availability and Current Settings
 To find out which character sets and collations are available, use these statements:

 SHOW CHARACTER SET;
 SHOW COLLATION;

 Each statement supports a LIKE clause that narrows the results to those character set or colla-
tion names matching a pattern. For example, the following statements list the Latin-based char-
acter sets and the collations available for the utf8 character set:

 mysql> SHOW CHARACTER SET LIKE 'latin%';
 +---------+-----------------------------+-------------------+--------+
 | Charset | Description | Default collation | Maxlen |
 +---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+			
mysql> SHOW COLLATION LIKE 'utf8%';			
+-----------------------+---------+-----+---------+----------+---------+			
Collation	Charset	Id	Default
+-----------------------+---------+-----+---------+----------+---------+			
utf8_general_ci	utf8	33	Yes
utf8_bin	utf8	83	
utf8_unicode_ci	utf8	192	
utf8_icelandic_ci	utf8	193	
utf8_latvian_ci	utf8	194	
utf8_romanian_ci	utf8	195	
utf8_slovenian_ci	utf8	196	
 ...

 Collation names always begin with the character set name. Each character set has at least one
collation, and one of them is its default collation.

03_9780321833877_ch02.indd 103 3/1/13 9:58 AM

104 Chapter 2 Using SQL to Manage Data

 Information about the available character sets or collations can also be obtained from the
 CHARACTER_SETS or COLLATIONS table in the INFORMATION_SCHEMA database (see Section 2.7 ,
“Obtaining Database Metadata”).

 To display the server’s current character set and collation settings, use SHOW VARIABLES :

 mysql> SHOW VARIABLES LIKE 'character_set_%';
 +--------------------------+--------+
 | Variable_name | Value |
 +--------------------------+--------+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
+--------------------------+--------+	
mysql> SHOW VARIABLES LIKE 'collation_%';	
+----------------------+-------------------+	
Variable_name	Value
+----------------------+-------------------+	
collation_connection	utf8_general_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
 +----------------------+-------------------+

 Several of these system variables affect how a client communicates with the server after
establishing a connection. For details, refer to Section 3.1.2.2 , “Character Set-Related System
Variables.”

 2.4.3 Unicode Support
 One of the reasons there are so many character sets is that different character encodings have
been developed for different languages. This presents several problems. For example, a given
character that is common to several languages might be represented by different numeric
values in different encodings. Also, different languages require different numbers of bytes to
represent characters. The latin1 character set is small enough that every character fits in a
single byte, but languages such as those used in Japan and China contain so many characters
that they require multiple bytes per character.

 Unicode deals with these issues by providing a unified character-encoding system within which
character sets for all languages can be represented in a consistent manner.

 The utf8 and ucs2 Unicode character sets include only characters in the Basic Multilingual
Plane (BMP), which is limited to 65,536 characters. They do not support supplementary charac-
ters outside the BMP.

03_9780321833877_ch02.indd 104 3/1/13 9:58 AM

1052.5 Selecting, Creating, Dropping, and Altering Databases

 ■ The ucs2 character set corresponds to the Unicode UCS-2 encoding. It represents each
character using 2 bytes, most significant byte first. UCS is an abbreviation for Universal
Character Set.

 ■ The utf8 character set has a variable-length format that represents characters using from
1 to 3 bytes. It corresponds to the Unicode UTF-8 encoding. UTF is an abbreviation for
Unicode Transformation Format.

 Beginning with MySQL 5.5.3, other Unicode character sets are available that include supple-
mentary characters in addition to BMP characters.

 ■ The utf16 and utf32 character sets are like ucs2 but with supplementary characters
added. For utf16 , BMP characters take 2 bytes (as for ucs2) and supplementary
characters take 4 bytes. For utf32 , all characters take 4 bytes.

 ■ The utf8mb4 character set contains all the utf8 characters (which take 1 to 3 bytes
each), but also supplementary characters that take 4 bytes each.

 MySQL 5.6.1 adds utf16le , which is like utf16 but uses little-endian rather than big-endian
encoding.

 2.5 Selecting, Creating, Dropping, and Altering
Databases
 MySQL provides several database-level statements: USE for selecting a default database, CREATE
DATABASE for creating databases, DROP DATABASE for removing them, and ALTER DATABASE for
modifying global database characteristics.

 The keyword SCHEMA is a synonym for DATABASE in any statement where the latter occurs.

 2.5.1 Selecting Databases
 The USE statement selects a database to make it the default (current) database for a given
session with the server:

 USE db_name ;

 You must have some access privilege for the database or an error occurs.

 It is not strictly necessary to select a database explicitly. You can refer to tables in a database
without selecting it first by using qualified names that identify both the database and the table.
For example, to retrieve the contents of the president table in the sampdb database without
making it the default database, write the query like this:

 SELECT * FROM sampdb.president;

 Selecting a database doesn’t mean that it must be the default for the duration of the session.
You can issue USE statements as necessary to switch between databases. Nor does selecting a

03_9780321833877_ch02.indd 105 3/1/13 9:58 AM

106 Chapter 2 Using SQL to Manage Data

database limit you to using tables only from that database. While one database is the default,
you can refer to tables in other databases by qualifying their names with the appropriate data-
base identifier.

 When you disconnect from the server, any notion by the server of which database was the
default for the session disappears. If you connect to the server again, it doesn’t remember what
database you had selected previously.

 2.5.2 Creating Databases
 To create a database, use a CREATE DATABASE statement:

 CREATE DATABASE db_name ;

 The database must not already exist, and you must have the CREATE privilege for it.

 CREATE DATABASE supports several optional clauses. The full syntax is as follows:

 CREATE DATABASE [IF NOT EXISTS] db_name
 [CHARACTER SET charset] [COLLATE collation];

 By default, an error occurs if you try to create a database that already exists. To suppress this
error and create a database only if it does not already exist, add an IF NOT EXISTS clause:

 CREATE DATABASE IF NOT EXISTS db_name ;

 By default, the server character set and collation become the database default character set
and collation. To set these database attributes explicitly, use the CHARACTER SET and COLLATE
clauses. For example:

 CREATE DATABASE mydb CHARACTER SET utf8 COLLATE utf8_icelandic_ci;

 If CHARACTER SET is given without COLLATE , the character set default collation is used. If
 COLLATE is given without CHARACTER SET , the first part of the collation name determines the
character set.

 The character set must be one of those supported by the server, such as latin1 or sjis . The
collation should be a legal collation for the character set. For further discussion of character sets
and collations, see Section 2.4 , “Character Set Support.”

 When you create a database, the MySQL server creates a directory under its data directory that
has the same name as the database. The new directory is called the database directory. The
server also creates a db.opt file in the database directory for storing attributes such as the data-
base character set and collation. When you create a table in the database later, the database
defaults become the table defaults if the table definition does not specify its own default char-
acter set and collation.

 To see the definition for an existing database, use a SHOW CREATE DATABASE statement:

03_9780321833877_ch02.indd 106 3/1/13 9:58 AM

1072.6 Creating, Dropping, Indexing, and Altering Tables

 mysql> SHOW CREATE DATABASE mydb\G
 *************************** 1. row ***************************
 Database: mydb
 Create Database: CREATE DATABASE `mydb`
 /*!40100 DEFAULT CHARACTER SET utf8
 COLLATE utf8_icelandic_ci */

 2.5.3 Dropping Databases
 Dropping a database is as easy as creating one, assuming that you have the DROP privilege for it:

 DROP DATABASE db_name ;

 The DROP DATABASE statement is not something to use with wild abandon. It removes the
database and all its contents (tables, stored routines, and so forth), which are therefore gone
forever unless you have been making regular backups.

 A database is represented by a directory under the data directory, and the directory is intended
for storage of objects such as tables, views, and triggers. If a DROP DATABASE statement fails,
the reason most likely is that the database directory contains files not associated with database
objects. DROP DATABASE will not delete such files, and as a result will not delete the directory,
either. This means that the database directory continues to exist and will show up if you issue
a SHOW DATABASES statement. To really drop the database if this occurs, manually remove any
extraneous files and subdirectories from the database directory, then issue the DROP DATABASE
statement again.

 2.5.4 Altering Databases
 The ALTER DATABASE statement changes a database’s global attributes, if you have the ALTER
privilege for it. Currently, the only such attributes are the default character set and collation:

 ALTER DATABASE [db_name] [CHARACTER SET charset] [COLLATE collation];

 The earlier discussion for CREATE DATABASE describes the effect of the CHARACTER SET and
 COLLATE clauses, at least one of which must be given.

 If you omit the database name, ALTER DATABASE applies to the default database.

 2.6 Creating, Dropping, Indexing, and Altering Tables
 MySQL enables you to create tables, drop (remove) them, and change their structure with the
 CREATE TABLE , DROP TABLE , and ALTER TABLE statements. The CREATE INDEX and DROP
INDEX statements enable you to add or remove indexes on existing tables. The following
sections provide the details for these statements, but first it’s necessary to discuss the storage
engines that MySQL supports for managing different types of tables.

03_9780321833877_ch02.indd 107 3/1/13 9:58 AM

108 Chapter 2 Using SQL to Manage Data

 2.6.1 Storage Engine Characteristics
 MySQL supports multiple storage engines (or “table handlers” as they used to be known). Each
storage engine implements tables that have a specific set of properties or characteristics. Table
 2.1 briefly describes these storage engines, and later discussion provides more detail about some
of them (primarily InnoDB and MyISAM). Others are either less commonly used or, in the
case of NDB, require extensive discussion beyond what can be given here. Consequently, the
remainder of this book says little about them.

 Table 2.1 MySQL Storage Engines

 Storage Engine Description

 ARCHIVE Archival storage (no modification of rows after insertion)

 BLACKHOLE Engine that discards writes and returns empty reads

 CSV Storage in comma-separated values format

 FEDERATED Engine for accessing remote tables

 InnoDB Transactional engine with foreign keys

 MEMORY In-memory tables

 MERGE Manages collections of MyISAM tables

 MyISAM The main nontransactional storage engine

 NDB The engine for MySQL Cluster

 Some of the engine names have synonyms. MRG_MyISAM and NDBCLUSTER are synonyms
for MERGE and NDB, respectively. The MEMORY and InnoDB storage engines originally
were known as HEAP and Innobase, respectively. The latter names are still recognized but
deprecated.

 Originally, the MySQL server was built such that all storage engines to be made available were
compiled in. Now the server uses a “pluggable” architecture that enables plugins to be loaded
selectively, and many storage engines are built as plugins. This permits the DBA to treat those
engines as optional and load only those needed. The plugin interface also permits storage
engines from third-party developers to be integrated into the server. For information about this
interface, see Section 12.4 , “The Plugin Interface.”

 2.6.1.1 Checking Which Storage Engines Are Available

 The engines actually available for a given server depend on your version of MySQL, how the
server was configured at build time, and the startup options you use. For information about
selecting storage engines, see Section 12.5 , “Storage Engine Configuration.”

 To see which storage engines the server knows about, use the SHOW ENGINES statement:

03_9780321833877_ch02.indd 108 3/1/13 9:58 AM

1092.6 Creating, Dropping, Indexing, and Altering Tables

 mysql> SHOW ENGINES\G
 *************************** 1. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
 Transactions: YES
 XA: YES
 Savepoints: YES
 ...
 *************************** 8. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
 Transactions: NO
 XA: NO
 Savepoints: NO
 ...

 The Support column value is YES or NO to indicate that the engine is or is not available,
 DISABLED if the engine is present but turned off, or DEFAULT for the storage engine that the
server uses by default. The engine designated as DEFAULT should be considered available. The
 Transactions column indicates whether an engine supports transactions. XA and Savepoints
indicate whether an engine supports distributed transactions (not covered in this book) and
partial transaction rollback.

 The ENGINES table in the INFORMATION_SCHEMA database provides the same information as
 SHOW ENGINES , but since you access it with SELECT , you can apply query conditions to select
only the information in which you’re interested. For example, this query uses the ENGINES
table to check for available engines that support transactions:

 mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE TRANSACTIONS = 'YES';
 +--------+
 | ENGINE |
 +--------+
 | InnoDB |
 +--------+

 2.6.1.2 Table Representation on Disk

 Each time you create a table, MySQL creates a disk file that contains the table’s format (that
is, its definition). The format file has a basename that is the same as the table name and an
 .frm extension. For a table named t , the format file is named t.frm . The server creates the
file in the database directory for the database that the table belongs to. The .frm file is an
invariant because there is one for every table, no matter which storage engine manages the
table. The name of a table as used in SQL statements might differ from the table-name part of
the associated .frm file if the name contains characters that are problematic in filenames. See

03_9780321833877_ch02.indd 109 3/1/13 9:58 AM

110 Chapter 2 Using SQL to Manage Data

 Section 11.2.6 , “Operating System Constraints on Database Object Names,” for a description of
the rules for mapping from SQL names to filenames.

 Individual storage engines may also create other files that are unique to the table, to be used for
storing the table’s content. For a given table, any files specific to it are located in the database
directory for the database that contains the table. Table 2.2 shows the filename extensions for
table-specific files created by certain storage engines.

 Table 2.2 Table Files Created by Storage Engines

 Storage Engine Files on Disk

 InnoDB .ibd (data and indexes)

 MyISAM .MYD (data), .MYI (indexes)

 CSV .CSV (data), .CSM (metadata)

 For some storage engines, the format file is the only file specifically associated with a particular
table. Other engines may store table content elsewhere than on disk, or may use one or more
tablespaces (storage areas shared by multiple tables):

 ■ The MEMORY storage engine stores table contents in memory, not on disk.

 ■ By default, InnoDB stores table data and indexes in its system tablespace. That is, all
InnoDB table contents are managed within a shared storage area, not within files specific
to a particular table. Alternatively, InnoDB creates .ibd files if you configure it to use
individual per-table tablespaces.

 The following sections characterize the features and behavior of selected MySQL storage
engines. For additional information about how engines represent tables physically, see Section
 11.2.3 , “Representation of Tables in the Filesystem.”

 2.6.1.3 The InnoDB Storage Engine

 The InnoDB storage engine is the default engine in MySQL, unless you have configured your
server otherwise. The following list describes some of its features:

 ■ Transaction-safe tables with commit and rollback. Savepoints can be created to enable
partial rollback.

 ■ Automatic recovery after a crash.

 ■ Foreign key and referential integrity support, including cascaded delete and update.

 ■ Row-level locking and multi-versioning for good concurrency performance under query
mix conditions that include both retrievals and updates.

 ■ As of MySQL 5.6, InnoDB supports full-text searches and FULLTEXT indexes.

03_9780321833877_ch02.indd 110 3/1/13 9:58 AM

1112.6 Creating, Dropping, Indexing, and Altering Tables

 By default, InnoDB manages tables within a single system tablespace, rather than by using
table-specific files like most other storage engines. The tablespace consists of one or more files
and can include raw partitions. The InnoDB storage engine, in effect, treats the tablespace as a
virtual filesystem within which it manages the contents of all InnoDB tables. Tables thus can
exceed the size permitted by the filesystem for individual files. You can also configure InnoDB
to use a separate tablespace file for each table. In this case, each table has an .ibd file in its
database directory.

 To configure individual tablespaces, enable the innodb_file_per_table system variable,
either at server startup or at runtime. Enabling this variable also enables other InnoDB features,
such as fast table truncation and row storage formats that offer more efficient table process-
ing for some kinds of data. For more information, see Section 12.5.3.1.4 , “Using Individual
(Per-Table) InnoDB Tablespaces.”

 2.6.1.4 The MyISAM Storage Engine

 The MyISAM storage engine offers these features:

 ■ Key compression when storing runs of successive similar string index values. MyISAM
also can compress runs of similar numeric index values because numeric values are stored
with the high byte first. (Index values tend to vary faster in the low-order bytes, so high-
order bytes are more subject to compression.) To enable numeric compression, use the
 PACK_KEYS=1 option when creating a MyISAM table.

 ■ More features for AUTO_INCREMENT columns than provided by other storage engines. For
more information, see Section 3.4 , “Working with Sequences.”

 ■ Each MyISAM table has a flag that is set when a table-check operation is performed.
MyISAM tables also have a flag indicating whether a table was closed properly when last
used. If the server shuts down abnormally or the machine crashes, the flags can be used
to detect tables that need to be checked. To do this automatically, start the server with
the myisam_recover_options system variable set to a value that includes the FORCE
option. This causes the server to check the table flags whenever it opens a MyISAM table
and perform a table repair if necessary. See Section 14.3.1 , “Using the Server’s Auto-
Recovery Capabilities.”

 ■ Full-text searches and FULLTEXT indexes.

 ■ Spatial data types and SPATIAL indexes.

 2.6.1.5 The MEMORY Storage Engine

 The MEMORY storage engine uses tables that are stored in memory and that have fixed-length
rows, two properties that make them very fast.

 MEMORY tables are temporary in the sense that their contents disappear when the server
terminates. That is, a MEMORY table still exists when the server restarts, but will be empty.
However, in contrast to temporary tables created with CREATE TEMPORARY TABLE , MEMORY
tables are visible to other clients.

03_9780321833877_ch02.indd 111 3/1/13 9:58 AM

112 Chapter 2 Using SQL to Manage Data

 MEMORY tables have characteristics that enable them to be handled more simply, and thus
more quickly:

 ■ By default, MEMORY tables use hashed indexes, which are very fast for equality
comparisons but slow for range comparisons. Consequently, hashed indexes are used
only for comparisons performed with the = and <=> equality operators, but not for
comparison operators such as < or > . Hashed indexes also are not used in ORDER BY
clauses for this reason.

 ■ Rows are stored in MEMORY tables using fixed-length format for easier processing.
A consequence is that you cannot use the BLOB and TEXT variable-length data types.
 VARCHAR is a variable-length type, but is permitted because it is treated internally as
 CHAR , a fixed-length type.

 To use a MEMORY table for comparisons that look for a range of values using operators such
as < , > , or BETWEEN , you can use BTREE indexes instead of hashed indexes. See Section 2.6.4.2 ,
“Creating Indexes,” and Section 5.1.3 , “Choosing Indexes.”

 2.6.1.6 The NDB Storage Engine

 NDB is MySQL’s cluster storage engine. For this storage engine, the MySQL server actually acts
as a client to a cluster of other processes that provide access to the NDB tables. Cluster node
processes communicate with each other to manage tables in memory. The tables are replicated
among cluster processes for redundancy. Memory storage provides high performance, and the
cluster provides high availability because it survives failure of any given node.

 NDB configuration and use is beyond the scope of this book and is not covered further here.
See the MySQL Reference Manual for details.

 2.6.1.7 Other Storage Engines

 MySQL has several other storage engines that I group here under the “miscellaneous” category:

 ■ The ARCHIVE engine provides archival storage. It’s intended for storage of large numbers
of rows that are written once and never modified thereafter. For this reason, it supports
only a limited number of statements. INSERT and SELECT work, but REPLACE always acts
like INSERT , and you cannot use DELETE or UPDATE . Rows are compressed during storage
and decompressed during retrieval to save space. An ARCHIVE table can include an
indexed AUTO_INCREMENT column; other columns cannot be indexed.

 ■ The BLACKHOLE engine creates tables for which writes are ignored and reads return
nothing. It is the database equivalent of the Unix /dev/null device.

 ■ The CSV engine stores data in comma-separated values format. For each table, it creates
a .CSV file in the database directory. This is a plain text file in which each table row
appears as a single line. The CSV engine does not support indexing.

03_9780321833877_ch02.indd 112 3/1/13 9:58 AM

1132.6 Creating, Dropping, Indexing, and Altering Tables

 ■ The FEDERATED engine provides access to tables that are managed by other MySQL
servers. In other words, the contents of a FEDERATED table really are located remotely.
For a FEDERATED table, you specify the host where the other server is running and
provide the username and password of an account on that server. When you access the
FEDERATED table, the local server connects to the remote server using this account.

 ■ The MERGE engine provides a means of grouping a set of MyISAM tables into a single
logical unit. Querying a MERGE table in effect queries all the constituent tables. One
advantage of this is that you can exceed the maximum table size permitted by the
filesystem for individual MyISAM tables. Partitioned tables provide an alternative
to MERGE tables and are not limited to MyISAM tables. See Section 2.6.2.5 , “Using
Partitioned Tables.”

 2.6.2 Creating Tables
 To create a table, use a CREATE TABLE statement. You must have the CREATE privilege for the
table. The full syntax for this statement is complex because there are so many optional clauses,
but it’s usually fairly simple to use in practice. For example, most of the CREATE TABLE state-
ments that we used in Chapter 1 , “Getting Started with MySQL,” are reasonably uncompli-
cated. If you start with the more basic forms and work up, you shouldn’t have much trouble.

 A CREATE TABLE statement specifies, at a minimum, the table name and a list of the columns
in it. For example:

 CREATE TABLE mytbl
 (
 name CHAR(20),
 birth DATE NOT NULL,
 weight INT,
 sex ENUM('F','M')
);

 In addition to the column definitions, you can specify how the table should be indexed when
you create it. Another option is to leave the table unindexed when you create it and add the
indexes later. For MyISAM tables, that’s a good strategy if you plan to populate the table with
a lot of data before you begin using it for queries. Updating indexes as you insert each row is
much slower than loading the data into an unindexed MyISAM table and creating the indexes
afterward.

 We have already covered the basic syntax for CREATE TABLE in Chapter 1 , “Getting Started
with MySQL.” Details on how to write column definitions are given in Chapter 3 , “Data
Types.” Here, we deal more generally with some important extensions to CREATE TABLE that
give you a lot of flexibility in how you construct tables:

 ■ Table options that modify storage characteristics

 ■ Creating a table only if it doesn’t already exist

 ■ Temporary tables that the server drops automatically when the client session ends

03_9780321833877_ch02.indd 113 3/1/13 9:58 AM

114 Chapter 2 Using SQL to Manage Data

 ■ Creating a table from another table or from the result of a SELECT query

 ■ Using partitioned tables

 2.6.2.1 Table Options

 To modify a table’s storage characteristics, add one or more table options following the closing
parenthesis in the CREATE TABLE statement. For a complete list of options, see the description
for CREATE TABLE in Appendix E , “SQL Syntax Reference.”

 One table option is ENGINE = engine_name , which specifies the storage engine to use for the
table. For example, to create a MEMORY or MyISAM table, write the statement like this:

 CREATE TABLE mytbl (...) ENGINE=MEMORY;
 CREATE TABLE mytbl (...) ENGINE=MyISAM;

 The engine name is not case sensitive. With no ENGINE option, the server creates the table
using the default storage engine. The built-in default is InnoDB, but you can tell the server
to use a different default using the instructions in Section 12.5.2 , “Selecting a Default Storage
Engine.”

 If you name a storage engine that is not enabled, two warnings occur:

 mysql> CREATE TABLE t (i INT) ENGINE=ARCHIVE;
 Query OK, 0 rows affected, 2 warnings (0.01 sec)
 mysql> SHOW WARNINGS;
 +---------+------+---+
 | Level | Code | Message |
 +---------+------+---+
 | Warning | 1286 | Unknown storage engine 'ARCHIVE' |
 | Warning | 1266 | Using storage engine InnoDB for table 't' |
 +---------+------+---+

 To make sure that a table uses a particular storage engine, be sure to include the ENGINE table
option. Because the default engine can be changed, you might not get the default you expect if
you omit ENGINE . In addition, verify that the CREATE TABLE statement produces no warnings,
which often indicate that the specified engine was not available and that the default engine
was used instead.

 To tell MySQL to issue an error if the engine you specify is not available, (instead of substitut-
ing the default storage engine), enable the NO_ENGINE_SUBSTITUTION SQL mode.

 To determine which storage engine a table uses, issue a SHOW CREATE TABLE statement and
look for the ENGINE option in the output:

 mysql> SHOW CREATE TABLE t\G
 *************************** 1. row ***************************
 Table: t
 Create Table: CREATE TABLE `t` (
 `i` int(11) DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1

03_9780321833877_ch02.indd 114 3/1/13 9:58 AM

1152.6 Creating, Dropping, Indexing, and Altering Tables

 The storage engine is also available in the output from the SHOW TABLE STATUS statement or
the INFORMATION_SCHEMA.TABLES table.

 The MAX_ROWS and AVG_ROW_LENGTH options can help you size a MyISAM table. By default,
MyISAM creates tables with an internal row pointer size that permits table files to grow up to
256TB. If you specify the MAX_ROWS and AVG_ROW_LENGTH options, that gives MyISAM informa-
tion that it should use a pointer size for a table that can hold at least MAX_ROWS rows.

 To modify the storage characteristics of an existing table, table options can be used with an
 ALTER TABLE statement. For example, to change mytbl from its current storage engine to
InnoDB, do this:

 ALTER TABLE mytbl ENGINE=InnoDB;

 For more information about changing storage engines, see Section 2.6.5 , “Altering Table
Structure.”

 2.6.2.2 Provisional Table Creation

 To create a table only if it doesn’t already exist, use CREATE TABLE IF NOT EXISTS . You can
use this statement for an application that makes no assumptions about whether a table that it
needs has been set up in advance. The application can go ahead and attempt to create the table
as a matter of course. The IF NOT EXISTS modifier is particularly useful for scripts that you
run as batch jobs with mysql . In this context, a regular CREATE TABLE statement doesn’t work
very well. The first time the job runs, it creates the table, but the second time, an error occurs
because the table already exists. If you use IF NOT EXISTS , there is no problem. The first time
the job runs, it creates the table, as before. For second and subsequent times, table creation
attempts are silently ignored without error. This enables the job to continue processing as if the
attempt had succeeded.

 If you use IF NOT EXISTS , be aware that MySQL does not compare the table structure in the
 CREATE TABLE statement with the existing table. If a table exists with the given name but has a
different structure, the statement does not fail. If that is a risk you wish not to take, it is better
instead to precede your CREATE TABLE statement by DROP TABLE IF EXISTS .

 2.6.2.3 TEMPORARY Tables

 Adding the TEMPORARY keyword to a table-creation statement causes the server to create a
temporary table that disappears automatically when your session with the server terminates:

 CREATE TEMPORARY TABLE tbl_name ... ;

 This is handy because you need not issue a DROP TABLE statement to get rid of the table, and
the table doesn’t persist if your session terminates abnormally. For example, if you have a
complex query stored in a batch file that you run with mysql and you decide not to wait for
it to finish, you can kill the script with impunity and the server will remove any TEMPORARY
tables created by the script.

03_9780321833877_ch02.indd 115 3/1/13 9:58 AM

116 Chapter 2 Using SQL to Manage Data

 To create a temporary table using a particular storage engine, add an ENGINE table option to
the CREATE TEMPORARY TABLE statement.

 Although the server drops a TEMPORARY table automatically when your client session ends, you
can drop it explicitly as soon as you’re done with it to enable the server to free any resources
associated with it. This is a good idea if your session with the server will not end for a while,
particularly for temporary MEMORY tables.

 A TEMPORARY table is visible only to the client that creates the table. Different clients can each
create a TEMPORARY table with the same name and without conflict because each client sees
only the table that it created.

 The name of a TEMPORARY table can be the same as an existing permanent table. This is
not an error, nor does the existing permanent table get clobbered. Instead, the permanent
table becomes hidden (inaccessible) to the client that creates the TEMPORARY table while the
 TEMPORARY table exists. Suppose that you create a TEMPORARY table named member in the
 sampdb database. The original member table becomes hidden, and references to member refer
to the TEMPORARY table. If you issue a DROP TABLE member statement, the TEMPORARY table is
removed and the original member table “reappears.” If you disconnect from the server without
dropping the TEMPORARY table, the server automatically drops it for you. The next time you
connect, the original member table is visible again. (The original table also reappears if you
rename a TEMPORARY table that hides it to have a different name.)

 The name-hiding mechanism works only to one level. That is, you cannot create two
 TEMPORARY tables with the same name.

 Keep in mind the following caveats when considering whether to use a TEMPORARY table:

 ■ If your client program automatically reconnects to the server if the connection is
lost, any TEMPORARY tables will be gone when you reconnect. If you were using the
 TEMPORARY table to “hide” a permanent table with the same name, the permanent table
now becomes the table that you use. For example, a DROP TABLE after an undetected
reconnect will drop the permanent table. To avoid this problem, use DROP TEMPORARY
TABLE instead.

 ■ Because TEMPORARY tables are visible only within the session that created them, they
are not useful with connection pooling mechanisms that do not guarantee the same
connection for each statement that you issue.

 ■ With connection pooling or persistent connections, your connection to the MySQL
server will not necessarily close when your application terminates. Those mechanisms
might hold the connection open for use by other clients, which means that you cannot
assume that TEMPORARY tables will disappear automatically when your application
terminates.

 2.6.2.4 Creating Tables from Other Tables or Query Results

 It’s sometimes useful to create a copy of a table. For example, you might have a data file that
you want to load into a table using LOAD DATA , but you’re not quite sure about the options for

03_9780321833877_ch02.indd 116 3/1/13 9:58 AM

1172.6 Creating, Dropping, Indexing, and Altering Tables

specifying the data format. You can end up with malformed rows in the original table if you
don’t get the options right the first time. Using an empty copy of the original table enables
you to experiment with the LOAD DATA options for specifying column and line delimiters until
you’re satisfied your input rows are being interpreted properly. Then you can load the file into
the original table by rerunning the LOAD DATA statement with the original table name.

 It’s also sometimes desirable to save the result of a query into a table rather than displaying
it on your screen. By saving the result, you can refer to it later without rerunning the original
query, perhaps to perform further analysis on it.

 MySQL provides two statements for creating new tables from other tables or from query results.
These statements have differing advantages and disadvantages:

 ■ CREATE TABLE … LIKE creates a new table as an empty copy of the original one. It
copies the original table structure exactly, so that each column is preserved with all of its
attributes. The index structure is copied as well. However, the new table is empty, so to
populate it a second statement is needed (such as INSERT INTO … SELECT). Also, CREATE
TABLE … LIKE cannot create a new table from a subset of the original table’s columns,
and it cannot use columns from any other table but the original one.

 ■ CREATE TABLE … SELECT creates a new table from the result of an arbitrary SELECT
statement. By default, this statement does not copy all column attributes such as
 AUTO_INCREMENT . Nor does creating a table by selecting data into it automatically copy
any indexes from the original table, because result sets are not themselves indexed. On
the other hand, CREATE TABLE … SELECT can both create and populate the new table in
a single statement. It also can create a new table using a subset of the original table and
include columns from other tables or columns created as the result of expressions.

 To use CREATE TABLE … LIKE for creating an empty copy of an existing table, write a state-
ment like this:

 CREATE TABLE new_tbl_name LIKE tbl_name ;

 To create an empty copy of a table and then populate it from the original table, use CREATE
TABLE … LIKE followed by INSERT INTO … SELECT :

 CREATE TABLE new_tbl_name LIKE tbl_name ;
 INSERT INTO new_tbl_name SELECT * FROM tbl_name ;

 To create a table as a temporary copy of itself, include the TEMPORARY keyword:

 CREATE TEMPORARY TABLE tbl_name LIKE tbl_name ;
 INSERT INTO tbl_name SELECT * FROM tbl_name ;

 Using a TEMPORARY table with the same name as the original can be useful when you want to
try some statements that modify the contents of a table, without changing the original table.
To use prewritten scripts that use the original table name, you need not edit them to refer to a
different table. Just add the CREATE TEMPORARY TABLE and INSERT statements to the begin-
ning of the script. The script will create a temporary copy and operate on the copy, which the
server deletes when the script finishes. (However, bear in mind the auto-reconnect caveat noted
in Section 2.6.2.3 , “ TEMPORARY Tables.”)

03_9780321833877_ch02.indd 117 3/1/13 9:58 AM

118 Chapter 2 Using SQL to Manage Data

 To insert into the new table only some of the rows from the original table, add a WHERE
clause that identifies which rows to select. The following statements create a new table named
 student_f that contains only the rows for female students from the student table:

 CREATE TABLE student_f LIKE student;
 INSERT INTO student_f SELECT * FROM student WHERE sex = 'f';

 If you don’t care about retaining the exact column definitions from the original table, CREATE
TABLE … SELECT sometimes is easier to use than CREATE TABLE … LIKE because it can create
and populate the new table in a single statement:

 CREATE TABLE student_f SELECT * FROM student WHERE sex = 'f';

 CREATE TABLE … SELECT also can create new tables that don’t contain exactly the same set of
columns in an existing table. You can use it to cause a new table to spring into existence on the
fly to hold the result of an arbitrary SELECT query. This makes it exceptionally easy to create a
table fully populated with the data in which you’re interested, ready to be used in further state-
ments. However, the new table can contain strange column names if you’re not careful. When
you create a table by selecting data into it, the column names are taken from the columns
that you are selecting. If a column is calculated as the result of an expression, the name of the
column is the text of the expression, which creates a table with an unusual column name:

 mysql> CREATE TABLE mytbl SELECT PI() * 2;
 mysql> SELECT * FROM mytbl;
 +----------+
 | PI() * 2 |
 +----------+
 | 6.283185 |
 +----------+

 That’s unfortunate, because the column name can be referred to directly only as a quoted
identifier:

 mysql> SELECT `PI() * 2` FROM mytbl;
 +----------+
 | PI() * 2 |
 +----------+
 | 6.283185 |
 +----------+

 To avoid this problem, use a column alias to provide a name that is easier to work with:

 mysql> DROP TABLE mytbl;
 mysql> CREATE TABLE mytbl SELECT PI() * 2 AS mycol;
 mysql> SELECT mycol FROM mytbl;
 +----------+
 | mycol |
 +----------+
 | 6.283185 |
 +----------+

03_9780321833877_ch02.indd 118 3/1/13 9:58 AM

1192.6 Creating, Dropping, Indexing, and Altering Tables

 A related difficulty occurs if you select from different tables columns that have the same name.
Suppose that tables t1 and t2 both have a column c and you want to create a table from all
combinations of rows in both tables. The following statement fails because it attempts to create
a table with two columns named c :

 mysql> CREATE TABLE t3 SELECT * FROM t1 INNER JOIN t2;
 ERROR 1060 (42S21): Duplicate column name 'c'

 To solve this problem, provide aliases as necessary to give each column a unique name in the
new table:

 mysql> CREATE TABLE t3 SELECT t1.c, t2.c AS c2
 -> FROM t1 INNER JOIN t2;

 As mentioned previously, a shortcoming of CREATE TABLE … SELECT is that it does not incor-
porate all characteristics of the original data into the structure of the new table. For example,
creating a table by selecting data into it does not copy indexes from the original table, and it
can lose column attributes. The retained attributes include whether the column is NULL or NOT
NULL , the character set and collation, the default value, and the column comment.

 In some cases, you can force specific attributes to be used in the new table by invoking the
 CAST() function in the SELECT part of the statement. The following CREATE TABLE … SELECT
statement forces the columns produced by the SELECT to be treated as INT UNSIGNED , TIME ,
and DECIMAL(10,5) , as you can verify with DESCRIBE :

 mysql> CREATE TABLE mytbl SELECT
 -> CAST(1 AS UNSIGNED) AS i,
 -> CAST(CURTIME() AS TIME) AS t,
 -> CAST(PI() AS DECIMAL(10,5)) AS d;
 mysql> DESCRIBE mytbl;
 +-------+-----------------+------+-----+---------+-------+
 | Field | Type | Null | Key | Default | Extra |
 +-------+-----------------+------+-----+---------+-------+
i	int(1) unsigned	NO		0	
t	time	YES		NULL	
d	decimal(10,5)	NO		0.00000	
 +-------+-----------------+------+-----+---------+-------+

 The permitted cast types are BINARY (binary string), CHAR , DATE , DATETIME , TIME , SIGNED ,
 SIGNED INTEGER , UNSIGNED , UNSIGNED INTEGER , and DECIMAL .

 It is also possible to provide explicit column definitions in the CREATE TABLE part, to be used
for the columns retrieved by the SELECT part. Columns in the two parts are matched by name
(not position), so provide aliases in the SELECT part as necessary to cause them to match
properly:

 mysql> CREATE TABLE mytbl (i INT UNSIGNED, t TIME, d DECIMAL(10,5))
 -> SELECT
 -> 1 AS i,
 -> CAST(CURTIME() AS TIME) AS t,

03_9780321833877_ch02.indd 119 3/1/13 9:58 AM

120 Chapter 2 Using SQL to Manage Data

 -> CAST(PI() AS DECIMAL(10,5)) AS d;
 mysql> DESCRIBE mytbl;
 +-------+------------------+------+-----+---------+-------+
 | Field | Type | Null | Key | Default | Extra |
 +-------+------------------+------+-----+---------+-------+
i	int(10) unsigned	YES		NULL	
t	time	YES		NULL	
d	decimal(10,5)	YES		NULL	
 +-------+------------------+------+-----+---------+-------+

 The technique of providing explicit definitions enables you to create numeric columns with
specified precision and scale, character columns that have a different width than the longest
value in the result set, and so forth. Also note that the Null and Default attributes for some
of the columns differ in this example from those in the previous one. You can provide explicit
definitions for those attributes in the CREATE TABLE part if necessary.

 2.6.2.5 Using Partitioned Tables

 MySQL supports table partitioning, which enables division of table contents into different
physical storage locations. By sectioning table storage, partitioned tables offer benefits such as
these:

 ■ Table storage can be distributed over multiple devices, which may improve access time by
virtue of I/O parallelism.

 ■ The optimizer may be able to localize searches to specific partitions, or to search
partitions in parallel.

 To create a partitioned table, supply the list of columns and indexes in the CREATE TABLE
statement, as usual. In addition, specify a PARTITION BY clause that defines a partitioning
function to be used to assign rows to partitions, and possibly other partition-related options. A
partitioning function assigns rows based on ranges or lists of values or hash values:

 ■ Use range partitioning when rows contain a domain of values such as dates, income
level, or weight that can be divided into discrete ranges.

 ■ Use list partitioning when it makes sense to specify an explicit list of values for each
partition, such as sets of postal codes, phone number prefixes, or IDs for entities that you
group by geographical region.

 ■ Use hash partitioning to distribute the rows among partitions according to hash values
computed from row keys. You can either supply the hash function yourself or tell MySQL
which columns to use and it computes values based on those columns using a built-in
hash function.

 The partitioning function must be deterministic so that the same input values consistently
result in row assignment to the same partition. This rules out functions such as RAND()
or NOW() .

03_9780321833877_ch02.indd 120 3/1/13 9:58 AM

1212.6 Creating, Dropping, Indexing, and Altering Tables

 Suppose that you want to create a table for storing simple log entries consisting of a date and
a descriptive string, and that you already have several years’ worth of entries to be loaded into
the table. For data entries that each contain a date, range partitioning is most natural. To assign
rows for each year to a given partition, use the year part of the date value:

 CREATE TABLE log_partition
 (
 dt DATETIME NOT NULL,
 info VARCHAR(100) NOT NULL,
 INDEX (dt)
)
 PARTITION BY RANGE(YEAR(dt))
 (
 PARTITION p0 VALUES LESS THAN (2010),
 PARTITION p1 VALUES LESS THAN (2011),
 PARTITION p2 VALUES LESS THAN (2012),
 PARTITION p3 VALUES LESS THAN (2013),
 PARTITION pmax VALUES LESS THAN MAXVALUE
);

 The MAXVALUE partition is assigned all rows that have dates from the year 2014 or later. When
the year 2014 arrives, you can split that partition so that all year 2014 rows get their own parti-
tion and rows for 2015 and later go into the MAXVALUE partition:

 ALTER TABLE log_partition REORGANIZE PARTITION pmax
 INTO (
 PARTITION p4 VALUES LESS THAN (2014),
 PARTITION pmax VALUES LESS THAN MAXVALUE
);

 By default, MySQL stores partitions under the directory for the database to which the parti-
tioned table belongs. To distribute storage to other locations (for example, to place them on
different physical devices), use the DATA_DIRECTORY and INDEX_DIRECTORY partition options.
For more information about the syntax for these and other partitioning options, see the
description for CREATE TABLE in Appendix E , “SQL Syntax Reference.”

 2.6.3 Dropping Tables
 Dropping a table is much easier than creating it because you need not specify anything about
the format of its contents. You just have to name it, assuming that you have the DROP privilege
for it:

 DROP TABLE tbl_name ;

 In MySQL, the DROP TABLE statement has several useful extensions. To drop multiple tables,
specify them all in the same statement:

 DROP TABLE tbl_name1 , tbl_name2 , ... ;

03_9780321833877_ch02.indd 121 3/1/13 9:58 AM

122 Chapter 2 Using SQL to Manage Data

 By default, an error occurs if you try to drop a table that does not exist. To suppress this error
and generate a warning instead for nonexistent tables, include IF EXISTS in the statement:

 DROP TABLE IF EXISTS tbl_name ;

 If the statement generates warnings, you can view them with SHOW WARNINGS .

 IF EXISTS is particularly useful in scripts that you use with the mysql client. By default, mysql
exits when an error occurs, and it is an error to try to remove a table that doesn’t exist. For
example, you might have a setup script that creates tables used as the basis for further process-
ing in other scripts. In this situation, you want to make sure the setup script has a clean slate
when it begins. If you use a regular DROP TABLE at the beginning of the script, it fails the first
time because the tables have never been created. Using IF EXISTS makes the problem go
away. If the tables exist, they are dropped. If they do not exist, no error occurs and the script
continues to execute.

 To drop a table only if it is a temporary table, include the TEMPORARY keyword:

 DROP TEMPORARY TABLE tbl_name ;

 2.6.4 Indexing Tables
 Indexes are the primary means of speeding up access to the contents of your tables, particu-
larly for queries that involve joins on multiple tables. This is an important enough topic that
most of an entire chapter discusses why you use indexes, how they work, and how best to
take advantage of them to optimize your queries (see Chapter 5 , “Query Optimization”). This
section covers the characteristics of indexes for the various table types and the syntax for creat-
ing and dropping indexes.

 2.6.4.1 Storage Engine Index Characteristics

 MySQL provides quite a bit of flexibility for index construction:

 ■ You can index single columns or multiple columns. Multiple-column indexes are also
known as composite indexes.

 ■ An index can be constrained to contain only unique values or permitted to contain
duplicate values.

 ■ You can have more than one index on a table to help optimize different types of queries
on the table.

 ■ For string data types other than ENUM or SET , you can elect to index a prefix of a column;
that is, only the leftmost n characters, or n bytes for binary string types. (For BLOB and
 TEXT columns, you can set up an index only if you specify a prefix length.) If the column
is mostly unique within the prefix length, you usually won’t sacrifice performance, and
may well improve it: Indexing a column prefix rather than the entire column can make
an index much smaller and faster to access.

03_9780321833877_ch02.indd 122 3/1/13 9:58 AM

1232.6 Creating, Dropping, Indexing, and Altering Tables

 Not all storage engines offer all indexing features. Table 2.3 summarizes the index properties
for some of MySQL’s storage engines. The table does not include the MERGE storage engine,
because MERGE tables are created from MyISAM tables and have similar index characteristics.
Nor does it include the ARCHIVE, BLACKHOLE, or CSV engines, which support indexing either
not at all or only in limited fashion.

 Table 2.3 Storage Engine Index Characteristics

 Index Characteristic InnoDB MyISAM MEMORY

 NULL values permitted Yes Yes Yes

 Columns per index 16 16 16

 Indexes per table 64 64 64

 Maximum index row size (bytes) 3072 1000 3072

 Index column prefixes Yes Yes Yes

 Maximum prefix size (bytes) 767 1000 3072

 BLOB/TEXT indexes Yes Yes No

 FULLTEXT indexes As of 5.6.4 Yes No

 SPATIAL indexes No Yes No

 HASH indexes No No Yes

 One implication of the variations in index characteristics for different storage engines is that
if you require an index to have certain properties, you may not be able to use certain types
of tables. For example, to use a HASH index, you must use a MEMORY table. To index a TEXT
column, you must use InnoDB or MyISAM.

 To convert an existing table to use a different storage engine that has more suitable index char-
acteristics, use ALTER TABLE . Suppose that you have an InnoDB table in MySQL 5.5 but need
to perform searches using a FULLTEXT index. In MySQL 5.5, this is supported only by MyISAM.
Convert the table using this statement:

 ALTER TABLE tbl_name ENGINE=MyISAM;

 2.6.4.2 Creating Indexes

 MySQL can create several types of indexes:

 ■ A unique index. This prohibits duplicate values for a single-column index, and duplicate
combinations of values for a multiple-column (composite) index.

 ■ A regular (nonunique) index. This gives you indexing benefits but permits duplicates.

03_9780321833877_ch02.indd 123 3/1/13 9:58 AM

124 Chapter 2 Using SQL to Manage Data

 ■ A FULLTEXT index, used for performing full-text searches. This index type is supported
only for MyISAM tables (or, as of MySQL 5.6.4, InnoDB). For more information, see
 Section 2.14 , “Using FULLTEXT Searches.”

 ■ A SPATIAL index. These can be used only with MyISAM tables containing spatial values,
which are described briefly in Section 3.1.4 , “Spatial Values.”

 ■ A HASH index. This is the default index type for MEMORY tables, although you can override
the default to create BTREE indexes instead.

 You can include index definitions for a new table when you use CREATE TABLE . For examples,
see Section 1.4.6 , “Creating Tables.” To add indexes to existing tables, use ALTER TABLE or
 CREATE INDEX . (MySQL maps CREATE INDEX statements onto ALTER TABLE operations
internally.)

 ALTER TABLE is the more versatile than CREATE INDEX because it can create any kind of index
supported by MySQL. For example:

 ALTER TABLE tbl_name ADD INDEX index_name (index_columns);
 ALTER TABLE tbl_name ADD UNIQUE index_name (index_columns);
 ALTER TABLE tbl_name ADD PRIMARY KEY (index_columns);
 ALTER TABLE tbl_name ADD FULLTEXT index_name (index_columns);
 ALTER TABLE tbl_name ADD SPATIAL index_name (index_columns);

 tbl_name is the name of the table to which the index should be added, and index_columns
names the column or columns to index, separated by commas. The index name index_name
is optional. If you leave it out, MySQL picks a name based on the name of the first indexed
column.

 An indexed column must be NOT NULL if indexed using a PRIMARY KEY or SPATIAL index.
Other indexes permit indexed columns to contain NULL values.

 A single ALTER TABLE statement can include multiple table alterations if you separate them
by commas. This enables you to create several indexes at the same time, which is faster than
adding them one at a time with individual ALTER TABLE statements.

 To constrain an index to contain only unique values, create the index as a PRIMARY KEY or as a
 UNIQUE index. The two types of index are very similar, but have two differences:

 ■ A table can contain only one PRIMARY KEY . This is because the name of a PRIMARY KEY
is always PRIMARY and a table cannot have two indexes with the same name. You can
place multiple UNIQUE indexes on a table.

 ■ A PRIMARY KEY cannot contain NULL values. A UNIQUE index can. If a UNIQUE index can
contain NULL values, it can contain multiple NULL values. (A NULL is not considered equal
to any other value, even another NULL .)

 CREATE INDEX can add most types of indexes, with the exception of PRIMARY KEY :

 CREATE INDEX index_name ON tbl_name (index_columns);
 CREATE UNIQUE INDEX index_name ON tbl_name (index_columns);

03_9780321833877_ch02.indd 124 3/1/13 9:58 AM

1252.6 Creating, Dropping, Indexing, and Altering Tables

 CREATE FULLTEXT INDEX index_name ON tbl_name (index_columns);
 CREATE SPATIAL INDEX index_name ON tbl_name (index_columns);

 tbl_name , index_name , and index_columns have the same meaning as for ALTER TABLE .
Unlike ALTER TABLE , the index name is not optional with CREATE INDEX , and you cannot
create multiple indexes with a single statement.

 To create indexes for a new table with a CREATE TABLE statement, the syntax is similar to that
used for ALTER TABLE , but you specify the index-creation clauses in addition to the column
definitions:

 CREATE TABLE tbl_name
 (
 ... column definitions ...
 INDEX index_name (index_columns),
 UNIQUE index_name (index_columns),
 PRIMARY KEY (index_columns),
 FULLTEXT index_name (index_columns),
 SPATIAL index_name (index_columns),
 ...
);

 As with ALTER TABLE , index_name is optional. MySQL picks an index name if you leave it out.

 As a special case, you can create a single-column PRIMARY KEY or UNIQUE index by adding a
 PRIMARY KEY or UNIQUE clause to the end of a column definition. For example, the following
 CREATE TABLE statements are equivalent:

 CREATE TABLE mytbl
 (
 i INT NOT NULL PRIMARY KEY,
 j CHAR(10) NOT NULL UNIQUE
);

 CREATE TABLE mytbl
 (
 i INT NOT NULL,
 j CHAR(10) NOT NULL,
 PRIMARY KEY (i),
 UNIQUE (j)
);

 The default index type for a MEMORY table is HASH . A hashed index is very fast for exact-
value lookups, which is the typical way MEMORY tables are used. However, if you plan to use
a MEMORY table for comparisons that can match a range of values (for example, id < 100),
hashed indexes do not work well. You’ll be better off creating a BTREE index instead, by adding
a USING BTREE clause to the index definition:

03_9780321833877_ch02.indd 125 3/1/13 9:58 AM

126 Chapter 2 Using SQL to Manage Data

 CREATE TABLE namelist
 (
 id INT NOT NULL,
 name CHAR(100),
 INDEX (id) USING BTREE
) ENGINE=MEMORY;

 To index a prefix of a string column, the syntax for naming the column in the index defini-
tion is col_name (n) rather than simply col_name . The prefix value, n , indicates that the index
should include the first n bytes of column values for binary string types, or the first n characters
for nonbinary string types. For example, the following statement creates a table with a CHAR
column and a BINARY column. It indexes the first 10 characters of the CHAR column and the
first 15 bytes of the BINARY column:

 CREATE TABLE addresslist
 (
 name CHAR(30) NOT NULL,
 address BINARY(60) NOT NULL,
 INDEX (name(10)),
 INDEX (address(15))
);

 When you index a prefix of a string column, the prefix length, just like the column length,
is specified in the same units as the column data type—that is, bytes for binary strings and
characters for nonbinary strings. However, the maximum size of index entries are measured
internally in bytes. The two measures are the same for single-byte character sets, but not for
multi-byte character sets. For nonbinary strings that have multi-byte character sets, MySQL
stores into index values as many complete characters as fit within the maximum permitted
byte length.

 In some circumstances, you may find it not only desirable but necessary to index a column
prefix rather than the entire column:

 ■ A prefix is required to index a BLOB or TEXT column.

 ■ The length of index rows is equal to the sum of the length of the index parts of the
columns that make up the index. If this length exceeds the maximum permitted number
of bytes in index rows, you can make the index “narrower” by indexing a column prefix.
Suppose that a MyISAM table that uses the latin1 single-byte character set contains four
 CHAR(255) columns named c1 through c4 . An index value for each full column value
takes 255 bytes, so an index on all four columns would require 1,020 bytes. However,
the maximum length of a MyISAM index row is 1,000 bytes, so you cannot create a
composite index that includes the entire contents of all four columns. However, you
can create the index by indexing a shorter part of some or all of them. For example, you
could index the first 250 characters from each column.

 Columns in FULLTEXT indexes are indexed in full and do not have prefixes. If you specify a
prefix length for a column in a FULLTEXT index, MySQL ignores it.

03_9780321833877_ch02.indd 126 3/1/13 9:58 AM

1272.6 Creating, Dropping, Indexing, and Altering Tables

 2.6.4.3 Dropping Indexes

 To drop an index, use either a DROP INDEX or an ALTER TABLE statement. To use DROP INDEX ,
you must name the index to be dropped:

 DROP INDEX index_name ON tbl_name ;

 To drop a PRIMARY KEY with DROP INDEX , specify the name PRIMARY as a quoted identifier:

 DROP INDEX `PRIMARY` ON tbl_name ;

 That statement is unambiguous because a table is permitted only one PRIMARY KEY and its
name is always PRIMARY .

 Like the CREATE INDEX statement, DROP INDEX is handled internally as an ALTER TABLE
statement. The preceding DROP INDEX statements correspond to the following ALTER TABLE
statements:

 ALTER TABLE tbl_name DROP INDEX index_name ;
 ALTER TABLE tbl_name DROP PRIMARY KEY;

 If you don’t know the names of a table’s indexes, use SHOW CREATE TABLE or SHOW INDEX to
find out.

 When you drop columns from a table, indexes may be affected implicitly. Dropping a column
that is a part of an index removes the column from the index as well. If you drop all columns
in an index, MySQL drops the entire index.

 2.6.5 Altering Table Structure
 ALTER TABLE is a versatile statement and has many uses. We’ve already seen a few of its
capabilities earlier in this chapter (for changing storage engines and for creating and drop-
ping indexes). ALTER TABLE can also rename tables, add or drop columns, change column
data types, and more. This section covers some of its features. For its complete syntax, see
 Appendix E , “SQL Syntax Reference.”

 ALTER TABLE is useful when you find that the structure of a table no longer reflects its
intended use. Perhaps you want to record additional information, or the table contains infor-
mation that has become superfluous. Maybe existing columns are too small, or it turns out
that you’ve defined columns larger than you need and you’d like to make them smaller to save
space and improve query performance. Here are some situations for which ALTER TABLE is
valuable:

 ■ You assign case numbers to records for a research project using an AUTO_INCREMENT
column. You didn’t expect your funding to last long enough to generate more than
about 50,000 records, so you made the data type SMALLINT UNSIGNED , which holds a
maximum of 65,535 unique values. However, the funding for the project was renewed,
and it looks like you might generate another 50,000 records. You need a bigger type to
accommodate more case numbers.

03_9780321833877_ch02.indd 127 3/1/13 9:58 AM

128 Chapter 2 Using SQL to Manage Data

 ■ Size changes can go the other way, too. Maybe you created a CHAR(255) column but
now recognize that no value in the table is more than 100 characters long. You can
shorten the column or convert it to VARCHAR(255) to save space.

 ■ You want to convert a table to use a different storage engine to take advantage of features
offered by that engine. For example, MyISAM tables are not transaction-safe, but you
have an application that needs transactional capabilities. You can convert the affected
tables to use InnoDB, which supports transactions. Or you might be using MyISAM in
MySQL 5.5 because it supports FULLTEXT capabilities, but now you have upgraded to
MySQL 5.6, which expands FULLTEXT support to InnoDB.

 The syntax for ALTER TABLE looks like this:

 ALTER TABLE tbl_name action [, action] ... ;

 Each action specifies a modification to make to the table. Some database systems permit only a
single action in an ALTER TABLE statement, but MySQL supports multiple actions, separated by
commas.

 Tip
 If you need to remind yourself about a table’s current definition before using ALTER TABLE ,
issue a SHOW CREATE TABLE statement. This statement is also useful after ALTER TABLE to
verify that the alteration affected the table definition as you expect.

 The following examples discuss some of the capabilities of ALTER TABLE .

 Changing a column’s data type. To change a data type, use either a CHANGE or MODIFY
clause. Suppose that the column i in a table mytbl is SMALLINT UNSIGNED . To change it to
 MEDIUMINT UNSIGNED , use either of the following statements:

 ALTER TABLE mytbl MODIFY i MEDIUMINT UNSIGNED;
 ALTER TABLE mytbl CHANGE i i MEDIUMINT UNSIGNED;

 Why is the column named twice in the statement that uses CHANGE ? Because one thing that
 CHANGE can do that MODIFY cannot is to rename the column in addition to changing the type.
If you had wanted to rename i to k at the same time you changed the type, you’d do so like
this:

 ALTER TABLE mytbl CHANGE i k MEDIUMINT UNSIGNED;

 Remember that with CHANGE , you name the column you want to change and then specify its
new name and definition. To retain the same column name, you must specify the name twice.

 To rename a column without changing its data type, use CHANGE old_name new_name followed
by the column’s current definition.

 To change a column’s character set, use the CHARACTER SET attribute in the column definition:

 ALTER TABLE t MODIFY c CHAR(20) CHARACTER SET ucs2;

03_9780321833877_ch02.indd 128 3/1/13 9:58 AM

1292.6 Creating, Dropping, Indexing, and Altering Tables

 An important reason for changing data types is to improve query efficiency for joins that
compare columns from two tables. Indexes often can be used for comparisons in joins between
similar column types, but comparisons are quicker when both columns are exactly the same
type. Suppose that you’re running a query like this:

 SELECT ... FROM t1 INNER JOIN t2 WHERE t1.name = t2.name;

 If t1.name is CHAR(10) and t2.name is CHAR(15), the query won’t run as quickly as if they
were both CHAR(15). You can make them the same by changing t1.name using either of these
statements:

 ALTER TABLE t1 MODIFY name CHAR(15);
 ALTER TABLE t1 CHANGE name name CHAR(15);

 Converting a table to a different storage engine. To convert a table from one storage engine
to another, use an ENGINE clause that specifies the new engine name:

 ALTER TABLE tbl_name ENGINE= engine_name ;

 engine_name is a name such as InnoDB , MyISAM , or MEMORY . Lettercase does not matter.

 One reason to change a storage engine is to make it transaction-safe. Suppose that you have a
MyISAM table and discover that an application that uses it needs to perform transactional oper-
ations, including rollback in case failures occur. MyISAM tables do not support transactions,
but you can make the table transaction-safe by converting it to use InnoDB:

 ALTER TABLE tbl_name ENGINE=InnoDB;

 When you convert a table to a different engine, the permitted or sensible conversions may
depend on the feature compatibility of the old and new engines. For example, if you have a
table that includes a BLOB column, you cannot convert the table to use the MEMORY engine
because MEMORY tables do not support BLOB columns.

 There are circumstances under which you should not use ALTER TABLE to convert a table to
use a different storage engine. For example:

 ■ An InnoDB table can be converted to use another storage engine. However, if the table
has foreign key constraints, they will be lost because only InnoDB supports foreign keys.

 ■ MEMORY tables are held in memory and disappear when the server exits. If you require
a table’s contents to persist across server restarts, do not convert it to use the MEMORY
engine.

 Renaming a table. Use a RENAME clause that specifies the new table name:

 ALTER TABLE tbl_name RENAME TO new_tbl_name ;

 Another way to rename tables is with RENAME TABLE . The syntax looks like this:

 RENAME TABLE tbl_name TO new_tbl_name ;

03_9780321833877_ch02.indd 129 3/1/13 9:58 AM

130 Chapter 2 Using SQL to Manage Data

 One thing that RENAME TABLE can do that ALTER TABLE cannot is rename multiple tables in
the same statement. For example, you can swap the names of two tables like this:

 RENAME TABLE t1 TO tmp, t2 TO t1, tmp TO t2;

 If you qualify a table name with a database name, you can move a table from one database to
another by renaming it. Either of the following statements move the table t from the sampdb
database to the test database:

 ALTER TABLE sampdb.t RENAME TO test.t;
 RENAME TABLE sampdb.t TO test.t;

 You cannot rename a table to a name that already exists.

 2.7 Obtaining Database Metadata
 MySQL provides several ways to obtain database metadata—that is, information about data-
bases and the objects in them:

 ■ SHOW statements such as SHOW DATABASES or SHOW TABLES

 ■ Tables in the INFORMATION_SCHEMA database

 ■ Command-line programs such as mysqlshow or mysqldump

 The following sections describe how to use each of these information sources to access
metadata.

 2.7.1 Obtaining Metadata with SHOW
 MySQL provides a SHOW statement that displays many types of database metadata. SHOW is
helpful for keeping track of the contents of your databases and reminding yourself about the
structure of your tables. The following examples demonstrate a few uses for SHOW statements.

 List the databases you can access:

 SHOW DATABASES;

 Display the CREATE DATABASE statement for a database:

 SHOW CREATE DATABASE db_name ;

 List the tables in the default database or a given database:

 SHOW TABLES;
 SHOW TABLES FROM db_name ;

 SHOW TABLES doesn’t show TEMPORARY tables.

 Display the CREATE TABLE statement for a table:

 SHOW CREATE TABLE tbl_name ;

03_9780321833877_ch02.indd 130 3/1/13 9:58 AM

1312.7 Obtaining Database Metadata

 Display information about columns or indexes in a table:

 SHOW COLUMNS FROM tbl_name ;
 SHOW INDEX FROM tbl_name ;

 The DESCRIBE tbl_name and EXPLAIN tbl_name statements are synonymous with SHOW
COLUMNS FROM tbl_name .

 Display descriptive information about tables in the default database or in a given database:

 SHOW TABLE STATUS;
 SHOW TABLE STATUS FROM db_name ;

 Several forms of the SHOW statement take a LIKE ' pattern ' clause permitting a pattern to be
given that limits the scope of the output. MySQL interprets ' pattern ' as an SQL pattern that
may include the ‘ % ’ and ‘ _ ’ wildcard characters. For example, this statement displays the names
of columns in the student table that begin with ‘ s ’:

 mysql> SHOW COLUMNS FROM student LIKE 's%';
 +------------+------------------+------+-----+---------+----------------+
 | Field | Type | Null | Key | Default | Extra |
 +------------+------------------+------+-----+---------+----------------+
 | sex | enum('F','M') | NO | | NULL | |
 | student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |
 +------------+------------------+------+-----+---------+----------------+

 To match a literal instance of a wildcard character in a LIKE pattern, precede it with a back-
slash. This is commonly done to match a literal ‘ _ ’, which occurs frequently in database, table,
and column names.

 Any SHOW statement that supports a LIKE clause can also be written to use a WHERE clause. The
statement displays the same columns, but WHERE provides more flexibility about specifying
which rows to return. The WHERE clause should refer to the SHOW statement column names. If
the column name is a reserved word such as KEY , specify it as a quoted identifier. This state-
ment determines which column in the student table is the primary key:

 mysql> SHOW COLUMNS FROM student WHERE `Key` = `PRI`;
 +------------+------------------+------+-----+---------+----------------+
 | Field | Type | Null | Key | Default | Extra |
 +------------+------------------+------+-----+---------+----------------+
 | student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |
 +------------+------------------+------+-----+---------+----------------+

 It’s sometimes useful to be able to tell from within an application whether a given table exists.
You can use SHOW TABLES to find out (unless the table is a TEMPORARY table):

 SHOW TABLES LIKE ' tbl_name ';
 SHOW TABLES FROM db_name LIKE ' tbl_name ';

 If the SHOW TABLES statement lists information for the table, it exists. It’s also possible to deter-
mine table existence, even for TEMPORARY tables, with either of the following statements:

03_9780321833877_ch02.indd 131 3/1/13 9:58 AM

132 Chapter 2 Using SQL to Manage Data

 SELECT COUNT(*) FROM tbl_name;
 SELECT * FROM tbl_name WHERE FALSE;

 Each statement succeeds if the table exists, and fails if it doesn’t. The first statement is most
appropriate for MyISAM tables, for which COUNT(*) with no WHERE clause is highly opti-
mized. It’s not so good for InnoDB tables, which require a full scan to count the rows. The
second statement is more general because it runs quickly for any storage engine. These state-
ments are most suitable for use within application programming languages such as Perl or PHP
because you can test the success or failure of the query and take action accordingly. They’re
not especially useful in a batch script that you run from mysql because you can’t do anything
if an error occurs except terminate (or ignore the error, but then there’s obviously no point
in running the query at all). Another strategy, which works in any context without failure,
is to query the INFORMATION_SCHEMA database. See Section 2.7.2 , “Obtaining Metadata with
 INFORMATION_SCHEMA .”

 To determine the storage engine for individual tables, you can use SHOW TABLE STATUS or
 SHOW CREATE TABLE . The output from either statement includes a storage engine indicator.

 2.7.2 Obtaining Metadata with INFORMATION_SCHEMA
 Another way to obtain information about databases is to access the INFORMATION_SCHEMA
database. INFORMATION_SCHEMA is based on the SQL standard. That is, the access mechanism
is standard, even though some of the content is MySQL-specific. This makes INFORMATION_
SCHEMA more portable than the various SHOW statements, which are entirely MySQL-specific.

 INFORMATION_SCHEMA is accessed through SELECT statements and can be used in a flexible
manner. SHOW statements always display a fixed set of columns and you cannot capture the
output in a table. With INFORMATION_SCHEMA , the SELECT statement can name specific output
columns and a WHERE clause can specify any expression required to select the information that
you want. Also, you can use joins or subqueries, and you can use CREATE TABLE … SELECT
or INSERT INTO … SELECT to save the result of the retrieval in another table for further
processing.

 You can think of INFORMATION_SCHEMA as a virtual database in which the tables are views for
different kinds of database metadata. To see what tables INFORMATION_SCHEMA contains, use
 SHOW TABLES :

 mysql> SHOW TABLES IN INFORMATION_SCHEMA;
 +---------------------------------------+
 | Tables_in_information_schema |
 +---------------------------------------+
 | CHARACTER_SETS |
 | COLLATIONS |
 | COLLATION_CHARACTER_SET_APPLICABILITY |
 | COLUMNS |
 | COLUMN_PRIVILEGES |
 | ENGINES |
 | EVENTS |

03_9780321833877_ch02.indd 132 3/1/13 9:58 AM

1332.7 Obtaining Database Metadata

 | FILES |
 | GLOBAL_STATUS |
 | GLOBAL_VARIABLES |
 | KEY_COLUMN_USAGE |
 | PARAMETERS |
 | PARTITIONS |
 | PLUGINS |
 | PROCESSLIST |
 | PROFILING |
 | REFERENTIAL_CONSTRAINTS |
 | ROUTINES |
 | SCHEMATA |
 | SCHEMA_PRIVILEGES |
 | SESSION_STATUS |
 | SESSION_VARIABLES |
 | STATISTICS |
 | TABLES |
 | TABLESPACES |
 | TABLE_CONSTRAINTS |
 | TABLE_PRIVILEGES |
 | TRIGGERS |
 | USER_PRIVILEGES |
 | VIEWS |
 +---------------------------------------+

 The following list briefly describes some of the INFORMATION_SCHEMA tables just shown:

 ■ SCHEMATA , TABLES , VIEWS , ROUTINES , TRIGGERS , EVENTS , PARAMETERS , PARTITIONS ,
 COLUMNS

 Information about databases; tables, views, stored routines, triggers, and events within
databases; routine parameters; table partitions; and columns within tables

 ■ FILES

 Information about the files used to store tablespace data

 ■ TABLE_CONSTRAINTS , KEY_COLUMN_USAGE

 Information about tables and columns that have constraints such as unique-valued
indexes or foreign keys

 ■ STATISTICS

 Information about table index characteristics

 ■ REFERENTIAL_CONSTRAINTS

 Information about foreign keys

 ■ CHARACTER_SETS , COLLATIONS , COLLATION_CHARACTER_SET_APPLICABILITY

 Information about supported character sets, collations for each character set, and
mapping from each collation to its character set

03_9780321833877_ch02.indd 133 3/1/13 9:58 AM

134 Chapter 2 Using SQL to Manage Data

 ■ ENGINES , PLUGINS

 Information about storage engines and server plugins

 ■ USER_PRIVILEGES , SCHEMA_PRIVILEGES , TABLE_PRIVILEGES , COLUMN_PRIVILEGES

 Global, database, table, and column privilege information from the user , db ,
 tables_priv , and columns_priv tables in the mysql database

 ■ GLOBAL_VARIABLES , SESSION_VARIABLES , GLOBAL_STATUS , SESSION_STATUS

 Global and session values of system and status variables

 ■ PROCESSLIST

 Information about the threads executing within the server

 Individual storage engines may add their own tables to INFORMATION_SCHEMA . For example,
InnoDB does this.

 To determine the columns contained in a given INFORMATION_SCHEMA table, use SHOW
COLUMNS or DESCRIBE :

 mysql> DESCRIBE INFORMATION_SCHEMA.CHARACTER_SETS;
 +----------------------+-------------+------+-----+---------+-------+
 | Field | Type | Null | Key | Default | Extra |
 +----------------------+-------------+------+-----+---------+-------+
CHARACTER_SET_NAME	varchar(32)	NO			
DEFAULT_COLLATE_NAME	varchar(32)	NO			
DESCRIPTION	varchar(60)	NO			
MAXLEN	bigint(3)	NO		0	
 +----------------------+-------------+------+-----+---------+-------+

 To display information from a table, use a SELECT statement. (Neither INFORMATION_SCHEMA
nor any of its table or column names are case sensitive.) The general query to see all the
columns in any given INFORMATION_SCHEMA table is as follows:

 SELECT * FROM INFORMATION_SCHEMA. tbl_name ;

 Include a WHERE clause to be specific about what you want to see.

 The preceding section described the use of SHOW statements to determine whether a table exists
or which storage engine it uses. INFORMATION_SCHEMA tables can provide the same informa-
tion. This query uses INFORMATION_SCHEMA to test for the existence of a particular table,
returning 1 or 0 to indicate that the table does or does not exist, respectively:

 mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA='sampdb' AND TABLE_NAME='member';
 +----------+
 | COUNT(*) |
 +----------+
 | 1 |
 +----------+

03_9780321833877_ch02.indd 134 3/1/13 9:58 AM

1352.7 Obtaining Database Metadata

 Use this query to check which storage engine a table uses:

 mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA='sampdb' AND TABLE_NAME='student';
 +--------+
 | ENGINE |
 +--------+
 | InnoDB |
 +--------+

 2.7.3 Obtaining Metadata from the Command Line
 The mysqlshow command provides some of the same information as certain SHOW statements,
which enables you to get database and table information at your command prompt.

 List databases managed by the server:

 % mysqlshow

 List tables in a database:

 % mysqlshow db_name

 Display information about columns in a table:

 % mysqlshow db_name tbl_name

 Display information about indexes in a table:

 % mysqlshow --keys db_name tbl_name

 Display descriptive information about tables in a database:

 % mysqlshow --status db_name

 The mysqldump client program enables you to see the structure of your tables in the form of a
 CREATE TABLE statement (much like SHOW CREATE TABLE). If you use mysqldump to review
table structure, invoke it with the --no-data option so that you don’t get swamped with your
table’s data!

 % mysqldump --no-data db_name [tbl_name] ...

 If you specify only the database name with no table names, mysqldump displays the structure
for all tables in the database. Otherwise, it shows information only for the named tables.

 For both mysqlshow and mysqldump , specify the usual connection parameter options as neces-
sary, such as --host , --user , or --password .

03_9780321833877_ch02.indd 135 3/1/13 9:58 AM

136 Chapter 2 Using SQL to Manage Data

 2.8 Performing Multiple-Table Retrievals with Joins
 It does no good to put records in a database unless you retrieve them eventually and do some-
thing with them. That’s the purpose of the SELECT statement: to help you get at your data.
 SELECT probably is used more often than any other statement in the SQL language, but it can
also be the trickiest; the conditions you use for choosing rows can be arbitrarily complex and
can involve comparisons between columns in many tables.

 The basic syntax of the SELECT statement looks like this:

 SELECT select_list # the columns to select
 FROM table_list # the tables from which to select rows
 WHERE row_constraint # the conditions rows must satisfy
 GROUP BY grouping_columns # how to group results
 ORDER BY sorting_columns # how to sort results
 HAVING group_constraint # the conditions groups must satisfy
 LIMIT count ; # row count limit on results

 Everything in this syntax is optional except the word SELECT and the select_list part that
specifies what you want to produce as output. Some databases require the FROM clause as well.
MySQL does not, which enables you to evaluate expressions without referring to any tables:

 SELECT SQRT(POW(3,2)+POW(4,2));

 In Chapter 1 , “Getting Started with MySQL,” we devoted quite a bit of attention to single-table
 SELECT statements, concentrating primarily on the output column list and the WHERE , GROUP
BY , ORDER BY , HAVING , and LIMIT clauses. This section covers an aspect of SELECT that is often
confusing: writing joins; that is, SELECT statements that retrieve rows from multiple tables.
We’ll discuss the types of join MySQL supports, what they mean, and how to specify them.
This should help you employ MySQL more effectively because, in many cases, the real problem
of figuring out how to write a query is determining the proper way to join tables.

 One problem with using SELECT is that when you first encounter a new type of problem, it’s
not always easy to see how to write a SELECT query to solve it. However, after you figure it
out, you can use that experience when you run across similar problems in the future. SELECT
is probably the statement for which past experience plays the largest role in being able to use
it effectively, simply because of the sheer variety of problems to which it applies. As you gain
experience, you’ll be able to adapt joins more easily to new problems, and you’ll find yourself
thinking things like, “Oh, yes, that’s one of those LEFT JOIN things,” or, “Aha, that’s a three-
way join restricted by the common pairs of key columns.” (You may find it encouraging to
hear that experience helps you. Or you may find it alarming to consider that you could wind
up thinking in terms like that.)

 Many of the examples that demonstrate how to use the forms of join operations that MySQL
supports use the following two tables, t1 and t2 :

 Table t1: Table t2:
 +----+----+ +----+----+
 | i1 | c1 | | i2 | c2 |

03_9780321833877_ch02.indd 136 3/1/13 9:58 AM

1372.8 Performing Multiple-Table Retrievals with Joins

 +----+----+ +----+----+
1	a		2	c
2	b		3	b
3	c		4	a
 +----+----+ +----+----+

 The tables are deliberately small so the effect of each type of join can be readily seen.

 Other types of multiple-table SELECT statement are subqueries (one SELECT nested within
another) and UNION statements. These are covered in Section 2.9 , “Performing Multiple-Table
Retrievals with Subqueries,” and Section 2.10 , “Performing Multiple-Table Retrievals with
 UNION .”

 A related multiple-table feature that MySQL supports is the capability of deleting or updating
rows in one table based on the contents of another. For example, you might want to remove
rows in one table that aren’t matched by any row in another, or copy values from columns in
one table to columns in another. Section 2.11 , “Multiple-Table Deletes and Updates,” discusses
these types of operations.

 2.8.1 Inner Joins
 If a SELECT statement names multiple tables in the FROM clause with the names separated by
 INNER JOIN , MySQL performs an inner join, which produces results by matching rows in one
table with rows in another table. For example, if you join t1 and t2 as follows, each row in t1
is combined with each row in t2 :

 mysql> SELECT * FROM t1 INNER JOIN t2;
 +----+----+----+----+
 | i1 | c1 | i2 | c2 |
 +----+----+----+----+
1	a	2	c
2	b	2	c
3	c	2	c
1	a	3	b
2	b	3	b
3	c	3	b
1	a	4	a
2	b	4	a
3	c	4	a
 +----+----+----+----+

 In this statement, SELECT * means “select every column from every table named in the FROM
clause.” You could also write this as SELECT t1.*, t2.* :

 SELECT t1.*, t2.* FROM t1 INNER JOIN t2;

 If you don’t want to select all columns or you want to display them in a different left-to-right
order, name each desired column, separated by commas.

03_9780321833877_ch02.indd 137 3/1/13 9:58 AM

138 Chapter 2 Using SQL to Manage Data

 A join that combines each row of each table with each row in every other table to produce
all possible combinations is known as the “cartesian product.” Joining tables this way has the
potential to produce a very large number of rows because the possible row count is the product
of the number of rows in each table. A join between three tables that contain 100, 200, and
300 rows, respectively, could return 100 × 200 × 300 = 6 million rows. That’s a lot of rows, even
though the individual tables are small. In cases like this, normally a WHERE clause is useful for
reducing the result set to a more manageable size.

 If you add a WHERE clause causing tables to be matched on the values of certain columns, the
join selects only rows with equal values in those columns:

 mysql> SELECT t1.*, t2.* FROM t1 INNER JOIN t2 WHERE t1.i1 = t2.i2;
 +----+----+----+----+
 | i1 | c1 | i2 | c2 |
 +----+----+----+----+
 | 2 | b | 2 | c |
 | 3 | c | 3 | b |
 +----+----+----+----+

 The CROSS JOIN and JOIN join types are the same as INNER JOIN , so these statements are
equivalent:

 SELECT t1.*, t2.* FROM t1 INNER JOIN t2 WHERE t1.i1 = t2.i2;
 SELECT t1.*, t2.* FROM t1 CROSS JOIN t2 WHERE t1.i1 = t2.i2;
 SELECT t1.*, t2.* FROM t1 JOIN t2 WHERE t1.i1 = t2.i2;

 The ‘ , ’ (comma) join operator is similar as well:

 SELECT t1.*, t2.* FROM t1, t2 WHERE t1.i1 = t2.i2;

 However, the comma operator has a different precedence from the other join types, and it can
sometimes produce syntax errors when the other types will not. I recommend that you avoid
the comma operator.

 INNER JOIN , CROSS JOIN , and JOIN (but not the comma operator) support alternative
syntaxes for specifying how to match table columns:

 ■ One syntax uses an ON clause rather than a WHERE clause. The following example shows
this using INNER JOIN :

 SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ON t1.i1 = t2.i2;

 ON can be used regardless of whether the joined columns have the same name.

 ■ The other syntax involves a USING() clause; this is similar in concept to ON , but the
name of the joined column or columns must be the same in each table. For example, the
following query joins mytbl1.b to mytbl2.b :

 SELECT mytbl1.*, mytbl2.* FROM mytbl1 INNER JOIN mytbl2 USING (b);

03_9780321833877_ch02.indd 138 3/1/13 9:58 AM

1392.8 Performing Multiple-Table Retrievals with Joins

 2.8.2 Qualifying References to Columns from Joined Tables
 References to each table column throughout a SELECT statement must resolve unambiguously
to a single table named in the FROM clause. If only one table is named, there is no ambiguity;
all columns must be columns of that table. If multiple tables are named, any column name
that appears in only one table is similarly unambiguous. However, if a column name appears
in multiple tables, references to the column must be qualified with a table identifier using
 tbl_name.col_name syntax to specify which table you mean. Suppose that a table mytbl1
contains columns a and b , and a table mytbl2 contains columns b and c . References to
columns a or c are unambiguous, but references to b must be qualified as either mytbl1.b or
 mytbl2.b :

 SELECT a, mytbl1.b, mytbl2.b, c FROM mytbl1 INNER JOIN mytbl2 ... ;

 Sometimes a table name qualifier is not sufficient to resolve a column reference. For example,
if you’re performing a self-join (that is, joining a table to itself), you’re using the table multiple
times within the query and it doesn’t help to qualify a column name with the table name. In
this case, table aliases are useful for communicating your intent. You can assign an alias to any
instance of the table and refer to columns from that instance as alias_name.col_name . The
following query joins a table to itself, but assigns an alias to one instance of the table to enable
column references to be specified unambiguously:

 SELECT mytbl.col1, m.col2 FROM mytbl INNER JOIN mytbl AS m
 WHERE mytbl.col1 > m.col1;

 2.8.3 Left and Right (Outer) Joins
 An inner join shows only rows where a match can be found in both tables. An outer join
shows matches, too, but can also show rows in one table that have no match in the other
table. Two kinds of outer joins are left and right joins. Most of the examples in this section
use LEFT JOIN , which identifies rows in the left table that are not matched by the right table.
 RIGHT JOIN is the same except that the roles of the tables are reversed.

 A LEFT JOIN works like this: You specify the columns to be used for matching rows in the
two tables. When a row from the left table matches a row from the right table, the contents
of the rows are selected as an output row. When a row in the left table has no match, it is still
selected for output, but joined with a “fake” row from the right table that contains NULL in
each column.

 In other words, a LEFT JOIN forces the result set to contain a row for every row selected from
the left table, whether or not there is a match for it in the right table. The left-table rows with
no match can be identified by the fact that all columns from the right table are NULL . These
result rows tell you which rows are missing from the right table. That is an interesting and
important property, because this kind of problem comes up in many different contexts. Which
customers have not been assigned an account representative? For which inventory items have
no sales been recorded? Or, closer to home with our sampdb database: Which students have
not taken a particular exam? Which students have no rows in the absence table (that is, which
students have perfect attendance)?

03_9780321833877_ch02.indd 139 3/1/13 9:58 AM

140 Chapter 2 Using SQL to Manage Data

 Consider once again our two tables, t1 and t2 :

 Table t1: Table t2:
 +----+----+ +----+----+
 | i1 | c1 | | i2 | c2 |
 +----+----+ +----+----+
1	a		2	c
2	b		3	b
3	c		4	a
 +----+----+ +----+----+

 If we use an inner join to match these tables on t1.i1 and t2.i2 , we’ll get output only for the
values 2 and 3, because those are the values that appear in both tables:

 mysql> SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ON t1.i1 = t2.i2;
 +----+----+----+----+
 | i1 | c1 | i2 | c2 |
 +----+----+----+----+
 | 2 | b | 2 | c |
 | 3 | c | 3 | b |
 +----+----+----+----+

 A left join produces output for every row in t1 , whether or not t2 matches it. To write a left
join, name the tables with LEFT JOIN in between rather than INNER JOIN :

 mysql> SELECT t1.*, t2.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2;
 +----+----+------+------+
 | i1 | c1 | i2 | c2 |
 +----+----+------+------+
1	a	NULL	NULL
2	b	2	c
3	c	3	b
 +----+----+------+------+

 Now there is an output row even for the t1.i1 value of 1, which has no match in t2 . All the
columns in this row that correspond to t2 columns have a value of NULL .

 One thing to watch out for with LEFT JOIN is that unless right-table columns are defined as
 NOT NULL , you may get problematic rows in the result. For example, if the right table contains
columns with NULL values, you won’t be able to distinguish those NULL values from NULL
values that identify unmatched rows.

 As mentioned earlier, a RIGHT JOIN is like a LEFT JOIN with the roles of the tables reversed.
These two statements are equivalent:

 SELECT t1.*, t2.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2;
 SELECT t1.*, t2.* FROM t2 RIGHT JOIN t1 ON t1.i1 = t2.i2;

 The following discussion is phrased in terms of LEFT JOIN . To adjust it for RIGHT JOIN ,
reverse the table roles.

03_9780321833877_ch02.indd 140 3/1/13 9:58 AM

1412.8 Performing Multiple-Table Retrievals with Joins

 LEFT JOIN is especially useful when you want to find only those left table rows that are
unmatched by the right table. Do this by adding a WHERE clause that selects only the rows
that have NULL values in a right table column—in other words, the rows in one table that are
missing from the other:

 mysql> SELECT t1.*, t2.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2
 -> WHERE t2.i2 IS NULL;
 +----+----+------+------+
 | i1 | c1 | i2 | c2 |
 +----+----+------+------+
 | 1 | a | NULL | NULL |
 +----+----+------+------+

 Normally, when you write a query like this, your real interest is in the unmatched values in the
left table. The NULL columns from the right table are of no interest for display purposes, so you
would omit them from the output column list:

 mysql> SELECT t1.* FROM t1 LEFT JOIN t2 ON t1.i1 = t2.i2
 -> WHERE t2.i2 IS NULL;
 +----+----+
 | i1 | c1 |
 +----+----+
 | 1 | a |
 +----+----+

 Like INNER JOIN , a LEFT JOIN can be written using an ON clause or a USING() clause to
specify the matching conditions. As with INNER JOIN , ON can be used whether or not the
joined columns from each table have the same name, but USING() requires that they have the
same names.

 NATURAL LEFT JOIN is similar to LEFT JOIN ; it performs a LEFT JOIN , matching all columns
that have the same name in the left and right tables. (Thus, no ON or USING clause is given.)

 As already mentioned, LEFT JOIN is useful for answering “Which values are missing?” ques-
tions. Let’s apply this principle to the tables in the sampdb database and consider a more
complex example than those shown earlier using t1 and t2 .

 For the grade-keeping project, first mentioned in Chapter 1 , “Getting Started with MySQL,” we
have a student table listing students, a grade_event table listing the grade events that have
occurred, and a score table listing scores for each student for each grade event. However, if a
student was ill on the day of some quiz or test, the score table wouldn’t contain any score for
the student for that event. A makeup quiz or test should be given in such cases, but how do we
find these missing rows?

 The problem is to determine which students have no score for a given grade event, and to do
this for each grade event. That is, we want to find which combinations of student and grade
event are not present in the score table. This “which values are not present” wording is a
tip-off that we want a LEFT JOIN . The join isn’t as simple as in the previous examples, though:

03_9780321833877_ch02.indd 141 3/1/13 9:58 AM

142 Chapter 2 Using SQL to Manage Data

We aren’t just looking for values that are not present in a single column, we’re looking for a
two-column combination. The combinations we want are all the student/event combinations.
These are produced by joining the student table to the grade_event table:

 FROM student INNER JOIN grade_event

 Then we take the result of that join and perform a LEFT JOIN with the score table to find the
matches for student ID/event ID pairs:

 FROM student INNER JOIN grade_event
 LEFT JOIN score ON student.student_id = score.student.id
 AND grade_event.event_id = score.event_id

 Note that the ON clause causes the rows in the score table to be joined according to matches
in different tables named earlier in the join. That’s the key for solving this problem. The LEFT
JOIN forces a row to be generated for each row produced by the join of the student and
 grade_event tables, even when there is no corresponding score table row. The result set rows
for these missing score rows can be identified by the fact that the columns from the score
table will all be NULL . We can identify these rows by adding a condition in the WHERE clause.
Any column from the score table will do, but because we’re looking for missing scores, it’s
probably conceptually clearest to test the score column:

 WHERE score.score IS NULL

 We can also sort the results using an ORDER BY clause. The two most logical orderings are by
event per student and by student per event. I’ll choose the first:

 ORDER BY student.student_id, grade_event.event_id

 Now all we need to do is name the columns we want to see in the output, and we’re done.
Here is the final statement:

 SELECT
 student.name, student.student_id,
 grade_event.date, grade_event.event_id, grade_event.category
 FROM
 student INNER JOIN grade_event
 LEFT JOIN score ON student.student_id = score.student_id
 AND grade_event.event_id = score.event_id
 WHERE
 score.score IS NULL
 ORDER BY
 student.student_id, grade_event.event_id;

 Running the query produces these results:

 +-----------+------------+------------+----------+----------+
 | name | student_id | date | event_id | category |
 +-----------+------------+------------+----------+----------+
 | Megan | 1 | 2012-09-16 | 4 | Q |
 | Joseph | 2 | 2012-09-03 | 1 | Q |

03_9780321833877_ch02.indd 142 3/1/13 9:58 AM

1432.9 Performing Multiple-Table Retrievals with Subqueries

Katie	4	2012-09-23	5	Q
Devri	13	2012-09-03	1	Q
Devri	13	2012-10-01	6	T
Will	17	2012-09-16	4	Q
Avery	20	2012-09-06	2	Q
Gregory	23	2012-10-01	6	T
Sarah	24	2012-09-23	5	Q
Carter	27	2012-09-16	4	Q
Carter	27	2012-09-23	5	Q
Gabrielle	29	2012-09-16	4	Q
Grace	30	2012-09-23	5	Q
 +-----------+------------+------------+----------+----------+

 Here’s a subtle point. The output displays the student IDs and the event IDs. The student_id
column appears in both the student and score tables, so at first you might think that the
output column list could name either student.student_id or score.student_id . That’s not
the case, because the entire basis for being able to find the rows we’re interested in is that all
the score table columns are returned by the LEFT JOIN as NULL . Selecting score.student_id
would produce only a column of NULL values in the output. The same principle applies to
deciding which event_id column to display. It appears in both the grade_event and score
tables, but the query selects grade_event.event_id because the score.event_id values will
always be NULL .

 2.9 Performing Multiple-Table Retrievals with
Subqueries
 A subquery is a SELECT statement written within parentheses and nested inside another state-
ment. Here’s an example that looks up the IDs for grade event rows that correspond to tests
('T') and uses them to select scores for those tests:

 SELECT * FROM score
 WHERE event_id IN (SELECT event_id FROM grade_event WHERE category = 'T');

 Subqueries can return different types of information:

 ■ A scalar subquery returns a single value.

 ■ A column subquery returns a single column of one or more values.

 ■ A row subquery returns a single row of one or more values.

 ■ A table subquery returns a table of one or more rows of one or more columns.

 Subquery results can be tested in different ways:

 ■ Scalar subquery results can be evaluated using relative comparison operators such as =
or < .

03_9780321833877_ch02.indd 143 3/1/13 9:58 AM

144 Chapter 2 Using SQL to Manage Data

 ■ IN and NOT IN test whether a value is present in a set of values returned by a subquery.

 ■ ALL , ANY , and SOME compare a value to the set of values returned by a subquery.

 ■ EXISTS and NOT EXISTS test whether a subquery result is empty.

 A scalar subquery is the most restrictive because it produces only a single value. But as a conse-
quence, scalar subqueries can be used in the widest variety of contexts. They are applicable
essentially anywhere that you can use a scalar operand, such as a term of an expression, as
a function argument, or in the output column list. Column, row, and table subqueries that
return more information cannot be used in contexts that require a single value.

 Subqueries can be correlated or uncorrelated. This is a function of whether a subquery refers to
and is dependent on values in the outer query.

 You can use subqueries with statements other than SELECT . However, for statements that
modify tables (DELETE , INSERT , REPLACE , UPDATE , LOAD DATA), MySQL enforces the restriction
that the subquery cannot select from the table being modified.

 In some cases, subqueries can be rewritten as joins. You might find subquery rewriting tech-
niques useful to see whether the MySQL optimizer does a better job with a join than the equiv-
alent subquery.

 The following sections discuss the kinds of operations you can use to test subquery results, how
to write correlated subqueries, and how to rewrite subqueries as joins.

 2.9.1 Subqueries with Relative Comparison Operators
 The = , <> , > , >= , < , and <= operators perform relative-value comparisons. When used with a
scalar subquery, they find all rows in the outer query that stand in particular relationship to the
value returned by the subquery. For example, to identify the scores for the quiz that took place
on '2012-09-23' , use a scalar subquery to determine the quiz event ID and then match score
table rows against that ID in the outer SELECT :

 SELECT * FROM score
 WHERE event_id =
 (SELECT event_id FROM grade_event
 WHERE date = '2012-09-23' AND category = 'Q');

 With this form of statement, where the subquery is preceded by a value and a relative compari-
son operator, the subquery must produce a only single value. That is, it must be a scalar
subquery; if it produces multiple values, the statement will fail. In some cases, it may be appro-
priate to satisfy the single-value requirement by limiting the subquery result with LIMIT 1 .

 Use of scalar subqueries with relative comparison operators is handy for solving problems
for which you’d be tempted to use an aggregate function in a WHERE clause. For example, to
determine which of the presidents in the president table was born first, you might try this
statement:

 SELECT * FROM president WHERE birth = MIN(birth);

03_9780321833877_ch02.indd 144 3/1/13 9:58 AM

1452.9 Performing Multiple-Table Retrievals with Subqueries

 That doesn’t work because you can’t use aggregates in WHERE clauses. (The WHERE clause deter-
mines which rows to select, but the value of MIN() isn’t known until after the rows have
already been selected.) However, you can use a subquery to produce the minimum birth date
like this:

 SELECT * FROM president
 WHERE birth = (SELECT MIN(birth) FROM president);

 Other aggregate functions can be used to solve similar problems. The following statement uses
a subquery to select the above-average scores from a given grade event:

 SELECT * FROM score WHERE event_id = 5
 AND score > (SELECT AVG(score) FROM score WHERE event_id = 5);

 If a subquery returns a single row, you can use a row constructor to compare a set of values
(that is, a tuple) to the subquery result. This statement returns rows for presidents who were
born in the same city and state as John Adams:

 mysql> SELECT last_name, first_name, city, state FROM president
 -> WHERE (city, state) =
 -> (SELECT city, state FROM president
 -> WHERE last_name = 'Adams' AND first_name = 'John');
 +-----------+-------------+-----------+-------+
 | last_name | first_name | city | state |
 +-----------+-------------+-----------+-------+
 | Adams | John | Braintree | MA |
 | Adams | John Quincy | Braintree | MA |
 +-----------+-------------+-----------+-------+

 You can also use ROW(city, state) notation, which is equivalent to (city, state) . Both
act as row constructors.

 2.9.2 IN and NOT IN Subqueries
 The IN and NOT IN operators can be used when a subquery returns multiple rows to be evalu-
ated in comparison to the outer query. They test whether a comparison value is present in a set
of values. IN is true for rows in the outer query that match any row returned by the subquery.
 NOT IN is true for rows in the outer query that match no rows returned by the subquery. The
following statements use IN and NOT IN to find those students who have absences listed in the
 absence table, and those who have perfect attendance (no absences):

 mysql> SELECT * FROM student
 -> WHERE student_id IN (SELECT student_id FROM absence);
 +-------+-----+------------+
 | name | sex | student_id |
 +-------+-----+------------+
 | Kyle | M | 3 |
 | Abby | F | 5 |

03_9780321833877_ch02.indd 145 3/1/13 9:58 AM

146 Chapter 2 Using SQL to Manage Data

Peter	M	10
Will	M	17
Avery	F	20
 +-------+-----+------------+
 mysql> SELECT * FROM student
 -> WHERE student_id NOT IN (SELECT student_id FROM absence);
 +-----------+-----+------------+
 | name | sex | student_id |
 +-----------+-----+------------+
Megan	F	1
Joseph	M	2
Katie	F	4
Nathan	M	6
Liesl	F	7
 ...

 IN and NOT IN also work for subqueries that return multiple columns. In other words, you can
use them with table subqueries. In this case, use a row constructor to specify the comparison
values to test against each column:

 mysql> SELECT last_name, first_name, city, state FROM president
 -> WHERE (city, state) IN
 -> (SELECT city, state FROM president
 -> WHERE last_name = 'Roosevelt');
 +-----------+-------------+-----------+-------+
 | last_name | first_name | city | state |
 +-----------+-------------+-----------+-------+
 | Roosevelt | Theodore | New York | NY |
 | Roosevelt | Franklin D. | Hyde Park | NY |
 +-----------+-------------+-----------+-------+

 IN and NOT IN actually are synonyms for = ANY and <> ALL , which are covered in the next
section.

 2.9.3 ALL , ANY , and SOME Subqueries
 The ALL and ANY operators are used in conjunction with a relative comparison operator to test
the result of a column subquery. They test whether the comparison value stands in particular
relationship to all or some of the values returned by the subquery. For example, <= ALL is true
if the comparison value is less than or equal to every value that the subquery returns, whereas
 <= ANY is true if the comparison value is less than or equal to any value that the subquery
returns. SOME is a synonym for ANY .

 This statement determines which president was born first by selecting the row with a birth date
less than or equal to all the birth dates in the president table (only the earliest date satisfies
this condition):

03_9780321833877_ch02.indd 146 3/1/13 9:58 AM

1472.9 Performing Multiple-Table Retrievals with Subqueries

 mysql> SELECT last_name, first_name, birth FROM president
 -> WHERE birth <= ALL (SELECT birth FROM president);
 +------------+------------+------------+
 | last_name | first_name | birth |
 +------------+------------+------------+
 | Washington | George | 1732-02-22 |
 +------------+------------+------------+

 Less usefully, the following statement returns all rows because every date is less than or equal
to at least one other date (itself):

 mysql> SELECT last_name, first_name, birth FROM president
 -> WHERE birth <= ANY (SELECT birth FROM president);
 +------------+---------------+------------+
 | last_name | first_name | birth |
 +------------+---------------+------------+
Washington	George	1732-02-22
Adams	John	1735-10-30
Jefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28
 ...

 When ALL , ANY , or SOME are used with the = comparison operator, the subquery can be a table
subquery. In this case, you test return rows using a row constructor to provide the comparison
values.

 mysql> SELECT last_name, first_name, city, state FROM president
 -> WHERE (city, state) = ANY
 -> (SELECT city, state FROM president
 -> WHERE last_name = 'Roosevelt');
 +-----------+-------------+-----------+-------+
 | last_name | first_name | city | state |
 +-----------+-------------+-----------+-------+
 | Roosevelt | Theodore | New York | NY |
 | Roosevelt | Franklin D. | Hyde Park | NY |
 +-----------+-------------+-----------+-------+

 As mentioned in the previous section, IN and NOT IN are shorthand for = ANY and <> ALL .
That is, IN means “equal to any of the rows returned by the subquery” and NOT IN means
“unequal to all rows returned by the subquery.”

 2.9.4 EXISTS and NOT EXISTS Subqueries
 The EXISTS and NOT EXISTS operators merely test whether a subquery returns any rows. If
it does, EXISTS is true and NOT EXISTS is false. The following statements show some trivial
examples of these subqueries. The first returns 0 if the absence table is empty, the second
returns 1:

03_9780321833877_ch02.indd 147 3/1/13 9:58 AM

148 Chapter 2 Using SQL to Manage Data

 SELECT EXISTS (SELECT * FROM absence);
 SELECT NOT EXISTS (SELECT * FROM absence);

 EXISTS and NOT EXISTS actually are much more commonly used in correlated subqueries. For
examples, see Section 2.9.5 , “Correlated Subqueries.”

 With EXISTS and NOT EXISTS , the subquery uses * as the output column list. There’s no need
to name columns explicitly, because the subquery is assessed as true or false based on whether
it returns any rows, not based on the particular values that the rows might contain. You can
actually write pretty much anything for the subquery column selection list, but if you want to
make it explicit that you’re returning a true value when the subquery succeeds, you might write
it as SELECT 1 rather than SELECT * .

 2.9.5 Correlated Subqueries
 Subqueries can be uncorrelated or correlated:

 ■ An uncorrelated subquery contains no references to values from the outer query, so it
could be executed by itself as a separate statement. For example, the subquery in the
following statement is uncorrelated because it refers only to the table t1 and not to t2 :

 SELECT j FROM t2 WHERE j IN (SELECT i FROM t1);

 ■ A correlated subquery does contain references to values from the outer query, and thus is
dependent on it. Due to this linkage, a correlated subquery cannot be executed by itself
as a separate statement. For example, the subquery in the following statement is true for
each value of column j in t2 that matches a column i value in t1 :

 SELECT j FROM t2 WHERE (SELECT i FROM t1 WHERE i = j);

 Correlated subqueries commonly are used for EXISTS and NOT EXISTS subqueries, which are
useful for finding rows in one table that match or don’t match rows in another. Correlated
subqueries work by passing values from the outer query to the subquery to see whether they
match the conditions specified in the subquery. For this reason, it’s necessary to qualify
column names with table names if they are ambiguous (appear in more than one table).

 The following EXISTS subquery identifies matches between the tables—that is, values that are
present in both. The statement selects students who have at least one absence listed in the
 absence table:

 SELECT student_id, name FROM student WHERE EXISTS
 (SELECT * FROM absence WHERE absence.student_id = student.student_id);

 NOT EXISTS identifies nonmatches—values in one table that are not present in the other. This
statement selects students who have no absences:

 SELECT student_id, name FROM student WHERE NOT EXISTS
 (SELECT * FROM absence WHERE absence.student_id = student.student_id);

03_9780321833877_ch02.indd 148 3/1/13 9:58 AM

1492.9 Performing Multiple-Table Retrievals with Subqueries

 2.9.6 Subqueries in the FROM Clause
 Subqueries can be used in the FROM clause to generate values. In this case, the result of the
subquery acts like a table. A subquery in the FROM clause can participate in joins, its values can
be tested in the WHERE clause, and so forth. With this type of subquery, you must provide a
table alias to give the subquery result a name:

 mysql> SELECT * FROM (SELECT 1, 2) AS t1 INNER JOIN (SELECT 3, 4) AS t2;
 +---+---+---+---+
 | 1 | 2 | 3 | 4 |
 +---+---+---+---+
 | 1 | 2 | 3 | 4 |
 +---+---+---+---+

 2.9.7 Rewriting Subqueries as Joins
 It’s often possible to rephrase a query that uses a subquery in terms of a join, and it’s not a bad
idea to examine queries that you might be inclined to write in terms of subqueries. A join is
sometimes more efficient than a subquery, so if a SELECT written as a subquery takes a long
time to execute, try writing it as a join to see whether it performs better. The following discus-
sion shows how to do that.

 2.9.7.1 Rewriting Subqueries That Select Matching Values

 Here’s an example statement containing a subquery; it selects scores from the score table only
for tests (that is, it ignores quiz scores):

 SELECT * FROM score
 WHERE event_id IN (SELECT event_id FROM grade_event WHERE category = 'T');

 The same statement can be written without a subquery by converting it to a simple join:

 SELECT score.* FROM score INNER JOIN grade_event
 ON score.event_id = grade_event.event_id WHERE grade_event.category = 'T';

 As another example, the following query selects scores for female students:

 SELECT * from score
 WHERE student_id IN (SELECT student_id FROM student WHERE sex = 'F');

 This can be converted to a join as follows:

 SELECT score.* FROM score INNER JOIN student
 ON score.student_id = student.student_id WHERE student.sex = 'F';

 There is a pattern here. The subquery statements follow this form:

 SELECT * FROM table1
 WHERE column1 IN (SELECT column2a FROM table2 WHERE column2b = value);

03_9780321833877_ch02.indd 149 3/1/13 9:58 AM

150 Chapter 2 Using SQL to Manage Data

 Such queries can be converted to a join using this form:

 SELECT table1 .* FROM table1 INNER JOIN table2
 ON table1 . column1 = table2 . column2a WHERE table2 . column2b = value ;

 In some cases, the subquery and the join might return different results. This occurs when
 table2 contains multiple instances of column2a . The subquery form produces only one
instance of each column2a value, but the join produces them all and its output includes dupli-
cate rows. To suppress these duplicates, begin the join with SELECT DISTINCT rather than
 SELECT .

 2.9.7.2 Rewriting Subqueries That Select Nonmatching (Missing) Values

 Another common type of subquery statement searches for values in one table that are not
present in another table. As we’ve seen before, the “which values are not present” type of
problem is a clue that a LEFT JOIN may be helpful. Here’s the statement with a subquery seen
earlier that tests for students who are not listed in the absence table (it finds those students
with perfect attendance):

 SELECT * FROM student
 WHERE student_id NOT IN (SELECT student_id FROM absence);

 This query can be rewritten using a LEFT JOIN as follows:

 SELECT student.*
 FROM student LEFT JOIN absence ON student.student_id = absence.student_id
 WHERE absence.student_id IS NULL;

 In general terms, the subquery statement form is as follows:

 SELECT * FROM table1
 WHERE column1 NOT IN (SELECT column2 FROM table2);

 A query having that form can be rewritten like this:

 SELECT table1 .*
 FROM table1 LEFT JOIN table2 ON table1 . column1 = table2 . column2
 WHERE table2 . column2 IS NULL;

 This assumes that table2.column2 is defined as NOT NULL .

 The subquery does have the advantage of being more intuitive than the LEFT JOIN . “Not in” is
a concept that most people understand without difficulty, because it occurs outside the context
of database programming. The same cannot be said for the concept of “left join,” for which
there is no such basis for natural understanding.

03_9780321833877_ch02.indd 150 3/1/13 9:58 AM

1512.10 Performing Multiple-Table Retrievals with UNION

 2.10 Performing Multiple-Table Retrievals with UNION
 To create a result set that combines the results from several queries, use a UNION statement.
For the examples in this section, assume that you have three tables, t1 , t2 , and t3 , that look
like this:

 mysql> SELECT * FROM t1;
 +------+-------+
 | i | c |
 +------+-------+
1	red
2	blue
3	green
+------+-------+	
mysql> SELECT * FROM t2;	
+------+------+	
j	c
+------+------+	
-1	tan
1	red
+------+------+	
mysql> SELECT * FROM t3;	
+------------+------+	
d	k
+------------+------+	
1904-01-01	100
2004-01-01	200
2004-01-01	200
 +------------+------+

 Tables t1 and t2 have integer and character columns, and t3 has date and integer columns. To
write a UNION statement that combines multiple retrievals, write multiple SELECT statements
and put the keyword UNION between them. Each SELECT must retrieve the same number of
columns. For example, to select the integer column from each table, do this:

 mysql> SELECT i FROM t1 UNION SELECT j FROM t2 UNION SELECT k FROM t3;
 +------+
 | i |
 +------+
 | 1 |
 | 2 |
 | 3 |
 | -1 |
 | 100 |
 | 200 |
 +------+

 UNION has the following properties.

03_9780321833877_ch02.indd 151 3/1/13 9:58 AM

152 Chapter 2 Using SQL to Manage Data

 Column name and data types. The column names for the UNION result come from the
names of the columns in the first SELECT . The second and subsequent SELECT statements in
the UNION must select the same number of columns, but corresponding columns need not
have the same names or data types. (Normally, you write a UNION such that corresponding
columns do have the same types, but MySQL performs type conversion as necessary if they
do not.) Column matching occurs by position rather than by name, which is why the follow-
ing two statements return different results, even though they select the same values from the
two tables:

 mysql> SELECT i, c FROM t1 UNION SELECT k, d FROM t3;
 +------+------------+
 | i | c |
 +------+------------+
1	red
2	blue
3	green
100	1904-01-01
200	2004-01-01
+------+------------+	
mysql> SELECT i, c FROM t1 UNION SELECT d, k FROM t3;	
+------------+-------+	
i	c
+------------+-------+	
1	red
2	blue
3	green
1904-01-01	100
2004-01-01	200
 +------------+-------+

 In each statement, the data type for each column of the result is determined from the selected
values. In the first statement, strings and dates are selected for the second column. The result is
a string column. In the second statement, integers and dates are selected for the first column,
strings and integers for the second column. In both cases, the result is a string column.

 Duplicate-row handling. By default, UNION eliminates duplicate rows from the result set:

 mysql> SELECT * FROM t1 UNION SELECT * FROM t2 UNION SELECT * FROM t3;
 +------------+-------+
 | i | c |
 +------------+-------+
1	red
2	blue
3	green
-1	tan
1904-01-01	100
2004-01-01	200
 +------------+-------+

03_9780321833877_ch02.indd 152 3/1/13 9:58 AM

153

 t1 and t2 both have a row containing values of 1 and 'red' , but only one such row appears
in the output. Also, t3 has two rows containing '2004-01-01' and 200 , one of which has
been eliminated.

 UNION DISTINCT is synonymous with UNION ; both retain only distinct rows.

 To preserve duplicates, change each UNION to UNION ALL :

 mysql> SELECT * FROM t1 UNION ALL SELECT * FROM t2 UNION ALL SELECT * FROM t3;
 +------------+-------+
 | i | c |
 +------------+-------+
1	red
2	blue
3	green
-1	tan
1	red
1904-01-01	100
2004-01-01	200
2004-01-01	200
 +------------+-------+

 If you mix UNION or UNION DISTINCT with UNION ALL , any distinct union operation takes
precedence over any UNION ALL operations to its left.

 ORDER BY and LIMIT handling. To sort a UNION result as a whole, place each SELECT within
parentheses and add an ORDER BY clause following the last one. Because the UNION uses
column names from the first SELECT , the ORDER BY should refer to those names, not the
column names from the last SELECT :

 mysql> (SELECT i, c FROM t1) UNION (SELECT k, d FROM t3)
 -> ORDER BY c;
 +------+------------+
 | i | c |
 +------+------------+
100	1904-01-01
200	2004-01-01
2	blue
3	green
1	red
 +------+------------+

 If a sort column is aliased, an ORDER BY at the end of the UNION must refer to the alias.
Also, the ORDER BY cannot refer to table names. If you need to sort by a column specified as
 tbl_name . col_name in the first SELECT , alias the column and refer to the alias in the
 ORDER BY clause.

 Similarly, to limit the number of rows returned by a UNION , add LIMIT to the end of the
statement:

2.10 Performing Multiple-Table Retrievals with UNION

03_9780321833877_ch02.indd 153 3/1/13 9:58 AM

154 Chapter 2 Using SQL to Manage Data

 mysql> (SELECT * FROM t1) UNION (SELECT * FROM t2) UNION (SELECT * FROM t3)
 -> LIMIT 2;
 +------+------+
 | i | c |
 +------+------+
 | 1 | red |
 | 2 | blue |
 +------+------+

 ORDER BY and LIMIT also can be used within a parenthesized individual SELECT to apply only
to that SELECT :

 mysql> (SELECT * FROM t1 ORDER BY i LIMIT 2)
 -> UNION (SELECT * FROM t2 ORDER BY j LIMIT 1)
 -> UNION (SELECT * FROM t3 ORDER BY d LIMIT 2);
 +------------+------+
 | i | c |
 +------------+------+
1	red
2	blue
-1	tan
1904-01-01	100
2004-01-01	200
 +------------+------+

 ORDER BY within an individual SELECT is used only if LIMIT is also present, to determine
which rows the LIMIT applies to. It does not affect the order in which rows appear in the final
 UNION result.

 2.11 Multiple-Table Deletes and Updates
 Sometimes it’s useful to delete rows based on whether they match or don’t match rows in
another table. Similarly, it’s often useful to update rows in one table using the contents of rows
in another table. This section describes how to perform multiple-table DELETE and UPDATE
operations. These types of statements draw heavily on the concepts used for joins, so be sure
you’re familiar with the material discussed earlier in Section 2.8 , “Performing Multiple-Table
Retrievals with Joins.”

 To perform a single-table DELETE or UPDATE , you refer only to the columns of one table and
thus need not qualify the column names with the table name. For example, this statement
deletes all rows in a table t that have id values greater than 100:

 DELETE FROM t WHERE id > 100;

 But what if you want to delete rows based not on properties inherent in the rows themselves,
but rather on their relationship to rows in another table? Suppose that you want to delete from
 t those rows with id values that are present in or missing from another table t2 ?

03_9780321833877_ch02.indd 154 3/1/13 9:58 AM

1552.11 Multiple-Table Deletes and Updates

 To write a multiple-table DELETE , name all the tables in a FROM clause and specify the condi-
tions used to match rows in the tables in the WHERE clause. The following statement deletes
rows from table t1 where there is a matching id value in table t2 :

 DELETE t1 FROM t1 INNER JOIN t2 ON t1.id = t2.id;

 Notice that if a column name appears in more than one of the tables, it is ambiguous and must
be qualified with a table name.

 The syntax also supports deleting rows from multiple tables at once. To delete rows from both
tables where there are matching id values, name them both after the DELETE keyword:

 DELETE t1, t2 FROM t1 INNER JOIN t2 ON t1.id = t2.id;

 What if you want to delete nonmatching rows? A multiple-table DELETE can use any kind of
join that you can write in a SELECT , so employ the same strategy that you’d use when writing
a SELECT that identifies the nonmatching rows. That is, use a LEFT JOIN or RIGHT JOIN . For
example, to identify rows in t1 that have no match in t2 , write a SELECT like this:

 SELECT t1.* FROM t1 LEFT JOIN t2 ON t1.id = t2.id WHERE t2.id IS NULL;

 The analogous DELETE statement to find and remove those rows from t1 uses a LEFT JOIN as
well:

 DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id = t2.id WHERE t2.id IS NULL;

 MySQL supports a second multiple-table DELETE syntax. This syntax uses a FROM clause to list
the tables from which rows are to be deleted and a USING clause to join the tables that deter-
mine which rows to delete. The preceding multiple-table DELETE statements can be rewritten
using this syntax as follows:

 DELETE FROM t1 USING t1 INNER JOIN t2 ON t1.id = t2.id;
 DELETE FROM t1, t2 USING t1 INNER JOIN t2 ON t1.id = t2.id;
 DELETE FROM t1 USING t1 LEFT JOIN t2 ON t1.id = t2.id WHERE t2.id IS NULL;

 The principles involved in writing multiple-table UPDATE statements are quite similar to those
used for DELETE : Name all the tables that participate in the operation and qualify column refer-
ences as necessary. Suppose that the quiz you gave on September 23, 2012 contained a question
that everyone got wrong, and then you discover that the reason for this is that your answer key
was incorrect. As a result, you want to add a point to everyone’s score. With a multiple-table
 UPDATE , you can do this as follows:

 UPDATE score, grade_event SET score.score = score.score + 1
 WHERE score.event_id = grade_event.event_id
 AND grade_event.date = '2012-09-23' AND grade_event.category = 'Q';

 In this case, you could accomplish the same objective using a single-table update and a
subquery:

 UPDATE score SET score = score + 1
 WHERE event_id = (SELECT event_id FROM grade_event
 WHERE date = '2012-09-23' AND category = 'Q');

03_9780321833877_ch02.indd 155 3/1/13 9:58 AM

156 Chapter 2 Using SQL to Manage Data

 But other updates cannot be written using subqueries. For example, you might want to not
only identify rows to update based on the contents of another table, but to copy column values
from one table to another. The following statement copies t1.a to t2.a for rows that have a
matching id column value:

 UPDATE t1, t2 SET t2.a = t1.a WHERE t2.id = t1.id;

 To perform multiple-table deletes or updates for InnoDB tables, you need not use the syntax
just described. Instead, set up a foreign key relationship between tables that includes an ON
DELETE CASCADE or ON UPDATE CASCADE constraint. For details, see Section 2.13 , “Foreign
Keys and Referential Integrity.”

 2.12 Performing Transactions
 A transaction is a set of SQL statements that execute as a unit and can be canceled if necessary.
Either all the statements execute successfully, or none of them have any effect. This is achieved
through the use of commit and rollback capabilities. If all of the statements in the transaction
succeed, you commit it to record their effects permanently in the database. If an error occurs
during the transaction, you roll it back to cancel it. Any statements executed up to that point
within the transaction are undone, leaving the database in the state it was in prior to the point
at which the transaction began.

 Commit and rollback provide the means to ensure that halfway-done operations don’t make
their way into your database and leave it in a partially updated (inconsistent) state. The canoni-
cal example involves a financial transfer where money from one account is placed into another
account. Suppose that Bill writes a check to Bob for $100.00 and Bob cashes the check. Bill’s
account should be decremented by $100.00 and Bob’s account incremented by the same
amount:

 UPDATE account SET balance = balance - 100 WHERE name = 'Bill';
 UPDATE account SET balance = balance + 100 WHERE name = 'Bob';

 If a crash occurs between the two statements, the operation is incomplete. Depending on
which statement executes first, Bill is $100 short without Bob having been credited, or Bob is
given $100 without Bill having been debited. Neither outcome is correct. If transactional capa-
bilities are not available, you must figure out the state of ongoing operations at crash time by
examining your logs manually to determine how to undo them or complete them. The rollback
capabilities of transaction support enable you to handle this situation properly by undoing
the effect of the statements that executed before the error occurred. (You may still have to
determine which transactions weren’t entered and re-issue them, but at least you don’t have to
worry about half-transactions making your database inconsistent.)

 Another use for transactions is to make sure that the rows involved in an operation are not
modified by other clients while you’re working with them. MySQL automatically performs
locking for single SQL statements to keep clients from interfering with each other, but this
is not always sufficient to guarantee that a database operation achieves its intended result,
because some operations are performed over the course of several statements. In this case,

03_9780321833877_ch02.indd 156 3/1/13 9:58 AM

1572.12 Performing Transactions

different clients might interfere with each other. A transaction groups statements into a single
execution unit to prevent concurrency problems that could otherwise occur in a multiple-client
environment.

 Transactional systems typically are characterized as providing ACID properties. ACID is an
acronym for Atomic, Consistent, Isolated, and Durable, referring to four properties transactions
should have:

 ■ Atomicity: The statements comprising a transaction form a logical unit. You can’t have
just some of them execute.

 ■ Consistency: The database is consistent before and after the transaction executes. For
example, if rows in one table cannot have an ID that is not listed in another table, a
transaction that attempts to insert a row with an invalid ID will fail and roll back.

 ■ Isolation: One transaction has no effect on another, so that transactions executed
concurrently have the same effect as if done one after the other.

 ■ Durability: When a transaction executes successfully to completion, its effects are
recorded permanently in the database.

 Transactional processing provides stronger guarantees about the outcome of database opera-
tions, but also requires more overhead in CPU cycles, memory, and disk space. MySQL offers
storage engines that are transaction-safe (such as InnoDB), and that are not transaction-safe
(such as MyISAM and MEMORY). Transactional properties are essential for some applications
and not for others, and you can choose which ones make the most sense for your applications.
Financial operations typically need transactions, and the guarantees of data integrity outweigh
the cost of additional overhead. On the other hand, for an application that logs web page
accesses to a database table, a loss of a few rows if the server host crashes might be tolerable.
In this case, using a nontransactional storage engine avoids the overhead required for transac-
tional processing.

 2.12.1 Using Transactions to Ensure Safe Statement Execution
 Use of transactions requires a transactional storage engine such as InnoDB. Engines such as
MyISAM and MEMORY will not work. If you’re not sure whether your MySQL server supports
transactional storage engines, see Section 2.6.1.1 , “Checking Which Storage Engines Are
Available.”

 By default, MySQL runs in autocommit mode, which means that changes made by individual
statements are committed to the database immediately to make them permanent. In effect,
each statement is its own transaction implicitly. To perform transactions explicitly, disable
autocommit mode and then tell MySQL when to commit or roll back changes.

 One way to perform a transaction is to issue a START TRANSACTION (or BEGIN) statement to
suspend autocommit mode, execute the statements that make up the transaction, and end
the transaction with a COMMIT statement to make the changes permanent. If an error occurs
during the transaction, cancel it by issuing a ROLLBACK statement instead to undo the changes.

03_9780321833877_ch02.indd 157 3/1/13 9:58 AM

158 Chapter 2 Using SQL to Manage Data

 START TRANSACTION suspends the current autocommit mode, so after the transaction has
been committed or rolled back, the mode reverts to its state prior to the START TRANSACTION .
If autocommit was enabled beforehand, ending the transaction puts you back in autocommit
mode. If it was disabled, ending the current transaction causes you to begin the next one.

 The following example illustrates this approach. First, create a table to use:

 mysql> CREATE TABLE t (name CHAR(20), UNIQUE (name)) ENGINE=InnoDB;

 Next, initiate a transaction with START TRANSACTION , add a couple of rows to the table,
commit the transaction, and then see what the table looks like:

 mysql> START TRANSACTION;
 mysql> INSERT INTO t SET name = 'William';
 mysql> INSERT INTO t SET name = 'Wallace';
 mysql> COMMIT;
 mysql> SELECT * FROM t;
 +---------+
 | name |
 +---------+
 | Wallace |
 | William |
 +---------+

 You can see that the rows have been recorded in the table. If you had started up a second
instance of mysql and selected the contents of t after the inserts but before the commit, the
rows would not show up. They would not become visible to the second mysql process until the
 COMMIT statement had been issued by the first one.

 If an error occurs during a transaction, you can cancel it with ROLLBACK . Using the t table
again, you can see this by issuing the following statements:

 mysql> START TRANSACTION;
 mysql> INSERT INTO t SET name = 'Gromit';
 mysql> INSERT INTO t SET name = 'Wallace';
 ERROR 1062 (23000): Duplicate entry 'Wallace' for key 'name'
 mysql> ROLLBACK;
 mysql> SELECT * FROM t;
 +---------+
 | name |
 +---------+
 | Wallace |
 | William |
 +---------+

 The second INSERT attempts to place a row into the table that duplicates an existing name
value, but fails because name has a UNIQUE index. After issuing the ROLLBACK , the table has
only the two rows that it contained prior to the failed transaction. In particular, the successful
 INSERT that was performed before the failed one has been undone and its effect is not recorded
in the table.

03_9780321833877_ch02.indd 158 3/1/13 9:58 AM

1592.12 Performing Transactions

 Issuing a START TRANSACTION statement while a transaction is in process commits the current
transaction implicitly before beginning a new one.

 Another way to perform transactions is to manipulate the autocommit mode directly using SET
statements:

 SET autocommit = 0;
 SET autocommit = 1;

 Setting the autocommit variable to zero disables autocommit, The effects of any statements
that follow become part of the current transaction, which you end by issuing a COMMIT or
 ROLLBACK statement to commit or cancel it. With this method, autocommit remains off until
you turn it back on, so ending one transaction also begins the next one. You can also commit a
transaction by re-enabling autocommit.

 To see how this approach works, begin with the same table as for the previous examples:

 mysql> DROP TABLE t;
 mysql> CREATE TABLE t (name CHAR(20), UNIQUE (name)) ENGINE=InnoDB;

 Then disable autocommit mode, insert some rows, and commit the transaction:

 mysql> SET autocommit = 0;
 mysql> INSERT INTO t SET name = 'William';
 mysql> INSERT INTO t SET name = 'Wallace';
 mysql> COMMIT;
 mysql> SELECT * FROM t;
 +---------+
 | name |
 +---------+
 | Wallace |
 | William |
 +---------+

 At this point, the two rows have been committed to the table, but autocommit mode remains
disabled. If you issue further statements, they become part of a new transaction, which may be
committed or rolled back independently of the first transaction. To verify that autocommit is
still off and that ROLLBACK will cancel uncommitted statements, issue the following statements:

 mysql> INSERT INTO t SET name = 'Gromit';
 mysql> INSERT INTO t SET name = 'Wallace';
 ERROR 1062 (23000): Duplicate entry 'Wallace' for key 'name'
 mysql> ROLLBACK;
 mysql> SELECT * FROM t;
 +---------+
 | name |
 +---------+
 | Wallace |
 | William |
 +---------+

03_9780321833877_ch02.indd 159 3/1/13 9:58 AM

160 Chapter 2 Using SQL to Manage Data

 To re-enable autocommit mode, use this statement:

 mysql> SET autocommit = 1;

 As just described, a transaction ends when you issue a COMMIT or ROLLBACK statement, or
when you re-enable autocommit while it is disabled. Transactions also end under other circum-
stances. In addition to the SET autocommit , START TRANSACTION , BEGIN , COMMIT , and
 ROLLBACK statements that affect transactions explicitly, certain other statements do so implic-
itly because they cannot be part of a transaction. In general, these tend to be DDL (data defini-
tion language) statements that create, alter, or drop databases or objects in them, or statements
that are lock-related. For example, if you issue any of the following statements while a transac-
tion is in progress, the server commits the transaction first before executing the statement:

 ALTER TABLE
 CREATE INDEX
 DROP DATABASE
 DROP INDEX
 DROP TABLE
 LOCK TABLES
 RENAME TABLE
 SET autocommit = 1 (if not already set to 1)
 TRUNCATE TABLE
 UNLOCK TABLES (if tables currently are locked)

 For a complete list of statements that cause implicit commits in your version of MySQL, see the
MySQL Reference Manual.

 A transaction also ends if a client’s session ends or is broken before a commit occurs. In this
case, the server automatically rolls back any transaction the client had in progress.

 If a client program automatically reconnects after its session with the server is lost, the connec-
tion is reset to its default state of having autocommit enabled.

 Transactions are useful in all kinds of situations. Suppose that you’re working with the score
table that is part of the grade-keeping project and you discover that the grades for two students
have gotten mixed up and need to be switched. The incorrectly entered grades are as follows:

 mysql> SELECT * FROM score WHERE event_id = 5 AND student_id IN (8,9);
 +------------+----------+-------+
 | student_id | event_id | score |
 +------------+----------+-------+
 | 8 | 5 | 18 |
 | 9 | 5 | 13 |
 +------------+----------+-------+

 To fix this, student 8 should be given a score of 13 and student 9 a score of 18. That can be
done easily with two statements:

 UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;
 UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;

03_9780321833877_ch02.indd 160 3/1/13 9:58 AM

1612.12 Performing Transactions

 However, it’s necessary to ensure that both statements succeed as a unit. This is a problem to
which transactional methods may be applied. To use START TRANSACTION , do this:

 mysql> START TRANSACTION;
 mysql> UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;
 mysql> UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;
 mysql> COMMIT;

 To accomplish the same thing by manipulating the autocommit mode explicitly instead, do
this:

 mysql> SET autocommit = 0;
 mysql> UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8;
 mysql> UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;
 mysql> COMMIT;
 mysql> SET autocommit = 1;

 Either way, the result is that the scores are swapped properly:

 mysql> SELECT * FROM score WHERE event_id = 5 AND student_id IN (8,9);
 +------------+----------+-------+
 | student_id | event_id | score |
 +------------+----------+-------+
 | 8 | 5 | 13 |
 | 9 | 5 | 18 |
 +------------+----------+-------+

 2.12.2 Using Transaction Savepoints
 MySQL enables you to perform a partial rollback of a transaction. To do this, issue a SAVEPOINT
statement within the transaction to set a named marker. To roll back to just that point in the
transaction later, use a ROLLBACK statement that names the savepoint. The following state-
ments illustrate how this works:

 mysql> CREATE TABLE t (i INT) ENGINE=InnoDB;
 mysql> START TRANSACTION;
 mysql> INSERT INTO t VALUES(1);
 mysql> SAVEPOINT my_savepoint;
 mysql> INSERT INTO t VALUES(2);
 mysql> ROLLBACK TO SAVEPOINT my_savepoint;
 mysql> INSERT INTO t VALUES(3);
 mysql> COMMIT;
 mysql> SELECT * FROM t;
 +------+
 | i |
 +------+
 | 1 |
 | 3 |
 +------+

03_9780321833877_ch02.indd 161 3/1/13 9:58 AM

162 Chapter 2 Using SQL to Manage Data

 After executing these statements, the first and third rows have been inserted, but the second
one has been canceled by the partial rollback to the my_savepoint savepoint.

 2.12.3 Transaction Isolation
 Because MySQL is a multiple-user database system, different clients can attempt to use any
given table at the same time. Storage engines such as MyISAM use table locking to keep clients
from modifying a table at the same time, but this does not provide good concurrency perfor-
mance when there are many updates. The InnoDB storage engine takes a different approach.
It uses row-level locking for finer-grained control over table access by clients. One client can
modify a row at the same time that another client reads or modifies a different row in the
same table. If both clients want to modify a row at the same time, whichever of them acquires
a lock on the row gets to modify it first. This provides better concurrency than table locking.
However, there is the question of whether one client’s transaction should be able to see the
changes made by another client’s transaction.

 InnoDB implements transaction isolation levels to give clients control over what kind of
changes made by other transactions they want to see. Different isolation levels permit or
prevent problems that can occur when different transactions run simultaneously:

 ■ Dirty reads. A dirty read occurs when a change made by one transaction can be seen by
other transactions before the transaction has been committed. Another transaction thus
might think the row has been changed, even though that will not really be true if the
transaction that changed the row later is rolled back.

 ■ Nonrepeatable reads. A nonrepeatable read refers to failure by a transaction to get the
same result for a given SELECT statement each time it executes it. This might happen if
one transaction performs a SELECT twice but another transaction changes some of the
rows in between the two executions.

 ■ Phantom rows. A phantom is a row that becomes visible to a transaction when it was not
previously. Suppose that a transaction performs a SELECT and then another transaction
inserts a row. If the first transaction runs the same SELECT again and sees the new row,
that is a phantom.

 To deal with these problems, InnoDB supports four transaction isolation levels. These levels
determine which modifications made by one transaction can be seen by other transactions that
execute at the same time:

 ■ READ UNCOMMITTED : A transaction can see row modifications made by other transactions
even before they have been committed.

 ■ READ COMMITTED : A transaction can see row modifications made by other transactions
only if they have been committed.

 ■ REPEATABLE READ : If a transaction performs a given SELECT twice, the result is
repeatable. That is, it gets the same result each time, even if other transactions have
changed or inserted rows in the meantime.

03_9780321833877_ch02.indd 162 3/1/13 9:58 AM

1632.12 Performing Transactions

 ■ SERIALIZABLE : This isolation level is similar to REPEATABLE READ but isolates
transactions more completely: Rows examined by one transaction cannot be modified by
other transactions until the first transaction completes. This enables one transaction to
read rows and at the same time prevent them from being modified by other transactions
until it is done with them.

 Table 2.4 shows for each isolation level whether it permits dirty reads, nonrepeatable reads,
or phantom rows. The table is InnoDB-specific in that REPEATABLE READ does not permit
phantom rows to occur. Some database systems do permit phantoms at the REPEATABLE READ
isolation level.

 Table 2.4 Problems Permitted by Isolation Levels

 Isolation Level Dirty Reads Nonrepeatable Reads Phantom Rows

 READ UNCOMMITTED Yes Yes Yes

 READ COMMITTED No Yes Yes

 REPEATABLE READ No No No

 SERIALIZABLE No No No

 The default InnoDB isolation level is REPEATABLE READ . This can be changed at server startup
with the --transaction-isolation option, or at runtime with the SET TRANSACTION state-
ment. The statement has three forms:

 SET GLOBAL TRANSACTION ISOLATION LEVEL level ;
 SET SESSION TRANSACTION ISOLATION LEVEL level ;
 SET TRANSACTION ISOLATION LEVEL level ;

 A client that has the SUPER privilege can use SET TRANSACTION to change the global isola-
tion level, which then applies to any clients that connect thereafter. In addition, any client
can change its own transaction isolation level, either for all subsequent transactions within its
session with the server (if SESSION is specified) or for its next transaction only (if SESSION is
omitted). No special privileges are required for the client-specific levels.

 Can You Mix Transactional and Nontransactional Tables?
 It is possible to use both transactional and nontransactional tables during the course of a
transaction, but the result might not be what you expect. Statements for nontransactional
tables always take effect immediately, even when autocommit is disabled. In effect, nontrans-
actional tables are always in autocommit mode and each statement commits immediately. As a
result, if you change a nontransactional table within a transaction and then attempt a rollback,
the nontransactional table changes cannot be undone.

03_9780321833877_ch02.indd 163 3/1/13 9:58 AM

164 Chapter 2 Using SQL to Manage Data

 2.13 Foreign Keys and Referential Integrity
 A foreign key relationship enables you to declare that an index in one table is related to an
index in another. It also enables you to place constraints on what may be done to the tables
in the relationship. The database enforces the rules of this relationship to maintain referential
integrity. For example, the score table in the sampdb sample database contains a student_id
column, which we use to relate score rows to students in the student table. When we created
these tables in Chapter 1 , “Getting Started with MySQL,” we set up some explicit relation-
ships between them. For example, we declared score.student_id to be a foreign key for
the student.student_id column. That prevents a row from being entered into the score
table unless its student_id value exists in the student table. In other words, the foreign key
prevents entry of scores for nonexistent students.

 Foreign keys are not useful just for row entry, but for deletes and updates as well. For example,
we could set up a constraint such that if a student is deleted from the student table, all corre-
sponding rows for the student in the score table are deleted automatically as well. This is
called “cascaded delete” because the effect of the delete cascades from one table to another.
Cascaded update is possible as well. For example, with cascaded update, changing a student’s
 student_id value in the student table also changes the value in the student’s corresponding
 score table rows.

 Foreign keys maintain the consistency of your data, and they provide a certain measure of
convenience. Without foreign keys, you are responsible for keeping track of inter-table depen-
dencies and maintaining their consistency from within your applications. In some cases, doing
this might not be much more work than issuing a few extra DELETE statements to make sure
that when you delete a row from one table, you also delete the corresponding rows in any
related tables. But it is extra work, and if the database engine will perform consistency checks
for you, why not let it? Automatic checking capability is especially useful if your tables have
particularly complex relationships. You likely will not want to be responsible for implementing
these dependencies in your applications.

 In MySQL, the InnoDB storage engine provides foreign key support. This section describes how
to set up InnoDB tables to define foreign keys, and how foreign keys affect the way you use
tables. First, it’s necessary to define some terms:

 ■ The parent is the table that contains the original key values.

 ■ The child is the related table that refers to key values in the parent.

 Parent table key values are used to associate the two tables. Specifically, an index in the child
table refers to an index in the parent. The child index values must match those in the parent
or else be set to NULL to indicate that there is no associated parent table row. The index in
the child table is known as the “foreign key”—that is, the key that is foreign (external) to the
parent table but contains values that point to the parent. A foreign key relationship can be
set up to reject NULL values, in which case all foreign key values must match a value in the
parent table.

 InnoDB enforces these rules to guarantee that the foreign key relationship stays intact with no
mismatches. This is called “referential integrity.”

03_9780321833877_ch02.indd 164 3/1/13 9:58 AM

1652.13 Foreign Keys and Referential Integrity

 The following syntax shows how to define a foreign key in a child table:

 [CONSTRAINT constraint_name]
 FOREIGN KEY [fk_name] (index_columns)
 REFERENCES tbl_name (index_columns)
 [ON DELETE action]
 [ON UPDATE action]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

 Although all parts of this syntax are parsed, InnoDB does not implement the semantics for
all the clauses: The MATCH clause is not supported and is ignored if you specify it. Also, some
 action values are recognized but have no effect. (For storage engines other than InnoDB, the
entire FOREIGN KEY definition is parsed but ignored.)

 InnoDB pays attention to the following parts of the definition:

 ■ The CONSTRAINT clause, if given, supplies a name for the foreign key constraint. If you
omit it, InnoDB creates a name.

 ■ FOREIGN KEY indicates the indexed columns in the child table that must match index
values in the parent table. fk_name is the foreign key ID. If given, it is ignored unless
InnoDB automatically creates an index for the foreign key; in that case, fk_name
becomes the index name.

 ■ REFERENCES names the parent table and the index columns in that table to which the
foreign key in the child table refers. The index_columns part of the REFERENCES clause
must have the same number of columns as the index_columns that follows the FOREIGN
KEY keywords.

 ■ ON DELETE enables you to specify what happens to the child table when parent table
rows are deleted. The default if no ON DELETE clause is present is to reject any attempt
to delete rows in the parent table that have child rows pointing to them. To specify an
 action value explicitly, use one of the following clauses:

 ■ ON DELETE NO ACTION and ON DELETE RESTRICT are the same as omitting the
 ON DELETE clause. Some database systems have deferred checks, and NO ACTION is
a deferred check. For InnoDB, foreign key constraints are checked immediately, so
 NO ACTION and RESTRICT are the same.

 ■ ON DELETE CASCADE causes matching child rows to be deleted when the
corresponding parent row is deleted. In essence, the effect of the delete is cascaded
from the parent to the child. This enables you to perform multiple-table deletes
by deleting rows only from the parent table and letting InnoDB delete the
corresponding rows from the child table.

 ■ ON DELETE SET NULL causes index columns in matching child rows to be set to
 NULL when the parent row is deleted. If you use this option, all the indexed child
table columns named in the foreign key definition must be defined to permit NULL
values. (One implication of using this action is that you cannot define the foreign
key to be a PRIMARY KEY ; primary keys do not permit NULL values.)

 ■ ON DELETE SET DEFAULT is recognized but unimplemented and InnoDB issues
an error.

03_9780321833877_ch02.indd 165 3/1/13 9:58 AM

166 Chapter 2 Using SQL to Manage Data

 ■ ON UPDATE enables you to specify what happens to the child table when parent table
rows are updated. The default if no ON UPDATE clause is present is to reject any inserts
or updates in the child table that result in foreign key values that don’t have any match
in the parent table index, and to prevent updates to parent table index values to which
child rows point. The possible action values are the same as for ON DELETE and have
similar effects.

 To set up a foreign key relationship, follow these guidelines:

 ■ The child table must have an index where the foreign key columns are listed as its
first columns. The parent table must also have an index in which the columns in the
 REFERENCES clause are listed as its first columns. (In other words, the key columns must
be indexed in the tables on both ends of the foreign key relationship.) You must create
the parent table index explicitly before defining the foreign key relationship. InnoDB
automatically creates an index on foreign key columns (the referencing columns) in the
child table if the CREATE TABLE statement does not include such an index. This makes
it easier to write the CREATE TABLE statement in some cases. However, an automatically
created index will be a nonunique index and will include only the foreign key columns.
You should define the index in the child table explicitly if you want it to be a PRIMARY
KEY or UNIQUE index, or if it should include other columns in addition to those in the
foreign key.

 ■ Corresponding columns in the parent and child indexes must have compatible types.
For example, you cannot match an INT column with a CHAR column. Corresponding
character columns must be the same length. Corresponding integer columns must have
the same size and must both be signed or both UNSIGNED .

 ■ You cannot index prefixes of string columns in foreign key relationships. (That is, for
string columns, you must index the entire column, not just a leading prefix of it.)

 In Chapter 1 , “Getting Started with MySQL,” we created tables for the grade-keeping project
that have simple foreign key relationships. Now let’s work through an example that is more
complex. Begin by creating tables named parent and child , such that the child table
contains a foreign key that references the par_id column in the parent table:

 CREATE TABLE parent
 (
 par_id INT NOT NULL,
 PRIMARY KEY (par_id)
) ENGINE = INNODB;

 CREATE TABLE child
 (
 par_id INT NOT NULL,
 child_id INT NOT NULL,
 PRIMARY KEY (par_id, child_id),
 FOREIGN KEY (par_id) REFERENCES parent (par_id)

03_9780321833877_ch02.indd 166 3/1/13 9:58 AM

1672.13 Foreign Keys and Referential Integrity

 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE = INNODB;

 The foreign key in this case uses ON DELETE CASCADE to specify that when a row is deleted
from the parent table, MySQL also should remove child rows with a matching par_id value
automatically. ON UPDATE CASCADE indicates that if a parent row par_id value is changed,
MySQL also should change any matching par_id values in the child table to the new value.

 Now insert a few rows into the parent table, and then add some rows to the child table that
have related key values:

 mysql> INSERT INTO parent (par_id) VALUES(1),(2),(3);
 mysql> INSERT INTO child (par_id,child_id) VALUES(1,1),(1,2);
 mysql> INSERT INTO child (par_id,child_id) VALUES(2,1),(2,2),(2,3);
 mysql> INSERT INTO child (par_id,child_id) VALUES(3,1);

 These statements result in the following table contents, where each par_id value in the child
table matches a par_id value in the parent table:

 mysql> SELECT * FROM parent;
 +--------+
 | par_id |
 +--------+
 | 1 |
 | 2 |
 | 3 |
 +--------+
 mysql> SELECT * FROM child;
 +--------+----------+
 | par_id | child_id |
 +--------+----------+
1	1
1	2
2	1
2	2
2	3
3	1
 +--------+----------+

 To verify that InnoDB enforces the key relationship for insertion, try adding a row to the child
table that has a par_id value not found in the parent table:

 mysql> INSERT INTO child (par_id,child_id) VALUES(4,1);
 ERROR 1452 (23000): Cannot add or update a child row: a foreign key
 constraint fails (`sampdb`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN
 KEY (`par_id`) REFERENCES `parent` (`par_id`) ON DELETE CASCADE
 ON UPDATE CASCADE)

03_9780321833877_ch02.indd 167 3/1/13 9:58 AM

168 Chapter 2 Using SQL to Manage Data

 To test cascaded delete, see what happens when you delete a parent row:

 mysql> DELETE FROM parent WHERE par_id = 1;

 MySQL deletes the row from the parent table:

 mysql> SELECT * FROM parent;
 +--------+
 | par_id |
 +--------+
 | 2 |
 | 3 |
 +--------+

 In addition, it cascades the effect of the DELETE statement to the child table:

 mysql> SELECT * FROM child;
 +--------+----------+
 | par_id | child_id |
 +--------+----------+
2	1
2	2
2	3
3	1
 +--------+----------+

 To test cascaded update, see what happens when you update a parent row:

 mysql> UPDATE parent SET par_id = 100 WHERE par_id =2;
 mysql> SELECT * FROM parent;
 +--------+
 | par_id |
 +--------+
 | 3 |
 | 100 |
 +--------+
 mysql> SELECT * FROM child;
 +--------+----------+
 | par_id | child_id |
 +--------+----------+
3	1
100	1
100	2
100	3
 +--------+----------+

 The preceding example shows how to arrange for deletes or updates of a parent row to cause
cascaded deletes or updates of any corresponding child rows. The ON DELETE and ON UPDATE
clauses permit other actions. For example, one possibility is to let the child rows remain in the

03_9780321833877_ch02.indd 168 3/1/13 9:58 AM

1692.13 Foreign Keys and Referential Integrity

table but have their foreign key columns set to NULL . To do this, it’s necessary to make several
changes to the definition of the child table:

 ■ Use ON DELETE SET NULL rather than ON DELETE CASCADE . This tells InnoDB to set the
foreign key column (par_id) to NULL instead of deleting the rows.

 ■ Use ON UPDATE SET NULL rather than ON UPDATE CASCADE . This tells InnoDB to set the
foreign key column (par_id) to NULL when matching parent rows are updated.

 ■ The original definition of child defines par_id as NOT NULL . That won’t work with ON
DELETE SET NULL or ON UPDATE SET NULL , so the column definition must be changed
to permit NULL .

 ■ The original definition of child also defines par_id to be part of a PRIMARY KEY .
However, a PRIMARY KEY cannot contain NULL values. Changing par_id to permit NULL
therefore also requires that the PRIMARY KEY be changed to a UNIQUE index. UNIQUE
indexes enforce uniqueness except for NULL values, which can occur multiple times in
the index.

 To see the effect of these changes, re-create the parent table using the original definition and
load the same initial rows into it. Then create the child table using the new definition shown
here:

 CREATE TABLE child
 (
 par_id INT NULL,
 child_id INT NOT NULL,
 UNIQUE (par_id, child_id),
 FOREIGN KEY (par_id) REFERENCES parent (par_id)
 ON DELETE SET NULL
 ON UPDATE SET NULL
) ENGINE = INNODB;

 With respect to inserting new rows, the child table behaves similarly to the original definition.
That is, it permits insertion of rows with par_id values found in the parent table, but prohibits
entry of values that aren’t listed there:

 mysql> INSERT INTO child (par_id,child_id) VALUES(1,1),(1,2);
 mysql> INSERT INTO child (par_id,child_id) VALUES(2,1),(2,2),(2,3);
 mysql> INSERT INTO child (par_id,child_id) VALUES(3,1);
 mysql> INSERT INTO child (par_id,child_id) VALUES(4,1);
 ERROR 1452 (23000): Cannot add or update a child row: a foreign key
 constraint fails (`sampdb`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN
 KEY (`par_id`) REFERENCES `parent` (`par_id`) ON DELETE SET NULL
 ON UPDATE SET NULL)

 There is one difference with respect to inserting rows. Because the par_id column now is
defined as NULL , you can explicitly insert rows into the child table that contain NULL and no
error occurs. A difference in behavior also occurs when you delete a parent row. Try removing a
parent row and then check the contents of the child table to see what happens:

03_9780321833877_ch02.indd 169 3/1/13 9:58 AM

170 Chapter 2 Using SQL to Manage Data

 mysql> DELETE FROM parent WHERE par_id = 1;
 mysql> SELECT * FROM child;
 +--------+----------+
 | par_id | child_id |
 +--------+----------+
NULL	1
NULL	2
2	1
2	2
2	3
3	1
 +--------+----------+

 In this case, the child rows that had 1 in the par_id column are not deleted. Instead, the
 par_id column is set to NULL , as specified by the ON DELETE SET NULL constraint.

 Updating a parent row has a similar effect:

 mysql> UPDATE parent SET par_id = 100 WHERE par_id = 2;
 mysql> SELECT * FROM child;
 +--------+----------+
 | par_id | child_id |
 +--------+----------+
NULL	1
NULL	1
NULL	2
NULL	2
NULL	3
3	1
 +--------+----------+

 To see what foreign key relationships an InnoDB table has, use the SHOW CREATE TABLE
 statement.

 If an error occurs when you attempt to create a table that has a foreign key, use the SHOW
ENGINE INNODB STATUS statement to get the full error message.

 2.14 Using FULLTEXT Searches
 MySQL is capable of performing full-text searches, which enables you to look for words or
phrases without using pattern-matching operations. There are three kinds of full-text search:

 ■ Natural language searching (the default). MySQL parses the search string into words and
searches for rows containing these words.

 ■ Boolean mode searching. Words in the search string can include modifier characters that
indicate specific requirements, such as that a given word should be present or absent in
matching rows, or that rows must contain an exact phrase.

03_9780321833877_ch02.indd 170 3/1/13 9:58 AM

1712.14 Using FULLTEXT Searches

 ■ Query expansion searching. This kind of search occurs in two phases. The first phase is
a natural language search. Then a second search is done using the original search string
concatenated with the most highly relevant matching rows from the first search. This
expands the search on the basis of the assumption that words related to the original
search string will match relevant rows that the original string did not.

 Full-text search capability is enabled for a given table by creating a special kind of index and
has the following characteristics:

 ■ Full-text searches are based on FULLTEXT indexes. In MySQL 5.5, these can be created
only for MyISAM tables. MySQL 5.6 introduces full-text support for InnoDB, but we’ll
stick with MyISAM here because you might not have 5.6. Only CHAR , VARCHAR , and TEXT
columns can be included in a FULLTEXT index.

 ■ Common words are ignored for FULLTEXT searches, where “common” means “present in
at least half the rows.” It’s especially important to remember this when you’re setting up
a test table to experiment with the FULLTEXT capability. Be sure to insert at least three
rows into your test table. If the table has just one or two rows, every word in it will occur
at least 50% of the time and you’ll never get any results!

 ■ There is a built-in list of common words such as “the,” “after,” and “other” that are
called “stopwords” and that are always ignored.

 ■ Words that are too short are ignored. By default, “too short” is defined as fewer than four
characters, but you can reconfigure the server to set the minimum length to a different
value. (See Section 2.14.4 , “Configuring the FULLTEXT Search Engine”.)

 ■ Words are defined as sequences of characters that include letters, digits, apostrophes,
and underscores. This means that a string like “full-blooded” is considered to contain
two words, “full” and “blooded.” Normally, a full-text search matches whole words, not
partial words, and the FULLTEXT engine considers a row to match a search string if it
includes any of the words in the search string. If you use a boolean full-text search, you
can impose the additional constraint that all the words must be present (either in any
order, or, to perform a phrase search, in exactly the order listed in the search string).
With a boolean search, it’s also possible to match rows that do not include certain words,
or to add a wildcard modifier to match all words that begin with a given prefix.

 ■ A FULLTEXT index can be created for a single column or multiple columns. If it
spans multiple columns, searches based on the index look through all the columns
simultaneously. The flip side of this is that when you perform a search, you must
specify a column list that corresponds exactly to the set of columns that matches some
 FULLTEXT index. For example, if you want to search col1 sometimes, col2 sometimes,
and both col1 and col2 sometimes, you must create three indexes: one for each of the
columns separately, and one that includes both columns.

 The following examples show how to use full-text searching by creating FULLTEXT indexes
and then performing queries on them using the MATCH operator. A script to create the table
and some sample data to load into it are available in the full-text directory of the sampdb
distribution.

03_9780321833877_ch02.indd 171 3/1/13 9:58 AM

172 Chapter 2 Using SQL to Manage Data

 Create a FULLTEXT index much the same way as other indexes: Define it with CREATE TABLE
when creating the table initially, or add it afterward with ALTER TABLE or CREATE INDEX .
Because FULLTEXT indexes require you to use MyISAM tables, you can take advantage of one of
the properties of the MyISAM storage engine if you’re creating a new table to use for FULLTEXT
searches: Table loading proceeds more quickly if you populate the table first and then add the
indexes afterward, rather than loading data into an already indexed table. Suppose that you
have a data file named apothegm.txt containing famous sayings and the people to whom
they’re attributed:

 Aeschylus Time as he grows old teaches many lessons
 Alexander Graham Bell Mr. Watson, come here. I want you!
 Benjamin Franklin It is hard for an empty bag to stand upright
 Benjamin Franklin Little strokes fell great oaks
 Benjamin Franklin Remember that time is money
 Miguel de Cervantes Bell, book, and candle
 Proverbs 15:1 A soft answer turneth away wrath
 Theodore Roosevelt Speak softly and carry a big stick
 William Shakespeare But, soft! what light through yonder window breaks?
 Robert Burton I light my candle from their torches.

 If you want to search by phrase and attribution separately or together, you need to index each
column separately, and also create an index that includes both columns. You can create, popu-
late, and index a table named apothegm as follows:

 CREATE TABLE apothegm (attribution VARCHAR(40), phrase TEXT) ENGINE=MyISAM;
 LOAD DATA LOCAL INFILE 'apothegm.txt' INTO TABLE apothegm;
 ALTER TABLE apothegm
 ADD FULLTEXT (phrase),
 ADD FULLTEXT (attribution),
 ADD FULLTEXT (phrase, attribution);

 2.14.1 Natural Language FULLTEXT Searches
 After setting up the table, perform natural language full-text searches on it using MATCH to
name the column or columns to search and AGAINST() to specify the search string. For
example:

 mysql> SELECT * FROM apothegm WHERE MATCH(attribution) AGAINST('roosevelt');
 +--------------------+------------------------------------+
 | attribution | phrase |
 +--------------------+------------------------------------+
 | Theodore Roosevelt | Speak softly and carry a big stick |
 +--------------------+------------------------------------+
 mysql> SELECT * FROM apothegm WHERE MATCH(phrase) AGAINST('time');
 +-------------------+---+
 | attribution | phrase |
 +-------------------+---+

03_9780321833877_ch02.indd 172 3/1/13 9:58 AM

1732.14 Using FULLTEXT Searches

 | Benjamin Franklin | Remember that time is money |
 | Aeschylus | Time as he grows old teaches many lessons |
 +-------------------+---+
 mysql> SELECT * FROM apothegm WHERE MATCH(attribution, phrase)
 -> AGAINST('bell');
 +-----------------------+------------------------------------+
 | attribution | phrase |
 +-----------------------+------------------------------------+
 | Alexander Graham Bell | Mr. Watson, come here. I want you! |
 | Miguel de Cervantes | Bell, book, and candle |
 +-----------------------+------------------------------------+

 In the last example, note how the query finds rows that contain the search word in different
columns, which demonstrates the FULLTEXT capability of searching multiple columns at once.
Also note that the order of the columns as named in the query is attribution , phrase . That
differs from the order in which they were named when the index was created (phrase , attri-
bution), which illustrates that order does not matter. What matters is that there must be some
 FULLTEXT index that consists of exactly the columns named.

 To see only how many rows a search matches, use COUNT(*) :

 mysql> SELECT COUNT(*) FROM apothegm WHERE MATCH(phrase) AGAINST('time');
 +----------+
 | COUNT(*) |
 +----------+
 | 2 |
 +----------+

 Output rows for natural language FULLTEXT searches are ordered by decreasing relevance when
you use a MATCH expression in the WHERE clause. Relevance values are nonnegative floating
point values, with zero indicating “no relevance.” To see these values, use a MATCH expression
in the output column list:

 mysql> SELECT phrase, MATCH(phrase) AGAINST('time') AS relevance
 -> FROM apothegm;
 +---+--------------------+
 | phrase | relevance |
 +---+--------------------+
Time as he grows old teaches many lessons	1.3253291845321655
Mr. Watson, come here. I want you!	0
It is hard for an empty bag to stand upright	0
Little strokes fell great oaks	0
Remember that time is money	1.340062141418457
Bell, book, and candle	0
A soft answer turneth away wrath	0
Speak softly and carry a big stick	0
But, soft! what light through yonder window breaks?	0
I light my candle from their torches.	0
 +---+--------------------+

03_9780321833877_ch02.indd 173 3/1/13 9:58 AM

174 Chapter 2 Using SQL to Manage Data

 A natural language search finds rows that contain any of the search words, so a query such as
the following returns rows that contain either “hard” or “soft”:

 mysql> SELECT * FROM apothegm WHERE MATCH(phrase)
 -> AGAINST('hard soft');
 +---------------------+---+
 | attribution | phrase |
 +---------------------+---+
Benjamin Franklin	It is hard for an empty bag to stand upright
Proverbs 15:1	A soft answer turneth away wrath
William Shakespeare	But, soft! what light through yonder window breaks?
 +---------------------+---+

 Natural language mode is the default full-text search mode. To specify this mode explicitly, add
 IN NATURAL LANGUAGE MODE after the search string. The following statement performs the
same search as the preceding example:

 SELECT * FROM apothegm WHERE MATCH(phrase)
 AGAINST('hard soft' IN NATURAL LANGUAGE MODE);

 2.14.2 Boolean Mode FULLTEXT Searches
 Greater control over multiple-word matching can be obtained by using boolean mode
 FULLTEXT searches. This type of search is performed by adding IN BOOLEAN MODE after the
search string in the AGAINST() function. Boolean searches have the following characteristics:

 ■ The 50% rule is ignored. Searches find words even if they occur in more than half of
the rows.

 ■ No sorting by relevance occurs.

 ■ A search can require all words in a phrase to be present in a particular order. To match
a phrase, specify it within double quotes. Matches occur for rows that contain the same
words together in the same order as listed in the phrase:

 mysql> SELECT * FROM apothegm
 -> WHERE MATCH(attribution, phrase)
 -> AGAINST('"bell book and candle"' IN BOOLEAN MODE);
 +---------------------+------------------------+
 | attribution | phrase |
 +---------------------+------------------------+
 | Miguel de Cervantes | Bell, book, and candle |
 +---------------------+------------------------+

 ■ It’s possible to perform a boolean mode full-text search on columns that are not part of a
 FULLTEXT index, although this is much slower than using indexed columns.

 For boolean searches, modifiers may be applied to words in the search string. A leading plus
or minus sign requires a word to be present or not present in matching rows. For example,
a search string of 'bell' matches rows that contain “bell,” but a search string of '+bell

03_9780321833877_ch02.indd 174 3/1/13 9:58 AM

175

-candle' in boolean mode matches only rows that contain “bell” and do not contain
“candle.”

 mysql> SELECT * FROM apothegm
 -> WHERE MATCH(attribution, phrase)
 -> AGAINST('bell');
 +-----------------------+------------------------------------+
 | attribution | phrase |
 +-----------------------+------------------------------------+
 | Alexander Graham Bell | Mr. Watson, come here. I want you! |
 | Miguel de Cervantes | Bell, book, and candle |
 +-----------------------+------------------------------------+
 mysql> SELECT * FROM apothegm
 -> WHERE MATCH(attribution, phrase)
 -> AGAINST('+bell -candle' IN BOOLEAN MODE);
 +-----------------------+------------------------------------+
 | attribution | phrase |
 +-----------------------+------------------------------------+
 | Alexander Graham Bell | Mr. Watson, come here. I want you! |
 +-----------------------+------------------------------------+

 A trailing asterisk acts as a wildcard so that any row containing words beginning with the
search word match. For example 'soft*' matches “soft,” “softly,” “softness,” and so forth:

 mysql> SELECT * FROM apothegm WHERE MATCH(phrase)
 -> AGAINST('soft*' IN BOOLEAN MODE);
 +---------------------+--+
 | attribution | phrase |
 +---------------------+--+
Proverbs 15:1	A soft answer turneth away wrath
William Shakespeare	But, soft! what light through yonder window breaks?
Theodore Roosevelt	Speak softly and carry a big stick
 +---------------------+--+

 However, the wildcard feature cannot be used to match words shorter than the minimum
index word length.

 The entry for MATCH in Appendix C , “Operator and Function Reference,” lists the full set of
boolean mode modifiers.

 Stopwords are ignored just as for natural language searches, even if marked as required. A
search for '+Alexander +the +great' finds rows containing “Alexander” and “great,” but
ignores “the” as a stopword.

 2.14.3 Query Expansion FULLTEXT Searches
 A full-text search with query expansion performs a two-phase search. The initial search is like a
regular natural language search. Then the most highly relevant rows from this search are used
for the second phase. The words in these rows are used along with the original search terms to

2.14 Using FULLTEXT Searches

03_9780321833877_ch02.indd 175 3/1/13 9:58 AM

176 Chapter 2 Using SQL to Manage Data

perform a second search. Because the set of search terms is larger, the result generally includes
rows that are not found in the first phase but are related to them.

 To perform this kind of search, add WITH QUERY EXPANSION following the search terms. The
following example provides an illustration. The first query shows a natural language search.
The second query shows a query expansion search. Its result includes an extra row that
contains none of the original search terms. This row is found because it contains the word
“candle” that is present in one of the rows found by the natural language search.

 mysql> SELECT * FROM apothegm
 -> WHERE MATCH(attribution, phrase)
 -> AGAINST('bell book');
 +-----------------------+------------------------------------+
 | attribution | phrase |
 +-----------------------+------------------------------------+
 | Miguel de Cervantes | Bell, book, and candle |
 | Alexander Graham Bell | Mr. Watson, come here. I want you! |
 +-----------------------+------------------------------------+
 mysql> SELECT * FROM apothegm
 -> WHERE MATCH(attribution, phrase)
 -> AGAINST('bell book' WITH QUERY EXPANSION);
 +-----------------------+---------------------------------------+
 | attribution | phrase |
 +-----------------------+---------------------------------------+
Miguel de Cervantes	Bell, book, and candle
Alexander Graham Bell	Mr. Watson, come here. I want you!
Robert Burton	I light my candle from their torches.
 +-----------------------+---------------------------------------+

 2.14.4 Configuring the FULLTEXT Search Engine
 Several full-text parameters are configurable and can be modified by setting system variables.
The ft_min_word_len and ft_max_word_len variables determine the shortest and longest
words to index in FULLTEXT indexes. Words with lengths outside the range defined by these
two variables are ignored when FULLTEXT indexes are built. The default minimum and
maximum values are 4 and 84.

 Suppose that you want to change the minimum word length from 4 to 3. Do so like this:

 1. Start the server with the ft_min_word_len variable set to 3. To ensure that this happens
whenever the server starts, it’s best to place the setting in an option file such as /etc/
my.cnf :

 [mysqld]
 ft_min_word_len=3

03_9780321833877_ch02.indd 176 3/1/13 9:58 AM

177

 2. For any existing tables that already have FULLTEXT indexes, you must rebuild those
indexes. You can drop and add the indexes, but it’s easier and sufficient to perform a
quick repair operation:

 REPAIR TABLE tbl_name QUICK;

 3. Any new FULLTEXT indexes that you create after changing the parameter will use the
new value automatically.

 For more information on setting system variables, see Appendix D , “System, Status, and
User Variable Reference.” For details on using option files, see Appendix F , “MySQL Program
Reference.”

 Note
 If you use myisamchk to rebuild indexes for a table that contains any FULLTEXT indexes, see
the FULLTEXT -related notes in the myisamchk description in Appendix F , “MySQL Program
Reference.”

2.14 Using FULLTEXT Searches

03_9780321833877_ch02.indd 177 3/1/13 9:58 AM

This page intentionally left blank

 Index

Symbols
+ (addition operator), 58, 241, 766
 & (AND) operator, 242 , 773
 && (AND) operator, 241 , 773
 \ (backslashes), strings, 184
 , (comma) join operator, 138
 / (division operator), 57 , 241 , 767
 $ (dollar signs), PHP, 492
 ... (ellipsis), operators/functions, 764
 = (equal to operator), 57 , 243 , 769
 <=> (equal to operator), 57 , 243
 ̂ (exclusive-OR operator), 242 , 773
 > (greater than operator), 57 , 243 , 770
 >= (greater than or equal to operator), 57 ,

 243 , 770
 < (less than operator), 57 , 243 , 770
 <= (less than or equal to operator), 57 , 243 ,

 770
 % (modulo operator), 57 , 241 , 767
 * (multiplication operator), 57 , 241 , 767
 ~ (negation operator), 774
 ! (NOT) operator, 241 , 772
 != (not equal operator), 57 , 243 , 770
 < > (not equal to operator), 57 , 243
 <=> (null-safe equality operator), 770
 | (OR operator), 242 , 773
 || (OR operator), 241 - 242 , 773
 () (parentheses), 401
 ; (semicolons), 27 , 266
 #! (shebang), 396
 << (shift left operator), 242 , 773
 >> (shift right operator), 242 , 773
 [] (square brackets), operators/functions, 764
 - (subtraction operator), 57 , 241 , 767
 != (unequal) operator, 770
 || (vertical bars), operators/functions, 764
 % (wildcard character), 244
 _ (wildcard character), 244

25_9780321833877_index.indd 1073 3/6/13 9:50 AM

1074 aborted_clients status variable

 privileges
 account administering, enabling,

 669 - 670
 administrative, 661 - 663 , 666
 ALL specifier, 661 , 666
 combining, 665
 database-level, 666
 displaying, 671
 global, 666
 granting, 660 - 661
 level-specifiers, 665
 no privileges, 668
 object, 663 - 665
 ON specifier, 665
 PROXY, 667
 quoting, 667
 revoking, 671 - 672
 secure connections, requiring,

 668 - 669
 stored routines, 667
 table/column level, 667
 USAGE specifier, 661

 remote, 13
 RENAME USER statement, 656
 resource consumption limits, 670 - 671
 risks, 673 - 676

 ALTER privilege, 676
 anonymous-user accounts, 673
 FILE privilege, 674 - 676
 GRANT OPTION privileges, 674
 insecure accounts, 673 - 674
 mysql database privileges, 674
 passwords in old hash format, 673
 PROCESS privileges, 676
 RELOAD privileges, 676
 SUPER privileges, 674 , 676

 scope columns
 case sensitivity, 689
 column_name, 688
 Db, 688
 host, 687 - 689
 listing of, 687 - 689
 matching order, 690 - 691
 routine_name, 688
 table_name, 688
 user, 688

 A
 aborted_clients status variable, 881
 aborted_connects status variable, 881
 ABS() function, 784
 absence table, 45 , 49
 access control, 540

 administrative-only, setting, 649 - 651
 data directory exception, 651
 directories outside base directory, 651
 Innodb directory, 651
 servers, running, 652
 symlinks, 651

 authentication plugins, 676 - 679
 proxy users, creating, 677 - 679
 server connections, 677
 server side/client side, 677
 specifying, 676

 base directory insecurities, checking, 648
 clients, 686 - 687
 column information structures, 364
 CREATE USER statements

 account operations, 655
 selecting, 656

 data directory, 546 - 547 , 648
 DROP USER statement, 656
 external risks, 646
 grant tables

 administrative privilege columns, 680
 authentication columns, 680 , 684
 listing of, 680
 object privileges, 681 - 682
 privilege columns, 683 - 684
 privilege tables, 683
 resource management columns, 680 ,

 685 - 686
 scope-of-access columns, 680 - 681 ,

 683
 SSL-related columns, 680 , 685
 user table authentication, 680

 internal risks, 645
 metadata, 130

 command line, 135
 INFORMATION_SCHEMA database,

 132 - 135
 multiple-user benefit, 13
 option files, 653 - 654
 overview, 646 - 647

25_9780321833877_index.indd 1074 3/6/13 9:50 AM

1075administration

 administration
 access control, 540
 databases

 backups, 540
 migration, 541
 preventive maintenance, 540
 recovery, 541
 replication, 541

 default character set/collation, 603 - 604
 error message language, setting, 604
 initial user accounts, 564 - 569

 available on all platforms, 566
 client program connections, 566
 displaying, 565
 passwords, assigning, 567 - 569
 platform specific, 567

 locale, 604 - 605
 logs

 age-based expiration, 625
 binary, 618 , 622 - 623
 enabling, 619
 error, 618 , 620 - 621
 expiring, 629 - 631
 fixed-name, rotating, 626 - 629
 flushing, 626
 general query, 618 , 621
 listing of, 617 - 618
 maintenance, 539
 output destination, selecting,

 624 - 625
 relay, 618 , 624
 replication-related expiration, 625
 rotating, 625
 slow query, 618 ,
 table truncation/rotation, 625
 tables, 625 , 631

 multiple servers, 539 , 632
 client programs, running, 641
 configuring, 635
 directory options, 633
 error log file names, creating, 634
 InnoDB log location, 634
 issues, 632 - 635
 login account options, 635
 network interface options, 633
 replication slave options, 634
 startup options strategies, 636 - 637

 server table, preventing, 701
 internal locking, 702 - 703
 locking all tables at once, 705
 read-only locking, 703 - 704
 read/write locking, 704 - 705
 shutting down servers, 702

 statement access verification, 689 - 690
 stealing data example, 647
 Unix socket file, 652 - 653
 user accounts

 account-management statements,
 654 - 655

 authentication, 659 - 660
 grant tables, upgrading, 655
 matching host values to DNS,

 658 - 659
 names, 656 - 658
 passwords, changing/resetting, 672

 user table row matching example,
 691 - 694

 accessor macros, Web: 1087 - 1088
 account clause

 account-management statements, 656
 GRANT statement, 660

 accounts
 administrator, creating, 24
 anonymous-user

 deleting, 568 - 569
 passwords, assigning, 567 - 568
 security risk, 673

 initial user, 564 - 569
 available on all platforms, 566
 client program connections, 566
 displaying, 565
 passwords, assigning, 567 - 569
 platform specific, 567

 login, creating, 738 - 739
 mysqld login, 571 - 572
 root passwords, 567 - 569 , 582 - 583
 user. See user accounts

 ACID (Atomic, Consistent, Isolated, and
Durable) properties, 157

 ACOS() function, 784
 action parameter, 513
 activation state (plugins), 592
 add_new_event() function, 517 - 518
 ADDDATE() function, 803
 addition (+) operator, 57 , 241 , 766
 ADDTIME() function, 803

25_9780321833877_index.indd 1075 3/6/13 9:50 AM

1076 administration

 administrative functions
 C, Web: 1117 - 1119
 Perl DBI, Web: 1147 - 1148

 administrative-only access, configuring,
 649 - 651

 data directory exception, 651
 directories outside base directory, 651
 innodb directory, 651
 servers, running, 652
 symlinks, 651

 administrative privileges, 661 - 663 , 666 , 680
 administrator accounts, creating, 24
 advisory locking functions, 824 - 826
 AES_DECRYPT() function, 821
 AES_ENCRYPT() function, 821
 aliases

 case sensitivity, 100
 quoting with identifiers, 98

 ALL specifier, 146 - 147 , 661 , 666
 ALTER DATABASE statements, 107 , 898
 ALTER EVENT statements, 898 - 899
 ALTER FUNCTION statements, 899
 ALTER privilege, 663 , 676
 ALTER PROCEDURE statements, 899
 ALTER ROUTINE privilege, 663
 ALTER TABLE statements, 899 - 904

 action values, 899 - 903
 benefits, 127 - 128
 clauses

 CHANGE, 128
 CHARACTER SET, 128 - 129
 ENGINE, 129
 MODIFY, 128
 RENAME, 129 - 130

 indexes, adding, 124
 partitioning options, 904
 resequencing existing columns, 237
 sequence columns, adding, 236
 syntax, 128
 table files, 549

 ALTER VIEW statements, 905
 ANALYZE TABLE statements, 905
 AND (&) operator, 57 , 773
 AND (&&) operator, 241 , 774
 anonymous-user accounts

 deleting, 568 - 569
 passwords, assigning, 567 - 568
 security risk, 673

 status/log file names options, 634
 Unix, 637 - 639
 Windows, 639 - 641

 mysqld
 configuration and tuning, 539
 connections, listening, 579 - 580
 restarting manually, 581 - 582
 root password, resetting, 582 - 583
 startup/shutdown, 539 , 577 - 579
 stopping, 580 - 581

 mysqld on Unix
 running, 570
 starting, 572 - 574
 unprivileged login account,

configuring, 571 - 572
 mysqld on Windows, 575

 running as Windows service, 576 - 577
 running manually, 575

 new server passwords, setting, 569
 plugins

 activation state, 592
 case sensitivity, 591
 displaying, 592
 interface components, 590
 library suffix, 590
 loading at runtime, 591
 loading at startup, 591
 operations, 590
 uninstalling, 592

 software updates, 539
 status variables

 displaying, 584
 overview, 584
 values, checking, 588 - 589

 storage engines
 available, displaying, 593
 default, selecting, 594
 status/startup options, 593 - 594

 system variables, 584 - 585
 displaying, 583
 overview, 583
 setting at runtime, 587 - 588
 setting at server startup, 586 - 587
 values, checking, 585 - 586

 time zones, 602 - 603
 updates, 641 - 643
 user account maintenance, 539

25_9780321833877_index.indd 1076 3/6/13 9:50 AM

1077AUTO_INCREMENT columns

 attributes . See also clauses
 account, 660
 collation, 102 - 103
 columns, 35 , 660
 global, 747
 Perl DBI, Web: 1149

 database-handles, Web: 1149
 dynamic, Web: 1155
 general handle, Web: 1149 - 1150
 MySQL-specific database handle,

 Web: 1150 - 1152
 MySQL-specific statement handle,

 Web: 1154 - 1155
 statement-handles, Web: 1152 - 1153

 PDO database-handles, Web: 1173 - 1174
 PrintError, 403
 privileges, 660
 RaiseError, 403
 temporal data types, 223
 TraceLevel, 428
 what, 660

 auth_info clause
 CREATE USER statement, 659 - 660
 GRANT statement, 661

 authentication
 columns (grant tables), 684
 plugins, 676 - 679

 proxy users, creating, 677 - 679
 server connections, 677
 server side/client side, 677
 specifying, 676

 user accounts, 659 - 660
 AUTO_INCREMENT clause, 202
 AUTO_INCREMENT columns, 230

 adding to tables, 235 - 236
 creating, 47
 member table column example, 36
 nonpositive numbers, 235
 properties

 general, 230 - 232
 InnoDB, 234
 MEMORY, 234 - 235
 MyISAM, 232 - 234

 ranges, 235
 resequencing existing columns, 236 - 237
 resets, 235
 unsigned, 235

 ANSI_QUOTES mode, 96 , 182, 863
 ANSI SQL mode, 96
 ANY subqueries, 146 - 147
 Apache

 configuring, 460 - 461
 APIs

 C. See C client programs
 Perl DBI. See Perl DBI API
 PHP. See PHP API
 selecting, 314

 development time, 316 - 317
 execution environment, 315
 performance, 315 - 316
 portability, 317

 SSL capabilities, 698
 app_type member (my_option structures), 341
 approximate-value numbers, 181 - 182
 architecture

 data directory, 545
 Perl DBI API, 311 - 312
 pluggable, 589 - 590
 storage engines, 108
 terminology, 21 - 22

 ARCHIVE storage engine, 108 , 112
 arg_type member (my_option structures), 341
 arguments

 connect() function, 399 - 400
 expression functions, 240
 fetch() function, 502 - 503
 undef, 422
 vectors, processing, 342

 arithmetic operators, 57 , 766 - 767
 addition, 766
 DIV, 767
 division, 767
 listing of, 241
 modulo, 767
 multiplication, 767
 NULL values, 246
 rules, 766
 subtraction, 767

 ASCII conversions, 254
 ASCII() function, 254 , 790
 ASIN() function, 784
 ATAN() function, 785
 ATAN2() function, 785
 Atomic, Consistent, Isolated, and Durable

(ACID) properties, 157

25_9780321833877_index.indd 1077 3/6/13 9:50 AM

1078 auto_increment_increment system variable

 bail_out() function, 405
 banner advertisement tables example, 19
 basedir system variable, 837
 Basic Multilingual Plane (BMP), 104
 BEGIN…END statements, 988
 BEGIN statement, 905
 begin_work() function, Web: 1137
 beginTransaction() function, Web: 1162
 BENCHMARK() function, 829
 BETWEEN operator, 243
 big_tables system variable, 837
 BIGINT data type, 193 , 750 - 751

 ranges, 197
 storage requirements, 197

 BIN() function, 200 , 790
 binary backups, 714 - 715

 best practices, 709
 complete, 714 - 715
 defined, 708
 partial, 715
 text-format backups, compared, 708

 binary character sets, 216
 binary data

 printing, 353
 statements, 367 - 368

 BINARY data types 204 , 207
 binary logs, 556 , 618

 administration, 622 - 623
 expiring, 629 - 630
 formats, 731
 index file, 623
 post-backup statements, re-executing,

 723 - 725
 system backups, 623

 binary protocol
 disadvantages, 378
 prepared statements, 377

 executing, 378 - 379
 inserting rows and retrieving them

program, writing, 379 - 388
 parameterizing, 377 - 378

 binary strings, 194 , 755 - 756
 BINARY, 755
 BLOB, 755 - 756
 conversions, 255
 defined, 185
 LONGBLOB, 756

 auto_increment_increment system variable,
 836

 auto_increment_offset system variable, 836
 autocommit system variable, 836
 automatic_sp_privileges system variable, 270 ,

 837
 automating

 initialization, 224 - 226
 log expiration, 630 - 631
 update properties, 224 - 226

 auto-recovery, 706
 failure, 725 - 726
 performing, 700

 available_drivers() function, Web: 1132
 availability

 character sets, 103 - 104 , 185 - 186
 collations, 103 - 104 , 185 - 186
 result set metadata, 359
 SSL support, 370
 storage engines, 108 - 109

 average values summaries, 76
 AVG() functions, 76 , 818

 B
 back_log system variable, 837
 backslashes (\), strings, 184
 backups, 707 - 709

 best practices, 709
 binary, 714 - 715

 complete, 714 - 715
 logs, 623
 partial, 715

 databases, 540
 InnoDB tables, 715 - 716
 selecting, 708
 slave, creating, 732 - 733
 storage engine portability, 709 - 710
 text, 711 - 714

 all tables from all databases, 711
 compressing, 712
 database transfers, 716 - 717
 individual files, 711
 mysqldump options, 712 - 714
 mysqldump output, 711 - 712
 table subsets into separate files,

 creating, 712
 types, 708

25_9780321833877_index.indd 1078 3/6/13 9:50 AM

1079C client programs

 BIT_XOR() function, 809
 BLACKHOLE storage engine, 108 , 112
 BLOB data types

 indexes, 207
 overview, 207 - 208
 query optimization, 298
 size, 204 , 207
 special care, 208
 storage requirements, 204

 BLOB strings, 194 , 755 - 756
 block_size member (my_option structures),

 341
 BMP (Basic Multilingual Plane), 104
 boolean mode searches, 170 , 174 - 175
 boolean values, 192
 bulk_insert_buffer_size system variable, 838
 bytes_received status variable, 881
 bytes_sent status variable, 882

 C
 C client programs, 311

 accessor macros, Web: 1087 - 1088
 client library, 320
 compiling/linking, 321 , Web: 1074 - 1075
 connect1, 323 - 326

 connect2, compared, 347
 establishing connections, 324 - 325
 header files, 324
 initialization macro, 326
 initializing client library, 326
 running, 326
 shortcomings, 326
 source file, 323 - 324
 terminating client library, 326
 terminating connections, 325
 variables, declaring, 324

 connect2, 327 , 344 - 348
 connect1/show_opt programs,

compared, 347
 connection parameters, specifying,

 348
 error-checking, 330
 running, 347
 source file, 344 - 347

 connection parameters at runtime,
specifying, 331

 command-line option-handling,
 335 - 343

 MEDIUMBLOB, 756
 nonbinary strings, compared, 188 - 189
 sorting properties, 186
 TINYBLOB, 755
 VARBINARY, 755

 BINARY str operator, 773
 bind_address system variable, 765
 bind_col() function, 421 , Web: 1142
 bind_columns() function, 421 , Web: 1142
 bind_param() function, Web: 1142
 bind_param_array() function, Web: 1143
 bindColumn() function, 503 , Web: 1166
 bindParam() function, Web: 1166 - 1167
 bindValue() function, Web: 1167
 BINLOG statement, 906
 binlog_cache_disk_use status variable, 881
 binlog_cache_size system variable, 837
 binlog_cache_use status variable, 881
 binlog_checksum system variable, 837
 binlog_direct_non_transactional_updates

system variable, 838
 binlog_format system variable, 838
 binlog_row_image system variable, 838
 binlog_rows_query_log_events system variable,

 838
 binlog_stmt_cache_disk_use status variable,

 881
 binlog_stmt_cache_size system variable, 838
 binlog_stmt_cache_use status variable, 881
 biographical information table, creating, 32 ,

 34 - 35
 BIT_AND() function, 818
 BIT_COUNT() function, 829
 BIT data types, 193 , 197 , 200 - 201 , 752

 ranges, 197
 storage requirements, 197

 bit-field numbers, 182
 BIT_LENGTH() function, 829
 bit operators

 AND, 773
 exclusive-OR, 773
 listing of, 242
 negation, 774
 NULL values, 246
 OR, 773
 shift left, 773
 shift right, 773, 818

 BIT_OR() function, 818

25_9780321833877_index.indd 1079 3/6/13 9:50 AM

1080 C client programs

 result sets
 metadata, 359 - 364
 returning, 351 - 353

 row-modifying, 350
 sending to server functions, 349
 special characters, 365 - 366
 SSL support, 370 - 374

 availability, 370
 enabling, 696
 holding option values variables,

 372 - 373
 options, adding, 370 - 372
 passing SSL option information to

client library, 374
 statements, handling, 348 - 350

 alternative approaches, 356 - 357
 binary data, 367 - 368
 causes of failures, 349
 character-escaping operations, 349
 general-purpose statement handler,

 354 - 355
 multiple-statement execution,

 375 - 377
 mysql_store_result() versus mysql_

use_result() functions, 357 - 359
 result sets, returning, 351 - 353
 row-modifying, 350
 sending to server functions, 349
 special characters, 365 - 366

 CACHE INDEX statement, 906
 CALL prepared statements, 389 - 393

 output, 393
 parameter setup, 390 - 391
 prepared statement handlers,

initializing, 390
 results, processing, 391
 retrieval loop, 392
 server versions, verifying, 390

 CALL statement, 906
 CAs (Certificate Authorities), 695
 cascaded deletes, 164 , 167 - 168
 cascaded updates, 164 , 168
 CASE [expr] WHEN expr1 THEN result1 ...

[ELSE default] END operator, 771
 case sensitivity, 881

 aliases, 100
 columns, 100
 database names, 100
 filenames, 100

 option files, reading, 332 - 335
 parameter formats, 331

 data structures, Web: 1075
 nonscalar. See nonscalar data

structures
 scalar data types, Web: 1075 - 1076

 error-checking, 327 - 330
 example resources, 320
 functions

 administrative, Web: 1125 - 1126
 client library initialization/

termination, Web: 1088 - 1089
 connection management, listing of,

 Web: 1089 - 1100
 debugging, Web: 1127
 error-reporting, Web: 1101
 information, Web: 1113 - 1116
 multiple result sets, Web: 1113
 parameter names, Web: 1087 - 1088
 prepared statement construction/

execution, Web: 1118 - 1120
 prepared statement error-reporting,

 Web: 1117 - 1118
 prepared statement result set

processing, Web: 1120 - 1125
 prepared statements, Web: 1116 - 1117
 result sets processing,

 Web: 1104- 1113
 statement construction/execution,

 Web: 1102 - 1104
 threaded clients, Web: 1126 - 1127
 transaction control, Web: 1116

 header files, 320
 interactive statement-execution, 368 - 369
 Makefiles, 322 - 323
 multiple servers, running, 641
 new client, 348
 prepared call, 390 - 393

 output, 393
 parameter setup, 390 - 391
 prepared statement handler,

initializing, 390
 results, processing, 391
 retrieval loop, 392
 server versions, verifying, 390

 prepared statements, 377
 executing, 378 - 379
 inserting rows and retrieving them

program, writing, 379 - 388
 parameterizing, 377 - 378

25_9780321833877_index.indd 1080 3/6/13 9:50 AM

1081CHECK TABLE statement

 CHARACTER SET clause
 ALTER TABLE statement, 128 - 129
 CREATE DATABASE statement, 106
 rules, 102 - 103

 character_set_client system variable, 838
 character_set_connection system variable, 838
 character_set_database system variable, 839
 character_set_filesystem system variable, 839
 character_set_results system variable, 839
 character_set_server system variable, 102 ,

 603 , 839
 character_set_system system variable, 839
 character sets

 availability, 103 - 104 , 185 - 186
 columns, editing, 128 - 129
 conversions, 254
 current, displaying, 104
 default, setting, 603 - 604
 features, 101 - 102
 mixing, 102
 setting, 102 - 103
 strings, 214 - 216 , 753 - 754

 binary, 188 - 189 , 216
 CONVERT() function, 187 - 188
 displaying, 215
 example, 214
 introducers, 187 - 188
 nonbinary, 188 - 189
 rules, 214
 selecting, 215
 variables, 189 - 191

 Unicode support, 104 - 105
 variables, 189 - 191

 character_sets_dir system variable, 839
 CHARSET clause

 CHARACTER SET statement, 102 - 103
 string data types, 214 - 216

 character sets, displaying, 215
 example, 214
 rules, 214

 CHARSET() function, 790
 charset notation, 187
 _charset str operator, 773
 check_pass() function, 533
 check_response() function, 527
 CHECK TABLE statement, 719 - 720 , 909 - 910

 forcing lowercase, 100
 functions, 99
 index names, 100
 keywords, 99
 LIKE operator, 244
 MySQL utilities, 1001
 Perl DBI scripts, 400
 plugins, 591
 scope columns, 689
 SQL statements, 29 , 99 - 101
 stored program names, 100
 strings, 100 , 183
 system variables, 836
 table names, 100
 trigger names, 100
 view names, 100

 CASE statements, 988
 CAST() function, 253 , 783 - 784
 cast operators, 775 - 776
 category columns, creating, 47
 CEIL() function, 781
 CEILING() function, 785
 certificate files (SSL), 695
 CGI scripts, 459 - 460

 functions
 HTML structure, 461
 importing, 461
 object-oriented interface, 461 - 462

 HTML
 text, escaping, 464 - 465
 versus XHTML, 464

 input parameters, 462
 multiple-purpose pages, writing, 465 - 468
 output, generating, 462 - 464
 portability, 463
 URL text, escaping, 464 - 465

 CHANGE clause, 128
 CHANGE MASTER statement, 907 - 908
 CHAR data types

 size/storage requirements, 204
 VARCHAR data types, compared, 206

 CHAR() function, 254 , 790
 CHAR strings, 194 , 756 - 757
 CHAR_LENGTH() function, 790
 character data, retrieving, 56
 CHARACTER_LENGTH() function, 786

25_9780321833877_index.indd 1081 3/6/13 9:50 AM

1082 checking tables

 AUTO_INCREMENT, 235
 numeric data types, 201

 UPDATE, 232
 WHERE

 COUNT() function, 72
 DELETE statement, 85
 query optimizer, 288 - 289
 SELECT statement, 56
 SHOW statement, 131
 SHOW STATUS statement, 589
 SHOW VARIABLES statement, 585
 UPDATE statement, 86

 WITH
 GRANT statement, 661
 resource consumption limits, 670

 WITH GRANT OPTION, 669 - 670
 WITH ROLLUP, 77 - 78 , 263
 ZEROFILL, 201 - 202

 client access, 686 - 687
 scope columns

 case sensitivity, 689
 column name, 688
 Db, 688
 host, 687 - 689
 listing of, 687 - 689
 matching order, 690 - 691
 proxied_host, 689
 proxied_user, 689
 routine_name, 688
 routine_type, 688
 table_name, 688
 user, 688

 statement access verification, 689 - 690
 user table row matching example,

 691 - 694
 client programs. See C client programs
 clone() function, Web: 1137
 CLOSE statements, 992
 closeCursor() function, Web: 1168
 COALESCE() function, 790
 COERCIBILITY() function, 791
 col_prompt() function, 451
 COLLATE clause, 102 - 103

 CREATE DATABASE statement, 106
 string data types, 214 - 216

 collations, displaying, 215
 example, 214
 rules, 214

 checking tables
 CHECK TABLE statement, 719 - 720
 InnoDB, 718
 MyISAM, 719
 mysqlcheck utility, 720 - 721

 CHECKSUM TABLE statement, 910
 chk_mysql_opt_files.pl script, 653 - 654
 clauses . See also attributes

 auth_info, 659 - 661
 AUTO_INCREMENT, 36 , 202
 CHANGE, 128
 CHARACTER SET, 106 , 128 - 129
 CHARSET, 102 - 103 , 214 - 216
 COLLATE, 102 - 103 , 106 , 214 - 216
 CREATE DATABASE statement, 106
 data types, 201 - 203 , 214 - 216 , 747
 DEFAULT, 203
 DEFINER, 276
 ENGINE, 46 - 47 , 129
 FROM, 54 - 56 , 149
 GRANT statement, 660 - 661
 GROUP BY, 74 - 76
 IDENTIFIED WITH, 676
 IF NOT EXISTS, 106
 LIKE, 131 , 585 , 589
 LIMIT, 63 - 64 , 475
 MODIFY, 128
 NOT NULL, 216 , 223
 NULL, 216 , 223
 numeric data types, 749
 ON DELETE CASCADE, 166 - 167
 ON DELETE SET NULL, 169
 ON UPDATE CASCADE, 166 - 167
 ON UPDATE SET NULL, 169
 PARTITION BY, 120 - 121
 RENAME, 129 - 130
 REPLACE, 232
 REQUIRE

 GRANT statement, 661
 GRANT USAGE statement, 697
 secure connections, 668 - 669

 RETURNS, 268
 ROLLUP, 77
 SELECT statements, 956 - 957
 SIGNED, 201
 TEMPORARY, 115 - 116
 UNSIGNED

25_9780321833877_index.indd 1082 3/6/13 9:50 AM

1083columns

 displaying, 131
 enumeration, creating, 46
 expiration, creating, 36
 grant tables

 administrative privilege, 680
 authentication, 684
 object privilege, 682 - 681
 privilege columns, 683 - 684
 resource management, 685 - 686
 scope. See scope columns
 scope-of-access, 680 - 681 , 683
 user table authentication, SSL,

resource management, 680
 height information, 257 - 258
 identical data types, comparing, 288
 identifiers, 99
 indexing, selecting, 281 - 285

 badly performing queries,
identifying, 285

 cardinality, 282
 comparisons, matching to index

types, 284 - 285
 overindexing, 284
 prefixes, 283 - 284
 short values, 283

 individual values, retrieving, 503
 information, displaying, 135
 INFORMATION_SCHEMA database,

displaying, 134
 information structures, accessing, 364
 integer, creating, 46 , 48
 joined table references, qualifying,

 138 - 139
 member_id, creating, 36
 names

 case sensitivity, 100
 views, 263 - 264

 output
 restrictions, 37
 values, naming, 64 - 66

 PRIMARY KEY clauses, 36
 privileges, 667
 references, 240
 scope. See scope columns
 sequence

 adding to tables, 235 - 236
 creating, 47 , 237 - 239
 general properties, 230 - 232

 collation attribute, 102 - 103
 collation_connection system variable, 839
 collation_database system variable, 839
 COLLATION() function, 255 , 787
 collations

 availability, 103 - 104 , 185 - 186
 current, displaying, 104
 default, setting, 603 - 604
 names, 186
 setting, 102 - 103
 strings, 753 - 754

 binary versus nonbinary, 188 - 189
 displaying, 215
 example, 214
 rules, 214

 suffixes, 186
 type conversions, 255

 collation_server system variable, 102 , 603 ,
 839

 column_name columns, 688
 columnCount() function, Web: 1168
 columns

 aliases, quoting with identifiers, 98
 attributes, 35
 AUTO_INCREMENT, 36

 adding to tables, 235 - 236
 creating, 47
 member table column example, 36
 nonpositive numbers, 235
 properties, 230 - 235
 ranges, 235
 resequencing existing columns,

 236 - 237
 resets, 235
 unsigned, 235

 category, creating, 47
 character sets, editing, 128 - 129
 contents, retrieving, 54 - 56
 currency information, 258
 data types

 editing, 128
 specifying, 193 - 195

 date
 creating, 47
 information, 258 - 259
 values, 35

 deleting, 85 - 86

25_9780321833877_index.indd 1083 3/6/13 9:50 AM

1084 columns

 expr IS NULL/expr IS NOT NULL, 772
 expr NOT BETWEEN min AND max,

 770 - 771
 expr NOT IN (value1,value2,...), 772
 greater than, 770
 greater than or equal to, 770
 less than, 770
 less than or equal to, 770
 listing of, 243
 NULL values, 247
 null-safe equality, 769
 rules, 768 - 769
 unequal, 770

 comparisons
 data types, 748
 index type matching, 284 - 285

 complete binary backups, 714 - 715
 completion_type system variable, 839
 composite indexes, 233
 compound statements, 266 - 267 , 987 - 996

 condition-handling, 992 - 996
 control structure, 987 - 989
 cursor, 991 - 992
 declaration, 989 - 991

 COMPRESS() function, 821
 compressing dump files, 712
 compression functions, 821 - 824
 compression status variable, 882
 CONCAT() function, 248 , 253 , 791
 CONCAT_WS(), 792
 concurrency

 problems, preventing, 156
 storage engine locking levels, 303 - 305

 concurrent_insert system variable, 840
 condition-handling statements, 992 - 996
 configuring

 administrative-only access, 649 - 651
 data directory exception, 651
 directories outside base directory, 651
 innodb directory, 651
 servers, running, 652
 symlinks, 651

 character sets, 102 - 103
 collations, 102 - 103
 full-text searches, 176 - 177
 InnoDB tablespace, 595 - 598

 auto-extend increments, 596

 InnoDB characteristics, 234
 MEMORY characteristics, 234 - 235
 MyISAM characteristics, 232 - 234
 nonpositive numbers, 235
 ranges, 235
 resequencing existing, 236 - 237
 resets, 235
 unsigned, 235

 unsetting, 87
 updating, 86
 values, specifying, 196
 variable-length, 35 , 46

 columns attribute, 660
 columns_priv table, 680
 com_xxx status variable, 882
 comma (,) join operator, 138
 command line

 metadata access, 135
 mysqld startup options, 578
 option-handling, 335 - 343

 argument vector, processing, 342
 option information, defining,

 339 - 341
 show_opt, invoking, 342 - 343
 show_opt program, 336 - 338

 SSL options, 697
 system variables, setting, 586

 commands
 input editing, 90 - 91
 mysql utility, 1026 - 1028
 mysqladmin client, 1035 - 1037
 mysqlshow, 135
 perldoc, 743

 comments
 my_option structures, 340
 Perl DBI scripts, adding, 398
 syntax, 996 - 997

 commit() function, Web: 1137 , Web: 1162
 COMMIT statement, 910 - 911
 comparison functions, 781 - 783
 comparison operators, 57 , 768 - 772

 CASE [expr] WHEN expr1 THEN result1
... [ELSE default] END, 771

 equal, 769
 expr BETWEEN min AND max, 770 - 771
 expr IN (value1,value2,...), 772
 expr IS, 772

25_9780321833877_index.indd 1084 3/6/13 9:50 AM

1085connections

 connect_timeout system variable, 840
 connect1 client program, 323 - 326

 client library
 initializing, 326
 terminating, 326

 connect2, compared, 347
 connections

 establishing, 324 - 325
 terminating, 325

 header files, 324
 initialization macro, 326
 running, 326
 shortcomings, 326
 source file, 323 - 324
 variables, declaring, 324

 connect2 client program, 327 , 344 - 348
 connect1 program, compared, 347
 connection parameters, specifying, 348
 error-checking, 330
 new client programs based on, writing,

 348
 running, 347
 show_opt programs, compared, 347
 source file, 344 - 347

 connection_errors_xxx status variable, 882
 CONNECTION_ID() function, 829
 CONNECTION_USER() function, 830
 connections

 databases (Perl DBI scripts), 312 , 400
 handlers, 325
 management functions, Web: 1088 - 1099
 mysql utility, 87

 option files, 87 - 88
 shell aliases/scripts, 89
 shell command history, 88

 mysqld
 restarting manually, 581 - 582
 root password, resetting, 582 - 583

 parameters, specifying
 C client programs, 331 , 336 - 341
 command-line option-handling,

 335 - 343
 connect2 program, 348
 option files, reading, 332 - 335
 parameter formats, 331
 Perl DBI, 423 - 426

 secure, requiring. See also SSL, 668 - 669

 file pathnames, 596
 file specification syntax, 596
 per-table, 599 - 600
 raw partitions, 597 - 598
 regular files, 597
 system variables, 595
 Windows, 598

 master-slave replication, 728 - 731
 master server settings, 728 - 729
 master.info file, 730
 separate slave accounts, 730
 server ID values, assigning, 728
 slave settings, 729 - 730
 statements, 730 - 731
 threads, starting/stopping, 731

 multiple servers, 635
 MYSQL_BIND arrays

 insert_rows() function, 384
 select_rows() function, 385 - 388

 mysqld, 539
 SQL mode, 96 - 97
 SSL, 695 - 698

 accounts requiring SSL, creating,
 697 - 698

 certificate/key files, 697
 client programs SSL support,

enabling, 696
 command-line options, 697
 language APIs, 698
 option files, 697
 server SSL support, enabling, 695 - 696
 SSL-related server status variables

values, displaying, 697
 system variables

 runtime, 587 - 588
 server startup, 586 - 587

 tablespaces, 111
 time zones, 602 - 603
 unprivileged mysqld login accounts,

 571 - 572
 utility variables, 1006 - 1007
 Web servers, 460 - 461

 connect() function, Web: 1132 - 1136
 connection parameters, 432,

 Web: 1135- 1136
 driver options, Web: 1133 - 1135
 Perl DBI scripts, 399 - 400

 connect_cached() function, Web: 1136

25_9780321833877_index.indd 1085 3/6/13 9:50 AM

1086 connections

 overall count of values, 73
 summary, 77 - 78

 CRC32() function, 785
 CREATE DATABASE statement, 30 , 106 - 107 ,

 130 , 547 , 911
 CREATE EVENT statement, 274 , 912 - 913
 CREATE FUNCTION statement, 268 , 913 - 915
 CREATE INDEX statement, 915 - 916
 CREATE privilege, 664
 CREATE PROCEDURE statement, 268 , 913 - 915
 CREATE ROUTINE privilege, 664
 CREATE TABLE statement, 113 - 114 , 916 - 926

 AVG_ROW_LENGTH option, 115
 column definitions, 926
 data type keywords, 918 - 919
 ENGINE clause, 46 - 47 , 114
 foreign key support, 922 - 923
 IF NOT EXISTS modifier, 115
 index clauses, 919
 MAX_ROWS option, 115
 options, 919 - 922
 PARTITION BY clause, 120 - 121
 partitioning, 923 - 925
 student table, 45 - 46
 table files, creating, 549
 TEMPORARY keyword, 115 - 116

 CREATE TABLE...LIKE statement, 117 - 118
 CREATE TABLE...SELECT statement, 117 - 119
 CREATE TABLESPACE privilege, 664
 CREATE TEMPORARY TABLES statement, 664
 CREATE TRIGGER statement, 272 , 926 - 927
 CREATE USER privilege, 661
 CREATE USER statements, 927 - 928

 account operations, 655
 account value, 656
 auth_info clause, 659 - 660
 IDENTIFIED WITH clause, 676
 selecting, 656

 CREATE VIEW privilege, 664
 CREATE VIEW statement, 928 - 929
 created_tmp_disk_tables status variable, 882
 created_tmp_files status variable, 882
 created_tmp_tables status variable, 882
 CSV storage engine, 108 , 112 , 710
 CURDATE() function, 68 , 803
 currency information, storing, 258
 CURRENT_DATE() function, 803

 servers
 authentication plugins, 677
 establishing, 25 - 26
 PHP scripts, 490 - 491
 programs. See connect1 client

program; connect2 client program
 terminating, 26 - 27
 Web scripts, 468 - 469

 TCP/IP
 listening (mysqld), 579

 connections status variable, 882
 constants (PDO), Web: 1173 - 1174

 general database-handle attributes,
 Web: 1173 - 1174

 fetch-mode values, Web: 1174
 parameter-type values, Web: 1174

 constructor (PDO), Web: 1159 - 1161
 Content-Type: header, 463
 control structure statements, 987 - 989
 CONV() function, 792
 CONVERT() function, 187 - 188 , 254 - 255 , 784
 CONVERT_TZ() function, 803
 copying

 databases to other servers, 716
 text backup files, 716 - 717
 writing directly to other server,

 717 - 718
 tables, 117 - 120

 core_file system variable, 840
 correlated subqueries, 148
 COS() function, 785
 costs (indexing), 281
 COT() function, 785
 COUNT() function, 819

 GROUP BY clause, 74 - 76
 ROLLUP clause, 77
 summaries, 72 - 76
 WHERE clause, 72
 WITH ROLLUP clause, 77 - 78

 counters, incrementing, 238 - 239
 counting summaries, 72 - 76

 distinct non-NULL values, 73
 groups, 74 - 76
 minimum/maximum/total/average

values, 76
 non-NULL values, 73
 number of rows clause matches, 72
 number of rows selected, 72

25_9780321833877_index.indd 1086 3/6/13 9:50 AM

1087data directory

 numeric ranges, 56
 pattern matching, 69 - 70
 Perl DBI script. See dump_members.pl

script
 PHP script, 497 - 499
 SELECT statements, 54 - 56
 several individual values, 59
 string values containing character

data, 56
 summaries, 72 - 78
 table contents, displaying, 54
 user-defined variables, 71

 data directory
 access

 control, 546 - 547
 exception, 651

 architecture, 545
 defined, 539
 file representations

 databases, 547
 tables, 548
 triggers, 549
 views, 549

 files, 545
 grant tables. See grant tables
 identifier constraints, 550 - 551
 initializing, 740 - 741
 insecurities, checking, 648
 location, 544 - 545
 log files, 554 - 556
 maximum table size, 551 - 553
 performance, 553 - 554
 permissions, displaying, 650
 PID files, 555
 relocating, 556 - 557

 assessing, 558 - 559
 entire directory, 559
 function, selecting, 557
 individual databases, 559 - 560
 individual tables, 560
 InnoDB tablespace, 561
 precautions, 558
 startup option, 557
 status/log files, 561 - 562
 symlink, 557

 status files, 554
 table operations statements, 549 - 550
 Unix, 543

 CURRENT_TIME() function, 803
 CURRENT_TIMESTAMP() function, 804
 CURRENT_USER() function, 276 , 816
 cursor statements, 991 - 992
 CURTIME() function, 804

 D
 damages (tables)

 checking
 CHECK TABLE statement, 719 - 720
 InnoDB tables, 718
 MyISAM, 719
 mysqlcheck utility, 720 - 721

 overview, 718
 repairing

 InnoDB, 718
 MyISAM, 719
 mysqlcheck utility, 720 - 721
 REPAIR TABLE statement, 720

 data
 adding to tables

 data files, 52 - 53
 INSERT statement, 50 - 52

 binary
 printing, 353
 statements, 367 - 368

 C API structures, Web: 1075
 nonscalar. See nonscalar data

structures
 scalar data types, Web: 1075 - 1076

 format options, 1067 - 1068
 loading efficiency, 300 - 303

 dropping/deactivating indexes,
 302 - 303

 index flushing, reducing, 301 - 302
 INSERT statement, 301
 LOAD DATA statement, 300 - 301
 mixed query environments, 303
 shorter statements, 302

 recovering. See recovery
 retrieving

 column values, naming, 64 - 66
 criteria, specifying, 56 - 59
 dates, 57 , 66 - 69
 multiple tables, 78 - 85 . See also joins;

subqueries
 NULL values, 60 - 61

25_9780321833877_index.indd 1087 3/6/13 9:50 AM

1088 data_sources() function

 floating-point, 197 , 200 , 751 - 752
 improper values, 228
 integer, 749 - 751
 listing of, 193
 NULL/NOT NULL values, 203
 ranges, 197
 selecting, 203 , 257 - 258
 storage requirements, 197 - 198

 Perl DBI. See handles
 query performance, selecting, 296 - 298

 BLOB/TEXT, 298
 ENUM, 297
 NOT NULL, 297
 numbers, 296
 PROCEDURE ANALYSE() function,

 297
 smallest types, 296 - 297
 strings, 296
 tables, defragmenting, 297

 ranges, 748
 scalar, Web: 1075 - 1076
 selecting, 255 - 256

 currency, 258
 dates, 258 - 259
 height information, 257 - 258
 performance/efficiency, 256
 ranges, 256 , 259 - 260
 storage size, 256
 value types in column, 256 - 259

 storage, 748
 string, 193 , 204 , 753 - 754

 attributes, 214 - 216
 binary, 204 - 205 , 207 , 755 - 756
 BLOB, 207 - 208
 CHAR/VARCHAR, 206
 character sets/collations, 753 - 754
 ENUM, 208 - 213 , 758
 improper values, 228
 lengths, 205 , 753
 listing of, 194
 nonbinary, 204 - 205 , 756 - 758
 selecting, 217 - 218
 SET, 208 - 213 , 759
 size, 204
 storage requirements, 204
 TEXT, 207 - 208
 trailing pad values, 218 , 754
 VARBINARY, 207

 data_sources() function, Web: 1136
 data types

 attributes, 747
 character sets

 features, 101 - 102
 mixing, 102
 setting, 102 - 103

 characteristics, 192
 collations, 102 - 103
 columns

 editing, 128
 specifying, 193 - 195

 comparisons, 748
 conversion, 247 - 251

 binary/nonbinary strings, 255
 character sets, 254
 collations, 255
 comparisons, 251
 CONCAT() function, 248
 dates, 254
 explicit, 247
 floating-point and integer values, 248
 forcing, 253 - 255
 hexadecimal, 248 - 249 , 253
 illegal values, 248
 implicit, 247
 operands to operator expected types,

 249
 string-to-number, 249 - 250
 temporal values, 251
 testing, 252 - 253
 time parts, 254
 values into strings, 253

 date. See temporal data types
 default values, 748
 ENUM, 297
 explicit, 179
 global attributes, 747
 implicit, 95
 length, 748
 MYSQL_ROW, 352
 names, 747
 numeric, 193 , 748 - 749

 attributes, 201 - 203 , 749
 BIT, 197 , 200 - 201 , 752
 exact-value, 197 - 199
 fixed-point, 751

25_9780321833877_index.indd 1088 3/6/13 9:50 AM

1089databases

 numeric, 181 - 182
 permitted lists, defining, 209
 spatial, 191 - 192
 strings. See strings, values
 temporal, 191

 DATABASE() function, 830
 databases

 access interfaces (PHP), 485 - 486
 backups, 540 , 707 - 709

 best practices, 709
 binary, 714 - 715
 selecting types, 708
 storage engine portability, 709 - 710
 text, 711 - 714

 browser script, 471 - 475
 data limits, 475
 empty values into nonbreaking

spaces, converting, 475
 HTML table, creating, 475
 initial page, generating, 472 - 473
 main body, 471 - 472
 security warning, 471
 table contents, displaying, 473
 tbl_name parameter, 472

 connections, 400
 copying to other servers, 716

 text backup files, 716 - 717
 writing directly to other server,

 717 - 718
 crash recovery. See recovery
 creating, 30 - 31 , 106 - 107
 data, loading, 300 - 303

 dropping/deactivating indexes,
 302 - 303

 index flushing, reducing, 301 - 302
 INSERT statement, 301
 LOAD DATA statement, 300 - 301
 mixed-query environments, 303
 shorter statements, 302

 data directory, relocating, 559 - 560
 default, setting, 30 - 31
 definition, displaying, 106 - 107
 deleting, 107
 editing, 107
 file representations, 547
 handles

 attributes, Web: 1149
 functions, Web: 1137 - 1142

 temporal, 193 , 759
 attributes, 223
 automatic initialization/update

properties, 224 - 226
 DATE, 220 - 221 , 760
 DATETIME, 221 , 760
 fractional seconds, 223 - 224
 improper values, 228
 input dates, 220
 listing of, 193
 MySQL 5.6 improvements, 218
 ranges, 218 - 219
 storage requirements, 219 , 759
 temporal values, 226 - 227
 TIME, 221 , 760 - 761
 TIMESTAMP, 221 - 222 , 761 - 762
 two-digit years, 227 - 228
 YEAR, 222 - 223 , 762
 zero values, 220

 type conversions
 ASCII, 254
 binary/nonbinary strings, 255
 character sets, 254
 collations, 255
 comparisons, 251
 CONCAT() function, 248
 dates, 254
 explicit, 247
 floating-point and integer values, 248
 forcing, 253 - 255
 hexadecimal, 248 - 249 , 253
 illegal values, 248
 implicit, 247
 operands to operator expected types,

 249
 string-to-number, 249 - 250
 temporal values, 251
 testing, 252 - 253
 time parts, 254
 values into strings, 253

 variable-length characters, creating, 35
 zero values, 748

data values
 boolean, 192
 columns, specifying, 196
 improper handling, 228 - 230
 NULL, 192

25_9780321833877_index.indd 1089 3/6/13 9:50 AM

1090 databases

 CURDATE(), 803
 CURRENT_DATE(), 803
 CURRENT_TIME(), 803
 CURRENT_TIMESTAMP(), 804
 CURTIME(), 804
 DATE(), 804
 DATE_ADD(), 804 - 805
 DATE_FORMAT(), 806
 DATE_SUB(), 807
 DATEDIFF(), 807
 DAY(), 808
 DAYNAME(), 808
 DAYOFMONTH(), 808
 DAYOFWEEK(), 808
 DAYOFYEAR(), 808
 EXTRACT(), 808 - 809
 FROM_DAYS(), 809
 FROM_UNIXTIME(), 809
 GET_FORMAT(), 809 - 810
 HOUR(), 810
 LAST_DAY(), 810
 listing of, 802 - 821
 LOCALTIME(), 810
 LOCALTIMESTAMP(), 810
 MAKEDATE(), 810
 MAKETIME(), 811
 MICROSECOND(), 811
 MINUTE(), 811
 MONTH(), 811
 MONTHNAME(), 811
 NOW(), 811
 PERIOD_ADD(), 812
 PERIOD_DIFF(), 812
 QUARTER(), 812
 SEC_TO_TIME(), 812
 SECOND(), 812
 STR_TO_DATE(), 813
 SUBDATE(), 813
 SUBTIME(), 813
 SYSDATE(), 813
 TIME(), 813
 TIME_FORMAT(), 813
 TIME_TO_SEC(), 814
 TIMEDIFF(), 814
 TIMESTAMP(), 814
 TIMESTAMPADD(), 814
 TIMESTAMPDIFF(), 814

 MySQL-specific attributes,
 Web: 1150 - 1152

 PDO attributes, Web: 1173 - 1174
 identifiers, 98
 INFORMATION_SCHEMA

 columns, displaying, 134
 displaying, 132
 metadata access, 132 - 135
 tables, 133 - 134

 integrity, maintaining
 auto-recovery, 706
 preventive maintenance, scheduling,

 707
 listing, 38 , 130 , 135
 metadata, accessing, 130

 command line, 135
 INFORMATION_SCHEMA database,

 132 - 135
 SHOW statement, 130 - 132

 migration, 541
 mysql privileges, 673 - 674
 names, case sensitivity, 100
 preventive maintenance, 540 , 699 - 700
 privileges, 666
 recovering, 541 , 722
 replication, 541

 compatibility guidelines, 727 - 728
 master-slave, 728 - 731
 overview, 727

 resetting to known state, 53 - 54
 selecting, 105 - 106
 server connectivity, 312 , 400
 tables, listing, 37
 types, 708

 datadir system variable, 840
 DATE() function, 804
 DATE_ADD() function, 68 , 254 , 804 - 805
 date and time

 columns, creating, 47
 data types. See temporal data types
 differences between, 68
 expiration columns, creating, 36
 formats, 226
 functions, 802 - 821

 ADDDATE(), 803
 ADDTIME(), 803
 CONVERT_TZ(), 803

25_9780321833877_index.indd 1090 3/6/13 9:50 AM

1091DELETE statement

 nonbreaking spaces, 475
 security warning, 471
 tbl_name parameter, 472

 Db columns, 688
 db table, 680
 DBI_DRIVER environment variable, Web: 1156
 DBI_DSN environment variable, Web: 1156
 DBI_PASS environment variable, Web: 1156
 DBI_TRACE environment variable, 429 ,

 Web: 1156
 DBI_USER environment variable, Web: 1156
 DEALLOCATE PREPARE statement, 929
 debug system variable, 840
 debugging

 functions, Web: 1119 - 1120
 Perl DBI scripts, 426

 print statements , 428
 tracing, 428 - 429

 DECIMAL data type, 193 , 751
 ranges, 197
 storage requirements, 197

 DECLARE statements, 989 - 991
 DECODE() function, 822
 decreasing number sequences, creating, 238
 def_value member (my_option structures), 341
 DEFAULT attribute, 203
 DEFAULT() function, 830
 default databases, setting, 30 - 31
 default_storage_engine system variable, 840
 default_tmp_storage_engine system variable,

 840
 default_week_format system variable, 840
 DEFINER clause, 276
 definer privileges, 276
 defragmenting tables, 297
 DEGREES() function, 786
 delay_key_write system variable, 841
 delayed_errors status variable, 882
 delayed_insert_limit system variable, 841
 delayed_insert_threads status variable, 882
 delayed_insert_timeout system variable, 841
 delayed_queue_size system variable, 841
 delayed_writes status variable, 882
 DELETE privilege, 664
 DELETE statement, 929 - 930

 multiple tables, 154 - 155
 rows, 85 - 86

 TO_DAYS(), 815
 TO_SECONDS(), 815
 UNIX_TIMESTAMP(), 815
 UTC_DATE(), 815
 UTC_TIME(), 815
 UTC_TIMESTAMP(), 816
 WEEK(), 816 - 817
 WEEKDAY(), 817
 WEEKOFYEAR(), 817
 YEAR(), 817
 YEARWEEK(), 817

 locale, selecting, 604 - 605
 operations supported, 66
 parts, retrieving, 67 - 68
 retrieving, 27 , 57
 specific, searching, 66 - 67
 syntax, 66
 tables, linking, 41
 two-digit years, 227 - 228
 type conversions, 254
 values, 191
 zero value errors, 229

 DATE data type, 35 , 193 , 221 , 760
 DATE_FORMAT() function, 806
 date_format system variable, 840
 DATE_SUB() function, 69 , 807
 DATEDIFF() function, 807
 DATETIME data type, 193 , 221 , 760

 automatic initialization/update
properties, 224 - 226

 current timestamp, 221
 date values, 221
 formats, 221 , 226 - 227
 time values, 221

 datetime_format system variable, 840
 DAY() function, 808
 DAYNAME() function, 808
 DAYOFMONTH() function, 67 , 808
 DAYOFWEEK() function, 808
 DAYOFYEAR() function, 808
 db_browse.pl script, 471 - 475

 display_table_contents() function,
 473 - 475

 display_table_names() function, 472 - 473
 HTML table, creating, 475
 LIMIT clause, 475
 main body, 471 - 472

25_9780321833877_index.indd 1091 3/6/13 9:50 AM

1092 deleting

 help messages (utilities), 1000 - 1001
 indexes, 131
 INFORMATION_SCHEMA database, 132
 initial user accounts, 565
 plugins, 592
 privileges, 671
 result set metadata, 360 - 364

 column display width, 361 - 362
 final code, 362 - 364
 printing
 boxed column labels, 362
 values, 362

 row storage formats, 300
 SSL-related server status variable values,

 697
 statement results, 28
 status variables, 584
 storage engines available, 593
 system variables, 583 , 836
 tables, 130

 contents, 50 , 54
 structure, 36 - 37

 distinct non-NULL values, counting, 73
 DIV (integer division) operator, 57 , 241 , 767
 div_precision_increment system variable, 841
 division by zero errors, 229
 division (/) operator, 57 , 241 , 767
 DNS, account name host values, matching,

 658 - 659
 do() function, 406 - 407 , Web: 1137 - 1138
 DO statement, 931
 dollar signs ($), PHP, 492
 DOUBLE data type, 193

 ranges, 197
 storage requirements, 197

 double-quoting strings (qq), 417 - 418
 DROP DATABASE statement, 107 , 547 , 931
 DROP EVENT statement, 932
 DROP FUNCTION statement, 932
 DROP INDEX statement, 127 , 302 , 932
 DROP privilege, 664
 DROP PROCEDURE statement, 932
 DROP TABLE statement, 121 - 122 , 549 , 932
 DROP TRIGGER statement, 932 - 933
 DROP USER statement, 656 , 933
 DROP VIEW statement, 933
 dropping. See deleting

 deleting
 anonymous-user accounts, 568 - 569
 cascaded deletes, 164 , 167 - 168
 columns, 85 - 86
 databases, 107
 rows, 85 - 86

 events, 275
 multiple tables, 154 - 155
 preserving sequencing, 235

 tables, 121 - 122
 delimiters (compound statements), 266 - 267
 DES_DECRYPT() function, 822
 DES_ENCRYPT() function, 822 - 823
 DESCRIBE statement, 36 - 37 , 930 - 931
 development releases, 643
 directories

 creating (Perl DBI), 436 - 442
 plain text, 439 - 440
 RTF version, 440 - 442

 online, creating, 455 - 458
 sampdb distribution, 735 - 736

 Perl DBI scripts, 476 - 477
 PHP, 514 - 515

 dirty reads, 162
 disaster planning. See recovery
 disconnect() function, Web: 1137
 display_cell() function, 516
 display_column() function, 535
 display_entry() function, 531 - 533
 display_events() function
 display_form() function, 525 - 526
 display_login_form() function, 530
 display_login_page() function, 530
 display_scores() function, 477 - 479 , 518 - 519
 display_table_contents() function, 473 - 475
 display_table_names() function, 472 - 473
 displaying

 character sets available, 185 - 186
 collations available, 185 - 186
 columns, 131 , 134
 CREATE DATABASE statement, 130
 current character sets/collations, 104
 database definitions, 106 - 107
 databases, 130 , 135
 errors, 170
 foreign keys, 170

25_9780321833877_index.indd 1092 3/6/13 9:50 AM

1093 error handling

 user account passwords, 672
 U.S. Historical League member entries

 command-line script, 448 - 454
 online, 527 - 536

 ellipsis (...), operators/functions, 764
 ELT() function, 779
 empty values, 475
 ENCODE() function, 823
 ENCRYPT() function, 823
 ending

 server connections, 26 - 27
 statements, 27 - 28
 transactions, 160

 ENGINE clause
 ALTER TABLE statement, 129
 CREATE TABLE statement, 46 - 47

 enter_scores() function, 520 - 521
 entering statements, 27

 case-sensitivity, 29
 function syntax, 29
 multiple-lines, 28
 multiple statements on single line, 28 - 29

 ENUM data type, 208 - 213
 creating, 46 , 208
 improper values, 228
 numeric form, 210 - 211
 permitted value lists, defining, 209
 query optimization, 297
 SET data type, compared, 208
 size/storage requirements, 204
 sorting/indexing, 212 - 213

 ENUM strings, 194 , 758
 environment variables

 DBI_TRACE, 429
 PATH, configuring, 739 - 740
 Perl DBI, Web: 1156
 utility options, checking, 1011 - 1012

 eq_range_index_dive_limit system variable,
 841

 equal to (=) operator, 57 , 243 , 769
 equal to (<=>) operator, 57 , 769
 err() function, Web: 1146
 error_count system variable, 842
 error handling

 foreign keys, displaying, 170
 improper values. See improper values
 message language, setting, 604
 PDO exceptions, 491

 dump_members.php script, 497 - 499
 display values, encoding, 498
 error handling, 498
 home page link, creating, 498 - 499
 installing/accessing, 498
 result set, returning, 498

 dump_members.pl script, 397 - 398
 case sensitivity, 400
 comments, adding, 398
 connect() function arguments, 399 - 400
 connections, 400
 disconnecting, 402
 finish() function, 402
 result sets, retrieving, 400 - 401
 row-fetching loop, 401 - 402
 statement terminators, 401
 use DBI statement, 399
 use strict statement, 399
 use warnings statement, 399
 warnings, 401

 dump_members2.php script, 499 - 500
 dump_members2.pl script, 404 - 405
 dump_results() function, Web: 1143
 dynamic attributes (Perl DBI), Web: 1145 - 1155

 E
 edit_member() function, 452
 edit_member.php script

 editing form, 533 - 534
 framework, 529 - 530
 member login page, 530 - 531
 null values, 535 - 536
 password verification, 531 - 533
 updating entries, 534 - 535

 edit_member.pl script, 448 - 454
 editing

 columns
 character sets, 128 - 129
 data types, 128

 databases, 107
 rows

 storage formats, 300
 with statements, 350

 tables
 storage characteristics, 114 - 115
 structure, 127 - 130

25_9780321833877_index.indd 1093 3/6/13 9:50 AM

1094 error handling

 exact-value data types, 197 - 199
 exact-value numbers, 181 - 182
 exception functions, Web: 1172 - 1173
 exclusive-OR (XOR) operator, 773
 exec() function, Web: 1163

 prepared statements, 505
 row-modifying statements, 501

 exec_stmt program, 368 - 369
 exec_stmt_ssl.c, creating, 370 - 374

 availability, 370
 holding option values variables, 372 - 373
 options, adding, 370 - 372
 running, 374

 execute() function, Web: 1143 , Web: 1168
 execute_array() function, Web: 1143
 EXECUTE privilege, 664
 EXECUTE statement, 933
 EXISTS subqueries, 147 - 148
 EXP() function, 786
 expiration column, 36
 expire_logs_days system variable, 629 , 842
 expiring logs, 625 , 629 - 631

 automating, 630 - 631
 binary, 629 - 630
 relay, 630

 EXPLAIN statement, 290 - 296 , 933 - 936
 explicit data types, 179
 EXPORT_SET() function, 792
 expr BETWEEN min AND max operator,

 770 - 771
 expr IN (value1,value2,...), 772
 expr IS operator, 772
 expr NOT BETWEEN min AND max operator,

 770 - 771
 expr NOT IN (value1,value2,...) operator, 772
 expressions, 239 - 240

 NULL values, 246 - 247
 operators, 241 - 243

 arithmetic, 241
 bit, 242
 comparison, 243
 logical, 241 - 242
 precedence, 246

 pattern matching, 243 - 245
 LIKE operator, 243 - 244
 REGEXP operator, 244

 type conversions, 247 - 251
 ASCII, 254

 Perl DBI, 402 - 405
 automatic, 403 - 404
 checking, 400
 default error messages, replacing, 404
 default settings, 403
 dump_members2.pl script example,

 404 - 405
 manually checking/printing, 403
 PrintError attribute, 403
 RaiseError attribute, 403

 PHP, 507 - 509
 prepared statement functions,

 Web: 1112 - 1113
 reporting functions, Web: 1099

 error logs, 556 , 620 - 621
 defined, 618
 event scheduler, 274
 levels, selecting, 620
 multiple servers, 634
 Unix, 620
 Windows, 621

 errorCode() function, 508 , Web: 1162 ,
 Web: 1168

ERROR_FOR_DIVISION_BY_ZERO, 863
 errorInfo() function, 508 , Web: 1163 ,

 Web: 1168
 errstr() function, Web: 1146
 escape_demo.pl script, 464 - 465
 escape sequences

 strings, 183
 utility option files, 1010

 escapeHTML() function, 464 - 465
 EVENT privilege, 664
 event_scheduler system variable, 842
 events, 274 - 275

 creating, 274
 defined, 274
 deleting old rows from table example,

 275
 enabling/disabling, 275
 IDs, 41 - 42
 one time only, 275
 privileges, 274
 scheduler

 enabling, 274
 logging, 274
 starting/stopping at runtime, 274
 status, verifying, 274

 security, 276

25_9780321833877_index.indd 1094 3/6/13 9:50 AM

1095files

 fetchrow_arrayref() function, 409 - 410 ,
 Web: 1145

 fetchrow_hashref() function, 410 - 411
 FIELD() function, 779
 FIELDS clause, 943 - 944
 FILE privilege, 662 , 674 - 675
 files

 data, loading, 52 - 53
 data directory, 545
 .frm

 defined, 548
 MEMORY tables, 548
 MyISAM tables, 548
 views, 549

 include, 491 - 497
 InnoDB tablespace, 595 - 598

 adding, 599
 auto-extend increments, 596
 file specification syntax, 596
 pathnames, 596
 raw partitions, 597 - 598
 regular files, 597
 startup failure, troubleshooting, 598
 system variables, 595
 Windows, 598

 log. See logs
 Makefiles, 322 - 323
 master.info, 730
 MYISAM table, 548
 names

 case sensitivity, 100
 identifier constraints, 550

 option, 1008
 connection parameters, reading, 424
 logging, enabling, 619
 mysql utility connection parameters,

 87 - 88
 mysqld startup, 578
 plugins, loading, 591
 reading, 332 - 335
 securing, 653 - 654
 SSL, 697
 system variables, setting, 586
 Unix, 1007
 utility, 1007 - 1011
 Web script security, 470 - 471
 Windows, 424 - 425 , 1008

 binary/nonbinary strings, 255
 character sets, 254
 collations, 255
 comparisons, 251
 CONCAT() function, 248
 dates, 254
 explicit, 247
 floating-point to integers, 248
 forcing, 253 - 255
 hexadecimal, 248 - 249 , 253
 illegal values, 248
 implicit, 247
 operands to operator expected types,

 249
 string-to-number, 249 - 250
 temporal values, 251
 testing, 252 - 253
 time parts, 254
 values into strings, 253

 writing, 240 - 241
 column references, 240
 functions/arguments, 240
 scalar subqueries, 241

 writing styles, selecting, 290 - 292
 external locking, 702
 external security risks, 646
 external_user system variable, 842
 EXTRACT() function, 808 - 809
 EXTRACTVALUE() function, 828

 F
 FEDERATED storage engine, 108 , 113
 fetch() function

 arguments, 502 - 503
 example, 501
 Perl DBI, Web: 1143
 PDO, Web: 1168 - 1169
 PHP data-retrieval script, 498

 FETCH statements, 992
 fetchAll() function, 504 , Web: 1169
 fetchall_arrayref() function, 415 , Web: 1144
 fetchall_hashref() function, Web: 1144
 fetchColumn() function, 491 , Web: 1169
 fetchObject() function, Web: 1169
 fetchrow_array() function, 401 , 408 - 409 ,

 Web: 1144

25_9780321833877_index.indd 1095 3/6/13 9:50 AM

1096 files

 creating, 166 - 168
 testing, 167 - 168

 cascaded updates
 creating, 166 - 168
 testing, 168

 defining in child table, 164 - 165
 deletes/updates, 164
 displaying, 170
 errors, displaying, 170
 guidelines, 166
 insertion, verifying, 167
 null values, 168 - 170
 parent/child values, 164
 referential integrity, 164
 row entries, 164
 score table example, 48
 unique indexes, creating, 169

 FORMAT() function, 793
 format_entry() function, 455
 formats

 binary logs, 731
 row storage

 displaying/editing, 300
 InnoDB, 299 - 300
 MEMORY, 299
 MyISAM, 299

 forms
 hidden fields, creating, 525 - 526
 text input fields, 530

 FOUND_ROWS() function, 830
 .frm files

 defined, 548
 MEMORY tables, 548
 MyISAM tables, 548
 views, 549

 FROM clause
 SELECT statements, 54 - 56
 subqueries, 149

 FROM_BASE64() function, 793
 FROM_DAYS() function, 809
 FROM_UNIXTIME() function, 809
 ft_boolean_syntax system variable, 842
 ft_max_word_len system variable, 842
 ft_min_word_len system variable, 843
 ft_query_expansion_limit system variable, 843
 ft_stopword_file system variable, 843

 PID, 555
 retrieving images and storing in tables,

 367 - 368
 sampdb distribution, 735 - 736
 source

 connect1.c, 323 - 324
 connect2, 344 - 347
 show_opt, 336 - 338

 SSL status, 695 - 696
 listing of, 554
 multiple servers, 634
 relocating, 561 - 562

 statements, storing, 29
 table-specific, 109 - 110
 TRG, 549
 TRN, 549
 Unix socket, securing, 652 - 653

 filesystem security, 540
 FIND_IN_SET() function, 793
 finish() function, 402 , Web: 1145
 fixed-length string types, 205
 fixed-name logs, rotating, 626 - 629
 fixed-point types, 751
 flip_flop.pl script, 467 - 468
 FLOAT data type, 193

 ranges, 197
 storage requirements, 197

 FLOAT[(M,D)] type, 752
 FLOAT(p) type, 751
 floating-point data types, 197 , 200 , 751 - 752

 FLOAT[(M,D)], 752
 FLOAT(p), 751

 FLOOR() function, 253 , 786
 flush_commands status variable, 882
 FLUSH PRIVILEGES statement, 583
 FLUSH statement, 936 - 937
 flush system variable, 842
 FLUSH TABLES statement, 302 , 703
 flush_time system variable, 842
 flushing logs, 626
 footers, 495 - 497
 forcing type conversions, 253 - 255
 foreign_key_checks system variable, 842
 foreign keys

 absence table example, 49
 benefits, 164
 cascaded deletes

25_9780321833877_index.indd 1096 3/6/13 9:50 AM

1097functions

 cast, 783 - 784
 CAST(), 253 , 783 - 784
 CGI.module, 462
 CGI.pm

 HTML structures, 461
 HTML/URL text, escaping, 464 - 465
 importing, 461
 object-oriented interface, 461 - 462
 output, 462 - 464

 CHAR(), 254 , 790
 check_pass(), 533
 check_response(), 527
 col_prompt(), 451
 COLLATION(), 255 , 787
 comparison, 781 - 783
 compression, 821 - 824
 CONCAT(), 248 , 253 , 791
 connect()

 connection parameters, 423
 Perl DBI scripts, 399 - 400

 CONNECTION_ID(), 829
 CONNECTION_USER(), 830
 CONVERT(), 187 - 188 , 254 - 255 , 784
 COUNT(), 819

 GROUP BY clause, 74 - 76
 ROLLUP clause, 77
 WITH ROLLUP clause, 77 - 78
 summaries, 72 - 76
 WHERE clause, 72

 CURDATE(), 68 , 803
 CURRENT_USER(), 276 , 816
 DATABASE(), 830
 date and time, listing of, 802 - 821
 DATE_ADD(), 68 , 254 , 804 - 805
 DATE_SUB(), 69 , 807
 DAYOFMONTH(), 67 , 808
 DEFAULT(), 830
 display_cell(), 516
 display_column(), 535
 display_entry(), 531 - 533
 display_events()

 Perl DBI, 476 - 477
 PHP, 514 - 515

 display_form(), 525 - 526
 display_login_form(), 530
 display_login_page(), 530
 display_scores(), 477 - 479 , 518 - 519

 full-text searches
 boolean mode, 174 - 175
 characteristics, 171
 configuring, 176 - 177
 natural language, 172 - 174
 query expansion, 175 - 176
 types, 170

 FULLTEXT indexes, 124 , 126
 configuring, 176 - 177
 creating, 171 - 172
 Web table searches, 482 - 483

 func() function, Web: 1147 - 1148
 functions

 add_new_event(), 517 - 518
 advisory locking, 824 - 826
 ASCII(), 254 , 790
 AVG(), 76 , 818
 bail_out(), 405
 BENCHMARK(), 829
 BIN(), 200 , 790
 bind_col(), 421
 bindColumn(), 503
 bind_columns(), 421
 BIT_COUNT(), 829
 BIT_LENGTH(), 829
 C API

 administrative, Web: 1125 - 1126
 client library initialization/

termination, Web: 1088 - 1089
 connection management, listing of,

 Web: 1089 - 1100
 debugging, Web: 1127
 error-reporting, Web: 1101
 information, Web: 1113 - 1116
 multiple result sets, Web: 1113
 parameter names, Web: 1087 - 1088
 prepared statement construction/

execution, Web: 1118 - 1120
 prepared statement error-reporting,

 Web: 1117 - 1118
 prepared statement result set

processing, Web: 1120 - 1125
 prepared statements, Web: 1116 - 1117
 result sets processing, listing of,

 Web: 1104 - 1113
 statement construction/execution,

 Web: 1102 - 1104
 threaded clients, Web: 1126 - 1127
 transaction control, Web: 1116

25_9780321833877_index.indd 1097 3/6/13 9:50 AM

1098 functions

 load_image(), 367
 MASTER_POS_WAIT(), 831
 MAX(), 76 , 820
 MIN(), 76 , 820
 MONTH(), 67 , 811
 MONTHNAME(), 67 , 811
 my_init(), 326
 mysql_affected_rows(), 350
 mysql_close(), 325
 mysql_errno(), 328
 mysql_error(), 328
 mysql_fetch_row(), 351 - 352
 mysql_free_result(), 351
 mysql_init(), 325
 mysql_library_end(), 326
 mysql_library_init(), 326
 mysql_more_results(), 375
 mysql_next_result(), 375
 mysql_query(), 349
 mysql_real_connect(), 325 , 375
 mysql_real_escape_string(), 365
 mysql_real_query(), 349
 mysql_set_server_option(), 375
 mysql_sqlstate(), 328
 mysql_stmt_close(), 388
 mysql_stmt_fetch(), 388
 mysql_stmt_free_result(), 388
 mysql_stmt_init(), 380
 mysql_store_result(), 351 , 357 - 359
 mysql_use_result(), 351 , 357 - 359
 NAME_CONST(), 831
 names

 case sensitivity, 99
 identifiers, 98

 new PDO(), 490
 notify_member(), 446
 numeric, 784 - 789
 OCT(), 201 , 797
 ORDER BY RAND(), 523
 param(), 462
 parentheses, 401
 password_field(), 531
 PDO, Web: 1159

 constants, Web: 1173 - 1174
 exceptions, Web: 1172 - 1173
 PDO class, Web: 1159 - 1166
 statement handles, Web: 1166 - 1172

 display_table_contents(), 473 - 475
 display_table_names(), 472 - 473
 do(), 406 - 407
 edit_member(), 452
 enter_scores(), 520 - 521
 errorCode(), 508
 errorInfo(), 508
 escapeHTML(), 464 - 465
 exec()

 prepared statements, 505
 row-modifying statements, 501

 expressions, 240
 fetch()

 arguments, 502 - 503
 example, 501
 PHP data-retrieval script, 498

 fetchAll(), 504
 fetchall_arrayref(), 415
 fetchColumn(), 491
 fetchrow_array(), 401
 finish(), 402
 FLOOR(), 253 , 786
 format, 763
 format_entry(), 455
 FOUND_ROWS(), 830
 getCode(), 508
 getMessage(), 508
 handle_options(), 342
 header(), 463
 HEX(), 201 , 253
 hidden_field(), 526
 html_begin(), 495 - 497
 html_end(), 495 - 497
 html_format_entry(), 456 , 481
 htmlspecialchars(), 498
 insert_rows(), 381 - 385
 interpret_argument(), 445
 IP address, 826 - 828
 is_null(), 504
 LAST_INSERT_ID(), 237 - 239 , 831
 li(), 473
 load_defaults()

 defined, 332
 security, 335
 show_argv program example,

 332 - 333
 LOAD_FILE(), 831

25_9780321833877_index.indd 1098 3/6/13 9:50 AM

1099GET DIAGNOSTICS statements

 start_html(), 463
 stored, 268 - 271

 creating, 268
 defined, 268
 integer-valued parameter representing

a year example, 268
 multiple values, 269
 names, 269
 privileges, 270 - 271
 security, 276
 tables, updating, 270

 STR_TO_DATE(), 66 , 813
 string, listing of, 789 - 802
 submit_button(), 526
 SUM(), 76 , 820
 summary, listing of, 817 - 821
 syntax, 29 , 764 , 780
 SYSTEM_USER(), 832
 table(), 475
 td(), 475
 text_field(), 530
 textfield(), 481
 th(), 475
 TIMESTAMPDIFF(), 68 , 814
 TO_DAYS(), 68 , 815
 trace(), 428
 undef argument, 422
 USER(), 832
 UUID(), 832
 UUID_SHORT(), 833
 VALUES(), 833
 VERSION(), 833
 XML, 828

 G
 gen_dir.pl script

 entry-fetching loop, 439
 format selection code, 438 - 439
 HTML format, 456 - 458
 switchbox, 437 - 438

 general_log system variable, 621 , 843
 general_log_file system variable, 621 , 772
 general-purpose statement handlers, 354 - 355
 general query logs, 556 , 618 , 621
 GET_BOOL var_type, 340
 GET DIAGNOSTICS statements, 992 - 994

 Perl DBI
 administrative, Web: 1147 - 1148
 %attr hash argument, Web: 1130
 calling sequence, Web: 1130
 database-handle, Web: 1137 - 1142
 DBI class, Web: 1132 - 1136
 general handle, Web: 1146
 statement-handle, Web: 1142 - 1145
 utility, Web: 1148 - 1149

 prepare(), 505
 present_question(), 525
 print_dashes(), 362
 print_error(), 329 - 330
 PROCEDURE ANALYSE(), 297
 process_call_result(), 392
 process_multi_statement(), 376
 process_real_statement(), 356 - 357
 process_result_set() function, 352 - 353
 process_statement(), 355
 prompt(), 451
 query(), 491
 quote(), 418 - 419 , 505 - 506
 radio_button(), 526
 read_file(), 445
 remove_backslashes(), 512
 ROUND(), 253 , 788
 ROW_COUNT(), 831 - 832
 rowCount(), 505
 row-fetching

 fetchrow_array(), 408 - 409
 fetchrow_arrayref(), 409 - 410
 fetchrow_hashref(), 410 - 411
 listing of, 407

 SCHEMA(), 832
 script_name(), 516
 script_param(), 512
 search_members()

 ushl_browse.pl script, 480
 ushl_ft_browse.pl, 482 - 483

 security, 821 - 824
 select_rows(), 385 - 388
 selectrow_array(), 413
 SESSION_USER(), 832
 SLEEP(), 832
 solicit_event_info(), 516 - 517
 spatial, 828

25_9780321833877_index.indd 1099 3/6/13 9:50 AM

1100 GET_DISABLED var_type

 gradebook example, 39
 incorrectly entered grades, swapping,

 160 - 161
 linking tables, 41
 missing tests/quizzes for students,

finding, 141 - 143
 online score-entry application, 510 - 511

 action input parameter, 513
 editing scores, 520 - 522
 event table cells, generating, 516
 events, displaying, 514 - 515
 framework, 513 - 514
 hyperlink URLs, 516
 new event entry form, 516 - 517
 scores, entering, 517 - 518
 scores for selected events, displaying,

 518 - 519
 security, 522
 transactional data-entry operations,

 520
 perfect attendance, 84 , 145
 quiz/test scores for given date,

retrieving, 78 - 81
 rows, adding

 from files, 52 - 53
 INSERT statement, 50 - 52

 scores
 browser, creating, 475 - 479
 retrieving, 43 - 44
 table, creating, 39 - 40 , 48 - 49
 total score per student at end of

semester, 82
 student table, creating, 44 - 47
 tables, linking, 41 - 42
 test/quiz statistics view, 264 - 265

 GRANT OPTION privilege, 662 , 669 - 670 , 674
 GRANT statements, 938 - 943

 clauses, 660 - 661
 ON, 939 - 940
 REQUIRE, 668 - 669 , 941
 WITH, 941 - 942

 examples, 942 - 943
 privileges, revoking, 672
 privileges to be granted, 938 - 939
 selecting, 661

 grant tables
 account-management statements

affected, 654 - 655

 GET_DISABLED var_type, 340
 GET_DOUBLE var_type, 340
 GET_ENUM var_type, 340
 GET_FORMAT() function, 809 - 810
 get_info() function, Web: 1138
 GET_INT var_type, 340
 GET_LL var_type, 340
 GET_LOCK() function, 825
 GET_LONG var_type, 340
 GET_NO_ARG var_type, 340
 GET_SET var_type, 340
 GET_STR_ALLOC var_type, 340
 GET_STR var_type, 340
 GET_UINT var_type, 340
 GET_ULL var_type, 340
 GET_ULONG var_type, 340
 getAttribute() function, Web: 1163 , Web: 1170
 getAvailableDrivers function, Web: 1163
 getCode() function, 508
 getColumnMeta() function, Web: 1170
 getMessage() function, 508
 global attributes, 747
 global privileges, 666
 GLOBAL qualifier

 SHOW STATUS statement, 589
 SHOW VARIABLES statement, 586

 global variables, 97
 globalization

 default character set/collation, 603 - 604
 error message language, 604
 internationalization, 601
 locale, 604 - 605
 localization, 601
 time zones, configuring, 602 - 603

 grade_event table
 creating, 40 , 47
 linking with score table

 dates, 41
 event IDs, 41 - 42

 grade-keeping project, 17
 above-average scores for a grade event,

finding, 145
 absences

 finding, 145
 summarizing, 82 - 83
 table, creating, 45 , 49

 grade_event table, 40 , 47

25_9780321833877_index.indd 1100 3/6/13 9:50 AM

1101HEX() function

 handler_read_last status variable, 883
 handler_read_next status variable, 883
 handler_read_prev status variable, 883
 handler_read_rnd status variable, 883
 handler_read_rnd_next status variable, 883
 handler_rollback status variable, 883
 handler_savepoint status variable, 883
 handler_savepoint_rollback status variable,

 884
 handler_update status variable, 884
 handler_write status variable, 884
 handles, 397

 database
 attributes, Web: 1149
 functions, Web: 1137 - 1142
 MySQL-specific attributes,

 Web: 1150 - 1152
 PDO attributes, Web: 1173 - 1174

 general
 attributes, Web: 1149 - 1150
 functions, Web: 1146

 names, 397
 PDOStatement, 501
 statements

 attributes, Web: 1152 - 1153
 functions, Web: 1142 - 1145
 MySQL-specific attributes,

 Web: 1154 - 1155
 PDO functions, Web: 1166 - 1172

 HASH indexes, 124 - 125
 have_compress system variable, 843
 have_crypt system variable, 843
 have_dynamic_loading system variable, 843
 have_geometry system variable, 843
 have_openssl system variable, 844
 have_query_cache system variable, 844
 have_rtree_keys system variable, 844
 have_ssl system variable, 844
 have_symlink system variable, 844
 header() function, 463
 headers

 connect1 client program, 324
 Content-Type:, 463
 html_begin() function, 495 - 497

 height information, storing, 257 - 258
 hello world script examples, 487 - 488
 help messages, displaying, 1000 - 1001
 HEX() function, 201 , 253 , 793

 accounts, 564 - 569
 available on all platforms, 566
 client program connections, 566
 displaying, 565
 passwords, assigning, 567 - 569
 platform specific, 567

 administrative privilege columns, 680
 columns

 authentication, 684
 privilege, 683 - 684
 resource management, 685 - 686
 scope. See scope columns
 SSL-related, 685

 initializing, 740 - 741
 listing of, 680
 object privileges, 681 - 682
 privilege tables, 683
 source, 566
 statement access verification, 689 - 690
 upgrading, 655
 user tables

 authentication, 680
 row matching example, 691 - 694

 GRANT USAGE statement, 697
 greater than (>) operator, 57 , 243 , 770
 greater than or equal to (>=) operator, 57 ,

 243 , 770
 GREATEST() function, 779
 GROUP BY clause, 74 - 76
 GROUP_CONCAT() function, 819 - 820
 group_concat_max_len system variable, 843
 groups

 operators, 765 - 766
 option, 578
 values, counting, 74 - 76

 H
 handle_options() function, 342
 HANDLER statement, 943
 handler_commit status variable, 882
 handler_delete status variable, 883
 handler_external_lock status variable, 883
 handler_mrr_init status variable, 883
 handler_prepare status variable, 883
 handler_read_first status variable, 883
 handler_read_key status variable, 883

25_9780321833877_index.indd 1101 3/6/13 9:50 AM

1102 hexadecimal notation

 identity system variable, 844
 IF() function, 779
 IF statements, 988
 IF NOT EXISTS clause, 106
 IFNULL() function, 779
 ignore_builtin_innodb system variable, 870
 ignore_db_dirs system variable, 844
IGNORE_SPACE, 863
 images, retrieving from files and storing in

tables, 367 - 368
 implicit data types, 179
 importing CGI.pm functions, 461
 improper values, handling, 228 - 230

 division by zero errors, 229
 strict mode

 turning on, 230
 weakening, 230

 transactional/nontransactional tables,
 229

 warnings, 229
 zero date errors, 229

 IN operator, 59 , 243
 IN subqueries, 145 - 146
 include files (PHP)

 benefits, 491 - 493
 Historical League example, 495
 locations, establishing, 493 - 504
 referencing, 494

 increasing number sequences, creating,
 237 - 238

 INDEX privilege, 664
 indexes, 278

 benefits, 278 - 281
 multiple tables, 280
 single-table queries, 279

 binary logs, 623
 BLOB/TEXT data types, 207
 case sensitivity, 100
 columns, selecting, 281 - 285

 badly performing queries,
identifying, 285

 cardinality, 282
 comparisons, matching to index

types, 284 - 285
 overindexing, 284
 prefixes, 283 - 284
 short values, 283

 composite, 233

 hexadecimal notation
 conversions, 248 - 249
 strings, 184

 hidden_field() function, 526
 hidden fields (forms)

 creating, 525 - 526
 security, 528

HIGH_NOT_PRECEDENCE, 863
 host access

 limited, 657
 matching host values to DNS, 658 - 659
 single, 657
 unlimited, 657

 host_cache_size system variable, 844
 host columns, 687 - 688
 hostname system variable, 844
 HOUR() function, 810
 HTML

 escaping, 464 - 465
 structure, 455 - 456
 tables, creating, 475
 XHTML, compared, 464

 html_begin() function, 495 - 497
 html_end() function, 495 - 497
 html_format_entry() function, 456 , 481
 htmlspecialchars() function, 498
 hyperlinks, creating, 499 - 500

 I
 id (my_option structures), 339
 IDENTIFIED WITH clause, 676
 identifiers, 97

 aliases, 98
 columns, 99
 constraints

 MySQL, 550
 operating systems, 550 - 551

 database, 98
 function names, 98
 length, 98
 qualified names, 99
 qualifiers, 98
 quoting, 97 - 98
 tables, 98
 unquoted, 97
 views, 98

25_9780321833877_index.indd 1102 3/6/13 9:50 AM

1103innodb_buffer_pool_dump_at_shutdown system variable

 InnoDB storage engine, 108
 auto-recovery, 706 , 725 - 726
 backing up, 715 - 716
 checking/repairing tables, 718
 data, representing, 548
 features, 110
 innodb directory access mode, setting,

 651
 locking levels, 303
 portability, 710
 row storage formats, 299 - 300
 sequence characteristics, 234
 status variables, listing of, 888 - 891
 system variables, listing of, 870 - 880
 tablespace

 auto-extend increments, 596
 components, adding, 599
 configuring, 595 - 598
 contents, 595
 file pathnames, 596
 file specification syntax, 596
 individual (per-table), 599 - 600
 maximum size, 552
 overview, 111
 raw partitions, 597 - 598
 regular files, 597
 relocating, 560
 startup failure, troubleshooting, 598
 system variables, 595
 Windows, 598

 transaction isolation levels, 162 - 163
 variables, 600 - 601

 innodb_adaptive_flushing system variable, 870
 innodb_adaptive_flushing_lwm system variable,

 870
 innodb_adaptive_hash_index system variable,

 870
 innodb_adaptive_max_sleep_delay system

variable, 870
 innodb_additional_mem_pool_size system

variable, 871
 innodb_autoextend_increment system variable,

 596 , 871
 innodb_autoinc_lock_mode system variable,

 871
 innodb_available_undo_logs status variable,

 888
 innodb_buffer_pool_dump_at_shutdown system

variable, 871

 costs, 281
 creating

 column prefixes, 126
 existing tables, 124
 FULLTEXT, 126
 HASH, 125
 new tables, 125
 unique, 124 - 125

 data loading efficiency
 dropping/deactivating, 302 - 303
 flushing, reducing, 301 - 302

 deleting, 127
 displaying, 131
 ENUM/SET data types, 212 - 213
 flexibility, 122
 FULLTEXT

 configuring, 176 - 177
 creating, 171 - 172
 Web table searches, 482 - 483

 ID numbers, generating, 36
 information, displaying, 135
 query efficiency, 292 - 296
 storage engine characteristics, 123
 synthetic, 298
 tables, 122 - 123
 types, 123 - 124

 INET_ATON() function, 826
 INET_NTOA() function, 826
 INET6_ATON() function, 827
 INET6_NTOA() function, 827
 information functions, Web: 1109 - 1111
 INFORMATION_SCHEMA database

 columns, displaying, 134
 displaying, 132
 metadata access, 132 - 135
 tables, 133 - 134

 init_connect system variable, 844
 init_file system variable, 845
 init_slave system variable, 845
 initial user accounts, 564 - 569

 available on all platforms, 566
 client program connections, 566
 displaying, 565
 passwords, assigning, 567 - 569
 platform specific, 567

 inner joins, 137 - 138

25_9780321833877_index.indd 1103 3/6/13 9:50 AM

1104 innodb_buffer_pool_dump_now system variable

 innodb_data_file_path system variable, 595 ,
 873

 innodb_data_fsyncs status variable, 889
 innodb_data_home_dir system variable, 595 ,

 873
 innodb_data_pending_fsyncs status variable,

 889
 innodb_data_pending_reads status variable,

 889
 innodb_data_pending_writes status variable,

 889
 innodb_data_read status variable, 889
 innodb_data_reads status variable, 889
 innodb_data_writes status variable, 889
 innodb_data_written status variable, 890
 innodb_dblwr_pages_written status variable,

 890
 innodb_dblwr_writes status variable, 890
 innodb_doublewrite system variable, 873
 innodb_fast_shutdown system variable, 873
 innodb_file_format_check system variable, 873
 innodb_file_format_max system variable, 874
 innodb_file_format system variable, 873
 innodb_file_io_threads system variable, 874
 innodb_file_per_table system variable, 111 ,

 599 , 874
 innodb_flush_log_at_trx_commit system

variable, 874
 innodb_flush_method system variable, 874
 innodb_flush_neighbors system variable, 874
 innodb_force_load_corrupted system variable,

 875
 innodb_force_recovery system variable, 875
 innodb_ft_xxx system variable, 875
 innodb_have_atomic_builtins status variable,

 890
 innodb_io_capacity system variable, 875
 innodb_io_capacity_max system variable, 875
 innodb_large_prefix system variable, 875
 innodb_lock_wait-timeout system variable, 875
 innodb_locks_unsafe_for_binlog system

variable, 875
 innodb_log_buffer_size system variable, 600 ,

 876
 innodb_log_file_size system variable, 601 , 876
 innodb_log_files_in_group system variable,

 601 , 876
 innodb_log_group_home_dir system variable,

 601 , 876
 innodb_log_waits status variable, 890

 innodb_buffer_pool_dump_now system
variable, 871

 innodb_buffer_pool_dump_status status
variable, 888

 innodb_buffer_pool_filename system variable,
 871

 innodb_buffer_pool_instances system variable,
 871

 innodb_buffer_pool_load_abort system
variable, 871

 innodb_buffer_pool_load_at_startup system
variable, 871

 innodb_buffer_pool_load_now system variable,
 872

 innodb_buffer_pool_load_status status variable,
 888

 innodb_buffer_pool_pages_data status variable,
 888

 innodb_buffer_pool_pages_dirty status variable,
 888

 innodb_buffer_pool_pages_flushed status
variable, 888

 innodb_buffer_pool_pages_free status variable,
 888

 innodb_buffer_pool_pages_latched status
variable, 888

 innodb_buffer_pool_pages_misc status
variable, 888

 innodb_buffer_pool_pages_total status
variable, 889

 innodb_buffer_pool_read_ahead status
variable, 889

 innodb_buffer_pool_read_ahead_evicted status
variable, 889

 innodb_buffer_pool_read_requests status
variable, 889

 innodb_buffer_pool_reads status variable, 889
 innodb_buffer_pool_size system variable, 600 ,

 872
 innodb_buffer_pool_wait_free status variable,

 889
 innodb_buffer_pool_write_requests status

variable, 889
 innodb_change_buffer_max_size system

variable, 872
 innodb_change_buffering system variable, 872
 innodb_checksum_algorithm system variable,

 872
 innodb_checksums system variable, 873
 innodb_commit_concurrency system variable,

 873
 innodb_concurrency_tickets system variable,

 873

25_9780321833877_index.indd 1104 3/6/13 9:50 AM

1105insert_id system variable

 innodb_log_write_requests status variable, 890
 innodb_log_writes status variable, 890
 innodb_lru_scan_depth system variable, 876
 innodb_max_dirty_ages_pct_lwm system

variable, 876
 innodb_max_dirty_pages_pct system variable,

 876
 innodb_max_purge_lag system variable, 876
 innodb_max_purge_lag_delay system variable,

 876
 innodb_mirrored_log_groups system variable,

 877
 innodb_monitor_disable system variable, 877
 innodb_monitor_enable system variable, 877
 innodb_monitor_reset system variable, 877
 innodb_monitor_reset_all system variable, 877
 innodb_num_open_files status variable, 890
 innodb_old_blocks_pct system variable, 877
 innodb_old_blocks_time system variable, 877
 innodb_open_files system variable, 877
 innodb_os_log_fsyncs status variable, 890
 innodb_os_log_pending_fsyncs status variable,

 890
 innodb_os_log_pending_writes status variable,

 890
 innodb_os_log_written status variable, 890
 innodb_page_size status variable, 890
 innodb_page_size system variable, 877
 innodb_pages_created status variable, 890
 innodb_pages_read status variable, 890
 innodb_pages_written status variable, 891
 innodb_print_all_deadlocks system variable,

 877
 innodb_purge_batch_size system variable, 877
 innodb_purge_threads system variable, 877
 innodb_random_read_ahead system variable,

 878
 innodb_read_ahead_threshold system variable,

 878
 innodb_read_io_threads system variable, 878
 innodb_replication_delay system variable, 878
 innodb_rollback_on_timeout system variable,

 878
 innodb_rollback_segments system variable,

 878
 innodb_row_lock_current_waits status variable,

 891
 innodb_row_lock_time status variable, 891
 innodb_row_lock_time_avg status variable, 891

 innodb_row_lock_time_max status variable,
 891

 innodb_row_lock_waits status variable, 891
 innodb_rows_deleted status variable, 891
 innodb_rows_inserted status variable, 891
 innodb_rows_read status variable, 891
 innodb_rows_updated status variable, 891
 innodb_sort_buffer_size system variable, 878
 innodb_spin_wait_delay system variable, 878
 innodb_stats_method system variable, 878
 innodb_stats_on_metadata system variable,

 879
 innodb_stats_persistent_sample_pages system

variable, 879
 innodb_stats_sample_pages system variable,

 879
 innodb_stats_transient_sample_pages system

variable, 879
 innodb_strict_mode system variable, 879
 innodb_support_xa system variable, 879
 innodb_sync_spin_loops system variable, 879
 innodb_table_locks system variable, 879
 innodb_thread_concurrency system variable,

 880
 innodb_thread_sleep_delay system variable,

 880
 innodb_truncated_status_writes status variable,

 891
 innodb_undo_directory system variable, 880
 innodb_undo_logs system variable, 880
 innodb_undo_tablespaces system variable, 880
 innodb_use_native_aio system variable, 880
 innodb_use_sys_malloc system variable, 880
 innodb_version system variable, 880
 innodb_write_io_threads system variable, 880
 innodb_xxx status variable, 884
 input editing commands, 90 - 91
 input line editing, 90 - 91
 input parameters

 CGI.pm function, 462
 PHP, 511 - 512

 INSERT() function, 794
 INSERT privilege, 664
 INSERT statement, 943 - 946

 data loading, 301
 double-quoting strings in Perl DBI,

 417 - 418
 rows, adding, 50 - 52

 insert_id system variable, 845

25_9780321833877_index.indd 1105 3/6/13 9:50 AM

1106 insert_rows() function

 loading plugins at startup, 591
 operations, 590
 uninstalling plugins, 592

 internal locking, 702 - 703
 all tables at once, 705
 read-only access, 703 - 704
 read/write, 704 - 705
 single sessions, 703
 statements, 703

 internal security risks, 645
 internationalization

 default character set/collation, 603 - 604
 defined, 601
 error message language, 604
 locale, 604 - 605
 time zones, configuring, 602 - 603

 interpret_argument() function, 445
 INTERVAL() function, 779
 inTransaction() function, Web: 1164
 introducers, 187
 invoker privileges, 276
 IP address functions, 826 - 828
 IPv4/IPv6 addresses, 657
 IS_FREE_LOCK() function, 826
 IS_IPV4() function, 827
 IS_IPV4_COMPAT() function, 827
 IS_IPV4_MAPPED() function, 827
 IS_IPV6() function, 828
 IS NOT NULL operator, 243
 IS NULL operator, 243
 is_null() function, 504
 IS_USED_LOCK() function, 826
 ISNULL() function, 779
 ITERATE statements, 988

 J
 join_buffer_size system variable, 845
 joins

 column references, qualifying, 138 - 139
 inner, 137 - 138
 LEFT, 82
 multiple tables example, 78 - 83
 outer, 139 - 143
 query optimizer support, 289
 SELECT statements, 955 - 956

 insert_rows() function, 381 - 385
 INSTALL PLUGIN statement, 591 , 946
 install_driver() function, Web: 1136
 installed_drivers() function, Web: 1136
 installing

 MySQL, 737 - 739
 data directory, initializing, 740 - 741
 grant tables, initializing, 740 - 741
 login accounts, creating, 738 - 739
 PATH environment variable,

configuring, 739 - 740
 system tables, initializing, 742 - 743
 Unix, 739
 Windows, 739

 PDO, 743
 Perl DBI software, 743
 PHP, 743 - 745

 INSTR() function, 794
 INT data type, 193 , 750

 ranges, 197
 storage requirements, 197

 integer columns, creating, 46 , 48
 integer data types, 749 - 751

 BIGINT, 750 - 751
 INT, 750
 MEDIUMINT, 750
 SMALLINT, 750
 TINYINT, 749

 integer division (DIV) operator, 57
 interactive online quizzes, creating, 522 - 527

 checking user responses, 527
 creating questions, 523 - 525
 form hidden fields, creating, 525 - 526
 presenting questions, 525
 user response submissions, 526

 interactive statement-execution program,
 368 - 369

 interactive_timeout system variable, 845
 interfaces

 database-access (PHP), 485 - 486
 plugin

 activation state, 592
 case sensitivity, 591
 components, 590
 displaying plugins, 592
 library suffix, 590
 loading plugins at runtime, 591

25_9780321833877_index.indd 1106 3/6/13 9:50 AM

1107loading

 length
 data types, 748
 identifiers, 98
 string data types, 205

 LENGTH() function, 753 , 794
 less than (<) operator, 57 , 243 , 770
 less than or equal to (<=) operator, 57 , 243 ,

 770
 li() function, 473
 license system variable, 847
 LIKE clause

 SHOW statements, 131
 SHOW STATUS statement, 589
 SHOW VARIABLES statement, 585

 LIKE/NOT LIKE operators, 243 - 244 , 776 - 777
 LIMIT clause

 db_browse.pl script, 475
 query results, limiting, 63 - 64

 limiting query results, 63 - 64
 LINES clause, 944
 Linux, log rotating, 628
 live hyperlinks, creating, 499 - 500
 LN() function, 786
 LOAD DATA statement, 300 - 301 , 946 - 951

 data files, loading, 52 - 53
 data formats, 948
 FIELDS clause options, 948 - 949
 LINES clause, 949 - 950
 LOCAL keyword, 947
 special characters, 948

 LOAD INDEX INTO CACHE statement, 951
 LOAD XML statement, 951 - 952
 load_defaults() function

 defined, 332
 security, 335
 show_argv program example, 332 - 333

 LOAD_FILE() function, 831
 load_image() function, 367
 loading

 data, 300 - 303
 dropping/deactivating indexes,

 302 - 303
 index flushing, reducing, 301 - 302
 INSERT statement, 301
 LOAD DATA statement, 300 - 301
 mixed-query environments, 303
 shorter statements, 302

 single table, 83 - 84
 STRAIGHT_JOIN, 287
 subqueries, converting, 149

 matching values, 149 - 150
 nonmatching values, 150

 K
 keep_files_on_create system variable, 845
 key_blocks_not_flushed status variable, 884
 key_blocks_unused status variable, 884
 key_blocks_used status variable, 884
 key_buffer_size system variable, 845
 key_cache_age_threshold system variable, 846
 key_cache_block_size system variable, 846
 key_cache_limit system variable, 846
 key_read_requests status variable, 884
 key_reads status variable, 884
 key_write_requests status variable, 884
 key_writes status variable, 884
 keywords (Web table searches), 479 - 482
KILL statement, 946

 L
 language system variable, 846
 languages, error message, selecting, 604
 large_files_support system variable, 846
 large_page_size system variable, 846
 large_pages system variable, 846
 LAST_DAY() function, 810
 LAST_INSERT_ID() function, 831

 AUTO_INCREMENT columns, 231
 sequences, creating, 237 - 239

 last_insert_id system variable, 846
 last_query_cost status variable, 884
 last_query_partial_plane status variable, 884
 lastInsertId() function, Web: 1164
 latin1 character set, 104
 lc_messages system variable, 604 , 846
 lc_messages_dir system variable, 604 , 846
 lc_time_names system variable, 604 , 846
 LCASE() function, 794
 LEAST() function, 779
 LEAVE statements, 989
 LEFT() function, 794
 left joins, 82 , 139 - 143

25_9780321833877_index.indd 1107 3/6/13 9:50 AM

1108 loading

 log_warnings system variable, 620 , 848
 logical operators, 772

 AND (&&), 773
 listing of, 57 , 241 - 242
 natural language distinctions, 59
 NOT (!), 772
 NULL values, 247
 OR (||), 773
 XOR, 773

 login accounts, creating, 738 - 739
 logrotate utility, 628
 logs

 age-based expiration, 625
 binary, 556 , 618

 administration, 622 - 623
 expiring, 629 - 630
 formats, 731
 index files, 623
 post-backup statements, re-executing,

 723 - 725
 system backups, 623

 enabling, 619
 error, 556 , 620 - 621

 defined, 618
 event scheduler, 274
 levels, selecting, 620
 multiple servers, 634
 Unix, 620
 Windows, 621

 expiring, 629 - 631
 automating, 630 - 631
 binary, 629 - 630
 relay, 630

 fixed-name, rotating, 626 - 629
 flushing, 626
 general query, 556 , 618 , 621
 listing of, 554 , 617 - 618
 maintenance, 539
 multiple servers, 634
 output destination, selecting, 624 - 625
 relay, 618 , 624 , 630
 relocating, 561 - 562
 replication-related expiration, 625
 rotating, 625 - 629
 security, 556
 slow query, 618

 plugins
 runtime, 591
 startup, 591

 LOCAL keyword, 941
 local_infile system variable, 847
 locale, selecting, 604 - 605
 localization

 default character set/collation, 603 - 604
 defined, 601
 error message language, 604
 locale, 604 - 605
 time zones, configuring, 602 - 603

 LOCALTIME() function, 810
 LOCALTIMESTAMP() function, 810
 LOCATE() function, 794
 LOCK TABLES privilege, 664
 LOCK TABLES statement, 304 , 702 , 952 - 953
 lock_wait_timeout system variable, 786 , 847
 locked_in_memory system variable, 847
 locking

 advisory functions, 813 - 814
 all tables at once, 705
 levels, 303 - 305
 overview, 702 - 703
 read-only access, 703 - 704
 read/write, 704 - 705
 single sessions, 703
 statements, 703
 tables, 303 - 305

 LOG() function, 783
 log system variable, 847
 LOG2() function, 787
 LOG10() function, 787
 log_bin system variable, 847
 log_bin_basename system variable, 847
 log_bin_index system variable, 847
 log_bin_trust_function_creators system

variable, 847
 log_error system variable, 847
 log_output system variable, 848
 log_queries_not_using_indexes system variable,

 848
 log_slave_updates system variable, 848
 log_slow_queries system variable, 848
 log_throttle_queries_not_using_indexes system

variable, 848

25_9780321833877_index.indd 1108 3/6/13 9:50 AM

1109max_binlog_size system variable

 tables, 700
 tools, 700
 Unix login, 701

 repairing tables
 InnoDB tables, 718
 MyISAM tables, 719
 mysqlcheck utility, 720 - 721
 REPAIR TABLE statement, 720

 replication
 binary logging formats, 731
 compatibility guidelines, 727 - 728
 master-slave, 728 - 731
 overview, 727
 slave backups, creating, 732 - 733

 server interference, preventing, 701
 internal locking, 702 - 703
 locking all tables at once, 705
 read-only locking, 703 - 704
 read/write locking, 704 - 705
 shutting down servers, 702

 user accounts, 539
 MAKE_SET() function, 795
 MAKEDATE() function, 810
 Makefiles, 322 - 323
 MAKETIME() function, 811
 master_info_repository system variable, 849
 MASTER_POS_WAIT() function, 831
 master-slave replication, 728 - 731

 master server settings, 728 - 729
 master.info file, 730
 relay logs, 731
 separate slave accounts, 730
 server ID values, assigning, 728
 slave settings, 729 - 730
 statements, 730 - 731
 threads, starting/stopping, 731

 master_verify_checksum system variable, 850
 master.info file, 730
 MATCH() function, 796 - 797
 MATCH operator, full-text searches

 boolean mode, 174 - 175
 natural language, 172 - 174
 query expansion, 175 - 176

 MAX() function, 76 , 820
 max_allowed_packet system variable, 850
 max_binlog_cache_size system variable, 850
 max_binlog_size system variable, 850

 tables
 rotating, 625 , 631
 truncating, 625 , 631
 writing to, 625

 long_query_time system variable, 848
 LONGBLOB data type, 204 , 207 - 208
 LONGBLOB strings, 194 , 756
 LONGTEXT data type, 204 , 207 - 208
 LONGTEXT strings, 194 , 758
 looks_like_number() function, Web: 1148
 LOOP statements, 989
 low_priority_updates system variable, 849
 LOWER() function, 795
 lower_case_file_system system variable, 849
 lower_case_table_names system variable, 100 ,

 849
 LPAD() function, 795
 LTRIM() function, 795

 M
 mailing lists , 80
 maintenance

 backups, 707 - 709
 best practices, 709
 binary, 714 - 715
 InnoDB, 715 - 716
 selecting, 708
 slave, creating, 732 - 733
 storage engine portability, 709 - 710
 text, 711 - 714
 types, 708

 checking tables
 CHECK TABLE statement, 719 - 720
 InnoDB tables, 718
 MyISAM tables, 719
 mysqlcheck utility, 720 - 721

 databases
 backing up, 540
 crash recovery, 541
 preventive, 540

 logs, 539
 preventive

 auto-recovery, 706
 databases, 699 - 700
 scheduling, 707
 server cooperation, 700 - 701

25_9780321833877_index.indd 1109 3/6/13 9:50 AM

1110 max_binlog_stmt_cache_size

 MERGE storage engine, 108 , 113 , 304
 metadata

 accessing, 130
 command line, 135
 INFORMATION_SCHEMA database,

 132 - 135
 SHOW statement, 130 - 132

 result sets
 C client programs, 359 - 364
 availability, 359
 column information structures,

accessing, 364
 defined, 359
 displaying, 360 - 364
 result set data processing decisions,

 359
 metadata, displaying, 364
 Perl DBI scripts, 430 - 434

 metadata_locks_cache_size system variable,
 852

 methods. See functions
 MICROSECOND() function, 811
 MID() function, 797
 migrating databases, 541
 MIN() function, 76 , 820
min_examined_row_limit system variable, 852
 min_value member (my_option structures),

 341
 minimum value summaries, 76
 MINUTE() function, 811
 mixed format logging, 731
 MOD() function, 787
 MODIFY clause, 128
 modules (CGI.pm), 459 - 460

 HTML
 structures, 461
 text, escaping, 464 - 465
 XHTML, compared, 464

 importing functions, 461
 input parameters, 462
 multiple-purpose pages, writing, 465 - 468
 object-oriented, 461 - 462
 output, generating, 462 - 464
 portability, 463
 URL text, escaping, 464 - 465

 modulo (%) operator, 57 , 241 , 767
 MONTH() function, 67 , 811
 MONTHNAME() function, 67 , 811

 max_binlog_stmt_cache_size, 850
 max_connect_errors system variable, 850
 max_connections system variable, 850
 max_delayed_threads system variable, 850
 max_error_count system variable, 851
 max_heap_table_size system variable, 851
 max_insert_delayed_threads system variable,

 851
 max_join_size system variable, 851
 max_length_for_sort_data system variable, 851
 max_prepared_stmt_count system variable,

 851
 max_relay_log_size system variable, 624 , 630 ,

 851
 max_seeks_for_key system variable, 852
 max_sort_length system variable, 852
 max_sp_recursion_depth system variable, 852
 max_tmp_tables system variable, 852
 max_used_connections status variable, 884
 max_user_connections system variable, 852
 max_value member (my_option structures),

 341
 max_write_lock_count system variable, 852
 maximum value summaries, 76
 MD5() function, 823
 MEDIUMBLOB data type, 204 , 207 - 208
 MEDIUMBLOB strings, 194 , 756
 MEDIUMINT data type, 193 , 750

 ranges, 197
 storage requirements, 197

 MEDIUMTEXT data type, 204 , 207 - 208
 MEDIUMTEXT strings, 194
 member_id columns, creating, 36
 member table, 33

 creating, 35 - 38
 expiration column, 36
 member_id column, 36

 membership
 list tables, creating, 33
 renewal notifications, sending, 443 - 448
 tables, creating, 35 - 38

 MEMORY storage engine, 108
 data, representing, 548
 locking levels, 304
 overview, 111 - 112
 portability, 710
 row storage formats, 299
 sequence characteristics, 234 - 235

25_9780321833877_index.indd 1110 3/6/13 9:50 AM

1111MySQL

 min_value, 341
 name, 339
 sub_size, 341
 typelib, 340
 u_max_value, 340
 value, 340
 var_type, 340 - 341

 my_print_defaults program, 1011
 MyISAM storage engine, 108

 auto-recovery, 706
 checking/repairing tables, 719
 data, representing, 548
 features, 111
 locking levels, 304
 portability, 710
 row storage formats, 299
 sequence characteristics, 232 - 234
 table maximum size, 552

 myisam_data_pointer_size system variable,
 852

 myisam_max_sort_file_size system variable,
 853

 myisam_mmap_size system variable, 853
 myisam_recover_options system variable, 853
 myisam_repair_threads system variable, 853
 myisam_sort_buffer_size system variable, 853
 myisam_stats_method system variable, 853
 myisam_use_mmap system variable, 853
 myisamchk utility

 defined, 538
 maintenance advantages, 719
 options

 specific to myisamchk, 1015 - 1018
 standard, 1014

 overview, 1013 - 1014
 table maintenance, 700
 variables, 1018 - 1019

 MySQL
 benefits , 11-12

 availability , 14
 capabilities , 14
 client/server architecture, 22
 connectivity , 22
 cost , 17
 easy , 16
 flexible output format, 13
 flexible retrieval order, 13

 multiple-client environments, 156
 multiple-data retrieval

 joins, 138 - 139
 subqueries, 144

 multiple-line SQL statements, 28
 multiple-purpose pages, writing, 465 - 468
 multiple servers, 632

 administration, 539
 client programs, running, 641
 configuring, 635
 error log file names, 634
 InnoDB log location, 634
 issues, 632 - 635
 new servers, passwords, 569
 options

 directory, 633
 login accounts, 635
 network interface, 633
 replication slaves, 634
 startup, 636 - 637
 status/log file names, 634

 Unix, 637 - 639
 Windows, 639 - 641

 multiple-statement execution, 375 - 377
 enabling, 375
 process_multi_statement() function,

 376 - 377
 result retrieval functions, 375

 multiple-tables
 deletes, 154 - 155
 queries, 78 - 84
 retrievals

 joins. See joins
 subqueries. See subqueries
 UNION statements, 151 - 154

 updates, 155 - 156
 multiple-user access benefit, 13
 multiplication (*) operator, 57 , 241 , 767
 my_init() function, 326
 my_option structures, 339

 app_type, 341
 arg_type, 341
 block_size, 341
 comment, 340
 def_value, 341
 id, 339
 max_value, 341

25_9780321833877_index.indd 1111 3/6/13 9:50 AM

1112 MySQL

 function syntax, 29
 multiple-lines, 28
 multiple statements on single line,

 28 - 29
 reading from files, 29
 results, displaying, 28

 table structure, displaying, 36 - 37
 typing less, 90 - 93
 typing tips

 copy/paste, 92
 script files, 92 - 93

 variables, 1025 - 1026
 MySQL Workbench program, 21
 mysql_affected_rows() function, Web: 1104
 mysql_autocommit() function, Web: 1116
 MYSQL_BIND arrays

 configuring, 384
 select_rows() function, 385 - 388

 MYSQL_BIND data structure, Web: 1082 - 1086
 input values, Web: 1085
 member purpose, Web: 1083 - 1084
 output values, Web: 1083 - 1085
 public members, Web: 1082 - 1083

 mysql_change_user() function, Web: 1090
 mysql_character_set_name() function,

 Web: 1113
 mysql_close() function, 325 , Web: 1090
 mysql_commit() function, Web: 1116
 mysql_config utility

 defined, 1030
 options, 1030 - 1031

 mysql_data_seek() function, Web: 1106
 mysql_debug() function, Web: 1127
 mysql_dump_debug_info() function, Web: 1127
 mysql_errno() function, 328 , Web: 1101
 mysql_error() function, 328 , Web: 1101
 mysql_fetch_field() function, Web: 1106
 mysql_fetch_field_direct() function, Web: 1107
 mysql_fetch_fields() function, Web: 1106 - 1107
 mysql_fetch_lengths() function,

 Web: 1107- 1108
 mysql_fetch_row() function, 351 - 352 ,

 Web: 1108
 MYSQL_FIELD data structure, Web: 1076 - 1080
 mysql_field_count() function, Web: 1108 - 1109
 mysql_field_tell() function, Web: 1110
 mysql_field_seek() function, Web: 1109
 mysql_free_result() function, 351 , Web: 1110

 multiple-user access, 13
 open distribution/source code , 21
 portability , 16
 query language support , 20
 record filing time reduction, 13
 record retrieval time reduction, 13
 remote access, 13
 security , 22
 speed , 13
 Web-based inventory searches, 14

 installing, 737 - 738 , 739
 data directory, initializing, 740 - 741
 grant tables, initializing, 740 - 741
 login account, creating, 738 - 739
 PATH environment variable,

configuring, 739 - 740
 system tables, initializing, 742 - 743
 Unix, 739
 Windows, 739

 mailing lists , 80, 642
 needs scenarios, 12
 pronunciation, 22
 reference manual website, 7
 server. See mysqld
 software, updating, 539
 Workbench website, 21

 mysql database privileges, 673 - 674
 MYSQL structure, Web: 1076
 mysql utility, 21

 commands, 1026 - 1028
 connections, 87

 option files, 87 - 88
 shell aliases/scripts, 89
 shell command history, 88

 databases, resetting, 53
 defined, 538
 invoking, 25 - 26
 options

 specific to mysql, listing of,
 1021- 1025

 standard, 1021
 overview, 1019 - 1021
 prompt definition sequences, 1028 - 1029
 statements

 case-sensitivity, 29
 ending, 27 - 28
 entering, 27

25_9780321833877_index.indd 1112 3/6/13 9:50 AM

1113mysql_use_result() function

 mysql_set_character_set() function, Web: 1100
 mysql_set_server_option() function, 375 ,

 Web: 1126
 mysql_shutdown() function, Web: 1126
 mysql_sqlstate() function, 328 , Web: 1101
 mysql_ssl_set() function, Web: 1100
 mysql_stat() function, Web: 1115
 MYSQL_STMT data structure, Web: 1082
 mysql_stmt_affected_rows() function,

 Web: 1120
 mysql_stmt_attr_get() function, Web: 1120
 mysql_stmt_attr_set() function, Web: 1121
 mysql_stmt_bind_param() function, Web: 1118
 mysql_stmt_bind_result() function, Web: 1121
 mysql_stmt_close() function, 388 , Web: 1118
 mysql_stmt_data_seek() function, Web: 1122
 mysql_stmt_error() function, Web: 1117
 mysql_stmt_errno() function, Web: 1117
 mysql_stmt_execute() function, Web: 1118
 mysql_stmt_fetch() function, 388 , Web: 1122
 mysql_stmt_fetch_column() function,

 Web: 1122
 mysql_stmt_field_count() function, Web: 1122
 mysql_stmt_free_result() function, 388 ,

 Web: 1123
 mysql_stmt_init() function, 380 , Web: 1118
 mysql_stmt_insert_id() function, Web: 1123
 mysql_stmt_next_result() function, Web: 1123
 mysql_stmt_num_rows() function, Web: 1123
 mysql_stmt_param_count(), Web: 1124
 mysql_stmt_prepare() function, Web: 1119
 mysql_stmt_reset() function, Web: 1119
 mysql_stmt_result_metadata() function,

 Web: 1119
 mysql_stmt_row_tell() function, Web: 1124
 mysql_stmt_row_seek() function, Web: 1124
 mysql_stmt_send_long_data() function,

 Web: 1120
 mysql_stmt_sqlstate() function, Web: 1117
 mysql_stmt_store_result() function, Web: 1124
 mysql_store_result() function, 351 , 357 - 359 ,

 Web: 1112
 MYSQL_TIME data structure, Web: 1086 - 1087
 mysql_thread_end() function, Web: 1126
 mysql_thread_id() function, Web: 1116
 mysql_thread_init() function, Web: 1126
 mysql_thread_safe() function, Web: 1127
 mysql_upgrade utility, 1033
 mysql_use_result() function, 351 , 357 - 359 ,

 Web: 1112

 mysql_get_character_set_info() function,
 Web: 1090

 mysql_get_client_info() function, Web: 1114
 mysql_get_client_version() function, Web: 1114
 mysql_get_host_info() function, Web: 1114
 mysql_get_proto_info() function, Web: 1114
 mysql_get_server_info() function, Web: 1114
 mysql_get_server_version() function,

 Web: 1114
 mysql_get_ssl_cipher() function, Web: 1091
 mysql_hex_string() function, Web: 1102
 mysql_info() function, Web: 1114 - 1115
 mysql_init() function, 325 , Web: 1091
 mysql_insert_id() function, Web: 1110 - 1111
 mysql_install_db script, 1031 - 1032

 specific to mysql_install_db, 1032
 standard options, 1032

 mysql_library_end() function, 326 , Web: 1089
 mysql_library_init() function, 326 , Web: 1089
 mysql_more_results() function, 375 ,

 Web: 1113
 mysql_next_result() function, 375 , Web: 1113
 mysql_num_fields() function, Web: 1111
 mysql_num_rows() function, Web: 1111
 mysql_options() function, Web: 1091 - 1096

 example, Web: 1092
 options, Web: 1092 - 1095
 reading option files options,

 Web: 1095- 1096
 mysql_ping() function, Web: 1096
 mysql_query() function, 349 , Web: 1102
 mysql_real_connect() function, 325 , 375 ,

 Web: 1097 - 1099
 client connection protocols, Web: 1097
 flags values, Web: 1097 - 1099

 specific to mysql_upgrade, 1033 - 1034
 standard options, 1033

 mysql_real_escape_string() function, 365 ,
 Web: 1103 - 1104

 mysql_real_query() function, 349 , Web: 1104
 mysql_refresh() function, Web: 1125 - 1126
 MYSQL_RES data structure, Web: 1080
 mysql_rollback() function, Web: 1116
 MYSQL_ROW data type, 352 , Web: 1080 - 1082
 mysql_row_tell() function, Web: 1112
 mysql_row_seek() function, Web: 1112
 mysql_select_db() function, Web: 1100
 mysql_server_end() function, Web: 1089
 mysql_server_init() function, Web: 1089

25_9780321833877_index.indd 1113 3/6/13 9:50 AM

1114 mysql_warning_count() function

 options
 replication, 1053 - 1056
 specific to mysqld, listing of,

 1046 - 1053
 standard, 1045 - 1046
 Windows, 1053

 overview, 1045
 restarting manually, 581 - 582
 root password, resetting, 582 - 583
 security, 540
 starting, 741

 Unix, 741
 Windows, 742

 startup options, 577 - 579
 stopping, 580 - 581
 Unix

 connections, listening, 579
 running, 570
 starting, 572 - 574
 unprivileged login account,

configuring, 571 - 572
 variables, 1056
 Windows, 575

 connections, listening, 580
 running as Windows service, 576 - 577
 running manually, 575

 mysqld_multi script, 637 - 639 , 1056
 specific to mysqld_multi option, 1057
 standard options, 1056 - 1057

 mysqld_safe, 1058
 specific to mysqld_safe option,

 1058 - 1059
 standard options, 1058

 mysqldump utility, 21 , 135
 data format options, 1067 - 1068
 database maintenance, 700
 defined, 538
 options, 712 - 714

 specific to mysqldump, 1061 - 1067
 standard, 1060

 overview, 1060
 text dump files

 all tables from all databases, 711
 compressing, 712
 creating, 711 - 714
 individual files, 711
 output, 711 - 712

 mysql_warning_count() function, Web: 1116
 mysqladmin utility, 1034

 commands, 1035 - 1037
 defined, 538
 options

 specific to mysqladmin, 1034 - 1035
 standard, 1034

 variables, 1013 - 1035
 mysqlbinlog utility, 622

 options
 specific to mysqlbinlog, 1038 - 1041
 standard, 1038

 overview, 1038
 variables, 1041

 mysqlcheck utility
 checking/repairing tables, 720 - 721
 defined, 538
 maintenance, scheduling, 707
 options

 specific to mysqlcheck, 1042 - 1044
 standard, 1041 - 1042
 table analysis, 1044
 table checking, 1044
 table optimization, 1044 - 1045
 table repair, 1044

 overview, 1041
 table maintenance, 700

 mysqld, 21
 administration

 configuration and tuning, 539
 log maintenance, 539
 multiple servers, 539
 MySQL software updates, 539
 startup/shutdown, 539
 user account maintenance, 539

 client access control, 686 - 687
 connections, listening, 579 - 580
 data directory access, 546 - 547
 defined, 538
 login accounts, 571 - 572
 maintenance interference, preventing,

 701
 internal locking, 702 - 703
 locking all tables at once, 705
 read-only locking, 703 - 704
 read/write locking, 704 - 705
 shutting down mysqld, 702

25_9780321833877_index.indd 1114 3/6/13 9:50 AM

1115NO_UNSIGNED_SUBTRACTION

 Perl DBI non handle variables, 397
 PHP scripts, 486
 qualified, 99
 stored functions, 269
 system variables, 836
 tables, 32

 files, 109
 renaming, 129 - 130
 temporary, 116

 triggers, 272
 user accounts, 656 - 658

 account value, 656
 hostnames, 656 - 657
 IPv4/IPv6 addresses, 657
 localhost, 658
 matching host values to DNS,

 658 - 659
 quoting, 658
 usernames, 657
 wildcards, 657

 variables, Web: 1131
 Windows file paths, 424 - 425

 natural language searches, 170 , 172 - 174
 NDB storage engine, 108 , 112
 neat() function, Web: 1148
 neat_list() function, Web: 1148 - 1149
 need_renewal.pl script, 443 - 444
 negation operator (~), 774
 net_buffer_length system variable, 854
 net_read_timeout system variable, 854
 net_retry_count system variable, 854
 net_write_timeout system variable, 854
 network interface options (multiple servers),

 633
 new PDO() function, 490
 new system variable, 854
 nextRowset() function, Web: 1170 - 1171
 NO_ARG arg_type, 341
NO_AUTO_CREATE_USER, 863
NO_AUTO_VALUE_ON_ZERO, 863
NO_BACKSLASH_ESCAPES, 863
NO_DIR_IN_CREATE, 863
NO_ENGINE_SUBSTITUTION, 864
NO_FIELD_OPTIONS, 864
NO_KEY_OPTIONS, 864
NO_TABLE_OPTIONS, 864
NO_UNSIGNED_SUBTRACTION, 864

 table subsets into separate files,
creating, 712

 variables, 1068
 mysqldumpslow utility, 621
 mysqlimport utility

 data files, loading, 53
 options

 data format, 1070
 specific to mysqlimport, 1069 - 1070
 standard, 1068

 overview, 1068
 mysql.server utility, 1029 - 1030
 mysqlshow utility, 38 , 135

 options
 specific, 1071
 standard, 1071

 overview, 1070 - 1071
 mytbl.frm file, 548
 mytbl.MYD file, 548
 mytbl.MYI file, 548

 N
 NAME_CONST() function, 831
 named_pipe system variable, 853
 names

 aliases
 case sensitivity, 100
 quoting with identifiers, 98

 case sensitivity
 aliases, 100
 columns, 100
 databases, 100
 files, 100
 functions, 99
 indexes, 100
 stored programs, 100
 tables, 100
 triggers, 100
 views, 100

 collations, 186
 columns, 64 - 66 , 263 - 264
 data types, 747
 files, 550 - 551
 functions, 98
 my_option structures, 339
 Perl DBI handles, 397

25_9780321833877_index.indd 1115 3/6/13 9:50 AM

1116 NO_ZERO_DATE

 null-safe equality operator (<=>), 769
 NULL values, 60 - 61 , 192

 AUTO_INCREMENT columns, 231
 column sort, 62
 directory membership updates, 535 - 536
 expressions, 246 - 247
 foreign key relationships, 168 - 170
 numeric data types, 203
 result sets, checking, 416 , 504
 sequence columns, 231
 string data types, 216
 temporal data types, 223

 NULLIF() function, 780
 numbers

 hexadecimal, 253
 sequences. See sequences
 string conversions, 249 - 250

 numeric data types, 193 , 748 - 749
 attributes, 201 - 203 , 749
 BIT, 197 , 200 - 201 , 752
 exact-value, 197 - 199
 fixed-point, 751
 floating-point, 197 , 200 , 751 - 752

 DOUBLE, 752
 FLOAT[(M,D)], 752
 FLOAT(p), 751

 improper values, 228
 integer, 749 - 751

 BIGINT, 750 - 751
 INT, 750
 MEDIUMINT, 750
 SMALLINT, 750
 TINYINT, 749

 listing of, 193
 NULL/NOT NULL values, 203
 query optimization, 296
 ranges, 197
 selecting, 203 , 257 - 258
 storage requirements, 197 - 198

 numeric functions, 784 - 789
 numeric values, 181

 approximate, 181 - 182
 bit-field, 182
 exact, 181 - 182
 retrieving, 56

NO_ZERO_DATE, 864
NO_ZERO_IN_DATE, 864
 nonbinary strings, 756 - 758

 binary strings, compared, 188 - 189
 CHAR, 756 - 757
 conversions, 255
 defined, 185
 LONGTEXT, 758
 MEDIUMTEXT, 758
 sorting properties, 186
 TEXT, 757 - 758
 TINYTEXT, 757
 VARCHAR, 757

 nonbreaking spaces, 475
 non-NULL values, counting, 73
 nonrepeatable reads, 162
 nonscalar data structures (C API),

 Web: 1076- 1087
 MYSQL, Web: 1076
 MYSQL_BIND, Web: 1082 - 1086

 input values, Web: 1085
 member purpose, Web: 1083 - 1084
 output values, Web: 1083 - 1085
 public members, Web: 1082 - 1083

 MYSQL_FIELD, Web: 1076 - 1080
 MYSQL_RES, Web: 1080
 MYSQL_ROW, Web: 1080 - 1082
 MYSQL_STMT, Web: 1082
 MYSQL_TIME, Web: 1086 - 1087

 nontransactional tables, 229
 NOT BETWEEN operator, 243
 not equal to (!=, < >) operators, 57 , 243
 NOT EXISTS subqueries, 147 - 148
 NOT IN subqueries, 145 - 146
 NOT LIKE operator, 243
 NOT NULL values

 data types for query optimization, 297
 numeric data types, 203
 string data types, 216
 temporal data types, 223

 NOT (!) operator, 57 , 241 , 774
 NOT REGEXP operator, 243
 not_flushed_delayed_rows status variable, 885
 notify_member() function, 446
 NOW() function, 811
 N'str' notation, 187

25_9780321833877_index.indd 1116 3/6/13 9:50 AM

1117operators

 listing of, 242
 negation, 774
 NULL values, 246
 OR, 773
 shift left, 773
 shift right, 773

 cast, 775 - 776
 comparison, 57 , 768 - 772

 CASE [expr] WHEN expr1 THEN
result1 ... [ELSE default] END, 771

 equal, 769
 expr BETWEEN min AND max,

 770 - 771
 expr IN (value1,value2,...), 772
 expr IS, 772
 expr IS NULL/expr IS NOT NULL, 772
 expr NOT BETWEEN min AND max,

 770 - 771
 expr NOT IN (value1,value2,...), 772
 greater than, 770
 greater than or equal to, 770
 less than, 770
 less than or equal to, 770
 listing of, 243
 NULL values, 247
 null-safe equality, 769
 rules, 768 - 769
 unequal, 770

 EXISTS, 147 - 148
 format, 763
 grouping, 765 - 766
 IN(), 59
 logical, 772

 AND (&&), 774
 listing of, 57 , 241 - 242
 natural language distinctions, 59
 NOT (!), 772
 NULL values, 247
 OR (||), 773
 XOR, 773

 MATCH
 boolean mode, 174 - 175
 natural language, 172 - 174
 query expansion, 175 - 176

 NOT EXISTS, 147 - 148
 NOT IN, 145 - 146

 O
 object privileges, 663 - 665 , 681 - 682
 OCT() function, 201 , 797
 OCTET_LENGTH() function, 797
 old system variable, 854
 old_alter_table system variable, 854
 OLD_PASSWORD() function, 823
 old_passwords system variable, 854
 ON clause, 937 - 938
 ON DELETE CASCADE clause, 166 - 167
 ON DELETE SET NULL clause, 169
 ON specifier, 665
 ON UPDATE CASCADE clause, 166 - 167
 ON UPDATE SET NULL clause, 169
 online score-entry script. See score_entry.php

script
ONLY_FULL_GROUP_BY, 864
 open_files status variable, 885
 open_files_limit system variable, 854
 Open Geospatial Consortium Web site, 191
 OPEN statements, 992
 open_streams status variable, 885
 open_table_definitions status variable, 885
 open_tables status variable, 885
 opened_files status variable, 885
 opened_table_definitions status variable, 885
 opened_tables status variable, 885
 operand conversions, 187
 operating systems, identifier constraints,

 550 - 551
 operators

 IN, 145 - 146
 ALL, 146 - 147
 ANY, 146 - 147
 arithmetic, 57 , 766 - 767

 addition, 766
 DIV, 767
 division, 767
 listing of, 241
 modulo, 767
 multiplication, 767
 NULL values, 246
 rules, 766
 subtraction, 767

 bit
 AND, 773
 exclusive-OR, 773

25_9780321833877_index.indd 1117 3/6/13 9:50 AM

1118 operators

 row storage formats, 299
 displaying/editing, 300
 InnoDB, 299 - 300
 MEMORY, 299
 MyISAM, 299

 scheduling policies, 303
 storage engine locking levels, 303 - 305

 OPTIMIZE TABLE statement, 953 - 954
 optimizer_prune_level system variable, 855
 optimizer_search_depth system variable, 855
 optimizer_switch system variable, 855
 optimizer_trace_xxx system variable, 855
 option files

 connection parameters, reading, 424
 logging, enabling, 619
 mysql program connection parameters,

 87 - 88
 mysqld startup, 578
 plugins, loading, 591
 reading, 332 - 335 , 424
 securing, 653 - 654
 SSL, 697
 system variables, setting, 586
 Unix, 1007
 utility, 1007 - 1011

 escape sequences, 1010
 leading spaces, 1010
 read directives, 1010 - 1011
 user-specific option privacy, 1011

 Web scripts security, 470 - 471
 Windows, 424 - 425 , 1008

 options
 CHANGE MASTER statement, 907
 CHECK TABLE statement, 909
 command-line, 335 - 343

 argument vector, processing, 342
 option information, defining,

 339 - 341
 show_opt, invoking, 342 - 343
 show_opt program source file,

 336- 338
 connect2 program, 344 - 348

 connect1/show_opt programs,
compared, 347

 connection parameters, specifying,
 348

 running, 347
 source file, 344 - 347

 pattern-matching, 776 - 780
 LIKE/NOT LIKE, 776 - 777
 REGEXP/NOT REGEXP, 777 - 780
 RLIKE/NOT LIKE pattern, 780

 precedence, 246 , 764 - 765
 relative comparison, 144 - 145
 SOME, 146 - 147
 syntax, 764

 OPT_ARG arg_type, 341
 optimization, 277

 data loading, 300 - 303
 dropping/deactivating indexes,

 302 - 303
 index flushing, reducing, 301 - 302
 INSERT statement, 301
 LOAD DATA statement, 300 - 301
 mixed-query environments, 303
 shorter statements, 302

 data types, selecting, 296 - 298
 BLOB/TEXT, 298
 ENUM, 297
 NOT NULL, 297
 numbers, 296
 PROCEDURE ANALYSE() function,

 297
 smallest types, 296 - 297
 strings, 296
 tables, defragmenting, 297

 indexing, 278
 benefits, 278 - 281
 columns, selecting, 281 - 285
 costs, 281

 query optimizer, 286 - 290
 alternative forms of queries, testing,

 289
 EXPLAIN output, 290 - 296
 hints/overrides, 287
 identical data type columns,

comparing, 288
 joins versus subquery support, 289
 operation, verifying, 287
 restrictive tests, 286
 stand alone indexed columns in

comparison expressions, 288 - 289
 table order, forcing, 287
 tables, analyzing, 287
 type conversions, 289 - 290

25_9780321833877_index.indd 1118 3/6/13 9:50 AM

1119ownership

 mysqlimport
 data format, 1070
 specific, 1069 - 1070
 standard, 1068

 mysql.server utility, 1030
 mysqlshow

 specific to mysqlshow, 1071
 standard, 1071

 option files, 332 - 335
 perror, 1072
 SELECT statements, 954 - 955
 SSL, adding to clients, 370 - 372
 utilities

 case sensitivity, 1001
 checking, 1011
 escape sequences, 1010
 group names, 1009
 leading spaces, 1010
 long-form/short-form, 1001
 option-file processing, 1008 - 1009
 option files, 1007 - 1011
 processing features, 1002
 quoting, 1010
 read directives, 1010 - 1011
 SSL, 1006
 standard, 1003 - 1005
 user-specific option privacy, 1011
 variables, 1006 - 1007

 values, holding, 372 - 373
 OR operator (||), 57 , 241 - 242 , 773
 ORD() function, 797
 ORDER BY RAND() function, 64 , 523
 outer joins, 139 - 143
 output

 CGI.pm generating, 462 - 464
 column values, naming, 64 - 66
 format flexibility, 13
 query optimizer EXPLAIN statements,

 290 - 296
 efficiency with indexes, 292 - 296
 expression writing style, selecting,

 290 - 292
 overall count of values, counting, 73
 overindexing, 284
 override parameter, 481
 ownership

 administrative-only, setting, 649 - 651
 base directory, displaying, 650

 CREATE TABLE statement, 916 - 918
 FLUSH statement, 933 - 934
 groups, 578
 myisamchk utility

 specific to myisamchk, listing of,
 1015 - 1018

 standard, 1014
 mysql utility

 specific to mysql, listing of,
 1021 - 1025

 standard, 1021
 mysql_config utility, 1030 - 1031
 mysql_install_db script

 specific, 1032
 standard, 1032

 mysqladmin client
 specific to mysqladmin, 1034 - 1035
 standard, 1034

 mysqlbinlog
 specific to mysqlbinlog, 1038 - 1041
 standard, 1038

 mysqlcheck
 specific to mysqlcheck, 1042 - 1044
 standard, 1041 - 1042
 table analysis, 1044
 table checking, 1044
 table optimization, 1044 - 1045
 table repair, 1044

 mysqld
 replication, 1053 - 1056
 specific to mysqld, listing of,

 1046 - 1053
 standard, 1045 - 1046
 Windows, 1053

 mysqld_multi
 specific to mysqld_multi, 1057
 standard, 1056 - 1057

 mysqld_safe
 specific to mysqld_safe, 1058 - 1059
 standard, 1058

 mysql_upgrade
 specific options, 1033 - 1034
 standard, 1033

 mysqldump utility, 712 - 714
 data format, 1067 - 1068
 specific to mysqldump, 1061 - 1067
 standard, 1060

25_9780321833877_index.indd 1119 3/6/13 9:50 AM

1120 PAD_CHAR_TO_FULL_LENGTH

 PDO (PHP Data Objects) extension, 314
 classes, Web: 1158
 errors

 exceptions, 491
 handling, 507 - 509

 functions, Web: 1159
 constants, Web: 1173 - 1174
 exceptions, Web: 1172 - 1173
 PDO class, Web: 1159 - 1166
 statement handles, Web: 1166 - 1172

 installing, 743
 placeholders, 506 - 507
 statements, handling, 500 - 501

 result sets, 501 - 504
 row-modifying, 501

 transaction processing, 520
 Web site, 486

 PDOStatement statement handle, 501
 performance

 APIs, selecting, 315 - 316
 data directory, 553 - 554
 optimizing. See optimization
 queries, identifying, 285

 performance_schema_xxx status variable, 885
 performance_schema_xxx system variable, 855
 PERIOD_ADD() function, 812
 PERIOD_DIFF() function, 812
 Perl DBI API, 311 - 312

 architecture, 311 - 312
 attributes, Web: 1149

 database-handles, Web: 1149
 dynamic, Web: 1155
 general handle, Web: 1149 - 1150
 mysql-specific database-handle,

 Web: 1150 - 1152
 mysql-specific statement-handle,

 Web: 1154 - 1155
 statement-handles, Web: 1152 - 1153

 database server connections, 312
 defined, 310
 environment variables, Web: 1156
 functions

 administrative, Web: 1147 - 1148
 %attr hash argument, Web: 1131
 calling sequence, Web: 1131
 database-handle, Web: 1137 - 1142
 DBI class, Web: 1132 - 1136

 P
PAD_CHAR_TO_FULL_LENGTH, 865
 param() function, 462
 parameters

 action, 513
 binding (Perl DBI), 421 - 423
 connection, specifying

 C client programs, 331
 command-line option-handling,

 335 - 343
 connect2 program, 348
 option files, reading, 332 - 335
 Perl DBI, 423 - 426

 input
 CGI.pm, 462
 PHP, 511 - 512

 mysql_real_connect() function, 325
 override, 481
 prepared statements, 377 - 378
 tbl_name

 checking, 473
 db_browse.pl script, 472

 types (stored procedures), 271 - 272
 parentheses (), 401
 partial binary backups, 715
 PARTITION BY clause, 120 - 121
 partitions, creating, 120 - 121
 PASSWORD() function, 823 - 824
 password_field() function, 531
 passwords

 Historical League member entries online
editing script, 527 - 529

 initial user accounts, assigning, 567 - 569
 new servers, setting, 569
 old hash format security risk, 673
 root accounts, resetting, 582 - 583
 user accounts, 672

 PATH environment variable, 739 - 740
 pattern matching, 69 - 70 , 243 - 245

 NULL values, 247
 operators, 776 - 780

 LIKE/NOT LIKE, 243 - 244 , 776 - 777
 REGEXP/NOT REGEXP pattern,

 777 - 780
 RLIKE/NOT LIKE pattern, 780

 Web table searches, 479 - 482

25_9780321833877_index.indd 1120 3/6/13 9:50 AM

1121 PHP API

 statement terminators, 401
 transactions, 434 - 436
 undef argument, 422
 U.S. Historical League

 directory, generating, 436 - 442
 member entries, editing, 448 - 454
 membership renewal notices,

sending, 443 - 448
 members with common interests,

finding, 454 - 455
 online directory, creating, 455 - 458

 use DBI statement, 399
 use strict statements, 399
 use warnings statement, 399
 warnings mode, 401
 Web-based, 459

 CGI.pm module. See CGI scripts
 database browser, 471 - 475
 grade-keeping project score browser,

 475 - 479
 security, 470 - 471
 server connections, 468 - 469
 table searches, 479 - 483
 Web server, configuring, 460 - 461

 where-to-find-Perl indicator, 398
 Perl modules Web site, 743
 perldoc command, 743
 permissions

 administrative-only, setting, 649 - 651
 base directory, 650
 data directory, 650

 perror utility
 options, 1072
 overview, 1072

 phantom rows, 162
 PHP API

 client host that requested the page IP
address, displaying, 313

 database interfaces, 314 , 485 - 486
 defined, 310
 functions, Web: 1159

 constants, Web: 1173 - 1174
 exceptions, Web: 1172 - 1173
 PDO class, Web: 1159 - 1166
 statement handles, Web: 1166 - 1172

 installing, 743 - 745
 PDO. See PDO
 scripts, writing. See PHP scripts

 general handle, Web: 1146
 statement-handle, Web: 1142 - 1145
 utility, Web: 1148 - 1149

 portability, 312
 scripts, writing. See Perl DBI scripts
 variable names, Web: 1131
 Web site, 395 ,

 Perl DBI scripts, Web: 1130
 case sensitivity, 400
 characteristics, 396
 comments, adding, 398
 connect() function arguments, 399 - 400
 connections, 400 , 425 - 426

 parameters, specifying, 423 - 426
 data-retrieval script, 397 - 398
 debugging, 426

 print statements, 426 - 428
 tracing, 428 - 429

 disconnecting, 402
 error handling, 402 - 405

 automatic, 403 - 404
 default error messages, replacing, 404
 default settings, 403
 dump_members2.pl script example,

 404 - 405
 manually checking/printing, 403
 PrintError attribute, 403
 RaiseError attribute, 403

 finish() function, 402
 function parentheses, 401
 handles, 397

 names, 397
 nonhandle variables, 397

 invoking, 396
 option files, securing, 653 - 654
 parameter binding, 421 - 423
 placeholders, 419 - 421
 prepared statements, 421
 quoting special characters, 416 - 419
 requirements, 395
 result sets

 metadata, 430 - 434
 retrieving. See result sets, Perl DBI

scripts
 row-fetching loop, 401 - 402
 row-modifying statements, 406 - 407
 software, installing, 743

25_9780321833877_index.indd 1121 3/6/13 9:50 AM

1122 PHP API

 transactional data-entry operations,
 520

 online score-entry application, 522
 overview, 487
 PDO error exceptions, 491
 placeholders, 506 - 507
 prepared statements, 505
 quoting special characters, 505 - 507
 row-modifying statements, 501
 rows, retrieving, 501 - 504

 all at once, 504
 arrays, 503
 calculated columns, 503
 default fetch mode, setting, 502
 individual column values, 503
 NULL values, checking, 504
 row-fetching loop, 501 - 503
 statement handle, 501

 samples, installing, 486 - 487
 security, 491
 server connection, 490 - 491
 standalone, 489
 statements, handling, 500 - 501
 tag styles supported, Web: 1157 - 1158
 variables, 492
 Web site
 welcome message with membership

count home page, 491
 PI() function, 787
 PID (Process ID) files

 overview, 555
 relocating, 561 - 562

 pid_file system variable, 855
 ping() function, Web: 1138
 PIPES_AS_CONCAT mode, enabling, 242
 PIPES_AS_CONCAT SQL mode, 96, 865
 placeholders

 Perl DBI scripts, 419 - 421
 PHP, 506 - 507

 plain text directories, creating, 439 - 440
 pluggable architecture, 589 - 590
 plugin_dir system variable, 855
 plugins

 activation state, 592
 authentication, 676 - 679

 proxy users, creating, 677 - 679
 server connections, 677

 tag styles, Web: 1157 - 1158
 up-to-the-minute information to visitors

script, 313
 Web site, 486 , 743

 PHP scripts
 data-retrieval, 497 - 499

 display values, encoding, 498
 error handling, 498
 home page link, creating, 498 - 499
 installing/accessing, 498
 result set, returning, 498

 directory member entries, editing
online, 527 - 536

 editing form, 533 - 534
 framework, 529 - 530
 member login page, 530 - 531
 null values, 535 - 536
 passwords, 527 - 529 , 531 - 533
 updating entries, 534 - 535

 error handling, 507 - 509
 headers/footers functions, 495 - 497
 hello world examples, 487 - 488
 home page, 488 - 491
 include files

 benefits, 491 - 493
 Historical League example, 495
 locations, establishing, 493 - 494
 referencing, 494

 input parameters, 511 - 512
 interactive online quiz, 522 - 527

 checking user responses, 527
 creating questions, 523 - 525
 form hidden fields, creating, 525 - 526
 presenting questions, 525
 user response submissions, 526

 live hyperlinks, creating, 499 - 500
 names, 486
 online score-entry, 510 - 511

 action input parameter, 513
 editing scores, 520 - 521
 event table cells, generating, 516
 events, displaying, 514 - 515
 framework, 513 - 514
 hyperlink URLs, 516
 new event entry form, 516 - 517
 scores, entering, 517 - 518
 scores for selected events, displaying,

 518 - 519

25_9780321833877_index.indd 1122 3/6/13 9:50 AM

1123privileges

 presenting questions, 525
 user response submissions, 526

 present_question() function, 525
 president table, creating, 32 , 34 - 35
 preventive maintenance

 auto-recovery, 706
 backups, 707 - 709

 best practices, 709
 binary, 714 - 715
 InnoDB, 715 - 716
 selecting, 708
 storage engine portability, 709 - 710
 text, 711 - 714
 types, 708

 databases, 699 - 700
 scheduling, 707
 server cooperation, 700 - 701
 server interference, preventing, 701

 internal locking, 702 - 703
 locking all tables at once, 705
 read-only locking, 703 - 704
 read/write locking, 704 - 705
 shutting down servers, 702

 tables, 700
 tools, 700
 Unix login, 701

 PRIMARY KEY clause, 36
 primary keys

 absence table example, 49
 converting to unique indexes, 169
 defining, 166
 score table example, 48

 print statements, 427 - 428
 print_dashes() function, 362
 print_error() function, 329 - 330
 PrintError attribute, 403
 printing binary data, 353
 privileges

 account administering, enabling,
 669 - 670

 administrative, 666
 combining, 665
 database-level, 666
 definer, 276
 displaying, 671
 events, 274
 global, 666

 server side/client side, 677
 specifying, 676

 case sensitivity, 591
 displaying, 592
 interface

 components, 590
 library suffix, 590
 operations, 590

 loading
 runtime, 591
 startup, 591

 uninstalling, 592
 port system variable, 855
 portability

 APIs, selecting, 317
 CGI.pm module, 463
 Perl DBI API, 312
 storage engines, 709 - 710

 POSITION() function, 798
 POSIX character class constructions, 778
 POW() function, 787
 POWER() function, 787
 precedence (operators), 246 , 764 - 765
 prefixes (indexing), 283 - 284
 preload_buffer_size system variable, 855
 prepare() function, 505 , Web: 1138 ,

 Web: 1164
 PREPARE statement, 954
 prepare_cached() function, Web: 1138
 prepared statements, 377

 C client programs
 call. See CALL prepared statements
 executing, 378 - 379
 inserting rows and retrieving them

program, writing, 379 - 388
 parameterizing, 377 - 378

 functions, Web: 1112
 construction/execution,

 Web: 1113- 1114
 error-reporting, Web: 1112 - 1113
 result set processing, Web: 1114 - 1117

 Perl DBI, 421
 PHP, 505

 prepared_stmt_count status variable, 885
 pres_quiz.php script, 522 - 527

 checking user responses, 527
 creating questions, 523 - 525
 form hidden fields, creating, 525 - 526

25_9780321833877_index.indd 1123 3/6/13 9:50 AM

1124 privileges

 general-purpose statement handler,
 354 - 355

 multiple-statement execution, 375 - 377
 mysql_store_result() function, 357 - 359
 mysql_use_result() function, 357 - 359
 prepared statements, 377

 executing, 378 - 379
 inserting rows and retrieving them

program, writing, 379 - 388
 parameterizing, 377 - 378

 quoting special characters, 365 - 366
 result set metadata, 359 - 364

 availability, 359
 column information structures,

accessing, 364
 defined, 359
 displaying, 360 - 364
 result set data processing decisions,

 359
 result sets, returning, 351 - 353
 row-modifying, 350 , 406 - 407
 sending to server functions, 349

 procs_priv table, 680
 prompt definition sequences, 1028 - 1029
 prompt() function, 451
 protocol_version system variable, 856
 proxied_host columns, 689
 proxied_user columns, 689
 proxies_priv table, 680
 PROXY privilege, 662 , 667
 proxy_user system variable, 856
 proxying authentication plugins, 677 - 679
 pseudo_thread_id system variable, 856
 PURGE BINARY LOGS statement, 730 , 954 - 955

 Q
 Qcache_free_blocks status variable, 891
 Qcache_free_memory status variable, 891
 Qcache_hits status variable, 891
 Qcache_inserts status variable, 892
 Qcache_lowmem_prunes status variable, 892
 Qcache_not_cached status variable, 892
 Qcache_queries_in_cache status variable, 892
 Qcache_total_blocks status variable, 892
 Qcache_xxx status variable, 885
 qq (double-quoting strings), 417 - 418

 grant tables
 administrative, 682
 object, 682 - 681

 invoker, 276
 no privileges, 668
 object, 663 - 665
 PROXY, 667
 quoting, 667
 resource consumption limits, 670 - 671
 revoking, 671 - 672
 secure connections, requiring, 668 - 669
 specifiers

 ALL, 666
 ALL/USAGE, 661
 levels, 665

 stored functions/procedures, 270 - 271
 stored routines, 667
 super, 276 , 673 - 674
 table/column level, 667
 triggers, 273
 user accounts

 administrative, 661 - 663
 granting, 660 - 661

 views, 263
 privileges clause, 660
 PROCEDURE ANALYSE() function, 297
 procedures (stored)

 creating, 268
 defined, 268
 example, 269
 invoking, 269
 parameter types, 271 - 272
 privileges, 270 - 271
 security, 275 - 276
 tables, updating, 270

 Process ID files. See PID files
 PROCESS privilege, 662 , 674 - 675
 process_call_result() function, 392
 process_multi_statement() function, 376 - 377
 process_real_statement() function, 356 - 357
 process_result_set() function, 352 - 353
 process_statement() function, 355
 processing statements, 348 - 350

 alternative approaches, 356 - 357
 binary data, 367 - 368
 causes of failures, 349
 character-escaping operations, 349

25_9780321833877_index.indd 1124 3/6/13 9:50 AM

1125read_buffer_size system variable

 query() function, 491 , Web: 1164 - 1165
 query_alloc_block_size system variable, 856
 query_cache status variables, listing of,

 891 - 892
 query_cache_limit system variable, 856
 query_cache_min_res_unit system variable,

 856
 query_cache_size system variable, 856
 query_cache_type system variable, 856
 query_cache_wlock_invalidate system variable,

 856
 query_prealloc_size system variable, 857
 questions status variable, 885
 quote() function, 418 - 419 , 505 - 506 , 798 ,

 Web: 1139 , Web: 1165
 quote_identifier() function, Web: 1139
 quoting

 C client programs, 365 - 366
 identifiers, 97 - 98
 options, 1008 - 1009
 Perl DBI, 416 - 419
 PHP, 505 - 507
 privileges, 667
 user account names, 658

 R
 RADIANS() function, 787
 radio_button() function, 526
 RAND() function, 787 - 788
 rand_seed1 system variable, 857
 rand_seed2 system variable, 857
 range_alloc_block_size system variable, 857
 ranges

 data types, 748
 numeric data types, 197
 sequence columns, 235
 temporal data types, 218 - 219

 RasieError attribute, 403
 raw data values, loading, 52 - 53
 raw partitions, 597 - 598
 RDBMS (relational database management

system), 18
 banner advertisement table example, 19
 defined, 18 - 19

 READ COMMITTED isolation level, 162
 READ UNCOMMITTED isolation level, 162
 read_buffer_size system variable, 857

 qualifiers
 identifiers, 98
 joined table column references, 138 - 139

 QUARTER() function, 812
 queries

 alternative forms, testing, 289
 badly performing, identifying, 285
 criteria, specifying, 56 - 59
 dates, 57

 differences between, 68
 operations supported, 66
 parts, retrieving, 67 - 68
 specific, searching, 66 - 67
 syntax, 66

 expansion searches, 170 , 175 - 176
 multiple tables. See joins; subqueries
 NULL value, 60 - 61
 numeric ranges, 56
 optimizer, 286 - 290

 alternative forms of queries, testing,
 289

 EXPLAIN output, 290 - 296
 hints/overrides, 287
 identical data type columns,

comparing, 288
 joins versus subquery support, 289
 operation, verifying, 287
 restrictive tests, 286
 stand alone indexed columns in

comparison expressions, 288 - 289
 table order, forcing, 287
 tables, analyzing, 287
 type conversions, 289 - 290

 pattern matching, 69 - 70
 results

 binding to variables, 421 - 423
 limiting, 63 - 64
 sorting, 61 - 63

 several individual values, 59
 string values containing character data,

 56
 summaries

 counting, 72 - 76
 unique values present in a set of

values, 72
 table contents, displaying, 54
 terminology, 20 - 21
 user-defined variables, creating, 71

25_9780321833877_index.indd 1125 3/6/13 9:50 AM

1126 read_file() function

 relay_log_purge system variable, 858
 relay_log_recovery system variable, 858
 relay_log_space_limit system variable, 858
 relay logs, 618 , 624

 expiring, 630
 master-slave replication, 731

 RELEASE SAVEPOINT statement, 955
 RELEASE_LOCK() function, 825
 RELOAD privilege, 662 , 676
 relocating data directory contents, 556 - 557

 assessing, 558 - 559
 entire directory, 559
 function, selecting, 557
 individual databases, 559 - 560
 individual tables, 560
 InnoDB tablespace, 560
 precautions, 558
 startup option, 557
 status/log files, 561 - 562
 symlink, 557

 remote access, 13
 remove_backslashes() function, 512
 RENAME clause, 129 - 130
 RENAME TABLE statement, 955
 RENAME USER statement, 656 , 955
 renaming tables, 129 - 130
 renewal notices, sending, 443 - 448
 renewal_notify.pl script, 444
 REPAIR TABLE statement, 720 , 956
 repairing tables

 InnoDB, 718
 MyISAM, 719
 mysqlcheck utility, 720 - 721
 REPAIR TABLE statement, 720

 REPEAT() function, 798
 REPEAT statements, 989
 REPEATABLE READ isolation level, 162
 REPLACE attribute, 232
 REPLACE() function, 798
 REPLACE statement, 956 - 957
 replication

 binary logging formats, 731
 compatibility guidelines, 727 - 728
 databases, 541
 master-slave, 728 - 731

 master.info file, 730
 master server settings, 728 - 729

 read_file() function, 445
 read_only system variable, 857
 read-only table locking

 all tables at once, 705
 individual tables, 703 - 704

 read_rnd_buffer_size system variable, 857
 reading option files, 332 - 335

 connection parameters, 424
 Windows, 424 - 425

 read/write table locking, 704 - 705
REAL_AS_FLOAT, 865
 records

 filing time benefit, 13
 multiple-user access, 13
 remote access, 13
 retrieval benefits, 13

 recovery, 722
 auto-recovery, 700 , 706
 backups, 707 - 709

 best practices, 709
 binary, 714 - 715
 InnoDB, 715 - 716
 selecting, 708
 storage engine portability, 709 - 710
 text, 711 - 714
 types, 708

 binary log file statements, re-executing,
 723 - 725

 databases, 541 , 722
 InnoDB auto-recovery failure, 725 - 726
 tables, 723

 REFERENCES privilege, 664
 referential integrity, 164 . See also foreign keys
 REGEXP/NOT REGEXP operators, 243 - 244 ,

 777 - 780
 regular expressions

 pattern matching, 775 - 778
 POSIX character class constructions, 778

 regular indexes, 123
 relational database management system. See

RDBMS
 relative comparison operators, 144 - 145
 relay_log system variable, 857
 relay_log_basename system variable, 857
 relay_log_index system variable, 857
 relay_log_info_file system variable, 857
 relay_log_info_repository system variable, 858

25_9780321833877_index.indd 1126 3/6/13 9:50 AM

1127retrieving

 Perl DBI scripts, 400 - 401
 entire sets, returning at once,

 413 - 415
 null values, checking, 416
 number of rows returned, counting,

 411
 row-fetching loops, 407 - 411

 PHP, 501 - 504
 all rows at once, 504
 arrays, 503
 calculated columns, 503
 default fetch mode, setting, 502
 individual column values, 503
 NULL values, 504
 row-fetching loop, 501 - 503
 statement handle, 501

 processing functions, Web: 1103 - 1108 ,
 Web: 1114 - 1117

 returning (statements)
 C client programs, 351 - 353
 Perl DBI. See result sets, Perl DBI

scripts
 single-row, 411 - 413

 results
 binding to variables, 421 - 423
 limiting, 63 - 64
 retrieving, 54 - 56

 column values, naming, 64 - 66
 criteria, 56 - 59
 dates, 66 - 69
 multiple tables, 78 - 85
 NULL values, 60 - 61
 pattern matching, 69 - 70
 summaries, 72 - 78
 table contents, 54
 user-defined variables, 71

 sorting, 61 - 63
 subqueries, testing, 143 - 144

 retrieving
 data

 column values, naming, 64 - 66
 criteria, specifying, 56 - 59
 dates, 57 , 66 - 69
 multiple tables. See joins; subqueries
 NULL values, 60 - 61
 numeric ranges, 56
 pattern matching, 69 - 70
 SELECT statements, 54 - 56

 relay logs, 731
 separate slave accounts, 730
 server ID values, assigning, 728
 slave settings, 729 - 730
 statements, 730 - 731
 threads, starting/stopping, 731

 mysqld options, 1053 - 1056
 overview, 727
 slave backups, creating, 732 - 733

 REPLICATION CLIENT privilege, 662
 REPLICATION SLAVE, 663
 report_host system variable, 858
 report_password system variable, 858
 report_port system variable, 858
 report_user system variable, 858
 REQUIRE clause

 GRANT statement, 661 , 938
 GRANT USAGE statement, 697
 secure connections, 668 - 669

 REQUIRED_ARG arg_type, 341
 requirements

 data type storage
 string, 204
 temporal, 219

 sample database, 23 - 24
 software, 736 - 737
 storage, 197 - 198

 RESET statement, 957
 resetting

 databases to known state, 53 - 54
 user account passwords, 672

 RESIGNAL statements, 994 - 995
 resource management columns (grant tables),

 685 - 686
 restarting mysqld, 581 - 582
 result sets

 memory, releasing, 388
 metadata, 359 - 364

 availability, 359
 column information structures,

accessing, 364
 defined, 359
 displaying, 360 - 364
 Perl DBI scripts, 430 - 434
 result set data processing decisions,

 359
 multiple, Web: 1108 - 1109

25_9780321833877_index.indd 1127 3/6/13 9:50 AM

1128 retrieving

 rowCount() function, 505 , Web: 1171
 rows

 adding
 data files, 52 - 53
 INSERT statement, 50 - 52

 deleting, 85 - 86
 events, 275
 preserving sequencing, 235

 modifying statements, 350
 Perl DBI, 406 - 407
 PHP, 501

 multiple-table
 deleting, 154 - 155
 updates, 155 - 156

 phantom, 162
 randomly selecting, 64
 retrieving

 all at once, 413 - 415 , 504
 arrays, 503
 calculated columns, 503
 default fetch mode, 502
 individual column values, 503
 null values, checking, 416 , 504
 number returned, counting, 411
 Perl DBI, 401 - 402
 PHP, 501 - 504
 row-fetching loops, 407 - 411 , 501 - 503
 single-row results, 411 - 413

 storage formats, 299
 displaying/editing, 300
 InnoDB, 299 - 300
 MEMORY, 299
 MyISAM, 299

 updating, 86
 rows() function, Web: 1145
 RPAD() function, 799
 RTF directories, creating, 440 - 442
 RTRIM() function, 799

 S
 sampdb distribution

 files/directories, 735 - 736
 unpacking, 735
 Web site, 735

 sampdb_pdo.php script, 495

 several individual values, 59
 string values containing character

data, 56
 summaries, 72 - 78
 table contents, displaying, 54
 user-defined variables, 71

 rows
 all at once, 413 - 415 , 504
 arrays, 503
 calculated columns, 503
 default fetch mode, 502
 individual column values, 503
 null values, checking, 416 , 504
 number returned, counting, 411
 Perl DBI, 401 - 402
 PHP, 501 - 504
 row-fetching loops, 407 - 411 , 501 - 503
 single-row results, 411 - 413

 RETURN statement, 268 , 989
 RETURNS clause, 268
 REVERSE() function, 798
 REVOKE statement, 671 - 672 , 957 - 958
 revoking privileges, 671 - 672
 RIGHT() function, 798
 right joins, 139 - 143
 RLIKE/NOT RLIKE operators, 780
 rollback() function, Web: 1139 , Web: 1165
 ROLLBACK statement, 958 - 959
 ROLLUP clause, 77
 root accounts passwords

 assigning, 567 - 569
 resetting, 582 - 583

 rotate_fixed_logs.sh script, 626
 rotating logs, 625

 fixed-name, 626 - 629
 tables, 631

 ROUND() function, 253 , 788
 routine_name columns, 688
 routine_type columns, 688
 row-based logging, 731
 ROW_COUNT() function, 831 - 832
 row-fetching loops

 Perl DBI, 407 - 411
 fetchrow_array() function, 408 - 409
 fetchrow_arrayref(), 409 - 410
 fetchrow_hashref(), 410 - 411
 functions, listing of, 407

 PHP, 501 - 503

25_9780321833877_index.indd 1128 3/6/13 9:50 AM

1129search_members() function

 proxied_host/proxied_user, 689
 routine_name, 688
 routine_type, 688
 table_name, 688
 user, 688

 score table
 creating, 39 - 40 , 48 - 49
 linking with grade_event table

 dates, 41
 event IDs, 41 - 42

 score_browse.pl script, 475 - 479
 display_events() function, 476 - 477
 display_scores() function, 477 - 479

 score_entry.php script, 510 - 511
 action input parameter, 513
 add_new_event() function, 517 - 518
 display_cell() function, 516
 display_events() function, 514 - 515
 display_scores() function, 518 - 519
 enter_scores() function, 520 - 522
 framework, 513 - 514
 PDO transaction processing, 520
 script_name() function, 516
 security, 522
 solicit_event_info() function, 516 - 517

 script_name() function, 516
 script_param() function, 512
 scripts

 C client. See C client programs
 Perl DBI. See Perl DBI scripts
 PHP. See PHP scripts
 stored

 benefits, 261 - 262
 compound statements, 266 - 267
 defined, 261
 events, 274 - 275
 security, 275 - 276
 single statement example, 266
 stored functions, 268 - 271
 stored procedures, 268 - 272
 triggers, 272 - 273

 Web-based. See Web-based scripts
 search_members() function

 ushl_browse.pl script, 480
 ushl_ft_browse.pl script, 482 - 483

 sample databases
 administrator accounts, creating, 24
 databases

 creating, 30 - 31
 listing, 38

 distribution, 23
 grade-keeping. See grade-keeping project
 requirements, 23 - 24
 resetting to known state, 53 - 54
 rows, adding, 50 - 52
 server connections

 establishing, 25 - 26
 terminating, 26 - 27

 statements
 case-sensitivity, 29
 ending, 27
 executing, 27 - 30
 function syntax, 29
 multiple-lines, 28
 multiple statements on single line,

 28 - 29
 reading from files, 29
 results, displaying, 28

 tables, listing, 37
 U.S. Historical League. See U.S. Historical

League project
 SAVEPOINT statement, 161 , 959
 savepoints, 161
 scalar data types (C API), Web: 1075 - 1076
 scalar subqueries, writing, 144 , 241
 scheduler (events)

 enabling, 262
 logging, 274
 starting/stopping at runtime, 274
 status, verifying, 274

 scheduling
 policies, 303
 preventive maintenance, 707

 SCHEMA() function, 832
 scope columns, 683

 case sensitivity, 689
 column_name, 688
 Db, 688
 host, 687 - 689
 listing of, 687 - 689
 matching order, 690 - 691

25_9780321833877_index.indd 1129 3/6/13 9:50 AM

1130 searches

 load_defaults() function, 335
 log files, 556
 mysqld, 540
 new server passwords, 569
 online score-entry script, 520 - 521
 option files, 653 - 654
 PHP, 491
 SSL

 benefits, 694
 configuring, 695 - 698

 storage engine locking levels, 303 - 305
 stored programs, 275 - 276
 Unix socket file, 652 - 653
 user-specific options (programs), 1011
 views, 275 - 276
 Web-based scripts, 470 - 471

 SELECT privilege, 665
 SELECT statements, 959 - 965

 clauses
 FROM, 54 - 56
 FOR UPDATE, 964
 GROUP BY, 963
 HAVING, 963
 INTO, 964
 LIMIT, 963
 LOCK IN SHARE MODE, 964
 ORDER BY, 963
 PROCEDURE, 963
 WHERE, 56

 data, retrieval, 54 - 56
 examples, 964 - 965
 indexes, 962
 joins, 961 - 963

 column references, qualifying,
 138 - 139

 inner, 137 - 138
 outer, 139 - 143

 NULL values, checking, 504
 number of rows returned, 411
 options, 960
 overview, 954 - 958
 results, writing to files, 964
 single-row results, retrieving, 412 - 413
 subqueries, 143 - 144

 ALL/ANY/SOME, 146 - 147
 correlated, 148
 FROM clause, 149

 searches
 full-text

 boolean mode, 174 - 175
 characteristics, 171
 configuring, 176 - 177
 natural language, 172 - 174
 query expansion, 175 - 176
 types, 170

 tables, 479 - 483
 SEC_TO_TIME() function, 812
 SECOND() function, 812
 secure_auth system variable, 858
 secure_file_priv system variable, 858
 Secure Sockets Layer. See SSL
 security

 access control risks, 673 - 676
 ALTER privilege, 676
 anonymous-user accounts, 673
 FILE privilege, 674 - 676
 GRANT OPTION privilege, 674
 insecure accounts, 673 - 674
 mysql database privileges, 673 - 674
 passwords in old hash format, 673
 PROCESS/SUPER privileges, 674 - 675
 RELOAD privilege, 676
 superuser privileges, 673 - 674

 db_browse.pl script, 471
 external risks, 646
 filesystem access, 540

 administrative-only, setting, 649 - 651
 base directory insecurities, checking,

 648
 data directory insecurities, checking,

 648
 overview, 646 - 647
 stealing data example, 647

 functions, 821 - 824
 hidden fields, 528
 Historical League member entries online

editing script, 527 - 529
 initial user accounts, 564 - 569

 available on all platforms, 566
 client program connections, 566
 displaying, 565
 passwords, assigning, 567 - 569
 platform specific, 567

 internal risks, 645

25_9780321833877_index.indd 1130 3/6/13 9:50 AM

1131servers

 smallest types, 296 - 297
 strings, 296
 tables, defragmenting, 297

 databases, 105 - 106
 error message language, 604
 expression writing style, 290 - 292
 GRANT statements, 661
 locale, 604 - 605
 numeric data types, 203 , 257 - 258
 rows, 64
 storage engines, 594

 selectrow_array() function, 413 , Web: 1141
 selectrow_arrayref() function, Web: 1141
 selectrow_hashref() function, Web: 1141
 semicolons (;), statements, 27 , 266
 sequences, 230

 adding to tables, 235 - 236
 arbitrary values, creating, 238
 AUTO_INCREMENT properties

 general, 230 - 232
 InnoDB, 234
 MEMORY, 234 - 235
 MyISAM, 232 - 234

 creating without AUTO_INCREMENT,
 237 - 239

 decreasing numbers, creating, 238
 increasing numbers, creating, 237 - 238
 incrementing counters, 238 - 239
 multiple independent, creating, 233
 mysql prompt definition, 1028 - 1029
 nonpositive numbers, 235
 ranges, 235
 resequencing existing columns, 236 - 237
 resets, 235
 unsigned, 235

 SERIALIZABLE isolation level, 162
 server_id system variable, 858
 server_uuid system variable, 858
 servers

 connections
 authentication plugins, 677
 establishing, 25 - 26
 Perl DBI API, 312
 PHP scripts, 490 - 491
 programs. See connect1 client

program; connect2 client program
 terminating, 26 - 27
 Web scripts, 468 - 469

 EXISTS/NOT EXISTS, 147 - 148
 IN/NOT IN, 145 - 146
 relative comparison operators,

 144 - 145
 rewriting as joins, 149
 uncorrelated, 148

 syntax, 136
 select_full_join status variable, 886
 select_full_range_join status variable, 886
 select_range status variable, 886
 select_range_check status variable, 886
 select_rows() function, 385 - 388
 select_scan status variable, 886
 selectall_arrayref() function, Web: 1140
 selectall_hashref() function, Web: 1140
 selectcol_arrayref() function, Web: 1140
 selecting

 APIs, 314 - - 314
 development time, 316 - 317
 execution environment, 315
 performance, 315 - 316
 portability, 317

 columns for indexing, 281 - 285
 badly performing queries,

identifying, 285
 cardinality, 282
 comparisons, matching to index

types, 284 - 285
 overindexing, 284
 prefixes, 283 - 284
 short values, 283

 data types, 255 - 256
 currency, 258
 dates, 258 - 259
 height information, 257 - 258
 performance/efficiency, 256
 ranges of values, 256 , 259 - 260
 storage size, 256
 string, 217 - 218
 value types in column, 256 - 259

 data types for query optimization,
 296 - 298

 BLOB/TEXT, 298
 ENUM, 297
 NOT NULL, 297
 numbers, 296
 PROCEDURE ANALYSE() function,

 297

25_9780321833877_index.indd 1131 3/6/13 9:50 AM

1132 servers

 numeric form, 211 - 212
 permitted value lists, defining, 209
 size/storage requirements, 204
 sorting/indexing, 212 - 213

 SET PASSWORD statement, 567 - 568 , 966 - 967
 SET statement, 159 - 160 , 965 - 966
 SET strings, 194 , 759
 SET TRANSACTION statement, 967 - 968
 setAttribute() function, Web: 1165 , Web: 1171
 setFetchMode() function, Web: 1171 - 1172
 SHA() function, 824
 SHA1() function, 824
 SHA2() function, 824
 shared_memory system variable, 859
 shared_memory_base_name system variable,

 859
 shebang (#!), 396
 shells

 aliases, 89
 command history, 88
 scripts, 89

 shift left (<<) operator, 773
 shift right (>>) operator, 773
 SHOW BINARY LOGS statement, 969
 SHOW BINLOG EVENTS statement, 969 - 970
 SHOW CHARACTER SET statement, 970
 SHOW COLLATION statement, 970 - 971
 SHOW COLUMNS statement, 37 , 131 , 971
 SHOW CREATE DATABASE statement, 106 - 107 ,

 130
 SHOW CREATE statement, 972
 SHOW DATABASES privilege, 663
 SHOW DATABASES statement, 38 , 130 , 547 ,

 972
 SHOW ENGINE statement, 972
 SHOW ENGINE INNODB STATUS statement,

 170
 SHOW ENGINES statement, 108 - 109 , 593 , 973
 SHOW ERRORS statement, 973
 SHOW EVENTS statement, 973
 SHOW FULL COLUMNS statement, 37
 SHOW FUNCTION STATUS statement, 973
 SHOW GRANTS statement, 671 , 974
 SHOW INDEX statement, 131 , 974 - 975
 SHOW MASTER STATUS statement, 975
 SHOW OPEN TABLES statement, 975
 SHOW PLUGINS statement, 976
 SHOW PRIVILEGES statement, 976

 database transfers, 716
 text backup files, 716 - 717
 writing directly to other server,

 717 - 718
 maintenance interference, preventing,

 701
 internal locking, 702 - 703
 locking all tables at once, 705
 read-only locking, 703 - 704
 read/write locking, 704 - 705
 shutting down servers, 702

 multiple, 632
 administration, 539
 client programs, running, 641
 configuring, 635
 directory options, 633
 error log file names, 634
 InnoDB log location, 634
 issues, 632 - 635
 login account option, 635
 network interface options, 633
 replication slave options, 634
 startup option strategies, 636 - 637
 status/log file names, 634
 Unix, 637 - 639
 Windows, 639 - 641

 MySQL. See mysqld
 new passwords, setting, 569
 option groups, 578
 replication

 compatibility guidelines, 727 - 728
 master-slave, 728 - 731
 overview, 727

 running as administrator, 652
 shutting down, 702
 SQL mode, 96 - 97

 setting, 96 - 97
 values, 96

 Web, configuring, 460 - 461
 SESSION qualifier

 SHOW STATUS statement, 589
 SHOW VARIABLES statement, 586

 SESSION_USER() function, 832
 SET data type, 208 - 213

 creating, 209
 ENUM data type, compared, 208
 improper values, 228

25_9780321833877_index.indd 1132 3/6/13 9:50 AM

1133sort_scan status variable

 skip_networking system variable, 859
 skip_show_database system variable, 859
 slave_allow_batching system variable, 859
 slave backups, creating, 732 - 733
 slave_checkpoint_group system variable, 859
 slave_checkpoint_period system variable, 859
 slave_compressed_protocol system variable,

 860
 slave_exec_mode system variable, 860
 slave_heartbeat_period status variable, 886
 slave_last_heartbeat status variable, 886
 slave_load_tmpdir system variable, 860
 slave_max_allowed_packet system variable,

 860
 slave_net_timeout system variable, 860
 slave_open_temp_tables status variable, 886
 slave_parallel_workers system variable, 860
 slave_pending_jobs_size_max system variable,

 860
 slave_received_heartbeats status variable, 886
 slave_retried_transactions status variable, 886
 slave_running status variable, 886
 slave_skip_errors system variable, 860
 slave_sql_verify_checksum system variable,

 860
 slave_transaction_retries system variable, 861
 slave_type_conversions system variable, 861
 SLEEP() function, 832
 slow query logs, 618 ,
 slow_launch_threads status variable, 886
 slow_launch_time system variable, 861
 slow_queries status variable, 886
 slow_query_log system variable, 193 , 621 ,
 slow_query_log_file system variable, 861 750 ,

 861
 SMALLINT data types

 ranges, 197
 storage requirements, 197

 socket system variable, 861
 software required, 736 - 737
 solicit_event_info() function, 516 - 517
 SOME subqueries, 146 - 147
 sort_buffer_size system variable, 861
 sort_merge_passes status variable, 886
 sort_range status variable, 887
 sort_rows status variable, 887
 sort_scan status variable, 887

 SHOW PROCEDURE STATUS statement, 973
 SHOW PROCESSLIST statement, 976
 SHOW RELAYLOG EVENTS statement, 976
 SHOW SLAVE HOSTS statement, 977
 SHOW SLAVE STATUS statement, 730 ,

 977 - 979
 SHOW statement, 969

 LIKE pattern clause, 131
 metadata, accessing, 130 - 132
 WHERE clause, 131

 SHOW STATUS statement, 979 - 980
 GLOBAL/SESSION qualifiers, 589
 LIKE/WHERE clauses, 589
 status variables, displaying, 584

 SHOW TABLE STATUS statement, 131 ,
 980 - 981

 SHOW TABLES statement, 37 , 130 , 981
 SHOW TRIGGERS statement, 981
 SHOW VARIABLES statement, 982

 GLOBAL/SESSION qualifiers, 586
 LIKE clause, 585
 system variables, displaying, 583
 WHERE clause, 585

 SHOW VIEW privilege, 665
 SHOW WARNINGS statement, 982
 show_argv program, 332 - 335
 show_opt program

 connect2 program, compared, 347
 invoking, 342 - 343
 overview, 336
 source file, 336 - 338

 SHUTDOWN privilege, 663
 shutting down

 mysqld, 539
 servers, 702

 SIGN() function, 789
 SIGNAL statements, 995 - 996
 SIGNED attribute, 201
 SIN() function, 789
 single-row result sets, returning, 411 - 413
 size

 BLOB/TEXT data types, 207
 string data types, 204
 tables, 551 - 553

 skip_external_locking system variable, 859
 skip_name_resolve system variable, 859

25_9780321833877_index.indd 1133 3/6/13 9:50 AM

1134 sorting

 qualifiers, 98
 quoting, 97 - 98
 tables, 98
 unquoted, 97
 views, 98

 SQL mode, 96 - 97
 sql_auto_is_null system variable, 861
 sql_big_selects system variable, 861
 sql_buffer_result system variable, 862
 sql_log_bin system variable, 862
 sql_log_off system variable, 862
 composite modes, 862 - 866

 setting, 96 - 97
 values, 96 , 862 - 865

 sql_mode system variable, 96 , 862 - 866
 composite modes, 865
 values, 862 - 865

 sql_notes system variable, 866
 sql_quote_show_create system variable, 866
 sql_safe_updates system variable, 866
 sql_select_limit system variable, 866
 sql_slave_skip_counter system variable, 866
 sql_warnings system variable, 866
 SQRT() function, 789
 square brackets ([]), operators/functions, 764
 SSL (Secure Sockets Layer)

 benefits, 694
 client support, 370 - 374

 availability, 370
 holding option values variables,

 372 - 373
 options, adding, 370 - 372
 passing SSL option information to

client library, 374
 configuring, 695 - 698

 accounts requiring SSL, creating,
 697 - 698

 certificate/key files, 697
 client programs SSL support,

enabling, 696
 command-line options, 697
 language APIs, 698
 option files, 697
 server SSL support, enabling, 695 - 696
 SSL-related server status variable

values, displaying, 697
 grant table columns, 685

 sorting
 ENUM/SET data types, 212 - 213
 properties (strings), 186
 query results, 61 - 63

 SOUNDEX() function, 799
 source files

 connect1.c, 323 - 324
 connect2 program, 344 - 347
 show_opt, 336 - 338

 SPACE() function, 799
 spatial functions, 828
 SPATIAL indexes, 124
 spatial values, 191 - 192
 special characters

 C client programs, 365 - 366
 LOAD DATA statements, 942 - 943
 Perl DBI, 416 - 419
 PHP, 505 - 507

 specifiers
 ALL, 666
 privileges

 ALL/USAGE, 661
 levels, 665

 SQL (Structured Query Language), 20
 case sensitivity, 99 - 101

 aliases, 100
 column names, 100
 database names, 100
 filenames, 100
 forcing lowercase, 100
 function names, 99
 index names, 100
 keywords, 99
 stored program names, 100
 string values, 100
 table names, 100
 trigger names, 100
 view names, 100

 fluency, 538
 identifiers, 97

 aliases, 98
 columns, 99
 database, 98
 function names, 98
 length, 98
 qualified names, 99

25_9780321833877_index.indd 1134 3/6/13 9:50 AM

1135statements

 plugins, loading, 591
 storage engines status change options,

 593 - 594
 state

 databases, resetting, 53 - 54
 plugin activation, 592

 statements
 ; (semicolons), 27
 access verification, 689 - 690
 account-management, 654 - 655
 ALTER DATABASE, 107 , 898
 ALTER EVENT, 898 - 899
 ALTER FUNCTION, 899
 ALTER PROCEDURE, 899
 ALTER TABLE, 899 - 904

 action values, 899 - 903
 benefits, 127 - 128
 CHANGE clause, 128
 CHARACTER SET clause, 128 - 129
 ENGINE clause, 129
 indexes, adding, 124
 MODIFY clause, 128
 partitioning options, 904
 RENAME clause, 129 - 130
 resequencing existing columns, 237
 sequence columns, adding, 236
 syntax, 128
 table files, 549

 ALTER VIEW, 905
 ANALYZE TABLE, 905
 BEGIN, 905
 binary logging, 731
 BINLOG, 906
 CACHE INDEX, 906
 CALL, 906
 case-sensitivity, 29 , 99 - 101

 aliases, 100
 column names, 100
 database names, 100
 filenames, 100
 forcing lowercase, 100
 function names, 99
 index names, 100
 keywords, 99
 stored program names, 100
 string values, 100
 table names, 100

 program options, 1006
 requiring, 668
 status variables, 892 - 894

 ssl_accept_renegotiates status variable, 892
 ssl_accepts status variable, 892
 ssl_callback_cache_hits status variable, 892
 ssl_cipher status variable, 892
 ssl_cipher_list status variable, 892
 ssl_client_connects status variable, 892
 ssl_connect_renegotiates status variable, 892
 ssl_ctx_verify_depth status variable, 893
 ssl_ctx_verify_mode status variable, 893
 ssl_default_timeout status variable, 893
 ssl_finished_accepts status variable, 893
 ssl_finished_connects status variable, 893
 ssl_server_not_after status variable, 893
 ssl_server_not_before status variable, 893
 ssl_session_cache_hits status variable, 893
 ssl_session_cache_misses status variable, 893
 ssl_session_cache_mode status variable, 893
 ssl_session_cache_overflows status variable,

 893
 ssl_session_cache_size status variable, 893
 ssl_session_cache_timeouts status variable,

 893
 ssl_sessions_reused status variable, 893
 ssl_used_session_cache_entries status

variable, 893
 ssl_verify_depth status variable, 894
 ssl_verify_mode status variable, 894
 ssl_version status variable, 894
 ssl_xxx status variable, 887
 ssl_xxx system variable, 867
 standalone PHP scripts, 489
 START SLAVE statement, 731 , 983
 START TRANSACTION statement, 157 - 158 ,

 983 - 984
 start_html() function, 463
 starting mysqld, 539 , 741

 options, 577 - 579
 Unix, 572 - 574 , 741
 Windows, 742

 startup
 character set/collation, setting, 603
 InnoDB tablespace failure, 598
 logging options, 619
 multiple server options, 636 - 637
 mysqld options, 577 - 579

25_9780321833877_index.indd 1135 3/6/13 9:50 AM

1136 statements

 partitioning, 923 - 925
 student table, 45 - 46
 table files, creating, 549
 TEMPORARY keyword, 115 - 116

 CREATE TABLE ...LIKE, 117 - 118
 CREATE TABLE ...SELECT, 117 - 119
 CREATE TRIGGER, 272 , 926 - 927
 CREATE USER, 927 - 928

 account operations, 655
 account value, 656
 auth_info clause, 659 - 660
 IDENTIFIED WITH clause, 676
 selecting, 656

 CREATE VIEW, 928 - 929
 date/time retrieval, 27
 DEALLOCATE PREPARE, 929
 DELETE, 85 - 86 , 154 - 155 , 929 - 930
 DESCRIBE, 36 - 37 , 930 - 931
 DO, 931
 DROP DATABASE, 107 , 547 , 931
 DROP EVENT, 932
 DROP FUNCTION, 932
 DROP INDEX, 127 , 302 , 932
 DROP PROCEDURE, 932
 DROP TABLE, 121 - 122 , 549 , 932
 DROP TRIGGER, 932 - 933
 DROP USER, 656 , 933
 DROP VIEW, 933
 ending, 27 - 28
 entering, 27

 multiple-lines, 28
 multiple statements on single line,

 28 - 29
 typing less, 90 - 93

 EXECUTE, 933
 EXPLAIN, 290 - 296 , 933 - 936
 FLUSH, 936 - 937
 FLUSH PRIVILEGES, 583
 FLUSH TABLES, 302 , 703
 function syntax, 29
 GRANT, 938 - 943

 clauses, 660 - 661
 examples, 942 - 943
 ON clause, 939 - 940
 privileges, revoking, 672
 privileges to be granted, 938 - 939
 REQUIRE clause, 668 - 669 , 941

 triggers, 100
 view names, 100

 CHANGE MASTER, 907 - 908
 CHARACTER SET, 102 - 103
 CHECK TABLE, 719 - 720 , 909 - 910
 CHECKSUM TABLE, 910
 client programs, 348 - 350

 alternative approaches, 356 - 357
 binary data, 367 - 368
 causes of failures, 349
 character-escaping operations, 349
 general-purpose statement handler,

 354 - 355
 mysql_store_result() functions,

 357 - 359
 mysql_use_result() functions, 357 - 359
 quoting special characters, 365 - 366
 result set metadata, 359 - 364
 result sets, returning, 351 - 353
 row-modifying statements, 350
 sending to server functions, 349

 COLLATE, 102 - 103
 comments, adding, 996 - 997
 COMMIT, 910 - 911
 compound, 266 - 267 , 987 - 996

 condition-handling, 992 - 996
 control structure, 987 - 989
 cursor, 991 - 992
 declaration, 989 - 991

 construction/execution functions,
 Web: 1099 - 1102

 CREATE DATABASE, 30 , 106 - 107 , 130 ,
 547 , 911

 CREATE EVENT, 274 , 912 - 913
 CREATE FUNCTION, 268 , 913 - 915
 CREATE INDEX, 915 - 916
 CREATE PROCEDURE, 268 , 913 - 915
 CREATE TABLE, 113 - 114 , 916 - 926

 AVG_ROW_LENGTH option, 115
 column definitions, 926
 data type keywords, 918 - 919
 ENGINE clause, 46 - 47 , 114
 foreign key support, 922 - 923
 IF NOT EXISTS modifier, 115
 index clauses, 919
 MAX_ROWS, 115
 options, 919 - 922
 PARTITION BY clause, 120 - 121

25_9780321833877_index.indd 1136 3/6/13 9:50 AM

1137statements

 number of rows returned, 411
 placeholders, 419 - 421
 prepared, 421
 quoting special characters, 416 - 419
 result sets, returning. See result sets,

Perl DBI scripts
 row-fetching loops, 407 - 411
 row-modifying, 406 - 407
 single-row results, returning, 411 - 413

 PHP, 500 - 501
 NULL values, checking, 504
 prepared, 505
 quoting special characters, 505 - 507
 row-modifying, 501
 rows, retrieving, 501 - 504

 PREPARE, 954
 prepared. See prepared statements
 print , 426-428
 PURGE BINARY LOGS, 954 - 955
 reading from files, 29
 RELEASE SAVEPOINT, 955
 RENAME TABLE, 955
 RENAME USER, 656 , 955
 REPAIR TABLE, 720 , 956
 REPLACE, 956 - 957
 RESET, 957
 result sets, returning, 351 - 353
 results, displaying, 28
 RETURN, 268
 REVOKE, 671 - 672 , 957 - 958
 ROLLBACK, 958 - 959
 row-modifying, handling

 C client, 350
 Perl DBI, 406 - 407

 SAVEPOINT, 161 , 959
 SELECT, 959 - 965

 data retrieval, 54 - 56
 examples, 964 - 965
 FOR UPDATE clause, 964
 FROM clause, 54 - 56
 GROUP BY clause, 963
 HAVING clause, 963
 indexes, 962
 INTO clauses, 964
 joins syntax. See SELECT statements,

joins
 LIMIT clause, 963

 selecting, 661
 WITH clause, 941 - 942

 GRANT USAGE, 697
 HANDLER, 943
 handles. See handles
 identifiers, 97

 aliases, 98
 columns, 99
 database, 98
 function names, 98
 length, 98
 qualified names, 99
 qualifiers, 98
 quoting, 97 - 98
 tables, 98
 unquoted, 97
 views, 98

 INSERT, 943 - 946
 data loading, 301
 double-quoting strings in Perl DBI,

 417 - 418
 rows, adding, 50 - 52

 INSTALL PLUGIN, 591 , 946
 interactive statement-execution client,

 368 - 369
 KILL, 946
 LOAD DATA, 300 - 301 , 946 - 951

 data files, loading, 52 - 53
 data formats, 948
 FIELDS clause options, 948 - 949
 LINES clause, 949 - 950
 LOCAL keyword, 947
 special characters, 948

 LOAD INDEX INTO CACHE, 951
 LOAD XML, 951 - 952
 LOCK TABLE, 304 , 702 , 952 - 953
 master-slave replication, 730 - 731
 multiple, executing, 375 - 377

 enabling, 375
 process_multi_statement() function,

 376 - 377
 result retrieval functions, 375

 OPTIMIZE TABLE, 953 - 954
 ORDER BY RAND(), 64
 Perl DBI

 entire result sets, returning at once,
 413 - 415

 null values, checking, 416

25_9780321833877_index.indd 1137 3/6/13 9:50 AM

1138 statements

 SHOW SLAVE STATUS, 977 - 979
 SHOW STATUS, 979 - 980

 GLOBAL/SESSION qualifiers, 589
 LIKE/WHERE clauses, 589
 status variables, displaying, 584

 SHOW TABLE STATUS, 131 , 980 - 981
 SHOW TABLES, 37 , 130 , 981
 SHOW TRIGGERS, 981
 SHOW VARIABLES, 982

 GLOBAL/SESSION qualifiers, 586
 LIKE clause, 585
 system variables, displaying, 583
 WHERE clause, 585

 SHOW WARNINGS, 982
 START SLAVE, 983
 START TRANSACTION, 157 - 158 ,

 983 - 984
 STOP SLAVE, 984
 synonyms, 898
 syntax, 897
 table file operations, 549 - 550
 table locking, 703
 TRUNCATE TABLE, 984
 UNINSTALL PLUGIN, 592 , 984
 UNION, 151 - 154 , 985
 UNLOCK TABLE, 304 , 703 , 985
 UPDATE, 986 - 987

 multiple-table, 155 - 156
 root/anonymous-user passwords, 568
 rows, 86

 USE, 987
 use DBI, 399
 use strict, 399
 use warnings, 399

 status files
 listing of, 554
 multiple servers, creating, 634
 relocating, 561 - 562

 status variables, 881
 case sensitivity, 881
 displaying, 584
 general, listing of, 881 - 888
 InnoDB, listing of, 888 - 891
 overview, 584
 query cache, listing of, 891 - 892
 SSL, 892 - 894
 values, checking, 588 - 589

 LOCK IN SHARE MODE clause, 964
 nesting with another SELECT

statement. See subqueries
 NULL values, checking, 504
 number of rows returned, 411
 options, 960
 ORDER BY clause, 963
 PROCEDURE clause, 963
 results, writing to files, 964
 single-row results, retrieving, 412 - 413
 subqueries. See SELECT statements,

subqueries
 syntax, 136
 WHERE clause, 56 , 963

 SET, 159 - 160 , 965 - 966
 SET PASSWORD, 567 - 568 , 966 - 967
 SET TRANSACTION, 967 - 968
 SHOW, 969

 LIKE pattern clause, 131
 metadata, accessing, 130 - 132
 WHERE clause, 131

 SHOW BINARY LOGS, 969
 SHOW BINLOG EVENTS, 969 - 970
 SHOW CHARACTER SET, 970
 SHOW COLLATION, 970 - 971
 SHOW COLUMNS, 37 , 131 , 971
 SHOW CREATE, 972
 SHOW CREATE DATABASE, 106 - 107 ,

 130
 SHOW DATABASES, 38 , 130 , 547 , 972
 SHOW ENGINE, 972
 SHOW ENGINE INNODB STATUS, 170
 SHOW ENGINES, 108 - 109 , 593 , 973
 SHOW ERRORS, 973
 SHOW EVENTS, 973
 SHOW FULL COLUMNS, 37
 SHOW FUNCTION STATUS, 973
 SHOW GRANTS, 671 , 974
 SHOW INDEX, 131 , 974 - 975
 SHOW MASTER STATUS, 975
 SHOW OPEN TABLES, 975
 SHOW PLUGINS, 976
 SHOW PRIVILEGES, 976
 SHOW PROCEDURE STATUS, 973
 SHOW PROCESSLIST, 976
 SHOW RELAYLOG EVENTS, 976
 SHOW SLAVE HOSTS, 977

25_9780321833877_index.indd 1138 3/6/13 9:50 AM

1139stored procedures

 row storage formats, 299 - 300
 sequence characteristics, 234
 status variables, listing of, 888 - 891
 system variables, listing of, 870 - 880
 tablespace. See tablespaces (InnoDB)
 transaction isolation levels, 162 - 163
 variables, 600 - 601

 listing of, 108
 locking levels, 303 - 305
 MEMORY

 data, representing, 548
 locking levels, 304
 overview, 111 - 112
 portability, 710
 row storage formats, 299
 sequence characteristics, 234 - 235

 MERGE, 113 , 304
 MyISAM

 auto-recovery, 706
 checking/repairing tables, 719
 data, representing, 548
 features, 111
 portability, 710
 row storage formats, 299
 sequence characteristics, 232 - 234
 table maximum size, 552

 NDB, 112
 pluggable architecture, 108
 portability, 709 - 710
 specifying for tables, 114
 table-specific files, 109 - 110

 stored functions, 268 - 271
 creating, 268
 defined, 268
 integer-valued parameter representing a

year example, 268
 multiple values, 269
 names, 269
 privileges, 270 - 271
 security, 276
 tables, updating, 270

 stored procedures
 creating, 268
 defined, 268
 example, 269
 invoking, 269
 parameter types, 271 - 272

 STD() function, 820
 STDDEV() function, 820
 STDDEV_POP() function, 820
 STDDEV_SAMP() function, 820
 stealing data example, 647
 STOP SLAVE statement, 731 , 984
 stopping mysqld, 580 - 581
 storage

 data type requirements
 numeric, 197 - 198
 temporal, 219

 data types, 204 , 748
 images from files, 367 - 368
 row formats, 299

 displaying/editing, 300
 InnoDB, 299 - 300
 MEMORY, 299
 MyISAM, 299

 SQL statements in files, 29
 temporal data types, 759

 storage_engine system variable, 867
 storage engines

 ARCHIVE, 112
 auto-recovery, performing, 700
 availability, 108 - 109
 BLACKHOLE, 112
 converting tables to different, 129
 CSV, 112 , 710
 default, selecting, 594
 default status/startup option, 593 - 594
 defined, 46
 displaying available, 593
 FEDERATED, 113
 file representations, 548
 grade-keeping student table example,

 46 - 47
 index characteristics, 123
 InnoDB

 auto-recovery, 706 , 725 - 726
 backing up, 715 - 716
 checking/repairing tables, 718
 data, representing, 548
 features, 110
 innodb directory access mode,

setting, 651
 locking levels, 303
 portability, 710

25_9780321833877_index.indd 1139 3/6/13 9:50 AM

1140 stored procedures

 defined, 272
 names, 272
 privileges, 273
 security, 276

 stored routines
 defined, 262
 privileges, 667
 security, 276
 update_expiration(), 270

 str COLLATE collation operator, 773
 str NOT REGEXP pattern, 775 - 778
 STR_TO_DATE() function, 66 , 813
 STRAIGHT_JOIN, 287
 STRCMP() function, 780
 strict mode

 division by zero errors, 229
 transactional/nontransactional tables,

 229
 turning on, 230
 weakening, 230
 zero date errors, 229

 STRICT_ALL_TABLES SQL mode, 96 , 865
 STRICT_TRANS_TABLES SQL mode, 96 , 865
 strings, 182 - 184 , 193

 binary/nonbinary, 255
 case sensitivity, 100
 character data, retrieving, 56
 converting to numbers, 249 - 250
 data types, 204 , 753 - 754

 attributes, 214 - 216
 binary, 755 - 756
 binary/nonbinary corresponding

types, 204 - 205
 BINARY/VARBINARY, 207
 BLOB, 207 - 208
 CHAR/VARCHAR, 206
 character sets/collations, 753 - 754
 ENUM, 208 - 213 , 758
 improper values, 228
 length, 205
 lengths, 753
 nonbinary, 756 - 758
 query performance, improving, 296
 selecting, 217 - 218
 SET, 208 - 213 , 759
 size, 204
 storage requirements, 204

 privileges, 270 - 271
 security, 275 - 276
 tables, updating, 270
 triggers, 273

 stored_program_cache system variable, 867
 stored programs

 benefits, 261 - 262
 case sensitivity, 100
 compound statements, 266 - 267
 defined, 261
 events, 274 - 275

 creating, 274
 defined, 274
 deleting old rows from table

example, 275
 enabling/disabling, 275
 enabling scheduler, 274
 logging, 274
 one time only, 275
 privileges, 274
 scheduler status, verifying, 274
 security, 276
 starting/stopping scheduler, 274

 security, 275 - 276
 single statement example, 266
 stored functions, 268 - 271

 creating, 268
 defined, 268
 integer-valued parameter representing

a year example, 268
 multiple values, 269
 names, 269
 privileges, 270 - 271
 tables, updating, 270

 stored procedures
 creating, 268
 defined, 268
 example, 269
 invoking, 269
 parameter types, 271 - 272
 privileges, 270 - 271
 security, 275 - 276
 tables, updating, 270

 triggers
 actions, 273
 benefits, 272
 creating, 272

25_9780321833877_index.indd 1140 3/6/13 9:50 AM

1141system variables

 scalar, 144 , 241
 types, 143
 uncorrelated, 148

 SUBSTR() function, 799
 SUBSTRING() function, 799 - 800
 SUBSTRING_INDEX() function, 800
 SUBTIME() function, 813
 subtraction operator (-), 57 , 241 , 766
 SUM() function, 76 , 820
 summaries, 72 - 78

 counting, 72 - 76
 distinct non-NULL values, 73
 groups, 74 - 76
 minimum/maximum/total/average

values, 76
 non-NULL values, 73
 number of rows, 72
 overall count of values, 73
 summary, 77 - 78

 functions, listing of, 817 - 821
 unique values present in a set of values,

 72
 SUPER privilege, 663 , 673 - 674

 definer privileges, setting, 276
 security risks, 674 - 675

 switchboxes, 437 - 438
 symlinks, 557 , 651
 sync_binlog system variable, 867
 sync_frm system variable, 867
 sync_master_info system variable, 867
 sync_relay_log system variable, 867
sync_relay_log_info system variable, 867
 synthetic indexes, 298
 SYSDATE() function, 813
 system tables, initializing, 742 - 743
 system_time_zone system variable, 602 , 867
 SYSTEM_USER() function, 832
 system variables, 584 - 585 , 835 - 836

 character_set_server, 603
 collation_server, 603
 displaying, 583 , 836
 error message language selection, 604
 expire_logs_days, 629
 general, listing of, 836 - 870
 general_log, 621
 general_log_file, 621
 InnoDB, listing of, 870 - 880

 TEXT, 207 - 208
 trailing pad values, 218 , 754
 types, listing of, 194

 escape sequences, 183
 functions, listing of, 789 - 802
 quoting characters

 C client programs, 365 - 366
 Perl DBI, 416 - 419
 PHP, 505 - 507
 surrounding quotes, 182 - 183

 values
 backslashes, turning off, 184
 binary, 185
 binary versus nonbinary, 188 - 189
 character set variables, 189 - 191
 CONVERT() function, 187 - 188
 escape sequences, 183
 hexadecimal notation, 184
 introducers, 187 - 188
 length, 188
 nonbinary, 185
 quote characters, including, 183 - 184
 sorting properties, 186
 surrounding quotes, 182 - 183

 structural terminology, 18 - 19
 Structured Query Language. See SQL
 student table

 columns, creating, 46
 creating, 44 - 47

 sub_size member (my_option structures), 341
 SUBDATE() function, 813
 submit_button() function, 526
 subqueries, 84 - 85 , 143 - 144

 ALL/ANY/SOME, 146 - 147
 correlated, 148
 correlated/uncorrelated, 144
 defined, 78
 EXISTS/NOT EXISTS, 147 - 148
 FROM clause, 149
 IN/NOT IN, 145 - 146
 query optimizer support, 289
 relative comparison operators, 144 - 145
 results, testing, 143 - 144
 rewriting as joins, 149

 matching values, selecting, 149 - 150
 nonmatching values, 150

25_9780321833877_index.indd 1141 3/6/13 9:50 AM

1142 system variables

 creating, 113 - 114
 CREATE TABLE statement, 45 - 46
 if it doesn't already exist, 115
 from other tables/query results,

 117 - 120
 partitions, 120 - 121
 storage characteristics, 114 - 115
 temporary, 115 - 116

 damages
 checking with CHECK TABLE

statement, 719 - 720
 checking with mysqlcheck utility,

 720 - 721
 InnoDB, checking and repairing, 718
 MyISAM, checking and repairing, 719
 overview, 718
 repairing with mysqlcheck utility,

 720 - 721
 repairing with REPAIR TABLE

statement, 720
 data directory, relocating, 560
 default database, listing, 37
 defragmenting, 297
 deleting, 121 - 122
 descriptive information, displaying, 131 ,

 135
 file representations, 548
 files created by storage engines, 109 - 110
 grade_event

 creating, 40 , 47
 linking with score table on dates, 41
 linking with score table on event IDs,

 41 - 42
 grants. See grant tables
 HTML, creating, 475
 identifiers, 98
 indexes, 122 - 123

 column prefixes, 126
 deleting, 127
 existing tables, 124
 flexibility, 122
 FULLTEXT, 126
 HASH, 125
 ID numbers, generating, 36
 new tables, 125
 storage engine characteristics, 123
 types, 123 - 124
 unique, 124 - 125

 innodb_autoextend_increment, 596
 innodb_data_file_path, 595
 innodb_data_home_dir, 595
 innodb_file_per_table, 599
 lc_time_names, 604
 log_warnings, 620
 max_relay_log_size, 624 , 630
 names, 836
 overview, 583
 setting, 764

 runtime, 587 - 588
 server startup, 586 - 587

 slow_query_log, 621
 time zones, 602 - 603
 values, checking, 585 - 586

 T
 table() function, 475
 table handlers. See storage engines
 table_definition_cache system variable, 868
 table_locks_immediate status variable, 887
 table_locks_waited status variable, 887
 table_name columns, 688
 table_open_cache, 868
 table_open_cache_hits status variable, 887
 table_open_cache_instances system variable,

 868
 table_open_cache_misses status variable, 887
 table_open_cache_overflows status variable,

 887
 tables

 absence, 45 , 49
 aliases, 98
 backups

 best practices, 709
 binary, 714 - 715
 InnoDB, 715 - 716
 selecting, 708
 storage engine portability, 709 - 710
 text, creating, 711 - 714
 types, 708

 banner advertisement example, 19
 columns. See columns
 contents, displaying, 50 , 54
 copying from other tables, 117 - 120

25_9780321833877_index.indd 1142 3/6/13 9:50 AM

1143td() function

 structure
 displaying, 36 - 37
 editing, 127 - 130

 student
 columns, creating, 46
 creating, 44 - 47

 system, initializing, 742 - 743
 temporary

 creating, 115 - 116
 names, 116

 transactional/nontransactional
 mixing, 163
 strict mode, 229

 updating, 270
 U.S. Historical League, creating, 31

 member, creating, 35 - 38
 member table, 33
 president, 32 , 34 - 35

 Web searches, 479 - 483
 FULLTEXT indexes, 482 - 483
 pattern matching, 479 - 482

 tables_priv table, 680
 tablespaces (InnoDB), 548

 components, adding, 599
 configuring, 111 , 595 - 598

 auto-extend increments, 596
 file pathnames, 596
 file specification syntax, 596
 raw partitions, 597 - 598
 regular files, 597
 system variables, 595
 Windows, 598

 contents, 595
 defined, 111
 individual (per-table), 599 - 600
 relocating, 560
 startup failure, troubleshooting, 598

 TAN() function, 789
 tbl_name parameter

 checking, 473
 db_browse.pl script, 472

 tc_log_max_pages_used, 887
 tc_log_page_size status variable, 887
 tc_log_page_waits status variable, 887
 TCP/IP connections, listening, 579
 td() function, 475

 INFORMATION_SCHEMA database,
 133 - 134

 linking
 dates, 41
 event IDs, 41 - 42

 listing, 130 , 135
 locking, 303 - 305

 all at once, 705
 overview, 702 - 703
 read-only access, 703 - 704
 read/write, 704 - 705
 single session, 703
 statements, 702

 logs
 rotating, 631
 truncating, 625 , 631
 rotation, 625
 writing to, 625

 multiple
 deleting rows, 154 - 155
 queries, 78 - 84
 retrievals. See joins; subqueries
 updating rows, 155 - 156

 names, 32 , 100
 operations statements, 549 - 550
 partitions, creating, 120 - 121
 preventive maintenance, 700
 privileges, 667
 recovering, 723
 renaming, 129 - 130
 rows. See rows
 score

 creating, 39 - 40 , 48 - 49
 linking with grade_event table on

dates, 41
 linking with grade_event table on

event IDs, 41 - 42
 sequence columns, adding, 235 - 236
 server access, preventing, 701

 internal locking, 702 - 703
 locking all tables at once, 705
 read-only locking, 703 - 704
 read/write locking, 704 - 705
 shutting down servers, 702

 size, 551 - 553
 storage characteristics, editing, 114 - 115
 storage engines, converting, 129

25_9780321833877_index.indd 1143 3/6/13 9:50 AM

1144 temporal data types

 TEXT data type
 indexes, 207
 overview, 207 - 208
 query optimization, 298
 size, 204 , 207
 special care, 208
 storage requirements, 204

 text-format backups
 best practices, 709
 defined, 708

 text input fields, 530
 TEXT strings, 194 , 757 - 758
 text_field() function, 530
 textfield() function, 481
 th() function, 475
 thread_cache_size system variable, 868
 thread_concurrency system variable, 868
 thread_handling system variable, 868
 thread_stack system variable, 868
 threaded client functions, Web: 1119
 threads_cached status variable, 887
 threads_connected status variable, 887
 threads_created status variable, 887
 threads_running status variable, 888
 TIME data type, 193 , 221 , 228 , 760 - 761
 time formats, 226
 TIME() function, 813
 TIME_FORMAT() function, 813
 time_format system variable, 868
 TIME_TO_SEC() function, 814
 time_zone system variable, 602 , 868
 time zones, configuring, 602 - 603
 timed_mutexes system variable, 880
 TIMEDIFF() function, 814
 TIMESTAMP() function, 814
 TIMESTAMP data type, 193 , 221 - 222 , 761 - 762

 automatic initialization/update
properties, 224 - 226

 current timestamp, 222
 formats, 226 - 227
 ranges, 222
 time zones, 222

 timestamp system variable, 868
 TIMESTAMPADD() function, 814
 TIMESTAMPDIFF() function, 68 , 814
 TINYBLOB data type, 204 , 207 - 208
 TINYBLOB strings, 194 , 755

 temporal data types, 193 , 759
 attributes, 223
 automatic initialization/update

properties, 224 - 226
 DATE, 220 - 221 , 760
 DATETIME, 221 , 760
 formats, 226
 fractional seconds, 223 - 224
 improper values, 228
 input dates, 220
 listing of, 193
 MySQL 5.6 improvements, 218
 ranges, 218 - 219
 storage requirements, 219 , 759
 TIME, 221 , 760 - 761
 TIMESTAMP, 221 - 222 , 761 - 762
 two-digit years, 227 - 228
 values, 191 , 226 - 227

 temporal data types, 226 - 227
 type conversions, 251

 YEAR, 222 - 223 , 762
 zero values, 220

 TEMPORARY clause, 115 - 116
 temporary tables

 creating, 115 - 116
 names, 116

 terminology
 architectural, 21 - 22
 query language, 20 - 21
 structural, 18 - 19

 testing
 alternative forms of queries, 289
 cascaded deletes, 167 - 168
 cascaded updates, 168
 subquery results, 143 - 144
 type conversions, 252 - 253

 text backups
 all tables from all databases, 711
 binary backups, compared, 708
 compressing, 712
 creating, 711 - 714
 database transfers, 716 - 717
 individual files, 711
 mysqldump options, 712 - 714
 output, 711 - 712
 table subsets into separate files, creating,

 712

25_9780321833877_index.indd 1144 3/6/13 9:50 AM

1145UNION statements

 file representations, 549
 names, 100 , 272
 privileges, 273
 security, 276

 TRIM() function, 800
 TRN files, 549
 troubleshooting

 InnoDB tablespace startup failure, 598
 multiple server issues, 632 - 635
 mysqld connectivity

 restarting manually, 581 - 582
 root password, resetting, 582 - 583

 table damages, 718
 checking with CHECK TABLE

statement, 719 - 720
 InnoDB, checking and repairing, 718
 MyISAM tables, 719
 mysqlcheck utility, 720 - 721
 repairing with REPAIR TABLE

statement, 720
 TRUNCATE() function, 789
 TRUNCATE TABLE statement, 984
 truncating tables, 631
 tuning mysqld, 539
 tx_isolation system variable, 869
 tx_read_only system variable, 869
 typelib member (my_option structures), 340
 typing tips

 copy/paste, 92
 input line editing, 90 - 91
 script files, 92 - 93

 U
 u_max_value (my_option structures), 340
 UCASE() function, 801
 ucs2 character set, 104
 unary minus (-) operator, 241
 UNCOMPRESS() function, 824
 UNCOMPRESSED_LENGTH() function, 824
 uncorrelated subqueries, 148
 undef argument, 422
 unequal operators, 770
 UNHEX() function, 801
 Unicode character sets, 104 - 105
 UNINSTALL PLUGIN statement, 592 , 984
 uninstalling plugins, 592
 UNION statements, 151 - 154 , 985

 TINYINT data type, 193 , 749
 ranges, 197
 storage requirements, 197

 TINYTEXT data type, 204 , 207 - 208
 TINYTEXT strings, 194 , 757
 tmp_table_size system variable, 868
 tmpdir system variable, 869
 TO_BASE() function, 800
 TO_DAYS() function, 68 , 815
 TO_SECONDS() function, 815
 total value summaries, 76
 trace() function, 428 , Web: 1146
 trace_msg() function, Web: 1146
 TraceLevel attribute, 428
 TRADITIONAL SQL mode, 96
 trailing pad values, 218 , 754
 transaction_alloc_block_size system variable,

 869
 transaction_prealloc_size system variable, 869
 transactional tables

 mixing, 163
 strict mode, 229

 transactions
 ACID properties, 157
 commit/rollback capabilities, 156
 concurrency problems, preventing, 156
 control functions, Web: 1112
 defined, 156
 ending, 160
 incorrectly entered grades, swapping

example, 160 - 161
 isolation, 162 - 163
 performing

 SET statements, 159 - 160
 START TRANSACTION statement,

 157 - 158
 Perl DBI scripts, 434 - 436
 processing, 520
 savepoints, 161
 transactional/nontransactional tables,

mixing, 163
 TRG files, 549
 TRIGGER privilege, 665
 triggers

 actions, 273
 benefits, 272
 creating, 272
 defined, 272
 example, 273

25_9780321833877_index.indd 1145 3/6/13 9:50 AM

1146 unique indexes

 updates
 automatic, 224 - 226
 cascaded, 164 , 168
 columns, 86 , 155 - 156
 deciding to upgrade or not, 641 - 643
 grant tables, 655
 MySQL software, 539
 rows, 86 , 155 - 156
 tables, 270
 views, 265

 UPDATEXML() function, 828
 UPPER() function, 801
 uptime status variable, 888
 uptime_since_flush_status status variable, 888
 URL text, escaping, 464 - 465
 USAGE privilege, 668
 USAGE specifier, 661
 use DBI statement, 399
 USE statement, 105 - 106 , 987
 use strict statements, 399
 use warnings statement, 399
 user accounts

 access control risks, 673 - 676
 ALTER privilege, 676
 anonymous-user accounts, 673
 FILE privilege, 674 - 676
 GRANT OPTION privilege, 674
 insecure accounts, 673 - 674
 mysql database privileges, 674
 passwords in old hash format, 673
 PROCESS/SUPER privilege, 676
 RELOAD privilege, 676
 superuser privileges, 673 - 674

 account-management statements,
 654 - 655

 anonymous
 deleting, 568 - 569
 passwords, assigning, 567 - 568
 security risk, 673

 authentication, 659 - 660
 authentication plugins, 676 - 679

 proxy users, creating, 677 - 679
 server connections, 677
 server side/client side, 677
 specifying, 676

 CREATE USER statement
 account operations, 655
 selecting, 656

 unique indexes, 123
 creating, 124 - 125
 primary key conversions, 169

 unique values present in a set of values
summary, 72

 unique_checks system variable, 869
 Universal Coordinated Time (UTC), 222
 Unix

 compressing dump files, 712
 database relocation, 559
 error logs, 620
 initial user accounts, 567
 input editing commands, 90 - 91
 logs, rotating, 626 - 628
 multiple servers, 637 - 639
 MySQL, installing, 739
 mysqld

 connections, listening, 579
 running, 570
 starting, 572 - 574, 741
 stopping, 580 - 581
 unprivileged login account,

configuring, 571 - 572
 PATH environment variable,

configuring, 739
 preventive maintenance login, 701
 program option files, 1007
 socket file, securing, 652 - 653
 symlinks, 557

 UNIX_TIMESTAMP() function, 815
 UNLOCK TABLE statement, 304 , 703 , 985
 unpacking sampdb distribution, 735
 unquoted identifiers, 97
 unsetting columns, 87
 UNSIGNED attribute

 AUTO_INCREMENT, 235
 numeric data types, 201 , 749

 updatable_views_with_limit system variable,
 869

 UPDATE privilege, 665
 UPDATE statement, 986 - 987

 AUTO_INCREMENT columns, 232
 multiple-table, 155 - 156
 root/anonymous-user account

passwords, 568
 rows, 86

 update_expiration() routine, 270

25_9780321833877_index.indd 1146 3/6/13 9:50 AM

1147U.S. Historical League project

 resetting passwords, 582 - 583
 SSL required, creating, 697 - 698

 USER() function, 832
 user table, 680

 authentication columns, 680 , 684
 privilege columns, 683
 resource management columns, 680 ,

 685 - 686
 SSL-related columns, 680 , 685

 users
 accounts. See user accounts
 column values, 688
 defined variables, 71 , 894 - 895
 proxy, creating, 677 - 679

 U.S. Historical League project, 15 - 17
 common-interest Web searches

 FULLTEXT indexes, 482 - 483
 pattern matching, 479 - 482

 creative ideas, 15 - 16
 directory, generating, 436 - 442

 HTML format, 455 - 458
 plain text version, 439 - 440
 RTF version, 440 - 442

 directory member entries, editing
online, 527 - 536

 editing form, 533 - 534
 framework, 529 - 530
 member login page, 530 - 531
 null values, 535 - 536
 password verification, 531 - 533
 passwords, 527 - 529
 updating entries, 534 - 535

 displaying current membership count to
visitors script, 313

 home page, 488 - 491
 interactive online quiz, creating,

 522 - 527
 member entries, editing, 448 - 454
 members with common interests,

finding, 454 - 455
 membership renewal notices, sending,

 443 - 448
 membership updates, 270
 objectives, 15
 practical questions, 16 - 17
 president born first, finding, 144 - 146
 presidents born before Andrew Jackson

subquery, 84

 DROP USER statement, 656
 grant tables, upgrading, 655
 initial, 564 - 569

 available on all platforms, 566
 client program connections, 566
 displaying, 565
 passwords, assigning, 567 - 569
 platform specific, 567

 login, creating, 738 - 739
 maintenance, 539
 names, 656 - 658

 account value, 656
 hostnames, 656 - 657
 IPv4/IPv6 addresses, 657
 localhost, 658
 matching host values to DNS,

 658 - 659
 quoting, 658
 usernames, 657
 wildcards, 657

 passwords, changing/resetting, 672
 privileges

 account administering, enabling,
 669 - 670

 administrative, 661 - 663 , 666
 ALL specifier, 661 , 666
 combining, 665
 database-level, 666
 displaying, 671
 global, 666
 granting, 660 - 661
 level-specifiers, 665
 no privileges, 668
 object, 663 - 665
 ON specifier, 665
 PROXY, 667
 quoting, 667
 revoking, 671 - 672
 secure connections, requiring,

 668 - 669
 stored routines, 667
 table/column level, 667
 USAGE specifier, 661

 RENAME USER statement, 656
 resource consumption limits, 670 - 671
 root

 passwords, assigning, 567 - 569

25_9780321833877_index.indd 1147 3/6/13 9:50 AM

1148 U.S. Historical League project

 specific options to mysqlbinlog,
 1038 - 1041

 standard options, 1038
 variables, 1041

 mysqlcheck
 checking/repairing tables, 720 - 721
 defined, 538
 maintenance, scheduling, 707
 overview, 1041
 specific options to mysqlcheck,

 1042 - 1044
 standard options, 1041 - 1042
 table analysis options, 1044
 table checking options, 1044
 table maintenance, 700
 table optimization, 1044 - 1045
 table repair options, 1044

 mysqld_multi
 specific options to mysqld_multi,

 1057
 standard options, 1056 - 1057

 mysqld_safe, 1058
 specific options to mysqld_safe,

 1058 - 1059
 standard options, 1058

 mysqldump, 135
 data format options, 1067 - 1068
 database maintenance, 700
 defined, 538
 options, 712 - 714
 overview, 1060
 specific options to mysqldump,

 1061 - 1067
 standard options, 1060
 text dump files, creating, 711 - 714
 variables, 1068

 mysqldumpslow, 621
 mysqlimport

 data files, loading, 53
 data format options, 1070
 overview, 1068
 specific, 1069 - 1070
 standard options, 1068

 mysqlshow, 38
 overview, 1070 - 1071
 specific options, 1071
 standard options, 1071

 tables, creating, 31
 member, 33 , 35 - 38
 president, 32 , 34 - 35

 ushl_browse.pl script, 479 - 482
 ushl_ft_browse.pl script, 482 - 483
 UTC (Universal Coordinated Time), 222
 UTC_DATE() function, 815
 UTC_TIME() function, 815
 UTC_TIMESTAMP() function, 816
 utf8 character set, 104
 utf8mb4 character set, 105
 utf16 character set, 105
 utf16le character set, 105
 utf32 character set, 105
 utilities

 environment variables, checking,
 1011 - 1012

 functions, Web: 1148 - 1149
 help messages, displaying, 1000 - 1001
 my_print_defaults, 1011
 myisamchk

 defined, 538
 maintenance advantages, 719
 options specific to myisamchk, listing

of, 1015 - 1018
 overview, 1013 - 1014
 standard options, 1014
 table maintenance, 700
 variables, 1018 - 1019

 mysql. See mysql utility
 mysql_config

 defined, 1030
 options, 1030 - 1031

 mysql_install_db
 specific options, 1032
 standard options, 1032

 mysql.server, 1029 - 1030
 mysql_upgrade, 1033

 specific options, 1033 - 1034
 standard options, 1033

 mysqladmin
 commands, 1035 - 1037
 defined, 538
 options, 1034 - 1035
 variables, 1013 - 1035

 mysqlbinlog, 622
 overview, 1038

25_9780321833877_index.indd 1148 3/6/13 9:50 AM

1149values

 NULL, 192
 AUTO_INCREMENT columns, 231
 column sort, 62
 directory membership updates,

 535 - 536
 expressions, 246 - 247
 foreign key relationships, 168 - 170
 numeric data types, 203
 result sets, checking, 416 , 504
 sequence columns, 231
 string data types, 216
 temporal data types, 223

 numeric, 181
 approximate, 181 - 182
 bit-field, 182
 exact, 181 - 182

 options, holding, 372 - 373
 permitted lists, defining, 209
 scope columns, 687 - 689

 column_name, 688
 Db, 688
 host, 687 - 689
 proxied_host, 689
 proxied_user, 689
 routine_name, 688
 routine_type, 688
 table_name, 688
 user, 688

 spatial, 191 - 192
 sql_mode system variable, 862 - 865
 SSL-related server status variables,

displaying, 697
 status variables, checking, 588 - 589
 strings, 182 - 184

 backslashes, turning off, 184
 binary, 185 , 188 - 189
 case sensitivity, 100
 character set variables, 189 - 191
 CONVERT() function, 187 - 188
 escape sequences, 183
 hexadecimal notation, 184
 introducers, 187 - 188
 length, 188
 nonbinary, 185 , 188 - 189
 quote characters, including, 183 - 184
 sorting properties, 186
 surrounding quotes, 182 - 183

 options
 case sensitivity, 1001
 checking, 1011
 escape sequences, 1010
 group names, 1009
 leading spaces, 1010
 long-form/short-form, 1001
 option files, 1007 - 1011
 processing features, 1002
 quoting, 1010
 read directives, 1010 - 1011
 SSL, 1006
 standard, 1003 - 1005
 user-specific privacy, 1011
 variables, 1006 - 1007

 perror
 options, 1072
 overview, 1072

 rotate, 628
 UUID() function, 832
 UUID_SHORT() function, 833

 V
 value member (my_option structures), 340
 values

 account, 656
 boolean, 192
 columns, specifying, 196
 data types

 default, 748
 zero, 748

 empty, 475
 improper, handling, 228 - 230

 division by zero errors, 229
 transactional/nontransactional tables,

 229
 turning on strict mode, 230
 warnings, 229
 weakening strict mode, 230
 zero date errors, 229

 MYSQL_BIND array parameters,
assigning, 385

 NOT NULL
 data types for query optimization,

 297
 numeric data types, 203
 string data types, 216
 temporal data types, 223

25_9780321833877_index.indd 1149 3/6/13 9:50 AM

1150 values

 connect1 client program, declaring, 324
 connection handlers, 325
 DBI_TRACE, 429
 environment

 PATH, 739 - 740
 Perl DBI, Web: 1156
 program options, checking,

 1011 - 1012
 global, 97
 InnoDB storage engine, 600 - 601
 innodb_file_per_table, 111
 lower_case_table_names, 100
 myisamchk utility, 1018 - 1019
 MySQL programs, setting, 1006 - 1007
 mysql utility, 1025 - 1026
 MYSQL_BIND array parameters,

assigning, 385
 mysqladmin client, 1013 - 1035
 mysqlbinlog, 1041
 mysqld, 1056
 mysqldump, 1068
 option values, holding, 372 - 373
 Perl DBI, 397 , Web: 1131
 PHP, 492
 query results, binding, 421 - 423
 sql_mode, 96
 SSL-related server status values,

displaying, 697
 status, 881

 general, listing of, 881 - 888
 InnoDB, listing of, 888 - 891
 overview, 584
 query cache, listing of, 891 - 892
 SSL, 892 - 894
 values, checking, 588 - 589

 system, 584 - 585 , 835 - 836
 character_set_server, 603
 collation_server, 603
 displaying, 583 , 836
 error message language selection, 604
 expire_logs_days, 629
 general, listing of, 836 - 870
 general_log, 621
 general_log_file, 621
 InnoDB, listing of, 870 - 880
 innodb_autoextend_increment, 596
 innodb_data_file_path, 595

 system variables, checking, 585 - 586
 temporal, 191

 temporal data types, 226 - 227
 type conversions, 251

 trailing pad, 754
 type conversions, 247 - 251

 ASCII, 254
 binary/nonbinary strings, 255
 character sets, 254
 collations, 255
 comparisons, 251
 CONCAT() function, 248
 dates, 254
 explicit, 247
 floating-point and integer values, 248
 forcing, 253 - 255
 hexadecimal, 248 - 249 , 253
 illegal values, 248
 implicit, 247
 operands to operator expected types,

 249
 string-to-number, 249 - 250
 temporal values, 251
 testing, 252 - 253
 time parts, 254
 values into strings, 253

 VALUES() function, 833
 VAR_POP() function, 821
 VAR_SAMP() function, 821
 var_type member (my_option structures),

 340 - 341
 VARBINARY data type

 overview, 207
 size/storage requirements, 204

 VARBINARY strings, 194 , 755
 VARCHAR data type

 CHAR data types, compared, 206
 columns, creating, 35
 size/storage requirements, 204

 VARCHAR strings, 194 , 757
 variable-length character data types, 35
 variable-length string types, 45 - 46 , 205
 variables

 automatic_sp_privileges, 270
 character set, 189 - 191
 character_set_server, 102
 collation_server, 102

25_9780321833877_index.indd 1150 3/6/13 9:50 AM

1151Web-based scripts

 online directory, creating, 455 - 458
 output, generating, 462 - 464
 servers, configuring, 460 - 461

 Web-based scripts, 459
 CGI

 HTML structure functions, 461
 HTML/URL text, escaping, 464 - 465
 HTML versus XHTML, 464
 importing functions, 461
 input parameters, 462
 multiple-purpose pages, writing,

 465 - 468
 object-oriented interface, 461 - 462
 output, generating, 462 - 464
 portability, 463

 database browser, 471 - 475
 data limits, 475
 empty values into nonbreaking

spaces, converting, 475
 HTML table, creating, 475
 initial page, generating, 472 - 473
 main body of script, 471 - 472
 security warning, 471
 table contents, displaying, 473
 tbl_name parameter, 472

 grade-keeping project score browser,
 475 - 479

 displaying events as a table, 476 - 477
 scores for specified event, listing,

 477 - 479
 Perl DBI scripts, 459 - 460
 PHP

 data-retrieval, 497 - 499
 error handling, 507 - 509
 headers/footers functions, 495 - 497
 home page, 488 - 491
 include files, 491 - 495
 input parameters, 511 - 512
 interactive online quiz, 522 - 527
 live hyperlinks, creating, 499 - 500
 member entries online editing,

 527 - 536
 NULL values, checking, 504
 online score-entry. See PHP scripts,

online score-entry
 placeholders, 506 - 507
 prepared statements, 505
 quoting special characters, 505 - 507

 innodb_file_per_table, 599
 lc_time_names, 604
 log_warnings, 620
 max_relay_log_size, 624 , 630
 names, 836
 overview, 583
 setting, 587 - 588 , 836
 slow_query_log, 621
 time zones, 602 - 603
 values, checking, 585 - 586

 user-defined, 71 , 894 - 895
 VARIANCE() function, 821
 verifying

 event scheduler status, 274
 query optimizer operation, 287

 VERSION() function, 833
 version system variable, 869
 version_comment system variable, 870
 version_compile_machine system variable, 870
 version_compile_os system variable, 870
 vertical bars (||), operators/functions, 764
 viewing. See displaying
 views

 column names, 263 - 264
 defined, 261 - 263
 file representations, 549
 grade-keeping project test/quiz statistics

example, 264 - 265
 identifiers, 98
 names, 100
 privileges, 263
 referring to columns, 263
 security, 275 - 276
 updating, 265
 WHERE clauses, 263

 W
 wait_timeout system variable, 870
 warning_count system variable, 870
 warnings (Perl DBI), 401
 Web

 HTML documents, 455 - 456
 input parameters, checking, 462
 integration, 309
 inventory searches, 14
 multiple purpose pages, writing, 465 - 468

25_9780321833877_index.indd 1151 3/6/13 9:50 AM

1152 Web-based scripts

 InnoDB tablespace, configuring, 598
 input editing commands, 90 - 91
 logs, 621 , 628
 multiple servers, 639 - 641
 MySQL, installing, 739
 mysqld, 575

 connections, listening, 580
 options, 1053
 running as Windows service, 576 - 577
 running manually, 575
 starting, 742
 stopping, 581

 PATH environment variable,
configuring, 740

 program option files, 1007 - 1008
 WITH clause

 GRANT statement, 661 , 938
 resource consumption limits, 670

 WITH GRANT OPTION clause, 669 - 670
 WITH ROLLUP clause, 77 - 78
 writing expressions, 240 - 241

 column references, 240
 functions/arguments, 240
 NULL values, 246 - 247
 operators, 241 - 243

 arithmetic, 241
 bit, 242
 comparison, 243
 logical, 241 - 242
 precedence, 246

 pattern matching, 243 - 245
 LIKE operator, 243 - 244
 REGEXP operator, 244

 scalar subqueries, 241
 writing scripts

 APIs. See APIs
 benefits, 307 - 308
 C client. See C client programs
 goals, 308
 Perl DBI, Web: 1130

 case sensitivity, 400
 characteristics, 396
 comments, adding, 398
 connect() function arguments,

 399 - 400
 connection parameters, specifying,

 423 - 426
 connections, 400 , 425 - 426

 row-modifying statements, 501
 rows, retrieving, 501 - 504
 security, 470 - 471 , 491
 statements, handling, 500 - 501

 servers, connecting, 468 - 469
 table searches, 479 - 483

 FULLTEXT indexes, 482 - 483
 pattern matching, 479 - 482

 Web server, configuring, 460 - 461
 Web sites

 MySQL
 mailing list, 80, 642
 reference manuals , 7
 Workbench, 21

 Open Geospatial Consortium, 191
 PDO, 486
 Perl DBI, 395
 Perl modules, 743
 PHP, 486 , 743
 sampdb distribution, 735
 WWW security FAQ, 471
 XPath, 816

 WEEK() function, 816 - 817
 WEEKDAY() function, 817
 WEEKOFYEAR() function, 817
 WEIGHT_STRING() function, 801 - 802
 WHAT clause, 660
 WHERE clause

 COUNT() function, 72
 DELETE statement, 85
 query optimizer, 288 - 289
 SELECT statement, 56
 SHOW statement, 131
 SHOW STATUS statement, 589
 SHOW VARIABLES statement, 585
 UPDATE statement, 86
 views, 263

 where-to-find-Perl indicators, 398
 WHILE statements, 983 - 984 , 989
 wildcards

 LIKE operator, 244
 REGEXP operator, 244
 user account names, 657

 Windows
 compressing dump files, 712
 database relocation, 560
 initial user accounts, 567

25_9780321833877_index.indd 1152 3/6/13 9:50 AM

1153zero values

 live hyperlinks, creating, 499 - 500
 member entries online editing,

 527 - 536
 names, 486
 NULL values, checking, 504
 online score-entry. See PHP scripts,

online score-entry
 overview, 487
 PDO classes, Web: 1158
 PDO error exceptions, 491
 placeholders, 506 - 507
 prepared statements, 505
 quoting special characters, 505 - 507
 row-modifying statements, 501
 rows, retrieving, 501 - 504
 samples, installing, 486 - 487
 security, 491
 server connections, 490 - 491
 standalone, 489
 statements, handling, 500 - 501
 variables, 492
 Web site, 486

 Web integration, 309
 WWW security FAQ Web site, 471

 X
 X509, 668
 XHTML, 464
 XML functions, 828
 XOR operator, 57 , 241 , 773
 XPath, 816

 Y
 YEAR data type, 193 , 222 - 223 , 762
 YEAR() function, 817
 YEARWEEK() function, 817

 Z
 zero date errors, 229
 ZEROFILL attribute, 201 - 202 , 749
 zero values, 748

 debugging. See debugging, Perl DBI
scripts

 disconnecting, 402
 dump_members.pl, 397 - 398
 entire result sets, returning at once,

 413 - 415
 error handling, 402 - 405
 finish() function, 402
 function parentheses, 401
 handles, 397
 invoking scripts, 396
 nonhandle variables, 397
 null values, checking, 416
 number of rows returned, 411
 parameter binding, 421 - 423
 placeholders, 419 - 421
 prepared statements, 421
 quoting special characters, 416 - 419
 requirements, 395
 result set metadata, 430 - 434
 result sets, displaying, 400
 row-fetching loops, 401 - 402 , 407 - 411
 row-modifying statements, 406 - 407
 single-row results, returning, 411 - 413
 statement terminators, 401
 transactions, 434 - 436
 undef argument, 422
 use DBI statement, 399
 use strict statements, 399
 use warnings statement, 399
 U.S. Historical League examples.

 See Perl DBI scripts, U.S. Historical
League

 warnings mode, 401
 Web-based. See Perl DBI scripts, Web-

based
 where-to-find-Perl indicator, 398

 PHP, Web: 1157 - 1158
 data-retrieval, 497 - 499
 database-access interfaces, 485 - 486
 error handling, 507 - 509
 headers/footers functions, 495 - 497
 hello world examples, 487 - 488
 home page, 488 - 491
 include files, 491 - 495
 input parameters, 511 - 512
 interactive online quiz, 522 - 527

25_9780321833877_index.indd 1153 3/6/13 9:50 AM

	Table of Contents
	Introduction
	Why Choose MySQL?
	What You Can Expect from This Book
	Road Map to This Book
	Part I: General MySQL Use
	Part II: Using MySQL Programming Interfaces
	Part III: MySQL Administration
	Part IV: Appendixes

	How to Read This Book
	Versions of Software Covered in This Book
	Conventions Used in This Book
	Additional Resources

	2 Using SQL to Manage Data
	2.1 The Server SQL Mode
	2.2 MySQL Identifier Syntax and Naming Rules
	2.3 Case Sensitivity in SQL Statements
	2.4 Character Set Support
	2.5 Selecting, Creating, Dropping, and Altering Databases
	2.6 Creating, Dropping, Indexing, and Altering Tables
	2.7 Obtaining Database Metadata
	2.8 Performing Multiple-Table Retrievals with Joins
	2.9 Performing Multiple-Table Retrievals with Subqueries
	2.10 Performing Multiple-Table Retrievals with UNION
	2.11 Multiple-Table Deletes and Updates
	2.12 Performing Transactions
	2.13 Foreign Keys and Referential Integrity
	2.14 Using FULLTEXT Searches

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

