

Peachpit Press

V I S U A L Q U I C K P r o G U I D E

PHP
Advanced

and Object-Oriented
Programming

Larry ULLman

Visual QuickPro Guide
PHP Advanced and Object-Oriented Programming
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2013 by Larry Ullman

Acquisitions Editor: Rebecca Gulick
Production Coordinator: Myrna Vladic
Copy Editor: Liz Welch
Technical Reviewer: Alan Solis
Compositor: Danielle Foster
Proofreader: Patricia Pane
Indexer: Valerie Haynes Perry
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the author nor Peachpit Press
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education.
Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of
a trademark claim, the designations appear as requested by the owner of the trademark. All other
product names and services identified throughout this book are used in editorial fashion only and
for the benefit of such companies with no intention of infringement of the trademark. No such use,
or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

13-digit ISBN: 978-0-321-83218-4
10-digit ISBN: 0-321-83218-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

Dedication
To my good friend Michael K. and his family: I cannot thank you all
enough for your continuing friendship, generosity, and kindness over
these many years.

My utmost thanks to…
Jessica, the love of my life, for just about everything.

Zoe and Sam, for making my world a better place.

Everyone at Peachpit Press for their support, for their dedication to
putting out quality books, and for everything else they do to make all
this happen.

The most excellent editor, Rebecca Gulick, for so many reasons.

Liz Welch, for her spot-on copyediting and attention to detail.

The production coordinator, Myrna Vladic, the compositor, Danielle Foster,
the proofreader, Patricia Pane, and the indexer, Valerie Haynes Perry, who
turn my mess of files into an actual book.

Alan Solis, for his very, very helpful technical review.

Thomas Larsson, for his input on the design patterns chapter. Always
helpful to get even one more extra set of eyes!

Tjobbe Andrews (http://tawd.co.uk), for volunteering to create a
new HTML5 design for the example chapter. And for doing so on such
short notice!

Sara, for entertaining the kids so that I can get some work done, even
if I’d rather not.

The readers, the readers, the readers!

http://tawd.co.uk

Table of Contents v

Table of Contents

 Introduction . ix

Chapter 1 Advanced PHP Techniques 1

Multidimensional Arrays 2
Advanced Function Definitions 17
The Heredoc Syntax . 31
Using printf() and sprintf() 37
Review and Pursue . 42

Chapter 2 Developing Web Applications 43

Modularizing a Web Site 44
Improved SEO with mod_rewrite 67
Affecting the Browser Cache 75
Review and Pursue . 80

Chapter 3 Advanced Database Concepts 81

Storing Sessions in a Database 82
Working with U.S. Zip Codes 96
Creating Stored Functions108
Displaying Results Horizontally 112
Review and Pursue . 118

Chapter 4 Basic Object-Oriented Programming 119

OOP Theory . 120
Defining a Class . 121
Creating an Object . 124
The $this Attribute . 127
Creating Constructors 133
Creating Destructors . 136
Designing Classes with UML 140
Better Documentation with phpDocumentor. 143
Review and Pursue . 148

vi Table of Contents

Chapter 5 Advanced OOP . 149

Advanced Theories .150
Inheriting Classes . 152
Inheriting Constructors and Destructors 157
Overriding Methods . 161
Access Control. . 165
Using the Scope Resolution Operator 172
Creating Static Members 176
Review and Pursue . 182

Chapter 6 More Advanced OOP 183

Abstract Classes and Methods 184
Interfaces . 191
Traits . 197
Type Hinting . 203
Namespaces . 207
Review and Pursue . 212

Chapter 7 Design Patterns . 213

Understanding Design Patterns 214
The Singleton Pattern 216
The Factory Pattern . 220
The Composite Pattern 225
The Strategy Pattern 233
Review and Pursue . 242

Chapter 8 Using Existing Classes 243

Catching Exceptions 244
Extending the Exception Class. 251
Using PDO . 258
Using the Standard PHP Library 270
Review and Pursue . 282

Chapter 9 Example—CMS with OOP 283

Identifying the Goals 284
Creating the Database 286
Making the Template 290
Writing a Utilities File 294
Creating the Error View File 297

Table of Contents vii

Defining the Classes 299
Creating the Home Page 304
Viewing a Page . 308
Using HTML_QuickForm2 312
Logging Out . 320
Adding Pages . 322
Review and Pursue . 326

Chapter 10 Networking with PHP 327

Accessing Other Web Sites 328
Working with Sockets 333
Performing IP Geolocation 339
Using cURL . 343
Creating Web Services 347
Review and Pursue . 352

Chapter 11 PHP and the Server . 353

Compressing Files. 354
Establishing a cron . 363
Using MCrypt . 366
Review and Pursue . 376

Chapter 12 PHP’s Command-Line Interface 377

Testing Your Installation 378
Executing Bits of Code 383
Interactive PHP CLI . 386
Creating a Command-Line Script 388
Running a Command-Line Script 391
Working with Command-Line Arguments 395
Taking Input . 400
Built-In Server . 405
Review and Pursue . 408

Chapter 13 XML and PHP . 409

What Is XML?. 410
XML Syntax. 412
Attributes, Empty Elements, and Entities 415
Defining XML Schemas 419
Parsing XML . 432

viii Table of Contents

Creating an RSS Feed. 447
Review and Pursue . 452

Chapter 14 Debugging, Testing, and Performance 453

Debugging Tools . 454
Unit Testing . 460
Profiling Scripts . 471
Improving Performance. 473
Review and Pursue . 476

 Index . 477

Introduction ix

Introduction

In this humble author’s (or not-so-humble
author’s) opinion, “advanced PHP” is about
continuing to learn: you already know how
to use PHP, and presumably MySQL, for
all the standard stuff, and now it’s time to
expand that knowledge. This new knowl-
edge can range from how to do different
things, how to improve on the basic things,
and how other technologies intersect with
PHP. In short, you know how to make a
dynamic Web site with PHP, but you’d like
to know how to make a better Web site,
with every possible meaning of “better.”

This is the approach I’ve taken in writing
this book. I haven’t set out to blow your
mind discussing esoteric idiosyncrasies the
language has; rewriting the PHP, MySQL,
or Apache source code; or making theo-
retically interesting but practically useless
code. In short, I present to you several
hundred pages of beyond-the-norm but
still absolutely necessary (and often cool)
tips and techniques.

About This Book
Simply put, I’ve tried to make this book’s
content accessible and useful for every
PHP intermediate-level programmer out
there. As I suggest in the introductory
paragraphs, I believe that “advanced” PHP
is mostly a matter of extended topics. You
already possess all the basic knowledge—
you retrieve database query results in your
sleep—but want to go further. This may
mean learning object-oriented program-
ming (OOP), using PEAR (PHP Extension
and Application Repository), invoking PHP
on the command line, picking up eXtensi-
ble Markup Language (XML), or fine-tuning
aspects of your existing skill set.

My definition of advanced PHP program-
ming covers three loosely grouped areas:

n	 Doing what you already do better,
faster, and more securely

n	 Learning OOP

n	 Doing standard things using PHP and
other technologies (like networking,
unit testing, or XML)

x Introduction

This book can be loosely divided into three
sections. The first three chapters cover
advanced PHP knowledge in general: pro-
gramming techniques, Web applications,
and databases. Those chapters all cover
information that the average PHP program-
mer may not be familiar with but should be
able to comprehend. In the process, you’ll
pick up lots of useful code, too.

The next six chapters focus on object-
oriented programming. This section
constitutes about half of the book. OOP is
explained starting with the fundamentals,
then going into lots of advanced topics, and
ending with plenty of real-world examples.

The final five chapters are all “PHP and…”
chapters:

n	 Communicating with networked servers

n	 Communicating with the host server

n	 Using the command-line interface

n	 XML

n	 Debugging, testing, and performance

Most examples used in this book are
intended to be applicable in the real world,
omitting the frivolous code you might see in
other books, tutorials, and manuals. I focus
almost equally on the philosophies involved
as on the coding itself so that, in the end,
you will come away with not just how to do
this or that but also how to apply the new
skills and ideas to your own projects.

Unlike with most of my other books, I do
not expect that you’ll necessarily read this
book in sequential order, for the most part.
Some chapters do assume that you’ve
read others, like the object-oriented ones,
which have a progression to them. Some
later chapters also reference examples
completed in earlier ones. If you read the
later ones first, you’ll just need to skip
back over to the earlier ones to gener-
ate whatever database or scripts the later
chapter requires.

Finally, I’ll be using HTML5 in my scripts
instead of HTML. I’ll also use some CSS, as
warranted. I do not discuss either of these
subjects in this book (and, to be frank, may
not adhere to them perfectly). If you are
not already familiar with the subjects, you
should look at some online resources or
good books (such as Elizabeth Castro’s
excellent Visual QuickStart Guides) for
more information.

Introduction xi

What’s new in this edition
I had three goals in writing this new edition:

n	 Greatly expanding the coverage
of OOP

n	 Introducing new, more current topics,
such as unit testing and debugging

n	 Cutting content that is outdated or
has since been better covered in my
other books

In terms of additional new material, by far
the biggest change has been the additional
coverage of object-oriented programming,
including a chapter on design patterns.
There’s also a new example chapter that
uses objects instead of procedural code.

Of course, all of the code and writing has
been refreshed, edited, and improved as
needed. This could mean just switching to
HTML5 and better use of CSS, or my doing
a better job of explaining complex ideas
and examples.

How this book compares
to my others
Those readers who have come to this book
from my PHP for the Web: Visual Quick-
Start Guide (Peachpit Press, 2011) may find
themselves in a bit over their heads. This
book does assume complete comfort with
standard PHP programming, in particular
debugging your own scripts. I’m not sug-
gesting you put this book down, but if you
find it goes too fast for you or assumes
knowledge you don’t currently possess, you
may want to check out my PHP and MySQL
for Dynamic Web Sites: Visual QuickPro
Guide (Peachpit Press, 2011) instead.

If you have read the PHP and MySQL
book, or a previous edition of this one, I’m
hoping that you’ll find this to be a wonder-
ful addition to your library and skill set.

What You’ll Need
Just as this book assumes that you already
possess the fundamental skills to program
in PHP (and, more important, to debug it
when things go awry), it also assumes that
you already have everything you need to
follow along with the material. For starters,
this means a PHP-enabled server. As of this
writing, the latest version of PHP was 5.4,
and much of the book depends on your
using at least PHP 5.3.

Along with PHP, you’ll often need a
database application. I use MySQL for the
examples, but you can use anything. And,
for the scripts in some of the chapters to
work—particularly the last five—your PHP
installation will have to include support
for the corresponding technology, and
that technology’s library may need to be
installed, too. Fortunately, PHP 5 comes
with built-in support for many advanced
features. If the scripts in a particular chap-
ter require special extensions, that will be
referenced in the chapter’s introduction.
This includes the few times where I make
use of a PEAR or PECL class. Nowhere in
this book will I discuss installation of PHP,
MySQL, and a Web server, though, as I
expect you should already know or have
accomplished that.

Should you have questions or problems,
you can always search the Web or post a
message in my support forums (www.Larry
Ullman.com/forums/) for assistance.

Beyond PHP, you need the things you
should already have: a text editor or IDE,
an FTP application (if using a remote
server), and a Web browser. All of the
code in this book has been tested on both
Windows XP and Mac OS X; you’ll see
screen shots in both operating systems.

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

xii Introduction

Support Web Site
I have developed a Web site to support this
book, available at www.LarryUllman.com.
This site:

n	 Has every script available for download

n	 Has the SQL commands available for
download

n	 Has extra files, as necessary, available
for download

n	 Lists errors that have been found in
the book

n	 Features a support forum where you
can get help or assist others

n	 Provides a way to contact me directly

I’ll also post at the site articles that extend
some of the information covered in
this book.

When using this site, please make sure
you’ve gone to the correct URL (the book’s
title and edition are plastered everywhere).
Each book I’ve written has its own sup-
port area; if you go to the wrong one, the
downloadable files won’t match those in
the book.

www.LarryUllman.com

4
Basic

Object-Oriented
Programming

Although PHP is still not as strong in its
OOP feature set as other languages,
object-oriented programming in PHP has
a lot going for it. And while it is possible to
have a good career without learning and
using OOP, you should familiarize yourself
with the concept. At the very least, being
able to use both OOP and procedural pro-
gramming allows you to better choose the
right approach for each individual project.

In this chapter, and the next (Chapter 5,
“Advanced OOP”), I will explain not only
the syntax of OOP in PHP 5 and later, but
the key underlying OOP theories as well. In
this chapter, I will use somewhat mundane
examples, but in subsequent chapters,
practical, real-world code will be used.
Through multiple examples and plenty of
explanation, I hope in this book to fully
demonstrate not just how you do object-
oriented programming in PHP but also
when and why.

In This Chapter
OOP Theory 120

Defining a Class 121

Creating an Object 124

The $this Attribute 127

Creating Constructors 133

Creating Destructors 136

Designing Classes with UML 140

Better Documentation with
phpDocumentor 143

Review and Pursue 148

120 Chapter 4

OOP Theory
The first thing that you must understand
about OOP is that it presents not just new
syntax but a new way of thinking about a
problem. By far the most common mistake
beginning OOP programmers make is to
inappropriately apply OOP theory. PHP will
tell you when you make a syntactical mis-
take, but you’ll need to learn how to avoid
theoretical mistakes as well. To explain…

All programming comes down to taking
actions with data: a user enters data in
an HTML form; the PHP code validates it,
emails it, and stores it in a database; and so
forth. These are simply verbs (actions) and
nouns (data). With procedural programming,
the focus is on the verbs: do this, then this,
then this. In OOP, the focus is on the nouns:
with what types of things will the applica-
tion work? In both approaches, you need
to identify both the nouns and the verbs
required; the difference is in the focus of the
application’s design.

The two most important terms for OOP are
class and object. A class is a generalized
definition of a thing. Think of classes as
blueprints. An object is a specific imple-
mentation of that thing. Think of objects
as the house built using the blueprint as a
guide. To program using OOP, you design
your classes and then implement them as
objects in your programs when needed.

One of the tenets of OOP is modularity:
breaking applications into specific subparts.
Web sites do many, many things: interact
with databases, handle forms, send emails,
generate HTML, etc. Each of these things
can be a module, which is to say a class.
By separating unrelated (albeit interacting)
elements, you can develop code indepen-
dently, make maintenance and updates less
messy, and simplify debugging.

Related to modularity is abstraction:
classes should be defined broadly. This is
a common and understandable beginner’s
mistake. As an example, instead of design-
ing a class for interacting with a MySQL
database, you should make one that
interacts with a nonspecific database. From
there, using inheritance and overriding,
you would define a more particular class
for MySQL. This class would look and act
like the general database class, but some
of its functionality would be customized.

Another principle of OOP is encapsulation:
separating out and hiding how something
is accomplished. A properly designed class
can do everything you need it to do with-
out your ever knowing how it’s being done.
Coupled with encapsulation is access
control or visibility, which dictates how
available components of the class are.

Those are the main concepts behind OOP.
You’ll see how they play out in the many
OOP examples in this book. But before
getting into the code, I’ll talk about OOP’s
dark side.

First of all, know that OOP is not a better
way to program, just a different way. In
some cases, it may be better and in some
cases worse.

As for the technical negatives of OOP,
use of objects can be less efficient than a
procedural approach. The performance dif-
ference between using an object or not may
be imperceptible in some cases, but you
should be aware of this potential side effect.

A second issue that arises is what I have
already pointed out: misuse and overuse
of objects. Whereas bad procedural pro-
gramming can be a hurdle to later fix, bad
OOP can be a nightmare. However, the
information taught over the next several
chapters should prevent that from being
the case for you.

Basic Object-Oriented Programming 121

Attributes within classes are a little dif-
ferent than variables outside of classes.
First, all attributes must be prefixed with a
keyword indicating the variable’s visibility.
The options are public, private, and
protected. Unfortunately, these values
won’t mean anything to you until you
understand inheritance (in Chapter 5),
so until then, just use public:

class ClassName {

 public $var1, $var2;

 function functionName() {

 // Function code.

 }

}

As shown here, a class’s attributes are
listed before any method definitions.

The second distinction between attributes
and normal variables is that if an attribute
is initialized with a set value, that value
must be a literal value and not the result
of an expression:

class GoodClass {

 public $var1 = 123;

 public $var2 = 'string';

 public $var3 = array(1, 2, 3);

}

class BadClass {

 // These won't work!

 public $today = get_date();

 public $square = $num * $num;

}

Defining a Class
OOP programming begins with classes, a
class being an abstract definition of a thing:
what information must be stored and what
functionality must be possible with that
information? A User class would be able to
store information such as the user’s name,
ID, email address, and so forth. The func-
tionality of a User could be login, logout,
change password, and more.

Syntactically, a class definition begins with
the word class, followed by the name
of the class. The class name cannot be
a reserved word and is often written in
uppercase, as a convention. After the class
name, the class definition is placed within
curly braces:

class ClassName {

}

Classes contain variables and functions,
which are referred to as attributes (or
properties) and methods, respectively
(you’ll see other terms, too). Collectively, a
class’s attributes and methods are called
its members.

Functions are easy to add to classes:

class ClassName {

 function functionName() {

 // Function code.

 }

}

The methods you define within a class
are defined just like functions outside of
a class. They can take arguments, have
default values, return values, and so on.

122 Chapter 4

Note that you don’t have to initialize the attri-
butes with a value. And, aside from declaring
variables, all of a class’s other code goes
within its methods. You cannot execute state-
ments outside of a class method:

class BadClass {

 public $num = 2;

 public $square;

 $square = $num * $num; // No!

}

With all of this in mind, let’s create an easy,
almost useless class just to make sure it’s
all working fine and dandy. Naturally, I’ll
use a Hello, world! example (it’s either that
or foo and bar). To make it a little more
interesting, this class will be able to say
Hello, world! in different languages.

To define a class:
1. Create a new PHP document in

your text editor or IDE, to be named
HelloWorld.php (Script 4.1):

<?php # Script 4.1 - HelloWorld.php

2. Begin defining the class:

class HelloWorld {

Using the syntax outlined earlier, start
with the keyword class, followed by
the name of the class, followed by the
opening curly brace (which could go on
the next line, if you prefer).

For the class name, I use the “upper-
case camel” capitalization: initial
letters are capitalized, as are the first
letters of new words. This is a pseudo-
standardized convention in many OOP
languages.

1	 <?php	#	Script	4.1	-	HelloWorld.php
2	 /*		This	page	defines	the	HelloWorld		
	 ➝ class.
3	 	*		The	class	says	"Hello,	world!"	in		
	 	➝ different	languages.
4	 	*/
5	 class	HelloWorld	{
6	
7	 	 //	This	method	prints	a	greeting.
8	 	 //	It	takes	one	argument:	the		
	 	 ➝ language	to	use.
9	 	 //	Default	language	is	English.
10	 	 function	sayHello($language	=		
	 	 ➝ 'English')	{
11	
12	 	 	 //	Put	the	greeting	within	P	tags:
13	 	 	 echo	'<p>';
14	 	 	
15	 	 	 //	Print	a	message	specific	to	a		
	 	 	 ➝ language:
16	 	 	 switch	($language)	{
17	 	 	 	 case	'Dutch':
18	 	 	 	 	 echo	'Hallo,	wereld!';
19	 	 	 	 	 break;
20	 	 	 	 case	'French':
21	 	 	 	 	 echo	'Bonjour,	monde!';
22	 	 	 	 	 break;
23	 	 	 	 case	'German':
24	 	 	 	 	 echo	'Hallo,	Welt!';
25	 	 	 	 	 break;
26	 	 	 	 case	'Italian':
27	 	 	 	 	 echo	'Ciao,	mondo!';
28	 	 	 	 	 break;
29	 	 	 	 case	'Spanish':
30	 	 	 	 	 echo	'¡Hola,	mundo!';
31	 	 	 	 	 break;
32	 	 	 	 case	'English':
33	 	 	 	 default:
34	 	 	 	 	 echo	'Hello,	world!';
35	 	 	 	 	 break;
36	 	 	 }	//	End	of	switch.
37	
38	 	 	 //	Close	the	HTML	paragraph:
39	 	 	 echo	'</p>';
40	
41	 	 	 }	//	End	of	sayHello()	method.
42	 	
43	 }	//	End	of	HelloWorld	class.

Script 4.1 This simple class will allow you to say
Hello, world! through the magic of objects! (Okay,
so it’s completely unnecessary, but it’s a fine
introductory demonstration.)

Basic Object-Oriented Programming 123

 break;

 case 'English':

 default:

 echo 'Hello, world!';

 break;

} // End of switch.

The switch prints different messages
based upon the chosen language.
English is the default language, both
in the switch and as the value of the
$language argument (see Step 3). Obvi-
ously you can easily expand this switch
to include more languages, like non-
Western ones.

6. Complete the sayHello() method:

 echo '</p>';

} // End of sayHello() method.

You just need to close the HTML para-
graph tag.

7. Complete the class and the PHP page:

}

8. Save the file as HelloWorld.php.

You’ve now created your first class. This
isn’t, to be clear, a good use of OOP,
but it starts the process and you’ll learn
better implementations of the concept
in due time.

Note that I’m not using a closing PHP
tag, which is my policy for PHP scripts
to be included by other files.

 Class methods can also have a visibility,
by preceding the function definition with the
appropriate keyword. If not stated, all methods
have an assumed definition of

public function functionName() {...

 The class stdClass is already in use
internally by PHP and cannot be declared in
your own code.

3. Begin defining the first (and only) method:

function sayHello($language =
➝'English') {

This class currently contains no attri-
butes (variables), as those would have
been declared before the methods.
This method is called sayHello(). It
takes one argument: the language for
the greeting.

For the methods, I normally use the
“lowercase camel” convention: start
with lowercase letters, separating
words with an uppercase letter. This is
another common convention, although
not one as consistently followed as that
for the class name itself.

4. Start the method’s code:

echo '<p>';

The method will print Hello, world! in
one of several languages. The message
will be wrapped within HTML paragraph
tags, begun here.

5. Add the method’s switch:

switch ($language) {

 case 'Dutch':

 echo 'Hallo, wereld!';

 break;

 case 'French':

 echo 'Bonjour, monde!';

 break;

 case 'German':

 echo 'Hallo, Welt!';

 break;

 case 'Italian':

 echo 'Ciao, mondo!';

 break;

 case 'Spanish':

 echo '¡Hola, mundo!';

124 Chapter 4

Creating an Object
Using OOP is a two-step process. The
first—defining a class—you just did when
you wrote the HelloWorld class. The
second step is to make use of that class by
creating an object (or a class instance).

Going back to my User class analogy, an
instance of this class may be for the user
with a username of janedoe. The user’s
attributes might be that username, a user
ID of 2459, and an email address of jane@
example.com. This is one instance of the
User class. A second instance, john_doe,
has that username, a user ID of 439, and
an email address of john.doe@example.
edu. These are separate objects derived
from the same class. They are the same in
general, but different in specificity.

Creating an object is remarkably easy in
PHP once you’ve defined your class. It
requires the keyword new:

$object = new ClassName();

Now the variable $object exists and is of
type ClassName (instead of type string or
array). More technically put, $object is an
instance of ClassName.

To call the methods of the class, you use
this syntax:

$object->methodName();

(The -> can be called the object operator.)

If a method takes arguments, you provide
those within parentheses, as in any func-
tion call:

$object->methodName('value', 32, true);

To access an object’s properties, use

$object->propertyName;

Note that you would not use the property
variable’s dollar sign, which is a common
cause of parse errors:

$object->$propertyName; // Error!

(As you’ll also see in the next chapter, the
ability to reference an object’s method or
property in this manner depends upon the
member’s visibility.)

Once you’ve finished with an object, you
can delete it as you would any variable:

unset($object);

Simple enough! Let’s go ahead and quickly
make use of the HelloWorld class.

To create an object:
1. Create a new PHP document in

your text editor or IDE, to be named
hello_object.php, beginning with the
standard HTML (Script 4.2):

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Hello, World!</title>

 <link rel="stylesheet"
href="style.css">

</head>

<body>

<?php # Script 4.2 -
➝ hello_object.php

The class definition file itself contains
no HTML, as it’s not meant to be used
on its own. This PHP page will include
all of the code necessary to make a
valid HTML page.

Basic Object-Oriented Programming 125

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Hello,	World!</title>
6	 	 <link	rel="stylesheet"		
	 	 ➝ href="style.css">
7	 </head>
8	 <body>
9	 <?php	#	Script	4.2	-	hello_object.php
10	 /*	This	page	uses	the	HelloWorld	class.
11	 	*	This	page	just	says	"Hello,	world!".
12	 	*/
13	
14	 //	Include	the	class	definition:
15	 require('HelloWorld.php');
16	
17	 //	Create	the	object:
18	 $obj	=	new	HelloWorld();
19	
20	 //	Call	the	sayHello()	method:
21	 $obj->sayHello();
22	
23	 //	Say	hello	in	different	languages:
24	 $obj->sayHello('Italian');
25	 $obj->sayHello('Dutch');
26	 $obj->sayHello('French');
27	
28	 //	Delete	the	object:
29	 unset($obj);
30	 ?>
31	 </body>
32	 </html>

2. Include the class definition:

require('HelloWorld.php');

In order to create an instance of a class,
the PHP script must have access to that
class definition A. As the definition is
stored in a separate file, that file must be
included here. By using require() (as
opposed to include()), the script will
stop executing with a fatal error if the file
could not be included (and there is no
point in continuing without this file).

3. Create the object:

$obj = new HelloWorld();

This one line of code is all there is to
it! You can give the object variable any
valid name you’d like, of course.

4. Invoke the sayHello() method:

$obj->sayHello();

This line of code will call the sayHello()
method, which is part of the $obj object.
Since the method is not being given any
arguments, the greeting will be in the
default language of English.

5. Say hello in a few more languages:

$obj->sayHello('Italian');

$obj->sayHello('Dutch');

$obj->sayHello('French');

An object’s methods can be called
multiple times, like any other function.
Different arguments are provided to
vary the result.

continues on next page

Script 4.2 In this page, PHP uses the defined class
in order to say Hello, world! in several different
languages.

A You’ll see an error like this if you go to create an object whose
class definition cannot be found.

126 Chapter 4

6. Delete the object and complete the page:

unset($obj);

?>

</body>

</html>

You don’t technically have to delete
the object—it will be deleted as soon
as the script ends. Still, I think it’s better
programming form to tidy up like this.

7. Save the file as hello_object.php and
place it in your Web directory, along
with HelloWorld.php.

You don’t have to place both docu-
ments in the same directory, but if they
are stored separately, you will need to
change the require() line accordingly.

8. Test hello_object.php by viewing it in
your Web browser B.

Note that you should run hello_
object.php, not HelloWorld.php,
in your Web browser.

 Class names are not case-sensitive.
However, object names, like any variable in
PHP, are case-sensitive.

 Because function names in PHP are not
case-sensitive, the same is true for method
names in classes.

B The resulting Web page (the
examples will get better, I promise).

Analyzing the HelloWorld
example
As I state in the first section of this chap-
ter, OOP is both syntax and theory. For
this first example, the HelloWorld class,
the emphasis is on the syntax. Hopefully
you can already see that this isn’t great
use of OOP. But why? Well, it’s both too
specific and too simple. Having an object
print one string is a very focused idea,
whereas classes should be much more
abstract. It also makes absolutely no
sense to use all this code—and the extra
memory required—for one echo state-
ment. It’s nice that the object handles
different languages, but still…

The HelloWorld class does succeed in
a couple of ways, though. It does dem-
onstrate some of the syntax. And it is
reusable: if you have a project that needs
to say Hello, world! dozens of times, this
one object will do it. And if you need to
change it to Hello, World! (with a capital
“W”), edit just the one file and you’re
golden. To that end, however, it’d be
better for the method to return the string,
rather than just print it, so the string
could be used in more ways.

Finally, this class kind of reflects the
notion of encapsulation: you can use
the object to say Hello, world! in multiple
languages without any knowledge of
how the class does that.

Basic Object-Oriented Programming 127

The issue is that within the class itself (i.e.,
within a class’s methods), you must use
an alternative syntax to access the class’s
attributes. You cannot do just this:

class BadClass {

 public $var;

 function do() {

 // This won't work:

 print $var;

 }

}

The do() method cannot access $var
in that manner. The solution is a special
variable called $this. The $this variable
in a class always refers to the current
instance (i.e., the object involved) of that
class. Within a method, you can refer to
the instance of a class and its attributes by
using the $this->attributeName syntax.

Rather than over-explaining this concept,
I’ll go right into another example that puts
this new knowledge into action. This next,
much more practical, example will define a
class representing a rectangle.

The $this Attribute
The HelloWorld class actually does some-
thing, which is nice, but it’s a fairly minimal
example. The class includes a method, but it
does not contain any attributes (variables).

As I say in the section “Defining a Class,”
attributes:

n	 Are variables

n	 Must be declared as public, private,
or protected (I’ll use only public in
this chapter)

n	 If initialized, must be given a static value
(not the result of an expression)

Those are the rules for defining a class’s
attributes, but using those attributes
requires one more piece of information.
As already explained, through the object,
you can access attributes via the object
notation operator (->):

$object->propertyName;

128 Chapter 4

To use the $this variable:
1. Create a new PHP document in your

text editor or IDE, to be named
Rectangle.php (Script 4.3):

<?php # Script 4.3 - Rectangle.php

2. Begin defining the class:

class Rectangle {

3. Declare the attributes:

public $width = 0;

public $height = 0;

This class has two attributes: one for
the rectangle’s width and another for its
height. Both are initialized to 0.

4. Create a method for setting the rect-
angle’s dimensions:

function setSize($w = 0, $h = 0) {

 $this->width = $w;

 $this->height = $h;

}

The setSize() method takes two argu-
ments, corresponding to the width and
height. Both have default values of 0,
just to be safe.

Within the method, the class’s attributes
are given values using the numbers
to be provided when this method is
called (assigned to $w and $h). Using
$this->width and $this->height
refers to this class’s $width and
$height attributes.

1	 <?php	#	Script	4.3	-	Rectangle.php
2	 /*		This	page	defines	the	Rectangle		
	 ➝ class.
3	 	*		The	class	contains	two	attributes:		
	 	➝ width	and	height.
4	 	*		The	class	contains	four	methods:	
5	 	*		-	setSize()
6	 	*		-	getArea()
7	 	*		-	getPerimeter()
8	 	*		-	isSquare()
9	 	*/
10	 	
11	 class	Rectangle	{
12	
13	 	 //	Declare	the	attributes:
14	 	 public	$width	=	0;
15	 	 public	$height	=	0;
16	 	
17	 	 //	Method	to	set	the	dimensions:
18	 	 function	setSize($w	=	0,	$h	=	0)	{
19	 	 	 $this->width	=	$w;
20	 	 	 $this->height	=	$h;
21	 	 }
22	 	
23	 	 //	Method	to	calculate	and	return		
	 	 ➝ the	area.
24	 	 function	getArea()	{
25	 	 	 return	($this->width	*		
	 	 	 ➝ $this->height);
26	 	 }
27	 	
28	 	 //	Method	to	calculate	and	return		
	 	 ➝ the	perimeter.
29	 	 function	getPerimeter()	{
30	 	 	 return	(($this->width	+		
	 	 	 ➝ $this->height)	*	2);
31	 	 }
32	 	
33	 	 //	Method	to	determine	if	the		
	 	 ➝ rectange	
34	 	 //	is	also	a	square.
35	 	 function	isSquare()	{
36	 	 	 if	($this->width	==		
	 	 	 ➝ $this->height)	{
37	 	 	 	 return	true;	//	Square

Script 4.3 This class is much more practical
than the HelloWorld example. It contains two
attributes—for storing the rectangle’s width and
height—and four methods.

script continues on next page

Basic Object-Oriented Programming 129

5. Create a method that calculates and
returns the rectangle’s area:

function getArea() {

 return ($this->width *
 ➝ $this->height);

}

This method doesn’t need to take any
arguments, because it can access the
class’s attributes via $this. Calculat-
ing the area of a rectangle is simple:
multiply the width times the height.
This value is then returned.

6. Create a method that calculates and
returns the rectangle’s perimeter:

function getPerimeter() {

 return (($this->width +
 ➝ $this->height) * 2);

}

This method is like getArea(), except it
uses a different formula.

7. Create a method that indicates if the
rectangle is also a square:

function isSquare() {

 if ($this->width ==
 ➝ $this->height) {

 return true;

 } else {

 return false;

 }

}

This method compares the rectangle’s
dimensions. If they are the same, the
Boolean true is returned, indicating the
rectangle is a square. Otherwise, false
is returned.

8. Complete the class:

} // End of Rectangle class.

9. Save the file as Rectangle.php.

38	 	 	 }	else	{
39	 	 	 	 return	false;	//	Not	a	square
40	 	 	 }
41	 	 }
42	
43	 }	//	End	of	Rectangle	class.

Script 4.3 continued

130 Chapter 4

To use the Rectangle class:
1. Create a new PHP document in

your text editor or IDE, to be named
rectangle1.php, beginning with the
standard HTML (Script 4.4):

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Rectangle</title>

 <link rel="stylesheet"
href="style.css">

</head>

<body>

<?php # Script 4.4 - rectangle1.php

2. Include the class definition:

require('Rectangle.php');

3. Define the necessary variables and
print an introduction:

$width = 42;

$height = 7;

echo "<h2>With a width of $width
➝ and a height of $height...</h2>";

4. Create the object and assign the rect-
angle’s dimensions:

$r = new Rectangle();

$r->setSize($width, $height);

The first line creates an object of type
Rectangle. The second line assigns
the values of the variables in this
script—$width and $height—to the
object’s attributes. The values here are
assigned to $w and $h in the setSize()
method when it’s called, which are
then assigned to $this->width and
$this->height within that method.

5. Print the rectangle’s area:

echo '<p>The area of the rectangle
➝ is ' . $r->getArea() . '</p>';

To print the rectangle’s area, you only
need to have the object tell you what
that value is by calling its getArea()
method. As this method returns the
area (instead of printing it), it can be
used in an echo statement like this.

6. Print the rectangle’s perimeter:

echo '<p>The perimeter
➝ of the rectangle is ' .
➝ $r->getPerimeter() . '</p>';

This is a variation on the code in Step 5.

7. Indicate whether or not this rectangle is
also a square:

echo '<p>This rectangle is ';

if ($r->isSquare()) {

 echo 'also';

} else {

 echo 'not';

}

echo ' a square.</p>';

Since the isSquare() method returns
a Boolean value, I can invoke it as a
condition. This code will print either
This rectangle is also a square. or This
rectangle is not a square.

8. Delete the object and complete the page:

unset($r);

?>

</body>

</html>

9. Save the file as rectangle1.php and
place it in your Web directory, along
with Rectangle.php.

continues on page 132

Basic Object-Oriented Programming 131

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Rectangle</title>
6	 	 <link	rel="stylesheet"	href="style.css">
7	 </head>
8	 <body>
9	 <?php	#	Script	4.4	-	rectangle1.php
10	 /*		This	page	uses	the	Rectangle	class.
11	 	*		This	page	shows	a	bunch	of	information	about	a	rectangle.
12	 	*/
13	
14	 //	Include	the	class	definition:
15	 require('Rectangle.php');
16	
17	 //	Define	the	necessary	variables:
18	 $width	=	42;
19	 $height	=	7;
20	
21	 //	Print	a	little	introduction:
22	 echo	"<h2>With	a	width	of	$width	and	a	height	of	$height...</h2>";
23	 	
24	 //	Create	a	new	object:
25	 $r	=	new	Rectangle();
26	
27	 //	Assign	the	rectangle	dimensions:
28	 $r->setSize($width,	$height);
29	
30	 //	Print	the	area:
31	 echo	'<p>The	area	of	the	rectangle	is	'	.	$r->getArea()	.	'</p>';
32	 	
33	 //	Print	the	perimeter:
34	 echo	'<p>The	perimeter	of	the	rectangle	is	'	.	$r->getPerimeter()	.	'</p>';
35	
36	 //	Is	this	a	square?
37	 echo	'<p>This	rectangle	is	';
38	 if	($r->isSquare())	{
39	 	 echo	'also';
40	 }	else	{
41	 	 echo	'not';
42	 }
43	 echo	'	a	square.</p>';
44	
45	 //	Delete	the	object:
46	 unset($r);
47	
48	 ?>
49	 </body>
50	 </html>

Script 4.4 The Rectangle class is used in this PHP script. The rectangle’s dimensions are first assigned to the
class’s attributes by invoking the setSize() method, and then various properties of the rectangle are reported.

132 Chapter 4

10. Test rectangle1.php by viewing it in
your Web browser A.

11. Change the variables’ values in
rectangle1.php and rerun it in your
Web browser B.

 Having get_and set methods in a class
is a common convention. Methods starting
with set are used to assign values to class
attributes. Methods starting with get are used
to return values: either attributes or the results
of calculations.

 Methods can call each other, just as they
would any other function, but you’ll need to
use $this again. The following is unnecessary
but valid:

function getArea() {

 if ($this->isSquare()) {

 return ($this->width *
$this->width);

 } else {

 return ($this->width *
$this->height);

 }

}

A Various attributes for a rectangle are revealed
using the Rectangle class.

B If the width and height are the same, the
rectangle is also a square.

Analyzing the Rectangle example
The Rectangle class as defined isn’t perfect, but it’s pretty good, if I do say so myself. It encap-
sulates all the things you might want to do with or know about a rectangle. The methods also only
handle calculations and return values; no HTML is used within the class, which is a better way
to design.

One criticism may be that the class is too specific. Logically, if you’ve created a site that performs a
lot of geometry, the Rectangle class might be an inherited class from a broader Shape. You’ll learn
about inheritance in the next chapter.

From the first two examples you can see the benefit of objects: the ability to create your own data
type. Whereas a string is a variable type whose only power is to contain characters, the Rectangle is
a new, powerful type with all sorts of features.

Basic Object-Oriented Programming 133

Creating Constructors
A constructor is a special kind of method that
differs from standard ones in three ways:

n	 Its name is always _ _construct().

n	 It is automatically and immediately
called whenever an object of that class
is created.

n	 It cannot have a return statement.

The syntax for defining a constructor is
therefore

class ClassName {

 public $var;

 function _ _construct() {

 // Function code.

 }

}

A constructor could be used to connect to
a database, set cookies, or establish initial
values. Basically, you’ll use constructors to do
whatever should always be done—and done
first—when an object of this class is made.

Because the constructor is still just another
method, it can take arguments, and values
for those arguments can be provided when
the object is created:

class User {

 function _ _construct($id) {

 // Function code.

 }

}

$me = new User(2354);

The Rectangle class could benefit from hav-
ing a constructor that assigns the rectangle’s
dimensions when the rectangle is created.

To add and use a constructor:
1. Open Rectangle.php (Script 4.3) in your

text editor or IDE.

2. After declaring the attributes and before
defining the setSize() method, add the
constructor (Script 4.5):

function _ _construct($w = 0,
➝ $h = 0) {

 $this->width = $w;

 $this->height = $h;

}

continues on next page

1	 <?php	#	Script	4.5	-	Rectangle.php
2	 /*	This	page	defines	the	Rectangle	class.
3	 	*	The	class	contains	two	attributes:	width	and	height.
4	 	*	The	class	contains	five	methods:	
5	 	*	-	_	_construct()
6	 	*	-	setSize()
7	 	*	-	getArea()
8	 	*	-	getPermeter()
9	 	*	-	isSquare()
10	 	*/

Script 4.5 A constructor has been added to the Rectangle class. This makes it possible to assign the
rectangle’s dimensions when the object is created.

script continues on next page

134 Chapter 4

This method is exactly like the setSize()
method, albeit with a different name.
Note that constructors are normally the
first method defined in a class (but still
defined after the attributes).

3. Save the file as Rectangle.php.

4. Open rectangle1.php (Script 4.4) in
your text editor or IDE.

5. If you want, change the values of
the $width and $height variables
(Script 4.6):

$width = 160;

$height = 75;

6. Change the way the object is created
so that it reads

$r = new Rectangle($width,
➝ $height);

The object can now be created and the
rectangle assigned its dimensions in
one step.

7. Delete the invocation of the setSize()
method.

This method is still part of the class,
though, which makes sense. By
keeping it in there, you ensure that a
rectangle object’s size can be changed
after the object is created.

11	 	
12	 class	Rectangle	{
13	
14	 	 //	Declare	the	attributes:
15	 	 public	$width	=	0;
16	 	 public	$height	=	0;
17	
18	 	 //	Constructor:
19 function _ _construct($w = 0,
 ➝ $h = 0) {
20 $this->width = $w;
21 $this->height = $h;
22 }
23	 	
24	 	 //	Method	to	set	the	dimensions:
25	 	 function	setSize($w	=	0,	$h	=	0)	{
26	 	 	 $this->width	=	$w;
27	 	 	 $this->height	=	$h;
28	 	 }
29	 	
30	 	 //	Method	to	calculate	and	return		
	 	 ➝ the	area:
31	 	 function	getArea()	{
32	 	 	 return	($this->width	*		
	 	 	 ➝ $this->height);
33	 	 }
34	 	
35	 	 //	Method	to	calculate	and	return		
	 	 ➝ the	perimeter:
36	 	 function	getPerimeter()	{
37	 	 	 return	(($this->width	+		
	 	 	 ➝ $this->height)	*	2);
38	 	 }
39	 	
40	 	 //	Method	to	determine	if	the		
	 	 ➝ rectange	
41	 	 //	is	also	a	square.
42	 	 function	isSquare()	{	
43	 	 	 if	($this->width	==	$this->height)	
{
44	 	 	 	 return	true;	//	Square
45	 	 	 }	else	{
46	 	 	 	 return	false;	//	Not	a	square
47	 	 	 }
48	 	 	
49	 	 }
50	
51	 }	//	End	of	Rectangle	class.

Script 4.5 continued

Basic Object-Oriented Programming 135

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Rectangle</title>
6	 	 <link	rel="stylesheet"		
	 	 ➝ href="style.css">
7	 </head>
8	 <body>
9	 <?php	#	Script	4.6	-	rectangle2.php
10	 /*	This	page	uses	the	revised	Rectangle		
	 ➝ class.
11	 	*	This	page	shows	a	bunch	of		
	 	➝ information
12	 	*	about	a	rectangle.
13	 	*/
14	
15	 //	Include	the	class	definition:
16	 require('Rectangle.php');
17	
18	 //	Define	the	necessary	variables:
19 $width = 160;
20 $height = 75;
21	
22	 //	Print	a	little	introduction:
23	 echo	"<h2>With	a	width	of	$width	and	a		
	 ➝ height	of	$height...</h2>";
24	 	
25	 //	Create	a	new	object:
26 $r = new Rectangle($width, $height);
27	
28	 //	Print	the	area.
29	 echo	'<p>The	area	of	the	rectangle		
	 ➝ is	'	.	$r->getArea()	.	'</p>';
30	 	
31	 //	Print	the	perimeter.
32	 echo	'<p>The	perimeter	of	the	rectangle		
	 ➝ is	'	.	$r->getPerimeter()	.	'</p>';
33	
34	 //	Is	this	a	square?
35	 echo	'<p>This	rectangle	is	';
36	 if	($r->isSquare())	{
37	 	 echo	'also';
38	 }	else	{
39	 	 echo	'not';
40	 }
41	 echo	'	a	square.</p>';
42	
43	 //	Delete	the	object:
44	 unset($r);
45	
46	 ?>
47	 </body>
48	 </html>

Script 4.6 This new version of the script assigns
the rectangle’s dimensions when the object is
created (thanks to the constructor).

8. Save the file as rectangle2.php, place
it in your Web directory along with the
new Rectangle.php (Script 4.5), and
test in your Web browser A.

 A constructor like the one just added
to the Rectangle class is called a default
constructor, as it provides default values for
its arguments. This means that a Rectangle
object can be created using either of these
techniques:

$r = new Rectangle($width, $height);

$r = new Rectangle();

 You can directly call a constructor
(although you will rarely need to):

$o = new SomeClass();

$o->_ _construct();

With the Rectangle example, this would let
you get rid of the setSize() method without
losing the ability to resize a rectangle.

 In PHP 4 and in other programming
languages (like C++), a constructor is declared
by creating a method whose name is the same
as the class itself.

 If PHP 5 cannot find a _ _construct()
method in a class, it will then try to find a con-
structor whose name is the same as the class
(the PHP 4 constructor naming scheme).

A The resulting output is not affected by
the incorporation of a constructor in the
Rectangle class.

136 Chapter 4

Creating Destructors
The corollary to the constructor is the
destructor. Whereas a constructor is
automatically invoked when an object is
created, the destructor is called when the
object is destroyed. This may occur when
you overtly remove the object:

$obj = new ClassName();

unset($obj); // Calls destructor, too.

Or this may occur when a script ends (at
which point PHP releases the memory
used by variables).

Being the smart reader that you are, you
have probably already assumed that the
destructor is created like so:

class ClassName {

 // Attributes and methods.

 function _ _destruct() {

 // Function code.

 }

}

Destructors do differ from constructors and
other methods in that they cannot take any
arguments.

The Rectangle class used in the last two
examples doesn’t lend itself to a logical
destructor (there’s nothing you need to do
when you’re done with a rectangle). And
rather than do a potentially confusing but
practical example, I’ll run through a dummy
example that shows how and when con-
structors and destructors are called.

Autoloading Classes
When you define a class in one script
that is referenced in another script, you
have to make sure that the second script
includes the first, or there will be errors.
To that end, PHP 5 supports a special
function called _ _autoload (note that
functions in PHP beginning with two
underscores are special ones).

The _ _autoload() function is invoked
when code attempts to instantiate an
object of a class that hasn’t yet been
defined. The _ _autoload() function’s
goal is to include the corresponding file.
In simplest form, this might be

function _ _autoload ($class) {

 require($class . '.php');

}

For each new object type created in
the following code, the function will be
invoked:

$obj = new Class();

$me = new Human();

$r = new Rectangle();

Thanks to the _ _autoload() function,
those three lines will automatically
include Class.php, Human.php and
Rectangle.php (within the current
directory).

Notice that this _ _autoload() function
is defined outside of any class; instead,
it is placed in a script that instantiates
the objects.

The previous edition of this book dem-
onstrated use of the _ _autoload()
function, but that approach has been
deprecated in favor of using the Standard
PHP Library (SPL). It will be discussed in
Chapter 8, “Using Existing Classes.”

Basic Object-Oriented Programming 137

To create a destructor:
1. Create a new PHP document in your

text editor or IDE, to be named demo.
php, beginning with the standard HTML
(Script 4.7):

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Constructors and
 ➝ Destructors</title>

 <link rel="stylesheet"
 ➝ href="style.css">

</head>

<body>

<?php # Script 4.7 - demo.php

2. Begin defining the class:

class Demo {

To make this example even simpler,
I’ll define and use the class in the
same script.

1	 <!doctype	html>
2	 <html	lang="en">
3	 <head>
4	 	 <meta	charset="utf-8">
5	 	 <title>Constructors	and	Destructors</title>
6	 	 <link	rel="stylesheet"	href="style.css">
7	 </head>
8	 <body>
9	 <?php	#	Script	4.7	-	demo.php
10	 /*		This	page	defines	a	Demo	class
11	 	*		and	a	demo()	function.
12	 	*		Both	are	used	to	show	when
13	 	*		constructors	and	destructors	are	called.
14	 	*/
15	

Script 4.7 This script doesn’t do anything except best convey when constructors and destructors are called.

script continues on next page

3. Create the constructor:

function _ _construct() {

 echo '<p>In the constructor.</p>';

}

The constructor doesn’t do anything
but print a message indicating that it
has been invoked. This will allow you to
trace when the class’s automatic meth-
ods are called.

4. Create the destructor:

function _ _destruct() {

 echo '<p>In the destructor.</p>';

}

5. Complete the class:

}

It’s a very simple class!

continues on next page

138 Chapter 4

6. Define a simple function that also
creates an object:

function test() {

 echo '<p>In the function.
 ➝ Creating a new object...</p>';

 $f = new Demo();

 echo '<p>About to leave the
 ➝ function.</p>';

}

To best illuminate the life of objects,
which affects when constructors and
destructors are called, I’m adding this
simple function. It prints messages and
creates its own object, which will be a
variable that’s local to this function.

7. Create an object of class Demo:

echo '<p>Creating a new object...
➝ </p>';

$o = new Demo();

When this object is created, the con-
structor will be called. So this script first
prints this line (Creating a new object…)
and will then print In the constructor.

8. Call the test() function:

echo '<p>Calling the function...
➝ </p>';

test();

After printing the status statement, the
function is called. Consequently, the
function is entered, wherein In the func-
tion. Creating a new object... will first
be printed. Then, in that function, a new
object is created (called $f). Therefore,
the constructor will be called again, and
the In the constructor. message printed,
as you’ll see in the final output.

16	 //	Define	the	class:
17	 class	Demo	{
18	
19	 	 //	No	attributes.
20	 	
21	 	 //	Constructor:
22	 	 function	_	_construct()	{
23	 	 	 echo	'<p>In	the	constructor.</p>';
24	 	 }
25	
26	 	 //	Destructor:
27	 	 function	_	_destruct()	{
28	 	 	 echo	'<p>In	the	destructor.</p>';
29	 	 }
30	 	
31	 }	//	End	of	Demo	class.
32	
33	 //	Define	a	test()	function:
34	 function	test()	{
35	 	 echo	'<p>In	the	function.	Creating	a		
	 	 ➝ new	object...</p>';
36	 	 $f	=	new	Demo();
37	 	 echo	'<p>About	to	leave	the		
	 	 ➝ function.</p>';
38	 }
39	
40	 //	Create	the	object:
41	 echo	'<p>Creating	a	new	object...</p>';
42	 $o	=	new	Demo();
43	
44	 //	Call	the	test()	function:
45	 echo	'<p>Calling	the	function...</p>';
46	 test();
47	
48	 //	Delete	the	object:
49	 echo	'<p>About	to	delete	the	object...	
	 ➝ </p>';
50	 unset($o);
51	
52	 echo	'<p>End	of	the	script.</p>';
53	 ?>
54	 </body>
55	 </html>

Script 4.7 continued

Basic Object-Oriented Programming 139

After the object is created in the func-
tion, the About to leave the function.
message is printed. Then the function is
exited, at which point in time the object
defined in the function—$f—goes away,
thus invoking the $f object’s destructor,
printing In the destructor.

9. Delete the $o object:

echo '<p>About to delete the
➝ object...</p>';

unset($o);

Once this object is deleted, its destruc-
tor is invoked.

10. Complete the page:

echo '<p>End of the script.</p>';

?>

</body>

</html>

11. Save the file as demo.php and place it in
your Web directory. Then test by view-
ing it in your Web browser A.

12. Delete the unset($o) line, save the file,
and rerun it in your Web browser B.

Also check the HTML source code
of this page C to really understand
the flow.

(Arguably, you could also delete the
About to delete the object… line,
although I did not for the two figures.)

 In C++ and C#, the destructor’s name for
the class ClassName is ~ClassName, the cor-
ollary of the constructor, which is ClassName.
Java does not support destructors.

A The flow of
the two objects’
creation and
destruction over
the execution
of the script is
revealed by this
script. In particular,
you can see
how the test()
function’s object,
$f, lives and dies
in the middle of
this script.

B If you don’t
forcibly delete the
object A, it will
be deleted when
the script stops
running. This
means that the $o
object’s destructor
is called after
the final printed
message, even
after the closing
HTML tags C.

C The $o object’s destructor is called as the very
last script event, when the script stops running.
Thus, the In the destructor. message gets sent to
the browser after the closing HTML tag.

140 Chapter 4

Designing Classes
with UMl
To this point, the chapter has discussed
OOP in terms of both syntax and theory,
but there are two other related topics worth
exploring, both new additions to this edition.
First up is an introduction to Unified Model-
ing Language (UML), a way to graphically
represent your OOP designs. Entire books
are written on the subject, but since this
chapter covers the fundamentals of OOP, I’ll
also introduce the fundamentals of UML.

A class at its core has three components:

n	 Its name

n	 Its attributes

n	 Its methods

UML graphically represents a class by cre-
ating a class diagram: a three-part box for
each class, with the class name at the top.
The next section of the box would identify
the class attributes, and the third would list
the methods A.

For the attributes, the attribute type (e.g.,
string, array, etc.) is listed after the attri-
bute’s name, as in

userId:number

username:string

If the attribute had a default value, you
could reflect that too:

width:number = 0

To define a method in a class diagram, you
would start with the method name, placing
its arguments and types within parenthe-
ses. This is normally followed by the type
of value the method returns:

sayHello(language:string):void

The sayHello() method doesn’t return
anything, so its return type is void.

A How UML represents
a class graphically.

Benefits of a Class Design
While making a formal UML class design
may at first appear to be more of an exer-
cise than anything, there are concrete
benefits to creating one. First of all, if
you sketch out the design before doing
any coding, you improve your chances of
getting the code correct from the start.
In other words, if you put the effort into
your visual design, and ponder whether
the design fully reflects the application’s
needs, you minimize the number of times
you’ll need to update your class defini-
tions down the road.

Second, a principle of OOP is encapsu-
lation: separating out and hiding how
something is accomplished. A UML, with
its listing of attributes, methods, and
arguments, can act as a user guide for
those classes. Any code that requires
classes that have been modeled should
be able to use the classes, and its meth-
ods and attributes, without ever looking
at the underlying code. In fact, you can
distribute the UML along with your code
as a service to your clients.

Basic Object-Oriented Programming 141

With this in mind, you can complete the
class diagram for the HelloWorld class B.
In the next steps, you’ll design the diagram
that reflects the Rectangle class.

To design a class using UMl:
1. Using paper or software, draw a three-

part box.

If you like the feeling of designing with
paper and pencil, feel free, but there
are also plenty of software tools that
can fulfill this role, too. Search online
for an application that will run on your
platform, or for a site that can serve the
same purposes within the browser.

2. Add the name of the class to the top of
the box:

Rectangle

Use the class’s proper name (i.e., the
same capitalization).

3. Add the attributes to the middle section:

width:number = 0

height:number = 0

Here are the two attributes for the
Rectangle class. Both are numbers with
default values of 0.

4. Add the constructor definition to the
third part of the box:

_ _construct(width:number =
➝ 0, height:number = 0):void

This method is named _ _construct. It
takes two arguments, both of type num-
ber, and both with default values of 0.
The method does not return anything,
so its return value is void.

continues on next page

B A UML representation of the simple
HelloWorld class.

142 Chapter 4

5. Add the setSize() method definition:

setSize(width:number =
➝ 0, height:number = 0):void

The setSize() method happens to be
defined exactly like _ _construct().

6. Add the getArea() method definition:

getArea():number

The getArea() method takes no argu-
ments and returns a number.

7. Add the getPerimeter() method
definition:

getPerimeter():number

The getPerimeter() method also takes
no arguments and returns a number.

8. Add the isSquare() method definition:

isSquare():Boolean

This method takes no arguments but
returns a Boolean value.

9. Save your design for later reference C.

 Be certain to update your class design
should you later change your class definition.

 In the next chapter, in which more com-
plex OOP theory is unveiled, you’ll learn more
UML techniques.

C A UML representation of the simple Rectangle
class.

Basic Object-Oriented Programming 143

Although you can adequately document
your code using simple comments, as I do
in this book, there are two obvious ben-
efits to adopting a formal phpDocumentor
approach:

n	 It conveys many best practices and
recommended styles.

n	 phpDocumentor will generate docu-
mentation, in HTML and other formats,
for you.

The generated HTML A can also be a
valuable resource for anyone using your
code, particularly your classes.

Better Documentation
with phpDocumentor
Along with creating a UML class design,
another new topic in this edition is
creating better code documentation
using phpDocumentor (www.phpdoc.org).

In my opinion, properly documenting one’s
code is so vitally important that I wish PHP
would generate errors when it came across
a lack of comments! Having taught PHP
and interacted with readers for years, I am
amazed at how often programmers omit
comments, occasionally under the guise of
waiting until later. Proper documentation is
something that should be incorporated into
code for your own good, for your client’s,
for your co-workers’ (if applicable), and
for the programmer in the future who may
have to alter or augment your work—even
if that programmer is you.

A The generated HTML documentation for the HelloWorld class.

www.phpdoc.org

144 Chapter 4

phpDocumentor creates documentation by
reading the PHP code and your comments.
To facilitate that process, you would start
writing your comments in a way that php-
Documentor understands. To begin, you’ll
use the docblock syntax:

/**

 *

 * Short description

 *

 * Long description

 * Tags

*/

The short description should be a single
line description. The long description can
go over multiple lines and even use some
HTML. Both are optional.

Script 4.8 A more formally documented version of the HelloWorld class.

After the description, write one or more
lines of tags. Each tag is prefaced by @,
and phpDocumentor supports several
kinds; which you use will depend on the
thing you’re documenting.

A docblock can be placed before any of
the following:

n	 Class definition

n	 Function or method definition

n	 Variable declaration

n	 Constant definition

n	 File inclusion

A docblock should be written at the top of
a script, in order to document the entire file
(Script 4.8).

1	 <?php	#	Script	4.8	-	HelloWorld.php	#2
2 /**
3 * This page defines the HelloWorld class.
4 *
5 * Written for Chapter 4, "Basic Object-Oriented Programming"
6 * of the book "PHP Advanced and Object-Oriented Programming"
7 * @author Larry Ullman <Larry@LarryUllman.com>
8 * @copyright 2012
9 */
10	
11 /**
12 * The HelloWorld class says "Hello, world!" in different languages.
13 *
14 * The HelloWorld class is mostly for
15 * demonstration purposes.
16 * It's not really a good use of OOP.
17 */
18	 class	HelloWorld	{
19	
20 /**
21 * Function that says "Hello, world!" in different languages.
22 * @param string $language Default is "English"
23 * @returns void
24 */

script continues on next page

Basic Object-Oriented Programming 145

25	 	 function	sayHello($language	=		
	 	 ➝ 'English')	{
26	
27	 	 	 //	Put	the	greeting	within	P	tags:
28	 	 	 echo	'<p>';
29	 	 	
30	 	 	 //	Print	a	message	specific	to	a		
	 	 	 ➝ language:
31	 	 	 switch	($language)	{
32	 	 	 	 case	'Dutch':
33	 	 	 	 	 echo	'Hallo,	wereld!';
34	 	 	 	 	 break;
35	 	 	 	 case	'French':
36	 	 	 	 	 echo	'Bonjour,	monde!';
37	 	 	 	 	 break;
38	 	 	 	 case	'German':
39	 	 	 	 	 echo	'Hallo,	Welt!';
40	 	 	 	 	 break;
41	 	 	 	 case	'Italian':
42	 	 	 	 	 echo	'Ciao,	mondo!';
43	 	 	 	 	 break;
44	 	 	 	 case	'Spanish':
45	 	 	 	 	 echo	'¡Hola,	mundo!';
46	 	 	 	 	 break;
47	 	 	 	 case	'English':
48	 	 	 	 default:
49	 	 	 	 	 echo	'Hello,	world!';
50	 	 	 	 	 break;
51	 	 	 }	//	End	of	switch.
52	
53	 	 	 //	Close	the	HTML	paragraph:
54	 	 	 echo	'</p>';
55	
56	 	 	 }	//	End	of	sayHello()	method.
57	 	
58	 }	//	End	of	HelloWorld	class.

To document a variable declaration, you
use the @var tag, followed by the variable’s
type (and optional description):

/**

 * @var string

 */

$name = 'Larry Ullman';

Notice that the docblock doesn’t need
to reference the variable name, as php-
Documentor will be able to read that from
the following line of code. The point of
the docblock is to indicate the variable’s
intended type.

To document methods and functions, use
@param to detail the function’s parameters
and @return to indicate the type of value
the function returns (Script 4.8).

The details as to the possible types, and
the full usage of all of phpDocumentor,
can be found in the documentation
(www.phpdoc.org/docs/).

Once you’ve written comments in the
proper format, you can use the phpDocu-
mentor tool to generate your documen-
tation. To do that, you must first install
phpDocumentor. The best way to install it
is using PEAR (http://pear.php.net), so
you must have that installed, too. PEAR
already comes installed with many all-in-
one WAMP, MAMP, or LAMP stacks; check
your associated documentation if you’re
using one of these. If not, see the sidebar
for some tips on installing PEAR.

Script 4.8 continued

http://pear.php.net
www.phpdoc.org/docs/

146 Chapter 4

To use phpDocumentor:
1. Complete the phpDocumentor-type

comments for a file (Script 4.8) or
application.

For simplicity’s sake, Script 4.8 shows a
fully documented HelloWorld.php.

2. Access your computer via the com-
mand-line interface.

My assumption is that you already know
how to do this for your platform. If not,
search the Web or use my support
forums for answers.

B Adding the phpDocumentor channel to my PEAR installation.

C Installing phpDocumentor in PEAR.

3. Add the phpDocumentor PEAR
channel B:

pear channel-discover
➝ pear.phpdoc.org

This will allow you to download the
latest version of the phpDocumentor
directory from that site.

4. Install phpDocumentor C:

pear install phpdoc/
phpDocumentor-alpha

This instruction comes straight from
the phpDocumentor Web site. It may
change in time; check the site for the
best, current instructions.

Basic Object-Oriented Programming 147

Note that on my system, in both Step
3 and Step 4, I had to preface these
commands with sudo, to invoke the
superuser, and include the full path to
PEAR (both suggestions are made in
the sidebar).

5. Move to the directory where your PHP
scripts are:

cd /path/to/folder

6. Document a single file using

phpdoc -f HelloWorld.php -t docs

That line tells phpDocumentor to parse
the file HelloWorld.php and to write
the output to the target (-t) directory
docs, which would be a folder in that
same directory. phpDocumentor will
attempt to create that directory, if it
does not exist.

7. Open docs/index.html in your
browser A.

 For the sake of saving precious book
space, the code in this book will not be docu-
mented using the full phpDocumentor syntax.

 To view documentation mistakes, check
out the generated errors.

 To have phpDocumentor document an
entire project, you can have it parse the cur-
rent directory using

phpdoc -d . -t docs

 If you want, you can edit the templates
used by phpDocumentor to output HTML more
to your liking.

Installing PeAR Packages
One PEAR-related thing I do not discuss
in this book is the installation process, for
two good reasons. First, with the varia-
tions of available operating systems, it’s
too tough to nail down comprehensive
instructions for all potential readers.
Second, experience tells me that many
users are on hosted servers, where they
cannot directly install anything.

Still, installing PEAR is not impossibly
hard, and once you master the installa-
tion of a single package, installing more
is a snap. If you want to try your hand at
installing PEAR packages, start by check-
ing out the PEAR manual, which has
instructions. If you’re still not clear as to
what you should do, search the Web for
articles on the subject, particular to your
operating system, and/or post a question
in the book’s supporting forum, where I’ll
be happy to assist.

Some installation tips up front:

 . You may need to invoke the
pear installer as a superuser (or
using sudo).

 . Make sure that the location of
your PEAR directory is in your PHP
include path.

 . Run the command pear help
install to see what options
are available.

If you are on a hosted server, the host-
ing company should be willing to install
PEAR packages for you (which benefit
every user on the server). If they won’t
do that, you ought to consider a differ-
ent hosting company (seriously). Barring
that, you can install PHP and PEAR
on your own computer in order to use
phpDocumentor.

148 Chapter 4

Review and Pursue
If you have any problems with these sec-
tions, either in answering the questions or
pursuing your own endeavors, turn to the
book’s supporting forum (www.Larry
Ullman.com/forums/).

Review
n	 How does OOP differ from procedural

programming? (See page 120.)

n	 What is a class? What is an object?
What is an attribute (or property)? What
is a method? (See page 121.)

n	 What syntax do you use to create a
class? To create an object? (See pages
121 and 124.)

n	 How do you create class methods?
How do you call object methods?
(See pages 121 and 124.)

n	 How do you create class attributes?
How do you reference those attributes
within the class? How do you reference
those attributes using an object? (See
pages 121, 124, and 127.)

n	 What is a constructor? How do you cre-
ate one? When is a constructor called?
(See page 133.)

n	 What is a destructor? How do you cre-
ate one? When is a destructor called?
(See page 136.)

n	 What is UML? How do you represent a
class in UML? (See page 140.)

n	 What is phpDocumentor? What are the
arguments for using it? (See page 143.)

n	 What is a docblock? (See page 144.)

Pursue
n	 Come up with another (relatively simple)

class. Define and use it in PHP. Then
model and document it using UML and
phpDocumentor.

n	 Learn more about UML, if you are so
inclined.

n	 Find UML software that you like (for
your platform or online).

n	 Learn more about phpDocumentor, if
you are so inclined.

n	 Add phpDocumentor-style comments to
the Rectangle class and then generate
its documentation.

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

Index 477

Index

add_page.html script, beginning, 324
add_page.php script

beginning, 322
submit button, 324

add_task.php script
beginning, 10, 260
for prepared statements, 266
for SELECT query, 264
for sprintf(), 39

Advanced PHP Debugger, downloading, 454
ampersand (&), using with variables, 30
Andrews, Tjobbe, 290
anonymous functions

calling, 27
downside, 27
using, 27–29

antipatterns, explained, 232
Apache

configuration, 67
enabling URL rewriting, 71
making improvements with, 285

array() function, replacing calls to, 2. See also
multidimensional arrays; short array
syntax

assertions, using with unit tests, 462
attributes

in classes, 121
protecting, 171
rules for definition of, 127
versus static variables, 177

autocompletion, support for, 387
_ _autoload() function, invoking, 136
autoload.php file, saving, 279

Symbols
<<<, using with heredoc syntax, 31
& (ampersand), using with variables, 30
% (percent sign), using in strings, 41
:: (scope resolution operator), using,

172–175, 177
; (semicolon), use with stored functions, 109
" (quotation marks), using with classes, 152

A
abstract classes

versus classes, 184
creating, 186
declaring attributes, 188
defining constructors, 188
Heron’s Formula, 188
versus interfaces, 191, 196
Triangle class, 186–189

Abstract Factory pattern versus Factory, 224
abstract methods

creating, 186
declaring attributes, 188
defining constructors, 188
Heron’s Formula, 188

access control
establishing for methods, 165
importance of, 166
indicating in UML, 166
in OOP, 151
private level, 165–166
protected level, 165
public level, 165
restriction of, 165

accessor, explained, 171

478 Index

B
b type specifier, meaning of, 37
backing up database, 356–357
backtrace, printing, 50
behavioral patterns

explained, 215
using, 233

books1.xml document, beginning, 413
books1.xml file, opening, 416
bootstrap file

confirming module file, 60
creating, 57–60
header file, 60
main page, 57–60
purpose, 57
switch conditional, 59–60
validating, 59

browser cache, affecting, 75–79

C
c type specifier, meaning of, 37
cache header types, 75
cache-control directives, 75
Cache-Control header type, 75, 79
caching. See also server caches

affecting, 76–79
pages, 75

CGI (Common Gateway Interface), versus CLI
(command-line interface), 378

check_urls.php document, creating, 334
class attributes, accessing, 127–132
class constants versus static attributes, 176
class design, benefits, 140
class versus object names, case-sensitivity, 126
classes. See also inheritance; OOP (object-

oriented programming)
versus abstract classes, 184
attributes in, 121
autoloading, 136
components, 140
creating objects from, 156
defining for CMS with OOP example,

299–303

defining in OOP, 121–123
deriving from parents, 153–156
designing with UML, 140–142
functions in, 121
get and set methods, 132
inheriting, 152–156
inheriting from, 153–156
instanceof keyword, 152
loosely coupled, 209
methods, 121
in OOP, 120
relationship between, 203
switch statement, 123
using quotation (“) marks with, 152
variables in, 121

ClassName, destructor’s name for, 139
ClassName::methodName() syntax,

explained, 175
CLI (command-line interface). See also

interactive PHP CLI
backticks, 403
built-in Web server, 405–407
versus CGI (Common Gateway

Interface), 378
code blocks, 384–385
command-line arguments, 395–399
creating command-line script, 388–390
creating interface, 399
exec() backtick, 403
executing bits of code, 383–385
fscanf() function for input, 400
-h option, 378
-i option, 378
-m option, 378
pcntl (process control) extension, 403
php.ini, 388
remote server, 384
running command-line script, 391–394
system() backtick, 403
taking user input, 400–404
testing installation, 378
using, 378
-v option, 378
verifying version of, 381

Index 479

Color Blue HTML5 design, using, 52
command-line arguments

alternative usage, 399
number.php script, 395
using, 396–399

command-line script
checking syntax without running, 394
creating, 388–390
running in Mac OS X, 394
running in Unix, 394
running in windows, 391–393

Company.php script, beginning, 208
Composite design, creating, 226–230
Composite pattern

considering, 225
described, 225
example of, 232
implementing, 225
subclasses, 226
using with Visitor pattern, 232

composite.php script, beginning, 231
composition

“has a” relationship, 203
indicating in UML, 203
using, 209

compressing files, 354–362
config.inc.php script, beginning, 45
Config.php script, beginning for Singleton

class, 217
configuration file, for modularized site, 45–51
constants, assigning values to, 176
_ _construct() method, looking for, 135
constructors. See also destructors

calling directly, 135
creating in OOP, 133–135
declaring, 135
default, 135
inheriting, 157–160
for static members, 178–179
subclass, 158–160
syntax, 133
using, 133–135

content management system (CMS). See CMS
with OOP example

CLI installation testing
on Mac OS X, 381–382
on Unix, 381–382
on Windows 7, 379–380

client URLs (cURL) utility. See cURL (client
URLs) utility

_ _clone() method, defining, 197
CMS (content management system), 283
CMS with OOP example. See also OOP

(object-oriented programming)
categories table, 286
comments table, 286
creating pages, 289
creating users, 289
creatorId, 288
database, 286–289
defining classes, 299–303
error view file, 297–298
footer for template, 291–293
header file for template, 290
header for template, 291–293
home page, 304–307
home page view, 306–307
HTML_QuickForm2, 312–319
MVC (Model-View-Controller) approach,

284–285
Page class, 299–301
pages, 284
pages table, 286, 288
pages versus posts, 286
site organization, 285
tags table, 286
template, 290–293
three-include approach for template, 290
User class, 301–303
user type structure, 289
users, 284
users table, 286–287, 289
utilities file, 294–296
viewing pages, 308–311

code documentation, importance of, 143
code library, organizing, 208
collection.dtd document, creating, 422
collection.xsd document, creating, 428

480 Index

content modules, creating, 61–63
creational patterns

explained, 215
using, 225

cron service
adding items to files, 363
asterisk (*) parameter, 363
crontab format, 363
establishing, 363–365
establishing for PHP file, 364–365
setting ranges with hyphen (-), 363

crontab file, using, 365
CRUD functionality, using iCrud interface for,

192–193
cURL (client URLs) utility

beginning transaction, 345
executing transaction, 345
invoking, 343
POST data, 345
POST method, 345
redirects, 345
timeout, 345
using, 343–346

cURL library, 344
curl_errno() function, 346
curl_getinfo() function, 346
curl.php script

creating, 343
running, 351

D
d type specifier, meaning of, 37
data

decrypting with MCrypt, 372–375
encrypting with MCrypt, 367–371

database file, creating for modularized site, 45
database-driven arrays

adding tasks, 10–16
connecting to database, 10
displaying tasks, 16
HTML form, 13
retrieving tasks, 14
securing task value, 14
selecting columns, 8

sorting tasks, 16
submission conditional, 14
using, 9

databases. See also zip codes
backing up, 356–357
distance calculations, 102–107
optimizing joins, 103
session functions, 84
session handlers, 85–91
session table, 82–83
SHOW WARNINGS command, 99
storage of session data, 82, 85–87
stores table, 100–101
zip codes, 96–99

db_backup.php document, creating, 355
db_sessions script, beginning, 85
DBG debugging tool, downloading, 454
debugging tools

Advanced PHP Debugger, 454
DBG, 454
Xdebug, 454

DECLARE statement, using with variables, 108
decrypting data with MCrypt, 372–375
delimiter, changing for stored functions, 109–110
demo document, creating, 137
design patterns

antipatterns, 232
behavioral, 215, 233
components, 214
Composite, 225–232
creational, 215, 225
Factory, 220–224
Gang of Four, 215
Iterator, 273–277
Singleton, 216–219
Strategy, 233–241
structural, 215, 225

destructors. See also constructors
creating, 136–139
inheriting, 157–160
for static members, 179

directories
protecting, 70
restricting access, 70

Index 481

file functions
fgetc(), 404
fgetcsv(), 404
using on STDIN, 404

files, compressing, 354–362
final definition, using with functions, 163
footer.html file, saving, 56
footer.inc.php file, saving, 293
fopen()

versus fsocketopen(), 338
using, 328, 333

fscanf() function, using, 41, 400
fsocketopen()

versus fopen(), 338
using, 333–338

FTP port number, 333
function definitions

anonymous functions, 27–29
recursive, 17–24
static variables, 24–26

function parameters
making copies of variables, 30
passing by reference, 30
passing by value, 30
type hinting, 15

functions. See also stored functions
documenting, 145
final definition, 163
and references, 30

G
Gang of Four, 215
garbage collection, using with session

handlers, 90
geolocation information, fetching, 340
get and set methods, using with classes, 132
get_quote.php document, creating, 329
getter, explained, 171

H
“has a” relationship, explained, 203
header() function, using in caching, 75–77
header.html file, saving, 55
header.inc.php script, using, 291

displaying results horizontally, 112–117
display.php script, beginning, 112
distance calculations, performing, 102–107
docblocks, using, 144–145
documentation

importance of, 143
viewing mistakes, 147

documenting
functions, 145
methods, 145
variable declarations, 145

DTD, associating with XML file, 419–420

e
e type specifier, meaning of, 37
encapsulation

explained, 166
use in OOP, 120, 126, 140

encrypting data with MCrypt, 367–371
error handling, purpose of, 460
error view file, creating, 297–298
error.html document, beginning, 297
Exception class, extending, 251–257
exception handling, purpose of, 460
exceptions, catching, 244–250, 259–260
Expat

functions resource, 439
parsing XML with, 433

expat.php document, creating, 434
Expires cache header type, 75, 79

F
f type specifier, meaning of, 37
Factory pattern

versus Abstract Factory, 224
consequence, 224
creating, 220–224
described, 220
using, 220
variation, 224

factory.php script
for autoloading classes, 279
beginning, 222

fetch() method, using, 262

482 Index

hello_object.php document, creating,
124–126

HelloWorld example
analyzing, 126
class documentation, 143–144

HelloWorld.php document, creating, 122
heredoc syntax

comparing to nowdoc, 36
encapsulating strings, 31–36
EOD delimiter, 32
EOT delimiter, 32
using, 31–36

Heron’s Formula, using with triangles, 188
hinting.php script

beginning, 204
for Iterator interface, 274

home page
creating for CMS with OOP example,

304–307
try...catch block, 304
view, 306–307

horizontal results, displaying, 112–117
.htaccess overrides

allowing, 67–69
AllowOverride directive, 68
Directory directive, 68
protecting directories, 70, 285

HTML tags versus XML tags, 410
HTML template

creating, 52–56
creating pages, 52–56
footer file, 56
header file, 53–54

HTML_QuickForm2

add a page View file, 324–325
adding pages, 322–325
creating forms, 313, 322–323
element types, 313
filtering form data, 314
HTML element types, 313
logging out, 320–321
login form, 312
login View file, 318–319
login.php script, 315–318

processing form data, 315–318
registerRule(), 315
validating forms, 314, 322–323
validation rules, 314

HTTP status codes, 334
httpd.conf file, opening, 68

I
iCrud interface, declaring, 192–193
IMAP port number, 333
index page

confirming module file, 60
creating, 57–60
header file, 60
main page, 57–60
purpose, 57
switch conditional, 59–60
validating, 59

index.html script, beginning, 306
index.php script

beginning, 57
for home page, 304

inheritance. See also classes; objects; OOP
(object-oriented programming)

attributes, 150
base class, 150
child class, 150–151
derived class, 150
design, 160
indicating in UML, 150
“is a” relationships, 203
members of classes, 150
methods, 150
parent class, 150–151
process of, 152
super class, 150
terminology, 150
using, 120, 209

inheriting
classes, 152–156
constructors, 157–160
destructors, 157–160

instanceof keyword, using with classes, 152

Index 483

J
joins, optimizing, 103
JSON format, using with Web services, 348

l
lambdas

calling, 27
downside, 27
using, 27–29

Last-Modified cache header type, 75, 78
LDAP port number, 333
load testing, explained, 476
local variables. See also variables

creating for stored function, 110
declaring, 108

login.html script, beginning, 318
login.php script

creating, 315–318
email address, 317
form submission, 317
password field, 317
validating form data, 317

logout.php script, beginning, 320

M
main.inc.php script, beginning, 61
max-age cache-control directive,

meaning of, 75
MaxMind IP geolocation, features of, 341
MCrypt

decrypting data, 372–375
encrypting data, 367–371
using with PHP, 366

member access, controlling, 166–171. See also
static members

methods
accessors, 171
constructors, 133–135
defining in OOP, 121
documenting, 145
establishing visibility of, 165
getters, 171
mutators, 171
overriding, 161–164, 173–174

interactive PHP CLI. See also CLI (command-
line interface)

support for autocompletion, 387
using, 386–387

interface keyword, using, 191
interface.php script, beginning, 192
interfaces

versus abstract classes, 191, 196
associating classes with, 191
benefit of, 196
creating, 191
defining constructors, 194
indicating in UML, 196
meanings of, 196
versus traits, 200
using, 192–196

IP addresses, unreliability of, 342
IP geolocation

accuracy, 342
finding user’s location, 339–342
gethostbyaddr() function, 342
gethostbyname() function, 342
MaxMind option, 341
options, 341
performing, 339–342

ip_geo.php script, creating, 339
“is a” relationship, explained, 203
iSort interface, implementing, 235–236
iSort Strategy pattern, 239–240
iSort.php script, beginning, 235
Iterator design pattern

examples in SPL, 273
using, 273–277

Iterator interface
current() method, 274
DirectoryIterator, 277
FilterIterator, 277
implementing, 275–276
key() method, 274, 277
LimitIterator, 277
next() method, 274, 277
rewind() method, 274, 277
using, 274–277
valid() method, 274, 277

484 Index

mod_rewrite module, 285
allowing .htaccess overrides, 67–69
enabling URL rewriting, 71–74
implementing, 72
using, 67–74

Model-View-Controller (MVC), using with CMS
and OOP, 284–285

modularity, use in OOP, 120
modularizing Web sites. See also Web sites

comments, 48
configuration file, 45–51
content modules, 61–63
creating database file, 45
debugging level, 49
email address for errors, 48
error handling, 49–50
explained, 44
HTML template, 52–56
index page, 51, 57–60
printing error and backtrace, 50
running script, 48
search module, 64–66
server-side constants, 49
site structure, 50

multidimensional arrays. See also array()
function

adding tasks to databases, 10–16
database-driven, 8–10
defining, 6
grade sorting function, 7
name-sorting function, 6
printing as defined, 7
short array syntax, 2
sorting, 4–8, 29
for Strategy design, 240
two-dimensional, 3–4
usort() function, 4

must-revalidate cache-control directive,
meaning of, 75

mutator, explained, 171
MVC (Model-View-Controller), using with CMS

and OOP, 284–285
mysql client, SHOW WARNINGS command, 99

MySQL database
accessing, 83
calculating distances, 103–107

N
namespace class, using, 210–211
namespace keyword, placement of, 211
_ _NAMESPACE_ _ constant, 211
namespace.php script, beginning, 210
namespaces

defining, 207
features of, 207
limitations, 207
referencing, 208, 211
subnamespaces, 207
using, 208–210
using in multiple files, 211

networking
accessing Web sites, 328–332
classes in PEAR, 332
cURL, 343–346
IP geolocation, 339–342
sockets, 333–338
Web services, 347–351
Zend Framework classes, 332

no-cache directive, meaning of, 75
nowdoc syntax, comparing to heredoc, 36
number format, specifying printing of, 38
number2 script, creating, 396
number.php script, creating, 389

O
o type specifier, meaning of, 37
object versus class names, case-sensitivity, 126
object-oriented programming (OOP). See OOP

(object-oriented programming)
objects. See also inheritance

cloning, 197
copying, 197
creating from classes, 156
creating in OOP, 124–126
serializing, 294
use in OOP, 120

Index 485

P
Page class

creating for CMS with OOP example,
299–301

getter methods, 300
page.html script, beginning, 311
Page.php script, beginning, 299
page.php script, beginning, 308
page-viewing page

catching exceptions, 310
Controller, 309
creating, 308–310
throwing exceptions, 310
validating page ID, 310

page-viewing View, creating, 311
parse_url() function

using with sockets, 333–334, 336
validating URLs, 338

parsing XML. See also XML (Extensible Markup
Language)

changing case-folding, 439
event-based parser, 432
with Expat, 433
with PHP, 434–439
SimpleXML, 440–446
tree-based parser, 432

patterns
antipatterns, 232
behavioral, 215, 233
components, 214
Composite, 225–232
creational, 215, 225
Factory, 220–224
Gang of Four, 215
Iterator, 273–277
Singleton, 216–219
Strategy, 233–241
structural, 215, 225

pcntl (process control) extension, using with
CLI, 403

PDO (PHP Data Objects)
calling quote() method, 262
catching exceptions, 259
changing error reporting, 261

OOP (object-oriented programming). See also
classes; CMS with OOP example

$this attribute, 127–132
abstract classes, 184–190
access control, 120, 165–171
accessing class attributes, 127–132
attributes versus variables, 121
autoloading classes, 136
calling object methods, 125
classes, 120
composition, 203, 209
constructors, 133–135
controlling member access, 166–171
creating objects, 124–126
defining classes, 121–123
design approaches, 209
destructors, 136–139
encapsulation, 120, 126, 140, 166
inheritance, 120, 150, 209
installing PEAR packages, 147
interfaces, 191–196
methods, 184–190
modularity, 120
modularizing application files, 278
namespaces, 207–211
objects, 120
overriding, 120
overriding methods, 161–164
phpDocumentor, 143–147
polymorphism, 151
recommendation, 160
scope resolution operator (::), 172–175
static members, 176–181
taking actions with data, 120
theory, 120
traits, 197–202
type hinting, 203–206
visibility, 120, 123, 151

opcode caching, implementing, 473
overriden methods, referring to, 173–174
overriding

methods, 161–164
use in OOP, 120

486 Index

PDO (continued)
connecting to database, 258–259
described, 258
executing queries, 261–262
prepared statements, 266–269
preventing SQL injection attacks, 262
running SELECT queries, 264
SELECT queries, 262–263
using, 260–261

PDO object, creating, 260
PEAR (PHP Extension and Application

Repository)
installing phpDocumentor in, 146
networking classes, 332
upgrading for unit testing, 461

PEAR packages, installing, 147
percent (%) sign, using in strings, 41
performance, improving, 473–475
Pet example inheritance design, 160
pets1.php script

beginning, 153
for overriding methods, 162

pets2.php script, for scope resolution operator
(::), 172

PHP, parsing XML with, 434–439
PHP and server

compressing files, 354–362
establishing cron, 363–365
MCrypt, 366–375

PHP CLI. See CLI (command-line interface)
PHP Data Objects (PDO). See PDO (PHP Data

Objects)
PHP output, compressing, 362
phpDocumentor

docblocks, 144–145
features, 143–144
installing, 145
using, 146–147

PHPUnit. See also unit testing
creating test cases, 463–465
defining tests, 462–463
downloading, 460
installing, 461–462
invoking assertion methods, 464
running tests, 465–466

setting up tests, 467–470
setUp() method for testing, 467–468, 470
Simpletest alternative, 460
testing Rectangle class, 469
$this object, 464
upgrading PEAR, 461

phpunit command, executing, 465
polymorphism, use in OOP, 151
POP port number, 333
port numbers for sockets, 333
Pragma cache header type, 75
prepared statements

performance benefits, 269
try block, 266
using through PDO, 266–269

printf() function
formats, 37
type specifiers, 37
using, 37–38

printing
backtrace, 50
numbers and strings, 38

private cache-control directive, meaning of, 75
profile log, viewing in webgrind, 474–475
profiling scripts, 471–472
proxy server, explained, 75
proxy-revalidate cache-control directive,

meaning of, 75
public cache-control directive, meaning of, 75
public variables, accessing, 169. See also

variables

Q
queries, executing, 261–262
query caching, availability of, 473
query() method, using, 262
query results, displaying horizontally, 112–117
QuickForm2

add a page View file, 324–325
adding pages, 322–325
creating forms, 313, 322–323
element types, 313
filtering form data, 314
HTML element types, 313

Index 487

scripts, profiling, 471–472
search module

creating, 64–66
printing caption, 66
printing results, 66

search.inc.php script, beginning, 64
SELECT queries

executing, 262–263
populating menu in form, 265
running, 264
setFetchMode() method, 262
setting fetch mode, 264
try block, 264

semicolon (;), use with stored functions, 109
SEO, improving with mod_rewrite, 67–74
serializing objects, 294
server

compressing files, 354–362
establishing cron, 363–365
MCrypt, 366–375

server caches, implementing, 473.
See also caching

server commands, running, 374
service.php script, creating, 349
session data

function for destruction of, 89
storing as serialized array, 89
storing in databases, 82, 85–87

session directory, changing for security, 82
session functions, defining, 84
session handlers

creating, 85–91
garbage collection function, 90
using, 91–95

SessionHandlerInterface class, 270
sessions table, creating, 82–83
sessions.php script, beginning, 91
set and get methods, using with classes, 132
set_mcrypt.php script, beginning, 369
ShapeFactory class, using, 222–224
ShapeFactory.php script, beginning for

Factory pattern, 220
Shape.php script, beginning, 186
short array syntax, using, 2. See also array()

function

logging out, 320–321
login form, 312
login View file, 318–319
login.php script, 315–318
processing form data, 315–318
registerRule(), 315
validating forms, 314, 322–323
validation rules, 314

quotation (") marks, using with classes, 152

R
read_mcrypt.php script, beginning, 372
Rectangle class

constructor added to, 133–135
using, 130–132, 201–202

Rectangle example, analyzing, 132
Rectangle.php script

for constructors, 133–135
creating, 128
for tDebug trait, 200

recursive functions. See also static variables
adding debugging line, 23
adding tasks to array, 22
calling, 21–22
defining, 18
foreach loop and function, 22
looping through array, 21
nested list of tasks, 19–20
using, 17–23

references and functions, 30
remote server, using with PHP CLI, 384
results, displaying horizontally, 112–117
RSS feed

Atom offshoot format, 451
channel content, 447
creating, 447–451
generating, 448–449

rss.php script, beginning, 448

S
s type specifier, meaning of, 37
scanf() function, using, 41
scope resolution operator (::), using,

172–175, 177

488 Index

SHOW WARNINGS command, running, 99
Simpletest unit testing Web site, 460
SimpleXML

asXML() method, 446
using, 440–446

simplexml.php document, creating, 441
Singleton class, creating, 217–218
Singleton pattern

Config class, 217–219
described, 216
implementing, 216
UML representation, 216

sites. See also modularizing Web sites
accessing, 328–332
reading with PHP, 329–332

s-maxage cache-control directive,
meaning of, 75

SMTP port number, 333
sockets

connections, 334–335
explained, 333
fsocketopen(), 333–338
FTP port, 333
GET request, 336
HEAD request, 336
HTTP status codes, 334
IMAP port, 333
LDAP port, 333
parse_url() function, 333–334, 336
POP port, 333
ports, 333
SMTP port, 333
SSH port, 333
SSL port, 333
Telnet port, 333
Web ports, 333

sort.php script
for anonymous functions, 28
beginning, 4
for static variables, 24

SPL (Standard PHP Library)
autoloading capability, 281
autoloading classes, 278–280
data structures, 278

exceptions, 273
file handling, 271
iterators, 273–277
SplFixedArray, 278
temporary files, 272
using, 270

SPL interfaces
ArrayAccess, 279
Countable, 279

SplFileObject, using, 272
SplTempFileObject, described, 272
sprintf() function

formats, 37
type specifiers, 37
using, 39–41
using with session data, 88

SQP injection attacks, preventing, 261–262
square.php script, creating, 158
SSH port number, 333
SSL port number, 333
Standard PHP Library (SPL). See SPL (Standard

PHP Library)
static attributes

versus class constants, 176
using with static methods, 178–180

static members, creating, 178–181. See also
member access

static variables. See also recursive functions;
variables

versus attributes, 177
using, 24–26

static.php script, beginning, 178
stock quotes, retrieving, 329–332
stored functions. See also functions

; (semicolon) in code blocks, 109
arguments section, 109
changing delimiters, 109–110
code section, 109
creating, 109–111
declaring, 108–112
local variable, 110

stores table
address selection, 101
creating, 100–101
populating, 101

Index 489

versus interfaces, 200
precedence, 202
support for, 197
using, 198–199

triangle
calculating area of, 188
setting sides of, 190

Triangle class
creating, 186–189
as extension of Shape, 187
using, 189–190

Triangle.php script, beginning, 186
try block

using with prepared statements, 266
using with SELECT queries, 264

type hinting
for arrays, 206
function parameters, 15
for functions, 206
for interfaces, 206
performing, 203
triggering exceptions, 206
using, 204–206
using in functions, 206

type specifiers, 37

U
u type specifier, meaning of, 37
UML (Unified Modeling Language)

for classes, 140–142
for composition, 203
for inheritance, 150
for interfaces, 196
for visibility, 166

UML representation, of Singleton pattern, 216
unit testing. See also PHPUnit

assertions, 462
benefits, 460
implementing, 460
TDD (test-driven development), 461
Xdebug debugging tool, 465

URL rewriting, enabling, 71–74

Strategy design
class definition, 239
constructor, 237
creating, 235–238
display() method, 240
iSort classes, 238–241
iSort interface, 235
multidimensional arrays, 240
sort() method, 237–239

Strategy pattern
described, 233
example of, 234
using, 233–234

strategy.php script, beginning, 238
strings. See also _ _toString() method

encapsulating, 31–36
percent signs, 41
printing, 38

structural patterns
explained, 215
using, 225

subclass constructors, creating, 158–160
switch statement

using with classes, 123
using with index page, 59

T
tags, HTML versus XML, 410
TDD (test-driven development), 461
tDebug trait, using, 200
Telnet port number, 333
temperature script, beginning, 400
$this attribute

use in OOP, 127–132
using with PHPUnit, 464

to-do list, nesting, 9
_ _toString() method, defining in classes,

184. See also strings
trait keyword, using, 197
trait.php script, beginning, 201
traits

creating, 197
incorporating into classes, 202

490 Index

User class
attributes of, 152
creating for CMS with OOP example,

301–303
user input

prompting for, 402
taking in CLI, 400–404

user-defined functions
anonymous functions, 27–29
recursive functions, 17–23
static variables, 24–26

User.php script, beginning, 301
usort() function, using, 4
utilities file

catching PDO exceptions, 296
database connection, 296
serialize() function, 294
serializing objects, 294
starting session, 295
writing, 294–296

utilities.inc.php script, beginning, 295

V
variable declaration, documenting, 145
variables, passing by reference, 30. See also

public variables; static variables
view_tasks.php script

beginning, 18
for caching, 76
header() function, 76–77
for heredoc syntax, 32
modifying, 33–34

visibility
establishing for methods, 165
importance of, 166
indicating in UML, 166
in OOP, 151
private level, 165–166
protected level, 165
public level, 165
restriction of, 165

visibility script, beginning, 166
Visitor pattern, using with Composite, 232
vprintf() function, using, 41

W
warnings, showing, 99
Web port numbers, 333
Web services

creating, 347–351
JSON format, 348
REST (Representational State Transfer), 347
returning types of data, 348
stateless, 347
technologies related to, 410
using, 342

Web sites. See also modularizing Web sites
accessing, 328–332
reading with PHP, 329–332

webgrind
downloading, 471
installing, 471
loading in browser, 474
using Xdebug with, 471–472
viewing profile log in, 474–475

write_to_file.php script, opening, 272

X
x type specifier, meaning of, 37
Xdebug debugging tool

checking code coverage, 465
customizing, 458
downloading, 454
ini_set() function, 458
installation requirements, 454
installing on Windows, 455–456
on *nix systems, 454
profiling in, 471
using, 457–459
using with webgrind, 471–472

XML (Extensible Markup Language). See also
parsing XML

adding books to file, 414
& entity, 415
' entity, 415
attributes, 415–418
benefit, 424
elements, 415–418
entities, 415–418

Index 491

XSD document
complex types, 427
creating attributes, 427
defining elements, 426
incorporating, 425
mixed attribute on elements, 431
simple types, 427
using, 425
xmlns attribute, 425

Z
Zend Framework, network-related classes, 332
zip codes. See also databases

database, 96–99
importing data, 98
tables, 96

zlib
a+ mode, 355
b mode, 355
compressed binary files, 362
compressing files with, 354–362
f mode, 355
file open modes, 355
h mode, 355
a mode, 355
r mode, 355
r+ mode, 355
verifying support for, 354
w mode, 355
w+ mode, 355
x mode, 355
ZIP archives, 362

> entity, 415
< entity, 415
modifying, 441
overview, 410–411
" entity, 415
RSS feed, 447–451
using formal PHP tags with, 439
valid, 419
well formed, 419
writing, 413–414

XML document, 413
XML Schemas

defining, 419–431
defining attributes, 421–422
defining elements, 420–421
<!DOCTYPE rootelement, 419
element attribute types, 421
element type symbols, 421
element types, 420–421
incorporating DTD, 419–420
incorporating XSD, 425
using, 425
writing Document Type Definition, 422–424

XML syntax
comments, 413
data, 412
prolog, 412
rules for elements, 412
white space, 413

XML tags versus HTML tags, 410
XML version, indicating, 412

	Contents
	Introduction
	Chapter 4 Basic Object-Oriented Programming
	OOP Theory
	Defining a Class
	Creating an Object
	The $this Attribute
	Creating Constructors
	Creating Destructors
	Designing Classes with UML
	Better Documentation with phpDocumentor
	Review and Pursue

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

