
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321822161
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321822161
https://plusone.google.com/share?url=http://www.informit.com/title/9780321822161
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321822161
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321822161/Free-Sample-Chapter

Building Windows 8 Apps
with C# and XAML

00_9780321822161_FM.indd i00_9780321822161_FM.indd i 10/4/12 2:14 PM10/4/12 2:14 PM

The Windows Development Series grew out of the award-winning Microsoft .NET Development

Series established in 2002 to provide professional developers with the most comprehensive

and practical coverage of the latest Windows developer technologies. The original series has

been expanded to include not just .NET, but all major Windows platform technologies and tools.

It is supported and developed by the leaders and experts of Microsoft development technologies,

including Microsoft architects, MVPs and RDs, and leading industry luminaries. Titles and resources

in this series provide a core resource of information and understanding every developer needs to

write effective applications for Windows and related Microsoft developer technologies.

“ This is a great resource for developers targeting Microsoft platforms. It covers all bases, from expert

perspective to reference and how-to. Books in this series are essential reading for those who want to

judiciously expand their knowledge and expertise.”

– JOHN MONTGOMERY, Principal Director of Program Management, Microsoft

“ This series is always where I go f irst for the best way to get up to speed on new technologies. With its

expanded charter to go beyond .NET into the entire Windows platform, this series just keeps getting

better and more relevant to the modern Windows developer.”

– CHRIS SELLS, Vice President, Developer Tools Division, Telerik

Visit informit.com/mswinseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

Microsoft Windows Development Series

00_9780321822161_FM.indd ii00_9780321822161_FM.indd ii 10/4/12 2:14 PM10/4/12 2:14 PM

Building
Windows 8
Apps with C#
and XAML
 Jeremy Likness

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

00_9780321822161_FM.indd iii00_9780321822161_FM.indd iii 10/4/12 2:14 PM10/4/12 2:14 PM

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United

States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or

trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and the publisher was aware

of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or

special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please

contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data is on file and available upon request.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-

right, and permission must be obtained from the publisher prior to any prohibited reproduction,

storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise. To obtain permission to use material from this work, please

submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,

Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-82216-1

ISBN-10: 0-321-82216-1

Text printed in the United States on recycled paper at RR Donnelley and Sons, Crawfordsville,

Indiana.

First printing, October 2012

00_9780321822161_FM.indd iv00_9780321822161_FM.indd iv 10/4/12 2:14 PM10/4/12 2:14 PM

To Ma: Your support and encouragement

have always been a blessing to me.

I will miss not being able to share

that I fi nished this book with you.

00_9780321822161_FM.indd v00_9780321822161_FM.indd v 10/4/12 2:14 PM10/4/12 2:14 PM

00_9780321822161_FM.indd vi00_9780321822161_FM.indd vi 10/4/12 2:14 PM10/4/12 2:14 PM

vii

Contents at a Glance

Foreword xv
Preface xix

 1 The New Windows Runtime 1

 2 Getting Started 29

 3 Extensible Application Markup Language (XAML) 61

 4 Windows 8 Applications 111

 5 Application Lifecycle 157

 6 Data 181

 7 Tiles and Toasts 221

 8 Giving Your Application Charm 253

 9 MVVM and Testing 285

10 Packaging and Deploying 317

Index 341

00_9780321822161_FM.indd vii00_9780321822161_FM.indd vii 10/4/12 2:14 PM10/4/12 2:14 PM

00_9780321822161_FM.indd viii00_9780321822161_FM.indd viii 10/4/12 2:14 PM10/4/12 2:14 PM

ix

Contents

Foreword xv
Preface xix

1 The New Windows Runtime 1
Looking Back: Win32 and .NET 2

Looking Forward: Rise of the NUI 8

Introducing the Windows Store Application 12

Windows 8 Design 14
Fast and Fluid 15
Snap and Scale 15
Use of Right Contracts 16
Great Tiles 17
Connected and Alive 19
Embrace Windows 8 Design Principles 19

Windows 8 Tools of the Trade 19

Blend for Visual Studio 20
HTML5 and JavaScript 21
C++ and XAML 23
VB/C# and XAML 24

Behind the Scenes of WinRT 25

WPF, Silverlight, and the Blue Stack 26

Summary 28

Works Cited 28

00_9780321822161_FM.indd ix00_9780321822161_FM.indd ix 10/4/12 2:14 PM10/4/12 2:14 PM

 x Contents

2 Getting Started 29
Setting Up Your Environment 30

Windows 8 30
Visual Studio 2012 35
Blend 36

Hello, Windows 8 37

Creating Your First Windows 8 Application 37
Templates 37

The ImageHelper Application 42

Under the Covers 53
Summary 60

3 Extensible Application Markup Language (XAML) 61
Declaring the UI 62

The Visual Tree 64
Dependency Properties 67
Attached Properties 70

Data-Binding 73

Value Converters 78
Storyboards 80

Styles and Resources 85

Layout 88

Canvas 88
Grid 89
StackPanel 91
VirtualizingPanel and VirtualizingStackPanel 93
WrapGrid 94
VariableSizedWrapGrid 96
ContentControl 97
ItemsControl 99
ScrollViewer 99
ViewBox 100
GridView 102
ListView 105
FlipView 106
ListBox 106

00_9780321822161_FM.indd x00_9780321822161_FM.indd x 10/4/12 2:14 PM10/4/12 2:14 PM

xi Contents

Common Controls 107

Summary 109

4 Windows 8 Applications 111
Layouts and Views 111

The Simulator 112
The Visual State Manager 115
Semantic Zoom 119

Handling User Input 122

Pointer Events 124
Manipulation Events 126
Mouse Support 128
Keyboard Support 129
Visual Feedback 131
Targeting 132
Context Menus 134

The Application Bar 136

Icons and Splash Screens 143

About Page 145

Sensors 148

Accelerometer 149
Compass 149
Geolocation 150
Gyrometer 151
Inclinometer 151
Light Sensor 152
Orientation Sensor 153

Summary 154

5 Application Lifecycle 157
Process Lifetime Management 160

Activation 161
Suspension 163
Termination 166
Resume 166
Navigation 168
Application Data API 172

00_9780321822161_FM.indd xi00_9780321822161_FM.indd xi 10/4/12 2:14 PM10/4/12 2:14 PM

 xii Contents

Connected and Alive 176

Custom Splash Screen 177

Summary 179

6 Data 181
Application Settings 181

Accessing and Saving Data 183

The Need for Speed and Threading 189
Understanding async and await 191
Lambda Expressions 194
IO Helpers 195
Embedded Resources 196

Collections 199

Language Integrated Query (LINQ) 200
Web Content 203

Syndicated Content 205

Streams, Buffers, and Byte Arrays 207

Compressing Data 208

Encrypting and Signing Data 211

Web Services 214

OData Support 217
Summary 219

7 Tiles and Toasts 221
Basic Tiles 221

Live Tiles 222

Badges 229

Secondary Tiles 231

Toast Notifications 236

Windows Notification Service 242

Summary 250

8 Giving Your Application Charm 253
Searching 256

Sharing 266

Sourcing Content for Sharing 267
Receiving Content as a Share Target 274

00_9780321822161_FM.indd xii00_9780321822161_FM.indd xii 10/5/12 8:27 AM10/5/12 8:27 AM

xiii Contents

Settings 280

Summary 283

9 MVVM and Testing 285
UI Design Patterns 286

The Model 292
The View 293
The View Model 295

The Portable Class Library 296

Why Test? 301

Testing Eliminates Assumptions 302
Testing Kills Bugs at the Source 302
Testing Helps Document Code 303
Testing Makes Extending and Maintaining Applications Easier 304
Testing Improves Architecture and Design 305
Testing Makes Better Developers 305
Conclusion: Write Those Unit Tests! 306

Unit Tests 306

Windows Store Unit Testing Framework 307
Mocks and Stubs 311

Summary 315

10 Packaging and Deploying 317
The Windows Store 317

Discovery 318
Reach 322
Business Models 323
Advertising 328
Preparing Your App for the Store 329
The Process 331
The App Certification Kit 332
What to Expect 335

Side-Loading 337

Summary 339

 Index 341

00_9780321822161_FM.indd xiii00_9780321822161_FM.indd xiii 10/4/12 2:14 PM10/4/12 2:14 PM

00_9780321822161_FM.indd xiv00_9780321822161_FM.indd xiv 10/4/12 2:14 PM10/4/12 2:14 PM

xv

Foreword

The life of the software developer isn’t an easy one. Every ten

years or so, he has to throw away everything he knows and start all over

again. Times change, and technologies change even faster. A decade ago,

developers had to retool their skill sets for the move from Win32 to .NET

and C#. Today, there’s a new platform in town. It’s called Windows 8, and

with it comes a profound shift in the way Windows apps are conceived

and executed.

Windows 8 is like no Windows the world has seen before. The new

Windows programming model favors simplicity, security, and battery

effi ciency above all else. Modern Windows apps run full-screen, single-

instance, and one at a time. Their UIs can be built in XAML, HTML, or

DirectX. They run in a sandbox that stops malicious code in its tracks, and

they’re inspected before they’re published in the Windows Store to make

sure they don’t violate the sandbox. They prefer touch screens but play

equally well with mice and other input devices. Moreover, they install

with a single click and uninstall without leaving a trace.

Underneath the new user interface is a new API: The Windows Runtime

API, better known as WinRT. WinRT represents a rethinking of what the

Windows API would look like if it were redesigned from the ground up.

The old Windows API is outdated, overly complex, and tied to a specifi c

language. The WinRT API, by contrast, is thoroughly modern and can be

00_9780321822161_FM.indd xv00_9780321822161_FM.indd xv 10/4/12 2:14 PM10/4/12 2:14 PM

 xvi Foreword

called from a variety of languages. Indeed, one of the most remarkable

aspects of Windows 8 is that for the fi rst time in history, a developer versed

in HTML and JavaScript enjoys the same ability to write Windows apps as

developers who speak XAML and C#.

What it means for the developer is—you guessed it—time to start over

again. WinRT is the Windows API now, and the new UI layer, formerly

known as “Metro,” is the new face of Windows apps. Be bold or be left

behind.

B ecoming a Windows 8 developer means learning WinRT. It means get-

ting comfortable with asynchronous programming. It means understand-

ing that a Windows app that isn’t visible to the user is suspended and that

an app that’s suspended can be unceremoniously terminated by the oper-

ating system at any time. It means learning about contracts, which allow

apps to integrate with the charms that slide out from the right side of the

screen. It means learning about live tiles, push notifi cations, and other fea-

tures that make an app a fi rst-class citizen in the Windows 8 environment.

It means understanding the Windows 8 design philosophy and how to use

XAML to craft compelling, fl uid, and responsive Windows UIs.

When you’re in the wilderness, it helps to have a guide who has been

there before. I can’t think of anyone more qualifi ed to lead you on the jour-

ney to Windows 8 enlightenment than Jeremy Likness. Jeremy is the only

person I know who works 32 hours a day. (He sleeps the other four.) I

used to say that I might work with people a lot smarter than me, but none

of them can work more hours than me. I’ve had to reconsider that with

Jeremy. Shoot him an e-mail at 3:00 a.m., and you’ll have a reply by 3:02.

That’s why he’s a Principal Consultant at Wintellect and why we turn to

him to architect and implement Windows 8 solutions for our customers. A

teacher can be only so effective if he isn’t out there working in the trenches.

Jeremy builds real apps for real customers. That’s why I can heartily rec-

ommend this book and why I’m excited to see how it’s received by the

community.

Windows 8 is a bold move on Microsoft’s part—perhaps the boldest

move the company has made since the introduction of Windows itself. But

it’s the right move at the right time. The action in software development for

the next ten years won’t revolve around traditional PCs. It’ll be in writing

00_9780321822161_FM.indd xvi00_9780321822161_FM.indd xvi 10/4/12 2:14 PM10/4/12 2:14 PM

xvii Foreword

apps for tablets, phones, and other mobile devices. Companies will be built

and millionaires will be made from apps for devices with portable form

factors, including Microsoft’s new Surface tablet. To ignore WinRT is to

ignore the part of the Microsoft stack that lets you write for these devices.

Learn WinRT. Go out and write some great apps. Help make this plat-

form a success. And keep this book handy. When you run into problems,

it’s the next best thing to an instant response to a 3:00 a.m. e-mail. From

Jeremy’s perspective, it’s even better.

—Jeff Prosise, Co-Founder, Wintellect

00_9780321822161_FM.indd xvii00_9780321822161_FM.indd xvii 10/4/12 2:14 PM10/4/12 2:14 PM

00_9780321822161_FM.indd xviii00_9780321822161_FM.indd xviii 10/4/12 2:14 PM10/4/12 2:14 PM

xix

Preface

The first whispers about windows 8 surfaced in early 2011. Widespread

speculation swept the Internet as developers began to question what the

new platform would look like. The rumors included a new platform that

wouldn’t support the .NET Framework, was based solely on C++ or HTML5

and JavaScript, and wouldn’t run any existing software. Early builds and

screenshots leaked over Twitter but this only fueled speculation. Finally

Steven Sinofsky, President of the Windows Division at Microsoft, took the

stage on September 13, 2011 and released an early build of Windows 8 to

the world.

I was one of the fi rst eager programmers to download the early build,

and I installed it in a virtual machine. It didn’t take long for me to real-

ize that the .NET Framework was alive and well, I could run my exist-

ing Silverlight applications on the new platform, and C# and XAML were

tools available to build the new “Metro-style” applications (this name was

changed to Windows Store applications with the RTM version of Windows).

I didn’t make it to the //BUILD conference hosted in California to release

Windows 8, but the sessions were made available almost immediately

after they were presented, and I watched them every evening, morning, or

while I was traveling by plane.

The Windows 8 platform features the Windows Runtime, a new frame-

work for building applications that provides capabilities never before

available on a Windows machine. I was building applications within

00_9780321822161_FM.indd xix00_9780321822161_FM.indd xix 10/4/12 2:14 PM10/4/12 2:14 PM

 xx Preface

days and was delighted to fi nd that my existing C# and XAML skills from

Silverlight and Windows Presentation Foundation (WPF) applied to the

runtime, while a new set of components made it easier than ever to devel-

oper rich, touch-based applications. It wasn’t long before I reached out to

the publisher of my book, Designing Silverlight Business Applications, and

said, “I want to write my next book on Windows 8.”

I was fortunate to get involved in an early adoption program with

Microsoft. The consulting and training fi rm I work for, Wintellect, was

hired to provide some hands-on labs and workshops specifi cally tar-

geted to new developers who want to learn how to build applications for

Windows 8. This gave me critical access to early builds of the product and

enabled me to start writing about the various features that would ulti-

mately become part of the fi nal release. As I built samples that covered

manipulating objects on screen with touch, sharing rich content between

applications, and providing live interactive tiles on the start menu with at-

a-glance content, my excitement quickly grew.

As part of writing this book, I wrote an article that shares what I believe

are the top 10 reasons developers will love building Windows 8 applica-

tions. You can read the full article online at:

http://www.informit.com/articles/article.aspx?p=1853667

In summary, these are the reasons I think you will enjoy the new

platform:

• Programming language support—It is possible to write Windows

8 applications with VB, C#, C++, and XAML, or a special stack that

includes HTML5 and JavaScript.

• XAML—Developers familiar with the power and flexibility of XAML

who have written Silverlight and/or WPF applications in the past

will be very comfortable with the XAML used to develop Windows 8

applications.

• HTML5—The rich support for HTML5 as a markup option will

appeal to web developers crossing over to tablet and touch-based

development, although this book will deal primarily with the C# and

XAML option.

00_9780321822161_FM.indd xx00_9780321822161_FM.indd xx 10/4/12 2:14 PM10/4/12 2:14 PM

xxi Preface

• Windows Runtime (WinRT)—The Windows Runtime provides a

number of controls, components, classes, and method calls that make

performing complex tasks both consistent and easy using just a few

lines of code.

• Contracts—The new system of “Contracts” enables a new level of

sharing and integration between applications and the end user.

• Asynchronous support—The introduction of the await and async

keywords makes programming multi-threaded code more straight-

forward than it has even been.

• Touch—Touch-based input is first-class in Windows 8 applica-

tions with out-of-the-box support from all of the available con-

trols and a straightforward API to interface with touch events and

manipulations.

• Settings—The settings experience (provided via a Contract) provides

a very consistent and familiar way for developers to allow end users

to configure their application preferences.

• Roaming profiles—Building code that synchronizes across Win-

dows 8 machines through the cloud is simple and easy. (You can liter-

ally share a data file with a single line of code.)

• Icons—Windows 8 features a rich set of pre-existing icons that you

can use to provide consistent interfaces for commands within your

applications.

To avoid confusion, I refer to the special new programs built specifi -

cally for Windows 8 as “Windows 8 applications” throughout this book.

The templates to create these new applications in Visual Studio 2012 are

grouped under the name “Windows Store.” Although these applications

can be distributed through the Windows Store, you can also distribute tra-

ditional desktop-style applications through the store. Therefore, I will only

use “Windows Store” when I refer to the Visual Studio 2012 templates,

or when I compare the newer style of application to the traditional desk-

top style. Everywhere else, you will see them referred to as “Windows 8

applications.”

00_9780321822161_FM.indd xxi00_9780321822161_FM.indd xxi 10/4/12 2:14 PM10/4/12 2:14 PM

 xxii Preface

The top 10 items just scratch the surface of the new platform. Windows

8 is defi nitely different than previous releases of Windows and does require

change. You will need to adopt a new interface that elevates touch to a

fi rst-class citizen but always provides ways to navigate using the mouse

and keyboard. You will have to get used to code that calls native unman-

aged components in a way that is almost transparent, and deal with a new

set of controls and components that previously did not exist. This book is

intended to guide you through the process of learning the new territory

quickly so you can begin building amazing new applications using skills

you already have with C# and XAML.

What This Book Is About

The purpose of this book is to explain how to write Windows 8 applica-

tions using the C# programming language, Extensible Application Markup

Language (XAML), the Windows Runtime, and the .NET Framework. For

this book, I assume you have some development experience. While I do

cover basic topics related to C# and XAML, I try to focus on the areas spe-

cifi c to building Windows 8 applications. Where I introduce more advanced

concepts specifi c to C# or XAML that are not specifi c to the Windows 8

platform, I reference other books, articles, or online resources so you can

further explore those fundamentals.

Whether you’re an existing Silverlight of WPF developer looking to

migrate an existing application, or a developer who is transitioning the

Windows 8 platform for the fi rst time, this book will give you the guidance

and resources to quickly learn what you need to go from a new project to a

published application in the application store.

How to Use This Book
The goal of this book is to enable you to write Windows 8 applications with

C# and XAML. Each chapter is designed to help you move from a funda-

mental understanding of the target platform to building your fi rst applica-

tion. Code examples are provided that demonstrate the features and best

practices for programming them. Most chapters build on previous content

00_9780321822161_FM.indd xxii00_9780321822161_FM.indd xxii 10/4/12 2:14 PM10/4/12 2:14 PM

xxiii Preface

to provide a continuous narrative that walks through all of the compo-

nents that make up a typical Windows 8 application.

Each chapter is similarly structured. The chapters begin with an intro-

duction to a topic and an inventory of the capabilities that topic provides.

This is followed by code samples and walk-throughs to demonstrate the

application of the topics. The code samples are explained in detail and

the topic is summarized to highlight the specifi c information that is most

important for you to consider.

I suggest you read the book from start to fi nish, regardless of your exist-

ing situation. You will fi nd that your understanding grows as you read

each chapter and concepts are introduced, reinforced, and tied together.

After you’ve read the book in its entirety, you will then be able to keep

it as a reference guide and refer to specifi c chapters any time you require

clarifi cation about a particular topic.

My Experience with the Microsoft Stack
My fi rst computer program was written in BASIC on a TI-99/4A. From

there I programmed assembly language for the Commodore 64, learned

C and C++ on Unix-based systems, and later wrote supply chain manage-

ment software on the midrange AS/400 computer (now known as iSeries).

For the past 20 years, my primary focus has been developing scalable,

highly concurrent web-based enterprise applications.

I started my work with Silverlight right before the 3.0 release. At the

time, I led a team of 12 developers working on an ASP .NET mobile device

management platform that relied heavily on AJAX to provide a desktop-

like user experience. When it was evident that the team was spending

more time learning various web technologies such as CSS and JavaScript

and testing the application on multiple browsers and platforms than focus-

ing on core business value, I began researching alternative solutions and

determined that Silverlight was the key our team was looking for.

Since that transition, I worked on XAML applications in the enter-

prise along with large-scale web applications built with the ASP.NET

MVC framework. In addition to the mobile device management soft-

ware, I helped build the health monitoring system for the back-end data

00_9780321822161_FM.indd xxiii00_9780321822161_FM.indd xxiii 10/4/12 2:14 PM10/4/12 2:14 PM

 xxiv Preface

centers that provided video streams (live and on demand) during the 2010

Vancouver Winter Olympics. I worked on a major social media analytics

project that used Silverlight to present data that was mined from social

networks and analyzed to provide brand sentiment. I worked with a team

that built a slate-based sales interface for fi eld agents to close sales and

integrate with their point of sale system. I was on the team that produced

the Silverlight version of a major eBook reading platform designed for

accessibility and customized to provide interactive experiences and audio

for children.

All of this work has been with the company Wintellect, founded by

well-known .NET luminaries Jeffrey Richter, Jeff Prosise, and John Robbins.

All three have produced countless books about the Microsoft stack, .NET

Framework, and Core Language Runtime (CLR). They have trained thou-

sands of Microsoft employees (some teams at Microsoft are required to

take their courses as a prerequisite to working on their projects) and con-

tributed to the runtime itself by writing and designing portions of the

framework. The company has provided me with unique access to industry

leaders and architects and their best practices and solutions for creating

successful enterprise applications.

I am certifi ed in various XAML technologies, including Microsoft

Silverlight developer (MCTS) and WPF Developer (MCP). I was recog-

nized as a Microsoft Most Valuable Professional® (MVP) for Silverlight in

July of 2010 and was re-awarded the title in 2011 and 2012. This was due

mostly to my efforts to blog, tweet, and speak about XAML technologies

at various user group meetings and conferences around the country. I have

conducted hands-on labs and training for Windows 8, worked on its earli-

est builds, and continue to blog and write about the platform as it devel-

ops. It is my depth of experience working with XAML and understanding

how to build server and web-based software that has provided me with

valuable insights into how to build Windows 8 applications.

00_9780321822161_FM.indd xxiv00_9780321822161_FM.indd xxiv 10/4/12 2:14 PM10/4/12 2:14 PM

xxv

Acknowledgments

I’ve learned that a technical book like this is written by a team even though

the author gets the credit. Joan Murray once again has helped drive this

book to completion and provided incredible support and encouragement

throughout the process. She works with an amazing team. Special thanks

to development editor Ellie Bru for staying on top of every draft, fi gure,

revision, edit, and feedback loop. Thanks to Lori Lyons and Christal White

for keeping me consistent and correcting all of my bad grammar habits to

help me present like a polished writer.

I have enormous gratitude to my co-workers at Wintellect for their sup-

port. Steve Porter and Todd Fine once again helped support my efforts to

balance long evenings and early mornings writing with my daily activities.

Jeffrey Richter and Jeff Prosise gave me plenty of insights and wisdom

based on their years of writing incredible books before me. Jeffrey’s code

samples and Jeff’s labs were priceless tools that helped me learn the new

platform and evolve the scenarios I share in this book. John Garland was

a companion on this journey of learning a new platform and technology,

and served once again as a brilliant technical editor and helped me shape

and organize the content.

Special thanks to Telerik for supporting me at many levels. I appreci-

ate Jesse Liberty bringing me onto his podcast, Chris Sells for his assis-

tance on the HTML and JavaScript side, and Michael Crump for not only

00_9780321822161_FM.indd xxv00_9780321822161_FM.indd xxv 10/4/12 2:14 PM10/4/12 2:14 PM

 xxvi Acknowledgments

supporting this book at multiple levels but also taking the time to provide

valuable feedback as a technical editor.

Thanks to the Microsoft team who worked with me through multiple

iterations of the Windows 8 platform, from Developer Preview to Consumer

Preview, onto Release Preview and beyond. Thanks to Jaime Rodriguez,

Tim Heuer, Joanna Mason, Jennifer Marsman, and Layla Driscoll for all

of your knowledge and insights. David Kean, I appreciate you patiently

explaining the portable class library at the MVP summit and all of your

patience and support afterward. Daniel Plaisted, you’ve been a tremen-

dous help along the way.

These acknowledgments wouldn’t be complete without a nod to my

fellow MVPs and online supporters who have actively promoted and sup-

ported this book. Special thanks to Davide Zordan, Shawn Wildermuth,

Jeff Albrecht, Roberto Baccari, David J. Kelley, Zubair Ahmed, and Ginny

Caughey. Thanks to the Linked In .NET Users Group (LIDNUG), and espe-

cially Peter Shawn and Brian H. Madsen for your support and for provid-

ing me with a platform to share my excitement about Windows 8. Thanks

to Chris Woodruff and Keith Elder for helping me get “deep fried” on their

show.

Thanks to everyone who shared my tweets or visited the Facebook

page for this book. Thanks to all of the early readers who provided feed-

back through the rough cuts of this book, and thanks to you, kind reader,

for being you!

Last but certainly not least, thanks once again to my superstar wife and

incredible daughter for understanding why Dad had to lock himself in the

offi ce late at night and in the very early hours of the morning. I couldn’t

have done this without my girls!

00_9780321822161_FM.indd xxvi00_9780321822161_FM.indd xxvi 10/4/12 2:14 PM10/4/12 2:14 PM

xxvii

About the Author

Jeremy Likness is a principal consultant at Wintellect, LLC. He has worked

with enterprise applications for more than 20 years, 15 of those focused

on web-based applications using the Microsoft stack. An early adopter of

Silverlight 3.0, he worked on countless enterprise Silverlight solutions,

including the back-end health monitoring system for the 2010 Vancouver

Winter Olympics and Microsoft’s own social network monitoring prod-

uct called “Looking Glass.” He is both a consultant and project manager

at Wintellect and works closely with Fortune 500 companies, including

Microsoft. He is a three-year Microsoft MVP and was declared MVP of

the Year in 2010. He has also received Microsoft’s Community Contributor

award for his work with Silverlight. Jeremy is the author of Designing
Silverlight Business Applications: Best Practices for Using Silverlight Effectively
in the Enterprise (Addison-Wesley). Jeremy regularly speaks, contributes

articles, and blogs on topics of interest to the Microsoft developer commu-

nity. His blog can be found at http://csharperimage.jeremylikness.com.

00_9780321822161_FM.indd xxvii00_9780321822161_FM.indd xxvii 10/4/12 2:14 PM10/4/12 2:14 PM

00_9780321822161_FM.indd xxviii00_9780321822161_FM.indd xxviii 10/4/12 2:14 PM10/4/12 2:14 PM

181

 6
Data

Data is central to most applications, and understanding how

to manage data and transform it into information the user can inter-

act with is critical. Windows 8 applications can interact with data in a vari-

ety of ways. You can save local data, retrieve syndicated content from the

Web, and parse local resources that are stored in JSON format. You can

query XML documents, use WinRT controls to direct the user to select fi les

from the fi le system, and manipulate collections of data using a structured

query language.

In this chapter, you learn about the different types of data that are avail-

able to your Windows 8 application and techniques for manipulating,

loading, storing, encrypting, signing, and querying data. You’ll fi nd that

the WinRT provides several ready-to-use APIs that make working with

data a breeze. This chapter explores these APIs and how to best integrate

them into your application.

Application Settings

You were exposed to application settings in Chapter 5, Application Lifecycle.

Common cases for using application settings include

• Simple settings that are accessed through the Settings charm and can

be synchronized between machines (Roaming)

06_9780321822161_ch06.indd 18106_9780321822161_ch06.indd 181 10/4/12 2:14 PM10/4/12 2:14 PM

 182 CHAPTER 6: Data

• Local data storage persisted between application sessions (Local)

• Local persistent cache to enable occasionally disconnected scenarios

(Local)

• Temporary cached data used as a workspace or to improve perfor-

mance of the application (Temporary)

The settings use a simple dictionary to store values and require the val-

ues you store to be basic WinRT types. It is possible to store more complex

types. In Chapter 5, you learned how to manually serialize and de-serialize

an item by writing to a fi le in local storage. You serialize complex types using

a serialization helper. An example of this exists in the SuspensionManager

class that is included in the project templates. You can search for the fi le

SuspensionManager.cs on your system to browse the source code.

The SuspensionManager class uses the DataContractSerializer to serialize

complex types in a dictionary:

DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>),
 knownTypes_);
serializer.WriteObject(sessionData, sessionState_);

The serializer (in this case, the DataContractSerializer class) automati-

cally inspects the properties on the target class and composes XML to rep-

resent the class. The XML is written to a fi le in the folder allocated for the

current application. Similar to the various containers for application set-

tings (local, roaming, and temporary), there is a local folder specifi c to the

user and application that you can use to create directories and read and

write fi les. Accessing the folder is as simple as

StorageFile file =
 await ApplicationData.Current.LocalFolder.
CreateFileAsync(filename,
 CreationCollisionOption.ReplaceExisting);

You can access a roaming or temporary folder as well. The Create

CompletionOption is a feature that allows you generate fi lenames that don’t

confl ict with existing data. The options (passed in as an enum to the fi le

method) include:

06_9780321822161_ch06.indd 18206_9780321822161_ch06.indd 182 10/4/12 2:14 PM10/4/12 2:14 PM

183 Accessing and Saving Data

• FailIfExists—The operation will throw an exception if a fi le with

that name already exists.

• GenerateUniqueName—The operation will append a sequence to the end

of the filename to ensure it is a unique, new file.

• OpenIfExists—If the file already exists, instead of creating a new file,

the operation will simply open the existing file for writing.

• ReplaceExisting—Any existing file will be overwritten. The example

will always overwrite the file with the XML for the dictionary.

After the dictionary has been written, the serialization helper is used

to de-serialize the data when the application resumes after a termination:

DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>),
 knownTypes_);
sessionState_ = (Dictionary<string, object>)serializer
 .ReadObject(inStream.AsStreamForRead());

The local storage can be used for more than just saving state. As dem-

onstrated in Chapter 5, you may also use it to store data. It can also be used

to store assets like text fi les and images. A common design is to use local

storage to save cloud-based data that is unlikely to change as a local cache.

This will allow your application to operate even when the user is not con-

nected to the Internet and in some cases may improve the performance

of the application when the network is experiencing high latency. In the

next section, you learn more about how to access and save data using the

Windows Runtime.

Accessing and Saving Data

Take a moment to download the Wintellog project for Chapter 6, Data,
from the book website at http://windows8applications.codeplex.com/.

You may need to remove TFS bindings before you run the project. This

is a sample project that demonstrates several techniques for accessing

and saving data. The application takes blog feeds from various Wintellect

employees and caches them locally on your Windows 8 device. Each time

you launch the application, it scans for new items and pulls those down.

06_9780321822161_ch06.indd 18306_9780321822161_ch06.indd 183 10/4/12 2:14 PM10/4/12 2:14 PM

 184 CHAPTER 6: Data

These blogs cover cutting-edge content ranging from the latest informa-

tion about Windows 8 to topics like Azure, SQL Server, and more. You may

recognize some of the blog authors including Jeff Prosise, Jeffrey Richter,

and John Robbins.

You learned in Chapter 5 about the various storage locations and how

you can use either settings or the fi le system itself. The application cur-

rently uses settings to track the fi rst time it runs. That process takes several

minutes as it reads a feed with blog entries and parses the web pages for

display. An extended splash screen is used due to the longer startup time.

You can see the check to see if the application has been initialized in the

ExtendedSplashScreen_Loaded method in SplashPage.xaml.cs:

ProgressText.Text = ApplicationData.Current.LocalSettings.Values
 .ContainsKey("Initialized") && (bool)ApplicationData.Current.
LocalSettings.Values["Initialized"]
 ? "Loading blogs..." :
"Initializing for first use: this may take several minutes...";

After the process is completed, the fl ag is set to true. This allows the

application to display a warning about the startup time the fi rst time it

runs. Subsequent launches will load the majority of data from a local cache

to improve the speed of the application:

ApplicationData.Current.LocalSettings.Values["Initialized"]
 = true;

There are several classes involved with loading and saving the data.

Take a look at the StorageUtility class. This class is used to simplify the

process of saving items to local storage and restoring them when the appli-

cation is launched. In SaveItem, you can see the process to create a folder

and a fi le and handling potential collisions as described in Chapter 5 (extra

code has been removed for clarity):

var folder = await ApplicationData.Current.LocalFolder
 .CreateFolderAsync(folderName,
 CreationCollisionOption.OpenIfExists);
var file = await folder.CreateFileAsync(item.Id.GetHashCode().
➥ToString(),
 CreationCollisionOption.ReplaceExisting);

06_9780321822161_ch06.indd 18406_9780321822161_ch06.indd 184 10/4/12 2:14 PM10/4/12 2:14 PM

185 Accessing and Saving Data

Notice that the method itself is marked with an async keyword, and

the fi le system operations are preceded by await. You learn about these

keywords in the next section. Unlike the example in Chapter 5 that manu-

ally wrote the properties to storage, the StorageUtility class takes a generic

type to make it easier to save any type that can be serialized. The code uses

the same engine that handles complex types transmitted via web services

(you will learn more about web services later in this chapter). This code

uses the DataContractJsonSerializer to take the snapshot of the instance

that is saved:

var stream = await file.OpenAsync(FileAccessMode.ReadWrite);
using (var outStream = stream.GetOutputStreamAt(0))
{
 var serializer = new DataContractJsonSerializer(typeof(T));
 serializer.WriteObject(outStream.AsStreamForWrite(), item);
 await outStream.FlushAsync();
}

The fi le is created through the previous call and used to retrieve a

stream. The instance of the DataContractJsonSerializer is passed the type

of the class to be serialized. The serialized object is written to the stream

attached to the fi le and then fl ushed to store this to disk. The entire opera-

tion is wrapped in a try … catch block to handle any potential fi le system

errors that may occur. This is common for cache code because if the local

operation fails, the data can always be retrieved again from the cloud.

 GENERICS 101

Generics are a very important feature of the C# language. They pro-
vide the ability to create a template for type-safe code without com-
mitting to a specific type. The SaveItem<T> method is a template for
saving an instance of an unknown type. When it is called from the
BlogDataSource class, the compiler inspects the type that is passed and
generates code specific for that type. The definition is an open generic
and the call closes the generic with a specific type. You may be famil-
iar with generics in collections, like List<T>, but they can be used in
far more powerful and flexible solutions. Learn more about generics
online at: http://bit.ly/csharpgenerics.

06_9780321822161_ch06.indd 18506_9780321822161_ch06.indd 185 10/4/12 2:14 PM10/4/12 2:14 PM

 186 CHAPTER 6: Data

To see how the serialization works and where the fi les are stored, run

the application and allow it to initialize and pass you to the initial grouped

item list. Hold down the Windows Key and press R to get the run dialog. In

the dialog, type the following:

%userprofile%\AppData\Local\Packages

Press the Enter key, and it will open the folder.

This is where the application-specifi c data for your login will be stored.

You can either try to match the folder name to the package identifi er or

type Groups into the search box to locate the folder used by the Wintellog

application. When you open the folder, you’ll see several folders with

numbers for the name and a single folder called Groups, similar to what is

shown in Figure 6.1.

FIGURE 6.1: The local cache for the Wintellog application

To simplify the generation of fi lenames, the application currently just

uses the hash code for the unique identifi er of the group or item to establish

06_9780321822161_ch06.indd 18606_9780321822161_ch06.indd 186 10/4/12 2:14 PM10/4/12 2:14 PM

187 Accessing and Saving Data

a fi lename. A hash code is simply a value that makes it easier to compare

complex objects. You can read more about hash codes online at http://

msdn.microsoft.com/en-us/library/system.object.gethashcode.aspx.

Hash codes are not guaranteed to be unique, but in the case of strings,

it is highly unlikely that the combination of a group and a post would

cause a collision. The Groups folder contains a list of fi les for each group.

Navigate to that folder and open one of the items in Notepad. You’ll see

the JSON serialized value for a BlogGroup instance.

 JAVASCRIPT OBJECT NOTATION (JSON)

JSON is an open standard for storing text-based information. The
default serialization engine for web services uses Extensible Markup
Language (XML) to store values in a structured document. JSON uses
a different approach that has become popular because it takes less
space and is easier to read and understand than XML. It uses valid
JavaScript syntax to describe objects, so the code can be executed by a
JavaScript interpreter to easily create an object. You can search for the
keywords “JSON Visualizer” to find several websites that will allow
you to paste JSON and see a visual interpretation of the object it repre-
sents. The standard is defined online at http://json.org/.

The JSON is stored in a compact format on disk. The following example

shows the JSON value for my blog, formatted to make it easier to read:

{
 "Id" : "http://www.wintellect.com/CS/blogs/jlikness/default.aspx",
 "PageUri" :
 "http://www.wintellect.com/CS/blogs/jlikness/default.aspx",
 "Title" : "Jeremy Likness’ Blog",
 "RssUri" : "http://www.wintellect.com/CS/blogs/jlikness/rss.aspx"
}

The syntax is straightforward. The braces enclose the object being

defi ned and contain a list of keys (the name of the property) and values

(what the property is set to). If you inspect any of the serialized posts (those

are contained in a folder with the same name as the group hash code), you

will notice the ImageUriList property uses a bracket to specify an array:

06_9780321822161_ch06.indd 18706_9780321822161_ch06.indd 187 10/4/12 2:14 PM10/4/12 2:14 PM

 188 CHAPTER 6: Data

"ImageUriList" : [
 "http://www.wintellect.com/.../Screen_thumb_42317207.png",
 "http://www.wintellect.com/.../someotherimage.png"]

You may have already looked at the BlogGroup class and noticed that

not all of the properties are being stored. For example, the item counts are

always computed when the items are loaded for the group, so they do not

need to be serialized. This particular approach requires that you mark the

class as a DataContract and then explicitly tag the properties you wish to

serialize. The BlogGroup class is tagged like this:

[DataContract]
public class BlogGroup : BaseItem

Any properties to be serialized are tagged using the DataMember attribute:

[DataMember]
public Uri RssUri { get; set; }

If you have written web services using Windows Communication

Foundation (WCF) in the past, you will be familiar with this for-

mat for tagging classes. You may not have realized it could be used for

direct serialization without going through the web service stack. The

default DataContractSerializer outputs XML, so remember to specify the

DataContractJsonSerializer if you want to use JSON.

 TIP

It is common to put code that initializes a class in the constructor
for that class. When you use the serialization engines provided by
the system, the constructor is not called. This actually makes sense
because the implication is that the class was already created and is
serialized in a state that reflects the initialization. If you do need code
to run when the class is deserialized, you can specify a member for
the engine to call by tagging it with the OnDeserialized attribute. In the
Wintellog example, you can see an instance of this in the BlogItem class.
This ensures an event is registered regardless of whether the class was
created using the new keyword or was deserialized.

06_9780321822161_ch06.indd 18806_9780321822161_ch06.indd 188 10/4/12 2:14 PM10/4/12 2:14 PM

189 Accessing and Saving Data

The process to restore is similar. You still reference the fi le but this time

open it for read access. The same serialization engine is used to create an

instance of the type from the serialized data:

var folder = await ApplicationData.Current.LocalFolder
 .GetFolderAsync(folderName);
var file = await folder.GetFileAsync(hashCode);
var inStream = await file.OpenSequentialReadAsync();
var serializer = new DataContractJsonSerializer(typeof(T));
var retVal = (T)serializer.ReadObject(inStream.AsStreamForRead());

You can see when you start the application that the process of loading

web sites, saving the data, and restoring items from the cache takes time.

In the Windows Runtime, any process that takes more than a few millisec-

onds is defi ned as asynchronous. This is different from a synchronous call.

To understand the difference, it is important to be familiar with the concept

of threading.

The Need for Speed and Threading
In a nutshell, threading provides a way to execute different processes at

the same time (concurrently). One job of the processor in your device is to

schedule these threads. If you only have one processor, multiple threads

take turns to run. If you have multiple processors, threads can run on dif-

ferent processors at the same time.

When the user launches an application, the system creates a main appli-

cation thread that is responsible for performing most of the work, includ-

ing responding to user input and drawing graphics on the screen. The fact

that it manages the user interface has led to a convention of calling this

thread the “UI thread.” By default, your code will execute on the UI thread

unless you do something to spin off a separate thread.

The problem with making synchronous calls from the UI thread is that

all processing must wait for your code to complete. If your code takes sev-

eral seconds, this means the routines that check for touch events or update

graphics will not run during that period. In other words, your application

will freeze and become unresponsive.

The Windows Runtime team purposefully designed the framework to

avoid this scenario by introducing asynchronous calls for any methods

06_9780321822161_ch06.indd 18906_9780321822161_ch06.indd 189 10/4/12 2:14 PM10/4/12 2:14 PM

 190 CHAPTER 6: Data

that might potentially take longer than 50 milliseconds to execute. Instead

of running synchronously, these methods will spin off a separate thread

to perform work and leave the UI thread free. At some point when their

work is complete, they return their results. When the new await keyword is

used, the results are marshaled automatically to the calling thread, which

in many cases is the UI thread. A common mistake is to try to update the

display without returning to the UI thread; this will generate an exception

called a cross-thread access violation because only the UI thread is allowed

to manage those resources.

Managing asynchronous calls in traditional C# was not only diffi cult,

but resulted in code that was hard to read and maintain. Listing 6.1 pro-

vides an example using a traditional event-based model. Breakfast, lunch,

and dinner happen asynchronously, but one meal must be completed

before the next can begin. In the event-based model, an event handler is

registered with the meal so the meal can fl ag when it is done. A method is

called to kick off the process, which by convention ends with the text Async.

LISTING 6.1: Asynchronous Meals Using the Event Model

public void EatMeals()
{
 var breakfast = new Breakfast();
 breakfast.MealCompleted += breakfast_MealCompleted;
 breakfast.BeginBreakfastAsync();
}
void breakfast_MealCompleted(object sender, EventArgs e)
{
 var lunch = new Lunch();
 lunch.MealCompleted += lunch_MealCompleted;
 lunch.BeginLunchAsync();
}
void lunch_MealCompleted(object sender, EventArgs e)
{
 var dinner = new Dinner();
 dinner.MealCompleted += dinner_MealCompleted;
 dinner.BeginDinnerAsync();
}
void dinner_MealCompleted(object sender, EventArgs e)
{
 // done;
}

06_9780321822161_ch06.indd 19006_9780321822161_ch06.indd 190 10/4/12 2:14 PM10/4/12 2:14 PM

191 Accessing and Saving Data

This example is already complex. Every step requires a proper registra-

tion (subscription) to the completion event and then passes control to an

entirely separate method when the task is done. The fact that the process

continues in a separate method means that access to any local method vari-

ables is lost and any information must be passed through the subsequent

calls. This is how many applications become overly complex and diffi cult

to maintain.

The Task Parallel Library (TPL) was introduced in .NET 4.0 to simplify

the process of managing parallel, concurrent, and asynchronous code.

Using the TPL, you can create meals as individual tasks and execute them

like this:

var breakfast = new Breakfast();
var lunch = new Lunch();
var dinner = new Dinner();
var t1 = Task.Run(() => breakfast.BeginBreakfast())
 .ContinueWith(breakfastResult => lunch.
BeginLunch(breakfastResult))
 .ContinueWith(lunchResult => dinner.BeginDinner(lunchResult));

This helped simplify the process quite a bit, but the code is still not

easy to read and understand or maintain. The Windows Runtime has a

considerable amount of APIs that use the asynchronous model. To make

developing applications that use asynchronous method calls even easier,

Visual Studio 2012 provides support for two new keywords called async

and await.

Understanding async and await
The async and await keywords provide a simplifi ed approach to asynchro-

nous programming. A method that is going to perform work asynchro-

nously and should not block the calling thread is marked with the async

keyword. Within that method, you can call other asynchronous methods

to launch long running tasks. Methods marked with the async keyword can

have one of three return values.

All async operations in the Windows Runtime return one of four inter-

faces. The interface that is implemented depends on whether or not the

operation returns a result to the caller and whether or not it supports track-

ing progress. Table 6.1 lists the available interfaces.

06_9780321822161_ch06.indd 19106_9780321822161_ch06.indd 191 10/4/12 2:14 PM10/4/12 2:14 PM

 192 CHAPTER 6: Data

TABLE 6.1: Interfaces Available for async Operations

Reports Progress
Does Not Report
Progress

Returns Results IAsyncOperationWithProgress IAsyncOperation

Does Not Return
Results

IAsyncActionWithProgress IAsyncAction

In C#, there are several ways you can both wrap calls to asynchronous

methods as well as defi ne them. Methods that call asynchronous opera-

tions are tagged with the async keyword. Methods with the async keyword

that return void are most often event handlers. Event handlers require a

void return type. For example, when you want to run an asynchronous

task from a button tap, the signature of the event handler looks like this:

private void button1_Click(object sender, RoutedEventArgs e)
{
 // do stuff
}

To wait for asynchronous calls to fi nish without blocking the UI thread,

you must add the async keyword so the signature looks like this:

private async void button1_Click(object sender, RoutedEventArgs e)
{
 // do stuff
 await DoSomethingAsynchronously();
}

Failure to add the async modifi er to a method that uses await will

result in a compiler error. Aside from the special case of event handlers,

you might want to create a long-running task that must complete before

other code can run but does not return any values. For those methods, you

return a Task. This type exists in the System.Threading.Tasks namespace. For

example:

public async Task LongRunningNoReturnValue()
{
 await TakesALongTime();
 return;
}

06_9780321822161_ch06.indd 19206_9780321822161_ch06.indd 192 10/4/12 2:14 PM10/4/12 2:14 PM

193 Accessing and Saving Data

Notice that the compiler does the work for you. In your method, you

simply return without sending a value. The compiler will recognize the

method as a long-running Task and create the Task “behind the scenes” for

you. The fi nal return type is a Task that is closed with a specifi c return type.

Listing 6.2 demonstrates how to take a simple method that computes a fac-

torial and wrap it in an asynchronous call. The DoFactorialExample method

asynchronously computes the factorial for the number 5 and then puts the

result into the Text property as a string.

LISTING 6.2: Creating an Asynchronous Method That Returns a Result

public long Factorial(int factor)
{
 long factorial = 1;

 for (int i = 1; i <= factor; i++)
 {
 factorial *= i;
 }

 return factorial;
}

public async Task<long> FactorialAsync(int factor)
{
 return await Task.Run(() => Factorial(factor));
}

public async void DoFactorialExample()
{
 var result = await FactorialAsync(5);
 Result = result.ToString();
}

Note how easy it was to take an existing synchronous method (Factorial)

and provide it as an asynchronous method (FactorialAsync) and then call it

to get the result with the await keyword (DoFactorialExample). The Task.Run

call is what creates the new thread. The fl ow between threads is illustrated

in Figure 6.2. Note the UI thread is left free to continue processing while

the factorial computes, and the result is updated and can be displayed to

the user.

06_9780321822161_ch06.indd 19306_9780321822161_ch06.indd 193 10/4/12 2:14 PM10/4/12 2:14 PM

 194 CHAPTER 6: Data

FIGURE 6.2: Asynchronous flow between threads

The examples here use the Task Parallel Library (TPL) because it existed

in previous versions of the .NET Framework. It is also possible to create

asynchronous processes using Windows Runtime methods like ThreadPool.

RunAsync. You can learn more about asynchronous programming in the

Windows Runtime in the development center at http://msdn.microsoft.

com/en-us/library/windows/apps/hh464924.aspx. For a quickstart on

using the await operator, visit http://msdn.microsoft.com/en-us/library/

windows/apps/hh452713.aspx.

Lambda Expressions
The parameter that was passed to the Task.Run method is called a lambda

expression. A lambda expression is simply an anonymous function. It starts

with the signature of the function (if the Run method took parameters, those

would be specifi ed inside the parenthesis) and ends with the body of the

function. I like to refer to the special arrow => as the gosinta for “goes into.”

Take the expression from the earlier code snippet that is passed into Task.

Run:

 ()=>Factorial(factor)

This can be read as “nothing goes into a call to Factorial with parameter

factor.” You can use lambda expressions to provide methods “on the fl y.”

In the previous examples showing lunch, breakfast, and dinner, special

methods were defi ned to handle the completion events. A lambda expres-

sion could also be used like this:

breakfast.MealCompleted += (sender, eventArgs)
 =>
 {
 // do something
 };

DoFactorialExample UI Processing Set Result

Secondary Thread Factorial

UI Thread

Await

Return

06_9780321822161_ch06.indd 19406_9780321822161_ch06.indd 194 10/4/12 2:14 PM10/4/12 2:14 PM

195 Accessing and Saving Data

In this case, the lambda reads as “the sender and eventArgs goes into

a set of statements that do something.” The parameters triggered by the

event are available in the body of the lambda expression, as are local vari-

ables defi ned in the surrounding methods. Lambda expressions are used

as a short-hand convention for passing in delegates.

There are a few caveats to be aware of when using lambda expressions.

Unless you assign a lambda expression to a variable, it is no longer avail-

able to reference from code, so you cannot unregister an event handler

that is defi ned with a lambda expression. Lambda expressions that refer

to variables within the method capture those variables so they can live

longer than the method scope (this is because the lambda expression may

be referenced after the method is complete), so you must be aware of the

side effects for this. You can learn more about lambda expressions online at

http://msdn.microsoft.com/en-us/library/bb397687(v=vs.110).aspx.

IO Helpers
The PathIO and FileIO classes provide special helper methods for reading

and writing storage fi les. The PathIO class allows you to perform fi le opera-

tions by passing the absolute path to the fi le. Creating a text fi le and writ-

ing data can be accomplished in a single line of code:

await PathIO.WriteTextAsync("ms-appdata:///local/tmp.txt", "Text.");

The ms-appdata prefi x is a special URI that will point to local storage for

the application. You can also access local resources that are embedded in

your application using the ms-appx prefi x. In the sample application, an ini-

tial list of blogs to load is stored in JSON format under Assets/Blogs.js. The

code to access the list is in the BlogDataSource class (under the DataModel

folder)—the fi le is accessed and loaded with a single line of code:

var content = await PathIO
 .ReadTextAsync("ms-appx:///Assets/Blogs.js");

The FileIO class performs similar operations. Instead of taking a

path and automatically opening the fi le, it accepts a parameter of type

IStorageFile. Use the FileIO helpers when you already have a reference to

06_9780321822161_ch06.indd 19506_9780321822161_ch06.indd 195 10/4/12 2:14 PM10/4/12 2:14 PM

 196 CHAPTER 6: Data

the fi le or need to perform some type of processing that can’t be done by

simply referencing the path.

Table 6.2 provides the list of available methods you can use. All of the

methods take an absolute fi le path for the PathIO class and an IStorageFile

object (obtained using the storage API) for the FileIO class:

TABLE 6.2: File Helper Methods from the PathIO and FileIO Classes

Method Name Description

AppendLinesAsync Appends lines of text to the specified file

AppendTextAsync Appends the text to the specified file

ReadBufferAsync Reads the contents of the specified file into a buffer

ReadLinesAsync Reads the contents of the specified file into lines of
text

ReadTextAsync Reads the contents of the specified file into a single
string as text

WriteBufferAsync Writes data from a buffer to the specified file

WriteBytesAsync Writes the byte array to the specified file

WriteLinesAsync Writes the text lines to the specified file

WriteTextAsync Writes the text to the specified file

Take advantage of these helpers where it makes sense. They will help

simplify your code tremendously.

Embedded Resources
There are several ways you can embed data within your application and

read it back. A common reason to embed data is to provide seed values

for a local database or cache, confi guration items, and special fi les such as

license agreements. You can embed any type of resource, including images

and text fi les. The applications you have worked with already include

image resources.

06_9780321822161_ch06.indd 19606_9780321822161_ch06.indd 196 10/4/12 2:14 PM10/4/12 2:14 PM

197 Accessing and Saving Data

To specify how a resource is embedded, right-click the resource name in

the Solution Explorer and select Properties or select the item and press Alt

+ Enter. Figure 6.3 shows the result of highlighting the fi le Blogs.js in the

Assets folder and selecting the Properties dialog. Note the Build Action

and Copy to Output Directory properties.

FIGURE 6.3: Properties for a resource

When you set the action to Content, the resource is copied into a folder

that is relative to the package for your application. In addition to the stor-

age containers you learned about in Chapter 5, every package has an install

location that contains the local assets you have specifi ed the Content build

action for. This will include resources such as images.

You can fi nd the location where the package is installed using the

Package class:

var package = Windows.ApplicationModel.Package.Current;
var installedLocation = package.InstalledLocation;
var loc = String.Format("Installed Location: {0}",
 installedLocation.Path);

An easier way to access these fi les is to use the ms-appx prefi x. Open

the BlogDataSource.cs fi le. The Blogs.js fi le is loaded in the LoadLiveGroups

method. It is loaded by using the special package prefi x, like this:

var content = await PathIO.ReadTextAsync(
 "ms-appx:///Assets/Blogs.js");

It is also possible to embed resources directly into the executable for

your application. These resources are not visible in the fi le system but can

06_9780321822161_ch06.indd 19706_9780321822161_ch06.indd 197 10/4/12 2:14 PM10/4/12 2:14 PM

 198 CHAPTER 6: Data

still be accessed through code. To embed a resource, set the Build Action

to Embedded Resource. Accessing the resource is a little more complex.

To read the contents of an embedded resource, you must access the cur-

rent assembly. An assembly is a building block for applications. One way

to get the assembly is to inspect the information about a class you have

defi ned:

var assembly = typeof(BlogDataSource).GetTypeInfo().Assembly;

The assembly is what the resource is embedded within. Once you have

a reference to the assembly, you can grab a stream to the resource using the

GetManifestResourceStream method. There is a trick to how you reference the

resource, however. The resource will be named as part of the namespace

for your assembly. Therefore, a resource at the root of a project with the

default namespace Wintellog will be given the path:

Wintellog.ResourceName

The reference to the ReadMe.txt fi le in the Common folder is therefore

Wintellog.Common.ReadMe.txt. This fi le is not ordinarily embedded in the

project; the properties have been updated to illustrate this example. After

you have retrieved the stream for the resource, you can use a stream reader

to read it back. When the assembly reference is obtained, you can return

the contents like this:

var stream = assembly.GetManifestResourceStream(txtFile);
var reader = new StreamReader(stream);
var result = await reader.ReadToEndAsync();
return result;

You will typically use embedded resources only when you wish to

obfuscate the data by hiding it in the assembly. Note this will not com-

pletely hide the data because anyone with the right tools will be able

to inspect the assembly to examine its contents, including embedded

resources. Embedding assets using the Content build action not only makes

it easier to inspect the assets from your application, but also has the added

advantage of allowing you to enumerate the fi le system using the installed

location of the current package when there are multiple assets to manage.

06_9780321822161_ch06.indd 19806_9780321822161_ch06.indd 198 10/4/12 2:14 PM10/4/12 2:14 PM

199 Collections

Collections

Collections are the primary structures you will use to manipulate data

within your application. These classes implement common interfaces that

provide consistent methods for querying and managing the data in the

collection. Collections are often bound to UI controls. In the Wintellog

example, a collection of blogs provides the grouped few and is bound to

the GridView control. A collection of posts within the blogs feed the detail

view within a group.

The Windows Runtime has a set of commonly used collection types.

These types are mapped automatically to .NET Framework types by the

CLR. In code, you won’t reference the Windows Runtime types directly.

Instead, you manipulate the .NET equivalent, and the CLR handles con-

version automatically. Table 6.3 lists the Windows Runtime type and the

.NET equivalent along with a brief description and example classes that

implement the interface.

TABLE 6.3: Collection Types in the Windows Runtime and .NET

WinRT .NET Framework Example Description

IIterable<T> IEnumerable<T> Most collection
types

Provides an inter-
face to support
iteration for a
collection

IIterator<T> IEnumerator<T> Exposed via
collection type

The interface
for performing
iteration over a
collection

IVector<T> IList<T> List<T> A collection that
can be individu-
ally accessed via
an index

IVectorView<T> IReadOnlyList<T> ReadOnly
Collection<T>

Version of an
indexed collection
that cannot be
modified

IMap<K,V> IDictionary<K,V> Dictionary<K,V> A collection of val-
ues that are refer-
enced by keys

06_9780321822161_ch06.indd 19906_9780321822161_ch06.indd 199 10/4/12 2:14 PM10/4/12 2:14 PM

 200 CHAPTER 6: Data

IMapView<K,V> IReadOnly
Dictionary<K,V>

ReadOnly
Dictionary<K,V>

Version of a
collection with
key/value pairs
that cannot be
modified

IBindableIter-
able

IEnumerable Exposed via
non-generic
collections

Supports iteration
over a non-
generic collection

IBindableVector IList Custom classes
that implement
IList

Supports a non-
generic collection
that can be refer-
enced by index

One important list that is not mapped to the Windows Runtime is the

ObservableCollection<T>. This is a special list because it works with the

data-binding system you learned about in Chapter 3, Extensible Application
Markup Language (XAML). The ObservableCollection<T> implements the

INotifyCollectionChanged interface, which is designed to notify listeners

when the list changes—for example, when items are added or removed or

the entire list is refreshed.

For performance, the data-binding system does not constantly examine

the lists you bind to UI controls. Instead, the initially bound list is used

to generate the controls on the display. When you manipulate the list, the

data-binding system receives a notifi cation through the CollectionChanged

event and can use the list of added and removed items to refresh the

controls being displayed. Without the interface, the only way to have a

list refresh the UI is to raise a PropertyChanged event for the property that

exposes the list. This is ineffi cient because it results in the entire list being

refreshed rather than only the items that changed.

Language Integrated Query (LINQ)
One major advantage of using collections is the ability to write queries

against them using Language Integrated Query (LINQ). This feature

extends the language syntax of C# to provide patterns for querying and

updating data. LINQ itself works with providers for different types of

data storage, such as a database backend (SQL) or an XML document. The

06_9780321822161_ch06.indd 20006_9780321822161_ch06.indd 200 10/4/12 2:14 PM10/4/12 2:14 PM

201 Collections

LINQ to Objects provider supports classes that implement the IEnumerable

interface and therefore can be used with most collections.

LINQ to Objects is implemented as a set of extension methods to the

existing IEnumerable interface. These extension methods are declared in the

System.Linq namespace. Extension methods enable you to add methods to

existing types without having to create a new type. They are a special type

of static method that use a special this modifi er for the fi rst parameter. You

can learn more about extension methods online at http://msdn.microsoft.

com/en-us/library/bb383977(v=vs.110).aspx.

There are three fundamental steps involved with a LINQ query. The

fi rst step is to provide the data source or collection you will query against.

The second step is to provide the query, and the fi nal step is to execute the

query. It’s important to understand that creating a query does not actually

invoke any action against the data source. The query only executes when

you need it and then only processes results as you obtain them. This is

referred to as deferred execution.

LINQ supports a variety of query operations. It also supports multiple

syntaxes for querying data. The BlogDataSource class in the Wintellog proj-

ect has a method called LinqExamples. This method is never called, but you

can use it to see the various types of LINQ queries and syntaxes. The fi rst

syntax is referred to as LINQ query syntax and resembles the T-SQL syn-

tax you may be used to working with in databases. The second syntax is

method-oriented and is referred to as method syntax. The method syntax is

constructed using lambda expressions.

The following series of examples shows both syntaxes, starting with the

query syntax.

Queries

You can use simple queries to parse collections and return the properties

of interest. The following examples produce a list of strings that represent

the titles from the blog groups:

var query = from g in GroupList select g.Title;
var query2 = GroupList.Select(g => g.Title);

06_9780321822161_ch06.indd 20106_9780321822161_ch06.indd 201 10/4/12 2:14 PM10/4/12 2:14 PM

 202 CHAPTER 6: Data

Filters

Filters allow you to restrict the data returned by a query. You can fi lter

using common functions that compare and manipulate properties. In the

following examples, the list is fi ltered to only those groups with a title that

starts with the letter “A.”

var filter = from g in GroupList
 where g.Title.StartsWith("A")
 select g;
var filter2 = GroupList.Where(g => g.Title.StartsWith("A"));

Sorting

You can sort in both ascending and descending order and across multiple

properties if needed. The following queries will sort the blogs by title:

var order = from g in GroupList
 orderby g.Title
 select g;
var order2 = GroupList.OrderBy(g => g.Title);

Grouping

A powerful feature of LINQ is the ability to group similar results. This is

especially useful in Windows 8 applications for providing the list for con-

trols that support groups. The following queries will create groups based

on the fi rst letter of the blog title:

var group = from g in GroupList
 group g by g.Title.Substring(0, 1);
var group2 = GroupList.GroupBy(g =>
 g.Title.Substring(0, 1));

Joins and Projections

You can join multiple sources together and project to new types that contain

only the properties that are important to you. The following query syntax

06_9780321822161_ch06.indd 20206_9780321822161_ch06.indd 202 10/4/12 2:14 PM10/4/12 2:14 PM

203 Web Content

will join the items from one blog to another based on the date posted and

then project the results to a new class with source and target properties for

the title:

var items = from i in GroupList[0].Items
 join i2 in GroupList[1].Items
 on i.PostDate equals i2.PostDate
 select new
 { SourceTitle = i.Title, TargetTitle = i2.Title };

Here is the same query using lambda expressions:

var items2 = GroupList[0].Items.Join(
 GroupList[1].Items,
 g1 => g1.PostDate,
 g2 => g2.PostDate,
 (g1, g2) => new { SourceTitle = g1.Title,
 TargetTitle = g2.Title });

This section only touched the surface of what is possible with LINQ

expressions. You can learn more about LINQ by reading the articles and

tutorials available online at http://msdn.microsoft.com/en-us/library/

bb383799(v=vs.110).aspx.

Web Content

The Windows Runtime makes it easy to download and process web con-

tent. To access web pages, you will use the HttpClient. The class is similar

to the WebClient class that Silverlight developers may be familiar with. This

class is used to send and receive basic requests over the HTTP protocol. It

can be used to send any type of standard HTTP request including GET, PUT,

POST, and DELETE. The client returns an instance of HttpResponseMessage with

the status code and headers of the response. The Content property contains

the actual contents of the web page that was retrieved if the operation was

successful.

06_9780321822161_ch06.indd 20306_9780321822161_ch06.indd 203 10/4/12 2:14 PM10/4/12 2:14 PM

 204 CHAPTER 6: Data

The BlogDataSource class contains a helper method that provides an

instance of HttpClient. The method sets a buffer size to allow for large

pages to be loaded and provides a user agent for the request to use. User

agents are most often used to identify the browser making the web request.

In the case of programmatic access, you can pass an agent that provides

information about the application and expected compatibility. Passing an

agent that is compatible with mobile devices may result in the web server

returning a page that is optimized for mobile browsing.

The Windows Runtime makes it easy to fetch a page asynchronously

and process the results. The following two lines of code fetch the client and

retrieve the page:

var client = GetClient();
var page = await client.GetStringAsync(item.PageUri);

Images are not always embedded within the RSS feed, so the code

retrieves the target page for the entry and then parses it for images. This is

done using regular expressions. The syntax for a regular expression pro-

vides a concise way to match patterns in strings of text. This makes it ideal

for parsing tokens like HTML tags out of the source document.

 NETWORK ACCESS

Using the HttpClient requires that you provide the appropriate capa-
bilities to your application. There are different capabilities to use based
on the location of the target web server. If the web server is located
on your home or private network, you will set the Private Networks
(Client & Server) capability. In most cases, you will be accessing a
server that is located on the public Internet. This will require you to
set the Internet (Client) capability, which is set by default when you
create a new project.

06_9780321822161_ch06.indd 20406_9780321822161_ch06.indd 204 10/4/12 2:14 PM10/4/12 2:14 PM

205 Syndicated Content

The fi rst expression parses all image tags from the source for the web

page:

public const string IMAGE_TAG = @"<(img)\b[^>]*>";
private static readonly Regex Tags = new Regex(IMAGE_TAG,
 RegexOptions.IgnoreCase | RegexOptions.Multiline);
var matches = Tags.Matches(content);

Each tag is then parsed to pull the location of the image from the src

attribute. This is used to construct an instance of an Uri that is added to the

ImageUriList property of the blog post. This property is implemented as an

ObservableCollection to provide notifi cation when new images are added.

A random image is displayed for each post. The image is hosted on the

Internet, but Windows 8 will use a cached copy of the image when the user

is offl ine if it has been downloaded previously.

Syndicated Content

Syndicated content is information that is available to other sites through

special feeds. These feeds are most often presented in an XML format

using either RSS (stands for RDF Site Summary, although it is com-

monly referred to as Real Simple Syndication—RDF is an abbreviation of

Resource Description Framework) and Atom. Both formats have evolved

 REGULAR EXPRESSIONS

Regular expressions provide a powerful syntax for finding and replac-
ing patterns in text. The first regular expression parsers were provided
as part of early Unix-based distributions and were integrated into text
editors and command-line utilities to parse large amounts of data.
The .NET Framework provides the System.Text.RegularExpressions.
Regex object to process text with regular expressions. Most operations
involve two strings: a target string containing the text or process and a
pattern string that contains the regular expression itself. To learn more
about the regular expression syntax and how to use it in .NET, visit
http://msdn.microsoft.com/en-us/library/hs600312.aspx.

06_9780321822161_ch06.indd 20506_9780321822161_ch06.indd 205 10/4/12 2:14 PM10/4/12 2:14 PM

 206 CHAPTER 6: Data

as standard XML-based ways for blogs, websites, and other content pro-

viders to expose data in a consistent way so that other programs can down-

load and consume the data.

The RSS specifi cation is available online at http://www.rssboard.org/

rss-specifi cation.

The Atom publishing protocol is available online at http://atompub.

org/.

Both formats provide a way to specify a feed, which is a set of related

entries (topics, articles, or posts). Each entry may have a post date, infor-

mation about the author, a set of links that reference the original source,

and rich content such as images and videos. To parse the data in the past,

you would either have to read the specifi cations and write your own spe-

cial XML parser or fi nd a third-party parser that would do it for you.

The Windows Runtime provides the SyndicationClient class to make it

easy for you to interact with feeds. This class exists in the Windows.Web.

Syndication namespace. The class can be used to asynchronously retrieve

feed information and can be provided credentials to connect with sources

that require authentication. When passed a URL, it is capable of parsing

feeds in Atom (0.3 and 1.0) and RSS (0.91, 0.92, 1.0, and 2.0) format and

presenting them using a common object model.

The sample program retrieves the feed just using four lines of code.

Two lines are not required and are used to take advantage of the browser

cache and provide a custom user agent to the host website when request-

ing the data. A helper method named GetSyndicationClient returns the cli-

ent with some default properties set in the BlogDataSource class:

private static SyndicationClient GetSyndicationClient()
{
 var client = new SyndicationClient
 { BypassCacheOnRetrieve = false };
 client.SetRequestHeader("user-agent", USER_AGENT);
 return client;
}

Using the client is as simple as calling a method to retrieve the feed by

passing the location of the feed:

var client = GetSyndicationClient();
var feed = await client.RetrieveFeedAsync(group.RssUri);

06_9780321822161_ch06.indd 20606_9780321822161_ch06.indd 206 10/4/12 2:14 PM10/4/12 2:14 PM

207 Streams, Buffers, and Byte Arrays

The result of the operation, if successful, is a SyndicationFeed object.

The instance contains information about the location of the feed, catego-

ries or tags hosted by the feed, contributors to the feed, links associated

with the feed, and of course the items that are posted to the feed. Each

SyndicationItem in the feed hosts the location of the item, categories or

tags specifi c to that item, the title and content of the item, and an optional

summary.

You can follow the code in the example to see how easy it is to parse the

feed and retrieve the necessary data. There is no need for you to specify

the format of the feed because the class will fi gure this out automatically

from the feed itself. Syndication is a powerful way to expose content and

consume it in Windows 8 applications.

Streams, Buff ers, and Byte Arrays

The traditional method for reading data from a fi le, website, or other source

in .NET is to use a stream. A stream enables you to transfer data into a data

structure that you can read and manipulate. Streams may also provide the

ability to transfer the contents of a data structure back to the stream to

write it. Some streams support seeking, fi nding a position within a stream

the same way you might skip ahead to a different scene on a DVD movie.

Streams are commonly written to byte arrays. The byte array is the pre-

ferred way to reference binary data in .NET. It can be used to manipulate

data like the contents of a fi le or the pixels that make up the bitmap for an

image. Many of the stream classes in .NET support converting a byte array

to a stream or reading streams into a byte array. You can also convert other

types into a byte array using the BitConverter class. The following example

converts a 64-bit integer to an array of 8 bytes (8 bytes x 8 bits = 64 bits)

and then back again:

var bigNumber = 4523452345234523455L;
var bytes = BitConverter.GetBytes(bigNumber);
var copyOfBigNumber = BitConverter.ToInt64(bytes, 0);
Debug.Assert(bigNumber == copyOfBigNumber);

The Windows Runtime introduces the concept of an IBuffer that

behaves like a cross between a byte array and a stream. The interface itself

06_9780321822161_ch06.indd 20706_9780321822161_ch06.indd 207 10/4/12 2:14 PM10/4/12 2:14 PM

 208 CHAPTER 6: Data

only provides two members: a Capacity property (the maximum number of

bytes that the buffer can hold) and a Length property (the number of bytes

currently being used by the buffer). Many operations in the Windows

Runtime either consume or produce an instance of IBuffer.

It is easy to convert between streams, byte arrays, and buffers. The

methods to copy a stream into a byte array or send a byte array

into a stream already exist as part of the .NET Framework. The

WindowsRuntimeBufferExtensions class provides additional facilities for con-

verting between buffers and byte arrays. It exists in the System.Runtime.

InteropServices.WindowsRuntime namespace. It provides another set of

extension methods including AsBuffer (cast a Byte[] instance to an IBuffer),

AsStream (cast an IBuffer instance to a Stream), and ToArray (cast an IBuffer

instance to a Byte[] instance).

Compressing Data

Storing large amounts of data can take up a large amount of disk space.

Data compression encodes information in a way that reduces its overall

size. There are two general types of compression. Lossless compression pre-

serves the full fi delity of the original data set. Lossy compression can provide

better performance and a higher compression ratio, but it may not pre-

serve all of the original information. It is often used in image, video, and

audio compression where an exact data match is not required.

The Windows 8 Runtime exposes the Compressor and Decompressor classes

for compression. The Compression project provides an active example of

compressing and decompressing a data stream. The project contains a text

fi le that is almost 100 kilobytes in size and loads that text and displays it

with a dialog showing the total bytes. You can then click a button to com-

press the text and click another button to decompress it back.

The compression task performs several steps. A local fi le is opened for

output to store the result of the compressed text. There are various ways to

encode text, so it fi rst uses the Encoding class to convert the text to a UTF8

encoded byte array:

var storage = await ApplicationData.Current.LocalFolder
 .CreateFileAsync("compressed.zip",
 CreationCollisionOption.ReplaceExisting);
var bytes = Encoding.UTF8.GetBytes(_text);

06_9780321822161_ch06.indd 20806_9780321822161_ch06.indd 208 10/4/12 2:14 PM10/4/12 2:14 PM

209 Compressing Data

You learned earlier in this chapter how to locate the folder for a specifi c

user and application. You can examine the folder for the sample application

to view the compressed fi le after you click the button to compress the text.

The fi le is saved with a zip extension to illustrate that it was compressed,

but it doesn’t contain a true archive, so you will be unable to decompress

the fi le from Windows Explorer.

 ENCODING

Text and characters in various cultures and languages is stored inter-
nally as a series of bits and bytes. The way these bits are encoded
can vary between different encoding schemes. One of the earliest
schemes is known as ASCII and uses a sequence of 7-bit characters
to encode text. More modern schemes include UTF-8 (uses sequences
of 8-bit bytes, sometimes up to 3 bytes when needed) and UTF-16
(uses sequences of 16-bit integers). The .NET Framework provides
the Encoding class to make it easier to work with various formats. You
can read more about the class online at http://msdn.microsoft.com/
en-us/library/86hf4sb8(v=vs.110).aspx.

The next lines of code open the fi le for writing, create an instance of the

Compressor, and write the bytes. The code then completes the compression

operation and fl ushes all associated streams:

using (var stream = await storage.OpenStreamForWriteAsync())
{
 var compressor = new Compressor(stream.AsOutputStream());
 await compressor.WriteAsync(bytes.AsBuffer());
 await compressor.FinishAsync();
}

When the compression operation is complete, the bytes are read back

from disk to show the compressed size. You’ll fi nd the default algorithm

cuts the text fi le down to almost half of its original size. The decompression

operation uses the Decompressor class to perform the reverse operation and

retrieve the decompressed bytes in a buffer (it then saves these to disk so

you can examine the result).

06_9780321822161_ch06.indd 20906_9780321822161_ch06.indd 209 10/4/12 2:14 PM10/4/12 2:14 PM

 210 CHAPTER 6: Data

var decompressor = new Decompressor(stream.AsInputStream());
var bytes = new Byte[100000];
var buffer = bytes.AsBuffer();
var buf = await decompressor.ReadAsync(buffer, 999999,
 InputStreamOptions.None);

When you create the classes for compression, you can pass a parameter

to determine the compression algorithm that is used. Table 6.4 lists the

possible values.

TABLE 6.4: Compression Algorithms

CompressAlgorithm Member Description

InvalidAlgorithm Invalid algorithm. Used to generate
exceptions for testing.

NullAlgorithm No compression is applied, and the buffer
is simply passed through. Used primarily
for testing.

Mszip Uses the MSZIP algorithm.

Xpress Uses the XPRESS algorithm.

XpressHuff Uses the XPRESS algorithm with Huffman
encoding.

Lzms Uses the LZMS algorithm.

The Windows Runtime makes compression simple and straightfor-

ward. Use compression when you have large amounts of data to store and

are concerned about the amount of disk space your application requires.

Remember that compression will slow down the save operation, so be sure

to experiment to fi nd the algorithm that provides the best compression

ratio and performance for the type of data you are storing. Remember that

you must pass the same algorithm to the decompression routine that you

used to compress the data.

06_9780321822161_ch06.indd 21006_9780321822161_ch06.indd 210 10/4/12 2:14 PM10/4/12 2:14 PM

211 Encrypting and Signing Data

Encrypting and Signing Data

Many applications store sensitive data that should be encrypted to keep it

safe from prying eyes. This may be information about the user or internal

data for the application itself. Other information may need to be signed.

Signing generates a specialized hash of data that provides a unique sig-

nature. If the original data is tampered with, the signature of the data will

change. You can verify the signature against the original to determine if the

data was modifi ed in any way.

Encryption and signing is handled in the Windows Runtime by the

CryptographicEngine class. This class provides services to encrypt, decrypt,

sign, and verify the signature of digital content. The EncryptionSigning

project contains some simple examples of performing these operations.

The main code is located in the MainPage.xaml.cs fi le.

Encryption and decryption operations require a special key. Think of a

key as a password for the encryption and decryption operations. There are

two types of keys you can use. The most straightforward is called a sym-
metric key, which uses the same password or “secret” to both encrypt and

decrypt the information.

To produce a key, you use the SymmetricKeyAlgorithmProvider class.

You initialize the class by calling OpenAlgorithm with the name of the algo-

rithm you wish to use. You then call CreateSymmetricKey to generate the key

for the encryption operation. This same key must be used to decrypt the

data later on. You can read the list of valid algorithms in the MSDN docu-

mentation at http://msdn.microsoft.com/en-us/library/windows/apps/

windows.security.cryptography.core.symmetrickeyalgorithmprovider.

openalgorithm.aspx.

In the example application, the RC4 stream cipher is used to encrypt

and decrypt the data. The user is prompted for one of two passwords, and

then the passwords are repeated 100 times to fi ll a buffer. You can use any

source data that can be converted to an array of bytes for the key. A helper

utility is included in the code to help convert a string to an instance of

IBuffer:

06_9780321822161_ch06.indd 21106_9780321822161_ch06.indd 211 10/4/12 2:14 PM10/4/12 2:14 PM

 212 CHAPTER 6: Data

var buffer = CryptographicBuffer
 .ConvertStringToBinary(str.Trim(),
 BinaryStringEncoding.Utf8);
return buffer;

The CryptographicBuffer class provides a set of helper utilities for

encryption, decryption, and signing operations. It supports comparing

two instances of a buffer, converting between strings and binary arrays

using various encodings, decoding and encoding using Base64, and gen-

erating a buffer of random data. In this example, it is used to encode the

string using UTF8 to a buffer that is returned.

 BASE64

Base64 is an encoding scheme that supports converting binary data to
ASCII. This enables you to transmit binary data in a medium that sup-
ports only strings and text. If you want to store the bitmap for an image
in a JSON object, you can encode it using Base64 and then decode it
when you deserialize the JSON string. The size of the encoded text
will always be greater than the source image because the conversion
to ASCII requires that it does not use all of the bits available in a char-
acter byte. The most common scheme is to encode 3 bytes (24 bits) to
4 bytes (32 bits). For this reason, Base64 is sometimes referred to as
3-to-4 encoding.

Using the helper method, the code produces the key like this:

var result = await GetPassword();
var provider = SymmetricKeyAlgorithmProvider.OpenAlgorithm("RC4");
var key = provider.CreateSymmetricKey(AsBuffer(result));

When the key is generated, it is a simple step to encrypt the source text

with the key. The result is encoded using Base64 so that it can be updated

to the TextBlock in the right column for display:

var encrypted = CryptographicEngine.Encrypt(key,
 AsBuffer(BigTextBox.Text), null);
_encrypted = encrypted.ToArray();
BigTextBlock.Text = CryptographicBuffer
 .EncodeToBase64String(encrypted);

06_9780321822161_ch06.indd 21206_9780321822161_ch06.indd 212 10/4/12 2:14 PM10/4/12 2:14 PM

213 Encrypting and Signing Data

When you encrypt the text, the decrypt button is enabled. The user is

given the option to select a password again for the decryption. If the user

chooses a password that is different from the one used in the encryption

operation, the decrypt process will fail or produce illegible output. The

decryption process produces a key the same way the encryption process

does and then simply calls the Decrypt method on the CryptographicEngine

class:

var decrypted = CryptographicEngine.Decrypt(key,
 _encrypted.AsBuffer(), null);
BigTextBox.Text = AsText(decrypted).Trim();

It is also possible to encrypt and decrypt using an asymmetric key.

The AsymmetricKeyAlgorithmProvider is used to generate asymmetric keys.

Asymmetric encryption uses two different keys, a “public” key and a

“private” key to perform encryption and decryption. This allows you to

encrypt the data with your private secret but provide a public key for

decryption. It allows third parties to decrypt the data while keeping your

secrets safe.

You can learn more about asymmetric keys and see sample code

online at http://msdn.microsoft.com/en-us/library/windows/apps/

windows.security.cryptography.core.asymmetrickeyalgorithmprovider.

openalgorithm.aspx.

The key used to sign data can be generated using the MacAlgorithmProvider

class. This class represents a Message Authentication Code (MAC). You

can create the key using any one of the popular algorithms including

Message-Digest Algorithm (MD5), Secure Hash Algorithm (SHA), and

Cipher-based MAC (CMAC). The key is generated much the same way as

the encryption key. In the example project, a default password is used to

generate the key for the signature:

var provider = MacAlgorithmProvider.OpenAlgorithm("HMAC_SHA256");
var key = provider.CreateKey(
 AsBuffer(MakeBigPassword(PASSWORD1)));

The signing process generates a buffer the same way the encryption

process does. The difference is that you can use the buffer output by

encryption to decrypt the message and produce the original. The signature

is one-way—you cannot recreate the message from the signature. It’s only

06_9780321822161_ch06.indd 21306_9780321822161_ch06.indd 213 10/4/12 2:14 PM10/4/12 2:14 PM

 214 CHAPTER 6: Data

function is to compare against an existing message to determine whether

or not it has been tampered with.

The signature is generated with a call to the Sign method on the

CryptographicEngine class:

_signature = CryptographicEngine.Sign(key,
 AsBuffer(BigTextBox.Text)).ToArray();

The signature is verifi ed with a call to VerifySignature that will return

true if the text has not been altered since the signature was generated:

var result = CryptographicEngine.VerifySignature(key,
 AsBuffer(BigTextBox.Text),
 _signature.AsBuffer());

To see how this works, launch the sample application and tap the Sign

button. Now tap the Verify button to see that the text has not been altered.

Now add a space or other character to the text in the left column and tap

Verify again. This time you should receive a message that the text has been

tampered with.

Windows 8 provides a set of powerful algorithms for encrypting,

decrypting, and signing data. The process is made extremely simple

through the use of the CryptographicEngine, CryptographicBuffer, and key

provider classes. Use encryption to secure data both internal to your appli-

cation and for transport over the Internet and use signatures to verify that

data has not been tampered with in-transit.

Web Services

A web service is a method for communication between devices over the

Internet. The most common protocol for communication is the Simple

Object Access Protocol (SOAP) that was designed in 1998. If you’ve worked

with SOAP, you know there is nothing simple about it, and a new pro-

tocol known as Representational State Transfer (REST) is quickly gaining

popularity.

Web services are important for communications in applications. Many

enterprise systems expose web services for consumption by client software

06_9780321822161_ch06.indd 21406_9780321822161_ch06.indd 214 10/4/12 2:14 PM10/4/12 2:14 PM

215 Web Services

like this Windows 8 application. One advantage of using SOAP is that it

provides a discovery mechanism through the Web Services Description

Language (WSDL) that allows the client application to determine the sig-

nature and structure of the API. You can learn more about the WSDL speci-

fi cation online at http://www.w3.org/TR/wsdl.

Open the WeatherService project to see an example of using web ser-

vices. The example uses a free web service to obtain weather information.

Connecting to the service was as simple as right-clicking the References

node of the Solution Explorer, choosing Add Service Reference, and enter-

ing the URL for the service. The result is shown in Figure 6.4.

FIGURE 6.4: Adding a SOAP-based web service

When the service is added, a client proxy is generated automatically.

The proxy handles all of the work necessary to make a request to the API

and return the data and presents these as asynchronous implementations

of the server interfaces. In the example application, the user is prompted to

enter a zip code. When the button is clicked, the zip code is validated and,

if there are no errors, passed to the web service. The following line of code

06_9780321822161_ch06.indd 21506_9780321822161_ch06.indd 215 10/4/12 2:14 PM10/4/12 2:14 PM

 216 CHAPTER 6: Data

is all that is needed to create a proxy for connecting to the web service and

to call it with the zip code (note the convention of using Async at the end of

the method name):

var client = new WeatherWebService.WeatherSoapClient();
var result = await client.GetCityForecastByZIPAsync(
 zip.ToString());

If the result does not indicate a successful call, a dialog is shown that

indicates there was a problem. Otherwise, the results are bound to the

grid and shown through data-binding. This is all it takes to data-bind the

results from the web service call:

ResultsGrid.DataContext = result;

The XAML is set to show the city and state:

<StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding City}"/>
 <TextBlock Text=","/>
 <TextBlock Text="{Binding State}"/>
</StackPanel>

Listing 6.3 shows the full XAML for the individual forecast items. The

“description” fi eld is purposefully misspelled because this is how it came

across in the web service as of the time of this writing.

LISTING 6.3: Data-Binding the Results from a Weather Service

<ListView Grid.Row="1" ItemsSource="{Binding ForecastResult}">
 <ListView.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Date,
➥Converter={StaticResource ConvertDate}}"
 Width="200"/>
 <TextBlock Text="{Binding Description}"
➥Width="150" Margin="5 0 0 0"/>
 <Image Source="{Binding Description,
➥Converter={StaticResource ConvertImage}}"/>
 <TextBlock Text="{Binding Temperatures.MorningLow}"
➥Margin="5 0 0 0" Width="50"/>
 <TextBlock Text="{Binding Temperatures.DaytimeHigh}"
➥Margin="5 0 0 0" Width="50"/>
 </StackPanel>

06_9780321822161_ch06.indd 21606_9780321822161_ch06.indd 216 10/4/12 2:14 PM10/4/12 2:14 PM

217 Web Services

 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

The weather service documentation provided a set of icons that cor-

respond to the description. The ImageConverter class takes the description

and translates it to a fi le name so it can return the image:

var filename =
 string.Format("ms-appx:///Assets/{0}.gif",
 ((string) value).Replace(" ", string.Empty).ToLower());
return new BitmapImage(new Uri(filename, UriKind.Absolute));

Figure 6.5 displays the result of my request for the weather forecast of

my hometown (Woodstock, Georgia) via its zip code.

FIGURE 6.5: The weather forecast for Woodstock, Georgia

OData Support
The Open Data Procotol (OData) is a web protocol used for querying and

updating data. It is a REST-based API built on top of Atom that uses JSON

06_9780321822161_ch06.indd 21706_9780321822161_ch06.indd 217 10/4/12 2:14 PM10/4/12 2:14 PM

 218 CHAPTER 6: Data

or XML for transporting information. You can read more about OData

online at http://www.odata.org/.

Windows 8 applications have native support for OData clients once you

download and install the client from:

http://go.microsoft.com/fwlink/?LinkId=253653

To access OData services, you simply add a service reference the same

way you would for a SOAP-based web service. A popular OData service

to use for demonstrations is the Netfl ix movie catalog. You can browse

the service directly by typing http://odata.netfl ix.com/catalog/ into your

browser.

In most browsers, you should see an XML document that contains

various tags for collections you may browse. For example, the collection

referred to as Titles indicates you can browse all titles using the URL,

http://odata.netfl ix.com/catalog/Titles.

The Netfl ix project shows a simple demonstration of using this OData

feed. The main URL was added as a service reference the same way the

weather service was added in the previous example. The fi rst step in using

the service is to create a proxy to access it. This is done by taking the gener-

ated class from adding the service and passing in the service URL:

var netflix =
 new NetflixCatalog(
 new Uri(
 "http://odata.netflix.com/Catalog/",
 UriKind.Absolute));

Next, set up a collection for holding the results of an OData query. This

is done using the special DataServiceCollection class:

private DataServiceCollection<Title> _collection;
...
_collection = new DataServiceCollection<Title>(netflix);
TitleGrid.ItemsSource = _collection;

Finally, specify a query to fi lter the data. This query is passed to the

proxy and will load the results into the collection. In this example, the

query will grab the fi rst 100 titles that start with the letter “Y” in order of

highest rated fi rst:

06_9780321822161_ch06.indd 21806_9780321822161_ch06.indd 218 10/4/12 2:14 PM10/4/12 2:14 PM

219 Summary

var query = (from t in netflix.Titles
 where t.Name.StartsWith("Y")
 orderby t.Rating descending
 select t).Take(100);
_collection.LoadAsync(query);

Finally, as data comes in, you have the option to page in additional sets

of data. This is done by checking the collection for a continuation. If one

exists, you can request that the service load the next set. This allows you to

page in data rather than pull down an extremely large set all at once:

if (_collection.Continuation != null)
{
 _collection.LoadNextPartialSetAsync();
}

Run the included sample application. You should see the titles and

images start to appear asynchronously in a grid that you can scroll

through. As in the previous example, the results of the web service are

bound directly to the grid:

<Image Stretch="Uniform" Width="150" Height="150">
 <Image.Source>
 <BitmapImage UriSource="{Binding BoxArt.LargeUrl}"/>
 </Image.Source>
</Image>
<TextBlock Text="{Binding Name}" Grid.Row="1"/>

The Windows 8 development environment makes it easy and straight-

forward to connect to web services and pull data in from external sources.

Many existing applications expose web services in the form of SOAP,

REST, and OData feeds. The built-in support to access and process these

feeds makes it possible to build Windows 8 applications that support your

existing functionality when it is exposed via web services.

Summary

This chapter explored a variety of ways you can deal with data in your

Windows 8 applications. You learned how to save and retrieve data from

fi le storage, access it over the Web, and syndicate it through RSS and Atom

06_9780321822161_ch06.indd 21906_9780321822161_ch06.indd 219 10/4/12 2:14 PM10/4/12 2:14 PM

 220 CHAPTER 6: Data

feeds. You learned about the built-in tools that make it easy to encrypt and

sign data. Finally, you saw how easy it is to connect to existing SOAP and

OData web services by generating proxies and retrieving data asynchro-

nously from external APIs.

In the next chapter, you will learn how to keep your application alive

even when it is not running through the use of tiles and notifi cations. Tiles

provide information to the user at a glance on their Start screens and can

be refreshed even when the application is not running. Notifi cations can be

generated from within the application or by an external source to inform

the user when important events happen and provide a contextual link

back into the application.

06_9780321822161_ch06.indd 22006_9780321822161_ch06.indd 220 10/4/12 2:14 PM10/4/12 2:14 PM

341

Index

A
ABI (Application Binary

Interface), 25

About page, 145–147

accelerometer, 149

accessing and saving data, 183–189

async keyword, 191–194

await keyword, 191–193

embedded resources, 197–198

FileIO class, 195–196

lambda expressions, 194

PathIO class, 195–196

threading, 189–191

activation, 161–163

actual target, 133

advertising, 328–329

animations, discrete, 83

application bar, 136–142

Application Data API, 172–176

application files, 172

application lifecycle, 157–160

activation, 161–163

Application Data API, 172–176

connected, applications

suspended/terminated

remaining , 176–177

custom splash screen, 177–178

navigation, 168–171

resume, 167–168

suspension, 163–166

termination, 166

application manifest, 43

Application UI section, 43

Capabilities section, 44

Declaration section, 44

Packaging section, 45

application settings, 172, 181–183

Application UI section of

application manifest, 43

11_9780321822161_index.indd 34111_9780321822161_index.indd 341 10/4/12 2:14 PM10/4/12 2:14 PM

 342 Index

architecture and design improved

with testing, 305

assumptions eliminated with

testing, 302

asymmetric key, 213

async keyword, 191–194

Atom, 206

attached properties, 70–72

audience, accessibility to global, 330

await keyword, 191–193

B
badges, 229–231

glyphs, 230–231

numeric, 230–231

Base64, 212

BASIC (Beginner’s All-Purpose

Symbolic Instruction Code), 5

basic tiles, 221

BCL (Base Class Library), 7

blank application template (Visual

Studio 2012), 38

Blend, 20-21, 36

blue stack, 27–28

brokered API calls, 14

buffers, 208

bugs fixed at source with

testing, 303

built-in controls (XAML), 107–109

built-in icons, 138

business models, 323–328

byte arrays, 207–208

C
Callisto, 280

Canvas layout control, 88

Capabilities section of application

manifest, 44

charms, 16, 256. See also contracts

Search charm, 258

Settings charm, 145–147

Share charm, 46, 267–270

custom data, 271–272

text selection, 272–274

Start charm, 256

classes, 54–55

class library template (Visual

Studio 2012), 40

CLI (Common Language

Infrastructure), 13

CLR (Common Language

Runtime), 6

code for your first Windows 8

application, 45–53

collections, 199–200

LINQ, 200

filters, 202

grouping, 202

join and projections, 203

queries, 201

sorting, 202

COM (Common Object Model), 5

compass, 149

compressing data, 208–210

connected and alive, 19

connected, applications

suspended/terminated

remaining, 176–177

ContentControl layout control,

97–98

context menus, 134–135

contracts, 16, 253–254. See also

charms

Search contract, 257, 260–266

settings contract, 280–282

11_9780321822161_index.indd 34211_9780321822161_index.indd 342 10/4/12 2:14 PM10/4/12 2:14 PM

343 Index

Share contract, 267

receiving content, 274, 277–279

sourcing content for sharing,

267–273

control, keeping end user in, 330

controls, application bar, 136–142

creating your first Windows 8

application, 37

 application manifest, 43

Application UI section, 43

Capabilities section, 44

Declaration section, 44

Packaging section, 45

 code, writing, 45–53

templates, 37

blank application, 38

class library, 40

grid application, 39–40

split application, 40

unit test library, 41

Windows Runtime

Component, 41

user interface (UI), creating, 42–43

customization

data, 271–272

icons, 143–144

splash screens, 143–144, 177–178

C#/XAML, 24–25

C++/XAML, 23–24

D
data

accessing and saving, 183–189

async keyword, 191–194

await keyword, 191–193

embedded resources, 197–198

FileIO class, 195–196

lambda expressions, 194

PathIO class, 195–196

threading, 189–191

application settings, 181–183

buffers, 208

byte arrays, 207–208

collections, 199–200

LINQ, 200–203

compression, 208–210

custom data, 271–272

encryption, 211–214

asymmetric key, 213

Base64, 212

local data, 173

roaming data, 173

signing, 211–214

storing and retrieving, 173–176

streams, 207–208

syndicated content, 206–207

web content, 203–205

web services, 214–217

OData services, 218–219

data binding, 73–78, 216–217

value converters, 78–80

DataTemplate (XAML), 104–105

debugging, 164

fixing bugs at source, 303

remote debugging, 164

Declaration section of application

manifest, 44

deferred execution, 201

dependency properties, 67–70

design guidelines, 19

architecture and design improved

with testing, 305

connected and alive, 19

contracts, 16

11_9780321822161_index.indd 34311_9780321822161_index.indd 343 10/4/12 2:14 PM10/4/12 2:14 PM

 344 Index

fast and fluid, 15

snap and scale, 15

tiles, 17–19

developers improved by

testing, 306

direct calls to underlying

kernels, 14

DirectX, 13

discovering applications, 318–321

discrete animations, 83–84

documenting code with help from

testing, 303

domain model (MVVM), 285–288

advantages of, 290

misconceptions about, 289

model, 292–293

pattern vocabulary, 292

view, 293–295

view model, 295

dual boot install, 31–35

E
ECMA-335 standard, 13, 57

embedded resources, 196–198

encoding, 209

encryption, 211–214

asymmetric key, 213

Base64, 212

symmetric key, 211

end user, providing value to, 329

Engelbart, Douglas, 9

English, Bill, 9

Essential LINQ, 103

extending and maintaining

applications with testing, 304

extensions, 54–55, 255–256

F
fast and fluid, 15

feeds, 206

FileIO class, 195–196

Filters, LINQ, 202

flat navigation, 168

FlipView layout control, 106

flyout, 53, 233

full install, 30–32

G
Gates, Bill, 2

GDI (Graphics Device Interface), 7

generics, 185

geolocation, 150

gestures

keyboard equivalents, 49

mouse equivalents, 49

given…when…then pattern, 310

global audience, accessibility to, 330

glyphs, 230–231

Gossman, John, 287

green stack, 27

grid application template (Visual

Studio 2012), 39–40

Grid layout control, 89–91

GridView layout control, 102–105

Grouping, LINQ, 202

groups, 116–119

gyrometer, 151

H
Harris, Jensen, 14

hierarchical navigation, 168

HLSL (High Level Shading

Language, 24

HTML5/JavaScript, 21–23

HttpClient, 203

11_9780321822161_index.indd 34411_9780321822161_index.indd 344 10/4/12 2:14 PM10/4/12 2:14 PM

345 Index

I
IBuffer, 207, 211

icons

built-in icons, 138

customizing, 143–144

IDE (Interactive Development

Environment), 5

identify and understand, making

application easy to, 331

ILDASM tool, 55-59

image, capture, 46-49

inclinometer, 151

installation

dual boot install, 31–35

full install, 30–32

virtual machine install, 31, 35

IoC (Inversion of Control), 298–300

iPhones, 9

ItemsControl layout control, 99

J–K
JavaScript/HTML5, 21–23

joins and projections, LINQ, 203

JSON (JavaScript Object Notation),

187–188, 271

keyboards

gestures, keyboard equivalents

for, 49

history of, 8

support, 129

Kinect, 10–11

L
lambda expressions, 194

layouts and views, 88, 111

Canvas layout control, 88

ContentControl layout control,

97–98

FlipView layout control, 106

Grid layout control, 90–91

GridView layout control, 102–105

ItemsControl layout control, 99

ListBox layout control, 106

ListView layout control, 105

ScrollViewer layout control, 99

semantic zoom, 119–122

simulator used to test changes in,

112–115

snapped view, 113–115

StackPanel layout control, 92

virtualizing stack panel, 93–94

VariableSizedWrapGrid layout

control, 96

ViewBox layout control, 100–102

VSM and, 115–119

WrapGrid layout control, 94

light sensor, 152

Likness, Jeremy, 340

LINQ (Language Integrated

Query), 103, 200

deferred execution, 201

filters, 202

grouping, 202

joins and projections, 203

queries, 201

sorting, 202

syntax, 174

ListBox layout control, 106

ListView layout control, 105

live tiles, 223–225, 228

local data, 173

logo. See live tiles.

11_9780321822161_index.indd 34511_9780321822161_index.indd 345 10/4/12 2:14 PM10/4/12 2:14 PM

 346 Index

lossless compression, 208

lossy compression, 208

M
MAC (Message Authentication

Code), 213

maintaining and extending

applications with testing, 304

managed code, 5–7

manipulation events, 126–128

menus, context, 134–135

metadata, 13, 56

 ILDASM tool used to inspect

metadata for components,

57–59

mocks, 311–315

model (MVVM), 292–293

mouse

gestures, mouse equivalents

for, 49

history of, 9

support, 128–131

MSIL (Microsoft Intermediate

Language), 6

MVVM (Model-View-View-Model),

285–288

advantages of, 290

misconceptions about, 289

model, 292–293

pattern vocabulary, 292

view, 293–295

view model, 295

N
namespaces, 63

navigation, 168–171

flat, 168

hierarchical, 168

Newton-King, James, 271

Next Generation Windows Services

(NGWS), 5

notifications. See toast notifications.

NUI (Natural User Interface), 9–11

numeric badges, 230–231

O–P
OData services, 217–219

Open Data Protocol, 218–219

orientation sensor, 153–154

packaging section of application

manifest, 45

PathIO class, 195–196

pattern vocabulary, 292

PCL (Portable Class Library),

296–300

PLM (Process Lifetime

Management), 160

activation, 161–163

Application Data API, 172–176

connected, applications

suspended/terminated

remaining, 176–177

custom splash screen, 177–178

navigation, 168–171

resume, 167–168

suspension, 163–166

termination, 166

PNG (Portable Network Graphics)

format, 50

pointer events, 125

predictable behavior, 330

preparing your application for

Windows Store, 329

control, keeping end user in, 330

11_9780321822161_index.indd 34611_9780321822161_index.indd 346 10/4/12 2:14 PM10/4/12 2:14 PM

347 Index

global audience, accessibility

to, 330

identify and understand, making

application easy to, 331

predictable behavior, 330

value to end user, providing, 329

projections, 13, 203

Prosise, Jeff, 184

Q–R
queries, LINQ, 201

query text, 262-263

reach (product), 322–323

receiving content, 274, 277–279

refactoring isolation, 286

regular expressions, 205

remote debugging, 164

resource dictionaries, 86

resources, 85–87

REST (Representational State

Transfer), 214

resuming applications, 166–168

Richter, Jeffrey, 184

roaming data, 173

Robbins, John, 184

root visual, 88

routed events, 64

RSS (Real Simple Syndication), 206

S
saving and accessing data, 183–189

async keyword, 191–194

await keyword, 191–193

embedded resources, 197–198

FileIO class, 195–196

lambda expressions, 194

PathIO class, 195–196

threading, 189–191

ScrollViewer layout control, 99

Search charm, 258

Search contract, 257, 260–262,

265–266

searching, 257–258

Search charm, 258

Search contract, 257, 260–262,

265–266

secondary tiles, 231–235

Segoe UI Symbol font, 138

semantic zoom, 119–122

sensors, 148

accelerometer, 149

compass, 149

geolocation, 150

gyrometer, 151

inclinometer, 152

light sensor, 152

orientation sensor, 153–154

serialization helper, 182–183

Settings charm, 145–147

settings contract, 280–282

setting up your development

environment, 30

Windows 8, setting up, 30–31

dual boot install, 32–35

full install, 32

virtual machine install, 35

Share charm, 46, 267–270

custom data, 271–272

text selection, 272–274

Share contract, 266-267

receiving content, 274, 277–279

sourcing content for sharing,

267–273

Sholes, Christopher, 8

side-loading, 337–339

11_9780321822161_index.indd 34711_9780321822161_index.indd 347 10/4/12 2:14 PM10/4/12 2:14 PM

 348 Index

signing data, 211–214

Silverlight, 26

simulator, 326

layouts and views, testing changes

in, 112–115

snapped view, 113–115

snap and scale, 15

snapped view, 113–115

SOAP (Simple Object Access

Protocol), 214–215

software testing. See testing

sorting, LINQ, 202

sourcing content for sharing,

267–273

split application template (Visual

Studio 2012), 40

StackPanel layout control, 92

virtualizing stack panel, 93–94

Start button, 256-257

Start charm, 256

Start screen, 257

states, 116–119

static resource, 79

storyboards, 80–84

streams, 207–208

stubs, 311-315

styles, 85–87

submission process for Windows

Store, 331, 336

suspension, 163–166

symmetric key, 211

syndicated content, 205–207

T
targeting, 132–134

templates, 37

blank application, 38

class library, 40

DataTemplate, 104–105

grid application, 39–40

split application, 40

unit test library, 41

Windows Runtime Component, 41

termination, 166

testing, 301

architecture and design improved

with, 305

assumptions, eliminating, 302

developers improved by, 306

documenting code, 303

extending and maintaining

applications, 304

fixing bugs at source, 303

unit tests, 306–307

mocks, 311–315

stubs, 311, 315

Windows Store unit testing

framework, 308–311

white box tests, 306

text selection, 272–274

threading, 189–191

tiles, 17–19

basic, 221

live, 222–228

secondary, 231–235

toast notifications, 236–241

token, 248-249

tools, 20

Blend, 21

C#/XAML, 24–25

C++/XAML, 23–24

HTML5/JavaScript, 22–23

JavaScript/HTML5, 22–23

Visual Studio 2012, 20

11_9780321822161_index.indd 34811_9780321822161_index.indd 348 10/4/12 2:14 PM10/4/12 2:14 PM

349 Index

XAML/C#, 24–25

XAML/C++, 23–24

touch-first, 125

U
UI (User Interface)

creating, 42–43

declaring, 62–64

attached properties, 70–72

dependency properties, 67–70

visual tree, 64–67

routed events, 64

UI (user interface) design patterns,

286

MVVM, 287–288

advantages of, 290

misconceptions about, 289

model, 292–293

pattern vocabulary, 292

view, 293–295

view model, 295

understand and identify, making

application easy to, 331

unit test library template (Visual

Studio 2012), 41

unit tests, 306–307

mocks, 311–315

stubs, 311, 315

Windows Store unit testing

framework, 308–311

unmanaged code, 5–6

user input, 122–123

context menus, 134–135

manipulation events, 126–128

mouse support, 128–131

pointer events, 125

targeting, 132–134

visual feedback, 131–132

V
value converters, 78–80

value to end user, providing, 329

VariableSizedWrapGrid layout

control, 96

VB (Visual Basic) programming

language, 5

ViewBox layout control, 100–102

view model (MVVM), 295

view (MVVM), 293–295

views and layouts, 88, 111

Canvas layout control, 88

ContentControl layout control,

97–98

FlipView layout control, 106

Grid layout control, 90–91

GridView layout control, 102–105

ItemsControl layout control, 99

ListBox layout control, 106

ListView layout control, 105

ScrollViewer layout control, 99

semantic zoom, 119–122

simulator used to test changes in,

112–115

snapped view, 113–115

StackPanel layout control, 92

virtualizing stack panel, 93–94

VariableSizedWrapGrid layout

control, 96

ViewBox layout control, 100–102

VSM and, 115–119

WrapGrid layout control, 94

VirtualBox, 35

virtualizing stack panel, 93–94

virtual machine install, 31, 35

visual feedback, 131–132

11_9780321822161_index.indd 34911_9780321822161_index.indd 349 10/4/12 2:14 PM10/4/12 2:14 PM

 350 Index

Visual Studio 2012, 20, 35–36

templates, 37

blank application, 38

class library, 40

grid application, 39–40

split application, 40

unit test library, 41

Windows Runtime

Component, 41

visual target, 133

visual tree, 64–67

VSM (Visual State Manager),

115–119, 287-288

groups, 116–119

states, 116–119

W
web content, 203–205

web services, 214–217

OData services, 218–219

white box tests, 306. See also

unit tests

Wii console, 10

Win32, 3–5

Windows, history of, 2–8

Windows 7 operating system, 11

Windows 8 applications, 12–14

design guidelines, 14, 19

connected and alive, 19

contracts, 16

fast and fluid, 15

snap and scale, 15

tiles, 17–19

tools, 20

Blend, 21

C#/XAML, 24–25

C++/XAML, 23–24

HTML5/JavaScript, 22–23

JavaScript/HTML5, 22–23

Visual Studio 2012, 20

XAML/C#, 24–25

XAML/C++, 23–24

Windows 8 operating system, 12

setting up, 30–31

dual boot install, 32–35

full install, 32

virtual machine install, 35

Windows App Certification Kit,

332–334

Windows Registry, 54

Windows Runtime Component

template (Visual Studio 2012), 41

Windows Store, 12-14, 317–318

advertising, 328–329

business models, 323–328

discovering applications, 318–321

preparing your application

for, 329

control, keeping end user in, 330

global audience, accessibility

to, 330

identify and understand,

making application easy

to, 331

predictable behavior, 330

value to end user, providing, 329

reach (product), 322–323

simulator, 326

submission process, 331, 336

unit testing framework, 307–311

Windows App Certification Kit,

332–334

Windows Store applications. See

Windows 8 applications

11_9780321822161_index.indd 35011_9780321822161_index.indd 350 10/4/12 2:14 PM10/4/12 2:14 PM

351 Index

WinRT (Windows Runtime),

1, 12–14, 26

brokered API calls, 14

direct calls to underlying

kernel, 14

projection, 13

WNS (Windows Notification

Service), 242–250

WPF (Windows Presentation

Foundation), 7, 27, 61

WrapGrid layout control, 94

WSDL (Web Services Description

Language), 215

X–Y–Z
XAML/C#, 24–25

XAML/C++, 23–24

XAML (Extensible Application

Markup Language), 7, 61–62

built-in controls, 107–109

data binding, 73–78

value converters, 78–80

declaring the UI, 62–64

attached properties, 70–72

dependency properties, 67–70

visual tree, 64–67

layout, 88

Canvas layout control, 88

ContentControl layout control,

97–98

FlipView layout control, 106

Grid layout control, 90–91

GridView layout control,

102–105

ItemsControl layout control, 99

ListBox layout control, 106

ListView layout control, 105

ScrollViewer layout control, 99

StackPanel layout control, 92–94

VariableSizedWrapGrid layout

control, 96

ViewBox layout control, 100–102

WrapGrid layout control, 94

namespaces, 63

resources, 85–87

static resource, 79

storyboards, 80–84

styles, 85–87

templates, 104–105

user interface (UI), creating, 42–43

11_9780321822161_index.indd 35111_9780321822161_index.indd 351 10/4/12 2:14 PM10/4/12 2:14 PM

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 6: Data
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [720.000 864.000]
>> setpagedevice

