
xi

Contents

 Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
 about the authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Chapter  1  Why Programmers Seem Unmanageable  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1

 What Do Programmers Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
 Why Is Becoming a Successful Programming Manager Hard?  . . .  7

Chapter  2 Understanding Programmers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

 Programming Disciplines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
  Client Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
  Server Programmers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
  Database Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
  Web Developers and Other Scripters  . . . . . . . . . . . . . . . . . . . .  12
 Types of Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
  System Engineers/Architects . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
  System Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
  Application Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
  Not Really Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
 Domain Expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16
 Programmer Job Requirements and Abilities  . . . . . . . . . . . . . . .  17
 Proximity and Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
  In-House Employees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
  Geographically Distant Employees . . . . . . . . . . . . . . . . . . . . . .  23
  Contractors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

MantlechFrontMatter.indd   11 8/22/12   3:18 PM



xii Contents

  Contracted Managed Teams and Outsourcing Companies . . .  24
 Generational Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
 Personality Styles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
  Left-Brain versus Right-Brain People  . . . . . . . . . . . . . . . . . . . .  28
  Night versus Morning People  . . . . . . . . . . . . . . . . . . . . . . . . . .  29
  Cowboys versus Farmers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
  Heroes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
  Introverts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
  Cynics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
  Jerks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Chapter  3 Finding and Hiring Great Programmers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35

 Determining What Kind of Programmer to Hire . . . . . . . . . . . .  37
 Writing the Job Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
 Selling the Hire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
 Recruiting Full-Time Employees (FTEs) . . . . . . . . . . . . . . . . . . . .  46
  Always Be Recruiting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
  Budgeting for Recruiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
  Recruiter Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50
  Employee Referrals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
  Effective Recruiting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
  Recruiting Tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
 Recruiting Contractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
 Reviewing Résumés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
 Narrowing the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
 Preparing to Interview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60
 Interviewing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
 Making the Decision to Hire a Programmer . . . . . . . . . . . . . . . .  72
 Making the Right Offer to a Programmer  . . . . . . . . . . . . . . . . . .  76

MantlechFrontMatter.indd   12 8/22/12   3:18 PM



 Contents xiii

 Follow Up Until the Programmer Accepts . . . . . . . . . . . . . . . . . .  82
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Chapter    4  Getting New Programmers Started Off Right  .  .  .  .  .  .  .  .  .  .  .  .  .  .  84

 Get Them on Board Early . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
 Preparing for Their Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
 First-Day Musts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
 Introductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
 Ensuring Success  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
 Initial Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

Chapter    5  Becoming an Effective Programming Manager:  
  Managing Down   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  99

 Earning Technical Respect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
 Hire Great Programmers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  105
 Turbocharge the Team You Have . . . . . . . . . . . . . . . . . . . . . . . . .  105
 Managing Different Types of Programmers  . . . . . . . . . . . . . . .  106
 Facilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111
 Judging and Improving Performance . . . . . . . . . . . . . . . . . . . . .  113
  Setting Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114
  Performance Reviews  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117
  Know When to Cut Your Losses  . . . . . . . . . . . . . . . . . . . . . . .  122
 Organizational Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
  Staffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
   Full-Time versus Contractors . . . . . . . . . . . . . . . . . . . . . . . .  124
   In-House versus Off-Shore Contractors . . . . . . . . . . . . . . .  126
  Organizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130
   Office-Based versus Virtual Teams  . . . . . . . . . . . . . . . . . . .  130

MantlechFrontMatter.indd   13 8/22/12   3:18 PM



xiv Contents

   Programmer Teams—Small versus Large Teams  . . . . . . .  133
   Managing Larger Organizations  . . . . . . . . . . . . . . . . . . . . .  135
  Troubleshooting a Dysfunctional Organization  . . . . . . . . . .  140
 Deliver Results and Celebrate Success . . . . . . . . . . . . . . . . . . . .  141
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

Rules of thuMb and nuggets of wisdoM  . . . . . . . . . . . . .  143

 The Challenges of Managing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  147

 Managing People   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  173

 Managing Teams to Deliver Successfully   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  203

Chapter    6   Becoming an Effective Programming Manager:  
Managing Up, Out, and Yourself   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  227

 Managing Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
  Understand Your Boss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  228
  Package Your Communications . . . . . . . . . . . . . . . . . . . . . . . .  230
  Understand Your Boss’s Boss . . . . . . . . . . . . . . . . . . . . . . . . . .  231
  Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
  Be a Model Employee  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
  Bottom Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
 Managing Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234
  Collaborating within Your Department  . . . . . . . . . . . . . . . . .  234
  Understand Other Departments  . . . . . . . . . . . . . . . . . . . . . . .  235
  Leverage Important Support Functions . . . . . . . . . . . . . . . . .  237
   Human Resources (HR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237
   Finance and Managing Budgets  . . . . . . . . . . . . . . . . . . . . .  239
   Legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242
  Managing Outside the Company  . . . . . . . . . . . . . . . . . . . . . .  242
   Customers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
   Technology Providers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243

MantlechFrontMatter.indd   14 8/22/12   3:18 PM



  Contents  xv

   Technology Innovators and Work Disruptors . . . . . . . . . .  244
   Tools Vendors and Suppliers  . . . . . . . . . . . . . . . . . . . . . . . .  245
    Government, Trade, and International Standards  

Organizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246
    Industry Consortiums  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247
   Professional Organizations . . . . . . . . . . . . . . . . . . . . . . . . . .  247
   University Educators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248
   Local Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248
  Bottom Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
 Managing Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
  Personal Style  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250
   Appropriate Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
   Work Ethic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
   Know Your Staff  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252
  Time and Priority Management . . . . . . . . . . . . . . . . . . . . . . . .  254
  Communications Management  . . . . . . . . . . . . . . . . . . . . . . . .  256
  Management Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260
   Pay Attention to the Person  . . . . . . . . . . . . . . . . . . . . . . . . .  260
   Listen Reflectively  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
   Break Down Barriers to Communication . . . . . . . . . . . . . .  261
   Understand What Is Really Important . . . . . . . . . . . . . . . .  261
   Make Progress Every Day . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
   Be Part of the Solution, Not Part of the Problem  . . . . . . .  263
  Follow-Up Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  263
  Find a Mentor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266
  Bottom Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268

Chapter    7  Motivating Programmers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  269

 Motivational Theories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
  Maslow’s Hierarchy of Needs  . . . . . . . . . . . . . . . . . . . . . . . . .  270

MantlechFrontMatter.indd   15 8/22/12   3:18 PM



xvi Contents

  McGregor’s X-Y Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271
  Herzberg’s Motivation and Hygiene Factors  . . . . . . . . . . . .  272
 Motivational Factors as Applied to Programmers  . . . . . . . . . .  274
 Putting Theory into Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
 Foundational Factors—Causes of Dissatisfaction  
 (When Lacking)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  280
  Respected as Supervisor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
   Gain Technical Respect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
   Respect Others  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281
   Establish Your Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  282
   Lead by Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  283
   Help Solve Technical Problems  . . . . . . . . . . . . . . . . . . . . . .  283
   Manage and Coach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
   Focus on Your People  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  285
  Having Fun  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  286
  Learning and Growing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
  Good Working Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  289
   Make the Workplace a Good Place to Work  . . . . . . . . . . .  289
   “No Jerks” Rule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290
   Be Flexible  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291
   Feed Your Team  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293
  Sane Company Policies and Administration . . . . . . . . . . . . .  294
   Communicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
   Protect Your Staff from Organizational Distraction  . . . . .  296
    Protect Your Staff from Bad Organization  

Communication and Policies  . . . . . . . . . . . . . . . . . . . . . . . .  297
  Ethical Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297
 Key Motivating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303
  Making a Difference in the World . . . . . . . . . . . . . . . . . . . . . .  303
  Learning and Growing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  305
  Toys and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307
  Recognition and Praise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  307

MantlechFrontMatter.indd   16 8/22/12   3:18 PM



  Contents  xvii

  Having Fun with Your Staff . . . . . . . . . . . . . . . . . . . . . . . . . . .  309
  Upside  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310
 Personal Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312
 Technology Offense and Defense  . . . . . . . . . . . . . . . . . . . . . . . .  314
 Understanding Your Programmers’ Motivations  
 Begins on Day One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317

Chapter    8  Establishing a Successful Programming Culture   .  .  .  .  .  .  .  .  .  .  318

 Defining “Successful”  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319
 The Programming Culture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319
 Company Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  320
  Leveraging the Complexity of Your Company’s Culture  . . . .  321
  Walling Off Your Company’s Culture . . . . . . . . . . . . . . . . . . .  322
  What Part Does Technology Play in Your Company? . . . . .  323
  What Drives Your Company?  . . . . . . . . . . . . . . . . . . . . . . . . .  325
 Characteristics of a Successful Programming Culture . . . . . . .  327
  Mutual Respect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  328
  Innovation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329
  Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  330
  Delivery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331
  Communication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
  Communication Among Virtual Teams  . . . . . . . . . . . . . . . . .  334
  Fairness  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  336
  Empowerment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337
  Professionalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338
  No Jerks and Bozos  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339
  Excellence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340
  Programming Excellence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340
  Teamwork and Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . .  341
  Passion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341
  Customer Focus: “It’s the Customer Experience, Stupid!”. .  341

MantlechFrontMatter.indd   17 8/22/12   3:18 PM



xviii Contents

  Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  343
  Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  346

Chapter    9  Managing Successful Software Delivery  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  347

 Defining the Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348
  Ensure That Requirements and Assumptions Are Clear . . .  349
  Limit Requirements to “What,” not “How”. . . . . . . . . . . . . . . .  352
  Seek to Delight Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353
  Quickly Ballpark the Magnitude of Effort Required  . . . . . .  354
  Recognize Nonnegotiable Dates  . . . . . . . . . . . . . . . . . . . . . . .  356
  Inspire the Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  356
 Planning the Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  358
  Break the Project into Features, and Prioritize Them . . . . . .  359
  Break Features into Tasks and Sub-Tasks . . . . . . . . . . . . . . . .  361
  Engage Your Team in a Bottom-Up Estimate  . . . . . . . . . . . .  362
  Assemble Task Estimates into a Project Estimate . . . . . . . . .  362
  Look for the Limitations on Estimation . . . . . . . . . . . . . . . . .  364
  Get Agreement Around the Risks, Not Just the Schedule . . . .  366
  Allocate Sufficient Time for Unit and Project Testing  . . . . .  368
  Estimation Is a Unique Challenge Every Time . . . . . . . . . . .  368
  Determine the Pace of the Project  . . . . . . . . . . . . . . . . . . . . . .  369
 Kicking Off the Plan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370
  Participate in a Project Kickoff . . . . . . . . . . . . . . . . . . . . . . . . .  370
  Define “Done” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  371
  Define “Success” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372
  Establish a Project Workbook . . . . . . . . . . . . . . . . . . . . . . . . . .  373
 Executing the Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  376
  Design the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  376
  Hold a Design Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  379

MantlechFrontMatter.indd   18 8/22/12   3:18 PM



 Contents xix

  Complete a Prototype to Inform the Design . . . . . . . . . . . . .  380
  Set Agreed-Upon Milestones  . . . . . . . . . . . . . . . . . . . . . . . . . .  381
  Confirm That Regular Check-In Meetings  
  Have Been Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  382
  Actively Drive Development  . . . . . . . . . . . . . . . . . . . . . . . . . .  384
   Ensure That Agreed-Upon Standards and  
   Requirements Are Met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  386
   Leverage Test-Driven Development  . . . . . . . . . . . . . . . . . .  388
   Hold Stand-Up Meetings  . . . . . . . . . . . . . . . . . . . . . . . . . . .  389
   Insist on Code Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  389
 Running the End Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  391
  No New Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  391
  Run the Product  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  392
  Be Prepared to Declare Success and Start on the  
    Point Release  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  392
  Know When to Cut Your Losses  . . . . . . . . . . . . . . . . . . . . . . .  394
  OEM and International Versions. . . . . . . . . . . . . . . . . . . . . . . .  396
 Delivering the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  396
  Celebrate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  396
  Retrospect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  397
  Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  400
  Refactor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  400
  Point Releases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401
 Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  401
 Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  402

  tools    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .403

 Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407

MantlechFrontMatter.indd   19 8/22/12   3:18 PM



35

Excerpt from Chapter 3
Finding and Hiring  
Great Programmers

There are many programmers. However, there are not that many great 
programmers. 

“Exceptional engineers are more likely than non-exceptional engineers to main-
tain a ‘big picture,’ have a bias for action, be driven by a sense of mission, 
exhibit and articulate strong convictions, play a pro-active role with manage-
ment, and help other engineers,” said an insightful 1993 study of software 
engineers.1

Frederick Brooks in his classic work The Mythical Man-Month2 cited a 
study3 from 25 years earlier that showed, among programmers with two 
years’ experience and similar training, that the best professional program-
mers are ten times as productive as the poorest of them. The researchers had 
started out to determine if changing from punch cards to interactive pro-
gramming would make a productivity difference, only to find their results 
overwhelmed by the productivity differences among individuals. They 
found 20:1 differences in initial coding time, 5:1 differences in code size (!), 
and 25:1 differences in debugging time!

 1.  Richard Turley and James Bieman, Competencies of Exceptional and Non-Exceptional Software 
Engineers (Colorado State University, 1993).

 2.  Brooks, The Mythical Man-Month. 
 3.  H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies Comparing 

Online and Offline Programming Performance,” CACM, January 1968.

MantleMarketingSampler.indd   35 8/28/12   8:34 AM



36 3. Finding and Hiring Great Programmers

Barry Boehm, 20 years later, reported a 25:1 difference between the most 
and least productive software developers, and a 10:1 difference in the num-
ber of bugs they generated.4 In 2000, Boehm and coauthors updated their 
study to examine teams and concluded that teams of experienced top-tier 
programmers could be expected to be 5.3 times more productive than teams 
of inexperienced bottom-tier programmers.5

Good programmers are up to 30 times better than medi- 
ocre programmers, according to “individual differences” 
research. Given that their pay is never commensurate,  
they are the biggest bargains in the software field. 

— RobeRt L. GLass, software Practitioner,  
Pioneer, and author6

While there are some IT organizations that pride themselves on hiring 
“ordinary” programmers, there are few product companies and professional 
services organizations where you can be successful managing a software 
team without the ability to staff some part of your team with “great” ones. 
It’s no wonder, given the kinds of people programmers can be, that finding 
and identifying exceptional engineers can be a challenge.

the single most important job of a programming man- 
ager is to hire the right people. 

Hiring is far and away the most difficult-to-undo decision that managers 
make. Being successful at staffing will ease the rest of your job. The worst of 
unsuccessful hires can cast a plague upon your team for months, undermine 
your leadership, incite dissension and strife, delay or derail your deliver-
ables, and in these ways and in every other way demotivate and demoralize 
your entire organization. Not to mention how hard it is to get rid of under-
performers and other bad hires. 

 4.  Barry Boehm, “Understanding and Controlling Software Costs,” IEEE Transactions on Soft-
ware Engineering, October 1988.

 5.  Barry Boehm et al., Software Cost Estimation with Cocomo II (Addison-Wesley, 2000).
 6.  Barry Boehm et al., Software Cost Estimation with Cocomo II (Addison-Wesley, 2000).

MantleMarketingSampler.indd   36 8/28/12   8:34 AM



 Determining What Kind of Programmer to Hire 37

If you’re hiring not only programmers but also managers of programmers, 
remember the rule Ron heard at Apple and Mickey heard directly from  
Steve Jobs: 

a’s hire a’s. b’s hire C’s. 

—steve Jobs

Steve’s point was to emphasize how essential it is to hire top-notch managers, 
for the combinatorial effect they have as they make hires.

We’ve both been fooled. Ron had already been hiring for a decade when 
he interviewed a manager he was convinced would be a stellar contributor 
to his organization: “I was certain, given how well he talked the talk, that 
this was a guy who would really deliver. I called two of his references, and 
both shared stories and anecdotes that convinced me he’d walked the talk 
many a time before.7 My interview team was unanimous in making a ‘hire’ 
recommendation. It was a time when I’d inherited a bad apple or two, but 
I’d never hired one. Until then. I realized it fast and I acted quickly to com-
municate the change I wanted to see in his behavior. Luckily, when I called 
him into my office, not even two months on the job, for a change-or-leave 
meeting, it was he who opened the conversation: He didn’t feel like he fit; 
he was giving notice; he needed to leave. I was lucky.”

While it can happen, we’ve figured out a few principles that have 
resulted in the vast majority of our hires being good ones.

Determining What Kind of Programmer to Hire

It all starts with knowing whom you want to hire. You’re hiring not just a 
programmer, but also someone to fill a role and a need in your organization. 

We outlined in Chapter 2 how to build a job description for the kinds 
and levels of programmers you need in your organization. But those are 
generic descriptions.

For individual hires, only by consciously thinking through the skill sets, 
values, ethics, and orientation you need are you likely to hire the right pro-
grammers for the slots you need to fill out your team.

 7.  “You can’t just talk the talk and walk the walk; you’ve got to walk the talk.” This frequent 
theme of Cecil Williams, renowned pastor of San Francisco’s Glide Memorial Church, I real-
ized later, turns out to be the very definition of integrity.

MantleMarketingSampler.indd   37 8/28/12   8:34 AM



99

Excerpt from Chapter 5
Becoming an Effective 
Programming Manager: 
Managing Down

Everything that has been presented in this book so far has only set the 
stage for the real heart of the information we hope to convey: how to man-
age programmers effectively on a day-to-day basis. Since most organizations 
are structured hierarchically, we have broken this information into four basic 
topics in relation to your position in the organization:

•   Managing down
•   Managing up
•   Managing out
•   Managing yourself

These topics deal with managing your staff, managing your boss(es), 
managing others inside or outside of your organization, and managing 
yourself. Chapter 6 covers the last three topics, which are critical to being an 
effective programming manager.

The most relevant topic here is the first one, and this chapter focuses 
solely on managing down. As a first-line programming manager, you should 
probably be spending the bulk of your time doing this. Managing down 
includes all those things you need to do to effectively manage the staff that 
reports directly, or indirectly, to you. One aspect of this, that of motivating 
your staff, is so important that Chapter 7 is devoted to it. The remainder of 
this chapter deals primarily with the mechanics of being an effective pro-
gramming manager—what you need to do and how to do it.

MantleChapter5aSAMPLER.indd   99 8/28/12   9:02 AM



100	 5.	 Becoming	an	Effective	Programming	Manager

Earning	Technical	Respect

Scott Adams has forever stained the reputation of every programming man-
ager by making an icon of the Pointy-Haired Boss (or PHB, in programmer 
parlance). The PHB is a buffoon who is clueless at best and malicious or evil 
at his worst. We need not discuss what the PHB is but rather realize what he 
isn’t—respected by Dilbert and his cohorts. 

The PHB isn’t respected because he does not understand, or care to 
understand, what Dilbert and his cohorts do, and he demonstrates that at 
every turn. Years of working in technical organizations have led us to believe 
that those who don’t intimately understand programmers are going to make 
a mess if they try to manage, direct, or dictate actions for a programming 
team or project. It is the rare manager who has this understanding who has 
not been a programmer.

The single biggest key to successfully managing programmers is to have 
the technical respect of those you manage and your peers. Without techni-
cal respect, every attempt to manage will be thwarted actively or passively. 
This is why it is so hard for those who do not understand programmers (i.e., 
have not been programmers at some stage of their career) to manage pro-
grammers effectively. This is true of many technical disciplines but seems to 
be more of a truism in the world of programming.1 Key aspects of earning 
technical respect are

•   Understanding the art of computer programming
•   Having a good track record
•   Making some notable technical contribution
•   Keeping up with technical trends and technologies
•   Being an active member of technical or professional organizations
•   Demonstrating strong personal values

To understand programmers, you must have a solid understanding of 
the tools, the processes, and the art of computer programming.2 The deeper 

 1.   We are not aware of any other vocation where there is a character such as Dilbert who 
throws such pointed barbs at his manager except, perhaps, the military. 

 2.   Donald E. Knuth, The Art of Computer Programming, Volume 1, Fundamental Algorithms, Third 
Edition (Addison-Wesley, 1997); Volume 2, Seminumerical Algorithms, Third Edition (Addison-
Wesley, 1997); Volume 3, Sorting and Searching, Second Edition (Addison-Wesley, 1998); 
Volume 4, Combinatorial Algorithms, Part 1 (Addison-Wesley, 2011); Volume 5, Syntactic Algo-
rithms (Addison-Wesley, forthcoming). If you don’t have a copy of these books prominently 
displayed in your office, you should!

MantleChapter5aSAMPLER.indd   100 8/28/12   8:36 AM



	 Earning	Technical	Respect 101

your understanding and the stronger your ability to engage in meaning-
ful technical dialog with your staff, the more technical respect you will 
have from them. A Microsoft program architect once said of Bill Gates, 
“Gates relishes nothing as much as disassembling the bits and bytes of 
computer code with his programmers. He easily holds his own in the tech-
nological trenches. . . . He gets respect because he can take those guys to  
the cleaners.”3

The intangible elements of technical respect explain why it can be  
difficult to bring programming managers in from outside the company or 
organization and have them be effective. A key attribute of any candidate 
you consider to manage a programming team is having a set of “bona fides” 
(i.e., a proven track record in software) that the team they will be managing 
can respect.

There are many ways to build a solid set of bona fides, the simplest of 
which is to be an acknowledged outstanding programmer/technical leader 
and be promoted to be a programming manager in the same organiza-
tion. This has its own challenges, but an outstanding programmer will be 
a known quantity and have the needed technical respect of his peers and 
those he will then be responsible for managing, and that will help foster a 
good team culture that is founded on respect. Having a deep understanding 
of the technical organization and its managers will also be an advantage, 
since that understanding can be communicated to the team. 

Another way to increase your stature, and in turn gain technical respect, 
is by having developed or managed projects or products that are well known 
to the programmers you manage.

Mickey’s own management career was built by first being recognized 
as a key contributor at Evans & Sutherland (E&S) after leading the Picture 
System graphics library project, being promoted as a manager of the team 
developing the company’s next-generation graphics products, and then 
being recruited by Pixar where his E&S work was well known.4 Thereafter, 
having E&S and Pixar on his résumé gained him some technical respect that 
has carried forward to this very day.

Ron’s bona fides for a management role at Apple began with  
coauthoring the canonical assembly language reference for the emerging 

 3.   Paul Maritz, Microsoft program architect, Playboy magazine profile of Bill Gates, 1991.
 4.  Pixar, and Lucasfilm from which Pixar was spun off, were both heavy users of E&S’s 3-D 

graphics systems. Pixar’s groundbreaking short film Luxo Jr. was animated by John Lassiter 
using an E&S Picture System.

MantleChapter5aSAMPLER.indd   101 8/28/12   8:36 AM



102	 5.	 Becoming	an	Effective	Programming	Manager

65816 microprocessor. When Apple chose the 65816 as the core of what 
would be a hybrid between the Mac and the Apple II, the Apple IIGS, Ron 
was recruited to code the animated program by which the IIGS demoed itself 
to buyers in every Apple store in the world. That led to Ron being recruited 
for a programming role at Apple in system software, during which time he 
was repeatedly tapped to manage the groups developing first the Apple II 
and then the Macintosh UI. That led Berkeley Systems, which had invented 
the change-the-channel screen saver After Dark, to hire him as their Director 
of Engineering for entertainment products. This led to directing engineering 
at two other entertainment software companies (not to mention the opportu-
nity for Ron and Mickey to meet).

Pixar and Apple were important bona fides for Mickey and Ron, but any 
career can be packaged or enhanced with a little effort. This is an important 
aspect of career management, which every programmer or programming 
manager should work hard to do. Look for opportunities to make contribu-
tions, stand out from the crowd, and create your own legend. It can be as 
simple as contributing to an open source project, or blogging about your 
experiences. Find the right thing that works for you.

Joining and participating in relevant technical societies and organiza-
tions can contribute to your bona fides. We strongly recommend joining 
ACM and/or IEEE, either of which will bring anyone a measure of technical 
credibility regardless of their degree of participation. Long-standing mem-
bers of either organization command even more technical respect. Attending 
annual conferences sponsored by these organizations as well as local chapter 
meetings is a great way to keep in touch with technical advances and do 
some personal and professional networking.

Other ways to gain technical respect are to get advanced technical 
degrees; become professionally certified; author technical papers; create 
open source, commercial, or shareware software; apply for patents; write a 
book; build your own Web site; start your own company; have your own 
blog; be a “known” contributor to a technical community (e.g., Slashdot); 
invent an algorithm (e.g., Page Rank, Warnock’s algorithm); postulate a law 
(e.g., Moore’s Law); and so on. 

During his tenure managing Apple’s Macintosh team developing the 
Finder—Apple’s desktop UI—Ron developed the Macintosh shareware 
reminders program Birthdays and Such. Exploring coding best practices 
for one particularly gnarly area of Mac UI programming, Ron realized that 
Apple’s own documentation was wrong and authored two Apple Tech 

MantleChapter5aSAMPLER.indd   102 8/28/12   8:36 AM



Excerpts from 
Rules of Thumb  
and  
Nuggets of Wisdom

MantleChapter5bSampler.indd   143 8/28/12   8:39 AM



147

The Challenges of Managing

Managers must manage.
—andy Grove, Former intel chairman and ceo1

I’ve used Andy Grove’s phrase innumerable times to coach my 
managers and directors of programming teams. When confronted 
with a problem, they can’t just “raise a red flag.” I’m always avail-
able when needed, but good software managers find ways to 
solve problems without my involvement or executive manage-
ment direction.

Management is about human beings. Its task  
is to make people capable of joint performance,  
to make their strengths effective and their 
weaknesses irrelevant.

—PeTer drucker2

Drucker, born in 1909, is the man who has been called the “father 
of modern management.” He coined the term knowledge worker 
and predicted the rise of today’s information society and its need 
for lifelong learning.

 1. Paraphrased from Andrew S. Grove, High-Output Management (Vintage Books, 1995).
 2.  Peter Drucker, “Management as Social Function and Liberal Art,” in The Essential Drucker 

(Harper Business, 2001), p. 10.

MantleChapter5bSampler.indd   147 8/28/12   8:39 AM



148 Rules of Thumb and Nuggets of Wisdom

A manager of years ago gave sage career advice: 
When you land at a new company, pick a gnarly 
problem—one that people have been avoiding— 
and solve it. It gets you up the learning curve,  
and it gains you credibility and respect, both  
of which you’ll need to be an effective developer  
and influencer.

—dave smiTh, agile software development coach3

People hate change but love progress.
—Terry Pearce, author, Leading Out Loud

It is not enough to respond to change; we must lead 
change or be left behind.

— Pollyanna PixTon, Founder, agile leadership  
network (aln)4 

You miss 100 percent of the shots you never take.
—wayne GreTzky, hockey Phenom

I have missed more than 9,000 shots in my career.  
I have lost almost 300 games. On 26 occasions I 
have been entrusted to take the game-winning shot 
and I missed. I have failed over and over again in 
my life. And that’s precisely why I succeed.

—michael Jordan, Basketball Phenom5

Nothing stops a witch hunt faster than owning up 
to being the culprit.

—Tim swiharT, engineering director, apple computer

You know when it’s you (or your team) that the angry mob is 
searching for. Stand up, succinctly explain what went wrong, why 

 3. http://c2.com/cgi/wiki?WorstThingsFirst.
 4. Spoken at BayALN, the Bay Area chapter, January 2007.
 5. Quoted in Guideposts, August 2002.

MantleChapter5bSampler.indd   148 8/28/12   8:39 AM



173

Managing People

Trust your feelings, young Luke. The Force will be 
with you.

—Obi-Wan KenObi, Jedi Master in Star Wars

We counsel many managers and programmers to listen to their 
intuition carefully; it’s usually right. The older I get, the more  
I regret those times when I don’t listen to my intuition. Program-
mers usually know the right things to do—if they allow them-
selves to trust their feelings.

Accountability is not micromanagement. 
—MarK HiMelstein

The author of 100 Questions to ask Your software Organization,1 
speaking to the Best Practices SIG of the East Bay Innovation 
Group in 2006. We’ve always hated being micromanaged and 
thus have avoided being managers who micromanage. The chal-
lenge is to realize the line between micromanaging and holding 
your people accountable. Giving up micromanagement is not 
giving up expecting accountability.

 1.  Mark I. Himelstein, 100 Questions to Ask Your Software Organization (Infinity Publishing, 2005).

Managing People

MantleChapter5bSampler.indd   173 8/28/12   8:40 AM



174 Rules of Thumb and Nuggets of Wisdom

Trust but verify.
—rOnald reagan

President Reagan was referring to the Soviets during the Cold 
War with his frequent use of this translation of a Russian prov-
erb that had been equally frequently quoted by Soviet founding 
father Vladimir Lenin. Perhaps it was because of that context that 
I didn’t pay attention until I heard another VP of Engineering use 
the expression in describing how he managed his team—and  
realized that it described my goal-state management style: my 
goal is absolutely no micromanagement, but enough checking  
to know that the delegation I’d done was appropriate.

One of the surest sources of delay and confusion is 
to allow any superior to be directly responsible for 
the control of too many subordinates.

—V. a. graicunas

Graicunas was an early-twentieth-century management consul-
tant and the first to mathematically analyze the complexity  
of increasing management responsibility. Graicunas showed that 
as span of control increases, the number of interactions among 
managers and their reports—and thus the amount of time 
managers must spend supervising—increases geometrically. His 
formula takes into account manager-to-report, report-to-report, 
and manager-to-all-combinations-of-reports interactions, and  
he posits that supervision time increases proportionately with 
interactions. He showed that by adding a fifth report, while the  
potential for accomplishing more work may increase by 20 percent, 
the number of potential interactions increases from 44 to 100— 
by 127 percent! Eight reports increases to 1,080 potential interac-
tions and 12 reports to 24,564 to track and manage! Graicunas 
recommended that managers have a maximum of five reports, 
ideally four. 

MantleChapter5bSampler.indd   174 8/28/12   8:40 AM



203

Managing Teams to  
Deliver Successfully

Software is hard.
—DonalD Knuth

Knuth is the acclaimed author of the art of Computer Program-
ming. Here, he was quoted speaking to an audience of 350 people 
at the Technische Universitat Munchen.1

Software isn’t released, it’s allowed to escape.
—ProjeCt management lay wisDom

. . . you’re not here to write code; you’re here to  
ship products.

—jamie ZawinsKi2

Hofstadter’s Law: It always takes longer than  
you expect, even when you take Hofstadter’s Law 
into account.

—Douglas hofstaDter3

 1.  Knuth’s comment was captured in the widely shared PDF, All Questions Answered.
 2.  Quoted in Seibel, Coders at Work, p. 22.
 3.  Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, 20th Anniversary Edition 

(Basic Books, 1999).

Managing Teams to Deliver Successfully

MantleChapter5bSampler.indd   203 8/28/12   8:40 AM



204 Rules of Thumb and Nuggets of Wisdom

Always take redundancy over reliability.
—VlaDimir BogDanoV

Too much data could be worse than no data at all.
—VlaDimir BogDanoV

The secret of software development has always been 
good people and lots of Chinese food.

— jeff Kenton, Consulting Developer and  
Development manager4

Lots of Chinese food or pizza. Critical projects or milestones often 
require extraordinary effort to be exerted by the programming 
team. It’s a simple thing that should be obvious: Programmers 
under schedule pressure will work long hours unless they are  
interrupted. Bringing in meals—Chinese food, pizza, or even 
meals from a great restaurant—keeps the programming team 
going. If you allow them to go out for food, their will to continue 
will erode and the extra effort will diminish. 

Projects should be run like marathons. You have to 
set a healthy pace that can win the race and expect 
to sprint for the finish line.

—eD Catmull, Cto, Pixar animation studios

At Pixar, Ed Catmull, its cofounder, president, and CTO, encour-
aged me to manage my projects this way, and I’ve used this as a 
rule of thumb ever since. When interviewing new candidates,  
I make sure I find a way to bring this up so that I set the expecta-
tion that there will be times when the programmer will need to 
work very hard and sprint for the finish line and project comple-
tion, but also to set the expectation that I don’t expect them to 
“sprint” all the time.

 4.  www.embedded.com/shared/printableArticle.jhtml?articleID=166400761.

MantleChapter5bSampler.indd   204 8/28/12   8:40 AM



318

Excerpt from Chapter 8
Establishing a Successful 
Programming Culture

One of the questions we asked back in Chapter 1 was “What is a great 
programmer?” 

But a question more relevant to you is “What is  a great manager of 
programmers?” An essential and significant element of your role as a great 
manager is to create and nurture a successful programming culture. For 
most of us, that’s a culture that supports and encourages the delivery of 
quality software on time and within budget by a team that developers feel 
proud and gratified to be part of for a long time. 

You were hired to manage, right? But even if you follow all of our ear-
lier advice, it’s not easy. Your programmers don’t always act rationally or 
predictably. Some have chaotic personal lives. They don’t always get along. 
They can be blunt, reclusive, irritable, manic, silent, impatient, petulant, 
abrasive . . . 

Your organization may not care much about them (unless their irrational 
behavior spews beyond your department, of course). But your organization 
cares a lot about your ability to produce and deploy software that meets 
organizational goals and customer needs. 

Almost any group of programmers, no matter how dysfunctional, will 
care, too. They care about being productive and building successful prod-
ucts and services. 

As for you, you care even more. In addition to wanting what your 
developers want, and wanting to meet your organization’s expectations, 
you want to be a high-performing software development manager who can 
stretch beyond the ordinary to achieve the remarkable.

MantleChapter8Smapler.indd   318 8/28/12   9:06 AM



 The Programming Culture 319

You need help. You somehow need to create internal and external 
expectations for greatness. You need to instill confidence that you and your 
team(s) can deliver. You need a culture that supports your goals and objec-
tives. And you need to create an environment of excellence that attracts and 
retains top talent and motivates stellar work.

Powerful cultures drive high-performance work in ways that no amount 
of personal motivation alone can achieve. 

Under the right conditions, the problems of commitment, 
alignment, motivation, and change largely melt away. 

—Jim Collins1

Defining “Successful”

OK, so it may not be greatness you need to deliver. For some projects it may 
be functional but frequent delivery. For others your stakeholders may expect 
their product to be “flawless.” Some teams are formed to help visionaries 
conceptualize products. Other teams are formed to keep products running 
as the environments they’re built within change.

You may find you have organizational goals as well, goals such as devel-
oping and retaining quality programmers, perhaps.

It is essential to creating and nurturing a successful programming cul-
ture that you understand what “successful” means for your company, your 
organization, your project, and your team—and how to measure it. 

The Programming Culture

Unless you lucked out and inherited it, you have to create your own suc-
cessful programming culture. To maintain it, even if you inherited it, you 
need to nurture it. These are truisms whether you and your team are devel-
oping packaged software, software as a service, embedded software, B2B 
software components and services, or internal applications for the firm’s 
employees. They are true whether you’re part of a tiny start-up, a large cor-
poration, a nonprofit, or government. Your mission is to deliver value. And 
that requires managing the people and the culture.

 1.  Jim Collins, Good to Great (HarperCollins, 2001), p. 11.

MantleChapter8Smapler.indd   319 8/28/12   8:42 AM



320 8. Establishing a Successful Programming Culture

Creating a powerful programming culture requires establishing

•   A work setting that is conducive to developing outstanding quality soft-
ware and values on-time creation and delivery of on-target, customer-
focused software

•   An atmosphere of respect and fairness that keeps your staff at their 
most productive

•   An environment in which commitment and motivation are easily nur-
tured and grown

•   Metrics for your products, projects, and deliverables so your team can 
measure its efforts and improve its results

The challenge is: How do you do that?

Company Culture

All organizations—large and small, companies, governments, and nonprof-
its alike—have a corporate culture already. It’s important to understand 
your organization’s culture in order to create the culture you desire. 

If it’s a strong, positive culture, it may provide you with a platform you 
can leverage to create the right environment for your own team. Or it may be 
one that is so corrosive that you need to wall it off entirely to give your team 
an insular environment in which it can accomplish good work undistracted.

To figure out the corporate culture, listen to the CEO. Steve Jobs in a 
video conversation in 2007 (with Bill Gates), for example, said he wanted 
employees at Apple to feel like they were doing the best work of their 
careers. Chuck Schwab used those same words in the mid-nineties when the 
brokerage was moving stock trading online.

In most large companies, it’s easy to identify the culture and values the 
company espouses. You’ll find well-phrased statements of vision and val-
ues, sometimes referred to as purpose and principles, printed on posters and 
plaques, T-shirts and coffee cups, the company Web site and laminated wal-
let cards. 

That said, view what you hear and see with some skepticism. What 
companies espouse is not always how they behave. Look deeper than the 
words. Enron claimed to stand “on the foundation of its Vision and Values,” 
trumpeting values that included “Respect, Integrity and Communication.” 
Regarding respect, its Web site expounded that “ruthlessness, callousness 
and arrogance don’t belong here.” That hardly seems consistent with the 

MantleChapter8Smapler.indd   320 8/28/12   8:42 AM



 Company Culture 321

directive CEO Jeffrey Skilling is said to have given his management team to 
“cut jobs ruthlessly by 50 percent.” 

Even where values have been forsaken, smart development managers 
recognize that the company’s values, with words painted everywhere, can 
be leveraged. A good development manager at Enron would have forged 
a programming culture around “respect, integrity, and communication,” 
regardless of their absence in the milieu around them.

For organizations less than 30 or 40 years old, our experience is that the 
culture almost without fail reflects the personal standards and core values of 
the company’s founder(s). Listen to stories from the earliest employees about 
how the founder established and grew the company. The stories at Apple 
of Steve Jobs leading the Mac team—virtually living together, working day 
and night, printing T-shirts with “Working 90 hours a week and loving it,” 
raising a pirate flag in fierce pride and defiance—without question forged 
intense esprit de corps. But this environment also created interdepartmental 
rivalries and frustrated cross-company collaboration. In fact, Apple was long 
an aggregation of teams more than an integrated company.

Ultimately, culture derives not from the words that are espoused, but from 
the lessons that are communicated through action. Look for how employ-
ees, shareholders, and customers are perceived and treated—and the stories 
employees tell—regardless of the culture your organization claims to live by.

Leveraging the Complexity of Your Company’s Culture

At Charles Schwab, Ron created a small department of 25 to lead a three-year 
initiative to move all of Schwab’s application development to Java. “More 
than any other company I’ve seen, Schwab’s values were applied equally to 
employees, customers, and shareholders alike. Daily interactions more often 
than not mirrored its published values. Schwab’s espoused principles— 
Fairness, Empathy, Responsiveness, Striving, Teamwork, Trustworthiness—were 
modeled by founder Chuck Schwab. Whether seen from inside the company 
or out, Chuck Schwab is a man who is both extraordinarily entrepreneur-
ial and at the same time one of the most caring and ethical heads of any 
company anywhere. Where Teamwork in most companies refers to your team, 
there was a sense at Schwab that teamwork meant everyone.”

But even in the best of companies, the best of values can be a mixed 
blessing. Ron’s Java initiative, at its core, was about building and sharing 
best practices, about finding and sharing common ways to do things. A slam 
dunk in an organization with Teamwork as a core value, right? Getting teams 
to share best practices, approaches, patterns, and even code should be easy. 

MantleChapter8Smapler.indd   321 8/28/12   8:42 AM



Sample Tools  

Sample Tools are available for download from 
managingtheunmanageable.net.

MantleSampleTools.indd   143 8/28/12   8:57 AM



 Proximity and Relationship 21

TITLE: Programmer 3
DEPARTMENT: Client Programming
REPORTS TO: Director, Client Programming
STATUS: Full-time, exempt
LOCATION: San Francisco, CA

POSITION SUMMARY: Entry-level position. Responsible for code and/or 
asset management, conversion, verification, and maintenance. Responsible 
for writing well-defined portions of source code adhering to established 
standards of quality for documentation and coding. Works well in a group, 
and follows direction from manager and senior team members. Expected 
to work under direct supervision, communicating issues and problems that 
arise.

JOB REQUIREMENTS

• Four-year college degree in computer science or equivalent experience.
• Knowledge of Windows, Mac, or Linux/UNIX with more than one plat-

form preferable.
• Knowledge of C/C++ and debugging techniques.
• Basic knowledge of good coding practices and fundamental computer 

science principles.
• Aware of and interested in Internet technologies, communication pro-

tocols, and techniques.
• Aware of and interested in database methodologies and database 

systems.
• Ability to work in a team and take direction well.
• Self-motivated and responds to supervision. Asks relevant questions.
• Enthusiastic about company and programming company products.
• Can work with supervisor to plan tasks and estimate their completion.
• Can adapt to changing conditions.

Figure 2.1 Sample job description

MantleChapter2.indd   21 8/28/12   8:47 AM



 Programmer Job Requirements and Abilities 17

And domain expertise is an important consideration in hiring the right team 
of programmers.

Programmer Job Requirements and Abilities

Successfully hiring and managing a programmer starts with understand-
ing that each programmer has unique abilities. Like snowflakes, no two are 
alike. We have often said that there can be an order-of-magnitude difference 
among programmers in the ability to “crank out code.” What can make such 
a difference? Several factors do, including education, experience, talent, and 
intuition, as well as many other intangible factors. 

Most programmers understand the distinctions among their peers intui-
tively; they don’t need explicit rank or title designations to differentiate. But 
having a formalized set of programmer types and levels (see Table 2.1), each 
with a minimum set of job requirements and abilities, will make your man-
agement job much easier, help project managers identify who is best suited 
for various tasks and projects, and give senior management more insight 
into your organization and how it’s structured.

Associated with each of these programming levels3 is a set of criteria 
that each programmer must meet to be hired or promoted into that level. 
Of course, the years of experience are not mandatory but are used as rough 
guidelines to indicate the experience expected for the programming level. 
Each programmer’s skills and experience are unique, and these guidelines 
should not dictate that very talented and experienced programmers be held 

Table 2.1 Client Programming Level Guidelines

Programming Levels Client Programmers

Entry level Programmer 3

1–5 years’ experience Programmer 2

Experienced (5–10 years) Programmer 1

Experienced (10–20 years) Senior Programmer 2

Very experienced (12+ years) Senior Programmer 1/Architect

 3.  These programming levels are consistent with most compensation-related services, such as 
Radford Surveys and Salary.com. These services provide comparative salary and total com-
pensation information that is invaluable in managing your software team. By aligning your 
programming levels with the compensation survey service used by your company, you can 
ensure that you have the best information at your disposal for managing your team.

MantleChapter2Sampler.indd   17 8/28/12   8:49 AM



88	 4.	 Getting	New	Programmers	Started	Off	Right

Figure	4.1					First-day	preparation	checklist

MantleChapter4Sampler.indd   88 8/28/12   8:51 AM



 Judging and Improving Performance 115

Fi
gu

re
 5

.2
 

Q
ua

rt
er

ly
 o

bj
ec

tiv
es

 f
or

m

MantleChapter5aSAMPLER.indd   115 8/28/12   8:52 AM




